JP6451262B2 - Magnet characteristic measuring method and magnet characteristic measuring apparatus - Google Patents

Magnet characteristic measuring method and magnet characteristic measuring apparatus Download PDF

Info

Publication number
JP6451262B2
JP6451262B2 JP2014242049A JP2014242049A JP6451262B2 JP 6451262 B2 JP6451262 B2 JP 6451262B2 JP 2014242049 A JP2014242049 A JP 2014242049A JP 2014242049 A JP2014242049 A JP 2014242049A JP 6451262 B2 JP6451262 B2 JP 6451262B2
Authority
JP
Japan
Prior art keywords
magnet
coil
magnetization
voltage waveform
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014242049A
Other languages
Japanese (ja)
Other versions
JP2016102752A (en
Inventor
棗田 充俊
充俊 棗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014242049A priority Critical patent/JP6451262B2/en
Publication of JP2016102752A publication Critical patent/JP2016102752A/en
Application granted granted Critical
Publication of JP6451262B2 publication Critical patent/JP6451262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁石の磁気特性を測定する磁石特性測定方法及び磁石特性測定装置に関し、特に、ヘルムホルツコイルを用いて磁石の磁気特性を測定する磁石特性測定方法及び磁石特性測定装置に関する。   The present invention relates to a magnet characteristic measuring method and a magnet characteristic measuring apparatus for measuring the magnetic characteristic of a magnet, and more particularly to a magnet characteristic measuring method and a magnet characteristic measuring apparatus for measuring a magnetic characteristic of a magnet using a Helmholtz coil.

近年、磁石の高性能化への要求が増々厳しくなり、特に高保磁力化への要求が強い。さらに、磁石内部の磁気特性分布までも問題とされる場合がある。例えば、Dyを拡散してなる高性能な永久磁石は、各種モータなどの多様な機器に使用されている。Dyを拡散してなる高性能な磁石は、磁石内部に元素の不均一分布を有しており、そのため部位毎に異なる保磁力を有する。この磁石がモータなどに使用される場合、モータを適切に設計するために、磁石内部の磁気特性分布を知ることが望ましい。この特性分布は、磁石のサンプルを部位毎に切り出し、それぞれ特性評価するのが一般的である。このため、高保磁力を有する微小磁石に対する高精度の磁気特性の測定が要求される。   In recent years, the demand for higher performance of magnets has become more severe, and the demand for higher coercivity is particularly strong. Furthermore, there is a case where the magnetic property distribution inside the magnet is also a problem. For example, high-performance permanent magnets obtained by diffusing Dy are used in various devices such as various motors. A high-performance magnet formed by diffusing Dy has a non-uniform distribution of elements inside the magnet, and therefore has a different coercive force for each part. When this magnet is used in a motor or the like, it is desirable to know the magnetic property distribution inside the magnet in order to properly design the motor. This characteristic distribution is generally obtained by cutting out a magnet sample for each part and evaluating the characteristics. For this reason, it is required to measure magnetic characteristics with high accuracy for a micro magnet having a high coercive force.

磁石特性測定装置として一般に閉磁路型のB−Hトレーサが用いられる。本装置は、電磁石のポールピース間に磁石を挟んで設置し、磁石の外周に設置した検出コイルで磁化を検出し磁石の磁気特性を測定する装置である。本装置では、ポールピース間に検出コイルを設置する。微小磁石を測定するには微小なスペースに検出コイルを設置することが必要であり、微小な検出コイルでは十分な検出信号が得られないため、微小磁石の測定には不向きである。また、ポールピースの磁気飽和以上の高磁界中では正確な測定ができず、高保磁力磁石の測定にも限界がある。   A closed magnetic circuit type B-H tracer is generally used as a magnet characteristic measuring device. This device is a device in which a magnet is sandwiched between pole pieces of an electromagnet, the magnetization is detected by a detection coil installed on the outer periphery of the magnet, and the magnetic characteristics of the magnet are measured. In this apparatus, a detection coil is installed between pole pieces. In order to measure a minute magnet, it is necessary to install a detection coil in a minute space, and since a sufficient detection signal cannot be obtained with the minute detection coil, it is not suitable for the measurement of a minute magnet. In addition, accurate measurement cannot be performed in a high magnetic field exceeding the magnetic saturation of the pole piece, and there is a limit to the measurement of a high coercivity magnet.

他に開磁路型の磁石特性測定装置がある。1mm角程度の微小なサイズの磁石の減磁曲線を測定する場合、VSM(Vibrating Sample Magnetometer)、磁気天秤等が一般的に利用されている。VSMの場合、高保磁力磁石の測定には、超電導コイルを用いるなどの手段が必要となる。また、磁石の測定を高精度で行うには、正確に磁石を検出コイルの中心に設置する必要がある。   In addition, there is an open magnetic circuit type magnet characteristic measuring device. In order to measure a demagnetization curve of a magnet having a minute size of about 1 mm square, a VSM (Vibrating Sample Magnetometer), a magnetic balance, or the like is generally used. In the case of VSM, means such as using a superconducting coil is required for measurement of a high coercive force magnet. Moreover, in order to measure the magnet with high accuracy, it is necessary to accurately place the magnet at the center of the detection coil.

さらに、開磁路型の磁石特性測定装置として、磁石にパルス磁界を印加し、検出コイルによって磁化及び磁界を検出し、磁石の磁気特性を測定するパルス励磁式B−Hトレーサも実用化されており、高保磁力磁石の保磁力を測定するには有用である(例えば、特許文献1など)。   Furthermore, a pulse excitation type B-H tracer that applies a pulsed magnetic field to a magnet, detects magnetization and magnetic field with a detection coil, and measures the magnetic characteristics of the magnet has been put to practical use as an open magnetic path type magnet characteristic measuring device. Therefore, it is useful for measuring the coercivity of a high coercivity magnet (for example, Patent Document 1).

特開2007−180372号公報JP 2007-180372 A

VSM、パルス励磁式B−Hトレーサは、測定する磁石を中心に励磁コイルと検出コイルとを設置し、磁石の磁化及び磁界を検出して磁石の磁気特性を測定する。しかし、VSM、パルス励磁式B−Hトレーサは開磁路型のため、磁石の設置位置が検出コイルの中心からずれたり、磁石の大きさが変わると測定結果に影響が出るため、磁石を測定装置内に精度よく配置する必要がある。   The VSM and pulse excitation type B-H tracer installs an excitation coil and a detection coil around a magnet to be measured, detects the magnetization and magnetic field of the magnet, and measures the magnetic characteristics of the magnet. However, the VSM and pulse excitation type B-H tracer is an open magnetic circuit type, so if the installation position of the magnet deviates from the center of the detection coil or the size of the magnet changes, the measurement results will be affected. It is necessary to arrange it accurately in the apparatus.

そこで、磁化の検出コイルにヘルムホルツコイルを用いることが考えられる。この場合、磁石の大きさや位置が変化しても磁石がヘルムホルツコイルの内部に留まっていれば、原理的に同じ信号が検出される。そのため、磁石の設置位置のずれや大きさの変化が磁気特性の測定結果に影響を及ぼすことが少なくなり、測定精度の向上を実現できる。   Therefore, it is conceivable to use a Helmholtz coil as the magnetization detection coil. In this case, the same signal is detected in principle if the magnet remains inside the Helmholtz coil even if the size and position of the magnet change. Therefore, the displacement of the magnet installation position and the change in size are less affected by the measurement result of the magnetic characteristics, and the measurement accuracy can be improved.

しかし、パルス励磁式B−Hトレーサの測定では、励磁電源のサージ電圧に起因するコイルの共振が発生し、ヘルムホルツコイルのターン数を増やすと、浮遊容量が複雑に分布して大きくなるため、前記共振の周波数が周波数軸上で分布し、前記共振による共振周波数成分を磁化の検出電圧波形から除去できない問題がある。   However, in the measurement of the pulse excitation type B-H tracer, the resonance of the coil due to the surge voltage of the excitation power supply occurs, and when the number of turns of the Helmholtz coil is increased, the stray capacitance increases in a complicated manner. There is a problem in that the resonance frequency is distributed on the frequency axis, and the resonance frequency component due to the resonance cannot be removed from the magnetization detection voltage waveform.

