JP3974907B2 - Composite separation membrane and method for producing the same - Google Patents

Composite separation membrane and method for producing the same Download PDF

Info

Publication number
JP3974907B2
JP3974907B2 JP2004266908A JP2004266908A JP3974907B2 JP 3974907 B2 JP3974907 B2 JP 3974907B2 JP 2004266908 A JP2004266908 A JP 2004266908A JP 2004266908 A JP2004266908 A JP 2004266908A JP 3974907 B2 JP3974907 B2 JP 3974907B2
Authority
JP
Japan
Prior art keywords
separation membrane
composite separation
nonwoven fabric
membrane
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004266908A
Other languages
Japanese (ja)
Other versions
JP2006081969A (en
Inventor
竜大 尾下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashin Filter Corp
Original Assignee
Yamashin Filter Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashin Filter Corp filed Critical Yamashin Filter Corp
Priority to JP2004266908A priority Critical patent/JP3974907B2/en
Publication of JP2006081969A publication Critical patent/JP2006081969A/en
Application granted granted Critical
Publication of JP3974907B2 publication Critical patent/JP3974907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、複合分離膜およびその製造方法に関する。   The present invention relates to a composite separation membrane and a method for producing the same.

従来、電子工業分野、食品分野等において、0.1〜10μm、特に0.1〜5μmの微粒子の除去、細菌の除去に精密濾過用多孔質分離膜が用いられている。   Conventionally, porous separation membranes for microfiltration have been used for the removal of fine particles of 0.1 to 10 μm, particularly 0.1 to 5 μm, and the removal of bacteria in the fields of electronics industry and food.

前記多孔質分離膜は、外面および内部の孔径が実質的に変わらない対称形分離膜と、厚さ方向に孔径が連続的または不連続的に変化し、表裏で孔径が異なる非対称形分離膜と、膜内部に最小孔径の微小細孔層を有する内部緻密形分離膜とに分類される。   The porous separation membrane includes a symmetrical separation membrane in which the outer and inner pore diameters do not substantially change, and an asymmetric separation membrane in which the pore diameter changes continuously or discontinuously in the thickness direction, and the pore diameters are different on the front and back sides. The membrane is classified into an internal dense separation membrane having a microporous layer having a minimum pore size inside the membrane.

前記対称形分離膜は、濾過操作において被処理流体の流速に対して膜全体が大きな抵抗を示すため、大きな流速で被処理流体を濾過することが困難である。また、対象膜の表面に孔径以上の粒子が付着すると、その粒子の堆積、目詰まりを起こして濾過寿命を短くする。このような対称形分離膜の抵抗を下げるために膜厚を薄くすることが試みられているが、強度が低くなって破損しやすくなる新たな問題が生じる。   The symmetrical separation membrane has a large resistance with respect to the flow rate of the fluid to be treated in the filtration operation, and thus it is difficult to filter the fluid to be treated at a large flow rate. In addition, if particles having a diameter larger than the pore size adhere to the surface of the target film, the particles are deposited and clogged to shorten the filtration life. Although attempts have been made to reduce the film thickness in order to reduce the resistance of such a symmetrical separation membrane, there arises a new problem that the strength is reduced and the film is easily damaged.

前記非対称形分離膜は、被処理流体が接する表面に大きな孔、裏面側に微細な孔径を持つ微小細孔層が形成された構造を有するため、前記微小細孔層を膜の全体厚さに対して薄くなるように制御することによって、被処理流体の流速を高めても膜全体に加わる抵抗を小さくすることが可能になる。また、微粒子等を含む被処理流体の濾過においても表面に比較的大きな孔が存在するため、膜内部での微粒子の捕捉が可能になり濾過寿命を延ばすことが可能になる。しかしながら、非対称形分離膜は裏面側の微小細孔層が外部からの衝撃に弱く傷が付き易いために、この膜をフィルタ等のカートリッジに襞折形状にして収納する際、その微小細孔層に大きな孔が形成され、本来の優れた機能が低減される欠点があった。   The asymmetric separation membrane has a structure in which a large pore is formed on the surface in contact with the fluid to be processed and a microporous layer having a fine pore diameter on the back surface side. By controlling the thickness to be thinner, it is possible to reduce the resistance applied to the entire film even if the flow rate of the fluid to be processed is increased. Further, in the filtration of a fluid to be treated containing fine particles and the like, since relatively large pores exist on the surface, the fine particles can be captured inside the membrane, and the filtration life can be extended. However, the asymmetric separation membrane has a microporous layer on the back side that is vulnerable to external impact and is easily scratched. Therefore, when this membrane is stored in a cartridge such as a filter in a folded shape, Large pores were formed, and the original excellent function was reduced.

前記内部緻密形分離膜は、前記非対称形分離膜の欠点を補い、外部からの衝撃にも耐える強度を有する。また、内部の最小孔径の微小細孔層の厚さやその孔径を制御して最大孔径と最小孔径の差を小さくすることにより、各種用途の被処理流体の流速に対して膜抵抗を下げることが可能になる。   The inner dense separation membrane compensates for the disadvantages of the asymmetric separation membrane and has strength to withstand external impacts. In addition, by controlling the thickness of the micropore layer with the smallest pore diameter and the pore diameter to reduce the difference between the largest and smallest pore diameters, the membrane resistance can be lowered against the flow rate of the fluid to be treated for various applications. It becomes possible.

