JP2005200972A - Disaster-information service system - Google Patents

Disaster-information service system Download PDF

Info

Publication number
JP2005200972A
JP2005200972A JP2004009709A JP2004009709A JP2005200972A JP 2005200972 A JP2005200972 A JP 2005200972A JP 2004009709 A JP2004009709 A JP 2004009709A JP 2004009709 A JP2004009709 A JP 2004009709A JP 2005200972 A JP2005200972 A JP 2005200972A
Authority
JP
Japan
Prior art keywords
disaster
information
risk
rainfall
service system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009709A
Other languages
Japanese (ja)
Inventor
Katsunori Haraguchi
勝則 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Kogyo Co Ltd
Original Assignee
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Kogyo Co Ltd filed Critical Kokusai Kogyo Co Ltd
Priority to JP2004009709A priority Critical patent/JP2005200972A/en
Publication of JP2005200972A publication Critical patent/JP2005200972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Abstract

<P>PROBLEM TO BE SOLVED: To accurately set a zone, in which a refuze advice is announced officially, while officially announcing a disaster information such as the refuze advice to residents easily and accurately at a low cost by cities, towns and villages or the like. <P>SOLUTION: A disaster-information service system 11 decides the risk of a disaster at every risk place and distributes a disaster-risk information as a disaster-information service. Disaster-risk threshold values are obtained at every risk place in response to a disaster hysteresis displaying ground informations at every risk place and the amount of a rainfall in the case of disaster generations at every risk place in a soil-sand moving potential generating section 21a in this case. A current precipitation information displaying a current precipitation at every risk place, a predicted precipitation information displaying a future precipitation predictor and the disaster risk threshold value are compared and the disaster risk information is distributed when at least one of the current precipitation information and the predicted precipitation information exceeds the disaster-risk threshold value in a soil-sand disaster-generation risk decision section 21c in this case. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、土砂災害等の発生の危険度を判定して災害情報の配信サービスを行うための災害情報サービスシステムに関するものである。   The present invention relates to a disaster information service system for performing a disaster information distribution service by determining the risk of occurrence of a landslide disaster or the like.

土砂災害(例えば、土石流、崖崩れ、又は地すべり)等の災害による人命の損傷等に対処するため、土砂災害防止法が制定され、土砂災害防止法によって警戒区域等が指定され、当該警戒区域等において土砂災害の発生の危険性があると、土砂災害警戒情報が気象台等によって発令され、該当する市町村等に伝達され、当該市町村では土砂災害警戒情報に基づいて住民に避難勧告等を行う仕組みが構築されようとしている。   The Sediment Disaster Prevention Law was enacted to deal with human life damage caused by disasters such as debris disasters (for example, debris flow, landslides, or landslides), and caution areas were designated by the Sediment Disaster Prevention Law. If there is a risk of a landslide disaster in Japan, landslide warning information is issued by the weather station, etc., and transmitted to the relevant municipalities, etc., and the municipalities provide evacuation advice to residents based on the landslide warning information It is going to be built.

市町村においては、土砂災害警戒情報が発令されても、この土砂災害警戒情報には、具体的にいずれの渓流又は斜面等が危険な状態にあるかを特定しておらず、このため、市町村においては、広範囲の区域に亘って避難勧告等を発令しなければならない。そして、広範囲の区域に亘る避難勧告を発令すると、対象住民が多数に上り、しかも実際には避難する必要がない住民にまで避難勧告が発令されることになって、住民に避難勧告の精度が悪いと看做されて、避難勧告が発令されても、避難しようとしない住民が増加してしまうという事態が起こる。   In municipalities, even if sediment-related disaster warning information is issued, this sediment-related disaster warning information does not specifically identify which mountain stream or slope is in a dangerous state. Must issue evacuation advisories over a wide area. And when an evacuation advisory is issued over a wide area, the resident evacuation advisory is issued to a large number of residents who do not need to evacuate. Even if it is considered bad and an evacuation advisory is issued, the number of residents who do not want to evacuate will increase.

さらには、広範囲に亘って避難勧告を発令すると、前述のように対象住民が多数に上る結果、避難場所を多数確保するとともに、食料等も確保しなければならず、市町村の財政が圧迫されることにもなる。   Furthermore, when an evacuation advisory is issued over a wide area, as a result of the large number of target inhabitants as mentioned above, it is necessary to secure a large number of evacuation areas and food, etc. It will also be.

加えて、土砂災害警戒情報が発令される際には、豪雨であることが多く、土砂災害警戒情報が発令されると、市町村職員は、豪雨の中多数の土砂災害危険箇所の巡視を行うことになるが、実際に豪雨の中、全ての土砂災害危険箇所の巡視を行うことは極めて困難であり、このため、前述のように、広範囲に亘って避難勧告を発令するという事態になる。   In addition, when landslide disaster warning information is issued, it is often a heavy rain, and when landslide disaster warning information is issued, municipal officials should patrol a number of landslide hazard areas in heavy rain. However, it is extremely difficult to patrol all the landslide hazard areas in heavy rain, and as a result, evacuation advisories are issued over a wide area as described above.

従って、各土砂災害危険箇所毎にその土砂災害の危険度を判定するようにすれば、職員の巡視及び避難勧告の発令区域を限定することができ、住民及び市町村の負担を軽減できることになり、しかも、精度よく避難勧告の発令を行うことができることになる。   Therefore, if the risk of landslide disaster is determined for each landslide hazard point, the inspection area of staff inspection and evacuation advisory can be limited, and the burden on residents and municipalities can be reduced. In addition, evacuation advisories can be issued with high accuracy.

上述のような土砂災害の危険度を判定する手法として、例えば、土砂災害発生の潜在危険度を演算して、斜面又は渓流をグループに分類した後、これら複数のグループの潜在危険度の平均値を演算し、分類されたグループ毎に土砂災害の発生危険度を表す判別境界面についてニューラルネットワークを用いて中間層と出力層の結線の重みを演算して、個々の斜面又は個々の渓流の土砂災害の非線形の発生限界線、避難基準線、及び警戒基準線を設定するようにしたものがある(特許文献1参照)。   As a method for determining the risk of landslide disaster as described above, for example, after calculating the potential risk of landslide disaster occurrence and classifying slopes or mountain streams into groups, the average value of the potential risks of these multiple groups Calculate the weight of the connection between the intermediate layer and the output layer using a neural network for the discriminating boundary surface representing the risk of occurrence of sediment disasters for each classified group, and calculate the sediment on each slope or mountain stream There is one in which a non-linear occurrence limit line of disaster, an evacuation reference line, and a warning reference line are set (see Patent Document 1).

ここでは、土砂災害の潜在危険度に応じて分類したグループ毎の基本判別境界面を構築して、グループ間の基本判別境界面の相違から求めた潜在危険度の影響を用いて個別非線形発生限界線を設定して、潜在危険度の違いを明確に個別非線形発生限界線に反映させて、斜面要因又は渓流要因を考慮した個別かつ非線形の土砂災害発生限界線等を設定し、これによって、警戒避難を行うようにしている。   Here, the basic discriminant boundary surface for each group classified according to the potential risk of landslide disasters is constructed, and the individual nonlinear occurrence limit is determined using the impact of the potential risk obtained from the difference in the basic discriminant boundary surface between groups. A line is set to clearly reflect the difference in potential risk in the individual nonlinear occurrence limit line, and an individual and non-linear sediment disaster occurrence limit line that takes into account slope factors or mountain stream factors is set. I try to evacuate.

特開2003−184098公報(段落(0037)〜段落(0046)、第2図〜第9図)JP 2003-184098 A (paragraph (0037) to paragraph (0046), FIGS. 2 to 9)

ところで、特許文献1においては、土砂災害の潜在危険度に応じて分類したグループ毎の基本判別境界面を構築して、グループ間の基本判別境界面の相違から求めた潜在危険度の影響を用いて個別非線形発生限界線を設定し、潜在危険度の違いを明確に個別非線形発生限界線に反映させて、斜面要因又は渓流要因を考慮した個別かつ非線形の土砂災害発生限界線等を設定して、土砂災害に係る警戒避難を行うようにしているものの、単に土砂災害発生限界線の設定を行って、この土砂災害発生限界線に応じて土砂災害の危険度を判定しているだけであって、災害が発生した際の被害予測(例えば、被害予測区域の設定等)を行っておらず、各危険箇所において土砂災害の危険度を判定するのみでは、避難勧告を発令する区域の設定を精度よく行うことができないという課題がある。   By the way, in patent document 1, the basic discrimination boundary surface classified for every group classified according to the potential risk of earth and sand disaster is constructed, and the influence of the latent risk obtained from the difference of the basic discrimination boundary surface between groups is used. Set individual non-linear occurrence limit lines, clearly reflect the difference in potential risk in the individual non-linear generation limit lines, and set individual and non-linear sediment disaster occurrence limit lines etc. considering slope factors or mountain stream factors Although evacuation and evacuation related to earth and sand disasters are being performed, the landslide disaster occurrence limit line is simply set, and the risk of landslide disasters is determined according to the landslide disaster occurrence limit line. If you do not make damage predictions when a disaster occurs (for example, set the damage prediction area) and only determine the risk of landslide disasters at each hazardous location, you can accurately set the area for issuing evacuation advisories. Often There is a problem that Ukoto can not.