共振周波数成分を除去する手法としては、ローパスフィルタを用いる手法が考えられるが、磁化検出コイルの検出電圧波形と磁界検出コイル(以下、Hコイルという)の検出電圧波形との間に位相差が発生するため磁界と磁化との出力信号の同期を取れない問題がある。   As a technique for removing the resonance frequency component, a technique using a low-pass filter is conceivable, but a phase difference is generated between the detection voltage waveform of the magnetization detection coil and the detection voltage waveform of the magnetic field detection coil (hereinafter referred to as the H coil). Therefore, there is a problem that the output signals of the magnetic field and the magnetization cannot be synchronized.

本発明は斯かる事情に鑑みてなされたものであり、ターン数を増やしたヘルムホルツコイルとパルス励磁コイルとを使用して磁石の磁気特性を測定する際のヘルムホルツコイルの使用に起因する共振周波数成分を磁化の検出電圧波形から除去し、かつ磁化と磁界との検出電圧波形を位相差なく測定することができる磁石特性測定方法及び磁石特性測定装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and a resonant frequency component resulting from the use of a Helmholtz coil when measuring the magnetic characteristics of a magnet using a Helmholtz coil and a pulse excitation coil with an increased number of turns. It is an object of the present invention to provide a magnet characteristic measuring method and a magnet characteristic measuring apparatus that can measure the detected voltage waveform of magnetization and magnetic field without phase difference.

本発明に係る磁石特性測定方法は、ヘルムホルツコイルからなる磁化検出コイルを用いて磁石の磁気特性を測定する磁石特性測定方法において、前記磁化検出コイルを用いて、磁石の検出電圧波形を測定する際、磁石を含めた測定系由来の共振周波数を周波数軸上で集中安定化させるステップと、前記磁化検出コイルの検出電圧波形から前記磁化検出コイルの検出電圧波形の共振周波数成分を、移動平均処理により除去するステップと、前記共振周波数成分を除去した検出電圧波形から前記磁石の磁化に由来する成分を抽出するステップと、前記抽出した前記磁化の検出電圧波形を積分し、前記磁化検出コイルの測定コイル固有の係数及び前記磁石の体積の値を用いて、前記磁石の磁化の値に変換するステップとを含むことを特徴とする。 A magnet characteristic measuring method according to the present invention is a magnet characteristic measuring method for measuring a magnetic characteristic of a magnet using a magnetization detecting coil made of a Helmholtz coil, and measuring a detected voltage waveform of the magnet using the magnetization detecting coil. A step of centralizing and stabilizing the resonance frequency derived from the measurement system including the magnet on the frequency axis, and the resonance frequency component of the detection voltage waveform of the magnetization detection coil from the detection voltage waveform of the magnetization detection coil by moving average processing Removing a component derived from the magnetization of the magnet from the detected voltage waveform from which the resonance frequency component has been removed; integrating the extracted detected voltage waveform of the magnetization; and measuring coil of the magnetization detecting coil Converting to a magnetizing value of the magnet using an intrinsic coefficient and a value of the volume of the magnet.

本発明の磁石特性測定方法にあっては、磁石を含めた測定系由来の共振周波数を周波数軸上で集中安定化させて、磁化検出コイルの検出電圧波形から共振周波数成分を除去できるようにすることができる。   In the magnet characteristic measuring method of the present invention, the resonance frequency derived from the measurement system including the magnet is concentrated and stabilized on the frequency axis so that the resonance frequency component can be removed from the detection voltage waveform of the magnetization detection coil. be able to.

本発明に係る磁石特性測定方法は、Hコイルの検出電圧波形を積分し、前記Hコイルの固有の係数を用いて、前記磁石の磁界の値に変換するステップと、変換された前記磁石の磁化の値と前記磁石の磁界の値とを同期させることによりJ−Hカーブを作成するステップとをさらに含むことを特徴とする。   The magnet characteristic measuring method according to the present invention includes a step of integrating the detected voltage waveform of the H coil and converting it to a value of the magnetic field of the magnet using a specific coefficient of the H coil, and the converted magnetization of the magnet And a step of creating a JH curve by synchronizing the value of the magnetic field and the value of the magnetic field of the magnet.

本発明の磁石特性測定方法にあっては、検出電圧波形の共振周波数を周波数軸上で集中安定化させた後に、フーリエ変換及び移動平均の処理によって共振周波数成分を除去することによって、ヘルムホルツコイルに起因する共振周波数成分を検出電圧波形から精度よく除去することができ、J−Hカーブの測定を行える。   In the magnet characteristic measuring method of the present invention, after the resonance frequency of the detected voltage waveform is intensively stabilized on the frequency axis, the resonance frequency component is removed by Fourier transform and moving average processing, whereby the Helmholtz coil is formed. The resulting resonance frequency component can be accurately removed from the detected voltage waveform, and the JH curve can be measured.

本発明に係る磁石特性測定装置は、磁石の磁気特性を測定する磁石特性測定装置において、前記磁石を励磁する励磁コイルと、前記磁石近傍に設けられ、互いに逆相に接続された2組のヘルムホルツコイルからなる磁化検出コイルと、前記磁化検出コイルと並列に接続され、磁石を含めた測定系由来の共振周波数を周波数軸上で集中安定化させるためのコンデンサと、前記磁化検出コイルの検出電圧波形から共振周波数成分を除去する手段と、共振周波数成分除去後の前記磁化検出コイルの検出電圧波形に基づいて、前記磁石の磁化の値を測定する磁化測定手段とを備えることを特徴とする。 A magnet characteristic measuring apparatus according to the present invention is a magnet characteristic measuring apparatus for measuring the magnetic characteristics of a magnet, and two sets of Helmholtz that are provided in the vicinity of the magnet and are provided in the vicinity of the magnet, and exciting coils that excite the magnet. A magnetization detection coil composed of a coil, a capacitor connected in parallel with the magnetization detection coil, for centrally stabilizing the resonance frequency derived from the measurement system including the magnet on the frequency axis, and a detection voltage waveform of the magnetization detection coil Means for removing the resonance frequency component from the magnetic field, and magnetization measuring means for measuring the magnetization value of the magnet based on the detected voltage waveform of the magnetization detection coil after removing the resonance frequency component.

本発明の磁石特性測定装置にあっては、磁化検出コイルとしてのヘルムホルツコイルに接続されたコンデンサにより、磁石を含めた測定系由来の共振周波数を周波数軸上で集中安定化させた後、磁化検出コイルの検出電圧波形から共振周波数成分を除去し、除去後の磁化検出コイルの検出電圧波形に基づいて、磁石の磁化の値を測定する。   In the magnet characteristic measuring apparatus of the present invention, after the resonance frequency derived from the measurement system including the magnet is concentrated and stabilized on the frequency axis by the capacitor connected to the Helmholtz coil as the magnetization detecting coil, the magnetization detection is performed. The resonance frequency component is removed from the detection voltage waveform of the coil, and the magnetization value of the magnet is measured based on the detection voltage waveform of the magnetization detection coil after the removal.

本発明の磁石特性測定装置では、磁石の磁化検出コイルとして、ヘルムホルツコイルを用いているため、磁石の大きさや設置位置のずれなどの影響を受けることなく、精度よく測定できる。また、磁化検出コイルに並列に接続したコンデンサによって検出電圧波形の共振周波数を周波数軸上で集中安定化させた後に、その共振周波数成分を除去するようにしており、精度の高い測定結果を得ることができる。   In the magnet characteristic measuring apparatus according to the present invention, since a Helmholtz coil is used as the magnetization detection coil of the magnet, it can be measured accurately without being influenced by the size of the magnet or the deviation of the installation position. In addition, the resonant frequency component is concentrated and stabilized on the frequency axis with a capacitor connected in parallel to the magnetization detection coil, and then the resonant frequency component is removed to obtain highly accurate measurement results. Can do.