特許文献1には、2枚の非対称形分離膜をそれらの微小細孔層同士が密着するように重ねて前述の内部緻密形分離膜を製造することが開示されている。   Patent Document 1 discloses that the above-mentioned internal dense separation membrane is manufactured by stacking two asymmetric separation membranes so that their microporous layers are in close contact with each other.

特許文献2には、膜内部に微小細孔層を形成する内部緻密形分離膜の製造方法が開示されている。この方法は、膜素材であるポリマーに膨潤剤、親水性ポリマーおよび非溶媒を添加し、これらを良溶媒で溶解して製膜原液を調製し、これを支持体に流延して流延膜中の溶媒を蒸発させるとともに、空気中の水分にてその膜表面に局所的な相分離を起こさせ、さらに水のような凝固液に浸漬し、膜内部から溶剤を除去し、その後洗浄、乾燥、支持体から剥離を行うことによって内部緻密形分離膜を製造する方法である。
特開昭58−150402号公報 特開昭63−141607号公報
Patent Document 2 discloses a method for producing an internal dense separation membrane in which a microporous layer is formed inside the membrane. In this method, a swelling agent, a hydrophilic polymer, and a non-solvent are added to a polymer that is a membrane material, and these are dissolved in a good solvent to prepare a film-forming stock solution. Evaporate the solvent inside, cause local phase separation on the membrane surface with moisture in the air, and further immerse in a coagulating liquid such as water to remove the solvent from the inside of the membrane, then wash and dry This is a method for producing an internal dense separation membrane by peeling from a support.
JP 58-150402 A JP-A-63-141607

本発明は、従来の内部緻密形分離膜と同等の濾過性能を有し、かつ微小細孔層に起因する機械的強度の低下を保証することが可能な複合分離膜およびその製造方法を提供することを目的とする。   The present invention provides a composite separation membrane having a filtration performance equivalent to that of a conventional internal dense separation membrane and capable of guaranteeing a decrease in mechanical strength due to a microporous layer, and a method for producing the same. For the purpose.

本発明によると、実質的にポリエーテルスルホンからなる多孔質膜と不織布とからなる複合分離膜であって、
前記多孔質膜と不織布との界面は、不織布の繊維が相互に入り込んだ構造を有し、
前記多孔質膜は、前記不織布側の表面部分に微細な孔径の微小細孔層が形成され、かつこの微小細孔層から前記不織布に対して反対側の表面に向かって孔径が大きくなるように分布した構造を有することを特徴とする複合分離膜が提供される。
According to the present invention, a composite separation membrane consisting essentially of a porous membrane made of polyethersulfone and a nonwoven fabric,
The interface between the porous membrane and the non-woven fabric has a structure in which non-woven fabric fibers enter each other,
In the porous membrane, a fine pore layer having a fine pore diameter is formed on the surface portion on the nonwoven fabric side, and the pore diameter increases from the fine pore layer toward the surface opposite to the nonwoven fabric. A composite separation membrane characterized by having a distributed structure is provided.

また本発明によると、ポリエーテルスルホン、膨潤剤、親水性ポリマー、良溶媒および非溶媒を含む製膜原液を支持体上に流延し、この流延膜表面に不織布を重ねた後、凝固液に浸漬することを特徴とする複合分離膜の製造方法が提供される。   According to the present invention, a film-forming stock solution containing polyethersulfone, a swelling agent, a hydrophilic polymer, a good solvent and a non-solvent is cast on a support, and a non-woven fabric is stacked on the surface of the cast film, and then a coagulation liquid A method for producing a composite separation membrane is provided, which is immersed in the membrane.

本発明は、従来の内部緻密形分離膜と同等の濾過性能を有し、かつ微小細孔層に起因する機械的強度の低下を保証して搬送、組み立て時の損傷、性能低下を防ぐことが可能な高性能、高信頼性の複合分離膜およびその製造方法を提供することできる。   The present invention has a filtration performance equivalent to that of a conventional internal dense separation membrane, and guarantees a decrease in mechanical strength due to the microporous layer to prevent damage during transport and assembly, and a decrease in performance. It is possible to provide a high-performance, high-reliability composite separation membrane and a method for manufacturing the same.

以下、本発明に係る複合分離膜およびその製造方法を詳細に説明する。   Hereinafter, the composite separation membrane and the production method thereof according to the present invention will be described in detail.

この実施形態に係る複合分離膜は、実質的にポリエーテルスルホンからなる多孔質膜と不織布とからなり、多孔質膜と不織布との界面において不織布の繊維が相互に入り込んだ構造を有する。前記多孔質膜は、前記不織布側の表面部分に微細な孔径の微小細孔層が形成され、かつこの微小細孔層から前記不織布に対して反対側の表面に向かって孔径が大きくなるように分布した構造を有する。前記微小細孔層および孔径分布を持つ層(孔傾斜層)の孔は連続気孔である。   The composite separation membrane according to this embodiment is composed of a porous membrane substantially made of polyethersulfone and a nonwoven fabric, and has a structure in which fibers of the nonwoven fabric enter each other at the interface between the porous membrane and the nonwoven fabric. In the porous membrane, a fine pore layer having a fine pore diameter is formed on the surface portion on the nonwoven fabric side, and the pore diameter increases from the fine pore layer toward the surface opposite to the nonwoven fabric. It has a distributed structure. The pores of the fine pore layer and the layer having a pore size distribution (pore gradient layer) are continuous pores.

