JP6447623B2 - Composite microporous membrane and filter using the same - Google Patents

Composite microporous membrane and filter using the same Download PDF

Info

Publication number
JP6447623B2
JP6447623B2 JP2016506449A JP2016506449A JP6447623B2 JP 6447623 B2 JP6447623 B2 JP 6447623B2 JP 2016506449 A JP2016506449 A JP 2016506449A JP 2016506449 A JP2016506449 A JP 2016506449A JP 6447623 B2 JP6447623 B2 JP 6447623B2
Authority
JP
Japan
Prior art keywords
microporous membrane
composite microporous
layer
polyvinylidene fluoride
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016506449A
Other languages
Japanese (ja)
Other versions
JPWO2015133364A1 (en
Inventor
修 古嶋
修 古嶋
直 長迫
直 長迫
山口 修
修 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
JNC Corp
JNC Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, JNC Petrochemical Corp filed Critical JNC Corp
Publication of JPWO2015133364A1 publication Critical patent/JPWO2015133364A1/en
Application granted granted Critical
Publication of JP6447623B2 publication Critical patent/JP6447623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/04Glass
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、膜分離活性汚泥法(メンブレンバイオリアクター:MBR)等に代表される水処理用途に適した微多孔質膜に関する。   The present invention relates to a microporous membrane suitable for water treatment applications represented by a membrane separation activated sludge method (membrane bioreactor: MBR) and the like.

ポリフッ化ビニリデン(PVDF)からなる微多孔質膜は耐薬品性、耐熱性に優れることからエアフィルター、バグフィルター、液濾過用フィルターとして幅広く使用されている。PVDFの微多孔質膜の製法としては、非溶媒誘起相分離法(ポリマーをその良溶媒に溶かした溶液を作製し、この溶液をガラス板などに薄く塗布したものを非溶媒に浸漬することで相分離を誘起し、微多孔質膜を得る方法)などがある(例えば特許文献1)。   Microporous membranes made of polyvinylidene fluoride (PVDF) are widely used as air filters, bag filters, and liquid filtration filters because of their excellent chemical resistance and heat resistance. The PVDF microporous membrane can be produced by a non-solvent induced phase separation method (by preparing a solution in which a polymer is dissolved in a good solvent and immersing this solution thinly on a glass plate or the like in a non-solvent. For example, a method of inducing phase separation to obtain a microporous membrane) (for example, Patent Document 1).

PVDFの微多孔質膜は疎水性であるため、水処理用途に用いるためには表面をポリビニルアルコール(PVA)等の親水化剤で被覆したり、エタノール置換したりして親水化処理を施す必要がある(例えば特許文献2)。しかし、この手法で得られる親水化微多孔質膜は親水化効果の持続性に乏しく、PVAやエタノールが全て溶出した場合に親水化効果がなくなってしまう。また、濾液中にPVAが混入したり、PVAで細孔が目詰まりしたりするといった問題がある。   Since the PVDF microporous membrane is hydrophobic, it needs to be subjected to a hydrophilization treatment by coating it with a hydrophilizing agent such as polyvinyl alcohol (PVA) or by replacing it with ethanol in order to use it for water treatment. (For example, Patent Document 2). However, the hydrophilized microporous membrane obtained by this method has poor persistence of the hydrophilizing effect, and the hydrophilizing effect is lost when all of PVA and ethanol are eluted. Moreover, there exists a problem that PVA mixes in a filtrate or a pore is clogged with PVA.

国際公開第10/032808号パンフレットInternational Publication No. 10/032808 Pamphlet 特開平05−023557号公報Japanese Patent Laid-Open No. 05-023557

このようなことから、本発明の課題は、親水化剤の被覆による細孔の目詰まりがなく、恒久的な親水性を有する水処理用途の複合微多孔質膜及びこれを用いたフィルターを提供することにある。   In view of the above, the object of the present invention is to provide a composite microporous membrane for water treatment that has no permanent clogging due to coating with a hydrophilizing agent and has permanent hydrophilicity, and a filter using the same. There is to do.

本発明者らは、前記課題を解決するために鋭意検討を重ねた。その結果、表面構造を最適化したポリフッ化ビニリデン系樹脂を含有する微多孔質膜を用い、その表面をSiOガラス層で被覆して得られた複合微多孔質膜が前記課題を解決することを見出し、この知見に基づいて本発明を完成するに至った。The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, a composite microporous membrane obtained by using a microporous membrane containing a polyvinylidene fluoride resin with an optimized surface structure and covering the surface with a SiO 2 glass layer solves the above-mentioned problems The present invention has been completed based on this finding.

本発明の第1の態様に係る複合微多孔質膜は、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の少なくとも片側の表面にSiOガラス層を被覆させたことを特徴とする。この様に構成すると、ポリフッ化ビニリデン系樹脂の持つ耐熱性と耐薬品性に加え、SiOガラス層の有する親水化効果を得られるため、濾過膜として優れた性能を示す。The composite microporous membrane according to the first aspect of the present invention is characterized in that a SiO 2 glass layer is coated on the surface of at least one side of a microporous membrane containing a polyvinylidene fluoride resin. When configured in this manner, in addition to heat resistance and chemical resistance possessed by polyvinylidene fluoride resin, because the resulting hydrophilic effect with the SiO 2 glass layer, exhibits excellent performance as a filtration membrane.

本発明の第2の態様に係る複合微多孔質膜は、上記発明の第1の態様に係る複合微多孔質膜において、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜が、非溶媒誘起相分離法により作製されている。この様に構成すると、孔径が膜の厚み方向に変化する非対称構造(図8左参照)を有し、微孔が形成されたスキン層と前記スキン層を支える前記微孔よりも大きい空孔が形成された支持層を備える構造を有するため、スキン層で濾過精度を維持し、支持層で透過性を確保できるため、優れた濾過性能を示す。   The composite microporous membrane according to the second aspect of the present invention is the composite microporous membrane according to the first aspect of the invention, wherein the microporous membrane containing the polyvinylidene fluoride resin is a non-solvent induced phase. It is produced by a separation method. With this configuration, the skin layer in which the pore diameter changes in the thickness direction of the membrane (see the left side of FIG. 8), and the pores larger than the pores supporting the skin layer and the skin layer in which the pores are formed are formed. Since it has the structure provided with the formed support layer, the filtration accuracy is maintained by the skin layer, and the permeability can be secured by the support layer.

本発明の第3の態様に係る複合微多孔質膜は、上記発明の第1の態様または第2の態様に係る複合微多孔質膜において、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜は非対称膜であり、微孔が形成されたスキン層と前記スキン層を支える、前記微孔よりも大きい空孔が形成された支持層とを備え、前記スキン層は複数の球状体を有し、それぞれの前記球状体から複数の線状の結合材が3次元方向に伸びており、隣接する前記球状体は、前記線状の結合材により互いに接続され、前記球状体を交点とした3次元網目構造を形成する。
図1に本発明に係る3次元網目構造の一例を示す。図1は、スキン層表面の走査型電子顕微鏡(SEM)写真である。なお、「スキン層」とは、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の断面において表面からマクロボイドまでの層をいい、「支持層」とは、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜全体からスキン層を除いた層をいう。「マクロボイド」とは、微多孔質膜の支持層に発生し、最小で数μm、最大で支持層の厚さとほぼ同じ大きさとなる巨大な空洞をいう。「球状体」とは、3次元網目構造の交点に形成された球状であって、完全な球状に限られず、ほぼ球状も含まれる。このように構成すると、球状体と球状体の間の空隙が線状の結合材で仕切られた形となるため、形状・大きさが揃った微孔ができやすく、透過性に優れたスキン層を形成することができる。線状の結合材は、球状体を架橋する役割も果たすため、球状体が脱落等することがなく、濾液に濾材自体が混入するのを防ぐことができる。さらに、3次元網目構造の交点に球状体が存在するため、濾過膜として使用する際に圧力によりスキン層がつぶれるのを防ぐことができる。すなわち、耐圧性が高い。さらに、球状体と線状の結合材による図1に示すような3次元網目構造により、スキン層の空隙が従来の同程度の孔径を有するポリフッ化ビニリデン系樹脂を含有する微多孔質膜に比べて多くなり、通路が維持され、さらに空隙がより均質に立体的に配置されているため、優れた透過性を有する。
The composite microporous membrane according to the third aspect of the present invention is the composite microporous membrane according to the first or second aspect of the invention, wherein the microporous membrane containing a polyvinylidene fluoride resin is An asymmetric membrane, comprising a skin layer in which micropores are formed and a support layer in which pores larger than the micropores are formed to support the skin layer, the skin layer having a plurality of spherical bodies, A plurality of linear binders extend from each of the spherical bodies in a three-dimensional direction, and the adjacent spherical bodies are connected to each other by the linear binders, and a three-dimensional network having the spherical bodies as intersections. Form a structure.
FIG. 1 shows an example of a three-dimensional network structure according to the present invention. FIG. 1 is a scanning electron microscope (SEM) photograph of the skin layer surface. The “skin layer” refers to the layer from the surface to the macro void in the cross section of the microporous membrane containing the polyvinylidene fluoride resin, and the “support layer” refers to the fine layer containing the polyvinylidene fluoride resin. A layer obtained by removing the skin layer from the entire porous membrane. “Macrovoid” refers to a huge cavity that occurs in a support layer of a microporous membrane and has a minimum size of several μm and a maximum size approximately the same as the thickness of the support layer. The “spherical body” is a sphere formed at the intersection of the three-dimensional network structure, and is not limited to a perfect sphere, but includes almost a sphere. With this configuration, the gap between the sphere and the sphere is partitioned by a linear binder, making it easy to form micropores of uniform shape and size, and a skin layer with excellent permeability. Can be formed. Since the linear binding material also serves to crosslink the spherical body, the spherical body does not fall off and the filtering medium itself can be prevented from being mixed into the filtrate. Furthermore, since a spherical body exists at the intersection of the three-dimensional network structure, the skin layer can be prevented from being crushed by pressure when used as a filtration membrane. That is, the pressure resistance is high. Furthermore, the three-dimensional network structure as shown in FIG. 1 using a spherical body and a linear binder makes the skin layer voids smaller than conventional microporous membranes containing a polyvinylidene fluoride resin having the same pore size. Therefore, the passage is maintained, and the voids are more uniformly and three-dimensionally arranged.

本発明の第4の態様に係る複合微多孔質膜は、上記本発明の第3の態様に係る複合微多孔質膜において、前記球状体の粒径が、平均粒径の±10%の幅の範囲に50%以上となる度数分布を有する。このように構成すると、スキン層が有する球状体は、その粒径が揃ったものとなる。よって、球状体と球状体の間に、孔径が均一な空隙が形成され易い。   The composite microporous membrane according to the fourth aspect of the present invention is the composite microporous membrane according to the third aspect of the present invention, wherein the spherical particles have a width within ± 10% of the average particle size. In the range of 50% or more. If comprised in this way, the spherical body which a skin layer has will become the thing with the equal particle size. Therefore, a void having a uniform pore diameter is easily formed between the spherical body and the spherical body.

本発明の第5の態様に係る複合微多孔質膜は、上記本発明の第3の態様または第4の態様に係る複合微多孔質膜において、前記結合材の長さが、平均長の±30%の幅の範囲に50%以上となる度数分布を有する。このように構成すると、スキン層が有する球状体はより均一に分散される。よって、球状体と球状体の間に、孔径が均一な空隙が形成され易い。   The composite microporous membrane according to the fifth aspect of the present invention is the composite microporous membrane according to the third aspect or the fourth aspect of the present invention, wherein the length of the binder is ± the average length. It has a frequency distribution of 50% or more in a range of 30% width. If comprised in this way, the spherical body which a skin layer has will be disperse | distributed more uniformly. Therefore, a void having a uniform pore diameter is easily formed between the spherical body and the spherical body.

本発明の第6の態様に係る複合微多孔質膜は、上記本発明の第3の態様〜第5の態様のいずれか1の態様に係る複合微多孔質膜において、前記球状体は、0.05〜0.5μmの平均粒径を有する。このように構成すると、上記範囲内の平均粒径を有する球状体と、球状体を相互接続する線状の結合材により、球状体と球状体の間に、微孔が容易に形成される。   The composite microporous membrane according to the sixth aspect of the present invention is the composite microporous membrane according to any one of the third to fifth aspects of the present invention, wherein the spherical body is 0. It has an average particle size of 0.05 to 0.5 μm. If comprised in this way, a micropore will be easily formed between a spherical body and a spherical body with the spherical body which has the average particle diameter in the said range, and the linear binding material which connects a spherical body.

