JP6450129B2 - Slope failure prediction method and slope failure prediction device - Google Patents

Slope failure prediction method and slope failure prediction device Download PDF

Info

Publication number
JP6450129B2
JP6450129B2 JP2014203340A JP2014203340A JP6450129B2 JP 6450129 B2 JP6450129 B2 JP 6450129B2 JP 2014203340 A JP2014203340 A JP 2014203340A JP 2014203340 A JP2014203340 A JP 2014203340A JP 6450129 B2 JP6450129 B2 JP 6450129B2
Authority
JP
Japan
Prior art keywords
rainfall
boundary line
value
point
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014203340A
Other languages
Japanese (ja)
Other versions
JP2015232537A (en
JP2015232537A5 (en
Inventor
賢一朗 小杉
賢一朗 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2014203340A priority Critical patent/JP6450129B2/en
Publication of JP2015232537A publication Critical patent/JP2015232537A/en
Publication of JP2015232537A5 publication Critical patent/JP2015232537A5/ja
Application granted granted Critical
Publication of JP6450129B2 publication Critical patent/JP6450129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、降雨に伴って発生する崖崩れや山崩れなどの斜面崩壊の発生を予測する斜面崩壊予測方法及び斜面崩壊予測装置に関する。   The present invention relates to a slope failure prediction method and a slope failure prediction device for predicting the occurrence of slope failure such as landslides and landslides caused by rainfall.

崖崩れや山崩れ等の斜面崩壊の発生は人命や財産等に甚大な被害をもたらす。このため、斜面崩壊の的確な予測方法の確立は、斜面崩壊を回避するための対策を講じたり、警戒・避難の時期を判断したりする上で重要である。   The occurrence of landslides such as landslides and landslides causes serious damage to human lives and property. For this reason, the establishment of an accurate prediction method for slope failure is important for taking measures to avoid slope failure and judging the timing of warning and evacuation.

斜面崩壊は、降雨時間が長い場合や降雨強度が大きい場合に発生しやすい。ただし、降雨時間が短い場合でも降雨強度が非常に大きければ、あるいは、降雨強度が小さい場合でも降雨時間が長く、それまでの降雨総量が多ければ斜面崩壊が発生することがある。このように、斜面崩壊の発生は、降雨総量と降雨強度の両方の影響を受ける。従って、降雨総量の影響を評価するための雨量指標(長期的雨量指標)と、降雨強度の影響を評価するための雨量指標(短期的雨量指標)を併用して、斜面崩壊の発生を予測することが効果的である。   Slope failure tends to occur when the rainfall time is long or when the rainfall intensity is high. However, even if the rainfall time is short, if the rainfall intensity is very high, or if the rainfall intensity is low, the rainfall time is long, and if the total amount of rainfall up to that time is large, slope failure may occur. Thus, the occurrence of slope failure is affected by both the total rainfall and rainfall intensity. Therefore, it predicts the occurrence of slope failure by using the rainfall index (long-term rainfall index) for evaluating the influence of total rainfall and the rainfall index (short-term rainfall index) for evaluating the influence of rainfall intensity. It is effective.

そこで、長期的雨量指標と短期的雨量指標を用いて降雨状況を表したスネーク曲線と呼ばれるグラフを用いた予測方法が一般的に知られている。スネーク曲線は、長期的雨量指標と短期的雨量指標をそれぞれ横軸、縦軸とするグラフに、各時刻における長期的雨量指標と短期的雨量指標を表す点をプロットし、それらを線で繋いだもので、降雨時系列による点の軌跡を追跡することにより斜面崩壊の発生を予測する。   Therefore, a prediction method using a graph called a snake curve that represents a rainfall situation using a long-term rainfall index and a short-term rainfall index is generally known. The snake curve plots the points representing the long-term rainfall index and the short-term rainfall index at each time on a graph with the long-term rainfall index and the short-term rainfall index respectively on the horizontal axis and the vertical axis, and connects them with a line. Therefore, the occurrence of slope failure is predicted by tracking the locus of points according to the time series of rainfall.

図1に、長期的雨量指標として半減期72時間の実効雨量(72h実効雨量)を、短期的雨量指標として半減期1.5時間の実効雨量(1.5h実効雨量)を用いたスネーク曲線の例を示す。実効雨量は、ある地点における先行降雨がその後の該地点の蓄積雨量に及ぼす影響の持続性を、半減期をパラメータとして表現した雨量指標である。半減期をM[h]とすると、時刻t[h] における実効雨量X(M,t)[mm]は次式(1)で定義される。

ここで、X(M,t−1)[mm]は1時間前の実効雨量、R(t)[mm]は時刻t−1〜tの間の雨量(時間雨量)である。減少係数α[h-1]は、半減期Mを用いた次式(2)で求められる。
Figure 1 shows a snake curve using an effective rainfall with a half-life of 72 hours (72h effective rainfall) as a long-term rainfall index and an effective rainfall with a half-life of 1.5 hours (1.5h effective rainfall) as a short-term rainfall index. An example is shown. The effective rainfall is a rainfall index that expresses the sustainability of the influence of preceding rainfall at a certain point on the accumulated rainfall at that point thereafter, with the half-life as a parameter. If the half-life is M [h], the effective rainfall amount X (M, t) [mm] at time t [h] is defined by the following equation (1).

Here, X (M, t-1) [mm] is an effective rainfall amount one hour ago, and R (t) [mm] is a rainfall amount (time rainfall amount) between times t-1 and t. The reduction coefficient α [h −1 ] is obtained by the following equation (2) using the half-life M.

実効雨量の式(1)では、ある時刻に降った雨量Rが半減期M[h]経過するとR/2となり、更に半減期M[h]が経過するとR/4になるというように、指数関数的に降雨の影響が減少する。従って、半減期Mが短い場合は、降雨の影響は時間と共に急激に減少することになり、実効雨量は実質的に降雨強度を表す指標となる。一方、半減期が長い場合は、降雨の影響がより長期間持続することになり、半減期を無限大に設定すれば実効雨量は積算雨量に等しくなる。図2に、ある年の各月における時間雨量を示すグラフ(a)、及び、この時間雨量について、半減期M[h]を1.5、72、216、720、及び3000に設定したときの実効雨量を表すグラフ(b)〜(f)を示す。図2においては、例えば半減期1.5[h]の実効雨量は地面の表層に貯留される水分量の指標を表し、半減期72[h]の実効雨量は地面から深層に貯留される水分量の指標を表す。
In equation the effective rainfall (1), and so on rainfall R that falls in a certain time half-life M when [h] elapses R / 2, and becomes the R / 4 further half-life M [h] has passed, The impact of rainfall decreases exponentially. Therefore, when the half-life M is short, the influence of rainfall decreases rapidly with time, and the effective rainfall is an index that substantially represents the rainfall intensity. On the other hand, if the half-life is long, the influence of rainfall will last for a longer period. If the half-life is set to infinity, the effective rainfall will be equal to the integrated rainfall. FIG. 2 shows a graph (a) showing the hourly rainfall in each month of a certain year, and when the half-life M [h] is set to 1.5, 72, 216, 720, and 3000 for this hourly rainfall. Graphs (b) to (f) representing effective rainfall are shown. In FIG. 2, for example, the effective rainfall with a half-life of 1.5 [h] represents an index of the amount of water stored in the surface layer of the ground, and the effective rainfall with a half-life of 72 [h] is the water stored in the deep layer from the ground. Represents a quantity indicator.

スネーク曲線上の境界線CLは、崩壊発生限界の雨量線を示す。スネーク曲線において、境界線CLより右上側に点がプロットされた時点で斜面崩壊が発生すると判断される。従って、スネーク曲線を用いた斜面崩壊の予測では、縦軸及び横軸に用いる雨量指標(半減期)の適切な選択と、適切な境界線CLの設定が重要となる。   A boundary line CL on the snake curve indicates a rainfall line at the collapse occurrence limit. In the snake curve, it is determined that slope failure occurs when a point is plotted on the upper right side of the boundary line CL. Therefore, in the prediction of slope failure using a snake curve, it is important to select an appropriate rainfall index (half-life) for the vertical and horizontal axes and to set an appropriate boundary line CL.

スネーク曲線の横軸及び縦軸に用いられる長期的雨量指標及び短期的雨量指標として、以下の例が挙げられる。
第一の例は、斜面崩壊の予測のために長年用いられてきた例であり、長期的雨量指標として積算雨量を、短期的雨量指標として時間雨量を利用したものである(非特許文献1)。
第二の例は、斜面内部の雨水貯留量を、図3に示すようなタンクモデルで評価した土壌雨量指数を長期的雨量指標とする例である(非特許文献2、非特許文献3)。1993年に牧原及び平沢によって提案され、近年、広く用いられている。
第三の例は、降雨の総量と強度の影響を半減期により調節した実効雨量を指標とする例であり、半減期を異ならせた様々な実効雨量について多くの検討が加えられてきた。特に、1993年に開催された総合土砂災害対策検討会(建設省)で提案された、半減期72時間の実効雨量を長期的雨量指標とし、半減期1.5時間の実効雨量を短期的雨量指標とする方法が普及している(非特許文献4)。
Examples of the long-term rainfall index and the short-term rainfall index used for the horizontal and vertical axes of the snake curve are as follows.
The first example is an example that has been used for many years for prediction of slope failure, using accumulated rainfall as a long-term rainfall index and hourly rainfall as a short-term rainfall index (Non-Patent Document 1). .
The second example is an example in which the soil rainfall index obtained by evaluating the rainwater storage amount inside the slope with a tank model as shown in FIG. 3 is used as a long-term rainfall index (Non-patent Documents 2 and 3). Proposed by Makihara and Hirasawa in 1993, it has been widely used in recent years.
The third example is an example using the effective rainfall by adjusting the influence of the total amount and intensity of rainfall by the half-life as an index, and many studies have been made on various effective rainfalls with different half-lives. In particular, the effective rainfall with a half-life of 72 hours proposed by the General Sediment Disaster Countermeasures Study Group (Ministry of Construction) held in 1993 was used as the long-term rainfall index, and the effective rainfall with a half-life of 1.5 hours was used as the short-term rainfall. A method of using an index is widespread (Non-Patent Document 4).

一方、境界線については、例えば図4に示すように、対象地域における既往の斜面崩壊発生実績及び斜面崩壊非発生実績に基づいて、「見逃し」と「空振り」を共にできるだけ少なくすることができる直線をスネーク曲線上に引き、この直線を境界線CLとする方法が永年用いられてきた(非特許文献1)。近年では、ニューラルネットワークを用いた方法により、「見逃し」と「空振り」を最小にする非直線型の境界線CLを引く方法(非特許文献4)が提案され、広く使用されるようになっている。   On the other hand, with respect to the boundary line, as shown in FIG. 4, for example, a straight line that can reduce both “missing” and “missing” as much as possible based on the past slope failure occurrence record and slope failure non-occurrence record in the target area. Has been used for a long time (Non-patent Document 1). In recent years, a method of drawing a non-linear boundary line CL that minimizes “missing” and “missing” by a method using a neural network has been proposed and widely used (Non-Patent Document 4). Yes.

ここで、「見逃し」とは、実際は斜面崩壊が発生している事例を非発生と判断してしまうことを指し、「空振り」とは、実際は斜面崩壊が発生していない事例を斜面崩壊が発生すると判断してしまうことを指す。「見逃し」が起きると、警戒・避難の勧告や指示がなされていない状況で斜面崩壊が発生するため、人的・物的被害が拡大する。一方、「空振り」が繰り返されると、対象地域の住民の斜面崩壊に対する意識が次第に低下するため、実際には斜面崩壊が発生する場合でも、勧告や指示を受けても警戒したり、避難行動をとったりしなくなるおそれがある。
従って、斜面崩壊を予測する上では「見逃し」と「空振り」をいかに少なくできるかが重要となる。
Here, “missing” means that a case where slope failure has actually occurred is judged as non-occurrence, and “swinging” means that a case where slope failure has not actually occurred has occurred. It means to judge. When “missing” occurs, the slope collapse occurs in a situation where no warning or evacuation recommendations or instructions are given, and this increases human and property damage. On the other hand, if “swinging” is repeated, the residents in the target area will gradually become less aware of the slope failure, so even if a slope failure actually occurs, be wary of receiving recommendations and instructions, There is a risk that it will not take.
Therefore, in predicting slope failure, it is important how much “missing” and “missing” can be reduced.

寺田秀樹・中谷洋明(2001):土砂災害警戒避難基準雨量の設定手法,国土技術政策総合研究所資料第5号,国土交通省,58pp.Hideki Terada and Hiroaki Nakatani (2001): Sediment Disaster Warning and Evacuation Standard Rainfall Setting Method, National Institute for Land and Infrastructure Management, Material No.5, Ministry of Land, Infrastructure, Transport and Tourism, 58pp. 牧原康隆・平沢正信(1993):斜面崩壊危険度予測におけるタンクモデルの精度,気象庁研究時報,Vol.45,No.2,p.35-70Makihara Yasutaka and Hirasawa Masanobu (1993): Accuracy of tank model in slope failure risk prediction, JMA study time report, Vol.45, No.2, p.35-70 国土交通省気象庁ホームページ、"土壌雨量指数",[online],平成26年5月2日検索],インターネット<URL:http://www.jma.go.jp/jma/kishou/know/bosai/dojoshisu.html>Ministry of Land, Infrastructure, Transport and Tourism Meteorological Agency homepage, "Soil Rainfall Index", [online], searched May 2, 2014], Internet <URL: http://www.jma.go.jp/jma/kishou/know/bosai/ dojoshisu.html> 倉本和正・鉄賀博己・東寛和・荒川雅生・中山弘隆・古川浩平(2001):RBF ネットワークを用いた非線形がけ崩れ発生限界雨量線の設定に関する研究,土木学会論文集,No.672/VI-50,p.117-132Kazumasa Kuramoto, Hiromi Tetsuga, Hirokazu Tetsuga, Masao Arakawa, Hirotaka Nakayama, Kohei Furukawa (2001): Research on setting of non-linear landslide occurrence limit rainfall line using RBF network, Proceedings of Japan Society of Civil Engineers, No.672 / VI-50 , P.117-132 小杉賢一朗・藤本将光・山川陽祐・正岡直也・糸数哲・水山高久・木下篤彦(2013):山体基岩内部の地下水位変動を解析するための実効雨量に基づく関数モデル,砂防学会誌,Vol.66,No.4,p.21-32Kenichiro Kosugi, Masamitsu Fujimoto, Yosuke Yamakawa, Naoya Masaoka, Satoshi Itobe, Takahisa Mizuyama, Atsuhiko Kinoshita (2013): Functional model based on effective rainfall to analyze groundwater level fluctuations in mountain base rocks, Journal of the Sabo Society of Japan, Vol.66, No.4, p.21-32

力学的視点に立つと、斜面崩壊は、降雨によって地下水位が上昇し、ある臨界レベルを超過したときに発生すると考えることができる。従って、地下水位が上昇する様子や臨界レベルを適切に表現することができれば、斜面崩壊の発生予測における「見逃し」や「空振り」を少なくすることができる。   From a mechanical point of view, slope failure can be considered to occur when the groundwater level rises due to rainfall and exceeds a certain critical level. Therefore, if the state of rising groundwater level and the critical level can be expressed appropriately, it is possible to reduce “missing” and “missing” in predicting the occurrence of slope failure.

地下水位が上昇する様子(上昇する量やタイミング)は、雨の降り方、つまり、降雨時間や単位時間あたりの降雨量等によって決まるが、同じように雨が降っても地点によって地下水位が上昇する様子が異なる。これは、植生、地形、土壌、及び岩石の性質(保水性や透水性)が地点ごとに異なるため、雨が浸透する速さ、上流域からの水の集まりやすさ、下流域への水の通過しやすさがばらつくからである。
同様に、斜面崩壊が発生する地下水位の臨界レベルも、地点の植生、地形、土壌や岩石の性質(間隙の量や破壊に対する強度)に依存するため、地点ごとに異なる。
How the groundwater level rises (the amount and timing of the rise) is determined by how it rains, that is, the amount of rainfall, the amount of rainfall per unit time, etc., but even if it rains, the groundwater level rises depending on the location. The way to do is different. This is because the nature of vegetation, topography, soil, and rock (water retention and water permeability) varies from point to point, so the speed at which rain permeates, the ease of collecting water from the upstream area, and the water to the downstream area This is because the ease of passage varies.
Similarly, the critical level of the groundwater level at which slope failure occurs depends on the vegetation at the site, topography, and the nature of the soil and rocks (the amount of voids and strength against fracture), and therefore varies from site to site.

従って、地下水位の上昇の様子を適切に表現することができる雨量指標や、斜面崩壊の発生及び非発生の境界を矛盾無く説明できる境界線CLは地点毎に異なるはずである。しかしながら、従来は、地点に関係なく、一律の雨量指標を使用して地下水位の上昇の様子を表現し、既往の斜面崩壊の発生・非発生の実績に基づいて境界線CLを設定しており、斜面崩壊発生の予測精度に限界があった。   Therefore, the rainfall index that can appropriately express the rise of the groundwater level, and the boundary line CL that can explain the occurrence and non-occurrence boundaries of slope failures without any contradiction should be different for each point. However, in the past, regardless of the location, a uniform rainfall index was used to express the rise of the groundwater level, and the boundary line CL was set based on past occurrences of slope failures. There was a limit to the accuracy of slope failure prediction.

本発明が解決しようとする課題は、各対象地点において発生する斜面崩壊を正確に予測することができる斜面崩壊予測方法及び斜面崩壊予測装置を提供することである。   The problem to be solved by the present invention is to provide a slope failure prediction method and a slope failure prediction device capable of accurately predicting slope failure occurring at each target point.