前記不織布は、プラスチック繊維から作られれば特に限定されないが、例えばポリエチレン繊維またはポリプロピレン繊維から作られる。   Although the said nonwoven fabric will not be specifically limited if it is made from a plastic fiber, For example, it is made from a polyethylene fiber or a polypropylene fiber.

前記不織布の目付け量は、20〜60g/m2であることが好ましい。
前記不織布の厚さは、複合分離膜の性能にそれほど大きく影響しない。ただし、複合分離膜をフィルタカートリッジとして使用する際、前記不織布の厚さが厚過ぎるとカートリッジに襞折して収納する面積の制限が加わり、一方薄くし過ぎると被処理流体を流す際に分離膜同士が密着して透水性を低下させる虞がある。このため、前記不織布の厚さは100〜600μm、より好ましくは150〜450μmにすることが望ましい。
The basis weight of the nonwoven fabric is preferably 20 to 60 g / m 2 .
The thickness of the nonwoven fabric does not greatly affect the performance of the composite separation membrane. However, when the composite separation membrane is used as a filter cartridge, if the thickness of the nonwoven fabric is too thick, a restriction is imposed on the area to be folded and stored in the cartridge. There is a possibility that the water tightness may be reduced due to close contact with each other. For this reason, it is desirable that the thickness of the nonwoven fabric be 100 to 600 μm, more preferably 150 to 450 μm.

前記多孔質膜は、100〜200μm、より好ましくは130〜160μmの厚さを有することが望ましい。   The porous membrane desirably has a thickness of 100 to 200 μm, more preferably 130 to 160 μm.

前記多孔質膜と不織布の界面において、不織布を構成する繊維が相互に入り込む厚さは
5〜20μmであることが好ましい。
The thickness at which the fibers constituting the nonwoven fabric enter each other at the interface between the porous membrane and the nonwoven fabric is preferably 5 to 20 μm.

前記多孔質膜の微小細孔層の孔径は、0.005〜0.5μm、より好ましくは0.01〜0.2μmであることが望ましい。この微小細孔層は、多孔質膜の全厚さに対して5〜15%占めることが好ましい。   The pore diameter of the microporous layer of the porous membrane is preferably 0.005 to 0.5 μm, more preferably 0.01 to 0.2 μm. This fine pore layer preferably occupies 5 to 15% of the total thickness of the porous membrane.

前記多孔質膜の前記不織布に対して反対側の表面の孔径は、5〜20μm、より好ましくは8〜15μmであることが望ましい。   The pore diameter on the surface of the porous membrane opposite to the nonwoven fabric is desirably 5 to 20 μm, more preferably 8 to 15 μm.

この実施形態に係る複合分離膜の構造の一例を図1を参照して具体的に説明する。   An example of the structure of the composite separation membrane according to this embodiment will be specifically described with reference to FIG.

この複合分離膜1は、実質的にポリエーテルスルホンからなる多孔質膜2と不織布3とからなり、多孔質膜2と不織布3との界面において不織布3の繊維4が相互に入り込んだ構造を有する。多孔質膜2は、前記不織布3側の表面部分に形成された微細な孔径の微小細孔層5と、この微小細孔層5から前記不織布に対して反対側の表面に向かって孔径が大きくなるように分布して形成された孔傾斜層6とを有する。前記微小細孔層5および孔傾斜層6の孔は、連続して繋がる、連続気孔である。なお、この複合分離膜1を濾過フィルタに適用する場合には前記多孔質膜2の孔傾斜層6側の表面が被処理流体の流入側になる。   The composite separation membrane 1 is composed of a porous membrane 2 substantially made of polyethersulfone and a nonwoven fabric 3 and has a structure in which fibers 4 of the nonwoven fabric 3 enter each other at the interface between the porous membrane 2 and the nonwoven fabric 3. . The porous membrane 2 has a fine pore layer 5 having a fine pore diameter formed on the surface portion on the nonwoven fabric 3 side, and a pore diameter increases from the fine pore layer 5 toward the surface on the opposite side of the nonwoven fabric. And the inclined hole layer 6 formed so as to be distributed. The pores of the micropore layer 5 and the pore gradient layer 6 are continuous pores that are continuously connected. When the composite separation membrane 1 is applied to a filtration filter, the surface of the porous membrane 2 on the pore inclined layer 6 side is the inflow side of the fluid to be treated.

次に、前述の複合分離膜の製造方法を説明する。   Next, the manufacturing method of the above-mentioned composite separation membrane will be described.

(第1工程)
ポリエーテルスルホン、膨潤剤、親水性ポリマー、良溶媒および非溶媒を含む製膜原液を支持体上に流延する。
(First step)
A film-forming stock solution containing polyethersulfone, a swelling agent, a hydrophilic polymer, a good solvent and a non-solvent is cast on a support.