本発明の第7の態様に係る複合微多孔質膜は、上記本発明の第3の態様〜第6の態様のいずれか1の態様に係る複合微多孔質膜において、前記スキン層の厚みは、0.5〜5μmであり、前記支持層の厚みは、20〜500μmである。このように構成すると、スキン層は非対称膜において不純物を取り除く層(機能層)であるため、球状体を交点とした3次元網目構造の形成を妨げない範囲内であれば、薄いほど濾過抵抗を小さくできるため好ましい。微多孔質膜の大部分を占める支持層は、不純物の除去にほとんど寄与しないが、極度に薄いスキン層だけでは破れてしまうため、スキン層よりも十分に厚い支持層によりこれを回避することができる。   The composite microporous membrane according to the seventh aspect of the present invention is the composite microporous membrane according to any one of the third to sixth aspects of the present invention, wherein the thickness of the skin layer is 0.5 to 5 μm, and the thickness of the support layer is 20 to 500 μm. With this configuration, since the skin layer is a layer (functional layer) that removes impurities in the asymmetric membrane, the thinner it is within the range that does not hinder the formation of the three-dimensional network structure with the spherical body as an intersection, the lower the filtration resistance. Since it can be made small, it is preferable. The support layer occupying most of the microporous membrane hardly contributes to the removal of impurities, but can be avoided by a support layer that is sufficiently thicker than the skin layer because it can be broken only by an extremely thin skin layer. it can.

本発明の第8の態様に係る複合微多孔質膜は、上記本発明の第3の態様〜第7の態様のいずれか1の態様に係る複合微多孔質膜において、前記支持層を支える基材層を備える。
このように構成すると、基材層が補強材となり、より高い濾過圧に耐えられるようになる。また、製膜時の塗布において、素材となる樹脂を溶媒に溶解させた原料液が不用意に流れ出すのを防ぐことができる。特に、粘性の低い原料液の場合に有効である。なお、支持層の一部は基材層と混在した形となり、両者の境界はそれほど明確ではない。支持層と基材層の混在部分が少なすぎると、支持層が基材層から剥離しやすくなる場合がある。
A composite microporous membrane according to an eighth aspect of the present invention is the composite microporous membrane according to any one of the third to seventh aspects of the present invention, wherein the base supporting the support layer is provided. A material layer is provided.
If comprised in this way, a base material layer will become a reinforcing material and will be able to endure a higher filtration pressure. In addition, in the application during film formation, it is possible to prevent a raw material solution obtained by dissolving a resin as a raw material in a solvent from flowing out carelessly. This is particularly effective when the raw material liquid has a low viscosity. A part of the support layer is mixed with the base material layer, and the boundary between them is not so clear. When there are too few mixed parts of a support layer and a base material layer, a support layer may become easy to peel from a base material layer.

本発明の第9の態様に係る複合微多孔質膜は、上記本発明の第1の態様〜第8の態様に係る複合微多孔質膜において、前記ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)は、60万〜100万である。
このように構成すると、上記重量平均分子量のポリフッ化ビニリデン系樹脂では、球状体とそれらを互いに架橋接続する線状の結合材による球状体を交点とした3次元網目構造を有するスキン層を備えたポリフッ化ビニリデン系樹脂を含有する微多孔質膜を容易に形成することができる。
The composite microporous membrane according to the ninth aspect of the present invention is the composite microporous membrane according to the first to eighth aspects of the present invention, wherein the weight-average molecular weight (Mw) of the polyvinylidene fluoride resin is the same. ) Is 600,000 to 1,000,000.
When configured in this manner, the polyvinylidene fluoride resin having the weight average molecular weight includes a skin layer having a three-dimensional network structure in which the spherical bodies and the spherical bodies formed by a linear binder that cross-links the spherical bodies are crossed. A microporous film containing a polyvinylidene fluoride resin can be easily formed.

本発明の第10の態様に係る複合微多孔質膜は、上記本発明の第1の態様〜第9の態様のいずれか1の態様に係る複合微多孔質膜において、その平均流孔径が5〜500nmである。平均流孔径が5nm以上であると、濾過時の目詰まりに伴う圧力損失の増加を最小限にすることができ、500nm以下であると、粗大不純物粒子の透過を抑制することができるため、優れた濾過性能を示す。   The composite microporous membrane according to the tenth aspect of the present invention is the composite microporous membrane according to any one of the first to ninth aspects of the present invention, wherein the average pore size is 5 ~ 500 nm. If the average flow hole diameter is 5 nm or more, an increase in pressure loss due to clogging during filtration can be minimized, and if it is 500 nm or less, transmission of coarse impurity particles can be suppressed. The filtration performance is shown.

本発明の第11の態様に係る複合微多孔質膜は、上記本発明の第1の態様〜第10の態様のいずれか1の態様に係る複合微多孔質膜において、平膜の形状を示す。このように構成すると、中空糸と比較して、濾過膜を複数組み合わせたモジュールを作成した際に、膜と膜の間に夾雑物が堆積しにくく、圧力損失の増加を抑制することができるため、優れた濾過性能を示す。   The composite microporous membrane according to the eleventh aspect of the present invention shows a flat membrane shape in the composite microporous membrane according to any one of the first to tenth aspects of the present invention. . When configured in this way, compared to the hollow fiber, when a module in which a plurality of filtration membranes are combined is created, impurities are less likely to accumulate between the membranes, and an increase in pressure loss can be suppressed. Excellent filtration performance.

本発明の第12の態様に係るフィルターは、上記本発明の第1の態様〜第11の態様のいずれか1の態様に係る複合微多孔質膜を用いることを特徴とするフィルターである。この様に構成すると、親水性および透過性に優れた複合微多孔質膜をフィルターとして利用することができる。該フィルターを用いた場合、複合微多孔質膜から不純物の溶出がないため、エネルギー効率や処理水質に優れた性能を示すことから、MBR等の水処理用途に好適に利用できる。   A filter according to a twelfth aspect of the present invention is a filter characterized by using the composite microporous membrane according to any one of the first to eleventh aspects of the present invention. If comprised in this way, the composite microporous film excellent in hydrophilic property and permeability | transmittance can be utilized as a filter. When this filter is used, since impurities are not eluted from the composite microporous membrane, it exhibits excellent performance in terms of energy efficiency and treated water quality, and thus can be suitably used for water treatment applications such as MBR.

本発明の第13の態様に係る複合微多孔質膜の製造方法は、上記本発明の第1の態様〜第11の態様のいずれか1の態様に係る複合微多孔質膜の製造方法であって、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の少なくとも片側にシリカ前駆体の塗膜を形成した後、前記シリカ前駆体をSiOガラスに転化させることにより、SiOガラス層を形成し、少なくとも片側がSiOガラスで被覆されたポリフッ化ビニリデン系樹脂を含有する微多孔質膜を得る製造方法である。この様に構成すると、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の表面にムラなくSiOガラス層を形成できるため、優れた親水化効果を得ることができる。A method for producing a composite microporous membrane according to a thirteenth aspect of the present invention is a method for producing a composite microporous membrane according to any one of the first to eleventh aspects of the present invention. Te, after forming the coating film of the silica precursor on at least one side of the microporous film containing polyvinylidene fluoride resin, by the conversion of the silica precursor to SiO 2 glass, to form a SiO 2 glass layer , A production method for obtaining a microporous film containing a polyvinylidene fluoride resin at least one side coated with SiO 2 glass. When configured in this manner, it is possible to form a uniformly SiO 2 glass layer on the surface of the microporous film containing polyvinylidene fluoride resin, it is possible to obtain an excellent hydrophilizing effect.

本発明の第14の態様に係る複合微多孔質膜の製造方法は、上記本発明の第13の態様に係る複合微多孔質膜の製造方法であって、前記シリカ前駆体がポリシラザンである複合微多孔質膜の製造方法である。この様に構成すると、緻密な構造を持つSiOガラス層への転化を容易に進めることができる。The method for producing a composite microporous membrane according to the fourteenth aspect of the present invention is the method for producing a composite microporous membrane according to the thirteenth aspect of the present invention, wherein the silica precursor is polysilazane. This is a method for producing a microporous membrane. When configured in this manner, it is possible to proceed with the conversion to SiO 2 glass layer having a dense structure with ease.

本発明の第15の態様に係る複合微多孔質膜の製造方法は、上記本発明の第8の態様に係る複合微多孔質膜の製造方法であって、前記ポリフッ化ビニリデン系樹脂を良溶媒に溶解した原料液を前記基材層上に塗布する塗布工程と前記塗布工程後、非溶媒中に前記基材層と塗布した前記原料液を浸ける浸漬工程とを備える。このように構成すると、非対称膜であるポリフッ化ビニリデン系樹脂を含有する微多孔質膜であって、スキン層が複数の球状体を有する微多孔質膜の製造方法となる。スキン層が有する球状体は、互いに線状の結合材により架橋され、球状体を交点とする3次元網目構造を形成する。球状体がより均一の大きさでより均質に分散しているため、スキン層の微孔が一様に分散し、優れた透過性を有する。   The method for producing a composite microporous membrane according to the fifteenth aspect of the present invention is the method for producing a composite microporous membrane according to the eighth aspect of the present invention, wherein the polyvinylidene fluoride resin is used as a good solvent. An application step of applying the raw material solution dissolved in the base material layer on the base material layer, and an immersion step of immersing the base material layer and the applied raw material solution in a non-solvent after the application step. If comprised in this way, it will be the manufacturing method of the microporous film | membrane which contains the polyvinylidene fluoride type-resin which is an asymmetrical film | membrane, and a skin layer has a some spherical body. The spherical bodies included in the skin layer are cross-linked with each other by a linear binder to form a three-dimensional network structure with the spherical bodies as intersections. Since the spherical bodies are more uniformly dispersed in a uniform size, the pores of the skin layer are uniformly dispersed and have excellent permeability.

本発明の第16の態様に係る複合微多孔質膜の製造方法は、上記本発明の第9の態様に係る複合微多孔質膜の製造方法であって、ポリフッ化ビニリデン系樹脂を良溶媒に溶解した原料液を基材層上または支持体上に塗布する塗布工程と前記塗布工程後、非溶媒中に前記基材層と塗布した前記原料液を浸ける浸漬工程とを備える。
このように構成すると、スキン層が有する3次元網目構造の形成に適したポリフッ化ビニリデン系樹脂を素材として用いているため、球状体が互いに線状の結合材により架橋され、当該球状体を交点とする3次元網目構造をスキン層に容易に形成することができる。
A method for producing a composite microporous membrane according to a sixteenth aspect of the present invention is a method for producing a composite microporous membrane according to the ninth aspect of the present invention, wherein the polyvinylidene fluoride resin is used as a good solvent. An application step of applying the dissolved raw material liquid onto a base material layer or a support and an immersion step of immersing the base material layer and the applied raw material liquid in a non-solvent after the application step are provided.
With this configuration, since the polyvinylidene fluoride resin suitable for forming the three-dimensional network structure of the skin layer is used as a material, the spherical bodies are cross-linked by a linear binder, and the spherical bodies are crossed. The three-dimensional network structure can be easily formed on the skin layer.

本発明の複合微多孔質膜は、膜表面がSiOガラス層で被覆された規則的な3次元網目構造を有するポリフッ化ビニリデン系樹脂を含有する微多孔質膜からなる複合微多孔質膜であるため、耐熱性、耐薬品性に優れ、高い空孔率と、恒久的な親水性を有する。The composite microporous membrane of the present invention is a composite microporous membrane comprising a microporous membrane containing a polyvinylidene fluoride resin having a regular three-dimensional network structure whose surface is coated with a SiO 2 glass layer. Therefore, it has excellent heat resistance and chemical resistance, and has high porosity and permanent hydrophilicity.