さらに、特許文献1においては、単に土砂災害発生限界線の設定を行って、この土砂災害発生限界線に応じて土砂災害の危険度を判定しているだけであるから、このようにして得られた判定結果に応じた危険情報の配信、被害予測情報の配信、及び避難誘導情報の配信等を的確に行うことが難しく、市町村にとっては土砂災害警戒情報が発令された際、どのようにして避難勧告等を発令したらよいか、戸惑うことが多いという課題がある。   Furthermore, in Patent Document 1, since the sediment disaster occurrence limit line is simply set and the risk of sediment disaster is determined according to the sediment disaster occurrence limit line, it is obtained in this way. It is difficult to distribute danger information, damage prediction information, evacuation guidance information, etc. according to the judgment results. For municipalities, how to evacuate when earth and sand disaster warning information is issued There is a problem that there is a lot of confusion about whether recommendations should be issued.

従って、本発明はかかる従来技術の問題に鑑み、避難勧告を発令する区域の設定を精度よく行うことのできる災害情報サービスシステムを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a disaster information service system capable of accurately setting an area for issuing an evacuation recommendation in view of the problems of the prior art.

さらに、本発明の目的は、市町村等が容易にしかも的確且つ安価に避難勧告等の災害情報の発令を住民に対して行うことのできる災害情報サービスシステムを提供することにある。   Furthermore, an object of the present invention is to provide a disaster information service system that allows municipalities and the like to issue disaster information such as evacuation recommendations to residents in an easy, accurate and inexpensive manner.

加えて、本発明の目的は、市町村等が独自のシステムを構築することなく、安価に避難勧告等の有用な情報を即座に得ることのできる災害情報サービスシステムを提供することにある。   In addition, an object of the present invention is to provide a disaster information service system that allows municipalities and the like to immediately obtain useful information such as evacuation recommendations at a low cost without building a unique system.

そこで、本発明はかかる課題を解決するために、危険箇所毎に災害発生の危険度を判定して災害危険情報を災害情報サービスとして配信する災害情報サービスシステムであって、前記危険箇所毎の地盤情報と前記危険箇所毎の災害発生時における降雨量を示す災害履歴に応じて前記危険箇所毎に災害危険度閾値を求める閾値生成手段と、前記危険箇所毎に現在の雨量を示す現在雨量情報及び今後の雨量予測値を示す予測雨量情報と前記災害危険度閾値とを比較して、前記現在雨量情報及び前記予測雨量情報の少なくとも一方が前記災害危険度閾値を越えると前記災害危険情報を配信する災害発生危険度判定手段とを有することを特徴とする。   Therefore, in order to solve such a problem, the present invention is a disaster information service system that determines the risk of occurrence of a disaster for each dangerous place and distributes the disaster risk information as a disaster information service, the ground for each dangerous place Threshold generation means for determining a disaster risk threshold value for each risk location according to information and a disaster history indicating the amount of rainfall at the time of disaster occurrence for each risk location, current rainfall information indicating the current rainfall for each risk location, and Comparing predicted rainfall information indicating a predicted rainfall amount in the future with the disaster risk threshold, and distributing at least one of the current rainfall information and the predicted rainfall information exceeds the disaster risk threshold It has a disaster occurrence risk determination means.

本発明では、例えば、前記閾値生成手段は、多変量解析に基づいて判別式として前記災害危険度閾値を得るようにしており、さらに、前記災害発生危険度判定手段は、前記予測雨量情報が前記災害危険度閾値を越えると、予め定められた第1の警告情報を前記災害危険情報として配信する。そして、前記災害発生危険度判定手段は、前記第1の警告情報を配信した後、前記現在雨量情報が前記災害危険度閾値を越えると、予め規定された第2の警告情報を前記災害危険情報として配信する。また、前記災害発生危険度判定手段は、前記第1及び前記第2の警告情報を配信する際、その危険度に応じて当該危険箇所の表示色を変化させるようにしてもよい。   In the present invention, for example, the threshold value generation means obtains the disaster risk threshold value as a discriminant based on multivariate analysis, and the disaster occurrence risk determination means indicates that the predicted rainfall information is the When the disaster risk threshold is exceeded, predetermined first warning information is distributed as the disaster risk information. The disaster risk determination means distributes the first warning information, and if the current rainfall information exceeds the disaster risk threshold, the second warning information defined in advance is used as the disaster risk information. Deliver as. In addition, when the first and second warning information is distributed, the disaster occurrence risk determination means may change the display color of the dangerous place according to the risk level.

さらに、本発明では、例えば、前記災害危険情報が配信されると、前記地盤情報、前記現在雨量情報、及び前記予測雨量情報に応じて当該危険箇所に係る水分の流出解析を行い流出解析結果を得る流出解析手段と、前記流出解析結果に基づいて前記地盤情報に応じた土砂濃度を得て土砂の流量を推定土砂流量とする土砂移動量予測手段と、前記危険箇所毎に予め土砂流量に応じた氾濫解析が行われてその被害区域が氾濫解析結果として設定されたデータベースと、前記推定土砂流量に応じて前記データベースから前記氾濫解析結果を抽出して被害予測区域を求める被害予測区域判定手段とを有しており、前記被害予測区域判定手段は通信回線を介して前記被害予測区域を示す被害予測情報を配信するようにすることが望ましい。   Furthermore, in the present invention, for example, when the disaster risk information is distributed, the outflow analysis result is obtained by performing a water outflow analysis on the dangerous point according to the ground information, the current rainfall information, and the predicted rainfall information. The obtained runoff analysis means, the sediment movement amount prediction means for obtaining the sediment concentration according to the ground information based on the runoff analysis result and using the sediment flow rate as the estimated sediment flow rate, and depending on the sediment flow rate in advance for each dangerous point A database in which the inundation analysis is performed and the damage area is set as an inundation analysis result, and a damage prediction area determination means for obtaining the damage prediction area by extracting the inundation analysis result from the database according to the estimated sediment flow It is preferable that the damage prediction area determination unit distributes damage prediction information indicating the damage prediction area via a communication line.

また、本発明では、前記被害予測区域を得て、少なくとも当該危険箇所に係る人口及び避難場所の位置に応じて避難シミュレーションを行って避難場所及び避難経路を示す避難誘導情報を生成する避難誘導計画生成手段を有し、該避難誘導情報を通信回線を介して配信するようにしてもよい。なお、前記危険箇所を所定の間隔でメッシュ状に分割してメッシュ領域として、前記メッシュ領域の災害危険度閾値を求めて、前記メッシュ領域毎の災害発生危険度を判定するようにしてもよい。   In the present invention, an evacuation guidance plan for obtaining the damage prediction area and generating evacuation guidance information indicating an evacuation place and an evacuation route by performing an evacuation simulation according to at least the population and the position of the evacuation place related to the dangerous place A generation unit may be included to distribute the evacuation guidance information via a communication line. The danger location may be divided into meshes at predetermined intervals to obtain a mesh region, and a disaster risk threshold value of the mesh region may be obtained to determine the disaster occurrence risk for each mesh region.

以上のように、本発明の災害情報サービスシステムは、危険箇所毎の地盤情報と危険箇所毎の災害発生時における降雨量を示す災害履歴に応じて危険箇所毎に災害危険度閾値を求めて、危険箇所毎に現在雨量情報及び予測雨量情報と災害危険度閾値とを比較して、現在雨量情報及び予測雨量情報の少なくとも一方が災害危険度閾値を越えると災害危険情報を配信するようにしたので、市町村等において避難勧告を発令する区域の設定を精度よく行うことができるばかりでなく、市町村等が容易にしかも的確かつ安価に避難勧告等の災害情報の発令を住民に対して行うことができるという効果がある。さらに、市町村等では独自のシステムを構築することなく、安価に避難勧告等の有用な情報を即座に得ることができるという効果がある。   As described above, the disaster information service system of the present invention obtains the disaster risk threshold value for each dangerous place according to the disaster information indicating the ground information for each dangerous place and the rainfall history at the time of occurrence of the disaster for each dangerous place, Because the current rainfall information and predicted rainfall information and the disaster risk threshold are compared for each danger location, and at least one of the current rainfall information and the predicted rainfall information exceeds the disaster risk threshold, the disaster risk information is distributed. In addition, it is possible not only to accurately set up areas for issuing evacuation advisories in municipalities, etc., but also to issue disaster information such as evacuation advisories to residents in an easy, accurate and inexpensive manner. There is an effect. Further, there is an effect that municipalities can immediately obtain useful information such as evacuation advice at a low cost without building an original system.