前記膨潤剤としては、例えばポリエチレングリコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、食塩、塩化リチウム、臭化マグネシウムから選ばれる1種または2種以上の混合物を用いることができる。この膨潤剤の中で、ポリエチレングリコールが好ましく、特に重量平均分子量400〜800のポリエチレングリコールが好ましい。   As the swelling agent, for example, one or a mixture of two or more selected from polyethylene glycol, polyvinyl pyrrolidone, hydroxypropyl cellulose, sodium chloride, lithium chloride, and magnesium bromide can be used. Among these swelling agents, polyethylene glycol is preferable, and polyethylene glycol having a weight average molecular weight of 400 to 800 is particularly preferable.

前記親水性ポリマーは、特にその重量平均分子量を限定しないが、例えば重量平均分子量30000〜50000であることが好ましい。親水性ポリマーとしては、例えばポリビニルピロリドンまたはヒドロキシプロピルセルロースを用いることができる。この親水性ポリマーの中で、ポリビニルピロリドンが好ましく、特に前記重量平均分子量を持つポリビニルピロリドンが好ましい。   The hydrophilic polymer is not particularly limited in its weight average molecular weight, but preferably has a weight average molecular weight of 30,000 to 50,000, for example. As the hydrophilic polymer, for example, polyvinylpyrrolidone or hydroxypropylcellulose can be used. Among the hydrophilic polymers, polyvinyl pyrrolidone is preferable, and polyvinyl pyrrolidone having the weight average molecular weight is particularly preferable.

前記良溶媒としては、例えばN−メチル−ピロリドン、アセトン、ジメチルホルムアミド等を用いることができる。   As the good solvent, for example, N-methyl-pyrrolidone, acetone, dimethylformamide and the like can be used.

前記非溶媒としては、例えば水、一価アルコール、多価アルコール、エチレングリコール、テトラエチレングリコール等を用いることができる。   As the non-solvent, for example, water, monohydric alcohol, polyhydric alcohol, ethylene glycol, tetraethylene glycol or the like can be used.

前記成膜原液中のポリエーテルスルホン、膨潤剤および親水性ポリマーの配合比率は、特に限定されないが、(a)ポリエーテルスルホン10〜20重量%、(b)膨潤剤10〜20重量%、および(c)親水性ポリマー5〜20重量%にすることが好ましい。   The blending ratio of the polyethersulfone, the swelling agent and the hydrophilic polymer in the stock solution for film formation is not particularly limited. (C) The hydrophilic polymer is preferably 5 to 20% by weight.

前記ポリエーテルスルホンの配合比率を10重量%未満にすると、得られた複合分離膜を濾過、分離に使用した際、その多孔質膜の強度が低く、破損する虞がある。一方、前記ポリエーテルスルホンの配合比率が20重量%を超えると、得られた複合分離膜の多孔質膜の強度が強くなりすぎて濾過、分離に使用した際に破損する虞がある。より好ましいポリエーテルスルホンの配合比率は、13〜16重量%である。   When the blending ratio of the polyethersulfone is less than 10% by weight, when the obtained composite separation membrane is used for filtration and separation, the strength of the porous membrane is low and there is a risk of breakage. On the other hand, if the blending ratio of the polyether sulfone exceeds 20% by weight, the strength of the porous membrane of the obtained composite separation membrane becomes too strong and may be damaged when used for filtration and separation. A more preferable blending ratio of the polyethersulfone is 13 to 16% by weight.

前記膨潤剤の配合比率を10重量%未満にすると、得られた複合分離膜の多孔質膜に目的とする網目構造を形成することが困難になる。一方、前記膨潤剤の配合比率が20重量%を超えると、均質、均一な成膜原液を調製することが困難になる。より好ましい膨潤剤の配合比率は、13〜17重量%である。   When the blending ratio of the swelling agent is less than 10% by weight, it becomes difficult to form a desired network structure on the porous membrane of the obtained composite separation membrane. On the other hand, when the blending ratio of the swelling agent exceeds 20% by weight, it becomes difficult to prepare a homogeneous and uniform film forming stock solution. A more preferable blending ratio of the swelling agent is 13 to 17% by weight.

前記親水性ポリマーの配合比率を5重量%未満にすると、得られた複合分離膜の多孔質膜の孔径が全体的に均一になり、目的とする微小細孔層および孔径分布を形成することが困難になる。一方、前記親水性ポリマーの配合比率が20重量%を超えると、得られた複合分離膜の多孔質膜にその親水性ポリマーが残留しやすくなり、少量であるがその多孔質膜から溶出して初期汚染を招く虞がある。好ましい親水性ポリマーの配合比率は、9〜13重量%である。   When the blending ratio of the hydrophilic polymer is less than 5% by weight, the pore size of the porous membrane of the obtained composite separation membrane becomes uniform as a whole, and the intended micropore layer and pore size distribution can be formed. It becomes difficult. On the other hand, when the blending ratio of the hydrophilic polymer exceeds 20% by weight, the hydrophilic polymer tends to remain in the porous membrane of the obtained composite separation membrane, and a small amount is eluted from the porous membrane. There is a risk of initial contamination. A preferable blending ratio of the hydrophilic polymer is 9 to 13% by weight.