上記課題を解決するために成された本発明に係る斜面崩壊予測方法は、
対象地点における降雨イベントによる斜面崩壊の発生を予測する方法であって、
a) ある時刻における蓄積雨量が半減するまでの時間である半減期をパラメータとして、過去の降雨イベントが前記蓄積雨量に及ぼす影響の持続性を表した雨量指標である実効雨量の現時点までの時系列値を、前記対象地点の過去の降雨イベントの降雨量データを用い、所定の長半減期及び該長半減期より短い短半減期についてそれぞれ算出し、
b) 前記長半減期をパラメータとする第1実効雨量をX軸、前記短半減期をパラメータとする第2実効雨量をY軸とするXY座標平面に、前記第1実効雨量の時系列値の最大値を通り前記Y軸と平行な第1境界線及び前記第2実効雨量の時系列値の最大値を通り前記X軸と平行な第2境界線を設定して判定用XY座標平面を作成し、
c) 斜面崩壊発生の予測対象となる降雨イベントの降雨量データから、前記長半減期をパラメータとする第3実効雨量の時系列値及び前記短半減期をパラメータとする第4実効雨量の時系列値を、前記予測対象降雨イベントの進行と共に順次算出し、
d) 同じ時刻における前記第3実効雨量の時系列値及び前記第4実効雨量の時系列値をそれぞれX値、Y値とする点を測定点としたとき、該測定点が、前記判定用XY座標平面において前記第1境界線を超える領域に位置するとき、又は前記第2境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定することを特徴とする。
The slope failure prediction method according to the present invention made to solve the above problems is as follows.
A method for predicting the occurrence of slope failure due to a rain event at a target location,
a) Time series of effective rainfall up to the present time, which is the rainfall index indicating the sustainability of the influence of past rainfall events on the accumulated rainfall, with the half-life, which is the time until the accumulated rainfall is halved at a certain time, as a parameter The value is calculated for a predetermined long half-life and a short half-life shorter than the long half-life using the rainfall data of the past rainfall event at the target point,
b) A time series value of the first effective rainfall is plotted on an XY coordinate plane with the first effective rainfall with the long half-life as a parameter on the X-axis and the second effective rainfall with the short half-life on the parameter as the Y-axis. A determination XY coordinate plane is created by setting a first boundary line passing through the maximum value and parallel to the Y axis and a second boundary line passing through the maximum value of the time series value of the second effective rainfall and parallel to the X axis. And
c) From the rainfall data of the rainfall event that is the target of slope failure occurrence, the time series value of the third effective rainfall with the long half-life as a parameter and the time series of the fourth effective rainfall with the short half-life as a parameter. The value is sequentially calculated along with the progress of the forecasted rainfall event,
d) When the measurement point is the point where the time series value of the third effective rainfall and the time series value of the fourth effective rainfall at the same time are the X value and the Y value, respectively, the measurement point is the determination XY It is determined that there is a possibility of slope failure when located in a region exceeding the first boundary line or in a region exceeding the second boundary line in the coordinate plane.

ここで、降雨量データには、例えば気象庁や国土交通省等の公的機関が提供するデータ、民間の気象情報提供サービス企業が提供するデータを利用することができる。また、実効雨量の時系列値とは、複数の時刻における実効雨量の値を、時間の経過に従って並べたものをいう。時系列値を求める時刻の間隔は等間隔でも良く、不等間隔でも良い。通常、上述の公的機関や民間企業による降雨量データの提供が一定時間毎(例えば1時間毎)に行われることを考慮すると、実効雨量の時系列値の算出も一定時間毎に行うことが好ましいが、降雨イベントの最中及びその前後は、実効雨量の時系列値を算出する間隔を短くし、ある降雨イベントと、その次の降雨イベントの間の降雨量がゼロの期間、或いは降雨イベントの最中であっても降雨量が微量である期間は、時系列値を求める間隔を長くしても良い。   Here, for example, data provided by a public organization such as the Japan Meteorological Agency or the Ministry of Land, Infrastructure, Transport and Tourism, or data provided by a private weather information providing service company can be used as the rainfall data. Moreover, the time series value of effective rainfall means that the values of effective rainfall at a plurality of times are arranged according to the passage of time. The time intervals for obtaining the time series values may be equal intervals or unequal intervals. In general, considering the provision of rainfall data by the above-mentioned public institutions and private companies at regular intervals (for example, every hour), time series values of effective rainfall can be calculated at regular intervals. Although it is preferable, during and before and after a rain event, the interval for calculating the time series value of the effective rainfall is shortened so that the rainfall between one rain event and the next rain event is zero, or the rain event Even in the middle of the period, the interval for obtaining the time series value may be lengthened during the period when the rainfall is very small.

上記の斜面崩壊予測方法においては、前記対象地点の過去の降雨イベントの降雨量データから求められた、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットし、
前記複数の点のうちある時刻の点を注目点としたとき、該注目点とX値が同じ点の中に前記注目点よりもY値が大きい点が存在しない場合、及び前記注目点よりもX値が大きい点の中に前記注目点とY値が同じ点及び前記注目点よりもY値が大きい点のいずれもが存在しない場合は、前記注目点を第3境界点として抽出する作業を繰り返し、
抽出された全ての第3境界点をX値が小さい順に繋いだ線を、前記第1実効雨量及び前記第2実効雨量の相乗効果による実効雨量の最大値を表す第3境界線として前記XY座標平面に設定し、
前記測定点が、前記第3境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定することが好ましい。
In the above slope failure prediction method, the time series value of the first effective rainfall and the time series value of the second effective rainfall at the same time obtained from the rainfall data of the past rainfall event at the target point are respectively calculated. Plotting a plurality of points as X value and Y value on the XY coordinate plane for determination,
When a point at a certain time among the plurality of points is a point of interest, a point having a larger Y value than the point of interest does not exist among points having the same X value as the point of interest, and than the point of interest If neither the point having the same X value as the target point or the point having a larger Y value than the target point exists among the points having a large X value, an operation of extracting the target point as a third boundary point is performed. repetition,
The XY coordinates as a third boundary line representing the maximum value of the effective rainfall due to the synergistic effect of the first effective rainfall and the second effective rainfall, with a line connecting all the extracted third boundary points in ascending order of the X value Set to a plane,
It is preferable to determine that a slope failure may occur when the measurement point is located in a region exceeding the third boundary line.

上記の方法において、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットしたものは、「スネーク曲線」に相当する。スネーク曲線は、斜面崩壊の発生の予測に一般的に用いられているグラフであり、上記方法では、スネーク曲線を構成する複数の点を使って第3境界線を設定した。このため、より適切な境界線に基づいて斜面崩壊の発生の可能性を予測することができる。   In the above method, a plurality of points having the time series value of the first effective rainfall and the time series value of the second effective rainfall at the same time as the X value and the Y value, respectively, plotted on the determination XY coordinate plane Corresponds to a “snake curve”. The snake curve is a graph generally used for predicting the occurrence of slope failure. In the above method, the third boundary line is set using a plurality of points constituting the snake curve. For this reason, possibility of occurrence of slope failure can be predicted based on a more appropriate boundary line.

斜面崩壊の発生を正確に予測する上では、長半減期及び短半減期の選択が重要である。これら2種類の半減期の選択を誤ると、判定用XY座標平面に適切な境界線を設定することができず、また、測定点が降雨イベントの性質や対象地点の保水性・透水性を反映したものとならない。この結果、判定用XY座標平面における測定点の位置に基づいて斜面崩壊の発生の可能性を予測しても、その予測が「空振り」に終わったり、「見逃し」になったりするおそれがある。   In order to accurately predict the occurrence of slope failure, it is important to select a long half-life and a short half-life. If these two types of half-life are selected incorrectly, an appropriate boundary line cannot be set on the XY coordinate plane for judgment, and the measurement point reflects the nature of the rain event and the water retention / permeability of the target point. It will not be. As a result, even if the possibility of occurrence of a slope failure is predicted based on the position of the measurement point on the determination XY coordinate plane, the prediction may end in “missing” or “miss”.

そこで、本発明の斜面崩壊予測方法においては、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、各時刻における判別結果の集計から、斜面崩壊の発生を予測すると良い。
この方法によれば、斜面崩壊が発生しない状況であるにも関わらず、斜面崩壊が発生する可能性が高いと予測してしまう、「空振り」を減らすことができる。
Therefore, in the slope failure prediction method of the present invention, for a combination of a plurality of long half-lives and short half-lives, a determination XY coordinate plane in which the first to third boundary lines are set is obtained.
For all of the plurality of determination XY coordinate planes, the measurement points including the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall are the X axis, the Y axis, and the first boundary line. And a first region surrounded by the second boundary line and the third boundary line, a second region surrounded by the first boundary line, the second boundary line and the third boundary line, the first A third region that exceeds a boundary line and is closer to the X axis than the second boundary line; a fourth region that exceeds the second boundary line and is closer to the Y axis than the first boundary line; It is preferable to determine in which region of the fifth region that exceeds both the boundary line and the second boundary line, and predict the occurrence of slope failure from the total of the determination results at each time.
According to this method, it is possible to reduce “swinging” that is predicted that a slope failure is highly likely to occur despite the fact that slope failure does not occur.

また、本発明の斜面崩壊予測方法においては、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、少なくとも1個の判定用XY座標平面において測定点が第2〜第5領域のいずれかに位置するとき、斜面崩壊の発生の可能性が高いと予測することが好ましい。
この方法によれば、斜面崩壊の発生の可能性を見落としてしまう、「見逃し」を回避することができる。
Further, in the slope failure prediction method of the present invention, for a combination of a plurality of long half-lives and short half-lives, a determination XY coordinate plane in which the first to third boundary lines are set is obtained.
For all of the plurality of determination XY coordinate planes, the measurement points including the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall are the X axis, the Y axis, and the first boundary line. And a first region surrounded by the second boundary line and the third boundary line, a second region surrounded by the first boundary line, the second boundary line and the third boundary line, the first A third region that exceeds a boundary line and is closer to the X axis than the second boundary line; a fourth region that exceeds the second boundary line and is closer to the Y axis than the first boundary line; It is determined in which region of the fifth region that exceeds both the boundary line and the second boundary line, and the measurement point is one of the second to fifth regions in at least one determination XY coordinate plane. It is preferable to predict that the occurrence of slope failure is high.
According to this method, it is possible to avoid “missing” that overlooks the possibility of slope failure.

さらに、本発明の斜面崩壊予測方法においては、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、
その結果を表すシンボルを、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成するようにしても良い。
本発明においては、長半減期及び短半減期の設定が重要であるが、前記二次元判定図を作成することにより、長半減期及び短半減期の組み合わせの違いによる判定結果の変化を視覚的に認識することができる。従って、二次元判定図を参考にして、適切な長半減期及び短半減期を設定することができる。
Furthermore, in the slope failure prediction method of the present invention, for a combination of a plurality of long half-lives and short half-lives, a determination XY coordinate plane in which the first to third boundary lines are set is obtained.
For all of the plurality of determination XY coordinate planes, the closest measurement point among the measurement points consisting of the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall is the X axis and the Y axis. And a first region surrounded by the first boundary line, the second boundary line, and the third boundary line, and a first region surrounded by the first boundary line, the second boundary line, and the third boundary line. 2 region, the first boundary line is exceeded, and the third region on the X axis side than the second boundary line, the second boundary line is exceeded, and the second boundary line is exceeded on the Y axis side from the first boundary line. 4 region, determine which region is located in the fifth region that exceeds both the first boundary line and the second boundary line,
You may make it produce the two-dimensional determination figure which plotted the symbol showing the result on the two-dimensional coordinate plane which has a long half life on a horizontal axis and a short half life on a vertical axis | shaft.
In the present invention, it is important to set a long half-life and a short half-life. By creating the two-dimensional determination diagram, the change in the determination result due to the difference in the combination of the long half-life and the short half-life can be visually confirmed. Can be recognized. Therefore, appropriate long half-life and short half-life can be set with reference to the two-dimensional determination diagram.

また、本発明の斜面崩壊予測方法は、上述の判定用XY座標平面において、測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出することを特徴とする。
この方法によれば、斜面崩壊の発生の可能性を定量的に予測することができる。
In the slope failure prediction method of the present invention, in the above-described determination XY coordinate plane, the most recent measurement point among the measurement points is the X axis, the Y axis, the first boundary line, the second boundary line, and the It is characterized by calculating the amount of rainfall per unit time when the next measurement point exceeds the first to third boundary lines when located in a region surrounded by the third boundary line.
According to this method, the possibility of slope failure can be predicted quantitatively.

この場合、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出し、
該単位時間あたりの降雨量を、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成するようにしても良い。
この方法によれば、長半減期及び短半減期の組み合わせの違いによる斜面崩壊をもたらす降雨量の変化を視覚的に認識することができる。従って、二次元判定図を参考にして、適切な長半減期及び短半減期を設定することができる。
In this case, for a combination of a plurality of long half-lives and short half-lives, a determination XY coordinate plane in which the first to third boundary lines are set is obtained,
For all of the plurality of determination XY coordinate planes, the nearest measurement point among the measurement points consisting of the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall is the X axis and the Y axis. When located in a region surrounded by the first boundary line, the second boundary line, and the third boundary line, the next measurement point per unit time that exceeds the first to third boundary lines Calculate rainfall,
A two-dimensional determination diagram in which the rainfall per unit time is plotted on a two-dimensional coordinate plane with the horizontal axis as the long half-life and the vertical axis as the short half-life may be created.
According to this method, it is possible to visually recognize a change in rainfall that causes slope failure due to a difference in combination of the long half-life and the short half-life. Therefore, appropriate long half-life and short half-life can be set with reference to the two-dimensional determination diagram.

また、本発明に係る斜面崩壊発生予測装置は、対象地点における降雨イベントによる斜面崩壊の発生を予測する装置であって、
a) ある時刻における蓄積雨量が半減するまでの時間である半減期をパラメータとして、過去の降雨イベントが前記蓄積雨量に及ぼす影響の持続性を表した雨量指標である実効雨量の現時点までの時系列値を、前記対象地点の過去の降雨イベントの降雨量データを用い、所定の長半減期及び該長半減期より短い短半減期についてそれぞれ算出する、既往実効雨量算出手段と、
b) 前記長半減期をパラメータとする第1実効雨量をX軸、前記短半減期をパラメータとする第2実効雨量をY軸とするXY座標平面に、前記第1実効雨量の時系列値の最大値を通り前記Y軸と平行な第1境界線及び前記第2実効雨量の時系列値の最大値を通り前記X軸と平行な第2境界線を設定して判定用XY座標平面を作成する、判定用XY座標平面作成手段と、
c) 斜面崩壊発生の予測対象となる降雨イベントの降雨量データから、前記長半減期をパラメータとする第3実効雨量の時系列値及び前記短半減期をパラメータとする第4実効雨量の時系列値を、前記予測対象降雨イベントの進行と共に順次算出する、予測用実効雨量算出手段と、
d) 同じ時刻における前記第3実効雨量の時系列値及び前記第4実効雨量の時系列値をそれぞれX値、Y値とする点を測定点としたとき、該測定点が、前記判定用XY座標平面において前記第1境界線を超える領域に位置するとき、又は前記第2境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定する判定手段と
を備えることを特徴とする。
The slope failure occurrence prediction device according to the present invention is a device that predicts the occurrence of slope failure due to a rain event at a target point,
a) Time series of effective rainfall up to the present time, which is the rainfall index indicating the sustainability of the influence of past rainfall events on the accumulated rainfall, with the half-life, which is the time until the accumulated rainfall is halved at a certain time, as a parameter A past effective rainfall calculation means for calculating a value for each of a predetermined long half-life and a short half-life shorter than the long half-life, using rainfall data of past rainfall events at the target point;
b) A time series value of the first effective rainfall is plotted on an XY coordinate plane with the first effective rainfall with the long half-life as a parameter on the X-axis and the second effective rainfall with the short half-life on the parameter as the Y-axis. A determination XY coordinate plane is created by setting a first boundary line passing through the maximum value and parallel to the Y axis and a second boundary line passing through the maximum value of the time series value of the second effective rainfall and parallel to the X axis. A determination XY coordinate plane creating means;
c) From the rainfall data of the rainfall event that is the target of slope failure occurrence, the time series value of the third effective rainfall with the long half-life as a parameter and the time series of the fourth effective rainfall with the short half-life as a parameter. A prediction effective rainfall amount calculating means for sequentially calculating a value along with the progress of the prediction target rain event;
d) When the measurement point is the point where the time series value of the third effective rainfall and the time series value of the fourth effective rainfall at the same time are the X value and the Y value, respectively, the measurement point is the determination XY Determining means for determining that a slope failure may occur when located in a region exceeding the first boundary line in a coordinate plane, or when located in a region exceeding the second boundary line. And

上記の斜面崩壊予測装置においては、
前記判定用XY座標平面作成手段が、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットし、前記複数の点のうちある時刻の点を注目点としたとき、該注目点とX値が同じ点の中に前記注目点よりもY値が大きい点が存在しない場合、及び前記注目点よりもX値が大きい点の中に前記注目点とY値が同じ点及び前記注目点よりもY値が大きい点のいずれもが存在しない場合は、前記注目点を第3境界点として抽出する作業を繰り返し、抽出された全ての第3境界点をX値が小さい順に繋いだ線を、前記第1実効雨量及び前記第2実効雨量の相乗効果による実効雨量の最大値を表す第3境界線として前記判定用XY座標平面に設定し、
前記判定手段が、前記判定用XY座標平面において前記測定点が前記第3境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定することが好ましい。
In the above slope failure prediction device,
The determination XY coordinate plane creating means uses the determination XY coordinates as a plurality of points having the time series value of the first effective rainfall and the time series value of the second effective rainfall at the same time as the X value and the Y value, respectively. When plotting on a plane and setting a point at a certain time among the plurality of points as a point of interest, a point having a larger Y value than the point of interest does not exist among points having the same X value as the point of interest; and If neither the point having the same Y value as the point of interest nor the point having the Y value larger than the point of interest exists among the points having an X value larger than the point of interest, the point of interest is designated as the third boundary point. The line that connects all the extracted third boundary points in ascending order of the X value represents the maximum value of the effective rainfall due to the synergistic effect of the first effective rainfall and the second effective rainfall. Set as 3 boundary lines on the XY coordinate plane for determination,
It is preferable that the determination unit determines that slope failure may occur when the measurement point is located in a region exceeding the third boundary line on the determination XY coordinate plane.