本発明に係る磁石特性測定装置は、前記磁石から離れた位置に設けられたHコイルと、前記Hコイルの検出電圧波形に基づいて、前記磁石に印加される磁界の値を測定する磁界測定手段と、前記磁化測定手段及び前記磁界測定手段の測定結果に基づいて、前記磁石の磁気特性を測定する磁気特性測定手段とをさらに備えることを特徴とする。   The magnet characteristic measuring apparatus according to the present invention includes an H coil provided at a position distant from the magnet, and a magnetic field measuring means for measuring the value of the magnetic field applied to the magnet based on the detected voltage waveform of the H coil. And magnetic characteristic measuring means for measuring magnetic characteristics of the magnet based on the measurement results of the magnetization measuring means and the magnetic field measuring means.

本発明の磁石特性測定装置にあっては、前記磁石の磁化の値及び磁界の値の測定結果に基づいてJ−Hカーブを作成する。   In the magnet characteristic measuring apparatus of the present invention, a JH curve is created based on the measurement results of the magnetization value and the magnetic field value of the magnet.

本発明によれば、検出電圧波形から共振周波数成分を位相遅れが生じることなく除去することができ、精度よく磁石の磁気特性を測定することができる。   According to the present invention, the resonance frequency component can be removed from the detected voltage waveform without causing a phase delay, and the magnetic characteristics of the magnet can be measured with high accuracy.

本発明に係る磁石特性測定装置の構成を示す部分図である。It is a fragmentary figure which shows the structure of the magnet characteristic measuring apparatus which concerns on this invention. 本発明に係る磁石特性測定装置における各コイルの構成を示す模式図である。It is a schematic diagram which shows the structure of each coil in the magnet characteristic measuring apparatus which concerns on this invention. 本発明に係る磁石特性測定装置の磁化測定部分の回路構成を示す図である。It is a figure which shows the circuit structure of the magnetization measurement part of the magnet characteristic measuring apparatus which concerns on this invention. 本発明に係る磁石特性測定装置の信号処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing part of the magnet characteristic measuring apparatus which concerns on this invention. 本発明に係る磁石特性測定方法の動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the magnet characteristic measuring method which concerns on this invention. 本発明に係るコンデンサを設けた場合におけるヘルムホルツコイルからなる磁化検出コイルの検出電圧波形の測定結果と、検出電圧波形を高速フーリエ変換した結果とを示すグラフである。It is a graph which shows the measurement result of the detection voltage waveform of the magnetization detection coil which consists of a Helmholtz coil at the time of providing the capacitor | condenser which concerns on this invention, and the result of having carried out the fast Fourier transform of the detection voltage waveform. コンデンサを設けない場合におけるヘルムホルツコイルからなる磁化検出コイルの検出電圧波形の測定結果と、検出電圧波形を高速フーリエ変換した結果とを示すグラフである。It is a graph which shows the measurement result of the detection voltage waveform of the magnetization detection coil which consists of a Helmholtz coil when not providing a capacitor | condenser, and the result of having carried out the fast Fourier transform of the detection voltage waveform. 移動平均処理前後の磁化検出コイルの検出電圧波形を表すグラフである。It is a graph showing the detection voltage waveform of the magnetization detection coil before and behind a moving average process. 磁石を設置した場合及び磁石を設置しない場合(ブランク測定)における磁化検出コイルの共振周波数成分除去後の検出電圧波形を表すグラフ、並びに、ブランク波形の影響を除去した(減算)後の磁化検出コイルの検出電圧波形を表すグラフである。Graph showing detection voltage waveform after removing resonance frequency component of magnetization detection coil when magnet is installed and when magnet is not installed (blank measurement), and magnetization detection coil after removing (subtracting) the influence of blank waveform It is a graph showing a detection voltage waveform of. Hコイルの検出電圧波形を表すグラフである。It is a graph showing the detection voltage waveform of H coil. 変換された磁石の磁化の値(J波形)、変換された磁石の磁界の値(H波形)、及びJ−Hカーブを表すグラフである。It is a graph showing the value (J waveform) of the magnetization of the converted magnet, the value (H waveform) of the magnetic field of the converted magnet, and a JH curve. オフセット処理及び反転合成処理を施して得られるJ−Hカーブ(フルループ)、及び、自己反磁界補正を行った前後のJ−Hカーブ(フルループ)を表すグラフである。It is a graph showing the JH curve (full loop) obtained by performing an offset process and inversion synthetic | combination process, and the JH curve (full loop) before and behind performing a self-demagnetizing field correction.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.

図1は本発明に係る磁石特性測定装置の構成を示す部分図、図2は本発明に係る磁石特性測定装置における各コイルの構成を示す模式図、図3は本発明に係る磁石特性測定装置の磁化測定部分の回路構成を示す図である。なお、図1では測定対象の磁石が設置されている状態を示している。   FIG. 1 is a partial view showing the configuration of a magnet characteristic measuring apparatus according to the present invention, FIG. 2 is a schematic diagram showing the configuration of each coil in the magnet characteristic measuring apparatus according to the present invention, and FIG. 3 is a magnet characteristic measuring apparatus according to the present invention. It is a figure which shows the circuit structure of the magnetization measurement part. FIG. 1 shows a state where a magnet to be measured is installed.

図1に示すように、測定対象の磁石1は、上下方向に長尺なホルダ2で装置内に固定されている。磁石1は、例えば1mm角の直方体形状をなしている。ホルダ2により測定する磁石を磁化検出コイルの中心付近に設置することができる。磁化検出コイルとして、1次ヘルムホルツコイル3とその外側の2次ヘルムホルツコイル4とが設けられている。   As shown in FIG. 1, a magnet 1 to be measured is fixed in the apparatus with a holder 2 that is long in the vertical direction. The magnet 1 has a rectangular parallelepiped shape of 1 mm square, for example. A magnet to be measured by the holder 2 can be installed near the center of the magnetization detection coil. As the magnetization detection coil, a primary Helmholtz coil 3 and a secondary Helmholtz coil 4 outside thereof are provided.

1次ヘルムホルツコイル3は、共通の軸を有する一対の同一半径の円形コイルからなり、一対の円形コイルの間隔は各円形コイルの半径に等しく、一対の円形コイルの中央付近に磁石1が設置される。磁石1はその位置がヘルムホルツコイルの内部に留まっていれば、原理的に同じ信号が検出される。   The primary Helmholtz coil 3 is composed of a pair of circular coils having the same radius and having a common axis. The distance between the pair of circular coils is equal to the radius of each circular coil, and the magnet 1 is installed near the center of the pair of circular coils. The If the position of the magnet 1 remains inside the Helmholtz coil, the same signal is detected in principle.

例として、1次ヘルムホルツコイル3は、片側寸法が外径16mm×内径8mm×高さ4mmであって、コイル中心間距離が6mm、巻線仕様は直径0.14mmの銅線を700タ−ンである。また、2次ヘルムホルツコイル4も、一対の同一半径の円形コイルからなり、一対の円形コイルの間隔は各円形コイルの半径に等しく、コイル中心は1次ヘルムホルツコイルと一致している。2次ヘルムホルツコイル4は、片側寸法が外径31.5mm×内径22.5mm×高さ4.5mmであって、コイル中心間距離が13.5mm、巻線仕様は直径0.3mmの銅線を145タ−ンである。   As an example, the primary Helmholtz coil 3 has a one-side dimension of 16 mm outer diameter × 8 mm inner diameter × 4 mm height, a distance between coil centers of 6 mm, and a winding specification of 700 turns of copper wire having a diameter of 0.14 mm. It is. The secondary Helmholtz coil 4 is also composed of a pair of circular coils having the same radius, the distance between the pair of circular coils is equal to the radius of each circular coil, and the coil center coincides with the primary Helmholtz coil. The secondary Helmholtz coil 4 is a copper wire having a one-side dimension of 31.5 mm outer diameter × 22.5 mm inner diameter × 4.5 mm height, a coil center distance of 13.5 mm, and a winding specification of 0.3 mm in diameter. Is 145 turns.