図1は本発明におけるポリフッ化ビニリデン系樹脂を含有する微多孔質膜が有するスキン層の表面写真である。FIG. 1 is a photograph of the surface of a skin layer of a microporous film containing a polyvinylidene fluoride resin in the present invention. 図2は従来のポリフッ化ビニリデン製濾過膜の写真である。FIG. 2 is a photograph of a conventional filtration membrane made of polyvinylidene fluoride. 図3は本発明における複合微多孔質膜の製造方法を示すフロー図である。FIG. 3 is a flowchart showing a method for producing a composite microporous membrane according to the present invention. 図4は実施例1の複合微多孔質膜が有するスキン層の表面写真である。4 is a photograph of the surface of the skin layer of the composite microporous membrane of Example 1. FIG. 図5は比較例1の微多孔質膜が有するスキン層の表面写真である。FIG. 5 is a photograph of the surface of the skin layer that the microporous membrane of Comparative Example 1 has. 図6の(a)は、実施例1の複合微多孔質膜の断面写真である。図6の(b)は、スキン層の断面部分の拡大写真である。6A is a cross-sectional photograph of the composite microporous membrane of Example 1. FIG. FIG. 6B is an enlarged photograph of a cross-sectional portion of the skin layer. 図7は実施例1の複合微多孔質膜が有するスキン層の表面写真であり、球状体の粒径と線状の結合材の長さの測定に用いた写真である。FIG. 7 is a photograph of the surface of the skin layer of the composite microporous membrane of Example 1, and is a photograph used to measure the particle size of the spherical body and the length of the linear binder. 図8は非対称膜の断面図(左)と対称膜の断面図(右)を示す模式図である。(出典:特許庁ホームページ/平成17年度 標準技術集 水処理技術/1−6−2−1 対称膜と非対称膜)FIG. 8 is a schematic diagram showing a cross-sectional view (left) of the asymmetric membrane and a cross-sectional view (right) of the symmetric membrane. (Source: JPO Homepage / 2005 Standard Technology Collection Water Treatment Technology / 1-6-2-1 Symmetric Membrane and Asymmetric Membrane)

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description is omitted. Further, the present invention is not limited to the following embodiments.

本発明における複合微多孔質膜について説明する。本発明の複合微多孔質膜はポリフッ化ビニリデン系樹脂を含有する微多孔質膜の表面をSiOガラス層で被覆した構造からなり、SiOガラス層は疎水性のポリフッ化ビニリデン系樹脂を含有する微多孔質膜に親水性を付与する働きをしている。
SiOガラス層はポリフッ化ビニリデン系樹脂を含有する微多孔質膜の細孔全体にシリカ前駆体溶液を浸透および被覆させて形成することが好ましいが、複合微多孔質膜に要求される通気性及び通液性を維持する必要性も考慮すれば、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の表面の少なくとも片側がSiOガラス層で被覆されるように、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の少なくとも片側にSiOガラス層を形成すればよい。
The composite microporous membrane in the present invention will be described. The composite microporous membrane of the present invention has a structure in which the surface of a microporous membrane containing a polyvinylidene fluoride resin is covered with a SiO 2 glass layer, and the SiO 2 glass layer contains a hydrophobic polyvinylidene fluoride resin. It serves to impart hydrophilicity to the microporous membrane.
The SiO 2 glass layer is preferably formed by impregnating and coating the silica precursor solution over the entire pores of the microporous membrane containing the polyvinylidene fluoride resin, but the air permeability required for the composite microporous membrane In consideration of the necessity of maintaining liquid permeability, the polyvinylidene fluoride resin is contained so that at least one side of the surface of the microporous film containing the polyvinylidene fluoride resin is covered with the SiO 2 glass layer. A SiO 2 glass layer may be formed on at least one side of the microporous film.

本発明に用いられるポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン系共重合体を含有する樹脂を挙げることができる。ポリフッ化ビニリデン系樹脂としては、物性(粘度、分子量等)の異なる複数種類のフッ化ビニリデン系ホモポリマーを含有させてもよい。または、複数の種類のフッ化ビニリデン共重合体を含有させてもよい。フッ化ビニリデン共重合体としては、フッ化ビニリデン残基構造を有するポリマーならば特に限定されず、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーとの共重合体であり、例えばフッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上のフッ素系モノマーとフッ化ビニリデンとの共重合体を挙げることができる。特に好ましくは、フッ化ビニリデンホモポリマー(ポリフッ化ビニリデン)である。
本発明に用いるポリフッ化ビニリデン系樹脂を含有する微多孔質膜は、上記ポリフッ化ビニリデン系樹脂を用いることで構成できるが、さらに他の成分を含有していてもよい。また、本発明に用いるポリフッ化ビニリデン系樹脂を含有する微多孔質膜は、ポリフッ化ビニリデン系樹脂からなる微多孔質膜でもよい。この場合、本発明の効果を妨げない範囲であれば、他の成分を含有していてもよい。他の成分としては、ポリフッ化ビニリデン系樹脂以外のポリマーや、他の特性を付与させるための抗菌剤等の添加剤を挙げることができる。
Examples of the polyvinylidene fluoride resin used in the present invention include resins containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. As the polyvinylidene fluoride resin, a plurality of types of vinylidene fluoride homopolymers having different physical properties (viscosity, molecular weight, etc.) may be contained. Alternatively, a plurality of types of vinylidene fluoride copolymers may be included. The vinylidene fluoride copolymer is not particularly limited as long as it is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. And a copolymer of one or more fluorine-based monomers selected from vinyl fluoride, ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride chloride and vinylidene fluoride. Particularly preferred is a vinylidene fluoride homopolymer (polyvinylidene fluoride).
The microporous film containing the polyvinylidene fluoride resin used in the present invention can be constituted by using the above-mentioned polyvinylidene fluoride resin, but may further contain other components. Further, the microporous film containing the polyvinylidene fluoride resin used in the present invention may be a microporous film made of a polyvinylidene fluoride resin. In this case, other components may be included as long as the effects of the present invention are not hindered. Examples of other components include polymers other than polyvinylidene fluoride resins and additives such as antibacterial agents for imparting other characteristics.

本発明の複合微多孔質膜は、孔径が膜の厚み方向に変化する非対称構造を有し(図8左参照)、膜の表面付近の層(スキン層)の孔径が最も小さく、裏面に向かうにつれて孔径が大きくなる。スキン層が分離特性に必要な孔径を持ち、機能層として機能する。残りの部分は、支持層として機能する層であり、孔径が大きく透過抵抗が小さく、流路と膜強度を保持する。スキン層の厚みは、0.5〜5μmが好ましく、支持層の厚みは、20〜500μmが好ましい。   The composite microporous membrane of the present invention has an asymmetric structure in which the pore diameter changes in the thickness direction of the membrane (see the left side of FIG. 8), the pore diameter of the layer (skin layer) near the surface of the membrane is the smallest, and goes to the back surface. As the hole diameter increases. The skin layer has a pore size necessary for separation characteristics and functions as a functional layer. The remaining portion is a layer that functions as a support layer, has a large pore size and a small permeation resistance, and maintains the flow path and membrane strength. The thickness of the skin layer is preferably 0.5 to 5 μm, and the thickness of the support layer is preferably 20 to 500 μm.

図1は、本発明の複合微多孔質膜の表面(スキン層側)を走査型電子顕微鏡(SEM)で撮影した写真の一部である。図1に示すように、スキン層は複数の球状体1を有し、それぞれの球状体1から複数の線状の結合材2が3次元方向に伸びており、互いに隣接する球状体1は、線状の結合材2により接続され、球状体1を交点とした3次元網目構造を形成しており、生じた空隙が孔となっている。そのため、スキン層に孔ができやすく、その孔が変形しにくい。非対称膜は、スキン層と呼ばれる緻密な薄い層を有しており、この層は一般に孔が少ないため、この層に変形しにくい多くの孔を開けることが、透過性を改良するために極めて有効である。第3の実施の形態に係る複合微多孔質膜は、スキン層が有する球状体1とそれらを互いに接続する線状の結合材2により、透過性が大幅に改良されている。そのため、同程度の平均流孔径を有する従来の微多孔質膜よりも高い透過性を有することができる。ここで「平均流孔径」とは、ASTM F316−86で求められる値であり、複合微多孔質膜を濾過膜として使う場合、その阻止粒径に大きく影響する。本発明において、複合微多孔質膜の平均流孔径は、5〜500nmであることが好ましく、5〜450nmがより好ましく、10〜400nmが最も好ましい。複合微多孔質膜の平均流孔径が5nm以上であると、濾過時の目詰まりに伴う圧力損失の増加を最小限にできるため好ましく、500nm以下であると、粗大不純物粒子の透過を抑制することができるため好ましい。
さらに球状体1は、図1に示すように、その大きさがほぼ揃っており、ほぼ均一に分散している。そのため、球状体1と球状体1の間に生ずる空隙の形状と大きさが揃ったスキン層を構成する。球状体1間の空隙は、隣接する球状体1を架橋する線状の結合材2により区切られ、その結果として形成された孔は、外周曲線に凹みがない卵型またはほぼ卵型となる。このように、孔の形状が均質の微多孔質膜となる。
FIG. 1 is a part of a photograph of the surface (skin layer side) of the composite microporous membrane of the present invention taken with a scanning electron microscope (SEM). As shown in FIG. 1, the skin layer has a plurality of spherical bodies 1, and a plurality of linear binders 2 extend from each spherical body 1 in a three-dimensional direction. They are connected by a linear binder 2 to form a three-dimensional network structure with the spherical body 1 as an intersection, and the generated voids are holes. Therefore, a hole is easily formed in the skin layer, and the hole is not easily deformed. An asymmetric membrane has a dense thin layer called a skin layer, and this layer generally has few pores, so it is extremely effective to improve permeability by opening many holes that are difficult to deform in this layer. It is. In the composite microporous membrane according to the third embodiment, the permeability is greatly improved by the spherical body 1 included in the skin layer and the linear bonding material 2 connecting them. Therefore, it can have higher permeability than the conventional microporous membrane having the same average flow pore diameter. Here, the “average flow pore size” is a value obtained by ASTM F316-86, and when a composite microporous membrane is used as a filtration membrane, its inhibition particle size is greatly affected. In the present invention, the average flow pore size of the composite microporous membrane is preferably 5 to 500 nm, more preferably 5 to 450 nm, and most preferably 10 to 400 nm. If the average pore size of the composite microporous membrane is 5 nm or more, an increase in pressure loss due to clogging during filtration can be minimized, and if it is 500 nm or less, transmission of coarse impurity particles is suppressed. Is preferable.
Furthermore, as shown in FIG. 1, the spherical bodies 1 are almost uniform in size and are dispersed almost uniformly. Therefore, a skin layer is formed in which the shape and size of the gap formed between the spherical body 1 and the spherical body 1 are uniform. The space between the spheres 1 is delimited by a linear binder 2 that bridges the adjacent spheres 1, and the resulting holes are egg-shaped or almost egg-shaped with no dents on the outer periphery curve. Thus, a microporous membrane having a uniform pore shape is obtained.

従来のポリフッ化ビニリデン製濾過膜の表面は、本発明でいう「球状体」または「結合材」を有していたとしてもどちらか一方しか有していないため、本発明の効果が得られない。例えば、本発明でいう「結合材」に相当する部分しか持たないポリフッ化ビニリデン製濾過膜は、濾過膜として使えるだけの強度を維持するために、「結合材」に相当する部分を太くする必要があり、したがって、線状ではなく面状となるため、孔を微細にすることが難しい。図2は、一例として、そのような構造を持つ、従来のポリフッ化ビニリデン製濾過膜の走査型電子顕微鏡写真である。   Even if the surface of the conventional filtration membrane made of polyvinylidene fluoride has the “spherical body” or the “binding material” as used in the present invention, the effect of the present invention cannot be obtained. . For example, a polyvinylidene fluoride filtration membrane having only a portion corresponding to the “binding material” in the present invention needs to be thickened in order to maintain a strength sufficient to be used as a filtration membrane. Therefore, it is difficult to make the hole fine because it is not linear but is planar. FIG. 2 is a scanning electron micrograph of a conventional polyvinylidene fluoride filtration membrane having such a structure as an example.