本発明では、予測雨量情報が災害危険度閾値を越えると、第1の警告情報を災害危険情報として配信しているから、予め的確に災害の危険度があることを市町村等に知らせることができるという効果がある。   In the present invention, when the predicted rainfall information exceeds the disaster risk threshold, the first warning information is distributed as the disaster risk information, so it is possible to accurately notify the municipality that there is a risk of disaster in advance. There is an effect.

本発明では、第1の警告情報を配信した後、現在雨量情報が災害危険度閾値を越えると、第2の警告情報を災害危険情報として配信するようにしたから、市町村等に段階的に災害の危険度を知らせることができるという効果がある。   In the present invention, after the first warning information is distributed, if the current rainfall information exceeds the disaster risk threshold, the second warning information is distributed as the disaster risk information. There is an effect that the degree of danger can be notified.

本発明では、災害危険情報が配信されると、当該危険箇所に係る被害予測区域を推定して、被害予測情報として配信するようにしたので、市町村等においては、予め被害予測区域を把握することができるという効果がある。   In the present invention, when disaster risk information is distributed, the damage prediction area related to the dangerous point is estimated and distributed as damage prediction information. There is an effect that can be.

本発明では、被害予測区域に係る避難誘導計画をシミュレーションして配信するようにしたから、市町村等では住民の避難誘導計画を容易に策定することができるという効果がある。   In the present invention, since the evacuation guidance plan related to the damage prediction area is simulated and distributed, there is an effect that the evacuation guidance plan for the residents can be easily formulated in the municipalities.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明による災害情報サービスシステムの一例を用いた災害情報配信システムを示すブロック図であり、図示の災害情報配信システムには災害情報サービスシステム11が備えられており、この災害情報サービスシステム11には、土砂災害危険度判定部21、被害予測判定部22、及び避難誘導計画生成部23が備えられている。さらに、災害情報サービスシステム11には、災害データベース(災害DB)31、危険箇所DB32、対策施設DB33、人口・資産DB34、災害弱者及び関連施設DB35、公共施設DB36、及び各種空間基盤DB37が接続されており、また、災害情報サービスシステム11には地盤情報配信システム41及び降雨情報配信システム42からそれぞれ地盤情報及び降雨情報が与えられ、後述するようにして、土砂災害発生危険度判定を行って、土砂災害危険度情報を、災害情報配信システムを介して市町村等の公的機関に配信する。   FIG. 1 is a block diagram showing a disaster information distribution system using an example of a disaster information service system according to the present invention. The illustrated disaster information distribution system is provided with a disaster information service system 11. The system 11 includes a sediment disaster risk determination unit 21, a damage prediction determination unit 22, and an evacuation guidance plan generation unit 23. Further, the disaster information service system 11 is connected to a disaster database (disaster DB) 31, a dangerous location DB 32, a countermeasure facility DB 33, a population / asset DB 34, a disaster vulnerable and related facility DB 35, a public facility DB 36, and various space infrastructure DBs 37. In addition, the disaster information service system 11 is provided with ground information and rainfall information from the ground information distribution system 41 and the rainfall information distribution system 42, respectively, and as described later, the sediment disaster occurrence risk is determined, Distribute sediment-related disaster risk information to public institutions such as municipalities via the disaster information distribution system.

さらに、後述するように、災害情報サービスシステム11では、被害予測を行って被害予測情報を生成し、被害予測情報を災害情報配信システムを介して市町村等の公的機関に配信するとともに、必要に応じて避難誘導計画を生成して、避難誘導情報として災害情報配信システムを介して市町村等の公的機関に配信する。   Furthermore, as will be described later, the disaster information service system 11 performs damage prediction to generate damage prediction information, distributes the damage prediction information to public institutions such as municipalities via the disaster information distribution system, and is necessary. In response, an evacuation guidance plan is generated and distributed as evacuation guidance information to public institutions such as municipalities via a disaster information distribution system.

以下の説明では、危険箇所として渓流等の流域における危険箇所における土砂災害の危険度判定及び被害予測について説明するが、斜面等他の危険箇所についても同様に適用できるものである。   In the following description, risk judgment and damage prediction of landslide disasters in dangerous locations in a watershed such as a mountain stream will be described as dangerous locations, but the same applies to other dangerous locations such as slopes.

前述したように、災害情報サービスシステム11には、地盤情報配信システム41及び降雨情報配信システム42から地盤情報及び降雨情報が与えられており、地盤情報配信システム41では、危険箇所を含む3次元デジタル地図及び危険箇所に係る各種調査研究結果(衛星画像データ及び流域に係る水に関する情報である国土水情報を含む)を得て解析処理を行なって(計測・解析処理)、危険箇所毎の地形データ、地質・土質データ、植生データ、及び地下構造データを地盤情報として災害情報サービスシステム11に配信する。   As described above, the disaster information service system 11 is provided with ground information and rainfall information from the ground information distribution system 41 and the rain information distribution system 42. In the ground information distribution system 41, the three-dimensional digital including the dangerous part is provided. Topographic data for each dangerous location after obtaining maps and various survey research results (including satellite image data and national water information, which is information about water related to the basin), and performing analysis processing (measurement / analysis processing) The geological / soil data, vegetation data, and underground structure data are distributed to the disaster information service system 11 as ground information.

一方、降雨情報配信システム42は、例えば、気象機関(気象会社)に備えられており、レーダで観測したレーダ雨量及び雨量計で観測した地上観測雨量と各種気象データとを解析処理して、解析雨量(実況値)及び予測雨量(予測値)を得て、これら解析雨量及び予測雨量を災害情報サービスシステム11に降雨情報として配信する。   On the other hand, the rainfall information distribution system 42 is provided in, for example, a meteorological organization (meteorological company), and analyzes and analyzes the radar rainfall measured by the radar, the ground rainfall measured by the rain gauge, and various weather data. The rainfall (actual value) and the predicted rainfall (predicted value) are obtained, and these analyzed rainfall and predicted rainfall are distributed to the disaster information service system 11 as rainfall information.

土砂災害危険度判定部21には、土砂移動ポテンシャル(閾値)生成部21a、土中水分量(相対値)算出部21b、及び土砂災害発生危険度判定部21cが備えられており、地盤情報及び降雨情報と災害DB31に格納された過去の災害履歴及び危険箇所DB32に格納された危険箇所を示す危険箇所データに応じて土砂災害の危険度判定を行う。   The sediment disaster risk determination unit 21 includes a sediment movement potential (threshold) generation unit 21a, a soil moisture content (relative value) calculation unit 21b, and a sediment disaster occurrence risk determination unit 21c. The degree of risk of landslide disaster is determined according to rainfall information, past disaster history stored in the disaster DB 31, and dangerous location data indicating the dangerous location stored in the dangerous location DB 32.

図2も参照すると、土砂移動ポテンシャル生成部21aでは、危険箇所データに基づいて危険箇所(例えば、渓流)毎の地盤情報(素因条件)を得るとともに(ステップS1)、災害履歴(過去の土砂災害発生情報)に応じてその土砂災害の発生場所及び発生・非発生時の降雨量を得る(ステップS2)。そして、土砂移動ポテンシャル生成部21aでは、地盤情報と土砂災害の発生時・非発生時の降雨量とに基づいて危険箇所毎に短期指標(地表の土中水分量)及び長期指標(地下の土中水分量)を演算する(ステップS3)。   Referring also to FIG. 2, the earth and sand movement potential generation unit 21a obtains ground information (predisposition conditions) for each dangerous place (for example, mountain stream) based on the dangerous place data (step S1) and disaster history (past sediment disaster) The occurrence location of the sediment disaster and the amount of rainfall at the time of occurrence / non-occurrence are obtained according to the occurrence information) (step S2). Then, the earth and sand movement potential generation unit 21a makes a short-term index (the amount of soil moisture on the surface) and a long-term index (underground soil) for each dangerous point based on the ground information and the amount of rainfall when a sediment disaster occurs or does not occur. Medium water content) is calculated (step S3).

なお、土砂移動の発生は土層表層部の水分状態(地表の土中水分量)及び土層地深部の水分状態(地下の土中水分量)に依存するから、地表の土中水分量及び地下の土中水分量それぞれに起因する挙動と調和する降雨指標が用いられ、例えば、土中水分量と調和する降雨指標を演算する際には、実効雨量又はタンクモデル等の手法が用いられる。   The occurrence of earth and sand movement depends on the moisture condition of the soil surface layer (surface soil moisture) and the depth of the soil layer (underground soil moisture content). A rainfall index that harmonizes with the behavior caused by each underground moisture content is used. For example, when calculating a rainfall index that harmonizes with the moisture content in the soil, a technique such as an effective rainfall or a tank model is used.