1次ヘルムホルツコイル3及び2次ヘルムホルツコイル4の上下方向外側には、Hコイル5が設けられている。このHコイル5は、例えば、寸法が外径20.5mm×内径16.5mm×高さ2mm、巻線仕様は直径0.3mmの銅線7タ−ンのコイルを上下に設置したものであって、上下コイル間隔が40mmである。なお、Hコイル5の中心軸及び中心は、前記1次ヘルムホルツコイル3及び2次ヘルムホルツコイル4の中心軸及び中心と一致していることが好ましい。   An H coil 5 is provided on the outer side in the vertical direction of the primary Helmholtz coil 3 and the secondary Helmholtz coil 4. The H coil 5 has, for example, a copper wire 7-turn coil with dimensions of outer diameter 20.5 mm × inner diameter 16.5 mm × height 2 mm and winding specifications 0.3 mm in diameter. The upper and lower coil spacing is 40 mm. The center axis and center of the H coil 5 preferably coincide with the center axis and center of the primary Helmholtz coil 3 and the secondary Helmholtz coil 4.

励磁コイル6は磁化検出コイル(ヘルムホルツコイル)の外側に設けられている。この励磁コイル6は、例えば、パルス磁界を励磁するパルス励磁コイルである。この励磁コイル6は、寸法が外径116mm×内径50mm×高さ61mmであって、巻線仕様は外径5mm、内径3mmの中空銅線を66タ−ンである。なお、中空の銅線には冷却水を流してコイルの発熱を抑制することができる。この励磁コイル6を3000μF−3500Vのコンデンサ放電式の励磁電源で励磁した場合、最大80kOe(約6366kA/m)の磁界が発生し、また、この磁界で完全着磁された磁石1の磁化を完全に反転できることは確認されている。   The excitation coil 6 is provided outside the magnetization detection coil (Helmholtz coil). The exciting coil 6 is a pulse exciting coil that excites a pulse magnetic field, for example. The exciting coil 6 has dimensions of an outer diameter of 116 mm, an inner diameter of 50 mm, and a height of 61 mm, and the winding specification is 66 turns of a hollow copper wire having an outer diameter of 5 mm and an inner diameter of 3 mm. In addition, a cooling water can be poured through a hollow copper wire, and the heat_generation | fever of a coil can be suppressed. When this exciting coil 6 is excited with a 3000 μF-3500 V capacitor discharge type excitation power source, a magnetic field of maximum 80 kOe (about 6366 kA / m) is generated, and the magnetization of the magnet 1 fully magnetized with this magnetic field is completely It has been confirmed that it can be reversed.

1次ヘルムホルツコイル3と2次ヘルムホルツコイル4とを互いに逆相に接続して磁化検出コイルを構成し、1次ヘルムホルツコイル3及び2次ヘルムホルツコイル4それぞれのターン数×コイル面積は、磁石1を設置しない場合(ブランク測定)の検出電圧が極力ゼロになるように設定しているが、残存成分はブランク測定して補正処理を行うことができる。1次ヘルムホルツコイル3及び2次ヘルムホルツコイル4からなる磁化検出コイルと並列にコンデンサ7が接続されている(図3参照)。コンデンサ7の容量は、例えば0.01μFである。   The primary Helmholtz coil 3 and the secondary Helmholtz coil 4 are connected in opposite phases to form a magnetization detection coil. The number of turns × coil area of each of the primary Helmholtz coil 3 and the secondary Helmholtz coil 4 is the same as that of the magnet 1. Although the detection voltage when not installed (blank measurement) is set to be zero as much as possible, the residual component can be subjected to blank measurement and correction processing can be performed. A capacitor 7 is connected in parallel with the magnetization detection coil composed of the primary Helmholtz coil 3 and the secondary Helmholtz coil 4 (see FIG. 3). The capacity of the capacitor 7 is, for example, 0.01 μF.

本磁石特性測定装置では、磁化検出コイル(ヘルムホルツコイル)にコンデンサ7を並列に接続し、特定の周波数で共振を意図的に起こさせて検出電圧波形の共振周波数を集中安定化させ、その後にその共振周波数成分を除去するようにしている。この場合には検出電圧波形を移動平均等のデータ処理で共振周波数成分を除去することができ、磁石1に由来する信号成分のみを分離できる。この信号成分は磁界信号成分に対して位相遅れが発生しない。なお、コンデンサ7の容量は、共振周波数を特定の周波数に集中安定化させ、かつ磁界信号成分に対して位相遅れが発生しないように設定すれば良く、実験的に決めることができる。   In this magnet characteristic measuring apparatus, a capacitor 7 is connected in parallel to a magnetization detection coil (Helmholtz coil), and resonance is intentionally caused at a specific frequency to centrally stabilize the resonance frequency of the detected voltage waveform. The resonance frequency component is removed. In this case, the resonance frequency component can be removed from the detected voltage waveform by data processing such as moving average, and only the signal component derived from the magnet 1 can be separated. This signal component has no phase lag with respect to the magnetic field signal component. The capacitance of the capacitor 7 may be determined experimentally by setting the resonance frequency to be intensively stabilized at a specific frequency and not causing a phase delay with respect to the magnetic field signal component.

磁石特性測定装置の磁化検出部では、図3に示すように、1次ヘルムホルツコイル3、2次ヘルムホルツコイル4、コンデンサ7、及びHコイル5にて検出回路10が構成され、励磁コイル6、コンデンサC、直流電源Vなどを含めて励磁回路20が構成されている。   In the magnetization detection unit of the magnet characteristic measuring apparatus, as shown in FIG. 3, the primary Helmholtz coil 3, the secondary Helmholtz coil 4, the capacitor 7 and the H coil 5 constitute a detection circuit 10, and the excitation coil 6 and the capacitor An excitation circuit 20 is configured including C, DC power supply V, and the like.

図4は本発明に係る磁石特性測定装置の信号処理部の構成を示すブロック図である。図4において、30は例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)などにて構成される測定部であり、測定部30には、前述した検出回路10と、記憶部31と、一時記憶部32とが接続されている。   FIG. 4 is a block diagram showing the configuration of the signal processing unit of the magnet characteristic measuring apparatus according to the present invention. In FIG. 4, reference numeral 30 denotes a measurement unit configured by, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), and the like. The measurement unit 30 includes the detection circuit 10, the storage unit 31, and the temporary unit. A storage unit 32 is connected.

測定部30により、検出回路10から得られる検出電圧波形に後述するような種々の処理を施して磁石1の磁気特性を測定する。記憶部31は、ハードディスク(Hard Disk)またはSSD(Solid State Drive)などの外部記憶装置を用いることができる。記憶部31は、測定部30による動作処理を行うためのプログラムを格納するとともに、使用する磁化検出コイル(ヘルムホルツコイル)の測定コイル固有の係数、Hコイル5の固有の係数などを記憶している。一時記憶部32は、DRAM(Dynamic Random Access Memory)、SRAM(Static RAM)などの揮発性のランダムアクセスメモリを用いることが好ましい。一時記憶部32は、測定部30による動作処理における種々のデータ、測定対象の磁石1のパーミアンス係数などを記憶することができる。   The measurement unit 30 performs various processes as described later on the detection voltage waveform obtained from the detection circuit 10 to measure the magnetic characteristics of the magnet 1. The storage unit 31 can use an external storage device such as a hard disk or an SSD (Solid State Drive). The storage unit 31 stores a program for performing an operation process by the measurement unit 30, and stores a coefficient unique to the measurement coil of the magnetization detection coil (Helmholtz coil) to be used, a coefficient specific to the H coil 5, and the like. . The temporary storage unit 32 is preferably a volatile random access memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static RAM). The temporary storage unit 32 can store various data in the operation process by the measurement unit 30, the permeance coefficient of the magnet 1 to be measured, and the like.