前記支持体としては、例えばポリエチレンフタレ−ト(PET)フィルム等を用いることができる。   As the support, for example, a polyethylene phthalate (PET) film or the like can be used.

前記流延時の雰囲気は、温度15〜23℃、湿度50〜80%にすることが好ましい。   The casting atmosphere is preferably set to a temperature of 15 to 23 ° C. and a humidity of 50 to 80%.

前記流延時の雰囲気温度を15℃未満にすると、目的とする網目構造を有する多孔質膜を持つ複合分離膜を得ることが困難になる。一方、流延時の雰囲気温度が23℃を超えると、表面蒸発により得られた複合分離膜における多孔質膜の不織布界面が微小細孔を持たないスキン層になる虞がある。より好ましい流延時の雰囲気温度は15〜20℃である。   If the atmospheric temperature during casting is less than 15 ° C., it is difficult to obtain a composite separation membrane having a porous membrane having a target network structure. On the other hand, if the atmospheric temperature during casting exceeds 23 ° C., the nonwoven fabric interface of the porous membrane in the composite separation membrane obtained by surface evaporation may become a skin layer having no fine pores. More preferable atmospheric temperature during casting is 15 to 20 ° C.

前記流延時の雰囲気湿度を50%未満にすると、流延した膜表面が硬化し難く、不織布を重ねる際に不織布内に製膜連量のポリマー成分が過度に浸透して微小細孔層を含む網目構造の多孔質膜を形成することが困難になる。一方、前記流延時の雰囲気湿度が80%を超えると、流延した膜表面に欠陥が生じ、所期の厚さおよび網目構造を有する複合分離膜の製造が困難になる。また、製膜原液を流延する際の製膜安定性も低下する虞がある。より好ましい流延時の雰囲気湿度は、50〜75%である。   When the atmospheric humidity at the time of casting is less than 50%, the cast film surface is hard to be cured, and when the non-woven fabrics are stacked, the polymer component of the film forming amount excessively penetrates into the non-woven fabric and includes a microporous layer It becomes difficult to form a porous film having a network structure. On the other hand, if the atmospheric humidity at the time of casting exceeds 80%, defects will occur on the surface of the cast membrane, making it difficult to produce a composite separation membrane having the desired thickness and network structure. Moreover, there is a possibility that the film-forming stability when casting the film-forming stock solution is also lowered. More preferable atmospheric humidity during casting is 50 to 75%.

前記流延時の膜厚さは、約100μm〜約200μm、より好ましくは約130μm〜約160μmにすることが望ましい。   The film thickness during casting is desirably about 100 μm to about 200 μm, more preferably about 130 μm to about 160 μm.

(第2工程)
前記支持体上の流延膜表面に不織布を重ねた後、凝固液に浸漬する。このとき、流延膜の成分である前記膨潤剤、親水性ポリマー、良溶媒および非溶媒と凝固液との相互作用により、不織布に接する流延膜表面に微細な孔径の微小細孔層が形成され、かつこの微細細孔層から前記不織布と反対側の面に向かって孔径が大きくなるように分布して孔傾斜層が形成される。つづいて、洗浄、乾燥し、支持体から剥離することにより前述した構造の複合分離膜を製造する。
(Second step)
After the nonwoven fabric is stacked on the surface of the cast film on the support, it is immersed in a coagulation liquid. At this time, a fine pore layer having a fine pore diameter is formed on the surface of the cast film in contact with the nonwoven fabric by the interaction between the coagulating liquid and the swelling agent, hydrophilic polymer, good solvent and non-solvent that are components of the cast film. In addition, a pore inclined layer is formed by being distributed so that the pore diameter increases from the fine pore layer toward the surface opposite to the nonwoven fabric. Subsequently, the composite separation membrane having the structure described above is manufactured by washing, drying, and peeling from the support.

前記不織布は、プラスチック繊維から作られれば特に限定されないが、例えばポリエチレン繊維またはポリプロピレン繊維から作られる。この不織布の厚さは、複合分離膜の性能にそれほど大きく影響しない。ただし、製造された複合分離膜をフィルタカートリッジとして使用する際、前記不織布の厚さが厚過ぎるとカートリッジに襞折して収納する面積の制限が加わり、一方、薄くし過ぎると被処理流体を流す際に分離膜同士が密着して透水性を低下させる虞がある。このため、前記不織布の厚さは100〜600μm、より好ましくは150〜450μmにすることが望ましい。   Although the said nonwoven fabric will not be specifically limited if it is made from a plastic fiber, For example, it is made from a polyethylene fiber or a polypropylene fiber. The thickness of this nonwoven fabric does not significantly affect the performance of the composite separation membrane. However, when the manufactured composite separation membrane is used as a filter cartridge, if the thickness of the nonwoven fabric is too thick, the area to be folded and stored in the cartridge is limited. At this time, the separation membranes may be brought into close contact with each other to reduce water permeability. For this reason, it is desirable that the thickness of the nonwoven fabric be 100 to 600 μm, more preferably 150 to 450 μm.