また、前記既往実効雨量算出手段が、長さが異なる3種類以上の半減期について前記実効雨量の時系列値を算出し、
前記判定用XY座標平面作成手段が、前記3種類以上の半減期から2種類の半減期を選択することにより形成される、複数の、長半減期と短半減期の組み合わせについて、それぞれ前記第1〜第3境界線を設定した判定用XY座標平面を求め、
前記判定手段が、前記複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、各時刻における判別結果の集計から、斜面崩壊の発生を予測するようにしても良い。
Further, the past effective rainfall calculation means calculates time series values of the effective rainfall for three or more half-lifes having different lengths,
The determination XY coordinate plane creating means forms a plurality of combinations of long half-life and short half-life, respectively, by selecting two types of half-life from the three or more types of half-life. ~ Find the XY coordinate plane for determination with the third boundary set,
The determination means has a measurement point consisting of a time series value of the third effective rainfall and a time series value of the fourth effective rainfall for all of the plurality of determination XY coordinate planes, the X axis and the Y axis. A first region surrounded by the first boundary line, the second boundary line, and the third boundary line; a second region surrounded by the first boundary line, the second boundary line, and the third boundary line; A region that exceeds the first boundary line and is a third region on the X-axis side from the second boundary line; a fourth region that exceeds the second boundary line and that is on the Y-axis side from the first boundary line; It is determined whether the region is located in the fifth region that exceeds both the region and the first boundary line and the second boundary line, and the occurrence of the slope failure is predicted from the total of the determination results at each time Anyway.

さらに、前記既往実効雨量算出手段が、長さが異なる3種類以上の半減期について前記実効雨量の時系列値を算出し、
前記判定用XY座標平面作成手段が、前記3種類以上の半減期から2種類の半減期を選択することにより形成される、複数の、長半減期と短半減期の組み合わせについて、それぞれ前記第1〜第3境界線を設定した判定用XY座標平面を求め、
前記判定手段が、前記複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、少なくとも1個の判定用XY座標平面において測定点が第2〜第5領域のいずれかに位置するとき、斜面崩壊の発生の可能性が高いと予測することも良い構成である。
Further, the past effective rainfall calculation means calculates time series values of the effective rainfall for three or more half-lifes having different lengths,
The determination XY coordinate plane creating means forms a plurality of combinations of long half-life and short half-life, respectively, by selecting two types of half-life from the three or more types of half-life. ~ Find the XY coordinate plane for determination with the third boundary set,
The determination means has a measurement point consisting of a time series value of the third effective rainfall and a time series value of the fourth effective rainfall for all of the plurality of determination XY coordinate planes, the X axis and the Y axis. A first region surrounded by the first boundary line, the second boundary line, and the third boundary line; a second region surrounded by the first boundary line, the second boundary line, and the third boundary line; A region that exceeds the first boundary line and is a third region on the X-axis side from the second boundary line; a fourth region that exceeds the second boundary line and that is on the Y-axis side from the first boundary line; It is determined whether the region is located in the fifth region that exceeds both the region, the first boundary line, and the second boundary line, and the measurement points are second to second in at least one determination XY coordinate plane. It is also a good configuration to predict that there is a high probability of slope failure when located in any of the five regions

さらに、上記の斜面崩壊予測装置において、
前記判定用XY座標平面作成手段が、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、その結果を表すシンボルを、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成する二次元判定図作成手段を備えるようにしても良い。
Furthermore, in the above slope failure prediction device,
The determination XY coordinate plane creating means obtains a determination XY coordinate plane in which first to third boundary lines are set for a plurality of combinations of long half-life and short half-life,
For all of the plurality of determination XY coordinate planes, the closest measurement point among the measurement points consisting of the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall is the X axis and the Y axis. And a first region surrounded by the first boundary line, the second boundary line, and the third boundary line, and a first region surrounded by the first boundary line, the second boundary line, and the third boundary line. 2 region, the first boundary line is exceeded, and the third region on the X axis side than the second boundary line, the second boundary line is exceeded, and the second boundary line is exceeded on the Y axis side from the first boundary line. It is determined which region is located in the fourth region, the fifth region exceeding both of the first boundary line and the second boundary line, and a symbol representing the result is represented by the long half-life on the horizontal axis and the vertical axis 2D decision diagram creation means for creating a two-dimensional decision diagram plotted on a two-dimensional coordinate plane with a short half-life It may be.

また、前記判定用XY座標平面作成手段が、前記対象地点の過去の降雨イベントの降雨量データから求められた、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットし、前記複数の点のうちある時刻の点を注目点としたとき、該注目点とX値が同じ点の中に前記注目点よりもY値が大きい点が存在しない場合、及び前記注目点よりもX値が大きい点の中に前記注目点とY値が同じ点及び前記注目点よりもY値が大きい点のいずれもが存在しない場合は、前記注目点を第3境界点として抽出する作業を繰り返し、抽出された全ての第3境界点をX値が小さい順に繋いだ線を、前記第1実効雨量及び前記第2実効雨量の相乗効果による実効雨量の最大値を表す第3境界線として前記判定用XY座標平面に設定し、
前記判定用XY座標平面において、前記測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出する超過降雨量算出手段を備えるようにしても良い。
前記第1〜第3境界線を超えることになる単位時間あたりの降雨量の大きさから、斜面崩壊の発生の可能性を定量的に予測することができる。
In addition, the determination XY coordinate plane creating means obtains the time series value of the first effective rainfall and the time series of the second effective rainfall at the same time, which are obtained from the rainfall data of the past rainfall event at the target point. When a plurality of points whose values are X and Y values are plotted on the XY coordinate plane for determination and a point at a certain time is selected as a point of interest, the point having the same X value as the point of interest If there is no point having a larger Y value than the point of interest, and a point having a larger X value than the point of interest, a point having the same Y value as the point of interest and a Y value greater than the point of interest When none of the large points exist, the operation of extracting the attention point as the third boundary point is repeated, and a line connecting all the extracted third boundary points in ascending order of the X value is used as the first effective point. Effective rainfall due to the synergistic effect of rainfall and the second effective rainfall The set determination XY coordinate plane as a third boundary line representing a Daine,
In the determination XY coordinate plane, the nearest measurement point among the measurement points is in a region surrounded by the X axis, the Y axis, the first boundary line, the second boundary line, and the third boundary line. When located, it may be provided with an excessive rainfall amount calculating means for calculating a rainfall amount per unit time at which the next measurement point exceeds the first to third boundary lines.
The possibility of slope failure can be quantitatively predicted from the magnitude of rainfall per unit time that exceeds the first to third boundaries.

この場合、前記判定用XY座標平面作成手段が、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
前記超過雨量算出手段が、前記複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出し、
該単位時間あたりの降雨量を、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成する二次元判定図作成手段を設けると、長半減期及び短半減期の組み合わせの違いによる斜面崩壊をもたらす降雨量の変化を視覚的に認識することができ、上記二次元判定図を参考にして適切な長半減期及び短半減期を設定することができる。
In this case, the determination XY coordinate plane creating means obtains a determination XY coordinate plane in which the first to third boundary lines are set for a plurality of combinations of long half-life and short half-life,
The excess rainfall calculation means, for all of the plurality of determination XY coordinate planes, of the measurement points including the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall, When located in a region surrounded by the X axis, the Y axis, the first boundary line, the second boundary line, and the third boundary line, the next measurement point exceeds the first to third boundary lines. Calculate the amount of rainfall per unit time,
By providing a two-dimensional judgment diagram creation means for creating a two-dimensional judgment diagram in which the rainfall per unit time is plotted on a two-dimensional coordinate plane with the horizontal axis representing the long half-life and the vertical axis representing the short half-life, It is possible to visually recognize changes in rainfall that cause slope failures due to differences in the combination of period and short half-life, and to set appropriate long and short half-lives with reference to the above two-dimensional judgment chart Can do.

なお、本発明において、斜面崩壊が発生する可能性の有無の判定に用いる測定点は、通常は直近の測定点であるが、これに限定されるものではない。例えば、第3実効雨量及び第4実効雨量の時系列値の取得間隔(測定間隔)が短い場合には、直近の測定点よりも1ないし複数回分だけ過去に遡った測定点を用いても良い。また、判定に用いる測定点は1個に限らず、複数個でも良い。   In the present invention, the measurement point used for determining whether or not slope failure may occur is usually the latest measurement point, but is not limited to this. For example, when the acquisition interval (measurement interval) of the time series values of the third effective rainfall and the fourth effective rainfall is short, measurement points that are traced back one or more times from the most recent measurement point may be used. . Further, the number of measurement points used for determination is not limited to one, and may be plural.

本発明に係る斜面崩壊予測方法及び装置では、対象地域の過去の降雨イベントの降雨量データに基づいて境界線が設定された判定用XY座標平面を作成し、斜面崩壊の発生を予測する対象となる降雨イベントの進行と共に得られる降雨量データから得られる測定点と前記判定用XY座標平面に設定された境界線との位置関係に基づいて、斜面崩壊の発生の可能性を判定する。従って、斜面崩壊の発生の予測に、対象地点の保水性や透水性、予測対象となる降雨イベントの性質等を反映させることができ、「見逃し」や「空振り」を回避した、正確な斜面崩壊予測を行うことができる。   In the slope failure prediction method and apparatus according to the present invention, a determination XY coordinate plane in which a boundary line is set based on rainfall data of past rainfall events in a target area is created, and an object for predicting the occurrence of slope failure The possibility of occurrence of slope failure is determined based on the positional relationship between the measurement point obtained from the rainfall amount data obtained along with the progress of the rain event and the boundary set on the determination XY coordinate plane. Therefore, it is possible to reflect the water retention and water permeability of the target point, the nature of the rain event to be predicted, etc. in the prediction of the occurrence of slope failure, and accurate slope failure that avoids “missing” and “skipping” Predictions can be made.

斜面崩壊の発生予測に用いるスネーク曲線図の例を示す図。The figure which shows the example of the snake curve figure used for generation | occurrence | production prediction of slope failure. 時間雨量(a)と各種半減期の実効雨量(b)〜(f)を示すグラフ。The graph which shows the hourly rainfall (a) and the effective rainfall (b)-(f) of various half-lives. タンクモデルを用いた土壌雨量指数の説明図。Explanatory drawing of the soil rainfall index using a tank model. スネーク曲線図における境界線CLの最適化を説明する図。The figure explaining optimization of the boundary line CL in a snake curve figure. スネーク曲線図において、各時刻の点をその時刻に観測された地下水位の大きさに応じて塗り分けた例を示す図。The figure which shows the example which painted the point of each time according to the magnitude | size of the groundwater level observed at the time in a snake curve diagram. スネーク曲線における境界線CLの定義を説明するための図。The figure for demonstrating the definition of the boundary line CL in a snake curve. 判定用グラフを用いた予測対象となる降雨イベントのスネーク曲線の判定結果を示す図。The figure which shows the determination result of the snake curve of the rain event used as the prediction object using the graph for determination. 長半減期及び短半減期の組み合わせが異なる複数のスネーク曲線から求めた判定結果のシンボルを示す二次元判定図の一例を示す図。The figure which shows an example of the two-dimensional determination figure which shows the symbol of the determination result calculated | required from the several snake curve from which the combination of long half life and short half life differs. 本発明に係る斜面崩壊予測装置の概略構成図。The schematic block diagram of the slope failure prediction apparatus which concerns on this invention. 本発明に係る斜面崩壊予測方法の実施例1に用いた庄原災害時の雨量データ。The rainfall data at the time of the Shobara disaster used in Example 1 of the slope failure prediction method according to the present invention. 庄原災害時の二次元判定図による既往最大値超過の判定結果。Judgment result of exceeding past maximum value by 2D judgment chart at Shobara disaster. 本発明に係る斜面崩壊予測方法の実施例2を示すものであり、梨子沢災害の発生場所及びその付近の観測所を示す地図(国土地理院地図に加筆)。The map which shows Example 2 of the slope failure prediction method which concerns on this invention, and shows the generation | occurrence | production location of Nashizawa disaster and the observation station of the vicinity (added to the Geographical Survey Institute map). 3箇所の観測所における観測データを示すグラフ。A graph showing observation data at three stations. 既往降雨イベント及び梨子沢災害の原因となった今回の降雨イベントの時間雨量及び積算雨量を示すグラフ。The graph which shows the amount of rainfall and the amount of rainfall of this rainfall event which caused the past rainfall event and the Nashizawa disaster. 既往降雨イベント及び今回の降雨イベントの、横軸を土壌雨量指数、縦軸を時間雨量としたスネーク曲線と土壌雨量指数既往最大値と時間雨量既往最大値とAN境界線によって得られる既往最大値を示す図。For past rainfall events and current rainfall events, the snake curve with the horizontal axis as the soil rainfall index and the vertical axis as the hourly rainfall, the soil rainfall index historical maximum value, the historical rainfall maximum value, and the historical maximum value obtained from the AN boundary. FIG. 既往降雨イベント及び今回の降雨イベントの、横軸を半減期51hの実効雨量、縦軸を半減期0.9hの実効雨量としたスネーク曲線と半減期51h実効雨量既往最大値と半減期0.9h実効雨量既往最大値とAN境界線によって得られる既往最大値を示す図。Snake curve and half-life 51h effective rainfall past maximum value and half-life 0.9h effective rainfall, with the horizontal axis representing the effective rainfall with a half-life of 51h and the vertical axis representing the effective rainfall with a half-life of 0.9h. The figure which shows the past maximum value obtained by the past maximum value and AN boundary line. 長半減期及び短半減期の組み合わせが異なる複数のスネーク曲線から求めた、測定点がAN境界線を超えるまでに必要な1時間の降雨量を示す二次元判定図。The two-dimensional determination figure which shows the rainfall amount of 1 hour required until a measurement point exceeds AN boundary line calculated | required from the several snake curve from which the combination of long half life and short half life differs. 現時点までの降雨量データに今後1時間の予測降雨量を加えて求めたスネーク曲線(a)及び、現時点までの降雨量データにAN境界線を超過する最小の1時間降雨量を加えて求めたスネーク曲線(b)。The snake curve (a) obtained by adding the predicted rainfall for the next hour to the rainfall data up to now and the minimum hourly rainfall exceeding the AN boundary to the current rainfall data Snake curve (b). 斜面崩壊予測システムの概念図。The conceptual diagram of a slope failure prediction system.

斜面崩壊が発生する地下水位の臨界レベルを自然斜面において正確に予測するのは困難であることから、地下水位が既往最大値を超えて上昇しているときには、いつ斜面崩壊が発生してもおかしくない状態にあると考えるべきである。本発明では、このような考えに基づき、地下水位の既往最大値を基準として臨界レベルを設定することとした。これにより、斜面崩壊発生予測における「見逃し」を極力なくすことができると考えられる。   It is difficult to accurately predict the critical level of the groundwater level at which slope failure occurs on natural slopes. Therefore, when the groundwater level rises above the previous maximum value, it is not surprising when slope failure occurs. It should be considered that there is no state. In the present invention, based on such an idea, the critical level is set with reference to the past maximum value of the groundwater level. As a result, it is considered that “missing” in the prediction of slope failure occurrence can be eliminated as much as possible.

降雨中の地下水位の予測は、本発明者が2013年に提案した、基岩内部の地下水位の変動を解析するための関数モデルの考え方を活用した(非特許文献5)。
本発明者は、半減期の長い実効雨量と半減期の短い実効雨量をそれぞれ横軸、縦軸とするスネーク曲線において、各時刻の点をその時刻に観測された地下水位の大きさに応じて塗り分けたとき、横軸及び縦軸の実効雨量の半減期を最適化することにより、横軸及び縦軸の実効雨量の大きさに応じて点の色がきれいに塗り分けられることを、非特許文献5に示した。つまり、半減期の異なる2種類の実効雨量からスネーク曲線を作成したとき、2種類の半減期の組み合わせが最適であれば、地下水位上昇の様子を再現できる。
The prediction of the groundwater level during rainfall utilized the concept of a functional model proposed by the present inventor in 2013 to analyze the fluctuation of the groundwater level inside the base rock (Non-Patent Document 5).
In the snake curve in which the horizontal axis and the vertical axis represent the effective rainfall with a long half-life and the effective rainfall with a short half-life, respectively, the present inventor determines each time point according to the magnitude of the groundwater level observed at that time. It is a non-patent document that by optimizing the half-life of the effective rainfall on the horizontal axis and the vertical axis, the color of the points can be applied beautifully according to the magnitude of the effective rainfall on the horizontal axis and the vertical axis. Shown in Reference 5. In other words, when a snake curve is created from two types of effective rainfall with different half-lives, the groundwater level rise can be reproduced if the combination of the two types of half-lives is optimal.

図5に、半減期72時間の実効雨量を横軸に、半減期1.5時間の実効雨量を縦軸にしたスネーク曲線図(a)、及び半減期1061時間の実効雨量を横軸に、半減期77時間の実効雨量を縦軸にしたスネーク曲線図(b)の例を示す。同図では、各時刻の点の色をその時刻に観測された地下水位が低いものから順に塗り分けている。なお、ここでは、図5を白と黒の濃淡図で表しているが、実際は、茶色、赤色、黄色、黄緑色、青色に塗り分けている。同図(a)では、広い範囲に亘って異なる色の点が混在しているのに対して、同図(b)では、複数の点が色ごとにまとまって存在しており、実効雨量と地下水位の間に相関関係があると推定される。   FIG. 5 shows a snake curve diagram (a) having an effective rainfall of half-life 72 hours on the horizontal axis, an effective rainfall of half-life 1.5 hours on the vertical axis, and an effective rainfall of half-life 1061 hours on the horizontal axis. The example of the snake curve figure (b) which made the vertical axis | shaft the effective rainfall of the half life 77 hours is shown. In the figure, the colors of the points at each time are painted in order from the lowest groundwater level observed at that time. Here, FIG. 5 is represented by white and black shading, but in actuality, it is painted in brown, red, yellow, yellow-green, and blue. In the same figure (a), while the point of a different color is mixed over a wide range, in the same figure (b), a plurality of points exist together for each color, and the effective rainfall and It is estimated that there is a correlation between groundwater levels.