以下、本発明に係る磁石特性測定方法の手順の一例について、図5のフローチャートを参照して説明する。この測定手順には、磁石1を設けない場合の磁化検出コイルのブランク波形を測定する処理(ステップS1〜S4)と、磁石1を設置して磁石1の磁気特性を測定する処理(ステップS5〜S11)とが含まれる。図面では、本発明の磁石の磁化の値(磁化の検出電圧波形)をJ波形、磁石の磁界の値(磁界の検出電圧波形)をH波形としている。   Hereinafter, an example of the procedure of the magnet characteristic measuring method according to the present invention will be described with reference to the flowchart of FIG. In this measurement procedure, a process of measuring the blank waveform of the magnetization detection coil when the magnet 1 is not provided (steps S1 to S4), and a process of installing the magnet 1 and measuring the magnetic characteristics of the magnet 1 (steps S5 to S5). S11). In the drawing, the magnetization value (magnetization detection voltage waveform) of the magnet of the present invention is a J waveform, and the magnetic field value (magnetic detection voltage waveform) of the magnet is an H waveform.

本発明では、磁石1を含めた測定系由来の共振周波数を集中安定化させることにより、共振周波数成分を除去するので、ヘルムホルツコイルの浮遊容量に起因する成分を除去することができ、磁石1の磁気特性を高精度に測定できる。   In the present invention, since the resonance frequency component is removed by centrally stabilizing the resonance frequency derived from the measurement system including the magnet 1, the component due to the stray capacitance of the Helmholtz coil can be removed. Magnetic characteristics can be measured with high accuracy.

<磁化検出コイルのブランク波形の測定処理>
磁石を設置せずに励磁コイル6を励磁し、測定部30により、検出電圧波形を測定する(ステップS1)。ここで、磁化検出コイルを用いて検出電圧波形を測定するときの測定系由来の共振周波数を集中安定化させている。そのため検出回路10にコンデンサ7を設けておき、測定系由来の共振周波数を周波数軸上で集中安定化させている。
<Measurement processing of blank waveform of magnetization detection coil>
The exciting coil 6 is excited without installing a magnet, and the detection voltage waveform is measured by the measuring unit 30 (step S1). Here, the resonance frequency derived from the measurement system when measuring the detection voltage waveform using the magnetization detection coil is concentrated and stabilized. For this reason, the detection circuit 10 is provided with a capacitor 7 to concentrate and stabilize the resonance frequency derived from the measurement system on the frequency axis.

測定部30により、測定した検出電圧波形にフーリエ変換(例えば、高速フーリエ変換(FFT:Fast Fourier Transform))を行って、共振周波数成分を特定する(ステップS2)。   The measurement unit 30 performs Fourier transform (for example, Fast Fourier Transform (FFT)) on the measured detected voltage waveform to identify the resonance frequency component (step S2).

図6は本発明に係るコンデンサ7を設けた場合におけるヘルムホルツコイルからなる磁化検出コイルの検出電圧波形の測定結果と、検出電圧波形を高速フーリエ変換した結果とを示すグラフである。図6は磁石1を設置していない状態で測定した結果を表しており、左側が検出電圧波形の結果であって、右側が検出電圧波形を高速フーリエ変換した結果である。この図6の結果によれば、磁化検出コイルの検出電圧波形の共振周波数が14kHzに集中安定化されている(白抜矢符)。   FIG. 6 is a graph showing the measurement result of the detection voltage waveform of the magnetization detection coil composed of the Helmholtz coil and the result of fast Fourier transform of the detection voltage waveform when the capacitor 7 according to the present invention is provided. FIG. 6 shows the result of measurement with no magnet 1 installed, the left side is the result of the detected voltage waveform, and the right side is the result of fast Fourier transform of the detected voltage waveform. According to the result of FIG. 6, the resonance frequency of the detection voltage waveform of the magnetization detection coil is concentrated and stabilized at 14 kHz (open arrow).

図7はコンデンサ7を設けない場合におけるヘルムホルツコイルからなる磁化検出コイルの検出電圧波形の測定結果と、検出電圧波形を高速フーリエ変換した結果とを示すグラフである。図7は、検出回路10にコンデンサ7を接続しないことを除いて図6の場合と同じ条件にて検出電圧波形を測定した場合の結果を示している。この図7の結果では、共振の周波数が周波数軸上で分布しており(白抜矢符)、検出電圧波形の共振周波数成分を除いてブランクに由来する信号成分のみに分離することができない。   FIG. 7 is a graph showing the measurement result of the detection voltage waveform of the magnetization detection coil formed of a Helmholtz coil and the result of fast Fourier transform of the detection voltage waveform when the capacitor 7 is not provided. FIG. 7 shows the results when the detection voltage waveform is measured under the same conditions as in FIG. 6 except that the capacitor 7 is not connected to the detection circuit 10. In the result of FIG. 7, the resonance frequency is distributed on the frequency axis (white arrow), and it cannot be separated only into the signal component derived from the blank except for the resonance frequency component of the detected voltage waveform.

測定部30により、高速フーリエ変換の分析結果と、時間サンプリング間隔とから、共振周波数成分を除去できる移動平均のポイント数を決定する(ステップS3)。図6の例では、共振周波数f:1.4×104[Hz]、時間サンプリング間隔Δt:0.2×10-6[sec.]であるので、移動平均のポイント数は、1/(fΔt)≒357[点]となる。 The measuring unit 30 determines the number of moving average points that can remove the resonance frequency component from the analysis result of the fast Fourier transform and the time sampling interval (step S3). In the example of FIG. 6, the resonance frequency f: 1.4 × 10 4 [Hz], the time sampling interval Δt: 0.2 × 10 −6 [sec. ], The number of moving average points is 1 / (fΔt) ≈357 [points].

測定部30により、このポイント数にて移動平均処理を実施することにより、共振周波数成分を除去し、共振周波数成分を除去した検出電圧波形を磁化検出コイルのブランク波形と決定する(ステップS4)。   The measurement unit 30 performs moving average processing with this number of points, thereby removing the resonance frequency component and determining the detected voltage waveform from which the resonance frequency component has been removed as the blank waveform of the magnetization detection coil (step S4).

以上のようにして、磁石1を設置していない状態(ブランク状態)にて、共振周波数成分を除去された磁化検出コイルの検出電圧波形(ブランク波形)を取得する。   As described above, the detection voltage waveform (blank waveform) of the magnetization detection coil from which the resonance frequency component has been removed is acquired in a state where the magnet 1 is not installed (blank state).