前記凝固液は、前述した非溶媒(例えば水、一価アルコール、多価アルコール、エチレングリコール、テトラエチレングリコール等)を用いることができる。   The non-solvent (for example, water, monohydric alcohol, polyhydric alcohol, ethylene glycol, tetraethylene glycol, etc.) mentioned above can be used for the coagulation liquid.

前記支持体上の流延膜表面への不織布の密着、これに引き続く凝固液への浸漬までの雰囲気は、流延時の雰囲気、好ましくは温度17〜19℃、湿度55〜75%に保持することが望ましい。   The atmosphere until the nonwoven fabric adheres to the surface of the casting film on the support and is subsequently immersed in the coagulation liquid is maintained at the casting atmosphere, preferably at a temperature of 17 to 19 ° C. and a humidity of 55 to 75%. Is desirable.

前記洗浄は、50〜70℃の温水で行うことが好ましい。   The washing is preferably performed with hot water of 50 to 70 ° C.

以上説明した本発明の実施形態に係る複合分離膜は、多孔質膜と不織布とがそれらの界面において前記不織布の繊維が相互に入り込んでいるため、それらの間で高い密着力(高い接合力)を有し、例えばフィルタ等のカートリッジに襞折形状にして収納する際に層剥離を生じるのを防止して一体化した部材として取り扱うことができる。   In the composite separation membrane according to the embodiment of the present invention described above, the porous membrane and the non-woven fabric have the non-woven fabric fibers interpenetrating at the interface between them, so that the high adhesion force (high bonding strength) between them. And can be handled as an integrated member by preventing delamination when stored in a folded shape in a cartridge such as a filter.

また、前記多孔質膜は前記不織布側の表面部分に形成された微細な孔径の微小細孔層と、この微小細孔層から前記不織布に対して反対側の表面に向かって孔径が大きくなるように分布して形成された孔傾斜層とを有するため、前記微小細孔層を膜の全体厚さに対して薄くなるように制御することによって、前記孔傾斜層が形成された多孔質膜の面側から被処理流体を流入させた場合、その被処理流体の流速を高めても膜全体に加わる抵抗を小さくすることが可能になる。また、微粒子等を含む被処理流体の濾過においても多孔質膜の被処理流体の流入面に前記孔傾斜層の比較的大きな孔が存在するため、膜内部での微粒子の捕捉が可能になり濾過寿命を延ばすことが可能になる。   The porous membrane has a fine pore layer having a fine pore diameter formed on the surface portion on the nonwoven fabric side, and the pore diameter increases from the fine pore layer toward the surface opposite to the nonwoven fabric. The pore gradient layer formed in a distributed manner in the porous membrane in which the pore gradient layer is formed by controlling the micropore layer to be thinner than the entire thickness of the membrane. When the fluid to be treated is introduced from the surface side, the resistance applied to the entire film can be reduced even if the flow velocity of the fluid to be treated is increased. In addition, when filtering the fluid to be treated containing fine particles, the pores in the porous membrane have relatively large pores on the inflow surface of the fluid to be treated, so that the fine particles can be trapped inside the membrane. It becomes possible to extend the life.

さらに、前記微小細孔層は不織布により一体的に覆われ、外部からの衝撃に対して保護されるために、この複合分離膜をフィルタ等のカートリッジに襞折形状にして収納する際、その微小細孔層に傷か付けられて大きな孔が形成されるのを防止でき、多孔質膜本来の優れた濾過機能を発揮することができる。
本発明の実施形態に係る方法によれば、前述した特性を有する複合分離膜を簡単かつ、再現性よく製造することができる。
以下,本発明の実施例を前述した図面を参照して説明する。
Further, since the microporous layer is integrally covered with a nonwoven fabric and is protected against impact from the outside, when the composite separation membrane is stored in a cartridge such as a filter in a folded shape, the microporous layer is protected. It is possible to prevent the pore layer from being scratched and form large pores, and to exhibit the excellent filtration function inherent to the porous membrane.
According to the method of the embodiment of the present invention, a composite separation membrane having the above-described characteristics can be manufactured easily and with good reproducibility.
Embodiments of the present invention will be described below with reference to the drawings described above.