上述のように、短期指標及び長期指標を得た後、地盤情報(地形要因)、短期指標、及び長期指標に応じて多変量解析(例えば、重回帰分析)を行って、災害危険度閾値(以下単に閾値と呼ぶ)を求める(ステップS4)。ステップS4においては、[数式1]で示す重判別式が生成されることになる。   As described above, after obtaining the short-term index and long-term index, multivariate analysis (for example, multiple regression analysis) is performed according to the ground information (terrain factors), the short-term index, and the long-term index, and the disaster risk threshold ( Hereinafter, it is simply referred to as a threshold value (step S4). In step S4, the multiple discriminant represented by [Formula 1] is generated.

[数式1]
y=−(C/C)−(A+Σb)/C(iは1〜nである)
ここで、y=X:短期指標(降雨要因)、x=X:長期指標(降雨要因)、−(C/C)は傾き(C及びCは雨量であり、CはXに対応し、CはXに対応する)、−(A+Σb)/C:地形要因による定数項である。
[Formula 1]
y = − (C 2 / C 1 ) − (A 0 + Σb i X i ) / C 1 (i is 1 to n)
Here, y = X 1 : short-term index (rainfall factor), x = X 2 : long-term index (rainfall factor), − (C 2 / C 1 ) is a slope (C 1 and C 2 are rainfalls, C 1 Corresponds to X 1 and C 2 corresponds to X 2 ), − (A 0 + Σb i X i ) / C 1 : a constant term due to topographic factors.

上述のようにして、重回帰分析によって重判別式を生成すると、この重判別式が線形閾値となり、ステップS5において、危険箇所毎に線形閾値が設定され、土砂災害発生危険度判定部21cに与えられる。この線形閾値は、例えば、図3に示すように、災害発生及び災害非発生におけるx(長期指標)及びy(短期指標)の座標値をx−y座標にプロットした際、災害発生及び災害非発生を区切るようにして描画されることになる。   As described above, when a multiple discriminant is generated by multiple regression analysis, this multiple discriminant becomes a linear threshold value. In step S5, a linear threshold value is set for each dangerous place, and is given to the sediment disaster occurrence risk determination unit 21c. It is done. For example, as shown in FIG. 3, when the coordinate values of x (long-term index) and y (short-term index) in the occurrence of disaster and the occurrence of disaster are plotted on the xy coordinates, the linear threshold is calculated as follows. It will be drawn so that the occurrences are separated.

また、図4に示すように、例えば、土石流発生の危険度が高くなるにつれて閾値は原点に近づき、図4においては、実線で示す線形閾値は土石流発生危険度の低い渓流であり、破線で示す線形閾値は土石流発生危険度の高い渓流を示している。なお、図示のx−y座標には雨量を示すスネーク曲線が示されている。   Also, as shown in FIG. 4, for example, the threshold approaches the origin as the risk of debris flow generation increases, and in FIG. 4, the linear threshold indicated by a solid line is a mountain stream with a low risk of debris flow generation and is indicated by a broken line. The linear threshold indicates a mountain stream with a high risk of debris flow. Note that a snake curve indicating the rainfall is shown in the illustrated xy coordinates.

一方、土中水分量算出部21bでは、危険箇所DB32から得られた危険箇所毎に降雨情報中の解析雨量(実況値:現在の雨量)に基づいて、現在の短期指標及び長期指標を求めて、現在雨量情報として土砂災害発生危険度判定部21cに与える。さらに、土中水分量算出部21bでは、危険箇所毎に降雨情報中の予測雨量(予測値)に基づいて、今後の短期指標及び長期指標を求めて、予測雨量情報として土砂災害発生危険度判定部21cに与える。   On the other hand, the soil moisture content calculation unit 21b obtains the current short-term index and long-term index based on the analyzed rainfall (actual value: current rainfall) in the rainfall information for each risk location obtained from the risk location DB 32. Then, it is given to the sediment-related disaster occurrence risk determination unit 21c as current rainfall information. Further, the soil moisture content calculation unit 21b obtains a future short-term index and a long-term index on the basis of the predicted rainfall (predicted value) in the rainfall information for each risk location, and determines the risk of occurrence of landslide disaster as the predicted rainfall information. To part 21c.

土砂災害発生危険度判定部21cでは、各危険箇所毎の閾値及び各危険箇所毎の現在雨量情報及び予測雨量情報に応じて、各危険箇所毎に土砂災害の発生危険度を判定する。なお、予測雨量情報には、数時間先までの雨量情報が含まれているが、図示の例では、二時間後までの予測雨量情報を用いるものとする。図5を参照すると、土砂災害発生危険度判定部21cでは、土砂災害警戒情報が発令されると(ステップT1)、土砂災害危険度情報として、当該土砂災害警戒情報に該当する区域の住民に対して警戒を呼びかける情報を市町村等に送出する。この際、土砂災害発生危険度判定部21cでは、例えば、モニター(図示せず)に表示された危険箇所の表示色を黄色とする。   The landslide disaster occurrence risk determination unit 21c determines the risk of landslide disaster occurrence for each risk location according to the threshold value for each risk location, the current rainfall information and the predicted rainfall information for each risk location. The predicted rainfall information includes rainfall information up to several hours ahead, but in the illustrated example, predicted rainfall information up to two hours later is used. Referring to FIG. 5, when the sediment-related disaster risk determination unit 21c issues the sediment-related disaster warning information (step T1), as the sediment-related disaster risk information, the residents in the area corresponding to the sediment-related disaster warning information are notified. Information to call for warning is sent to municipalities. At this time, in the earth and sand disaster occurrence risk determination unit 21c, for example, the display color of the dangerous part displayed on the monitor (not shown) is set to yellow.

そして、土砂災害発生危険度判定部21cでは、危険箇所毎に2時間後の予測雨量情報が閾値を越えたか否かを判定し(ステップT2)、2時間後の予測雨量情報が閾値を越えていると、土砂災害危険度情報として、当該危険箇所の現地パトロールを促す情報(第1の警報情報)を市町村等に送出する(ステップT3)。この際、土砂災害発生危険度判定部21cでは、例えば、モニターに表示された危険箇所の表示色を橙色とする。   Then, the landslide disaster occurrence risk determination unit 21c determines whether or not the predicted rainfall information after 2 hours exceeds the threshold value for each dangerous place (step T2), and the predicted rainfall information after 2 hours exceeds the threshold value. If there is, the information (first warning information) that prompts the local patrol of the dangerous location is sent to the municipality as the earth and sand disaster risk information (step T3). At this time, in the earth and sand disaster occurrence risk determination unit 21c, for example, the display color of the dangerous part displayed on the monitor is set to orange.

2時間後の予測雨量情報が閾値を越えると、土砂災害発生危険度判定部21cでは、続いて当該危険箇所の1時間後の予測雨量情報が閾値を越えたか否かを判定し(ステップT4)、1時間後の予測雨量情報が閾値を越えていると、土砂災害危険度情報として、当該危険箇所に該当する住民への避難勧告を行うべき旨の情報(第1の警報情報)を市町村等に送出する(ステップT5)。この際、土砂災害発生危険度判定部21cでは、例えば、モニターに表示された危険箇所の表示色を濃いピンク色とする。   When the predicted rainfall information after 2 hours exceeds the threshold, the sediment-related disaster occurrence risk determination unit 21c subsequently determines whether the predicted rainfall information after 1 hour at the dangerous location exceeds the threshold (step T4). If the predicted rainfall information after one hour exceeds the threshold, municipalities, etc. will inform you that evacuation advice should be given to the residents corresponding to the dangerous location as landslide disaster risk information. (Step T5). At this time, in the earth and sand disaster occurrence risk determination unit 21c, for example, the display color of the dangerous part displayed on the monitor is set to a dark pink color.

さらに、1時間後の予測雨量情報が閾値を越えると、土砂災害発生危険度判定部21cでは、当該危険箇所の現在雨量情報が閾値を越えたか否かを判定し(ステップT6)、現在雨量情報が閾値を越えていると、土砂災害危険度情報として、当該危険箇所に該当する住民へうち未避難者に再度の避難勧告を行うべき旨の情報(第2の警報情報)を市町村等に送出する(ステップT7)。この際、土砂災害発生危険度判定部21cでは、例えば、モニターに表示された危険箇所の表示色を赤色とする。   Further, when the predicted rainfall information after one hour exceeds the threshold value, the sediment disaster occurrence risk determination unit 21c determines whether or not the current rainfall information of the dangerous location exceeds the threshold value (step T6). If the threshold value exceeds the threshold, information (second warning information) indicating that evacuation advice should be given again to the residents who fall under the dangerous location should be sent to municipalities as landslide disaster risk information (Step T7). At this time, in the earth and sand disaster occurrence risk determination unit 21c, for example, the display color of the dangerous part displayed on the monitor is set to red.