<磁石の磁気特性の測定処理>
測定対象の磁石1を図1に示す測定装置に設置し、励磁コイル6により磁石1をパルス励磁し、測定部30により磁化検出コイルの検出電圧波形及びHコイル5の検出電圧波形を測定する(ステップS5)。次に、測定部30により、測定した磁化検出コイルの検出電圧波形に、ステップS3で決定された移動平均のポイント数で移動平均処理を行うことにより、該検出電圧波形から共振周波数成分を除去する(ステップS6)。図8は、ステップS3で決定した移動平均のポイント数357点にて移動平均処理を実施した前後の磁化検出コイルの検出電圧波形を表すグラフであり、図8において破線aは移動平均処理前の元波形を示し、実線bは移動平均処理後の波形を示している。共振周波数を集中安定化して移動平均処理することで、磁化検出コイルの検出電圧波形から共振周波数成分を除去できる。さらに、測定部30により、共振周波数成分を除去された磁化検出コイルの検出電圧波形から、ステップS4で決定した磁化検出コイルのブランク波形を減算して、磁石1に由来する信号成分のみを抽出する(ステップS7)。
<Measurement process of magnetic properties of magnet>
The magnet 1 to be measured is installed in the measuring apparatus shown in FIG. 1, the magnet 1 is pulse-excited by the excitation coil 6, and the detection voltage waveform of the magnetization detection coil and the detection voltage waveform of the H coil 5 are measured by the measurement unit 30 ( Step S5). Next, the measurement unit 30 removes the resonance frequency component from the detected voltage waveform by performing a moving average process on the measured voltage waveform of the magnetization detection coil with the number of moving average points determined in step S3. (Step S6). FIG. 8 is a graph showing the detected voltage waveforms of the magnetization detection coils before and after the moving average processing is performed with the moving average number of points 357 determined in step S3. In FIG. The original waveform is shown, and the solid line b shows the waveform after moving average processing. Resonance frequency components can be removed from the detection voltage waveform of the magnetization detection coil by centrally stabilizing the resonance frequency and performing a moving average process. Further, the measurement unit 30 subtracts the blank waveform of the magnetization detection coil determined in step S4 from the detection voltage waveform of the magnetization detection coil from which the resonance frequency component has been removed, and extracts only the signal component derived from the magnet 1. (Step S7).

図9Aは、磁石1を設置した場合及び磁石1を設置しない場合における磁化検出コイルの共振周波数成分除去後の検出電圧波形を表すグラフであり、実線a、破線bはそれぞれ、磁石1を設置した場合、磁石1を設置しない場合を示している。   FIG. 9A is a graph showing the detected voltage waveform after removal of the resonance frequency component of the magnetization detection coil when the magnet 1 is installed and when the magnet 1 is not installed, and the solid line a and the broken line b each show the magnet 1 installed. The case where the magnet 1 is not installed is shown.

この磁石1を設置しない場合の検出電圧波形を、磁石1を設置した場合の検出電圧波形から減算する。すなわち、決定したブランク波形の影響を除去する。図9Bはブランク波形の影響を除去した(減算)後の磁化検出コイルの検出電圧波形を表すグラフである。このようにして磁石1に由来する磁化検出コイルの検出電圧波形が得られる。   The detected voltage waveform when the magnet 1 is not installed is subtracted from the detected voltage waveform when the magnet 1 is installed. That is, the influence of the determined blank waveform is removed. FIG. 9B is a graph showing a detection voltage waveform of the magnetization detection coil after removing (subtracting) the influence of the blank waveform. In this way, a detection voltage waveform of the magnetization detection coil derived from the magnet 1 is obtained.

測定部30により、ステップS7で得られた、磁石1に由来する磁化検出コイルの検出電圧の積分値を求め、磁化検出コイルの測定コイル固有の係数及び磁石1の体積を用いて磁石1の磁化の値に変換する(ステップS8)。   The measurement unit 30 obtains the integral value of the detection voltage of the magnetization detection coil derived from the magnet 1 obtained in step S7, and uses the coefficient specific to the measurement coil of the magnetization detection coil and the volume of the magnet 1 to magnetize the magnet 1. (Step S8).

ヘルムホルツコイルにあっては、磁気モーメントMとヘルムホルツコイルを鎖交する磁束の総量Φとには、ヘルムホルツコイルの測定コイル固有の係数をkとした場合に、M=kΦの関係が成り立つ。磁気モーメントMを測定対象の磁石の体積Vで割ると磁化Jとなるので、磁化Jは、J=M/V=kΦ/Vとして求まる。このようにして、ヘルムホルツコイルを鎖交する磁束の総量とヘルムホルツコイルの測定コイル固有の係数と磁石試料の体積とが分かれば、磁石の磁化を測定できる。   In the Helmholtz coil, the relationship M = kΦ is established between the magnetic moment M and the total magnetic flux Φ interlinking the Helmholtz coil, where k is a coefficient specific to the measurement coil of the Helmholtz coil. When the magnetic moment M is divided by the volume V of the magnet to be measured, the magnetization J is obtained. Therefore, the magnetization J is obtained as J = M / V = kΦ / V. Thus, if the total amount of magnetic flux interlinking the Helmholtz coil, the coefficient specific to the measurement coil of the Helmholtz coil, and the volume of the magnet sample are known, the magnetization of the magnet can be measured.

上述したようにブランク波形の除去がなされた磁化検出コイルの検出電圧の積分値はコイルを鎖交する磁束の総量に相当するため、図9Bに表された磁化検出コイルの検出電圧の積分値に、磁化検出コイル(1次ヘルムホルツコイル3及び2次ヘルムホルツコイル4)の測定コイル固有の係数を乗算し、磁石1の体積で除算することにより、磁化の値に変換する。磁化検出コイルの測定コイル固有の係数は、構成される装置によって決定される。磁化検出コイルの測定コイル固有の係数は、標準試料の磁石をパルスB−Hトレーサで測定した磁化の値と電圧変化の時間積分値により求めた磁化の値とが一致するように合わせている。前記磁化検出コイルの測定コイル固有の係数は図1の実施例では1.3093×10-5[m]であり、磁石1が一辺1mmの立方体である場合に体積は1.0×10-9[m3 ]である。変換された磁化の値(磁化の検出電圧波形:J波形)を図11Aに表す。 As described above, since the integrated value of the detection voltage of the magnetization detection coil from which the blank waveform has been removed corresponds to the total amount of magnetic flux interlinking the coil, the integrated value of the detection voltage of the magnetization detection coil shown in FIG. By multiplying the coefficient specific to the measurement coil of the magnetization detection coil (the primary Helmholtz coil 3 and the secondary Helmholtz coil 4) and dividing by the volume of the magnet 1, it is converted into a magnetization value. The coefficient specific to the measurement coil of the magnetization detection coil is determined by the device configured. The coefficient specific to the measurement coil of the magnetization detection coil is adjusted so that the magnetization value obtained by measuring the magnet of the standard sample with the pulse BH tracer and the magnetization value obtained by the time integration value of the voltage change coincide. The coefficient specific to the measurement coil of the magnetization detection coil is 1.3093 × 10 −5 [m] in the embodiment of FIG. 1, and the volume is 1.0 × 10 −9 when the magnet 1 is a cube having a side of 1 mm. [M 3 ]. The converted magnetization value (magnetization detection voltage waveform: J waveform) is shown in FIG. 11A.

測定部30により、Hコイル5の検出電圧波形を積分し、Hコイル5の固有の係数を用いることで磁石1の磁界の値に変換する(ステップS9)。Hコイル5から得られる検出電圧波形については、移動平均処理は行わなくてもよい。Hコイル5にはサーチコイルを用いている。   The measurement unit 30 integrates the detected voltage waveform of the H coil 5 and converts it to the value of the magnetic field of the magnet 1 by using a specific coefficient of the H coil 5 (step S9). For the detection voltage waveform obtained from the H coil 5, the moving average process may not be performed. A search coil is used as the H coil 5.

図10は、Hコイル5の検出電圧波形を表すグラフである。図10に表されたHコイル5の検出電圧の積分結果をHコイル5の固有の係数で除算することにより、磁石1の磁界の値に変換する。ここで、Hコイル5の固有の係数は2.8968×10-3[m2 ]である。Hコイル5の固有の係数は、校正されたプローブで測定した中心磁界と、電圧変化の時間積分値により求めた磁界とが一致するように合わせている。変換された磁界の値(磁界の検出電圧波形:H波形)を図11Bに表す。 FIG. 10 is a graph showing a detected voltage waveform of the H coil 5. The result of integration of the detected voltage of the H coil 5 shown in FIG. 10 is divided by a specific coefficient of the H coil 5 to be converted into a magnetic field value of the magnet 1. Here, the specific coefficient of the H coil 5 is 2.8968 × 10 −3 [m 2 ]. The intrinsic coefficient of the H coil 5 is adjusted so that the central magnetic field measured by the calibrated probe and the magnetic field obtained by the time integration value of the voltage change coincide. FIG. 11B shows the converted magnetic field value (magnetic field detection voltage waveform: H waveform).