(実施例1)
まず、ポリエーテルスルホン(住友化学社製商品名:スミカフレックス4200P)14重量%、重量平均分子量600のポリエチレングリコール13重量%、重量平均分子量50000のポリビニルピロリドン9重量%、1−ブタノール15重量%、N−メチル−ピロリドン47重量%および水2重量%を秤量し、N−メチル−ピロリドンを除く各成分をタンク内に入れ、攪拌し、さらにN−メチル−ピロリドンを添加してポリマー成分を溶解した後、脱気を行ってポリエーテルサルホンが均一に溶解された製膜原液を調製した。
次いで、前記製膜原液を支持体であるPETフィルム上に温度17±2℃、湿度70±5%の雰囲気で約200μmの厚さに流延し、その後10秒間放置した。つづいて、この流延膜を凝固液である水が収容された処理槽内に浸漬する前にその流延膜表面に厚さ250μm、目付け量40g/m2のポリプロピレン不織布を重ねた。ひきつづき、ポリプロピレン不織布が重ねられた膜をPETフィルムとともに60℃の温水槽で洗浄し、乾燥した後、PETフィルムから複合分離膜を剥離した。
得られた複合分離膜は、前述した図1に示す構造を有するものであった。すなわち、この複合分離膜は実質的にポリエーテルスルホンからなる厚さ140μmの多孔質膜がポリプロピレン不織布に一体的に結合されていた。また、この多孔質膜はポリプロピレン不織布側に10μmの厚さで形成された平均径が0.07μmの微細な孔径を持つ微小細孔層と、この微小細孔層から前記不織布に対して反対側の表面に向かって孔径が大きくなるように分布して形成された孔傾斜層とを有していた。孔傾斜層の表面側での孔の平均径は、約8μmであった。
また、得られた複合分離膜についてASTM−F316によるIPAバブルポイント試験および透水試験を行った。なお、透水試験は複合分離膜の二次側(不織布側)を減圧(−80kPa)にし、一次側(多孔質膜側)から水100mLを通液し得るまでに要した時間を測定する試験である。その結果、バブルポイント値は85kPa、透水性能は9秒/100mL・−80kPaであった。なお、複合分離膜の多孔質膜は水に湿潤し、透水性能も増大した。
さらに、得られた複合分離膜をフィルタカートリッジとして使用するために襞折したところ、襞折前と遜色のない濾過性能を示した。
Example 1
First, 14% by weight of polyethersulfone (trade name: Sumikaflex 4200P, manufactured by Sumitomo Chemical Co., Ltd.), 13% by weight of polyethylene glycol having a weight average molecular weight of 600, 9% by weight of polyvinylpyrrolidone having a weight average molecular weight of 50,000, 15% by weight of 1-butanol, 47% by weight of N-methyl-pyrrolidone and 2% by weight of water were weighed, each component except N-methyl-pyrrolidone was put in a tank, stirred, and further N-methyl-pyrrolidone was added to dissolve the polymer component. Thereafter, degassing was performed to prepare a membrane-forming stock solution in which polyethersulfone was uniformly dissolved.
Next, the film-forming stock solution was cast on a PET film as a support in an atmosphere of a temperature of 17 ± 2 ° C. and a humidity of 70 ± 5% to a thickness of about 200 μm, and then allowed to stand for 10 seconds. Subsequently, before the casting film was immersed in a treatment tank containing water as a coagulation liquid, a polypropylene nonwoven fabric having a thickness of 250 μm and a basis weight of 40 g / m 2 was laminated on the surface of the casting film. Subsequently, the membrane overlaid with the polypropylene nonwoven fabric was washed with a PET film in a 60 ° C. hot water tank and dried, and then the composite separation membrane was peeled from the PET film.
The obtained composite separation membrane had the structure shown in FIG. That is, in this composite separation membrane, a porous membrane made of polyethersulfone and having a thickness of 140 μm was integrally bonded to the polypropylene nonwoven fabric. The porous membrane has a fine pore layer having a fine pore diameter of 0.07 μm and an average diameter of 0.07 μm formed on the polypropylene nonwoven fabric side, and the opposite side from the nonwoven fabric to the nonwoven fabric. And a hole gradient layer formed so as to be distributed so that the hole diameter increases toward the surface. The average diameter of the holes on the surface side of the hole inclined layer was about 8 μm.
The obtained composite separation membrane was subjected to an IPA bubble point test and a water permeability test according to ASTM-F316. The water permeability test is a test that measures the time required to allow 100 mL of water to flow from the primary side (porous membrane side) by reducing the pressure (−80 kPa) on the secondary side (nonwoven fabric side) of the composite separation membrane. is there. As a result, the bubble point value was 85 kPa, and the water permeability was 9 seconds / 100 mL · −80 kPa. In addition, the porous membrane of the composite separation membrane was wetted with water, and the water permeability was increased.
Furthermore, when the obtained composite separation membrane was folded for use as a filter cartridge, it showed filtration performance comparable to that before the folding.

本発明の実施形態に課から複合分離膜を示す断面図。Sectional drawing which shows a composite separation membrane from the section to embodiment of this invention.

符号の説明Explanation of symbols

1…複合分離膜、2…多孔質膜、3…繊維、4…不織布、5…微小細孔層、6…孔傾斜層。   DESCRIPTION OF SYMBOLS 1 ... Composite separation membrane, 2 ... Porous membrane, 3 ... Fiber, 4 ... Nonwoven fabric, 5 ... Micropore layer, 6 ... Hole inclination layer.