再び、図1を参照すると、上述のようにして、土砂災害発生危険度判定部21cから送出された土砂災害危険度情報は、リアルタイムで通信回線51を介して市町村等に送られる。なお、土砂災害危険度情報は、市町村ばかりでなく、例えば、消防、警察、都道府県、国の機関に送信するようにしてもよく、また、住民に直接送信するようにしてもよい。さらに、道路公団等の道路維持機関、JR等の鉄道会社、公共事業関係者等に送信するようにしてもよい。このようにすれば、地域防災、自主防災、道路防災、線路防災、及び工事安全対策等に役立てることができる。   Referring to FIG. 1 again, as described above, the landslide disaster risk information sent from the landslide disaster risk determination unit 21c is sent to a municipality or the like via the communication line 51 in real time. The sediment disaster risk information may be transmitted not only to municipalities but also to, for example, fire departments, police, prefectures, and national institutions, or directly to residents. Further, it may be transmitted to a road maintenance organization such as a road corporation, a railway company such as JR, or a public enterprise. In this way, it can be used for regional disaster prevention, voluntary disaster prevention, road disaster prevention, railway disaster prevention, construction safety measures, and the like.

通信回線51としては、例えば、光ケーブル専用線、衛星通信回線、携帯電話回線、一般電話回線、及びインターネット等が用いられる。また、CATV、地上波デジタル放送等を通信回線として用いるようにしてもよく、このようにすれば、SOS通信サービスとして、災害発生の通報、災害弱者からの応援要請等を関係機関に一斉に転送することができる他、例えば、TV電話のように対話型による相談の受付ができる。   As the communication line 51, for example, an optical cable dedicated line, a satellite communication line, a mobile phone line, a general telephone line, the Internet, or the like is used. In addition, CATV, terrestrial digital broadcasting, etc. may be used as a communication line. In this way, as an SOS communication service, disaster occurrence reports, support requests from vulnerable people, etc. are transferred to related organizations all at once. In addition, for example, an interactive consultation can be accepted like a TV phone.

上述の例では、閾値として図3に示す線形閾値を閾値として危険箇所毎に設定して、土砂災害発生危険度の判定を行うようにしたが、図6に示すように閾値として非線形の閾値を設定するようにしてもよい。図7を参照すると、図7において、図2と同一のステップについては同一の参照符号を付し、説明を省略する。   In the above-described example, the linear threshold value shown in FIG. 3 is set as the threshold value for each dangerous place, and the risk of landslide disaster occurrence is determined. However, as shown in FIG. You may make it set. Referring to FIG. 7, in FIG. 7, the same steps as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.

非線形の閾値を設定する際には、土砂移動ポテンシャル生成部21aでは、地盤情報(地形要因)、短期指標、及び長期指標に応じて、降雨生起頻度演算を行って(ステップS6)、危険箇所毎に災害発生・非発生時における降雨生起頻度データを生成する(ステップS7)。図8に示すように、長期指標及び短期指標をそれぞれ横軸及び縦軸として、雨量(水分量)毎に(図示の例では10mm毎に)、メッシュ状に分割して、スネーク曲線が各メッシュ内に位置する雨量の回数を集計する。   When setting the non-linear threshold, the earth and sand movement potential generation unit 21a calculates the frequency of occurrence of rainfall according to the ground information (topographic factors), the short-term index, and the long-term index (step S6). The frequency of occurrence of rainfall at the time of disaster occurrence / non-occurrence is generated (step S7). As shown in FIG. 8, the long-term index and the short-term index are divided into meshes for each rainfall (water content) (every 10 mm in the illustrated example) with the horizontal axis and the vertical axis respectively, and a snake curve is obtained for each mesh. The number of rainfalls located within is counted.

さらに、災害DB31に格納された災害履歴に基づいて、土砂災害が発生したメッシュにおける降雨生起頻度(例えば、1回/25年)を読み取り、危険箇所毎に災害発生・非発生時における降雨生起頻度データを生成することになる。そして、土砂移動ポテンシャル生成部21aでは、降雨生起頻度データと地形要因との関係を表す重判別式を生成し(ステップS8)、この重判別式を非線形閾値として設定する(ステップS9)。ステップS9においては、危険箇所毎に非線形閾値が設定され、土砂災害発生危険度判定部21cに与えられる。   Further, based on the disaster history stored in the disaster DB 31, the frequency of occurrence of rainfall (for example, once / 25 years) in a mesh where a sediment disaster has occurred is read, and the frequency of occurrence of rainfall at the time of occurrence / non-occurrence of a disaster for each dangerous location. Data will be generated. Then, the sediment movement potential generation unit 21a generates a multiple discriminant representing the relationship between the rainfall occurrence frequency data and the topographic factor (step S8), and sets this double discriminant as a nonlinear threshold (step S9). In step S9, a non-linear threshold is set for each dangerous place, and is given to the earth and sand disaster occurrence risk determination unit 21c.

ここでは、図9に示すように、地形要因下において土砂災害が発生する降雨生起頻度を求めて、その降雨生起頻度の下限線を非線形閾値としていることになる。図9に示す例では、降雨生起頻度が1回と2回との境界に非線形閾値が描画されているが、実際には、図10に示すように、降雨生起頻度に基づいて降雨生起頻度曲面を生成して、この降雨生起頻度曲面に応じて非線形閾値を設定する。   Here, as shown in FIG. 9, the frequency of occurrence of rainfall in which a sediment disaster occurs under topographic factors is obtained, and the lower limit line of the frequency of occurrence of rain is set as a nonlinear threshold. In the example shown in FIG. 9, the non-linear threshold is drawn at the boundary between the rain occurrence frequency once and twice, but actually, as shown in FIG. 10, the rain occurrence frequency curve is based on the rain occurrence frequency. And a non-linear threshold is set according to the rainfall occurrence frequency curved surface.

再び図1を参照すると、被害予測判定部22には、土砂移動量予測部22a、流出解析部22b、氾濫解析部22c、被害予測区域判定部22d、及び被害予測額判定部22eが備えられており、土砂災害危険度判定部21から判定結果、閾値、及び現在雨量情報及び予測雨量情報が被害予測判定部22に与えられる。   Referring to FIG. 1 again, the damage prediction determination unit 22 includes a sediment movement amount prediction unit 22a, a runoff analysis unit 22b, an inundation analysis unit 22c, a damage prediction area determination unit 22d, and a damage prediction amount determination unit 22e. The determination result, threshold value, current rainfall information, and predicted rainfall information are given to the damage prediction determination unit 22 from the sediment disaster risk determination unit 21.

ここで、図11も参照すると、まず、流出解析部22bでは、土砂災害危険度情報が送出された危険箇所に関する地盤情報からその地形モデルを生成し(ステップP1)、この地形モデルについて、表面流・中間流(深度の浅い部分における流れ)・及び統合型キネマティック波(Kinematic Wave)モデルによる流出解析を行う(ステップP2)。そして、ステップP2で得られた流出解析結果に応じて氾濫解析開始地点のハイドログラフを作成する(ステップP3)。このハイドログラフは土砂移動量予測部22aに渡されて、土砂移動量予測部22aでは、河床勾配に応じた土砂濃度を演算する(ステップP4)。ステップP4においては、例えば、[数式2]に基づいて土砂濃度(土石流濃度)を求める。   Here, referring also to FIG. 11, first, the runoff analysis unit 22b generates a topographic model from the ground information regarding the dangerous location to which the sediment disaster risk information is sent (step P1). -An outflow analysis is performed using an intermediate flow (flow in a shallow portion) and an integrated kinematic wave model (step P2). And the hydrograph of the inundation analysis start point is created according to the runoff analysis result obtained in step P2 (step P3). This hydrograph is transferred to the sediment movement amount prediction unit 22a, and the sediment movement amount prediction unit 22a calculates the sediment concentration according to the riverbed gradient (step P4). In Step P4, for example, the sediment concentration (debris flow concentration) is obtained based on [Formula 2].

[数式2]
Cd=(ρtanθ)/{(σ−ρ)(tanφ−tanθ)}
ここで、σ:礫の密度(ton/m)、ρ:水の密度(ton/m)、φ:堆積土砂の内部摩擦角、θ:河床勾配である。
[Formula 2]
Cd = (ρtan θ) / {(σ−ρ) (tan φ−tan θ)}
Here, σ: density of gravel (ton / m 3 ), ρ: density of water (ton / m 3 ), φ: internal friction angle of sedimentary sediment, θ: riverbed gradient.