以上のような変換により得られた磁石1の磁化の値(磁化の検出電圧波形)であるJ波形及び磁石1の磁界の値(磁界の検出電圧波形)であるH波形を用いて、J−Hカーブを作成する(ステップS10)。作成されたJ−Hカーブを図11Cに表す。   Using the J waveform that is the magnetization value (magnetization detection voltage waveform) of the magnet 1 and the H waveform that is the magnetic field value (magnetic field detection voltage waveform) of the magnet 1 obtained by the above conversion, J− An H curve is created (step S10). The created JH curve is shown in FIG. 11C.

図12Aは、図11Cに示すJ−Hカーブにオフセット処理及び反転合成処理を施して得られるJ−Hカーブ(フルループ)を表すグラフである。さらに、必要に応じて磁石1のパーミアンス係数にて自己反磁界の補正を行ってもよい。図12Bは、自己反磁界補正を行った前後のJ−Hカーブ(フルループ)を表すグラフである。図12Bにあって,破線aは自己反磁界補正前のJ−Hカーブ(図12Aに表すJ−Hカーブ)を示し、実線bは自己反磁界補正後のJ−Hカーブを示す。   FIG. 12A is a graph showing a JH curve (full loop) obtained by performing offset processing and inversion synthesis processing on the JH curve shown in FIG. 11C. Furthermore, the self-demagnetizing field may be corrected with the permeance coefficient of the magnet 1 as necessary. FIG. 12B is a graph showing a JH curve (full loop) before and after performing self-demagnetizing field correction. In FIG. 12B, a broken line a indicates a JH curve before the self-demagnetizing field correction (JH curve shown in FIG. 12A), and a solid line b indicates the JH curve after the self-demagnetizing field correction.

次に、次回(同じ磁石1の繰り返し、または別の磁石1への変更)の磁気特性の測定を行うか否かを判定する(ステップS11)。磁石1に対して次回の磁気特性の測定を行う場合には(S11:YES)、測定部30の処理をステップS5に戻して測定処理を行う。一方、次回の測定を行わない場合には(S11:NO)、測定部30の処理を終了する。   Next, it is determined whether or not to measure the magnetic characteristics for the next time (repeating the same magnet 1 or changing to another magnet 1) (step S11). When the next magnetic property measurement is performed on the magnet 1 (S11: YES), the process of the measurement unit 30 is returned to step S5 and the measurement process is performed. On the other hand, when the next measurement is not performed (S11: NO), the process of the measurement unit 30 is terminated.

このように、連続して磁石1の磁気特性を測定するのであれば、ブランク波形の測定処理においてステップS3で決定した移動平均のポイント数及びステップS4で決定したブランク波形を再び使用して、磁石1の磁気特性を簡単に測定することができる。   As described above, if the magnetic characteristics of the magnet 1 are continuously measured, the number of moving average points determined in step S3 and the blank waveform determined in step S4 in the blank waveform measurement process are used again. The magnetic characteristics of 1 can be easily measured.

ヘルムホルツコイルを磁化検出コイルとして用いる本発明にあっては、測定系由来の共振周波数を集中安定化させることで、デジタル処理によって共振周波数成分を容易かつ確実に除去することができ、さらにパルス励磁コイルを用いることで微小の高保磁力磁石でも精度よく磁気特性を測定することが可能となる。   In the present invention in which the Helmholtz coil is used as a magnetization detection coil, the resonance frequency component derived from the measurement system can be easily and reliably removed by digital processing by centrally stabilizing the resonance frequency derived from the measurement system. By using this, it is possible to accurately measure magnetic characteristics even with a small high coercive force magnet.

そして、ローパスフィルタによって共振周波数成分を除去する方法に比べ、位相遅れなくJ−Hカーブを測定することもできる。   Then, it is possible to measure the JH curve without phase delay as compared with the method of removing the resonance frequency component by the low-pass filter.

なお、高速フーリエ変換にて共振周波数を分析する例を示したが、離散フーリエ変換(DFT:Discrete Fourier Transform)などの他のフーリエ変換を施して共振周波数を分析するようにしてもよい。   In addition, although the example which analyzes a resonant frequency by a fast Fourier transform was shown, you may make it analyze a resonant frequency by giving other Fourier transforms, such as a discrete Fourier transform (DFT: Discrete Fourier Transform).

本発明で使用する磁石は、Dyを拡散してなる高性能な永久磁石に限定されない。Dy以外にDy及びTb、Tbを拡散してなる永久磁石であってもよい。また、Nd−Fe−B系磁石、Sm−Fe−N系磁石、Sm−Co系磁石、フェライト磁石のいずれであってもよいし、焼結磁石、ボンド磁石のいずれであってもよい。   The magnet used in the present invention is not limited to a high-performance permanent magnet formed by diffusing Dy. A permanent magnet formed by diffusing Dy, Tb, and Tb in addition to Dy may be used. Moreover, any of an Nd-Fe-B magnet, an Sm-Fe-N magnet, an Sm-Co magnet, and a ferrite magnet may be used, and any of a sintered magnet and a bonded magnet may be used.

なお、本発明に係る磁石特性測定装置は、上述したようなパルス励磁式B−Hトレーサに限らず、ヘルムホルツコイルの使用によって発生する浮遊容量の影響を受けるため、検出電圧波形における共振周波数成分の分布が安定しない他の開磁路型の磁化測定にも適用できる。   The magnet characteristic measuring apparatus according to the present invention is not limited to the pulse excitation type B-H tracer as described above, and is affected by stray capacitance generated by the use of the Helmholtz coil. The present invention can also be applied to other open magnetic circuit type magnetization measurements whose distribution is not stable.

開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 磁石
2 ホルダ
3 1次ヘルムホルツコイル
4 2次ヘルムホルツコイル
5 Hコイル
6 励磁コイル
7 コンデンサ
10 検出回路
20 励磁回路
30 測定部
31 記憶部
32 一時記憶部
1 Magnet 2 Holder 3 Primary Helmholtz Coil 4 Secondary Helmholtz Coil 5 H Coil 6 Excitation Coil 7 Capacitor 10 Detection Circuit 20 Excitation Circuit 30 Measurement Unit 31 Storage Unit 32 Temporary Storage Unit

Claims (4)