本発明の複合微多孔質膜のスキン層が有する球状体の平均粒径は、0.05〜0.5μmであることが好ましい。より好ましくは0.1〜0.4μmであり、さらに好ましくは0.2〜0.3μmである。球状体の粒径は、その多くが平均粒径に近い値をとり、均一な大きさとなる。また、平均粒径は製造された微多孔質膜により異なり、上記のとおり値には幅がある。そのため、スキン層に形成される孔の大きさが異なり、平均流孔径の異なる種々の微多孔質膜を得ることができる。
球状体の粒径は、複合微多孔質膜のスキン層側表面を球状体が明確に確認できる倍率で走査型電子顕微鏡(SEM)等を用いて写真を撮り、少なくとも50個の任意の球状体の粒径を測定し、数平均することにより求めることができる。具体的には、実施例に記載したとおりである。なお「粒径」とは、図7に示すとおり、球状体の外周をその周囲の孔を含まないような最大直径の真円で囲んだ場合の当該真円の直径である。スキン層が有する孔の形状をより均一にするために、個々の球状体の形状は完全な球体に近いことが好ましく、球状体の大きさはばらつきが少ないことが好ましい。
The average particle diameter of the spherical body of the skin layer of the composite microporous membrane of the present invention is preferably 0.05 to 0.5 μm. More preferably, it is 0.1-0.4 micrometer, More preferably, it is 0.2-0.3 micrometer. Most of the spherical particles have a value close to the average particle size and have a uniform size. Further, the average particle diameter varies depending on the produced microporous membrane, and the value has a range as described above. Therefore, various microporous membranes having different pore sizes formed in the skin layer and different average flow pore diameters can be obtained.
As for the particle size of the spherical body, at least 50 arbitrary spherical bodies were photographed using a scanning electron microscope (SEM) or the like at such a magnification that the spherical body could be clearly confirmed on the skin layer side surface of the composite microporous membrane. It can be obtained by measuring the particle size and averaging the number. Specifically, it is as described in the examples. As shown in FIG. 7, the “particle diameter” is the diameter of a perfect circle when the outer periphery of the spherical body is surrounded by a perfect circle having the maximum diameter that does not include the surrounding holes. In order to make the shape of the pores of the skin layer more uniform, the shape of each spherical body is preferably close to a perfect sphere, and the size of the spherical body is preferably small in variation.

球状体の粒径は、度数分布において、平均粒径の±10%幅の範囲に50%以上の度数分布を有していることが好ましい。より好ましくは55%以上であり、さらに好ましくは60%以上である。平均粒径の±10%の幅の範囲に50%以上の度数が分布していると、スキン層の球状体はより均一の形状・大きさを有し、球状体と球状体の間に孔径が均一の(揃った)空隙を形成することができる。   The particle diameter of the spherical body preferably has a frequency distribution of 50% or more in the range of ± 10% width of the average particle diameter in the frequency distribution. More preferably, it is 55% or more, More preferably, it is 60% or more. When the frequency of 50% or more is distributed in the range of the width of ± 10% of the average particle diameter, the spherical body of the skin layer has a more uniform shape and size, and the pore size between the spherical body and the spherical body Can form uniform (aligned) voids.

本発明の複合微多孔質膜のスキン層が有する線状の結合材の平均長は、0.05〜0.5μmであることが好ましい。より好ましくは0.1〜0.4μm、さらに好ましくは0.2〜0.3μmである。線状の結合材の長さは、その多くが平均長に近い値をとり、均一な長さとなる。また、平均長は製造された微多孔質膜により異なり、上記のとおり値には幅がある。そのため、スキン層に形成される孔の大きさが異なり、平均流孔径の異なる種々の複合微多孔質膜を得ることができる。
線状の結合材の平均長は、複合微多孔質膜のスキン層側表面を線状の結合材が明確に確認できる倍率で走査型電子顕微鏡(SEM)等を用いて写真を撮り、少なくとも100本の任意の線状の結合材の長さを測定し、数平均することにより求めることができる。具体的には、実施例に記載したとおりである。「線状の結合材の長さ」とは、図7に示すとおり、球状体の外周をその周囲の孔を含まないような最大直径の真円で囲んだ場合の当該真円間の距離である。
The average length of the linear binding material of the skin layer of the composite microporous membrane of the present invention is preferably 0.05 to 0.5 μm. More preferably, it is 0.1-0.4 micrometer, More preferably, it is 0.2-0.3 micrometer. Most of the lengths of the linear binders are close to the average length, and the length is uniform. Further, the average length varies depending on the produced microporous membrane, and the value has a width as described above. Therefore, various composite microporous membranes having different pore sizes formed in the skin layer and different average flow pore diameters can be obtained.
The average length of the linear binder is at least 100 by taking a photograph using a scanning electron microscope (SEM) or the like at a magnification at which the linear binder can clearly confirm the skin-side surface of the composite microporous membrane. It can be obtained by measuring the length of an arbitrary linear binding material of a book and averaging the number. Specifically, it is as described in the examples. As shown in FIG. 7, the “length of the linear binding material” is the distance between the perfect circles when the outer periphery of the spherical body is surrounded by a perfect circle having the maximum diameter so as not to include the surrounding holes. is there.

線状の結合材の長さは、度数分布において、平均長の±30%幅の範囲に50%以上の度数分布を有していることが好ましい。より好ましくは55%以上であり、さらに好ましくは、60%以上である。平均長±30%の幅の範囲に50%以上の度数が分布していると、スキン層の球状体はより均質に分散され、球状体と球状体の間に孔径が均一または揃った空隙を形成することができる。   The length of the linear binder preferably has a frequency distribution of 50% or more in the range of ± 30% of the average length in the frequency distribution. More preferably, it is 55% or more, More preferably, it is 60% or more. When the frequency of 50% or more is distributed in the range of the average length ± 30%, the spherical bodies of the skin layer are more uniformly dispersed, and voids with a uniform or uniform pore diameter are formed between the spherical bodies and the spherical bodies. Can be formed.

球状体の平均粒径と線状の結合材の平均長の比率は、3:1〜1:3の間にあることが好ましい。球状体の平均粒径が線状の結合材の平均長の3倍より小さいと、複合微多孔質膜のスキン層表面の開口部が大きくなり、高い透過量がより顕著に得られるようになる。また、球状体の平均粒径が結合材の平均長の3分の1より大きいと、1つの球状体に接続できる結合材の数が多くなるので、濾材の脱落が少なく、耐圧性が高いという特徴がより顕著に得られるようになる。   The ratio of the average particle diameter of the spherical body to the average length of the linear binder is preferably between 3: 1 and 1: 3. When the average particle size of the spherical body is smaller than three times the average length of the linear binder, the opening on the skin layer surface of the composite microporous membrane becomes large, and a high permeation amount can be obtained more remarkably. . In addition, if the average particle size of the spheres is larger than one third of the average length of the binder, the number of binders that can be connected to one sphere increases, so there is little dropout of the filter media and high pressure resistance. Features can be obtained more prominently.

ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)は、60万〜100万であることが好ましい。より好ましくは70万〜95万であり、さらに好ましくは79万〜90万である。ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)が高いほど、球状体と線状の結合材が生成しやすくなり、3次元網目構造を有するスキン層を備えたポリフッ化ビニリデン系樹脂を含有する微多孔質膜を容易に得ることができるようになる。これにより、後述する良溶媒や貧溶媒などの選定幅が広がり、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の透過性や膜強度をより上げることが容易になる。また、重量平均分子量(Mw)を100万よりも大幅に高くしすぎないようにすることで、原料液の粘度を抑えることができるので、均一に塗布しやすくなり、支持層と基材層の混在部分がよりできやすくなるため好ましい。
なお、本発明の効果を妨げない範囲で、他素材との接着性や膜強度を上げるために、この範囲を外れる重量平均分子量(Mw)のポリフッ化ビニリデン系樹脂を混合してもよい。
The weight average molecular weight (Mw) of the polyvinylidene fluoride resin is preferably 600,000 to 1,000,000. More preferably, it is 700,000-950,000, More preferably, it is 790,000-900,000. The higher the weight average molecular weight (Mw) of the polyvinylidene fluoride resin, the easier it is to form spherical bodies and linear binders, and the fine particles containing the polyvinylidene fluoride resin with a skin layer having a three-dimensional network structure. A porous membrane can be easily obtained. Thereby, the selection range of a good solvent and a poor solvent, which will be described later, is widened, and it becomes easier to further increase the permeability and film strength of the microporous film containing the polyvinylidene fluoride resin. Moreover, since the viscosity of the raw material liquid can be suppressed by making the weight average molecular weight (Mw) not much higher than 1 million, it becomes easy to apply uniformly, and the support layer and the base material layer This is preferable because a mixed portion is more easily formed.
In addition, in order to increase the adhesion to other materials and the film strength within a range not impeding the effects of the present invention, a polyvinylidene fluoride resin having a weight average molecular weight (Mw) outside this range may be mixed.

ここで、良溶媒とは、原料液を塗布する温度条件で、必要量のポリフッ化ビニリデン系樹脂を溶解させることが可能な液である。また、非溶媒とは、塗膜中の良溶媒を非溶媒に置換する温度条件で、ポリフッ化ビニリデン系樹脂を溶解も膨潤もさせない溶媒である。また、貧溶媒とは、必要量のポリフッ化ビニリデン系樹脂を溶解させることはできないが、それ未満の量を溶解させることができるか、あるいは膨潤させる溶媒である。   Here, the good solvent is a liquid capable of dissolving a required amount of the polyvinylidene fluoride resin under a temperature condition for applying the raw material liquid. The non-solvent is a solvent that does not dissolve or swell the polyvinylidene fluoride-based resin under temperature conditions that replace the good solvent in the coating film with a non-solvent. The poor solvent is a solvent that cannot dissolve the required amount of the polyvinylidene fluoride resin, but can dissolve or swell less than that amount.

良溶媒としては、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等を挙げることができる。これらの良溶媒は混合して用いてもよく、本発明の効果を妨げない範囲で、貧溶媒、非溶媒が含まれていてもよい。製膜を常温で行う場合には、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドが好ましい。   Good solvents include N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, phosphorus Examples include lower alkyl ketones such as trimethyl acid, esters, amides, and the like. These good solvents may be used as a mixture, and may contain a poor solvent and a non-solvent as long as the effects of the present invention are not impaired. When film formation is performed at room temperature, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and N, N-dimethylformamide are preferable.

非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、塩素化炭化水素、またはその他の塩素化有機液体等を挙げることができる。非溶媒は、良溶媒に溶解する必要があり、良溶媒と自由比率で混合するものが好ましい。非溶媒に意図的に良溶媒や貧溶媒を加えてもよい。
良溶媒と非溶媒の置換速度は、本発明において、3次元網目構造の発現に影響するため、その組合せも重要である。組合せとしては、3次元網目構造の発現のし易さから、NMP/水、DMAc/水、DMF/水などが好ましく、DMAc/水の組合せが特に好ましい。
Non-solvents include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, low molecular weight polyethylene glycol and other aliphatic hydrocarbons, aromatic hydrocarbons, chlorine Chlorinated hydrocarbons or other chlorinated organic liquids. The non-solvent needs to be dissolved in a good solvent and is preferably mixed with the good solvent in a free ratio. A good solvent or a poor solvent may be intentionally added to the non-solvent.
Since the substitution rate of the good solvent and the non-solvent affects the expression of the three-dimensional network structure in the present invention, the combination thereof is also important. As the combination, NMP / water, DMAc / water, DMF / water, and the like are preferable from the viewpoint of easy expression of a three-dimensional network structure, and a combination of DMAc / water is particularly preferable.