Claims (7)

実質的にポリエーテルスルホンからなる多孔質膜と不織布とからなる複合分離膜であって、
前記多孔質膜と不織布との界面は、不織布の繊維が相互に入り込んだ構造を有し、
前記多孔質膜は、前記不織布側の表面部分に微細な孔径の微小細孔層が形成され、かつこの微小細孔層から前記不織布に対して反対側の表面に向かって孔径が大きくなるように分布した構造を有することを特徴とする複合分離膜。
A composite separation membrane consisting essentially of a porous membrane made of polyethersulfone and a nonwoven fabric,
The interface between the porous membrane and the non-woven fabric has a structure in which non-woven fabric fibers enter each other,
In the porous membrane, a fine pore layer having a fine pore diameter is formed on the surface portion on the nonwoven fabric side, and the pore diameter increases from the fine pore layer toward the surface opposite to the nonwoven fabric. A composite separation membrane characterized by having a distributed structure.
前記多孔質膜の微小細孔層は、0.005〜0.5μmの孔径を有することを特徴とする請求項1記載の複合分離膜。   The composite separation membrane according to claim 1, wherein the microporous layer of the porous membrane has a pore size of 0.005 to 0.5 μm. 前記不織布は、ポリエチレン繊維またはポリプロピレン繊維から作られることを特徴とする請求項1記載の複合分離膜。   The composite separation membrane according to claim 1, wherein the nonwoven fabric is made of polyethylene fiber or polypropylene fiber. ポリエーテルスルホン、膨潤剤、親水性ポリマー、良溶媒および非溶媒を含む製膜原液を支持体上に流延し、この流延膜表面に不織布を重ねた後、凝固液に浸漬することを特徴とする複合分離膜の製造方法。   A film-forming stock solution containing polyethersulfone, swelling agent, hydrophilic polymer, good solvent and non-solvent is cast on a support, a nonwoven fabric is layered on the surface of the cast film, and then immersed in a coagulation liquid. A method for producing a composite separation membrane. 前記膨潤剤は、ポリエチレングリコールであることを特徴とする請求項4記載の複合分離膜の製造方法。   The method for producing a composite separation membrane according to claim 4, wherein the swelling agent is polyethylene glycol. 前記親水性ポリマーは、ポリビニルピロリドンまたはヒドロキシプロピルセルロースであることを特徴とする請求項4記載の複合分離膜の製造方法。   The method for producing a composite separation membrane according to claim 4, wherein the hydrophilic polymer is polyvinylpyrrolidone or hydroxypropylcellulose. 前記凝固液は、水、一価アルコール、多価アルコール、エチレングリコール、テトラエチレングリコールから選ばれる少なくとも1種の非溶媒からなることを特徴とする請求項4記載の複合分離膜の製造方法。   5. The method for producing a composite separation membrane according to claim 4, wherein the coagulation liquid comprises at least one non-solvent selected from water, monohydric alcohol, polyhydric alcohol, ethylene glycol, and tetraethylene glycol.
JP2004266908A 2004-09-14 2004-09-14 Composite separation membrane and method for producing the same Active JP3974907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266908A JP3974907B2 (en) 2004-09-14 2004-09-14 Composite separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266908A JP3974907B2 (en) 2004-09-14 2004-09-14 Composite separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006081969A JP2006081969A (en) 2006-03-30
JP3974907B2 true JP3974907B2 (en) 2007-09-12

Family

ID=36160899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266908A Active JP3974907B2 (en) 2004-09-14 2004-09-14 Composite separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3974907B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083647A1 (en) * 2009-01-22 2010-07-29 Basf Se Method of changing the wettablility of plastic surfaces by solvent-induced precipitation or solvent-induced crystallization
JP5915922B2 (en) * 2011-01-31 2016-05-11 大日本印刷株式会社 Laminated body and method for producing the same
CN106823838B (en) * 2017-02-22 2019-07-12 广东宝泓新材料股份有限公司 Sea water desalination reverse osmosis membrane supporter and preparation method
WO2021067058A1 (en) * 2019-10-01 2021-04-08 Entegris, Inc. Membranes with reduced particle formation

Also Published As

Publication number Publication date
JP2006081969A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP5100213B2 (en) Microporous multilayer film and method for forming the same
US5376273A (en) Supported microporous membrane
JP4221154B2 (en) Method for producing highly porous polyvinylidene difluoride film
US5228994A (en) Composite microporous membranes
JP4417849B2 (en) Permselective membrane and method for its manufacture
CN115487695A (en) Asymmetric PES (polyether sulfone) filter membrane for virus removal and preparation method thereof
TWI657858B (en) Composite microporous film and filter using the same
JPS6227006A (en) Microporous membrane
CA2432046A1 (en) Separation membrane, separation membrane element, separation membrane module, sewage treatment apparatus, and method for making the separation membrane
TW201240720A (en) Porous multilayered filter
TW200938239A (en) Microporous hollow fiber membrane for blood treatment
EP3733269A1 (en) Composite hollow fiber membrane, and method for producing composite hollow fiber membrane
JP2007289927A (en) Composite separation membrane and method for manufacturing the same
JP3974907B2 (en) Composite separation membrane and method for producing the same
JP4015653B2 (en) Method for producing porous separation membrane
JP6771865B2 (en) Composite semipermeable membrane and composite semipermeable membrane element
JP3681219B2 (en) Polysulfone porous separation membrane
US20200055006A1 (en) Microporous film
KR101434184B1 (en) Forward osmosis membrane and manufacturing method thereof
JPH03258330A (en) Porous hollow fiber membrane
JPH0122008B2 (en)
JP2002540928A (en) Porous membrane
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JP3151817B2 (en) Composite porous membrane
JP3570713B2 (en) Multilayer filter for beer filtration

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Ref document number: 3974907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250