ヘルムホルツコイルからなる磁化検出コイルを用いて磁石の磁気特性を測定する磁石特性測定方法において、
前記磁化検出コイルを用いて、磁石の検出電圧波形を測定する際、磁石を含めた測定系由来の共振周波数を周波数軸上で集中安定化させるステップと、
前記磁化検出コイルの検出電圧波形から前記磁化検出コイルの検出電圧波形の共振周波数成分を、移動平均処理により除去するステップと、
前記共振周波数成分を除去した検出電圧波形から前記磁石の磁化に由来する成分を抽出するステップと、
前記抽出した前記磁化の検出電圧波形を積分し、前記磁化検出コイルの測定コイル固有の係数及び前記磁石の体積の値を用いて、前記磁石の磁化の値に変換するステップと
を含むことを特徴とする磁石特性測定方法。
In a magnet characteristic measurement method for measuring magnetic characteristics of a magnet using a magnetization detection coil comprising a Helmholtz coil,
When measuring the detection voltage waveform of the magnet using the magnetization detection coil, the step of centrally stabilizing the resonance frequency derived from the measurement system including the magnet on the frequency axis;
Removing the resonance frequency component of the detection voltage waveform of the magnetization detection coil from the detection voltage waveform of the magnetization detection coil by moving average processing ;
Extracting a component derived from the magnetization of the magnet from the detected voltage waveform from which the resonance frequency component has been removed;
Integrating the extracted detection voltage waveform of the magnetization and converting it to a magnetization value of the magnet using a coefficient specific to the measurement coil of the magnetization detection coil and a value of the volume of the magnet. A magnet characteristic measuring method.
Hコイルの検出電圧波形を積分し、前記Hコイルの固有の係数を用いて、前記磁石の磁界の値に変換するステップと、
変換された前記磁石の磁化の値と前記磁石の磁界の値とを同期させることによりJ−Hカーブを作成するステップと
をさらに含むことを特徴とする請求項1に記載の磁石特性測定方法。
Integrating the detected voltage waveform of the H coil and converting it to the value of the magnetic field of the magnet using a unique coefficient of the H coil;
The magnet characteristic measuring method according to claim 1, further comprising: creating a JH curve by synchronizing the converted magnetization value of the magnet and the magnetic field value of the magnet.
磁石の磁気特性を測定する磁石特性測定装置において、
前記磁石を励磁する励磁コイルと、
前記磁石近傍に設けられ、互いに逆相に接続された2組のヘルムホルツコイルからなる磁化検出コイルと、
前記磁化検出コイルと並列に接続され、磁石を含めた測定系由来の共振周波数を周波数軸上で集中安定化させるためのコンデンサと、
前記磁化検出コイルの検出電圧波形から共振周波数成分を除去する手段と、
共振周波数成分除去後の前記磁化検出コイルの検出電圧波形に基づいて、前記磁石の磁化の値を測定する磁化測定手段と
を備えることを特徴とする磁石特性測定装置。
In a magnet characteristic measuring device that measures the magnetic characteristics of a magnet,
An exciting coil for exciting the magnet;
A magnetization detection coil comprising two sets of Helmholtz coils provided in the vicinity of the magnet and connected in opposite phases to each other;
A capacitor connected in parallel with the magnetization detection coil and for stabilizing the resonance frequency derived from the measurement system including the magnet on the frequency axis;
Means for removing a resonance frequency component from a detection voltage waveform of the magnetization detection coil;
A magnet characteristic measuring apparatus comprising: magnetism measuring means for measuring a magnetizing value of the magnet based on a detected voltage waveform of the magnetization detecting coil after removing a resonance frequency component.
前記磁石から離れた位置に設けられたHコイルと、
前記Hコイルの検出電圧波形に基づいて、前記磁石に印加される磁界の値を測定する磁界測定手段と、
前記磁化測定手段及び前記磁界測定手段の測定結果に基づいて、前記磁石の磁気特性を測定する磁気特性測定手段と
をさらに備えることを特徴とする請求項3に記載の磁石特性測定装置。
An H coil provided at a position away from the magnet;
Magnetic field measuring means for measuring the value of the magnetic field applied to the magnet based on the detected voltage waveform of the H coil;
The magnet characteristic measuring device according to claim 3, further comprising: a magnetic characteristic measuring unit that measures a magnetic characteristic of the magnet based on measurement results of the magnetization measuring unit and the magnetic field measuring unit.
JP2014242049A 2014-11-28 2014-11-28 Magnet characteristic measuring method and magnet characteristic measuring apparatus Active JP6451262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242049A JP6451262B2 (en) 2014-11-28 2014-11-28 Magnet characteristic measuring method and magnet characteristic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242049A JP6451262B2 (en) 2014-11-28 2014-11-28 Magnet characteristic measuring method and magnet characteristic measuring apparatus

Publications (2)

Publication Number Publication Date
JP2016102752A JP2016102752A (en) 2016-06-02
JP6451262B2 true JP6451262B2 (en) 2019-01-16

Family

ID=56089341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242049A Active JP6451262B2 (en) 2014-11-28 2014-11-28 Magnet characteristic measuring method and magnet characteristic measuring apparatus

Country Status (1)

Country Link
JP (1) JP6451262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934740B2 (en) * 2017-04-10 2021-09-15 日本電磁測器株式会社 Magnetization measurement method
KR101976552B1 (en) * 2018-06-04 2019-05-09 (주)에스시엠아이 Magnetic substance character analysis system and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933627A (en) * 1995-07-19 1997-02-07 Kagaku Gijutsu Kenkyusho:Kk Sample vibration-type magnetometer
JP2000261819A (en) * 1999-03-10 2000-09-22 Toshiba Corp Earth magnetism correction device of cathode ray tube and cathode ray tube with corrected earth magnetism
JP2001228227A (en) * 2000-02-16 2001-08-24 Hitachi Ltd Magnetic-field measuring device
GB0424717D0 (en) * 2004-11-09 2004-12-08 Metis Instr & Equipment N V Sensor for measuring magnetic flux
JP5004200B2 (en) * 2005-06-23 2012-08-22 学校法人金沢工業大学 SQUID sensor dewar and SQUID sensor
JP4369909B2 (en) * 2005-07-26 2009-11-25 株式会社テスラ Magnetic property measuring method and measuring instrument
EP2341827A1 (en) * 2008-08-20 2011-07-13 Koninklijke Philips Electronics N.V. Method and device for magnetic induction tomography
JP5730747B2 (en) * 2010-12-10 2015-06-10 株式会社荏原製作所 Eddy current sensor and polishing method and apparatus
TWI403752B (en) * 2009-12-14 2013-08-01 Magqu Co Ltd A device for measuring alternating current magnetic permeability and method of measuring the same
JP5609398B2 (en) * 2010-08-05 2014-10-22 株式会社村田製作所 Magnetic field probe
US9188097B2 (en) * 2013-03-15 2015-11-17 Remy Technologies, Llc Starter with speed sensor assembly

Also Published As

Publication number Publication date
JP2016102752A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
EP1810046B1 (en) Sensor for measuring magnetic flux
CN105929347B (en) A kind of quick magnetic material magnetic characteristic measurement method
NO20090420L (en) Nuclear magnetic resonance tool using switchable wedge for static magnetic field
WO2008109783A3 (en) Detecting spin perturbations using magnetic resonance imaging
JP6451262B2 (en) Magnet characteristic measuring method and magnet characteristic measuring apparatus
Olszewska et al. Identification of acoustic emission signals originating from the core magnetization of power oil transformer
JP6053644B2 (en) Permanent magnet inspection method and inspection apparatus
CN103712637A (en) Magnetic confinement pulsed eddy current detection method and apparatus
CN103940860B (en) A kind of method of series resonant circuit capacitance detecting nonmetallic materials discontinuity
US20090079425A1 (en) Magnetic Sensitivity Measurement System
EP2902779A1 (en) System for measuring the properties of soft magnetic materials, in particular sheets and bands
CN104374467A (en) Magnetoelectric vibration measuring sensor
US5565774A (en) Characterisation of magnetic materials via a pulsed, field strength variable magnetic field transmitter and a sensor with eddy current component removal
EP2789987A3 (en) Magnetic sensor, magnetic field sensor, contactless position sensor, and contactless position sensor system
CN106199467A (en) The measurement apparatus of a kind of large scale magnetic core electronic curing characteristic and magnetic core number of turn choosing method
CN103954682A (en) Method for detecting discontinuity of nonmetal material by virtue of inductance of shunt-resonant circuit
CN103954654A (en) Method for detecting discontinuity of nonmetal material by virtue of inductance of series resonant circuit
CN103940859A (en) Method for testing discontinuity of non-metallic material by virtue of capacitor of shunt-resonant circuit
CN204394510U (en) The checkout gear of gradient coil and magnetic resonance imaging system
KR101902934B1 (en) System for measuring character of a magnet and eddy currentcompensation method using the same
Tu et al. Study on the effect of temperature on magnetization of permanent magnet
US10712405B2 (en) External air core flux measurement system for a production magnetizing system
JP2008046003A (en) Magnetic field rocking removal method in nmr
US10802088B2 (en) Method for controlling the production of a magnet and associated device
Gerasimov et al. An Induction Sensor for Starting Recording Equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6451262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350