製膜用の原料液には、素材となるポリフッ化ビニリデン系樹脂とその良溶媒の他に、多孔化を促す多孔化剤を添加することが好ましい。多孔化剤としては、ポリフッ化ビニリデン系樹脂の良溶媒への溶解を阻害せず、非溶媒に溶解し、微多孔質膜の多孔化を促す性質を有するものならば、なんら限定されるものではない。その例としては有機物の高分子物質または低分子物質などがあり、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアクリル酸などの水溶性ポリマー、ソルビタン脂肪酸エステル(モノ、トリエステル体等)等の多価アルコールのエステル体、ソルビタン脂肪酸エステルのエチレンオキサイド低モル付加物、ノニルフェノールのエチレンオキサイド低モル付加物、プルロニック型エチレンオキサイド低モル付加物等のエチレンオキサイド低モル付加物、ポリオキシエチレンアルキルエステル、アルキルアミン塩、ポリアクリル酸ソーダ等の界面活性剤、グリセリンなどの多価アルコール類、テトラエチレングリコール、トリエチレングリコールなどのグリコール類を挙げることができる。これらは1種類で用いても2種類以上の混合物で用いてもよい。これらの多孔化剤は、重量平均分子量(Mw)50,000以下のものが好ましく、より好ましくは30,000以下であり、さらに好ましくは10,000以下である。多孔化剤の重量平均分子量が上記範囲内であれば、ポリフッ化ビニリデン系樹脂溶液へ均一に溶解するため好ましい。この多孔化剤は、非溶媒中で良溶媒が抽出され構造凝集が起こるときに良溶媒に比べて比較的長時間、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜中に残留すると考えられる。非溶媒に水を用いる場合の多孔化剤としては、これらの機能を発揮しやすいことから、特にポリエチレングリコールが好ましく、その重量平均分子量が200〜1000であるものがさらに好ましい。   In addition to the polyvinylidene fluoride resin as a raw material and its good solvent, it is preferable to add a porosifying agent that promotes porosity to the raw material liquid for film formation. The porous agent is not limited as long as it does not inhibit the dissolution of the polyvinylidene fluoride resin in a good solvent, dissolves in a non-solvent, and promotes the microporous membrane to become porous. Absent. Examples include organic high-molecular substances or low-molecular substances, such as water-soluble polymers such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, and polyacrylic acid, and sorbitan fatty acid esters. Low ethylene oxide, such as ester of polyhydric alcohol such as (mono, triester, etc.), ethylene oxide low molar adduct of sorbitan fatty acid ester, ethylene oxide low molar adduct of nonylphenol, pluronic ethylene oxide low molar adduct Mole adducts, polyoxyethylene alkyl esters, alkylamine salts, surfactants such as sodium polyacrylate, polyhydric alcohols such as glycerin, tetraethylene glycol, triethylene glycol, etc. Mention may be made of the recall class. These may be used alone or in a mixture of two or more. These porous agents preferably have a weight average molecular weight (Mw) of 50,000 or less, more preferably 30,000 or less, and still more preferably 10,000 or less. If the weight average molecular weight of the porosifying agent is within the above range, it is preferable because it is uniformly dissolved in the polyvinylidene fluoride resin solution. This porous agent is considered to remain in the microporous membrane containing the polyvinylidene fluoride resin for a relatively long time as compared with the good solvent when the good solvent is extracted in the non-solvent and the structural aggregation occurs. In the case of using water as the non-solvent, the porous agent is particularly preferably polyethylene glycol, and more preferably having a weight average molecular weight of 200 to 1000, since these functions are easily exhibited.

多孔化剤を用いると、良溶媒抽出に伴う構造凝集が緩やかになってから、多孔化剤が抽出されるので、得られたポリフッ化ビニリデン系樹脂を含有する多孔質樹脂は、空孔性が高くなる。得られる構造は、多孔化剤の種類、分子量、添加量等に依存する。多孔化剤は、ポリフッ化ビニリデン系樹脂重量に対して0.1倍〜2倍量を添加することが好ましく、0.5倍〜1.5倍量とすればさらに好ましい。多孔化剤の添加量が上記範囲内であれば、支持層に生じるマクロボイドが大きくなり過ぎることがなく、膜強度が低下することもなく好ましい。   When a porosifying agent is used, since the porosizing agent is extracted after the structural aggregation accompanying the good solvent extraction becomes gentle, the obtained porous resin containing the polyvinylidene fluoride resin has porosity. Get higher. The resulting structure depends on the type of porous agent, molecular weight, added amount, and the like. The porosifying agent is preferably added in an amount of 0.1 to 2 times, more preferably 0.5 to 1.5 times the weight of the polyvinylidene fluoride resin. If the addition amount of the porosifying agent is within the above range, it is preferable that macrovoids generated in the support layer do not become too large and the film strength does not decrease.

本発明の複合微多孔質膜の製造方法は、以下のとおりである。なお、図3は、製造方法の大まかな流れを示している。
(1)原料液の調製工程(S01):
まず、微多孔質膜の素材となるポリフッ化ビニリデン系樹脂を、多孔化剤と共に、良溶媒となる溶媒に溶解して原料液を作る。
具体的には、例えば、ポリフッ化ビニリデン系樹脂として、5〜20重量部のポリフッ化ビニリデンを使用し、多孔化剤として、素材重量に対して0.1倍〜2倍量のポリエチレングリコールを使用して、溶媒として、70〜90重量部のジメチルアセトアミド(DMAc)を使用して、これに常温〜100℃で溶解させることで、原料液を得る。なお、原料液は、通常、常温に戻した後、使用する。
ポリフッ化ビニリデン系樹脂としては、アルケマ製ポリフッ化ビニリデン「カイナーHSV900」「カイナーHSV800」「カイナー761A」、ソルベイ製「Solef6020」、クレハ製「W#7200」等を挙げることができる。
(2)多孔化工程(S02):
次に、支持体としてのガラス板上に基材層としての不織布を置き、その上に原料液を塗布する。なお、不織布等を置かず、ガラス板上に直接塗布してもよく、その場合は基材層がないポリフッ化ビニリデン系樹脂を含有する微多孔質膜となる。また、塗布は、製膜後の厚さが10〜500μmとなるように行うことが好ましい。塗布後、直ちにまたは一定時間放置した後、支持体ごとポリフッ化ビニリデン系樹脂に対しての非溶媒に3分〜12時間浸ける。塗布後の放置時間を設ける場合は、5〜60秒程度が好ましい。放置時間を長く取ると平均流孔径が大きくなるが、長く取りすぎるとピンホールが生じて本発明の効果が十分に得られないことがある。良溶媒と非溶媒とが混合し、非溶媒の混入により良溶媒中の高分子の溶解性が低下し、高分子が析出し多孔化が生ずる。具体的には、ガラス板上にポリエステル不織布を置き、原料液を塗布する。塗布には、ベーカーアプリケータ、バーコーター、Tダイなどを用いることができる。非溶媒に浸けた後、支持体としてのガラス板を除去し、微多孔質膜を得る。
(3)洗浄・乾燥工程(S03):
次に、微多孔質膜を水槽中で、非溶媒としての水(超純水)を数回入れ替えて洗浄する。一般にDMAcは水よりも蒸発しにくいことから、洗浄が不完全であると溶媒(DMAc)が濃縮し、作られた孔構造が再び溶解することがあるので、複数回の洗浄が好ましい。排水量を減らし、洗浄速度を早めるために、洗浄に温水を用いてもよいし、超音波式洗浄機を用いてもよい。洗浄した後、微多孔質膜を乾燥してもよい。乾燥は、自然乾燥でもよいし、乾燥速度を速めるために、熱風式乾燥機や遠赤外乾燥機を用いてもよいし、乾燥時の微多孔質膜の収縮やうねりを防ぐため、ピンテンター式乾燥機を用いてもよい。
(4)SiOガラス層の形成工程(S04)
最後に、洗浄・乾燥工程(S03)で得られたポリフッ化ビニリデン系樹脂を含有する微多孔質膜の表面にSiOガラス層を形成させる。SiOガラス層を形成する方法としては、例えば、ポリオルガノシロキサンを、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜に浸透付着させ、加熱などの手法で転化させるゾル−ゲル法を挙げることができる。
具体的には、加水分解性ケイ素含有有機化合物を水と反応させて部分的にゲル化させた溶液を、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の表面に塗布や噴霧等の手法で付着させた後、水と反応させて完全にゲル化させ、さらに通常25〜120℃の範囲の好適な温度で加熱乾燥させて、複合微多孔質膜を得る手法を挙げることができる。また、下記式(A)で表される構成単位を有するポリシラザン類化合物を主体とする溶液(ポリシラザン溶液)を、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜に塗布や噴霧等の手法で付着させた後、空気加熱や熱水、或いは水蒸気等の処理を経てSiOガラス層に転化させて、複合微多孔質膜を得るポリシラザン法などを挙げることができる。
The method for producing the composite microporous membrane of the present invention is as follows. FIG. 3 shows a rough flow of the manufacturing method.
(1) Raw material liquid preparation step (S01):
First, a polyvinylidene fluoride resin, which is a raw material for a microporous membrane, is dissolved in a solvent, which is a good solvent, together with a porous agent to make a raw material solution.
Specifically, for example, 5 to 20 parts by weight of polyvinylidene fluoride is used as the polyvinylidene fluoride resin, and 0.1 to 2 times the amount of polyethylene glycol is used as the porosifying agent with respect to the material weight. Then, 70 to 90 parts by weight of dimethylacetamide (DMAc) is used as a solvent and dissolved therein at room temperature to 100 ° C. to obtain a raw material liquid. In addition, a raw material liquid is normally used after returning to normal temperature.
Examples of the polyvinylidene fluoride resin include Arkema's polyvinylidene fluoride “Kyner HSV900”, “Kyner HSV800”, “Kyner 761A”, Solvay “Solef6020”, and Kureha “W # 7200”.
(2) Porous process (S02):
Next, a nonwoven fabric as a base material layer is placed on a glass plate as a support, and a raw material liquid is applied thereon. In addition, you may apply | coat directly on a glass plate, without placing a nonwoven fabric etc., In that case, it becomes a microporous film containing the polyvinylidene fluoride resin without a base material layer. Moreover, it is preferable to apply | coat so that the thickness after film forming may be 10-500 micrometers. Immediately after coating, or after standing for a certain time, the whole support is immersed in a non-solvent for polyvinylidene fluoride resin for 3 minutes to 12 hours. When providing the leaving time after application | coating, about 5 to 60 second is preferable. If the standing time is taken longer, the average flow hole diameter becomes larger, but if it is taken too long, pinholes are generated and the effects of the present invention may not be sufficiently obtained. A good solvent and a non-solvent are mixed, and the solubility of the polymer in the good solvent is reduced due to the mixing of the non-solvent, so that the polymer is precipitated and becomes porous. Specifically, a polyester nonwoven fabric is placed on a glass plate and a raw material solution is applied. For the application, a baker applicator, a bar coater, a T die, or the like can be used. After soaking in a non-solvent, the glass plate as a support is removed to obtain a microporous membrane.
(3) Cleaning / drying step (S03):
Next, the microporous membrane is washed in a water tank by replacing water (ultra pure water) as a non-solvent several times. In general, DMAc is less likely to evaporate than water, and therefore incomplete cleaning may cause the solvent (DMAc) to concentrate and the resulting pore structure to dissolve again, so multiple cleanings are preferred. In order to reduce the amount of drainage and increase the washing speed, warm water may be used for washing, or an ultrasonic washing machine may be used. After washing, the microporous membrane may be dried. Drying may be natural drying, a hot air drier or far-infrared drier may be used to increase the drying speed, and a pin tenter type to prevent shrinkage and undulation of the microporous membrane during drying. A dryer may be used.
(4) SiO 2 glass layer forming step (S04)
Finally, a SiO 2 glass layer is formed on the surface of the microporous film containing the polyvinylidene fluoride resin obtained in the cleaning / drying step (S03). Examples of the method for forming the SiO 2 glass layer include a sol-gel method in which polyorganosiloxane is infiltrated and adhered to a microporous film containing a polyvinylidene fluoride resin and converted by a method such as heating. it can.
Specifically, a solution in which a hydrolyzable silicon-containing organic compound is partially gelled by reacting with water is applied to the surface of a microporous film containing a polyvinylidene fluoride resin by a technique such as coating or spraying. After making it adhere, it can be made to react with water and completely gel, and further heat dried at a suitable temperature usually in the range of 25 to 120 ° C. to obtain a composite microporous membrane. In addition, a solution (polysilazane solution) mainly composed of a polysilazane compound having a structural unit represented by the following formula (A) is attached to a microporous film containing a polyvinylidene fluoride resin by a technique such as coating or spraying. Examples thereof include a polysilazane method in which a composite microporous film is obtained by being converted into a SiO 2 glass layer through treatment with air heating, hot water, water vapor or the like.

Figure 0006447623
Figure 0006447623

式(A)中、Rはそれぞれ独立して、水素または炭素数1〜22のアルキルを示す。
本発明の複合微多孔質膜を得るためには、シリカ前駆体としてポリシラザンを用いたポリシラザン法が最も好ましい。ポリシラザン法は、緻密な構造を持つSiOガラス層への転化が比較的容易に進むことで高強度の複合微多孔質膜を得易く、架橋剤や触媒残渣等に由来する不純物溶出が少ないため好ましい。
In the formula (A), each R independently represents hydrogen or alkyl having 1 to 22 carbon atoms.
In order to obtain the composite microporous membrane of the present invention, the polysilazane method using polysilazane as the silica precursor is most preferable. The polysilazane method is easy to obtain a high-strength composite microporous membrane by relatively easy conversion to a SiO 2 glass layer having a dense structure, and there is little elution of impurities derived from crosslinking agents, catalyst residues, etc. preferable.