そして、雨量情報が危険度判定の閾値を超過した時刻について、水に濃度に応じた土砂を加算して、土石流量の予測を行う(ステップP5)。一方、氾濫解析部22cでは、前述した危険箇所毎に河床勾配に応じた土砂濃度の演算を行い(ステップP6)、任意の水量に対応した(つまり、水量毎の)土石流量を設定する(ステップP7)。そして、氾濫解析部22cでは、土石流量に応じた氾濫解析を行って、その結果をデータベース(図示せず)に保存する(ステップP8)。   And about the time when rainfall information exceeded the threshold value of danger determination, the earth and sand according to a density | concentration is added to water, and the debris flow rate is estimated (step P5). On the other hand, the inundation analysis unit 22c calculates the sediment concentration according to the riverbed gradient for each of the above-mentioned dangerous locations (step P6), and sets the debris flow rate corresponding to an arbitrary water amount (that is, for each water amount) (step S6). P7). And inundation analysis part 22c performs inundation analysis according to debris flow, and saves the result in a database (not shown) (Step P8).

被害予測区域判定部22dでは予測土石流量を土砂移動量予測部22aから受けて、予測土石流量に応じて氾濫解析部22cでデータベース化された氾濫解析結果を検索して、該当する氾濫解析結果を得る。そして、被害予測区域判定部22dでは当該氾濫解析結果を被害予測区域とする(ステップP9)。この被害予測区域は被害予測額判定部22eに与えられ、被害予測額判定部22eでは、人口・資産DB34を参照して被害予測区域に基づいて被害予測額を算定する。   The damage prediction area determination unit 22d receives the predicted debris flow rate from the sediment movement amount prediction unit 22a, searches the inundation analysis result stored in the database by the inundation analysis unit 22c according to the predicted debris flow rate, and obtains the corresponding inundation analysis result. obtain. Then, the damage prediction area determination unit 22d sets the flood analysis result as a damage prediction area (step P9). This damage prediction area is given to the damage prediction amount determination unit 22e, and the damage prediction amount determination unit 22e calculates the damage prediction amount based on the damage prediction area with reference to the population / assets DB 34.

なお、被害予測判定部22では、土砂災害危険度閾値を超えた危険箇所について被害予測区域判定を行うことになるが、上述のようにして求められた被害予測区域は被害予測情報としてリアルタイムで通信回線51を介して市町村等に送られる。   Note that the damage prediction determination unit 22 performs damage prediction area determination for dangerous locations that exceed the landslide disaster risk threshold, but the damage prediction area obtained as described above is communicated in real time as damage prediction information. It is sent to the municipality via the line 51.

図1を参照すると、上述のようにして得られた被害予測区域は、避難誘導計画生成部23に与えられる。避難誘導計画生成部23には避難シミュレーション部23a、避難場所検索部23b、及び避難経路生成部23cが備えられており、まず、避難シミュレーション部23aでは、人口・資産DB34から当該被害予測区域の人口を把握するとともに、災害弱者及び関連施設DB35から災害弱者を把握する。そして、避難シミュレーション部23aでは、各種空間基盤DB37及び公共施設DB36から公共施設等の位置を把握して、被害予測区域の住民の避難をシミュレーションして、シミュレーション結果を得る。   Referring to FIG. 1, the damage prediction area obtained as described above is given to the evacuation guidance plan generation unit 23. The evacuation guidance plan generation unit 23 includes an evacuation simulation unit 23a, an evacuation place search unit 23b, and an evacuation route generation unit 23c. First, the evacuation simulation unit 23a stores the population in the damage prediction area from the population / assets DB 34. And the disaster vulnerable person from the disaster facility and related facility DB 35. And in the evacuation simulation part 23a, the position of a public facility etc. is grasped | ascertained from various space infrastructure DB37 and public facility DB36, the evacuation of the resident of a damage prediction area is simulated, and a simulation result is obtained.

このシミュレーション結果は避難場所検索部23bに与えられ、避難場所検索部23bではシミュレーション結果に応じて、各種空間基盤DB37及び公共施設DB36から住民毎に近傍で安全な避難場所を選定する。そして、避難経路生成部23cでは当該避難場所までの最適経路を地図データから検索して避難経路を生成する。これら避難場所及び避難経路は避難誘導情報としてリアルタイムで通信回線51を介して市町村等に送られる。   The simulation result is given to the evacuation site search unit 23b, and the evacuation site search unit 23b selects a safe evacuation site in the vicinity for each inhabitant from the various space infrastructure DB 37 and the public facility DB 36 according to the simulation result. Then, the evacuation route generation unit 23c searches the map data for the optimal route to the evacuation site and generates an evacuation route. These evacuation places and evacuation routes are sent as evacuation guidance information to the municipalities via the communication line 51 in real time.

ところで、上述の説明では、危険度の判定を行う際、危険箇所毎に危険度の判定を行ったが、一定の地域について所定の間隔でメッシュ状に分割して、各メッシュ毎に上述のようにして危険度判定を行うようにしてもよい。例えば、渓流又は斜面を所定の間隔でメッシュ状に分割して、各メッシュについて危険度判定を行うようにする(つまり、危険箇所を所定の間隔でメッシュ状に分割してメッシュ領域として、メッシュ領域の災害危険度閾値を求め、メッシュ領域毎の災害発生危険度を判定するようにしてもよい)。このようにすれば、メッシュ単位で危険度の相違を判定でき、きめ細かい判定を行うことができる。   By the way, in the above description, when the risk level is determined, the risk level is determined for each risk point. However, a predetermined area is divided into meshes at a predetermined interval, and each mesh is as described above. Then, the risk level may be determined. For example, a mountain stream or a slope is divided into meshes at a predetermined interval, and a risk determination is performed for each mesh (that is, a dangerous area is divided into meshes at a predetermined interval as a mesh region, The disaster risk threshold value may be obtained and the risk of disaster occurrence for each mesh area may be determined). In this way, it is possible to determine the difference in risk level in units of meshes, and to perform detailed determination.

危険箇所毎の地盤情報と危険箇所毎の災害発生時における降雨量を示す災害履歴に応じて危険箇所毎に災害危険度閾値を求めて、危険箇所毎に現在の雨量を示す現在雨量情報及び今後の雨量予測値を示す予測雨量情報と災害危険度閾値とを比較して、前記現在雨量情報及び前記予測雨量情報の少なくとも一方が災害危険度閾値を越えると災害危険情報を配信するようにしたので、土砂災害ばかりでなく、地すべり、水害、雪崩、及び融雪災害等の各種災害に係る危険情報の配信に適用できる。   Obtain the disaster risk threshold for each dangerous location according to the ground information for each dangerous location and the disaster history indicating the rainfall at the time of disaster occurrence for each dangerous location, and present rainfall information indicating the current rainfall for each dangerous location and the future The forecasted rainfall information indicating the predicted rainfall amount of the disaster and the disaster risk threshold are compared, and when at least one of the current rainfall information and the predicted rainfall information exceeds the disaster risk threshold, the disaster risk information is distributed. It can be applied to distribution of danger information related to various disasters such as landslides, floods, avalanches and snowmelt disasters as well as earth and sand disasters.

本発明による災害情報サービスシステムの一例を災害情報配信システムとともに示すブロック図である。It is a block diagram which shows an example of the disaster information service system by this invention with a disaster information delivery system. 図1に示す土砂移動ポテンシャル生成部の動作の一例を説明するための図である。It is a figure for demonstrating an example of operation | movement of the earth and sand movement potential production | generation part shown in FIG. 図1に示す土砂移動ポテンシャル生成部で生成される災害危険度閾値の一例を示す図である。It is a figure which shows an example of the disaster risk threshold value produced | generated by the earth and sand movement potential production | generation part shown in FIG. 図1に示す土砂移動ポテンシャル生成部で生成される災害危険度閾値の一例を示す図である。It is a figure which shows an example of the disaster risk threshold value produced | generated by the earth and sand movement potential production | generation part shown in FIG. 図1に示す土砂災害発生危険度判定部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the earth and sand disaster occurrence risk determination part shown in FIG. 図1に示す土砂移動ポテンシャル生成部で生成される災害危険度閾値の他の例を示す図である。It is a figure which shows the other example of the disaster risk threshold value produced | generated by the earth and sand movement potential production | generation part shown in FIG. 図1に示す土砂移動ポテンシャル生成部の動作の他の例を説明するための図である。It is a figure for demonstrating the other example of operation | movement of the earth and sand movement potential production | generation part shown in FIG. 長期指標及び短期指標をそれぞれ横軸及び縦軸として雨量の回数を集計した結果を示す図である。It is a figure which shows the result of having totaled the frequency | count of rainfall, setting a long-term index and a short-term index as a horizontal axis and a vertical axis | shaft, respectively. 降雨生起頻度に応じた災害危険閾値の一例を示す図である。It is a figure which shows an example of the disaster risk threshold value according to rainfall occurrence frequency. 降雨生起頻度に応じた災害危険閾値の他の例を示す図である。It is a figure which shows the other example of a disaster risk threshold value according to the rain occurrence frequency. 図1に示す被害予測判定部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the damage prediction determination part shown in FIG.