以上より、図5(b)のスネーク曲線図上では、実効雨量が既往最大値を超過しているときは、地下水位も既往最大値を超過していると考えられ、このスネーク曲線図を用いて斜面崩壊の発生を予測する場合は、実効雨量の既往最大値を境界線CLに設定することが、最も理に適っている。実効雨量の既往最大値は、本発明における、第1実効雨量の時系列値の最大値(第1境界線)及び第2実効雨量の時系列値の最大値(第2境界線)、並びに第1実効雨量と第2実効雨量の相乗効果による実効雨量の最大値(第3境界線)に相当する。第1〜第3境界線については後述する。   From the above, on the snake curve diagram of Fig. 5 (b), when the effective rainfall exceeds the past maximum value, it is considered that the groundwater level also exceeds the past maximum value, and this snake curve diagram is used. Therefore, when predicting the occurrence of slope failure, it is most reasonable to set the past maximum value of effective rainfall to the boundary line CL. The historical maximum value of the effective rainfall is the maximum value of the time series value of the first effective rainfall (first boundary line), the maximum value of the time series value of the second effective rainfall (second boundary line), and This corresponds to the maximum value (third boundary line) of the effective rainfall due to the synergistic effect of the first effective rainfall and the second effective rainfall. The first to third boundary lines will be described later.

しかし、スネーク曲線図の縦軸及び横軸にとる実効雨量の半減期をどのような値に設定したときに、図5(b)に示すようなスネーク曲線図を得ることができるか、すなわち、地下水位上昇の様子を最も良く表現できる半減期が何であるかは地点ごとに異なる。このため、適切な半減期の組み合わせを全ての対象地点において正確に予測することは困難である。   However, when the effective rain half-life taken on the vertical and horizontal axes of the snake curve diagram is set to what value, a snake curve diagram as shown in FIG. What is the half-life that best represents the rise in groundwater level varies from point to point. For this reason, it is difficult to accurately predict an appropriate combination of half-life at all target points.

これに対して、横軸に設定する実効雨量の半減期(以下「長半減期」ともいう。)と縦軸に設定する実効雨量の半減期(以下「短半減期」ともいう)を種々の長さに変化させ、あらゆる半減期の組合せについて、地下水位の既往最大値の超過が起きているかどうかを判定すると、いかなる地下水位上昇パターンを示す地点であっても地下水位の既往最大値の超過を検出できる。地下水位の既往最大値では、少なくとも斜面崩壊は発生しておらず、それを超えたときに斜面崩壊が発生するか否かは不明であるため、上記のように、あらゆる半減期の組合せについて、地下水位の既往最大値の超過が起きているかどうかを判定することは、斜面崩壊の発生の予測の「空振り」や「見逃し」の回避につながる。   In contrast, the effective rainfall half-life (hereinafter also referred to as “long half-life”) set on the horizontal axis and the effective rainfall half-life (hereinafter also referred to as “short half-life”) set on the vertical axis are various. By changing the length and determining whether the maximum groundwater level has been exceeded for any combination of half-lives, the maximum groundwater level has been exceeded at any point where any groundwater level rise pattern has occurred. Can be detected. At the past maximum value of the groundwater level, at least slope failure has not occurred, and it is unclear whether slope failure will occur when exceeding it, so as described above, for all combinations of half-lives, Determining whether or not the past maximum value of the groundwater level has been exceeded leads to avoiding “skipping” and “missing” in predicting the occurrence of slope failure.

ただし、上述したように、長半減期と短半減期の最適な組み合わせを選択することができれば、1個の組み合わせについて、地下水位の既往最大値の超過が起きているかどうかを判定するだけで、「空振り」や「見逃し」を回避した斜面崩壊の予測を行うことができる。
また、長半減期と短半減期の全ての組み合わせについて、地下水位の既往最大値の超過が起きているかどうかを判定することは、現実的に不可能である。「空振り」や「見逃し」を少なくするためには、判定に用いる長半減期と短半減期の組み合わせの数が多い方が有効であるが、少なくとも2個の組み合わせについて、上述した判定を行うことにより、1個の組み合わせについて判定を行う場合よりも斜面崩壊の予測精度を上げることができる。
However, as described above, if the optimum combination of the long half-life and the short half-life can be selected, it is only necessary to determine whether or not the maximum groundwater level has been exceeded for one combination. It is possible to predict slope failure that avoids “skipping” and “missing”.
In addition, it is practically impossible to determine whether or not the maximum groundwater level has been exceeded for all combinations of the long half-life and the short half-life. In order to reduce “missing” and “missing”, it is effective to use a larger number of combinations of long half-life and short half-life for determination. However, the above-mentioned determination should be performed for at least two combinations. Thus, the prediction accuracy of slope failure can be improved as compared with the case where determination is made for one combination.

実効雨量の既往最大値、つまり地下水位の既往最大値は、あくまでも過去の降雨時における地下水位の最大値であり、斜面崩壊が発生するときの地下水位を表しているわけではない。このため、雨量の観測期間が短い間は、実効雨量が既往最大値を超過したことに基づいて斜面崩壊の発生を予測しても、「空振り」となる事態が頻繁に起こる可能性が高い。しかし、「空振り」が起きる度に実効雨量の既往最大値が更新され、境界線CLが引き上げられるため、雨量の観測を継続することによって次第に「空振り」は減少する。   The historical maximum value of effective rainfall, that is, the historical maximum value of the groundwater level is merely the maximum value of the groundwater level during the past rainfall, and does not represent the groundwater level when slope failure occurs. For this reason, while the rainfall observation period is short, even if the occurrence of slope failure is predicted based on the fact that the effective rainfall has exceeded the past maximum value, there is a high possibility that a situation of “swinging” frequently occurs. However, every time the “swinging” occurs, the past maximum value of the effective rainfall is updated and the boundary line CL is raised, so that the “swinging” gradually decreases by continuing to observe the rainfall.

また、本発明で使用する雨量指標(2種類の実効雨量)は、従来技術と異なり、「地下水位上昇の様子を最も良く再現できる雨量指標」という明確な物理的意味を持っている(図5参照)。このため、実際の降雨時における地下水位の変動を計測することができれば、適切な半減期を特定できる。つまり、本発明では、対象地点での地下水位の観測結果を斜面崩壊の発生予測に直接反映できるという利点を持つ。このため、地下水位の観測データの蓄積により「空振り」を効率的に減らすことができる。   In addition, unlike the prior art, the rainfall index (two types of effective rainfall) used in the present invention has a clear physical meaning of “a rainfall index that can best reproduce the state of rising groundwater level” (FIG. 5). reference). For this reason, if a change in the groundwater level during actual rainfall can be measured, an appropriate half-life can be specified. That is, the present invention has an advantage that the observation result of the groundwater level at the target point can be directly reflected in the prediction of slope failure occurrence. For this reason, the accumulation of groundwater level observation data can effectively reduce “swinging”.

さらに、本発明では、実効雨量の既往最大値を超過したか否かを判断し、その判断結果に基づき、斜面崩壊の発生を予測する。このような判断は、多くの住民が常日頃から行っている「この程度の雨は、これまでも起きたことがあるから大丈夫だ」「今回のような大雨は、初めて起きるから危険だ」といった、自らの過去の経験に基づく斜面崩壊の危険性の判断に通じるものであるため、たとえ「空振り」が起きたとしても、従来の予測技術に比べて住民に許容され易く、警戒・避難に対する意識低下を招きにくい。   Furthermore, in the present invention, it is determined whether or not the past maximum value of the effective rainfall has been exceeded, and the occurrence of slope failure is predicted based on the determination result. Such a judgment is made by many residents on a regular basis, such as “This kind of rain is okay because it has happened before”, “This kind of rain is dangerous because it happens for the first time” , Because it leads to the judgment of the risk of slope failure based on its own past experience, even if “empty swing” occurs, it is easier for residents to accept than conventional prediction technology, and awareness of warning and evacuation It is difficult to cause a decline.

実効雨量が既往最大値を超過したか否かの判定は、例えば図6に示したスネーク曲線図を用いて行う。図6のスネーク曲線図は、本発明の判定用XY座標平面に相当する。
まず、対象地点において降雨イベントが発生する直前までの長期時間雨量データを用いて、半減期がそれぞれM,M(ただしM≧Mとする)の2種類の実効雨量X(M,t),X(M,t)を算定し、実効雨量X(M,t)を横軸に、実効雨量X(M,t)を縦軸にとってスネーク曲線図を描く。このスネーク曲線図で「既往最大値超過」は、以下の4つのケースに分類される。
Whether or not the effective rainfall exceeds the past maximum value is determined using, for example, the snake curve diagram shown in FIG. The snake curve diagram of FIG. 6 corresponds to the determination XY coordinate plane of the present invention.
First, using the long-term hourly rainfall data immediately before the occurrence of a rain event at the target point, two types of effective rainfall X (M 1 ) with half-lives M 1 and M 2 (where M 1 ≧ M 2 ), respectively. , T), X (M 2 , t), and draws a snake curve diagram with the effective rainfall X (M 1 , t) on the horizontal axis and the effective rainfall X (M 2 , t) on the vertical axis. In this snake curve diagram, “exceeding past maximum value” is classified into the following four cases.

まず、スネーク曲線図上に、実効雨量X(M,t) =Xmax(M)(X(M,t)の既往最大値)と実効雨量X(M,t) =Xmax(M)(X(M,t)の既往最大値)の2本の直線を引く。これら2本の直線が本発明の第1境界線及び第2境界線に相当する。これら2本の直線によって作られる4つの領域のうち領域Bは、実効雨量X(M,t)が単独で既往最大値を超過しているケースに相当する。領域Cは、実効雨量X(M,t)が単独で既往最大値を超過しているケースを表している。領域Dは、実効雨量X(M,t)と実効雨量X(M,t)の両方が、それぞれの既往最大値を超過しているケースである。 First, on the snake curve diagram, the effective rainfall X (M 1 , t) = X max (M 1 ) (the past maximum value of X (M 1 , t)) and the effective rainfall X (M 2 , t) = X max Two straight lines of (M 2 ) (the past maximum value of X (M 2 , t)) are drawn. These two straight lines correspond to the first boundary line and the second boundary line of the present invention. Of the four regions formed by these two straight lines, region B corresponds to a case where the effective rainfall amount X (M 1 , t) alone exceeds the past maximum value. A region C represents a case where the effective rainfall amount X (M 2 , t) alone exceeds the past maximum value. Region D is a case where both the effective rainfall amount X (M 1 , t) and the effective rainfall amount X (M 2 , t) exceed the past maximum values.

これに対して領域(N+A)は、実効雨量X(M,t)と実効雨量X(M,t)がいずれも既往最大値を超過していないケースであり、そのうち領域Nは実効雨量X(M,t)と実効雨量X(M,t)の組み合わせでみても既往範囲内にあるケースを、領域Aは実効雨量X(M,t)と実効雨量X(M,t)の組合せでみると既往最大値を超過しているケースを表している。 On the other hand, the area (N + A) is a case in which neither the effective rainfall X (M 1 , t) nor the effective rainfall X (M 2 , t) exceeds the past maximum value, of which the area N is effective rainfall A case where the combination of X (M 1 , t) and effective rainfall X (M 2 , t) is within the past range is shown in the region A, where the effective rainfall X (M 1 , t) and effective rainfall X (M 2 , t In the case of the combination of t), it represents a case where the past maximum value is exceeded.

領域Aと領域Nを分離する境界線(以下「AN境界線」と呼ぶ)を定めるために、AN境界線上にある点(以下、AN境界点と呼ぶ)を次の方法で抽出する。すなわち、ある時刻におけるスネーク曲線上の点pに対し、点pとX(M,t)が等しい点の中に、点pよりもX(M,t)が大きいものが無く、且つ、点pよりもX(M,t)が大きい点の中に、点pとX(M,t)が等しい点、及び点pよりもX(M,t)が大きい点が無い場合に、点pをAN境界点と判断する。従って、最初に選んだ点pが本発明の注目点に相当し、AN境界点が第3境界点に相当する。
その上で、抽出された全てのAN境界点を実効雨量X(M,t)が小さいものから順に並び換え、図6に示すように直線で結ぶ。これにより得られる階段状の線をAN境界線とする。AN境界線が本発明の第3境界線に相当する。なお、並び換えた後の最初のAN境界点の実効雨量X(M,t)は既往最大値Xmax(M)に一致し、最後のAN境界点の実効雨量X(M,t)は既往最大値Xmax(M)に一致する。
In order to define a boundary line (hereinafter referred to as “AN boundary line”) that separates the area A and the area N, points on the AN boundary line (hereinafter referred to as AN boundary points) are extracted by the following method. That is, there is no point where point p and X (M 1 , t) are equal to point p on the snake curve at a certain time, and X (M 2 , t) is larger than point p, and When there is no point where X (M 1 , t) is greater than the point p, a point where the point p is equal to X (M 2 , t), and a point where X (M 2 , t) is greater than the point p Then, the point p is determined as the AN boundary point . Follow me, corresponds to the target point of the first to point chose p is the present invention, AN boundary point is equivalent to the third boundary point.
Then, all the extracted AN boundary points are rearranged in order from the smallest effective rainfall amount X (M 1 , t), and are connected by a straight line as shown in FIG. The stepped line obtained in this way is used as the AN boundary line. The AN boundary line corresponds to the third boundary line of the present invention. Note that the effective rainfall amount X (M 2 , t) at the first AN boundary point after the rearrangement coincides with the past maximum value X max (M 2 ), and the effective rainfall amount X (M 1 , t at the last AN boundary point). ) Matches the past maximum value X max (M 1 ).

以上の手順で領域Nおよび領域A〜Dを定めた上で、当該イベント中のスネーク曲線図の軌跡を重ねることによって、各時刻の点がいずれの領域に属するかを調べる(図7)。その結果から、各時刻について、既往最大値超過の有無の判定、ならびに超過が起きている場合には、領域A〜Dのいずれに位置するケースに該当するかの判定を行う。   After the region N and the regions A to D are determined by the above procedure, the region of the point of each time belongs is examined by superimposing the locus of the snake curve diagram during the event (FIG. 7). From the result, for each time, it is determined whether or not the past maximum value has been exceeded, and if it has occurred, it is determined which of the areas A to D corresponds to the case.

以上説明した解析を、半減期M及びMを種々の値に設定して実施する。そして各時刻に得られた結果を図8の二次元判定図に表示する。二次元判定図は、横軸を半減期M、縦軸を半減期Mとし、これら半減期M,Mの組み合わせによるスネーク曲線図において、当該時刻の点が領域A〜Dもしくは領域Nのいずれに存在しているかを、それぞれの領域に対応するシンボルで表した図である。従って、この二次元判定図は、請求項5及び12に係る二次元判定図に相当する。なお、二次元判定図の対角線上の点は半減期M = 半減期Mのスネーク曲線図の結果、つまり、1種類の実効雨量を単独で評価した場合の、既往最大値超過の有無の判定結果を示している。この場合は、領域NもしくはDのいずれかであり、領域A〜Cにはならない。 The analysis described above is performed with the half lives M 1 and M 2 set to various values. The results obtained at each time are displayed in the two-dimensional determination diagram of FIG. In the two-dimensional determination diagram, the horizontal axis is the half-life M 1 , the vertical axis is the half-life M 2, and in the snake curve diagram by a combination of these half-life M 1 and M 2 , It is the figure which represented to which of N by the symbol corresponding to each area | region. Therefore, this two-dimensional determination diagram corresponds to the two-dimensional determination diagram according to claims 5 and 12. In addition, the point on the diagonal line of the two-dimensional judgment diagram is the result of the snake curve diagram of half-life M 1 = half-life M 2 , that is, whether or not the past maximum value is exceeded when one kind of effective rainfall is evaluated independently. The determination result is shown. In this case, it is either the region N or D and does not become the regions A to C.

斜面崩壊の形態には様々なものがある。地表面近くの厚さ0.5〜2m程度の土層が崩れる「表層崩壊」と、山体を構成する岩石の層(基岩層)も含めて厚さ数十メートルに及ぶ大規模な崩れが生じる「深層崩壊」が両極端なものであるが、それらの中間的な形態を示す斜面崩壊も多く見られる。本発明の方法では、「あらゆる半減期を持つ2種類の実効雨量の組み合わせについて、既往最大値超過を判定する」ため、斜面崩壊の形態別に着目すべき雨量指標に違いがあることを定量的に示すことができると期待される。従って、その結果から降雨量データを基にして起こり得る斜面崩壊の形態を精度良く予測でき、よりきめの細かい警戒・避難体制を整えることができる。   There are various forms of slope failure. “Surface layer collapse” in which the soil layer with a thickness of about 0.5-2m near the ground surface collapses, and large-scale collapse of several tens of meters in thickness, including the rock layer (base rock layer) constituting the mountain body Although “collapse” is extreme, there are many slope failures that show their intermediate form. In the method of the present invention, “exceeding the past maximum value is determined for two types of effective rainfall combinations having any half-life”, it is quantitatively determined that there is a difference in the rainfall index to be noted according to the slope failure type. Expected to be able to show. Therefore, it is possible to accurately predict the type of slope failure that can occur based on the rainfall data based on the results, and to establish a more detailed alert / evacuation system.

また、本発明の方法では、斜面崩壊の発生予測だけでなく、地震や樹木の風倒被害、人為的な土地改変等に起因する斜面の変化が斜面崩壊に与える影響を評価できる。例えば、大きな地震を経験した地域では、斜面の強度が低下して過去に崩壊を引き起こさなかった規模の降雨でも崩壊が発生することが懸念され、境界線CLの引き下げが検討されることが多々ある。本発明の手法に基づき、スネーク曲線図の半減期を連続的に変化させて降雨の長期的・短期的影響を漏らさず評価することによって、実際に既往最大値超過が発生しない状況下で斜面崩壊が起こるのか否かについて、客観的かつ定量的な検討を加えることが可能になる。   In addition, the method of the present invention can evaluate not only the prediction of slope failure, but also the influence of slope changes caused by earthquakes, tree wind damage, artificial land modification, etc. on slope failure. For example, in an area that has experienced a large earthquake, there is a concern that collapse may occur even in rainfall of a scale that did not cause collapse in the past due to a decline in slope strength, and reduction of the boundary line CL is often considered. . Based on the method of the present invention, by continuously changing the half-life of the snake curve diagram and evaluating the long-term and short-term effects of rainfall, slope failure in situations where actual past maximum values do not actually occur It is possible to make an objective and quantitative examination as to whether or not this occurs.

以上の本発明に係る斜面崩壊予測方法を実行するための斜面崩壊予測装置の概略図を図9に示す。斜面崩壊予測装置10は、データ受信部11、既往実効雨量算出部12、判定用XY座標平面作成部13、予測用実効雨量算出部14、判定部15、二次元判定図作成部17、及びこれらを制御する制御部16を備える。制御部16には、プリンタやディスプレイなどの出力装置30が接続されている。   FIG. 9 shows a schematic diagram of a slope failure prediction apparatus for executing the slope failure prediction method according to the present invention. The slope failure prediction device 10 includes a data reception unit 11, a past effective rainfall calculation unit 12, a determination XY coordinate plane generation unit 13, a prediction effective rainfall calculation unit 14, a determination unit 15, a two-dimensional determination diagram generation unit 17, and the like. The control part 16 which controls is provided. An output device 30 such as a printer or a display is connected to the control unit 16.

制御部16からの指令を受けてデータ受信部11が降雨量データ提供装置20から降雨量データを取得すると、制御部16は該降雨量データを既往実効雨量算出部12に送る。
降雨量データ提供装置20は、例えば国土交通省の防災情報提供センターや観測所、気象庁のアメダス観測所等の過去の降雨量データが格納されたデータベースを備えた機関を指す。データ受信部11は、降雨量データ提供装置20から降雨量データを直接受信しても良く、インターネットを介してデータベースにアクセスすることにより降雨量データを取得しても良い。制御部16を介してデータ受信部11から降雨量データを受け取った既往実効雨量算出部12は、予め設定された複数の半減期について、過去の降雨量データ及び新たに取得した降雨量データを用いて実効雨量の時系列値を算出する。
When the data receiving unit 11 receives the rainfall data from the rainfall data providing device 20 in response to the command from the control unit 16, the control unit 16 sends the rainfall data to the past effective rainfall calculation unit 12.
The rainfall data providing device 20 refers to an organization having a database storing past rainfall data, such as a disaster prevention information providing center of the Ministry of Land, Infrastructure, Transport and Tourism, an observation station, and an AMeDAS observation station of the Japan Meteorological Agency. The data receiving unit 11 may directly receive the rainfall data from the rainfall data providing device 20, or may acquire the rainfall data by accessing a database via the Internet. The past effective rainfall calculation unit 12 that has received the rainfall data from the data receiving unit 11 via the control unit 16 uses the past rainfall data and newly acquired rainfall data for a plurality of preset half-lives. The time series value of effective rainfall is calculated.

判定用XY座標平面作成部13は、これら実効雨量の時系列値から複数の任意の2種類の半減期の組み合わせを抽出し、各組の2個の半減期のうち時間が長い方を長半減期、時間が短い方を短半減期としてスネーク曲線を求める。そして、スネーク曲線に基づいて第1〜第3の境界線を設定した判定用XY座標平面図を作成し、保存する。
判定用XY座標平面図は、新たな降雨量データを受信する毎に作成され、保存される。
The determination XY coordinate plane creation unit 13 extracts a plurality of arbitrary combinations of two types of half-life from these time series values of the effective rainfall, and the longer half of the two half-lives of each set is reduced by half. The snake curve is obtained by setting the shorter period and time as the short half-life. Then, a determination XY coordinate plan view in which the first to third boundary lines are set based on the snake curve is created and stored.
The determination XY coordinate plan view is created and stored every time new rainfall data is received.

一方、予測用実効雨量算出部14は、新たに取得した降雨量データを用いて、予め設定された複数の半減期の実効雨量を算出する。そして、2種類の半減期の組み合わせについて求めた実効雨量の時系列値を示す点(測定点)を、対応する半減期の組み合わせの判定用XY座標平面図にプロットする。判定部15は測定点の位置と第1〜第3境界線との位置関係から斜面崩壊の発生の可能性を予測する。判定部15は、判定用XY座標平面作成部13が作成した複数の判定用XY座標平面図について、斜面崩壊の発生の可能性を予測し、その結果を記憶する。また、測定点が第1〜第3境界線を越えていない場合は、境界線を越えることになる次の一定時間(例えば1時間)の(もしくは,「単位時間あたりの」)降雨量を予測する。従って、ここでは判定部15が超過降雨量算出手段としても機能する。   On the other hand, the prediction effective rainfall calculation unit 14 calculates effective rainfalls having a plurality of preset half-lives using newly acquired rainfall data. And the point (measurement point) which shows the time series value of the effective rainfall calculated about two types of half-life combinations is plotted on the XY coordinate plane view for judgment of the corresponding half-life combination. The determination unit 15 predicts the possibility of slope failure from the positional relationship between the position of the measurement point and the first to third boundary lines. The determination unit 15 predicts the possibility of slope failure with respect to the plurality of determination XY coordinate plan views created by the determination XY coordinate plane creation unit 13 and stores the result. In addition, if the measurement point does not exceed the first to third boundary lines, the amount of rainfall for the next fixed time (for example, 1 hour) (or “per unit time”) that will exceed the boundary line is predicted. To do. Therefore, here, the determination unit 15 also functions as an excess rainfall calculation unit.

二次元判定図作成部17は、XY座標平面作成部13が記憶する予測結果を表すシンボルを、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成する。予測結果を表すシンボルとしては、例えば、斜面崩壊の可能性の高さに応じて大きさの異なる図形、色が異なる図形などを用いることができる。
次に、具体的な降雨量データを用いて解析を行った事例を説明する。
The two-dimensional determination diagram creating unit 17 is a two-dimensional determination in which symbols representing prediction results stored in the XY coordinate plane creating unit 13 are plotted on a two-dimensional coordinate plane with the horizontal axis representing the long half-life and the vertical axis representing the short half-life. Create a diagram. As a symbol representing the prediction result, for example, a graphic having a different size or a graphic having a different color according to the possibility of slope failure can be used.
Next, an example of analysis using specific rainfall data will be described.

(1)対象災害
広島県庄原市川北町では、2010年7月16日に発生した豪雨により斜面崩壊が集中的に発生し、土石流を伴って、死者1名、重傷者1名、家屋損壊38棟の被害をもたらした。崩壊した斜面は火山岩、堆積岩、火山灰由来のクロボク土層が混在する複雑な地質を呈し、スギ・ヒノキ人工林、広葉樹二次林を植生とするが、伐採跡地も含まれていた。斜面崩壊の大半は、幅10〜15m、長さ20〜60m、深さ0.5〜1.5mの規模で、表層崩壊に分類された。以下では、この災害を庄原災害と呼ぶ。
(1) Target disasters In Kawakita-cho, Shobara-shi, Hiroshima Prefecture, slope failure occurred intensively due to the heavy rain that occurred on July 16, 2010. One deceased, one seriously injured, and 38 houses were destroyed. Caused damage. The collapsed slope has a complex geology composed of volcanic rocks, sedimentary rocks, and kuroboku soil layers derived from volcanic ash. It is planted in cedar and cypress plantations and broad-leaved secondary forests, but includes logging sites. Most of the slope failures were classified as surface layer failures on a scale of 10-15m in width, 20-60m in length, and 0.5-1.5m in depth. Below, this disaster is called the Shobara disaster.

図10に、庄原市の最寄りの広島県大戸観測所で観測された雨量データと、大雨警報発表時刻、斜面崩壊開始時刻、及び土砂災害警戒情報発表時刻を示す。図10より、庄原災害を引き起こした降雨イベントは、降雨強度が大きい集中豪雨であると考えられるが、これに先行する5日間に累積雨量260〜270mm程の大雨があったことも災害発生に大きな影響を与えていたと思われる。図10に示すように、広島地方気象台より庄原市に大雨警報が発表されたのは7月16日の16時39分であり、土砂災害警戒情報が発表されたのは18時10分であった。しかし、16時55分には斜面崩壊・土石流発生の目撃情報が寄せられており、17時前から多くの斜面崩壊が発生し始めていたと考えられる。   FIG. 10 shows rainfall data observed at the nearest Hiroshima Prefectural Oto Observatory in Shobara City, heavy rain warning announcement time, slope failure start time, and earth and sand disaster warning information announcement time. From Fig. 10, the rainfall event that caused the Shobara disaster is considered to be a heavy rain with a high rainfall intensity, but the heavy rainfall of 260 to 270 mm of accumulated rainfall during the five days preceding this also caused a major disaster. It seems that it had an influence. As shown in Fig. 10, the Hiroshima Regional Meteorological Observatory announced a heavy rain warning to Shobara City at 16:39 on July 16, and the earth and sand disaster warning information was announced at 18:10. It was. However, sightings of slope failures and debris flows occurred at 16:55, and it is probable that many slope failures began to occur before 17:00.

(2)解析に用いた雨量データ
図10に示した広島県大戸観測所のデータは長期間に渡って遡って取得することができない。そこで、被災地から約7km離れた地点にある気象庁アメダス庄原観測所(北緯34度51.6分,東経133度1.4分,標高300m)の雨量データを用いて実効雨量既往最大値の計算を行った。庄原観測所の雨量データは、庄原災害から約34年7ヶ月前の1976年1月1日1時まで遡ることができる。実効雨量の計算は、初期値を0とした上で、データの先頭時刻から連続して行った。ただし既往最大値の評価は、災害が発生した年の1月1日午前0時から30年間遡った期間を対象とした。これは、実効雨量の計算結果に初期値が与える影響を取り除くことを目的とした処置である。
(2) Rainfall data used for analysis The data of Hiroshima Oto Station shown in Fig. 10 cannot be acquired retroactively over a long period of time. Therefore, the maximum effective rainfall was calculated using the rainfall data of the Japan Meteorological Agency Amedas Shobara Observatory (34 ° 51.6min north, 133 ° 1.4min east longitude, 300m above sea level) located about 7km away from the affected area. The rainfall data at Shobara Observatory can be traced back to 1 o'clock on January 1, 1976, approximately 34 years and 7 months before the Shobara disaster. The effective rainfall was calculated continuously from the start time of the data with the initial value set to zero. However, the historical maximum was evaluated for a period 30 years after midnight on January 1 of the year when the disaster occurred. This is a measure aimed at removing the influence of the initial value on the calculation result of the effective rainfall.

半減期M,M(ただしM≧M)を0.1h〜3000hの範囲で、その対数値の変化量が一定になるようにして、計21通りに変化させた。ここで半減期の設定範囲(0.1h〜3000h)は,実効雨量が、降雨強度や積算雨量といった先行降雨の影響の持続性に関する両極端な指標も十分にカバーすることを意図して定めている。特に最大値(3000h)に関しては、非特許文献5において、本発明者らが地下水位データの再現に用いた最大値(1400h)を考慮し、その約2倍の値に設定している。半減期の設定間隔については、連続した傾向が得られることを確認した上で定めている。 The half-life M 1 , M 2 (where M 1 ≧ M 2 ) was in the range of 0.1 h to 3000 h, and the change amount of the logarithmic value was constant, and the total was changed in 21 ways. Here, the setting range of the half-life (0.1h to 3000h) is set with the intention that the effective rainfall sufficiently covers both extreme indicators relating to the sustainability of the influence of preceding rainfall such as rainfall intensity and accumulated rainfall. In particular, regarding the maximum value (3000h), in Non-Patent Document 5, the maximum value (1400h) used by the present inventors for reproduction of groundwater level data is taken into consideration, and the maximum value is set to about twice that value. The setting interval of the half-life is determined after confirming that a continuous tendency can be obtained.

(3)結果
庄原災害に関する二次元判定図を図11に示す。降雨開始から1時間が経過した7月16日16時00分(積算雨量38mm;図10参照)には、既に48.6h≦M≦ 1070h、0.100h≦M≦ 0.469hの範囲で領域Aが出現し、既往最大値超過が起きていたことがわかる(図11a)。単独の実効雨量に着目した場合には、この時刻にいずれの実効雨量も既往最大値を超過していなかった。
72mmの時間雨量が降った直後の 17時00分には、多くの半減期M,Mの組合せで既往最大値超過が発生した(図11b)。ただし、この時刻には、136h≦M≦Mの範囲の組合せでは既往最大値超過は発生していなかった。さらに、63mmの時間雨量が降った18時00分には、既往最大値超過は半減期M、Mが大きな範囲にも拡大し(図11c)、降雨終了時の19時00分になると半減期Mが小さな範囲で縮小した(図11d)。
(3) Results FIG. 11 shows a two-dimensional determination diagram regarding the Shobara disaster. At 16:00 on July 16, 1 hour after the start of rainfall (accumulated rainfall of 38 mm; see Fig. 10), region A is already in the range of 48.6 h ≤ M 1 ≤ 1070 h, 0.100 h ≤ M 2 ≤ 0.469 h It appears that the past maximum value has occurred (FIG. 11a). When focusing on the single effective rainfall, none of the effective rainfall exceeded the past maximum at this time.
At 17:00, just after the 72 mm hourly rainfall, many past combinations of half-lives M 1 and M 2 exceeded the maximum value (FIG. 11b). However, at this time, the past maximum value did not occur in the combination in the range of 136h ≦ M 2 ≦ M 1 . Furthermore, at 18:00 when the 63mm hourly rainfall has fallen, the past maximum excess has expanded to a larger range of half-life M 1 and M 2 (Fig. 11c), and at 19:00 at the end of the rain half-life M 1 is reduced in a small range (Figure 11d).

(4)考察
庄原災害時の降り始め1時間(15〜16時)の雨量は38mm(図10)であり、既往最大値64mm(1998年8月22日に記録)と比べると、6割程度のあまり大きな値ではなかった。しかしながら、先行する5日間に累積271mmの降雨が降っていた。二次元判定図(図11)では、先行降雨の影響により48.6h≦M≦ 1070hの横軸実効雨量が大きく増加したことと、15〜16時の38mmの時間雨量によって0.100h≦M≦ 0.469hの縦軸実効雨量が増加したことの組み合わせによって、既往最大値超過が16時00分の段階で発生したことを示すことができている。
(4) Consideration The rainfall for 1 hour (15-16 o'clock) at the beginning of the Shobara disaster is 38 mm (Fig. 10), about 60% compared to the previous maximum of 64 mm (recorded on August 22, 1998). It was not so big value. However, there was a cumulative rainfall of 271 mm over the preceding 5 days. In the two-dimensional judgment chart (Fig. 11), the effective horizontal rainfall of 48.6h ≤ M 1 ≤ 1070h has increased greatly due to the influence of the preceding rainfall, and the time rainfall of 38mm from 15 to 16 o'clock is 0.100h ≤ M 2 ≤ The combination of the increase in the effective vertical rainfall of 0.469h indicates that the previous maximum value exceeded occurred at 16:00.

一方、半減期72時間の実効雨量を長期的雨量指標、半減期1.5時間の実効雨量を短期的雨量指標に用いる従来技術の方法では、既往最大値超過が初めて判定されたのは17時00分であり(図示せず)、斜面崩壊の発生開始よりも遅れた。また従来技術のうち、土壌雨量指数を長期的雨量指標、時間雨量を短期的雨量指標に用いる方法で得られた結果を図11の二次元判定図中のサブウィンドウ(各パネル中の実線の四角形)内に示した。この場合も、既往最大値超過が初めて判定されたのは17:00であり(図11bのサブウィンドウ内のシンボル「●」参照)、斜面崩壊の発生開始よりも遅れることがわかる。
このことから、実際の斜面崩壊の発生開始よりも既往最大値超過の判定が遅れていた従来の判定方法と異なり、本発明に係る予測方法によれば、庄原災害発生の1時間前から危険度が増加している状況を予測でき、従来技術に比べて「見逃し」を少なく抑えることができる。
On the other hand, in the conventional method using an effective rainfall with a half-life of 72 hours as a long-term rainfall index and an effective rainfall with a half-life of 1.5 hours as a short-term rainfall index, it was 17:00 that the past maximum was first determined. (Not shown) and later than the onset of slope failure. In addition, among the conventional techniques, the results obtained by the method using the soil rainfall index as the long-term rainfall index and the hourly rainfall as the short-term rainfall index are the sub-windows in the two-dimensional determination diagram of FIG. 11 (solid squares in each panel). Shown in. Also in this case, it is 17:00 (see symbol “●” in the sub-window of FIG. 11b) that the past maximum value is determined for the first time, which is later than the start of slope failure.
Therefore, unlike the conventional determination method in which the determination of exceeding the past maximum value is delayed from the actual start of the occurrence of slope failure, according to the prediction method according to the present invention, the degree of risk is one hour before the occurrence of the Shobara disaster. Can be predicted, and “missing” can be reduced as compared with the prior art.

(1)対象災害
長野県南木曽町では、台風8号の影響を受けた豪雨によって、2014年7月9日の17:40頃に梨子沢(なしざわ)と呼ばれる木曽川の支流で土石流が発生した。以下、この災害を「梨子沢災害」と呼ぶ。梨子沢災害が起こった当日は昼過ぎまで晴れており、雨の降り始めは土石流発生の約2時間前であった。このように、土石流は不意を突く形で発生しており、南木曽町に避難勧告が出されたのは、土石流発生から10分後の17:50であった。また、土砂災害警戒情報が発表されたのは、さらに25分を経過した18:15であった。
(1) Target disaster In Minamikiso, Nagano Prefecture, a heavy rain affected by typhoon No. 8 caused a debris flow in the tributary of the Kiso River called Nashizawa at around 17:40 on July 9, 2014. . Hereinafter, this disaster is referred to as “Nashizawa disaster”. On the day of the Rashizawa disaster, it was sunny until noon, and it started to rain about 2 hours before the debris flow. In this way, debris flow occurred unexpectedly, and the evacuation recommendation was issued to Nagiso Town at 17:50, 10 minutes after the occurrence of debris flow. The earth and sand disaster warning information was announced at 18:15, another 25 minutes later.

図12に、土石流が発生した梨子沢流域及びその付近の降雨観測所(気象庁の南木曽観測所、国土交通省の三留野観測所及び蘭観測所)の位置を示す。図12から分かるように、南木曽観測所が土石流発生流域に最寄りの観測所である。
これらの3つの観測所における梨子沢災害当日の10分間雨量を図13に示す。いずれの観測所でも7月9日の3:00以降は降雨が一旦休止していたが、15:30過ぎに再開し、短時間のうちに降雨強度が増したことがわかる。最大10分間雨量は蘭観測所で最も多く23mmであり、次に多いのが南木曽観測所の17mmであった。
FIG. 12 shows the positions of the Nashizawa basin where debris flow occurred and the rain observation stations in the vicinity (Namiso Station of the Meteorological Agency, Mitsuno Station and Orchid Station of the Ministry of Land, Infrastructure, Transport and Tourism). As can be seen from FIG. 12, Nagiso Station is the nearest station to the debris flow generation basin.
Figure 10 shows the 10-minute rainfall on the day of the Nashizawa disaster at these three stations. At all stations, the rainfall was temporarily stopped after 3:00 on July 9, but it resumed after 15:30, and the rainfall intensity increased within a short time. The maximum rainfall for 10 minutes was 23 mm at the Orchid Observatory, followed by 17 mm at the Nagiso Observatory.

15:30から土石流が発生する17:40までの積算雨量は、土石流発生流域に最寄りの南木曽観測所で84mmに達したが、三留野観測所及び蘭観測所に比べれば少なかった。また、土石流発生までの1時間(16:40〜17:40)の雨量は南木曽観測所で70mmに達したが、この値も蘭観測所の97mmに比べると少なかった。このように、土石流発生流域に最寄りの南木曽観測所の雨量は、他の2つの観測所に比べて若干少ない傾向にあった。また気象庁の統計によると、南木曽観測所における既往最大1時間雨量は89mm、最大10分間雨量は18mmであり、今回の降雨イベントにおいて既往最大値を上回る値を記録したわけではなかった。   The accumulated rainfall from 15:30 to 17:40, when debris flow occurs, reached 84 mm at the Nagiso Observatory nearest to the debris flow generation basin, but less than those at the Mitsuno and Orchid stations. In addition, the rainfall during the 1 hour (16: 40-17: 40) until the debris flow occurred reached 70 mm at the Nagiso Observatory, which was also less than the 97 mm at the Orchid Observatory. In this way, the rainfall at the Nagiso Observatory nearest to the debris flow basin tended to be slightly less than that of the other two stations. According to statistics from the Japan Meteorological Agency, the maximum rainfall for 1 hour at the Nagiso Observatory was 89 mm and the maximum rainfall for 10 minutes was 18 mm, which was not recorded in the current rainfall event.

(2)既往降雨イベントとの比較
(2−1)時間雨量、積算雨量、及び先行雨量の比較
梨子沢災害から30年前の1984年まで遡り、その期間に発生した主な降雨イベントを抽出し、それら既往降雨イベントと、梨子沢災害をもたらした降雨イベントについて、南木曽観測所で観測された時間雨量(正時の値)と積算雨量を比較した。以下、抽出した既往降雨イベントを、その発生年を用いて「S60イベント」、「H16イベント」、「H12イベント」、「H18イベント」という。同様に、梨子沢災害をもたらした降雨イベントを「H26イベント」という。
図14a〜14dは、3つの既往降雨イベント(H16イベント、H12イベント、H18イベント)とH26イベントの時間雨量と積算雨量を示すグラフである。また、4つの既往イベント(S60イベント、H16イベント、H12イベント、H18イベント)と、H26イベントの諸元をまとめた表1を下記に示す。
(2) Comparison with past rainfall events (2-1) Comparison of hourly rainfall, accumulated rainfall, and preceding rainfall Going back to 1984, 30 years ago from the Nashizawa disaster, extracted major rainfall events that occurred in that period For these past rainfall events and the rain events that brought about the Rikozawa disaster, we compared the hourly rainfall (at the time of the hour) observed at the Nagiso Station and the accumulated rainfall. Hereinafter, the extracted past rainfall events are referred to as “S60 event”, “H16 event”, “H12 event”, and “H18 event” using the year of occurrence. Similarly, the rainfall event that brought about the Rikozawa disaster is called the “H26 event”.
FIGS. 14a to 14d are graphs showing the amount of rainfall and accumulated rainfall for three past rainfall events (H16 event, H12 event, H18 event) and H26 event. Table 1 below summarizes the specifications of the four past events (S60 event, H16 event, H12 event, H18 event) and H26 event.

なお、ここでは、24時間以上の無降雨期間によって降雨イベントを区切りっており、これによると、H26イベントは2014年7月6日の18:00に開始したことになる。図14d及び表1に示すように、H26イベントの、降雨開始から土石流発生までの積算雨量は194mmであった。   In addition, here, the rain event is separated by a no-rain period of 24 hours or more. According to this, the H26 event started at 18:00 on July 6, 2014. As shown in FIG. 14d and Table 1, the accumulated rainfall from the start of rainfall to the occurrence of debris flow in the H26 event was 194 mm.

図14aに示すH16イベントは、前述の既往最大1時間雨量(89mm)を観測したイベントであり、かなりの集中豪雨であったといえる。積算雨量は比較的少ないが、終盤にはH26イベントに匹敵する値にまで上昇していた。
図14bに示すH12イベントは、時間雨量のピーク(最大値)は小さいものの比較的短時間にまとまった量の雨が降り、積算雨量はH26イベントよりも85mmほど多くなった。
図14cに示すH18イベントは、時間雨量のピークはH16イベントよりもさらに小さいが、降雨の継続時間が150時間と長く、積算雨量は非常に多くなった。
表1に示したS60イベントは、降雨継続時間が262時間と極めて長く、積算雨量はH26イベントの2.7倍に達したが、時間雨量のピークは小さかった。
表1から分かるように、各降雨イベントに先行する2日間の雨量(先行2日間雨量)は、H26イベントで最も多かったが、その他の先行雨量は、H26イベント以外の降雨イベントのいずれかが最大値を示した。
The H16 event shown in FIG. 14a is an event in which the above-mentioned maximum rainfall of 1 hour (89 mm) is observed, and it can be said that it was a considerable torrential rain. The accumulated rainfall was relatively low, but it rose to a value comparable to the H26 event at the end.
In the H12 event shown in FIG. 14b, although the peak (maximum value) of the hourly rainfall was small, a large amount of rain fell in a relatively short time, and the accumulated rainfall was about 85 mm greater than the H26 event.
In the H18 event shown in FIG. 14c, the hourly rainfall peak is smaller than that of the H16 event, but the duration of the rainfall is as long as 150 hours, and the accumulated rainfall is very large.
The S60 event shown in Table 1 had an extremely long rainfall duration of 262 hours, and the accumulated rainfall reached 2.7 times that of the H26 event, but the peak of hourly rainfall was small.
As can be seen from Table 1, the rainfall during the two days preceding each rainfall event (the rainfall during the preceding two days) was the highest in the H26 event, but the other rainfall events other than the H26 event were the largest for the other preceding rainfall. The value is shown.

以上より、時間雨量、積算雨量、先行雨量の各々を指標とした場合に、H26イベントの特殊性は検出されず、H26イベントが既往降雨イベントを上回る異常な降雨イベントであったと結論づけることはできなかった。   Based on the above, when using hourly rainfall, accumulated rainfall, and preceding rainfall as indices, the specificity of the H26 event is not detected, and it cannot be concluded that the H26 event was an abnormal rainfall event that exceeded previous rainfall events. It was.

(2−2)スネーク曲線を用いた比較
土砂災害警戒情報発表の基準には、横軸を土壌雨量指数、縦軸を時間雨量としたスネーク曲線が用いられることが多い。そこで、各降雨イベントのスネーク曲線を求めた。
まず、1984年1月1日の1:00 からH26イベント開始直前までの約30年間の時間雨量データ(南木曽観測所)を用いて土壌雨量指数を計算し、既往スネーク曲線を描いた(図15a〜15d中の灰色丸印)。各図中の太い実線は既往スネーク曲線の最大値を結んだものであり、以下、「既往最大値線」という。この既往最大値線の右上の領域にスネーク曲線が入ると既往最大値を超過したことになる。
(2-2) Comparison Using Snake Curves In many cases, a snake curve with the horizontal axis as the soil rainfall index and the vertical axis as the hourly rainfall is used as the standard for landslide disaster alert information announcement. Therefore, the snake curve for each rainfall event was obtained.
First, the soil rainfall index was calculated using the hourly rainfall data (Nanoki Pass Observatory) for about 30 years from 1:00 on January 1, 1984 to just before the start of the H26 event, and a past snake curve was drawn (Figure 15a). Gray circles in ˜15d). The thick solid line in each figure connects the maximum values of the past snake curve, and is hereinafter referred to as “the past maximum value line”. When the snake curve enters the upper right area of the past maximum value line, the past maximum value is exceeded.

次に、既往降雨イベント(H16、H12、H18イベント)及びH26イベントのスネーク曲線を黒色丸印及び白色丸印で図15a〜15d中に書き込んだ。既往降雨イベントのスネーク曲線はいずれもAN境界線まで上昇しており、 H26イベント開始直前までの既往最大値の一部を形成する降雨イベントであったことが分かる。また、図15dより、H26イベントのスネーク曲線は、土石流が発生した時刻になると既往最大値線を僅かに超えて既往最大値超過を示す領域に侵入していたことが分かる。   Next, snake curves of past rainfall events (H16, H12, H18 events) and H26 events were written in FIGS. 15a to 15d with black circles and white circles. The snake curves for past rainfall events have all risen to the AN boundary, indicating that it was a rain event that formed part of the past maximum value just before the start of the H26 event. Further, from FIG. 15d, it can be seen that the snake curve of the H26 event has entered a region where the past maximum value is slightly exceeded and slightly exceeds the past maximum value line when the debris flow occurs.

上述したように、土砂災害の警戒・避難には、図15に示すスネーク曲線の他、横軸を半減期の長い実効雨量、縦軸を半減期の短い実効雨量とするスネーク曲線が活用されることも多い。そこで、図15と同様の解析を、横軸を半減期51hの実効雨量、縦軸を半減期0.9hの実効雨量としたスネーク曲線を用いて行った。その結果を図16に示す。図16dをみると、H26イベントのスネーク曲線は土石流発生時には既往最大値線を顕著に超過しており、既往最大値超過が発生したことが明らかである。このような解析を、横軸実効雨量の半減期と縦軸実効雨量の半減期が異なる様々な組合せで行ったところ、横軸半減期が13h〜173h、縦軸半減期が0.1h〜2.0 hの範囲にあるときに、H26イベントの土石流発生時において既往最大値超過の発生が検出されることが分かった。   As described above, in addition to the snake curve shown in FIG. 15, a snake curve having a long half-life effective rainfall and a vertical axis having a short half-life effective rain is used for warning and evacuation of sediment disasters. There are many things. Therefore, the same analysis as in FIG. 15 was performed using a snake curve with the horizontal axis representing the effective rainfall with a half-life of 51 h and the vertical axis representing the effective rainfall with a half-life of 0.9 h. The result is shown in FIG. Referring to FIG. 16d, the snake curve of the H26 event markedly exceeded the past maximum value line when debris flow occurred, and it is clear that the past maximum value occurred. When such an analysis was performed with various combinations in which the half-life of the horizontal-axis effective rainfall and the half-life of the vertical-axis effective rainfall differed, the horizontal-axis half-life was 13 h to 173 h, and the vertical-axis half-life was 0.1 h to 2.0 h. It was found that when the debris flow of the H26 event occurred, the occurrence of exceeding the existing maximum value was detected.

H26イベントでは、先行2日間の雨量が多く(表1)、さらにイベント開始以降の積算雨量が100mmを超えたところに、既往最大値には及ばないが、かなりの強度の雨が降った(図14dのイベント開始から72h経過付近)。上述した解析結果は、縦軸と横軸の雨量指標を適切に設定したスネーク曲線を用いることによって、このような特殊性を「既往最大値超過」として検出でき、その結果、既往降雨イベントを上回る異常な降雨イベントが可能であることを示唆するものであった。   In the H26 event, there was a lot of rainfall in the preceding two days (Table 1), and the accumulated rainfall after the start of the event exceeded 100 mm, but it did not reach the previous maximum value, but it was raining with considerable intensity (Figure) 72 hours have passed since the start of the 14d event). The above-mentioned analysis results can be detected as “exceeding past maximum value” by using a snake curve with appropriately set rainfall indices on the vertical and horizontal axes, and as a result, exceed the past rainfall events. It was suggested that an abnormal rainfall event is possible.

(3)異常降雨イベント発生の予測
図15d及び図16dでは、7月9日の17:00に既往範囲内にあったスネーク曲線が、その後、土石流発生までに降った49mmの雨で既往最大値を超過した。このように、与えられた雨量を用いて既往最大値超過の有無を算出する代わりに、7月9日17:00の時点において、今後1時間にどれだけの雨が降ったら既往最大値を超過するかを計算した。その結果、図15dの場合は47.1mm、図16dの場合は35.6mmの値が得られた。
(3) Prediction of occurrence of abnormal rainfall event In Figs. 15d and 16d, the snake curve that was within the past range at 17:00 on July 9 is the past maximum with 49 mm of rain that has fallen until the occurrence of debris flow. Exceeded. In this way, instead of calculating whether or not the past maximum value has been exceeded using the given rainfall, at 17:00 on July 9, how much rain will occur in the next hour will exceed the past maximum value. Calculated what to do. As a result, a value of 47.1 mm was obtained in the case of FIG. 15d and 35.6 mm in the case of FIG. 16d.

このような計算を、横軸実効雨量の半減期(長半減期M)と縦軸実効雨量の半減期(短半減期M)を0.1h〜3000hの範囲で変化させて作成したスネーク曲線を用いて行った。その結果を図17に示す。図17は、スネーク曲線から求められた既往最大値を超過する雨量を、横軸を「横軸実効雨量半減期(h)」、縦軸を「縦軸実効雨量半減期(h)」とする二次元座標上に示すと共に、雨量の大きさ毎に色分けしたグラフである。このグラフは、請求項7及び14に係る二次元判定図に相当する。つまり、横軸実効雨量の半減期が40〜100hで、且つ縦軸実効雨量の半減期が1.3hの領域では既往最大値を超過する雨量は34.3mmとなり、最も少なかった。実際には、これを上回る49mmの雨が降った結果、土石流が発生した。 Snake curve created by changing the half-life (long half-life M 1 ) of the effective rainfall on the horizontal axis and the half-life (short half-life M 2 ) of the vertical rainfall on the vertical axis in the range of 0.1h to 3000h. It was performed using. The result is shown in FIG. In FIG. 17, the amount of rainfall exceeding the past maximum value obtained from the snake curve is represented by “horizontal axis effective rainfall half-life (h)” on the horizontal axis and “vertical effective rainfall half-life (h)” on the vertical axis. It is the graph shown on the two-dimensional coordinate and color-coded according to the magnitude of rainfall. This graph corresponds to the two-dimensional determination diagram according to claims 7 and 14. That is, in the region where the half-life of the effective rainfall on the horizontal axis is 40 to 100 h and the half-life of the effective rainfall on the vertical axis is 1.3 h, the rainfall exceeding the existing maximum value is 34.3 mm, which is the smallest. In fact, debris flow occurred as a result of 49 mm of rain exceeding this.

H26イベントで土石流発生の直接の誘因となった降雨(図13a)のように、急激に発達する雲によりもたらされる集中豪雨の予報は難しく、今回の土石流の発生予測は困難であったのは事実である。ただし、(2−2)節で検討したように、H26イベントでは、先行雨量、ならびに降雨イベント開始以降の累積雨量の影響も大きかったと考えられる。このため、これらの影響を考慮した図17の解析を行うことによって、17:00の時点で、34mmという特別に大きくはない時間雨量によって、土石流をもたらす異常降雨イベントになることが予測できた可能性がある。   It is difficult to predict the occurrence of debris flow this time, as it is difficult to predict the torrential rain caused by the rapidly developing clouds, as in the rain that caused the debris flow to occur directly at the H26 event (Fig. 13a). It is. However, as discussed in section (2-2), it is considered that the H26 event was also significantly affected by the preceding rainfall and the cumulative rainfall after the start of the rainfall event. For this reason, by performing the analysis of FIG. 17 in consideration of these effects, it was possible to predict that an abnormal rainfall event that would cause debris flow would occur at 17:00, due to a special rainfall of 34 mm. There is sex.

従って、降雨イベント中のある時点における、今後1時間の予測降雨量の横軸実効雨量及び縦軸実効雨量を計算し、その結果得られるスネーク曲線が既往最大値線を超えるか否かに基づき、土石流発生の可能性を予測することができる。予測降雨量は、気象データ(雨量、風向、風速、気温等)や天気図等から求めることができる。
具体的には、図18(a)に示すように、17:00の時点における今後1時間の予測降雨量が49mmのとき、その横軸実効雨量及び縦軸実効雨量の点(「18:00」で示す点)は既往最大値線を超えた領域に位置する。このことから、今後1時間の間に土石流が発生する危険性があると予測することができる。
Therefore, the horizontal axis and the vertical axis effective rainfall of the predicted rainfall for the next hour at a certain point in the rain event are calculated, and based on whether the resulting snake curve exceeds the past maximum value line, The possibility of debris flow generation can be predicted. The predicted rainfall can be obtained from weather data (rainfall, wind direction, wind speed, temperature, etc.), a weather map, and the like.
Specifically, as shown in FIG. 18 (a), when the predicted rainfall for the next hour at 17:00 is 49 mm, the horizontal axis and the vertical axis effective rainfall points (“18:00 The point indicated by “” is located in an area beyond the past maximum value line. From this, it can be predicted that there is a risk of debris flow occurring in the next hour.

また、今後1時間の降雨量を種々変化させたときのスネーク曲線を作成し、既往最大値線を超えたときの今後1時間の降雨量の中から最小値を求めて、この最小値と今後1時間の予測降雨量との比較から、土石流発生の可能性(土石流発生の危険性)を定量的に評価することも可能である。例えば、図18(b)に示すように、17:00の時点における今後1時間の降雨量が38mmのときに、その横軸実効雨量及び縦軸実効雨量を示す点が既往最大値線上に位置する場合、この値(38mm)と予測降雨量(49mm)を比較し、今後1時間の間に土石流が発生する可能性の程度を判定することができる。例えば、既往最大値線上に位置するときの降雨量が予測降雨量の0〜50%の場合は可能性が「非常に大きい」、50〜80%の場合は可能性が「大きい」、80%〜100%のときは可能性が「中位」、100%〜のときは可能性が「小さい」といった判定が可能である。   Also, create a snake curve for various changes in rainfall over the next hour, and find the minimum value from the rainfall over the next hour when the past maximum value line is exceeded. It is also possible to quantitatively evaluate the possibility of debris flow generation (risk of debris flow generation) from comparison with the predicted rainfall for one hour. For example, as shown in FIG. 18B, when the rainfall for the next hour at 17:00 is 38 mm, the horizontal axis and the vertical axis indicate the effective rainfall points on the past maximum value line. In this case, this value (38 mm) and the predicted rainfall (49 mm) can be compared to determine the degree of possibility of debris flow occurring in the next hour. For example, if the rainfall amount on the past maximum value line is 0 to 50% of the predicted rainfall amount, the possibility is “very large”, and if it is 50 to 80%, the possibility is “large”, 80% When it is ˜100%, the possibility is “medium”, and when it is 100% ˜, the possibility is “small”.

さらに、上述した二次元判定図(図8)と本実施例で用いた二次元判定図(図17)を用いて、土石流の発生を予測するシステムを構築することができる。例えば図19(a)、(b)は、ある地点における過去の降雨量データから得られた現時点における二種類の二次元判定図を示している。このシステムでは、これら二次元判定図が液晶ディスプレイ等に表示される。そして、液晶ディスプレイに表示された判定図のいずれかにおいてユーザが任意の点を選択(クリック)すると、該選択した点の長半減期Mと短半減期Mをそれぞれ横軸及び縦軸とするスネーク曲線が自動的に作成され(図19(c))、さらに、今後1時間の降雨量の違いによって得られる推定点が書き込まれる。図19(c)では、今後1時間の降雨量0mm、20mm、38mm、40mm、49mm、60mmの場合の推定点が表示された例を示す。
従って、ユーザは、推定点の位置から土石流の発生を引き起こす、今後1時間の降雨量を推定することができる。
Furthermore, a system for predicting the occurrence of debris flow can be constructed using the above-described two-dimensional determination diagram (FIG. 8) and the two-dimensional determination diagram used in this embodiment (FIG. 17). For example, FIGS. 19A and 19B show two types of two-dimensional determination diagrams at the present time obtained from past rainfall data at a certain point. In this system, these two-dimensional determination diagrams are displayed on a liquid crystal display or the like. Then, select the point the user is optional in any of the decision diagram displayed on the liquid crystal display (clicked), the long half-life M 1 of points the selection and short half-life M 2, respectively horizontal and vertical axes A snake curve is automatically created (FIG. 19 (c)), and an estimated point obtained from the difference in rainfall over the next hour is written. FIG. 19C shows an example in which estimated points are displayed when the rainfall amount for the next hour is 0 mm, 20 mm, 38 mm, 40 mm, 49 mm, and 60 mm.
Therefore, the user can estimate the amount of rainfall for the next hour that causes the occurrence of debris flow from the position of the estimated point.

このように、上記した第1実施例及び第2実施例はそれぞれ斜面崩壊予測方法として有用であるが、さらに、これらの実施例に示す方法を併用すれば、より一層斜面崩壊予測精度を向上させることができる。   As described above, the first embodiment and the second embodiment described above are useful as slope failure prediction methods, respectively. Furthermore, if the methods shown in these embodiments are used in combination, the slope failure prediction accuracy is further improved. be able to.

本発明は直ちに実用化可能なものであり、斜面崩壊予測精度を向上させる効果も大きい。ただし、さらなる精度向上に向けて、以下の課題を挙げることができる。   The present invention can be put into practical use immediately and has a great effect of improving the accuracy of slope failure prediction. However, the following problems can be raised for further accuracy improvement.

実効雨量の既往最大値を算定する期間の設定方法の検討が必要である。上記実施例では、気象庁から公開され入手が容易なデータを用いることで、約30年間を解析の対象としたが、より長期間の降雨量データを利用すれば更に正確な既往最大値を算定することができ、崩壊予測における「空振り」を減らすことができる。その一方で、斜面の特性に経年変化があることを考慮すれば、むやみに過去に遡ることが必ずしも良いとは限らず、適切な期間があることも考えられる。より多くの災害事例を解析することで、知見を蓄積する必要がある。   It is necessary to examine how to set the period for calculating the maximum effective rainfall. In the above example, about 30 years were targeted for analysis by using data that was released from the Japan Meteorological Agency and easy to obtain, but if more long-term rainfall data is used, a more accurate past maximum value is calculated. It is possible to reduce the “missing” in the collapse prediction. On the other hand, considering that there is a secular change in the characteristics of the slope, it is not always good to go back to the past, and there may be an appropriate period. It is necessary to accumulate knowledge by analyzing more disaster cases.

10…斜面崩壊予測装置
11…データ受信部
12…既往実効雨量算出部
13…判定用XY座標平面作成部
14…予測用実効雨量算出部
15…判定部
16…制御部
17…二次元判定図作成部
20…降雨量データ提供装置
30…出力装置
DESCRIPTION OF SYMBOLS 10 ... Slope failure prediction apparatus 11 ... Data receiving part 12 ... Past effective rainfall calculation part 13 ... XY coordinate plane preparation part 14 for judgment 14 ... Effective prediction rainfall calculation part 15 ... Determination part 16 ... Control part 17 ... Two-dimensional determination figure preparation Unit 20: Rainfall data providing device 30 ... Output device

Claims (14)