本発明で用いるポリシラザンは、低温でSiOガラスに転化できるポリシラザンであることが好ましい。このようなポリシラザンの例として、特開平2004−155834号公報に記載されているSi−H結合を有するポリシラザンを含有する溶液や、特開平5−238827号公報に記載されているケイ素アルコキシド付加ポリシラザンや、特開平6−122852号公報に記載されているグリシドール付加ポリシラザン、特許第3307471号公報に記載されているアセチルアセトナト錯体付加ポリシラザンなどを挙げることができる。なお、ポリシラザン溶液は、例えば、AZエレクトロニックマテリアルズ株式会社製「アクアミカ」として入手できる。
前記ポリシラザン溶液を前記微多孔質膜に塗布する方法としては、特に限定されないが、ロールコート、グラビアコート、ブレードコート、スピンコート、バーコート、スプレーコート等公知の方法を挙げることができる。前記微多孔質膜に前記ポリシラザン溶液を塗布し、付着させた後にプレ乾燥により溶剤を蒸発、ポリシラザン層を作製する。さらに加熱や熱水浸漬、スチーム暴露等の手法によってポリシラザン層をSiOガラス層に転化させて、微多孔質膜とする。なお、ポリシラザン層を形成した状態で巻き取った後、巻取り体ごと加熱やスチーム暴露等の処理を施してSiOガラス層に転化させてもよい。
The polysilazane used in the present invention is preferably a polysilazane that can be converted into SiO 2 glass at a low temperature. Examples of such polysilazane include a solution containing polysilazane having a Si—H bond described in JP-A No. 2004-155834, a silicon alkoxide-added polysilazane described in JP-A No. 5-23827, and the like. And glycidol-added polysilazane described in JP-A-6-122852, and acetylacetonato complex-added polysilazane described in Japanese Patent No. 3307471. The polysilazane solution can be obtained, for example, as “AQUAMICA” manufactured by AZ Electronic Materials Co., Ltd.
The method for applying the polysilazane solution to the microporous film is not particularly limited, and examples thereof include known methods such as roll coating, gravure coating, blade coating, spin coating, bar coating, and spray coating. The polysilazane solution is applied to and adhered to the microporous film, and then the solvent is evaporated by pre-drying to produce a polysilazane layer. Further, the polysilazane layer is converted into a SiO 2 glass layer by a method such as heating, hot water immersion, or steam exposure to form a microporous film. Incidentally, after winding in a state of forming a polysilazane layer, it may be converted to SiO 2 glass layer is subjected to processing such as winding body for each heating or steam exposure.

多孔化工程(S02)のとおり、製膜時には基材層を備えてもよい。基材層を備えると、原料液の塗布の際に原料液が不用意に流れ出すのを防ぐことができる。特に、粘性の低い原料液の場合に有効である。さらに、基材層は濾過の際の補強材として機能し、膜が濾過圧に耐えられるようになる。基材層としては、抄紙、スパンボンド法やメルトブロー法などで得られた不織布、織布、多孔質板などを用いることができ、その素材にはポリエステル、ポリオレフィン、セラミックなどを用いることができる。中でも、柔軟性、軽量性、強度、耐熱性などのバランスに優れることから、ポリエステル製不織布、ポリプロピレン製不織布、ポリフェニレンスルフィド製不織布が好ましい。なお、不織布を用いる場合、その目付は15〜150g/mの範囲が好ましく、30〜90g/mの範囲がさらに好ましい。目付が15g/mを上回ると、基材層を設けた効果が十分に得られる。また、目付が150g/mを下回ると、折り曲げや熱接着などの後加工がし易くなる。As in the porosification step (S02), a base material layer may be provided during film formation. When the base material layer is provided, the raw material liquid can be prevented from inadvertently flowing out during the application of the raw material liquid. This is particularly effective when the raw material liquid has a low viscosity. Furthermore, the base material layer functions as a reinforcing material during filtration, and the membrane can withstand the filtration pressure. As the base material layer, non-woven fabrics, woven fabrics, porous plates and the like obtained by papermaking, a spunbond method, a melt blow method, and the like can be used. Polyester, polyolefin, ceramic, and the like can be used as the material. Among them, a polyester nonwoven fabric, a polypropylene nonwoven fabric, and a polyphenylene sulfide nonwoven fabric are preferable because of excellent balance of flexibility, lightness, strength, heat resistance, and the like. In the case of using a nonwoven fabric, the basis weight is preferably in the range of 15~150g / m 2, more preferably in the range of 30~90g / m 2. When the basis weight exceeds 15 g / m 2 , the effect of providing the base material layer is sufficiently obtained. On the other hand, when the basis weight is less than 150 g / m 2 , post-processing such as bending and heat bonding becomes easy.

SiOガラス層の形成工程(S04)において、ポリシラザン溶液の濃度は0.1〜20重量部の範囲が好ましく、0.5〜10重量部の範囲がさらに好ましい。ポリシラザン濃度が0.1重量部を上回ると十分な親水化効果が得られ、20重量部を下回るとSiOガラス層が細孔を閉塞しないため、十分な透過性を確保できる。
また、ポリシラザン溶液を付着する過程には、微多孔質膜の耐薬品性、耐熱変形性を妨げない範囲で、ポリシラザン溶液に適当な充填剤を加えることにより、フィルターとしての性能をさらに向上させることができる。充填剤の例としては、酸化亜鉛、二酸化チタン、チタン酸バリウム、炭酸バリウム、硫酸バリウム、酸化ジルコニウム、ケイ酸ジルコニウム、アルミナ、酸化マグネシウム、シリカの他、炭化ケイ素、窒化ケイ素、カーボンなどの微粒子を挙げることができる。カーボンとしては、グラファイトカーボン微粒子の他に活性炭、カーボンナノチューブ等から構成される微粒子も含まれる。これら充填剤の少なくとも1種がポリシラザンと共に微多孔質膜に付着し、SiOガラス層中に強固に固着することにより脱落のない複合多孔質膜を得ることができる。
ポリシラザン溶液中の充填剤の濃度は、通常0〜20重量%、好ましくは0〜10重量%である。このような濃度範囲であると、フィルターとしての性能を更に向上させることができる。
In the step of forming the SiO 2 glass layer (S04), the concentration of the polysilazane solution is preferably in the range of 0.1 to 20 parts by weight, and more preferably in the range of 0.5 to 10 parts by weight. When the polysilazane concentration exceeds 0.1 parts by weight, a sufficient hydrophilic effect can be obtained. When the polysilazane concentration is less than 20 parts by weight, the SiO 2 glass layer does not block pores, so that sufficient permeability can be secured.
In addition, in the process of attaching the polysilazane solution, the filter performance can be further improved by adding an appropriate filler to the polysilazane solution as long as the chemical resistance and heat distortion resistance of the microporous membrane are not hindered. Can do. Examples of fillers include fine particles such as zinc oxide, titanium dioxide, barium titanate, barium carbonate, barium sulfate, zirconium oxide, zirconium silicate, alumina, magnesium oxide and silica, as well as silicon carbide, silicon nitride and carbon. Can be mentioned. The carbon includes fine particles composed of activated carbon, carbon nanotubes and the like in addition to graphite carbon fine particles. At least one of these fillers adheres to the microporous membrane together with the polysilazane and is firmly fixed in the SiO 2 glass layer, whereby a composite porous membrane that does not fall off can be obtained.
The concentration of the filler in the polysilazane solution is usually 0 to 20% by weight, preferably 0 to 10% by weight. In such a concentration range, the performance as a filter can be further improved.

以上のとおり、本発明の複合微多孔質膜は、表層がSiOガラス層で被覆されているため、高い親水性を有し、SiOガラス層によるポリフッ化ビニリデン系樹脂を含有する微多孔質膜の微孔の閉塞もないため、高い透過性を維持することが可能となる。また、膜材料としてポリフッ化ビニリデン系樹脂を用いているため、優れた耐薬品性、高い耐熱温度(〜120℃)を有することができる。さらに、スキン層が均質の球状体と線状の結合材による3次元網目構造を有するため、スキン層の孔の大きさや孔径が揃っており、高い透過性(例えば高通水性、高通液性)を実現することができる。すなわち、孔の大きさや形がより均一であるため、孔径分布のより狭い膜となり、粒子阻止率を保ちつつ従来にない透過性を得ることができる。さらに、上記のような3次元網目構造を有する微多孔質膜であるためポリシラザン溶液を膜全体に均質に塗布しやすくSiOガラス層の親水化効果を効果的に発揮できる。本発明の複合微多孔質膜は、濾過膜等のフィルター用途以外に、絆創膏などに使う薬液保持材、衛生材料の表面材、バッテリーセパレータ等といった用途に用いることもできる。As described above, the composite microporous membrane of the present invention has a high hydrophilicity because the surface layer is coated with the SiO 2 glass layer, and the microporous membrane contains a polyvinylidene fluoride resin based on the SiO 2 glass layer. Since there is no blockage of micropores in the membrane, it is possible to maintain high permeability. Moreover, since the polyvinylidene fluoride resin is used as the film material, it can have excellent chemical resistance and a high heat resistance temperature (˜120 ° C.). Furthermore, since the skin layer has a three-dimensional network structure composed of a homogeneous spherical body and a linear binder, the pore size and the pore diameter of the skin layer are uniform, and high permeability (for example, high water permeability and high liquid permeability) is achieved. Can be realized. That is, since the size and shape of the pores are more uniform, a membrane with a narrower pore size distribution is obtained, and unprecedented permeability can be obtained while maintaining the particle blocking rate. Furthermore, since it is a microporous film having the above three-dimensional network structure, it is easy to apply the polysilazane solution uniformly to the entire film, and the hydrophilic effect of the SiO 2 glass layer can be effectively exhibited. The composite microporous membrane of the present invention can be used for applications such as a chemical solution holding material used for adhesive bandages, a sanitary material surface material, a battery separator, etc., in addition to a filter application such as a filtration membrane.

以下に、実施例等を参照して本発明をさらに詳細に説明する。しかし、これらの記載により本発明の範囲が限定されることはない。   Hereinafter, the present invention will be described in more detail with reference to examples and the like. However, the scope of the present invention is not limited by these descriptions.

〔使用した部材等〕
多孔化材であるポリエチレングリコール600(重量平均分子量600)は、和光純薬工業(株)製の試薬1級を用いた。
溶媒であるN−ジメチルアセトアミドは、和光純薬工業(株)製の試薬特級を用いた。
ポリフッ化ビニリデンは、アルケマ製ポリフッ化ビニリデン「カイナーHSV900」(重量平均分子量80万、数平均分子量54万)を用いた。
基材層として、ポリエステル不織布は、日本バイリーン製カード不織布(H−8007、目付70g/m)を用いた。
支持体は、ガラス板(大きさ20cm×20cm)を用いた。
水は、ミリポア製「DirectQ UV」(商品名)で製造した比抵抗値18MΩ・cm以上の超純水を用いた。
[Used materials]
For the polyethylene glycol 600 (weight average molecular weight 600), which is a porous material, reagent grade 1 manufactured by Wako Pure Chemical Industries, Ltd. was used.
As the solvent, N-dimethylacetamide, a reagent special grade manufactured by Wako Pure Chemical Industries, Ltd. was used.
As the polyvinylidene fluoride, Arkema's polyvinylidene fluoride “Kyner HSV900” (weight average molecular weight 800,000, number average molecular weight 540,000) was used.
As the base material layer, a card nonwoven fabric (H-8007, basis weight 70 g / m 2 ) manufactured by Japan Vilene was used as the polyester nonwoven fabric.
As the support, a glass plate (size 20 cm × 20 cm) was used.
As the water, ultrapure water having a specific resistance value of 18 MΩ · cm or more manufactured by “DirectQ UV” (trade name) manufactured by Millipore was used.