符号の説明Explanation of symbols

11 災害情報サービスシステム
21 土砂災害危険度判定部
22 被害予測判定部
23 避難誘導計画生成部
31 災害DB
32 危険箇所DB
33 対策施設DB
34 人口・資産DB
35 災害弱者及び関連施設DB
36 公共施設DB
37 各種空間基盤DB
41 地盤情報配信システム
42 降雨情報配信システム
21a 土砂移動ポテンシャル(閾値)生成部
21b 土中水分量(相対値)算出部
21c 土砂災害発生危険度判定部
22a 土砂移動量予測部
22b 流出解析部
22c 氾濫解析部
22d 被害予測区域判定部
22e 被害予測額判定部
23a 避難シミュレーション部
23b 避難場所検索部
23c 避難経路生成部
51 通信回線
11 Disaster Information Service System 21 Sediment Disaster Risk Determination Unit 22 Damage Prediction Determination Unit 23 Evacuation Guidance Plan Generation Unit 31 Disaster DB
32 Hazardous Location DB
33 measures facility DB
34 Population / Asset DB
35 Disaster vulnerable people and related facilities DB
36 public facilities DB
37 Various space infrastructure DB
41 Ground information distribution system 42 Rainfall information distribution system 21a Sediment movement potential (threshold) generation unit 21b Soil moisture content (relative value) calculation unit 21c Sediment disaster occurrence risk determination unit 22a Sediment movement amount prediction unit 22b Runoff analysis unit 22c Inundation Analysis unit 22d Damage prediction area determination unit 22e Damage prediction amount determination unit 23a Evacuation simulation unit 23b Evacuation place search unit 23c Evacuation route generation unit 51 Communication line

Claims (9)

危険箇所毎に災害発生の危険度を判定して災害危険情報を災害情報サービスとして配信する災害情報サービスシステムであって、
前記危険箇所毎の地盤情報と前記危険箇所毎の災害発生時における降雨量を示す災害履歴に応じて、前記危険箇所毎に災害危険度閾値を求める閾値生成手段と、
前記危険箇所毎に現在の雨量を示す現在雨量情報及び今後の雨量予測値を示す予測雨量情報と前記災害危険度閾値とを比較して、前記現在雨量情報及び前記予測雨量情報の少なくとも一方が前記災害危険度閾値を越えると前記災害危険情報を配信する災害発生危険度判定手段とを有することを特徴とする災害情報サービスシステム。
A disaster information service system that determines the risk of occurrence of a disaster for each dangerous place and distributes disaster risk information as a disaster information service,
Threshold generation means for obtaining a disaster risk threshold for each dangerous location according to the disaster history indicating the ground information for each dangerous location and the amount of rainfall at the time of disaster occurrence for each dangerous location;
Comparing the current rainfall information indicating the current rainfall for each danger spot and the predicted rainfall information indicating the predicted future rainfall value and the disaster risk threshold, at least one of the current rainfall information and the predicted rainfall information is the A disaster information service system comprising: a disaster occurrence risk determination unit that distributes the disaster risk information when a disaster risk threshold is exceeded.
前記閾値生成手段は、多変量解析に基づいて判別式として前記災害危険度閾値を得るようにしたことを特徴とする請求項1記載の災害情報サービスシステム。   The disaster information service system according to claim 1, wherein the threshold generation unit obtains the disaster risk threshold as a discriminant based on multivariate analysis. 前記災害発生危険度判定手段は、前記予測雨量情報が前記災害危険度閾値を越えると、予め定められた第1の警告情報を前記災害危険情報として配信するようにしたことを特徴とする請求項1又は2記載の災害情報サービスシステム。   The disaster risk determination means, when the predicted rainfall information exceeds the disaster risk threshold, delivers predetermined first warning information as the disaster risk information. The disaster information service system according to 1 or 2. 前記災害発生危険度判定手段は、前記第1の警告情報を配信した後、前記現在雨量情報が前記災害危険度閾値を越えると、予め規定された第2の警告情報を前記災害危険情報として配信するようにしたことを特徴とする請求項3記載の災害情報サービスシステム。   The disaster occurrence risk determination means distributes the second warning information defined in advance as the disaster risk information when the current rainfall information exceeds the disaster risk threshold after distributing the first warning information. The disaster information service system according to claim 3, wherein the disaster information service system is provided. 前記災害発生危険度判定手段は、前記第1及び前記第2の警告情報を配信する際、その危険度に応じて当該危険箇所の表示色を変化させるようにしたことを特徴とする請求項4際の災害情報サービスシステム。   5. The disaster occurrence risk determining means, when distributing the first and second warning information, changes the display color of the dangerous location according to the risk level. Disaster information service system. 前記災害危険情報が配信されると、前記地盤情報、前記現在雨量情報、及び前記予測雨量情報に応じて当該危険箇所に係る水分の流出解析を行い流出解析結果を得る流出解析手段と、
前記流出解析結果に基づいて前記地盤情報に応じた土砂濃度を得て土砂の流量を推定土砂流量とする土砂移動量予測手段と、
前記危険箇所毎に予め土砂流量に応じた氾濫解析が行われてその被害区域が氾濫解析結果として設定されたデータベースと、
前記推定土砂流量に応じて前記データベースから前記氾濫解析結果を抽出して被害予測区域を求める被害予測区域判定手段とを有することを特徴とする請求項1〜5いずれか1項記載の災害情報サービスシステム。
When the disaster risk information is distributed, runoff analysis means that performs runoff analysis of moisture related to the dangerous location according to the ground information, the current rainfall information, and the predicted rainfall information, and obtains runoff analysis results;
A sediment movement amount prediction means that obtains the sediment concentration according to the ground information based on the outflow analysis result and sets the sediment flow rate to the estimated sediment flow rate,
A database in which the inundation analysis according to the sediment flow rate is performed in advance for each dangerous place and the damaged area is set as the inundation analysis result,
The disaster information service according to any one of claims 1 to 5, further comprising damage prediction area determination means for extracting the flood analysis result from the database according to the estimated sediment flow rate and obtaining a damage prediction area. system.
前記被害予測区域判定手段は、通信回線を介して前記被害予測区域を示す被害予測情報を配信するようにしたことを特徴とする請求項6記載の災害情報サービスシステム。   7. The disaster information service system according to claim 6, wherein the damage prediction area determination means distributes damage prediction information indicating the damage prediction area via a communication line. 前記被害予測区域を得て、少なくとも当該危険箇所に係る人口及び避難場所の位置に応じて避難シミュレーションを行って避難場所及び避難経路を示す避難誘導情報を生成する避難誘導計画生成手段を有し、
該避難誘導情報を通信回線を介して配信することを特徴とする請求項6又は7記載の災害情報サービスシステム。
The evacuation guidance plan generating means for obtaining the damage prediction area and generating evacuation guidance information indicating an evacuation place and an evacuation route by performing an evacuation simulation according to at least the population and the position of the evacuation place related to the dangerous place,
The disaster information service system according to claim 6 or 7, wherein the evacuation guidance information is distributed via a communication line.
前記危険箇所は所定の間隔でメッシュ状に分割してメッシュ領域とされており、
前記閾値生成手段は前記メッシュ領域の災害危険度閾値を求め、
前記災害発生危険度判定手段は、前記メッシュ領域毎の災害発生危険度を判定するようにしたことを特徴とする請求項1記載の災害情報サービスシステム。
The dangerous part is divided into a mesh shape at a predetermined interval to be a mesh region,
The threshold generation means obtains a disaster risk threshold for the mesh area,
The disaster information service system according to claim 1, wherein the disaster occurrence risk determination means determines a disaster occurrence risk for each mesh area.
JP2004009709A 2004-01-16 2004-01-16 Disaster-information service system Pending JP2005200972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009709A JP2005200972A (en) 2004-01-16 2004-01-16 Disaster-information service system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009709A JP2005200972A (en) 2004-01-16 2004-01-16 Disaster-information service system

Publications (1)

Publication Number Publication Date
JP2005200972A true JP2005200972A (en) 2005-07-28

Family

ID=34822665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009709A Pending JP2005200972A (en) 2004-01-16 2004-01-16 Disaster-information service system

Country Status (1)

Country Link
JP (1) JP2005200972A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015916A (en) * 2006-07-07 2008-01-24 Toshiba Corp Monitoring system
JP2008198073A (en) * 2007-02-15 2008-08-28 Sabo Jisuberi Gijutsu Center System for supporting determination of evacuation call
JP2010150862A (en) * 2008-12-26 2010-07-08 Fujitsu Ltd Apparatus, method and program for determining danger of debris flow
CN103489288A (en) * 2013-10-11 2014-01-01 中国地质调查局水文地质环境地质调查中心 Debris flow automatic motoring and early warning device and arrangement method thereof
JP2015113567A (en) * 2013-12-09 2015-06-22 一般財団法人砂防・地すべり技術センター Analysis method for debris flow in motion
JP2015232537A (en) * 2014-05-12 2015-12-24 国立大学法人京都大学 Slope collapse prediction method and slope collapse prediction device
JP2016183498A (en) * 2015-03-26 2016-10-20 中国電力株式会社 Landslide disaster prediction system and landslide disaster prediction method
KR101768953B1 (en) 2016-04-15 2017-08-22 대한민국 Method of calculation safe index, apparatus performing the same and storage media storing the same
CN108132980A (en) * 2017-12-13 2018-06-08 国家电网公司 Electric power rescue and relief work paths planning method in mountain area under a kind of rainstorm weather
JPWO2017047061A1 (en) * 2015-09-14 2018-08-16 日本電気株式会社 Disaster prediction system, moisture amount prediction apparatus, disaster prediction method, and program recording medium
EP3282433A4 (en) * 2015-04-06 2019-04-17 Kabushiki Kaisha Toshiba Disaster prevention system
CN111524321A (en) * 2020-04-21 2020-08-11 中国科学院、水利部成都山地灾害与环境研究所 Geological disaster early warning method
CN113380004A (en) * 2021-06-02 2021-09-10 成都山地环安科技有限公司 Mountain disaster monitoring terminal, mountain disaster self-adaptive monitoring and early warning method and debris flow/landslide self-adaptive monitoring and early warning method
CN113409550A (en) * 2021-06-25 2021-09-17 西藏林芝市气象局 Debris flow disaster early warning method and system based on runoff convergence simulation
CN117132883A (en) * 2023-05-08 2023-11-28 江苏商贸职业学院 GIS-based intelligent agricultural disaster discrimination method and system
JP7445410B2 (en) 2018-12-18 2024-03-07 旭化成ホームズ株式会社 Disaster response server, disaster response method and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158186A (en) * 1995-12-14 1997-06-17 Railway Technical Res Inst Method of judging failure form of cut slope and method of predicting deep failure limit rain quantity of the cut slope
JP2003006775A (en) * 2001-04-19 2003-01-10 Shinko Electric Co Ltd Earth/sand disaster previously sensing and warning system and debris flow detector
JP2003184098A (en) * 2001-12-17 2003-07-03 Yamaguchi Technology Licensing Organization Ltd Generation limit line of sediment disaster, setting method of evacuation reference line and warning reference line and its program, and warning evacuation assisting system using generation limit line, evacuation reference line, and warning reference line
JP2003217054A (en) * 2002-01-17 2003-07-31 Kokusai Kogyo Co Ltd Disaster preventive information distributing server and disaster preventive distributing system used together with this server
JP2003247238A (en) * 2001-12-13 2003-09-05 Asia Air Survey Co Ltd Sediment disaster risk management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158186A (en) * 1995-12-14 1997-06-17 Railway Technical Res Inst Method of judging failure form of cut slope and method of predicting deep failure limit rain quantity of the cut slope
JP2003006775A (en) * 2001-04-19 2003-01-10 Shinko Electric Co Ltd Earth/sand disaster previously sensing and warning system and debris flow detector
JP2003247238A (en) * 2001-12-13 2003-09-05 Asia Air Survey Co Ltd Sediment disaster risk management system
JP2003184098A (en) * 2001-12-17 2003-07-03 Yamaguchi Technology Licensing Organization Ltd Generation limit line of sediment disaster, setting method of evacuation reference line and warning reference line and its program, and warning evacuation assisting system using generation limit line, evacuation reference line, and warning reference line
JP2003217054A (en) * 2002-01-17 2003-07-31 Kokusai Kogyo Co Ltd Disaster preventive information distributing server and disaster preventive distributing system used together with this server

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015916A (en) * 2006-07-07 2008-01-24 Toshiba Corp Monitoring system
JP2008198073A (en) * 2007-02-15 2008-08-28 Sabo Jisuberi Gijutsu Center System for supporting determination of evacuation call
JP2010150862A (en) * 2008-12-26 2010-07-08 Fujitsu Ltd Apparatus, method and program for determining danger of debris flow
CN103489288A (en) * 2013-10-11 2014-01-01 中国地质调查局水文地质环境地质调查中心 Debris flow automatic motoring and early warning device and arrangement method thereof
JP2015113567A (en) * 2013-12-09 2015-06-22 一般財団法人砂防・地すべり技術センター Analysis method for debris flow in motion
JP2015232537A (en) * 2014-05-12 2015-12-24 国立大学法人京都大学 Slope collapse prediction method and slope collapse prediction device
JP2016183498A (en) * 2015-03-26 2016-10-20 中国電力株式会社 Landslide disaster prediction system and landslide disaster prediction method
EP3282433A4 (en) * 2015-04-06 2019-04-17 Kabushiki Kaisha Toshiba Disaster prevention system
US10287739B2 (en) 2015-04-06 2019-05-14 Kabushiki Kaisha Toshiba Disaster prevention system
US11237148B2 (en) 2015-09-14 2022-02-01 Nec Corporation Flood disaster prediction
JPWO2017047061A1 (en) * 2015-09-14 2018-08-16 日本電気株式会社 Disaster prediction system, moisture amount prediction apparatus, disaster prediction method, and program recording medium
US10761076B2 (en) 2015-09-14 2020-09-01 Nec Corporation Determination risk of natural disaster based on moisture content information
KR101768953B1 (en) 2016-04-15 2017-08-22 대한민국 Method of calculation safe index, apparatus performing the same and storage media storing the same
CN108132980B (en) * 2017-12-13 2021-07-23 国家电网公司 Electric power emergency rescue and disaster relief path planning method for mountainous area in rainstorm weather
CN108132980A (en) * 2017-12-13 2018-06-08 国家电网公司 Electric power rescue and relief work paths planning method in mountain area under a kind of rainstorm weather
JP7445410B2 (en) 2018-12-18 2024-03-07 旭化成ホームズ株式会社 Disaster response server, disaster response method and program
CN111524321A (en) * 2020-04-21 2020-08-11 中国科学院、水利部成都山地灾害与环境研究所 Geological disaster early warning method
CN113380004A (en) * 2021-06-02 2021-09-10 成都山地环安科技有限公司 Mountain disaster monitoring terminal, mountain disaster self-adaptive monitoring and early warning method and debris flow/landslide self-adaptive monitoring and early warning method
CN113409550A (en) * 2021-06-25 2021-09-17 西藏林芝市气象局 Debris flow disaster early warning method and system based on runoff convergence simulation
CN113409550B (en) * 2021-06-25 2022-05-27 西藏林芝市气象局 Debris flow disaster early warning method and system based on runoff convergence simulation
CN117132883A (en) * 2023-05-08 2023-11-28 江苏商贸职业学院 GIS-based intelligent agricultural disaster discrimination method and system
CN117132883B (en) * 2023-05-08 2024-03-19 江苏商贸职业学院 GIS-based intelligent agricultural disaster discrimination method and system

Similar Documents

Publication Publication Date Title
Piciullo et al. Territorial early warning systems for rainfall-induced landslides
Falconer et al. Pluvial flooding: new approaches in flood warning, mapping and risk management
JP4082686B2 (en) Real-time dynamic flood simulation system
JP2005200972A (en) Disaster-information service system
Jaiswal et al. Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India
JP2003168179A (en) Real time hazard map system
Gargoum et al. Assessing stopping and passing sight distance on highways using mobile LiDAR data
US20130116920A1 (en) System, method and program product for flood aware travel routing
JP2002269656A (en) River information provision system
Siqueira et al. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances
JP7158128B2 (en) Disaster occurrence probability calculation system and method, program, and recording medium
Péroche et al. An accessibility graph-based model to optimize tsunami evacuation sites and routes in Martinique, France
Scaini et al. A GIS-based methodology for the estimation of potential volcanic damage and its application to Tenerife Island, Spain
Drejza et al. Quantifying road vulnerability to coastal hazards: Development of a synthetic index
WO2021084698A1 (en) Analysis device and analysis method
KR101396160B1 (en) Method of analyzing cctv blind spot and finding installation location of the cctv by mash-up
Muhari et al. TSUNAMI MITIGATION PLANNING IN PACITAN, INDONESIA: A REVIEW OF EXISTING EFFORTS AND WAYS AHEAD.
JP2003141670A (en) Support system for risk evaluation and determination of river information
Lentini et al. Consequence analyses induced by landslides along transport infrastructures in the Enna area (South Italy)
Birch et al. Enhanced surface water flood forecasts: User‐led development and testing
Molinari et al. Flood Early Warning Systems: Knowledge and Tools for Their Critical Assessment
Juan et al. Developing a radar-based flood alert system for Sugar Land, Texas
Uchida et al. Countermeasures for sediment-related disasters in Japan using hazard maps
Rogelis Flood risk in road networks
Utasse et al. Territorial accessibility and decision-making structure related to debris flow impacts on roads in the French Alps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090626