対象地点における降雨イベントによる斜面崩壊の発生を予測する斜面崩壊予測方法であって、
a) ある時刻における蓄積雨量が半減するまでの時間である半減期をパラメータとして、過去の降雨イベントが前記蓄積雨量に及ぼす影響の持続性を表した雨量指標である実効雨量の現時点までの時系列値を、前記対象地点の過去の降雨イベントの降雨量データを用い、所定の長半減期及び該長半減期より短い短半減期についてそれぞれ算出し、
b) 前記長半減期をパラメータとする第1実効雨量をX軸、前記短半減期をパラメータとする第2実効雨量をY軸とするXY座標平面に、前記第1実効雨量の時系列値の最大値を通り前記Y軸と平行な第1境界線及び前記第2実効雨量の時系列値の最大値を通り前記X軸と平行な第2境界線を設定して判定用XY座標平面を作成し、
c) 斜面崩壊発生の予測対象となる降雨イベントの降雨量データから、前記長半減期をパラメータとする第3実効雨量の時系列値及び前記短半減期をパラメータとする第4実効雨量の時系列値を、前記予測対象降雨イベントの進行と共に順次算出し、
d) 同じ時刻における前記第3実効雨量の時系列値及び前記第4実効雨量の時系列値をそれぞれX値、Y値とする点を測定点としたとき、該測定点が、前記判定用XY座標平面において前記第1境界線を超える領域に位置するとき、又は前記第2境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定することを特徴とする斜面崩壊予測方法。
A slope failure prediction method for predicting the occurrence of slope failure due to a rain event at a target location,
a) Time series of effective rainfall up to the present time, which is the rainfall index indicating the sustainability of the influence of past rainfall events on the accumulated rainfall, with the half-life, which is the time until the accumulated rainfall is halved at a certain time, as a parameter The value is calculated for a predetermined long half-life and a short half-life shorter than the long half-life using the rainfall data of the past rainfall event at the target point,
b) A time series value of the first effective rainfall is plotted on an XY coordinate plane with the first effective rainfall with the long half-life as a parameter on the X-axis and the second effective rainfall with the short half-life on the parameter as the Y-axis. A determination XY coordinate plane is created by setting a first boundary line passing through the maximum value and parallel to the Y axis and a second boundary line passing through the maximum value of the time series value of the second effective rainfall and parallel to the X axis. And
c) From the rainfall data of the rainfall event that is the target of slope failure occurrence, the time series value of the third effective rainfall with the long half-life as a parameter and the time series of the fourth effective rainfall with the short half-life as a parameter. The value is sequentially calculated along with the progress of the forecasted rainfall event,
d) When the measurement point is the point where the time series value of the third effective rainfall and the time series value of the fourth effective rainfall at the same time are the X value and the Y value, respectively, the measurement point is the determination XY Slope failure prediction characterized in that it is determined that slope failure may occur when located in a region exceeding the first boundary line or located in a region exceeding the second boundary line in a coordinate plane Method.
請求項1に記載の斜面崩壊予測方法において、
前記対象地点の過去の降雨イベントの降雨量データから求められた、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットし、
前記複数の点のうちある時刻の点を注目点としたとき、該注目点とX値が同じ点の中に前記注目点よりもY値が大きい点が存在しない場合、及び前記注目点よりもX値が大きい点の中に前記注目点とY値が同じ点及び前記注目点よりもY値が大きい点のいずれもが存在しない場合は、前記注目点を第3境界点として抽出する作業を繰り返し、
抽出された全ての第3境界点をX値が小さい順に繋いだ線を、前記第1実効雨量及び前記第2実効雨量の相乗効果による実効雨量の最大値を表す第3境界線として前記判定用XY座標平面に設定し、
前記判定用XY座標平面において、前記測定点が前記第3境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定することを特徴とする斜面崩壊予測方法。
In the slope failure prediction method according to claim 1,
A plurality of time series values of the first effective rainfall and time series values of the second effective rainfall obtained at the same time obtained from rainfall data of past rainfall events at the target point are set as an X value and a Y value, respectively. Plot points on the XY coordinate plane for determination,
When a point at a certain time among the plurality of points is a point of interest, a point having a larger Y value than the point of interest does not exist among points having the same X value as the point of interest, and than the point of interest If neither the point having the same X value as the target point or the point having a larger Y value than the target point exists among the points having a large X value, an operation of extracting the target point as a third boundary point is performed. repetition,
For the determination, a line connecting all the extracted third boundary points in ascending order of the X value is a third boundary line representing the maximum value of the effective rainfall due to the synergistic effect of the first effective rainfall and the second effective rainfall. Set to XY coordinate plane,
A slope failure prediction method, wherein it is determined that slope failure may occur when the measurement point is located in a region exceeding the third boundary line on the determination XY coordinate plane.
請求項2に記載の斜面崩壊予測方法において、
複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、各時刻における判別結果の集計から、斜面崩壊の発生を予測することを特徴とする斜面崩壊予測方法。
In the slope failure prediction method according to claim 2,
For a plurality of combinations of a long half-life and a short half-life, a determination XY coordinate plane in which the first to third boundary lines are set is obtained,
For all of the plurality of determination XY coordinate planes, the measurement points including the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall are the X axis, the Y axis, and the first boundary line. And a first region surrounded by the second boundary line and the third boundary line, a second region surrounded by the first boundary line, the second boundary line and the third boundary line, the first A third region that exceeds a boundary line and is closer to the X axis than the second boundary line; a fourth region that exceeds the second boundary line and is closer to the Y axis than the first boundary line; A slope characterized by determining which area of the fifth area that exceeds both the boundary line and the second boundary line is present, and predicting the occurrence of slope failure from the total of the discrimination results at each time Collapse prediction method.
請求項2に記載の斜面崩壊予測方法において、
複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、少なくとも1個の判定用XY座標平面において測定点が第2〜第5領域のいずれかに位置するとき、斜面崩壊の発生の可能性が高いと予測することを特徴とする斜面崩壊予測方法。
In the slope failure prediction method according to claim 2,
For a plurality of combinations of a long half-life and a short half-life, a determination XY coordinate plane in which the first to third boundary lines are set is obtained,
For all of the plurality of determination XY coordinate planes, the measurement points including the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall are the X axis, the Y axis, and the first boundary line. And a first region surrounded by the second boundary line and the third boundary line, a second region surrounded by the first boundary line, the second boundary line and the third boundary line, the first A third region that exceeds a boundary line and is closer to the X axis than the second boundary line; a fourth region that exceeds the second boundary line and is closer to the Y axis than the first boundary line; It is determined in which region of the fifth region that exceeds both the boundary line and the second boundary line, and the measurement point is one of the second to fifth regions in at least one determination XY coordinate plane. A slope failure prediction method characterized by predicting that there is a high probability of slope failure when located in the area.
請求項2に記載の斜面崩壊予測方法において、
複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、
その結果を表すシンボルを、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成することを特徴とする斜面崩壊予測方法。
In the slope failure prediction method according to claim 2,
For a plurality of combinations of a long half-life and a short half-life, a determination XY coordinate plane in which the first to third boundary lines are set is obtained,
For all of the plurality of determination XY coordinate planes, the closest measurement point among the measurement points consisting of the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall is the X axis and the Y axis. And a first region surrounded by the first boundary line, the second boundary line, and the third boundary line, and a first region surrounded by the first boundary line, the second boundary line, and the third boundary line. 2 region, the first boundary line is exceeded, and the third region on the X axis side than the second boundary line, the second boundary line is exceeded, and the second boundary line is exceeded on the Y axis side from the first boundary line. 4 region, determine which region is located in the fifth region that exceeds both the first boundary line and the second boundary line,
A slope failure prediction method characterized by creating a two-dimensional determination diagram in which a symbol representing the result is plotted on a two-dimensional coordinate plane having a long half-life on the horizontal axis and a short half-life on the vertical axis.
請求項1に記載の斜面崩壊予測方法において、
前記対象地点の過去の降雨イベントの降雨量データから求められた、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットし、
前記複数の点のうちある時刻の点を注目点としたとき、該注目点とX値が同じ点の中に前記注目点よりもY値が大きい点が存在しない場合、及び前記注目点よりもX値が大きい点の中に前記注目点とY値が同じ点及び前記注目点よりもY値が大きい点のいずれもが存在しない場合は、前記注目点を第3境界点として抽出する作業を繰り返し、
抽出された全ての第3境界点をX値が小さい順に繋いだ線を、前記第1実効雨量及び前記第2実効雨量の相乗効果による実効雨量の最大値を表す第3境界線として前記判定用XY座標平面に設定し、
前記判定用XY座標平面において、前記測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出することを特徴とする斜面崩壊予測方法。
In the slope failure prediction method according to claim 1,
A plurality of time series values of the first effective rainfall and time series values of the second effective rainfall obtained at the same time obtained from rainfall data of past rainfall events at the target point are set as an X value and a Y value, respectively. Plot the points on the XY coordinate plane for determination,
When a point at a certain time among the plurality of points is a point of interest, a point having a larger Y value than the point of interest does not exist among points having the same X value as the point of interest, and than the point of interest If neither the point having the same X value as the target point or the point having a larger Y value than the target point exists among the points having a large X value, an operation of extracting the target point as a third boundary point is performed. repetition,
For the determination, a line connecting all the extracted third boundary points in ascending order of the X value is a third boundary line representing the maximum value of the effective rainfall due to the synergistic effect of the first effective rainfall and the second effective rainfall. Set to XY coordinate plane,
In the determination XY coordinate plane, the nearest measurement point among the measurement points is in a region surrounded by the X axis, the Y axis, the first boundary line, the second boundary line, and the third boundary line. A slope failure prediction method, comprising: calculating a rainfall amount per unit time when the next measurement point exceeds the first to third boundary lines when positioned.
請求項6に記載の斜面崩壊予測方法において、
複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出し、
該単位時間あたりの降雨量を、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成することを特徴とする斜面崩壊予測方法。
In the slope failure prediction method according to claim 6,
For a plurality of combinations of a long half-life and a short half-life, a determination XY coordinate plane in which the first to third boundary lines are set is obtained,
For all of the plurality of determination XY coordinate planes, the nearest measurement point among the measurement points consisting of the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall is the X axis and the Y axis. When located in a region surrounded by the first boundary line, the second boundary line, and the third boundary line, the next measurement point per unit time that exceeds the first to third boundary lines Calculate rainfall,
A slope failure prediction method, comprising: creating a two-dimensional judgment chart in which the rainfall per unit time is plotted on a two-dimensional coordinate plane with the horizontal axis representing the long half-life and the vertical axis representing the short half-life.
対象地点における降雨イベントによる斜面崩壊の発生を予測する斜面崩壊予測装置であって、
a) ある時刻における蓄積雨量が半減するまでの時間である半減期をパラメータとして、過去の降雨イベントが前記蓄積雨量に及ぼす影響の持続性を表した雨量指標である実効雨量の現時点までの時系列値を、前記対象地点の過去の降雨イベントの降雨量データを用い、所定の長半減期及び該長半減期より短い短半減期についてそれぞれ算出する、既往実効雨量算出手段と、
b) 前記長半減期をパラメータとする第1実効雨量をX軸、前記短半減期をパラメータとする第2実効雨量をY軸とするXY座標平面に、前記第1実効雨量の時系列値の最大値を通り前記Y軸と平行な第1境界線及び前記第2実効雨量の時系列値の最大値を通り前記X軸と平行な第2境界線を設定して判定用XY座標平面を作成する、判定用XY座標平面作成手段と、
c) 斜面崩壊発生の予測対象となる降雨イベントの降雨量データから、前記長半減期をパラメータとする第3実効雨量の時系列値及び前記短半減期をパラメータとする第4実効雨量の時系列値を、前記予測対象降雨イベントの進行と共に順次算出する、予測用実効雨量算出手段と、
d) 同じ時刻における前記第3実効雨量の時系列値及び前記第4実効雨量の時系列値をそれぞれX値、Y値とする点を測定点としたとき、該測定点が、前記判定用XY座標平面において前記第1境界線を超える領域に位置するとき、又は前記第2境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定する判定手段と
を備えることを特徴とする斜面崩壊予測装置。
A slope failure prediction device that predicts the occurrence of slope failure due to a rain event at a target location,
a) Time series of effective rainfall up to the present time, which is the rainfall index indicating the sustainability of the influence of past rainfall events on the accumulated rainfall, with the half-life, which is the time until the accumulated rainfall is halved at a certain time, as a parameter A past effective rainfall calculation means for calculating a value for each of a predetermined long half-life and a short half-life shorter than the long half-life, using rainfall data of past rainfall events at the target point;
b) A time series value of the first effective rainfall is plotted on an XY coordinate plane with the first effective rainfall with the long half-life as a parameter on the X-axis and the second effective rainfall with the short half-life on the parameter as the Y-axis. A determination XY coordinate plane is created by setting a first boundary line passing through the maximum value and parallel to the Y axis and a second boundary line passing through the maximum value of the time series value of the second effective rainfall and parallel to the X axis. A determination XY coordinate plane creating means;
c) From the rainfall data of the rainfall event that is the target of slope failure occurrence, the time series value of the third effective rainfall with the long half-life as a parameter and the time series of the fourth effective rainfall with the short half-life as a parameter. A prediction effective rainfall amount calculating means for sequentially calculating a value along with the progress of the prediction target rain event;
d) When the measurement point is the point where the time series value of the third effective rainfall and the time series value of the fourth effective rainfall at the same time are the X value and the Y value, respectively, the measurement point is the determination XY Determining means for determining that a slope failure may occur when located in a region exceeding the first boundary line in a coordinate plane, or when located in a region exceeding the second boundary line. Slope failure prediction device.
請求項8に記載の斜面崩壊予測装置において、
前記判定用XY座標平面作成手段が、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットし、前記複数の点のうちある時刻の点を注目点としたとき、該注目点とX値が同じ点の中に前記注目点よりもY値が大きい点が存在しない場合、及び前記注目点よりもX値が大きい点の中に前記注目点とY値が同じ点及び前記注目点よりもY値が大きい点のいずれもが存在しない場合は、前記注目点を第3境界点として抽出する作業を繰り返し、抽出された全ての第3境界点をX値が小さい順に繋いだ線を、前記第1実効雨量及び前記第2実効雨量の相乗効果による実効雨量の最大値を表す第3境界線として前記判定用XY座標平面に設定し、
前記判定手段が、前記判定用XY座標平面において前記測定点が前記第3境界線を超える領域に位置するときに斜面崩壊が発生する可能性があると判定することを特徴とする斜面崩壊予測装置。
In the slope failure prediction apparatus according to claim 8,
The determination XY coordinate plane creating means uses the determination XY coordinates as a plurality of points having the time series value of the first effective rainfall and the time series value of the second effective rainfall at the same time as the X value and the Y value, respectively. When plotting on a plane and setting a point at a certain time among the plurality of points as a point of interest, a point having a larger Y value than the point of interest does not exist among points having the same X value as the point of interest; and If neither the point having the same Y value as the point of interest nor the point having the Y value larger than the point of interest exists among the points having an X value larger than the point of interest, the point of interest is designated as the third boundary point. The line that connects all the extracted third boundary points in ascending order of the X value represents the maximum value of the effective rainfall due to the synergistic effect of the first effective rainfall and the second effective rainfall. Set as 3 boundary lines on the XY coordinate plane for determination,
The slope failure prediction apparatus, wherein the judgment means judges that slope failure may occur when the measurement point is located in a region exceeding the third boundary line on the judgment XY coordinate plane. .
請求項9に記載の斜面崩壊予測装置において、
前記既往実効雨量算出手段が、長さが異なる3種類以上の半減期について前記実効雨量の時系列値を算出し、
前記判定用XY座標平面作成手段が、前記3種類以上の半減期から2種類の半減期を選択することにより形成される、複数の、長半減期と短半減期の組み合わせについて、それぞれ前記第1〜第3境界線を設定した判定用XY座標平面を求め、
前記判定手段が、前記複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、各時刻における判別結果の集計から、斜面崩壊の発生を予測することを特徴とする斜面崩壊予測装置。
In the slope failure prediction device according to claim 9,
The historical effective rainfall calculation means calculates time series values of the effective rainfall for three or more half-lives having different lengths,
The determination XY coordinate plane creating means forms a plurality of combinations of long half-life and short half-life, respectively, by selecting two types of half-life from the three or more types of half-life. ~ Find the XY coordinate plane for determination with the third boundary set,
The determination means has a measurement point consisting of a time series value of the third effective rainfall and a time series value of the fourth effective rainfall for all of the plurality of determination XY coordinate planes, the X axis and the Y axis. A first region surrounded by the first boundary line, the second boundary line, and the third boundary line; a second region surrounded by the first boundary line, the second boundary line, and the third boundary line; A region that exceeds the first boundary line and is a third region on the X-axis side from the second boundary line; a fourth region that exceeds the second boundary line and that is on the Y-axis side from the first boundary line; It is determined which region is located in the fifth region that exceeds both the region, the first boundary line, and the second boundary line, and the occurrence of slope failure is predicted from the total of the determination results at each time Slope failure prediction device characterized by
請求項9に記載の斜面崩壊予測装置において、
前記既往実効雨量算出手段が、長さが異なる3種類以上の半減期について前記実効雨量の時系列値を算出し、
前記判定用XY座標平面作成手段が、前記3種類以上の半減期から2種類の半減期を選択することにより形成される、複数の、長半減期と短半減期の組み合わせについて、それぞれ前記第1〜第3境界線を設定した判定用XY座標平面を求め、
前記判定手段が、前記複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、少なくとも1個の判定用XY座標平面において測定点が第2〜第5領域のいずれかに位置するとき、斜面崩壊の発生の可能性が高いと予測することを特徴とする斜面崩壊予測装置。
In the slope failure prediction device according to claim 9,
The historical effective rainfall calculation means calculates time series values of the effective rainfall for three or more half-lives having different lengths,
The determination XY coordinate plane creating means forms a plurality of combinations of long half-life and short half-life, respectively, by selecting two types of half-life from the three or more types of half-life. ~ Find the XY coordinate plane for determination with the third boundary set,
The determination means has a measurement point consisting of a time series value of the third effective rainfall and a time series value of the fourth effective rainfall for all of the plurality of determination XY coordinate planes, the X axis and the Y axis. A first region surrounded by the first boundary line, the second boundary line, and the third boundary line; a second region surrounded by the first boundary line, the second boundary line, and the third boundary line; A region that exceeds the first boundary line and is a third region on the X-axis side from the second boundary line; a fourth region that exceeds the second boundary line and that is on the Y-axis side from the first boundary line; It is determined whether the region is located in the fifth region that exceeds both the region, the first boundary line, and the second boundary line, and the measurement points are second to second in at least one determination XY coordinate plane. A slope characterized by predicting that there is a high probability of slope failure when located in any of the five regions Corrupted prediction device.
請求項9に記載の斜面崩壊予測装置において、
前記判定用XY座標平面作成手段が、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
これら複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が、前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第1領域、前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた第2領域、前記第1境界線を超過し且つ前記第2境界線よりも前記X軸側の第3領域、前記第2境界線を超過し且つ前記第1境界線よりも前記Y軸側の第4領域、前記第1境界線及び前記第2境界線の両方を超過する第5領域のいずれの領域に位置するかを判別し、
その結果を表すシンボルを、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成する二次元判定図作成手段を有することを特徴とする斜面崩壊予測装置。
In the slope failure prediction device according to claim 9,
The determination XY coordinate plane creating means obtains a determination XY coordinate plane in which first to third boundary lines are set for a plurality of combinations of long half-life and short half-life,
For all of the plurality of determination XY coordinate planes, the closest measurement point among the measurement points consisting of the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall is the X axis and the Y axis. And a first region surrounded by the first boundary line, the second boundary line, and the third boundary line, and a first region surrounded by the first boundary line, the second boundary line, and the third boundary line. 2 region, the first boundary line is exceeded, and the third region on the X axis side than the second boundary line, the second boundary line is exceeded, and the second boundary line is exceeded on the Y axis side from the first boundary line. 4 region, determine which region is located in the fifth region that exceeds both the first boundary line and the second boundary line,
A slope having a two-dimensional determination diagram creating means for creating a two-dimensional determination diagram in which a symbol representing the result is plotted on a two-dimensional coordinate plane with a long half-life on the horizontal axis and a short half-life on the vertical axis Collapse prediction device.
請求項8に記載の斜面崩壊予測装置において、
前記判定用XY座標平面作成手段が、前記対象地点の過去の降雨イベントの降雨量データから求められた、同じ時刻の前記第1実効雨量の時系列値及び前記第2実効雨量の時系列値をそれぞれX値及びY値とする複数の点を前記判定用XY座標平面にプロットし、前記複数の点のうちある時刻の点を注目点としたとき、該注目点とX値が同じ点の中に前記注目点よりもY値が大きい点が存在しない場合、及び前記注目点よりもX値が大きい点の中に前記注目点とY値が同じ点及び前記注目点よりもY値が大きい点のいずれもが存在しない場合は、前記注目点を第3境界点として抽出する作業を繰り返し、抽出された全ての第3境界点をX値が小さい順に繋いだ線を、前記第1実効雨量及び前記第2実効雨量の相乗効果による実効雨量の最大値を表す第3境界線として前記判定用XY座標平面に設定し、
前記判定用XY座標平面において、前記測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出する超過降雨量算出手段を備えることを特徴とする斜面崩壊予測装置。
In the slope failure prediction apparatus according to claim 8,
The determination XY coordinate plane creating means obtains the time series value of the first effective rainfall and the time series value of the second effective rainfall at the same time obtained from the rainfall data of past rainfall events at the target point. A plurality of points each having an X value and a Y value are plotted on the XY coordinate plane for determination, and when a point at a certain time among the plurality of points is a point of interest, the point of interest and the X value are the same. If there is no point having a larger Y value than the point of interest, and a point having a larger X value than the point of interest, a point having the same Y value as the point of interest and a point having a larger Y value than the point of interest If none of these exist, the operation of extracting the target point as a third boundary point is repeated, and a line connecting all the extracted third boundary points in ascending order of the X value is represented by the first effective rainfall and Maximum effective rainfall due to the synergistic effect of the second effective rainfall It represents the set determination XY coordinate plane as a third boundary line,
In the determination XY coordinate plane, the nearest measurement point among the measurement points is in a region surrounded by the X axis, the Y axis, the first boundary line, the second boundary line, and the third boundary line. A slope failure prediction device comprising: an excess rainfall calculating means for calculating a rainfall per unit time when the next measurement point exceeds the first to third boundary lines when positioned.
請求項13に記載の斜面崩壊予測装置において、
前記判定用XY座標平面作成手段が、複数の、長半減期及び短半減期の組み合わせについて、それぞれ第1〜第3境界線を設定した判定用XY座標平面を求め、
前記超過雨量算出手段が、前記複数の判定用XY座標平面の全てについて、対応する第3実効雨量の時系列値及び第4実効雨量の時系列値からなる測定点のうち直近の測定点が前記X軸と前記Y軸と前記第1境界線と前記第2境界線と前記第3境界線とに囲まれた領域に位置するとき、次の測定点が前記第1〜第3境界線を超えることになる単位時間あたりの降雨量を算出し、
該単位時間あたりの降雨量を、横軸を長半減期、縦軸を短半減期とする二次元座標平面にプロットした二次元判定図を作成する二次元判定図作成手段を有することを特徴とする斜面崩壊予測装置。
In the slope failure prediction device according to claim 13,
The determination XY coordinate plane creating means obtains a determination XY coordinate plane in which first to third boundary lines are set for a plurality of combinations of long half-life and short half-life,
The excess rainfall calculation means, for all of the plurality of determination XY coordinate planes, of the measurement points including the corresponding time series value of the third effective rainfall and the time series value of the fourth effective rainfall, When located in a region surrounded by the X axis, the Y axis, the first boundary line, the second boundary line, and the third boundary line, the next measurement point exceeds the first to third boundary lines. Calculate the amount of rainfall per unit time,
It has a two-dimensional determination diagram creating means for creating a two-dimensional determination diagram in which the rainfall per unit time is plotted on a two-dimensional coordinate plane in which the horizontal axis is the long half-life and the vertical axis is the short half-life. To predict slope failure.
JP2014203340A 2014-05-12 2014-10-01 Slope failure prediction method and slope failure prediction device Active JP6450129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203340A JP6450129B2 (en) 2014-05-12 2014-10-01 Slope failure prediction method and slope failure prediction device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014098393 2014-05-12
JP2014098393 2014-05-12
JP2014203340A JP6450129B2 (en) 2014-05-12 2014-10-01 Slope failure prediction method and slope failure prediction device

Publications (3)

Publication Number Publication Date
JP2015232537A JP2015232537A (en) 2015-12-24
JP2015232537A5 JP2015232537A5 (en) 2017-08-24
JP6450129B2 true JP6450129B2 (en) 2019-01-09

Family

ID=54934059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203340A Active JP6450129B2 (en) 2014-05-12 2014-10-01 Slope failure prediction method and slope failure prediction device

Country Status (1)

Country Link
JP (1) JP6450129B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635296B2 (en) * 2016-01-29 2020-01-22 中国電力株式会社 Debris flow generation prediction system and debris flow generation prediction method
JP6874770B2 (en) * 2016-08-31 2021-05-19 日本電気株式会社 Rainfall Predictor, Rainfall Prediction Method, and Recording Media
JP7052429B2 (en) 2018-03-05 2022-04-12 富士通株式会社 Calculation program, calculation method, calculation device, and display program
JP7083735B2 (en) * 2018-10-24 2022-06-13 東日本旅客鉄道株式会社 Cut slope failure prediction device, cut slope failure prediction method and cut slope failure prediction program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268065A (en) * 1997-03-24 1998-10-09 Nippon Hoso Kyokai <Nhk> Rainfall prediction method and rainfall decrease alert device
JP3455213B1 (en) * 2002-04-18 2003-10-14 有限会社山口ティー・エル・オー Method of setting the limit line of occurrence of sediment-related disaster, caution reference line and evacuation reference line, its program and warning evacuation support system
JP2005200972A (en) * 2004-01-16 2005-07-28 Kokusai Kogyo Co Ltd Disaster-information service system
JP5526541B2 (en) * 2008-12-26 2014-06-18 富士通株式会社 Debris flow risk judgment device, debris flow risk judgment method, and debris flow risk judgment program

Also Published As

Publication number Publication date
JP2015232537A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6763393B2 (en) Disaster prediction system, water content prediction device, disaster prediction method and program recording medium
Tamene et al. Reservoir siltation in the semi‐arid highlands of northern Ethiopia: sediment yield–catchment area relationship and a semi‐quantitative approach for predicting sediment yield
CN108960599B (en) Power transmission line rainstorm disaster refined prediction method and system based on inversion algorithm
Marzolff et al. Short‐term versus medium‐term monitoring for detecting gully‐erosion variability in a Mediterranean environment
CN103473892B (en) Raceway groove start type rubble flow prediction occurring method and application
CN111582597B (en) Method and equipment for predicting landslide hazard of power transmission line
JP6450129B2 (en) Slope failure prediction method and slope failure prediction device
CN113470333A (en) Risk assessment and monitoring early warning system for shallow landslide of line engineering corridor
Benedict Clear-water abutment and contraction scour in the Coastal Plain and Piedmont Provinces of South Carolina, 1996-99
Wilson et al. A GIS‐based hillslope erosion and sediment delivery model and its application in the Cerro Grande burn area
CN103472497B (en) Raceway groove start type debris flow occurrence scale calculation method and application
Akbar et al. Multi-hazard susceptibility mapping for disaster risk reduction in Kargil-Ladakh Region of Trans-Himalayan India
Bruno et al. The influence of interannual variability of mean sea level in the Adriatic Sea on extreme values
Farina et al. Development of an early warning system for shallow landslide hazard in the Grasberg area, Indonesia
Badilla Flood modelling in Pasig-Marikina river basin
Sumira et al. Dam Break Analysis of Sermo Dam
Cartwright et al. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds
Danáčová et al. Detection of gully erosion using Global Navigation Satellite Systems in Myjava–Turá Lúka
Li et al. Advances in Measurement Technology, Disaster Prevention and Mitigation: Proceedings of the 3rd International Conference on Measurement Technology, Disaster Prevention and Mitigation (MTDPM 2022), Zhengzhou, China, 27–29 May 2022
Belay Dam breach analysis and flood inundation mapping: a case study of Koga dam
Kang Geospatial analysis of specific degradation in South Korea
Rajapaksha et al. Determination of thresholds based on rainfall indices for the occurrence of landslides in Kalu Ganga basin, Sri Lanka
Elmekati et al. Geotechnical Health Assessment of Roadway Embankment Using Airborne LiDAR
BRANDINI et al. Monitoring, risk forecasting and coastal planning in the Region of Tuscany
Huda et al. The Analysis of Tsunami Hazard and Determination of Evacuation Routes Based on GIS in Coastal Areas (Case Study: Pacitan District, Pacitan Regency)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181207

R150 Certificate of patent or registration of utility model

Ref document number: 6450129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250