〔評価方法〕
実施例および比較例で得られた微多孔質膜の物性値は下記の方法にて測定した。
1)ポリマーの平均分子量
数平均分子量、重量平均分子量は、ポリマーをジメチルホルムアミド(DMF)に溶解し、カラムとしてShodex Asahipak KF−805Lを用いて、DMFを展開剤としてゲル浸透クロマトグラフィ(GPC)法により測定し、ポリスチレン換算することにより求めた。
2)スキン層の厚み、支持層の厚み
図6に示すとおり、得られた複合微多孔質膜の断面を走査型電子顕微鏡(SEM)で写真撮影し、この写真を画像解析して、表面からマクロボイドが存在するまでの長さを「スキン層の厚み」、複合微多孔質膜全体の厚みからスキン層の厚みを引いた値を「支持層の厚み」とした。
3)平均流孔径
平均流孔径は、PMI社製「Capillary Flow Porometer CFP−1200AEX」を用い、ASTM F316−86に準じて求めた。
4)流束
得られた複合微多孔質膜を直径25mmに切り取り、適当量のエタノールに浸漬した場合と浸漬していない場合それぞれについて有効濾過面積3.5cmのフィルターシートホルダーにセットし、濾過圧力50kPaで加圧して水を5mL通水させ、通水に要する時間を測定した。流束を下記式(1)により求めた。
流束(10−9/m/Pa/sec)=通水量(m)÷有効濾過面積(m)÷濾過圧力(Pa)÷時間(sec) ・・・(1)
5)球状体の数、平均粒径、度数分布
複合微多孔質膜のスキン層表面を、走査型電子顕微鏡で、倍率2万倍で写真撮影した。そして、図7に示すとおり、写真中央の縦4μm×横6μmの領域に中心部を有する球状体について、球状体の外周を、その周囲の孔が含まれないような最大直径の真円で囲み、その真円の直径を球状体の粒径とした。ただし、接続する線状の結合材の数が3以下のものは、線状の結合材との区別が難しいため、球状体とはみなさなかった。そして、該領域に含まれる全球状体の直径の平均値を、平均粒径とした。また、全球状体の中から、平均粒径の±10%の幅の範囲に含まれる粒子を数え、その数を、球状体の全粒子数で割って、度数分布を求めた。
6)結合材の数、平均長、度数分布
図7に示すとおり、該領域に含まれる球状体の間にある全ての結合材(ただし2つの球状体が複数の結合材で結ばれている場合にはその内の1本のみ)の数と長さを測定し、全結合材の数と平均長を求めた。また、その中から、その平均長の±30%の幅の範囲に含まれる結合材の数を数え、その数を全結合材の数で割って、度数分布を求めた。
〔Evaluation method〕
The physical property values of the microporous membranes obtained in Examples and Comparative Examples were measured by the following methods.
1) Average molecular weight of polymer The number average molecular weight and weight average molecular weight were determined by dissolving the polymer in dimethylformamide (DMF), using Shodex Asahipak KF-805L as a column, and using gel permeation chromatography (GPC) method with DMF as a developing agent. It was determined by measuring and converting to polystyrene.
2) Thickness of skin layer and thickness of support layer As shown in FIG. 6, a cross section of the obtained composite microporous membrane was photographed with a scanning electron microscope (SEM), and the photograph was image-analyzed. The length until the macro voids exist was defined as “skin layer thickness”, and the value obtained by subtracting the skin layer thickness from the total thickness of the composite microporous membrane was defined as “support layer thickness”.
3) Average flow hole diameter The average flow hole diameter was determined according to ASTM F316-86 using "Capillary Flow Porometer CFP-1200AEX" manufactured by PMI.
4) Flux The obtained composite microporous membrane is cut to a diameter of 25 mm, and is set in a filter sheet holder having an effective filtration area of 3.5 cm 2 for each of the case where the composite microporous membrane is immersed in an appropriate amount of ethanol and the case where it is not immersed. Pressurization was performed at a pressure of 50 kPa to allow 5 mL of water to pass through, and the time required for passing water was measured. The flux was determined by the following formula (1).
Flux (10 −9 m 3 / m 2 / Pa / sec) = Water flow rate (m 3 ) ÷ Effective filtration area (m 2 ) ÷ Filtration pressure (Pa) ÷ Time (sec) (1)
5) Number of spherical bodies, average particle diameter, frequency distribution The skin layer surface of the composite microporous membrane was photographed with a scanning electron microscope at a magnification of 20,000 times. Then, as shown in FIG. 7, for the spherical body having a central portion in the region of 4 μm length × 6 μm width in the center of the photograph, the outer periphery of the spherical body is surrounded by a perfect circle with the maximum diameter so that the surrounding holes are not included. The diameter of the perfect circle was taken as the particle size of the spherical body. However, since the number of the linear binding materials to be connected is 3 or less is difficult to distinguish from the linear binding materials, it was not regarded as a spherical body. And the average value of the diameter of all the spherical bodies contained in this area | region was made into the average particle diameter. Further, the number distribution of particles within a range of ± 10% of the average particle diameter was counted from all the spherical bodies, and the number was divided by the total number of particles of the spherical body to obtain a frequency distribution.
6) Number of binders, average length, frequency distribution As shown in FIG. 7, all the binders between the spheres included in the region (when two spheres are connected by a plurality of binders) The number and length of only one of them were measured, and the number and average length of all binders were determined. Moreover, the frequency distribution was calculated | required by counting the number of the binders included in the range of the width | variety of +/- 30% of the average length among them, and dividing the number by the number of all the binders.

[実施例1]
〔原料液の調製工程〕
原料液の全量を100重量部として、ジメチルアセトアミドを86重量部、ポリフッ化ビニリデン「カイナーHSV900(重量平均分子量80万)」を7重量部、ポリエチレングリコールを7重量部とし、これらを混合し、90℃で溶解した。それを常温に戻して原料液とした。
〔多孔化工程〕
ガラス板上に、ポリエステル不織布を置き、その上に原料液を、ベーカーアプリケータを使って厚さ250μmで塗布した。塗布後、直ちに水に入れ、膜を多孔化した。水を数回入れ替えて洗浄し、その膜を水から出し、乾燥してポリフッ化ビニリデン系樹脂を含有する微多孔質膜とした。
〔SiOガラス層形成工程〕
ポリシラザン溶液として、AZエレクトロニックマテリアルズ株式会社製「アクアミカ(登録商標)型番NAX121−01(ポリシラザン濃度1.0重量部)」を用い、多孔化工程を終えたポリフッ化ビニリデン系樹脂を含有する微多孔質膜を浸漬し、取り出した後、溶媒が完全に蒸発するまで30分程度ドラフト内で静置し、130℃に保ったオーブン内に入れ、1時間加熱処理を行った後常温で1週間静置し、複合微多孔質膜を得た。
[Example 1]
[Preparation process of raw material liquid]
The total amount of the raw material liquid is 100 parts by weight, 86 parts by weight of dimethylacetamide, 7 parts by weight of polyvinylidene fluoride “Kyner HSV900 (weight average molecular weight 800,000)”, 7 parts by weight of polyethylene glycol, these are mixed, Dissolved at ° C. It was returned to room temperature to obtain a raw material solution.
[Porosification process]
A polyester nonwoven fabric was placed on a glass plate, and the raw material liquid was applied thereon with a thickness of 250 μm using a Baker applicator. Immediately after application, the film was made porous to make it porous. The water was changed several times and washed, and the membrane was taken out of the water and dried to obtain a microporous membrane containing a polyvinylidene fluoride resin.
[SiO 2 glass layer forming step]
As a polysilazane solution, a microporous material containing a polyvinylidene fluoride-based resin that has been subjected to a porous process using “AQUAMICA (registered trademark) model number NAX121-01 (polysilazane concentration: 1.0 part by weight)” manufactured by AZ Electronic Materials Co., Ltd. After dipping and removing the membrane, it is allowed to stand in a fume hood for about 30 minutes until the solvent completely evaporates, placed in an oven maintained at 130 ° C., heat-treated for 1 hour, and then allowed to stand at room temperature for 1 week. And a composite microporous membrane was obtained.

[比較例1]
SiOガラス層形成工程を省略した以外はすべて実施例1と同じ方法で単層の微多孔質膜を得た。
[Comparative Example 1]
A single-layer microporous film was obtained in the same manner as in Example 1 except that the SiO 2 glass layer forming step was omitted.

図4と図5のスキン層の走査型電子顕微鏡写真を比較してわかるように、実施例1の複合微多孔質膜のスキン層は球状体と線状の結合材からなる3次元網目構造を構成しており、比較例1の単層の微多孔質膜のスキン層と比較してもSiOガラス層により微孔が閉塞されていないことがわかる。表1に示すとおり、平均流孔径も同じ値を示していることからも微多孔質膜の内部が閉塞していないこともわかる。また、実施例1は比較例1と比べてエタノール処理なしでも非常に高い流束を示していることから、SiOガラス層の形成により、親水性が非常に高くなっていることがわかる。As can be seen by comparing the scanning electron micrographs of the skin layers of FIGS. 4 and 5, the skin layer of the composite microporous membrane of Example 1 has a three-dimensional network structure composed of a spherical body and a linear binder. Even when compared with the skin layer of the single-layer microporous film of Comparative Example 1, it can be seen that the micropores are not blocked by the SiO 2 glass layer. As shown in Table 1, it can also be seen that the inside of the microporous membrane is not clogged from the fact that the average flow pore diameter also shows the same value. Moreover, since Example 1 shows a very high flux even without ethanol treatment compared with Comparative Example 1, it can be seen that the hydrophilicity is very high due to the formation of the SiO 2 glass layer.

Figure 0006447623
Figure 0006447623

表2〜3に、実施例1の複合微多孔質膜の走査型電子顕微鏡写真から求めた球状体1の粒径(真円直径)を示す。   Tables 2 to 3 show the particle diameters (perfect circle diameters) of the spherical bodies 1 obtained from scanning electron micrographs of the composite microporous membrane of Example 1.

Figure 0006447623
Figure 0006447623

Figure 0006447623
Figure 0006447623

表4に実施例1の球状体の粒径の特徴を示す。実施例1の複合微多孔質膜が有するスキン層は、球状体の平均粒径が0.190μmである。さらに、球状体の62%にあたる112個の球状体は、その粒径が平均粒径の±10%の範囲内に入るものである。   Table 4 shows the particle size characteristics of the spherical bodies of Example 1. The skin layer of the composite microporous membrane of Example 1 has a spherical average particle size of 0.190 μm. Further, 112 spheres corresponding to 62% of the spheres have a particle diameter within a range of ± 10% of the average particle diameter.

Figure 0006447623
Figure 0006447623

表5に球状体の粒径の度数分布表を示す。粒径は、幅0.05μm(0.15〜0.20μm)内に集中しており、球状体が均一の粒径を有していることがわかる。   Table 5 shows a frequency distribution table of the particle sizes of the spherical bodies. The particle size is concentrated within a width of 0.05 μm (0.15 to 0.20 μm), and it can be seen that the spherical body has a uniform particle size.

Figure 0006447623
Figure 0006447623

表6〜10に、実施例1の複合微多孔質膜の走査型電子顕微鏡写真から求めた線状の結合材2の長さ(真円間の長さ)を示す。   Tables 6 to 10 show the length of the linear binding material 2 (length between perfect circles) obtained from the scanning electron micrograph of the composite microporous membrane of Example 1.

Figure 0006447623
Figure 0006447623

Figure 0006447623
Figure 0006447623

Figure 0006447623
Figure 0006447623

Figure 0006447623
Figure 0006447623

Figure 0006447623
Figure 0006447623

表11に実施例1の線状の結合材の特徴を示す。実施例1の複合微多孔質膜が有するスキン層は、線状の結合材の平均長が0.219μmである。さらに、結合材の61%にあたる259本の結合材は、その長さが平均長の±30%の範囲内に入っている。   Table 11 shows the characteristics of the linear binder of Example 1. In the skin layer of the composite microporous membrane of Example 1, the average length of the linear binder is 0.219 μm. Furthermore, the length of 259 binders, which is 61% of the binder, is in the range of ± 30% of the average length.

Figure 0006447623
Figure 0006447623

表12に線状の結合材の長さの度数分布表を示す。度数分布は、0.20〜0.25μmの範囲がピークとなるように増加減少しており、結合材の長さが特定の範囲に集中しているのがわかる。   Table 12 shows a frequency distribution table of the lengths of the linear binders. The frequency distribution increases and decreases so that the range of 0.20 to 0.25 μm peaks, and it can be seen that the length of the binder is concentrated in a specific range.

Figure 0006447623
Figure 0006447623

1 球状体
2 線状の結合材
3 膜全体の厚み(支持層の厚み=全体-スキン層)
4 マクロボイド
5 スキン層の厚み
DESCRIPTION OF SYMBOLS 1 Spherical body 2 Linear binding material 3 Thickness of the whole film (support layer thickness = whole-skin layer)
4 Macrovoid 5 Skin layer thickness

本発明の複合微多孔質膜は、アルコール置換等の親水化処理なしで高い透水性を示すことから、ポリフッ化ビニリデン系樹脂が有する耐薬品性と耐熱性に優れたフィルターを作製することができる。このため、メンブレンバイオリアクターや浄水膜、高温殺菌の工程が必須となる医薬、食品用途への用途に対し、特に有効な利用が可能となる。   Since the composite microporous membrane of the present invention exhibits high water permeability without hydrophilic treatment such as alcohol substitution, it is possible to produce a filter having excellent chemical resistance and heat resistance possessed by a polyvinylidene fluoride resin. . For this reason, the membrane bioreactor, the water purification membrane, the medicine for which the high temperature sterilization process is essential, and the use for the food use can be used particularly effectively.

Claims (14)

重量平均分子量(Mw)が、79万〜90万であるポリフッ化ビニリデン系樹脂を含有する微多孔質膜の少なくとも片方の表面にSiOガラス層からなるスキン層を有し、前記スキン層は、3次元網目構造を構成し、前記SiO ガラス層は、3次元網目構造の微孔を閉塞しない状態でスキン層を被覆することを特徴とする水処理用の複合微多孔質膜。 A skin layer composed of a SiO 2 glass layer is provided on at least one surface of a microporous film containing a polyvinylidene fluoride resin having a weight average molecular weight (Mw) of 790,000 to 900,000 , A composite microporous membrane for water treatment , comprising a three-dimensional network structure, wherein the SiO 2 glass layer covers a skin layer in a state where micropores of the three-dimensional network structure are not blocked . ポリフッ化ビニリデン系樹脂を含有する微多孔質膜が非対称膜であって、微孔が形成されたスキン層と前記スキン層を支える、前記微孔よりも大きい空孔が形成された支持層とを備え、前記スキン層は複数の球状体を有し、それぞれの前記球状体から複数の線状の結合材が3次元方向に伸びており、隣接する前記球状体は、前記線状の結合材により互いに接続され、前記球状体を交点とした3次元網目構造を形成する、請求項1に記載の複合微多孔質膜。 A microporous membrane containing a polyvinylidene fluoride resin is an asymmetric membrane, and includes a skin layer in which micropores are formed and a support layer in which pores larger than the micropores are formed, which support the skin layer. The skin layer has a plurality of spherical bodies, and a plurality of linear binders extend from each of the spherical bodies in a three-dimensional direction, and the adjacent spherical bodies are formed by the linear binders. The composite microporous membrane according to claim 1, which is connected to each other to form a three-dimensional network structure having the spherical bodies as intersections. 前記球状体の粒径は、平均粒径の±10%の幅の範囲に50%以上の度数分布を有する、請求項に記載の複合微多孔質膜。 The composite microporous membrane according to claim 2 , wherein the spherical particles have a frequency distribution of 50% or more in a range of ± 10% of the average particle size. 前記結合材の長さは、平均長の±30%の幅の範囲に50%以上の度数分布を有する、請求項またはに記載の複合微多孔質膜。 The composite microporous membrane according to claim 2 or 3 , wherein the length of the binder has a frequency distribution of 50% or more in a range of ± 30% of the average length. 前記球状体は、0.05〜0.5μmの平均粒径を有する、請求項のいずれか1項に記載の複合微多孔質膜。 The composite microporous membrane according to any one of claims 2 to 4 , wherein the spherical body has an average particle diameter of 0.05 to 0.5 µm. 前記スキン層の厚みは、0.5〜5μmであり、前記支持層の厚みは、20〜500μmである、請求項のいずれか1項に記載の複合微多孔質膜。 The composite microporous membrane according to any one of claims 2 to 5 , wherein the skin layer has a thickness of 0.5 to 5 µm, and the support layer has a thickness of 20 to 500 µm. 前記支持層を支える基材層を備える、請求項のいずれか1項に記載の複合微多孔質膜。 The composite microporous membrane according to any one of claims 2 to 6 , further comprising a base material layer that supports the support layer. 複合微多孔質膜の平均流孔径が、5〜500nmであることを特徴とする請求項1〜のいずれか1項に記載の複合微多孔質膜。 The composite microporous membrane according to any one of claims 1 to 7 , wherein an average flow pore size of the composite microporous membrane is 5 to 500 nm. 複合微多孔質膜が、平膜の形状であることを特徴とする請求項1〜のいずれか1項に記載の複合微多孔質膜。 The composite microporous membrane according to any one of claims 1 to 8 , wherein the composite microporous membrane has a flat membrane shape. 請求項1〜のいずれか1項に記載の複合微多孔質膜を用いることを特徴とするフィルター。 A filter using the composite microporous membrane according to any one of claims 1 to 9 . 請求項1〜のいずれか1項に記載の複合微多孔質膜の製造方法であって、ポリフッ化ビニリデン系樹脂を含有する微多孔質膜の少なくとも片側にシリカ前駆体の塗膜を形成した後、前記シリカ前駆体をSiOガラスに転化させることにより、SiOガラス層を形成し、少なくとも片側がSiOガラスで被覆されたポリフッ化ビニリデン系樹脂を含有する微多孔質膜を得ることを特徴とする複合微多孔質膜の製造方法。 The method of manufacturing the composite microporous membrane according to any one of claims 1 to 9 to form a coating film of silica precursor on at least one side of the microporous film containing polyvinylidene fluoride resin Thereafter, by converting the silica precursor into SiO 2 glass, a SiO 2 glass layer is formed, and a microporous film containing a polyvinylidene fluoride resin at least one side coated with SiO 2 glass is obtained. A method for producing a composite microporous membrane. 前記シリカ前駆体が、ポリシラザンであることを特徴とする請求項11に記載の微多孔質膜の製造方法。 The method for producing a microporous film according to claim 11 , wherein the silica precursor is polysilazane. 請求項に記載の複合微多孔質膜の製造方法であって、前記ポリフッ化ビニリデン系樹脂を良溶媒に溶解した原料液を前記基材層上に塗布する塗布工程と前記塗布工程後、非溶媒中に前記基材層と塗布した前記原料液を浸ける浸漬工程とを備える複合微多孔質膜の製造方法。 7. The method for producing a composite microporous membrane according to claim 6 , wherein a coating solution in which a raw material solution in which the polyvinylidene fluoride resin is dissolved in a good solvent is applied on the base material layer and after the coating step, The manufacturing method of a composite microporous film | membrane provided with the immersion process which immerses the said base material layer and the apply | coated said raw material liquid in a solvent. 請求項に記載の複合微多孔質膜の製造方法であって、前記ポリフッ化ビニリデン系樹脂を良溶媒に溶解した原料液を基材層上または支持体上に塗布する塗布工程と前記塗布工程後、非溶媒中に前記基材層または支持体と塗布した前記原料液を浸ける浸漬工程とを備える複合微多孔質膜の製造方法。 It is a manufacturing method of the composite microporous film | membrane of Claim 7 , Comprising: The application | coating process which apply | coats the raw material liquid which melt | dissolved the said polyvinylidene fluoride resin in the good solvent on a base material layer or a support body, and the said application | coating process Then, the manufacturing method of a composite microporous film | membrane provided with the immersion process which immerses the said base material layer or a support body and the apply | coated said raw material liquid in a non-solvent.
JP2016506449A 2014-03-03 2015-02-26 Composite microporous membrane and filter using the same Expired - Fee Related JP6447623B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014040853 2014-03-03
JP2014040853 2014-03-03
PCT/JP2015/055639 WO2015133364A1 (en) 2014-03-03 2015-02-26 Composite fine porous membrane and filter using same

Publications (2)

Publication Number Publication Date
JPWO2015133364A1 JPWO2015133364A1 (en) 2017-04-06
JP6447623B2 true JP6447623B2 (en) 2019-01-09

Family

ID=54055173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016506449A Expired - Fee Related JP6447623B2 (en) 2014-03-03 2015-02-26 Composite microporous membrane and filter using the same

Country Status (3)

Country Link
JP (1) JP6447623B2 (en)
TW (1) TWI657858B (en)
WO (1) WO2015133364A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159457A1 (en) * 2016-03-16 2017-09-21 住友電工ファインポリマー株式会社 Method for manufacturing laminate, and laminate
JP6759511B2 (en) * 2016-03-16 2020-09-23 住友電工ファインポリマー株式会社 Laminate
CN105797591B (en) * 2016-03-28 2019-01-18 上海应用技术学院 A kind of preparation method of super-hydrophobicity polyvinylidene fluoride microporous film
JP6574886B2 (en) * 2017-10-24 2019-09-11 住友化学株式会社 Porous layer for non-aqueous electrolyte secondary battery
CN108499363A (en) * 2018-04-28 2018-09-07 广西民族大学 The method of the nano-silicon dioxide modified PVDF dewatering microporous films of fabricated in situ
JP7435438B2 (en) 2018-12-26 2024-02-21 東レ株式会社 Porous membrane, composite membrane, and porous membrane manufacturing method
JP7032460B2 (en) * 2020-01-28 2022-03-08 株式会社エフ・シー・シー How to manufacture a filtration filter
WO2021241514A1 (en) * 2020-05-29 2021-12-02 東レ株式会社 Porous film and composite film
CN111760470A (en) * 2020-07-06 2020-10-13 中国海诚工程科技股份有限公司 Membrane transfer coating MBR (membrane bioreactor) membrane and preparation method thereof
US11827861B2 (en) * 2021-08-04 2023-11-28 ExxonMobil Technology and Engineering Company Floating photobioreactors for algae biofuel production and devices and methods related thereto

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036559A (en) * 2006-08-08 2008-02-21 Toray Ind Inc Method of oxidization processing fluororesin-based polymer separation membrane
KR102030333B1 (en) * 2010-06-18 2019-10-10 제이엔씨 주식회사 Composite porous film for fluid separation, production method thereof, and filter
KR20140025579A (en) * 2011-06-22 2014-03-04 다이킨 고교 가부시키가이샤 Porous polymer film and production method for porous polymer film
EP2784108A4 (en) * 2011-12-28 2015-08-12 Daikin Ind Ltd Porous polymer membrane

Also Published As

Publication number Publication date
WO2015133364A1 (en) 2015-09-11
TW201536406A (en) 2015-10-01
TWI657858B (en) 2019-05-01
JPWO2015133364A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6447623B2 (en) Composite microporous membrane and filter using the same
JP5729521B2 (en) Microporous membrane and method for producing the same
US10850239B2 (en) Filter medium, method for manufacturing same, and filter module comprising same
JP4221154B2 (en) Method for producing highly porous polyvinylidene difluoride film
JP5954476B2 (en) Separation membrane element
WO1995033549A1 (en) Porous polysulfone membrane and process for producing the same
US20190291057A1 (en) Filter assembly, method for manufacturing same, and filter module comprising same
JP5292705B2 (en) Composite separation membrane and method for producing the same
JP6237232B2 (en) Composite semipermeable membrane
JP6432508B2 (en) Method for producing film having nanostructure on surface
CN109475822B (en) Macroporous or mesoporous polymeric membranes of hollow fiber geometry
JP2015160185A (en) membrane bioreactor
JP2019118907A (en) Substrate for semipermeable membrane
JP2899347B2 (en) Porous hollow fiber membrane
JP6766652B2 (en) Composite semipermeable membrane
KR101434184B1 (en) Forward osmosis membrane and manufacturing method thereof
JP3974907B2 (en) Composite separation membrane and method for producing the same
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
TW201938258A (en) Polyvinylidene-difluoride-based microporous membrane
KR20170096692A (en) Forward osmosis membrane and production method thereof
JP2023149452A (en) separation membrane
JP2899348B2 (en) Porous hollow fiber
JPH02298323A (en) Microporous membrane
JPH03293022A (en) Porous hollow fiber membrane of poly-4-methylpentene-1
JPH07328401A (en) Production of porous separating membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees