JP6446459B2 - 値集合の中から第1の極値および第2の極値を識別するための方法および装置 - Google Patents

値集合の中から第1の極値および第2の極値を識別するための方法および装置 Download PDF

Info

Publication number
JP6446459B2
JP6446459B2 JP2016541844A JP2016541844A JP6446459B2 JP 6446459 B2 JP6446459 B2 JP 6446459B2 JP 2016541844 A JP2016541844 A JP 2016541844A JP 2016541844 A JP2016541844 A JP 2016541844A JP 6446459 B2 JP6446459 B2 JP 6446459B2
Authority
JP
Japan
Prior art keywords
values
value
minimum value
input
extreme value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016541844A
Other languages
English (en)
Other versions
JP2016530839A (ja
Inventor
イオアンニス、ツァツァラグコス
ニコラオス、エル.カニストラス
バシリス、パリウラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Blox AG
Original Assignee
U Blox AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Blox AG filed Critical U Blox AG
Publication of JP2016530839A publication Critical patent/JP2016530839A/ja
Application granted granted Critical
Publication of JP6446459B2 publication Critical patent/JP6446459B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • H03M13/1117Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule
    • H03M13/112Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule with correction functions for the min-sum rule, e.g. using an offset or a scaling factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • H03M13/1117Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule
    • H03M13/1122Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule storing only the first and second minimum values per check node
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6572Implementations using a tree structure, e.g. implementations in which the complexity is reduced by a tree structure from O(n) to O (log(n))
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6577Representation or format of variables, register sizes or word-lengths and quantization
    • H03M13/658Scaling by multiplication or division

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Error Detection And Correction (AREA)

Description

本発明は、グラフィカルモデル上で推論を行うためのメッセージ伝播アルゴリズムの分野に関する。そうしたメッセージ伝播アルゴリズムは、誤り訂正符号化および復号の分野で用いられる。よって、本発明は、誤り訂正符号化および復号の分野にも関し、より詳細には、低密度パリティ検査(LDPC)符号およびLDPC復号器に関する。
ディジタルデータを送信するプロセスは、データに誤りを導入する可能性がある。その結果、受信データは送信データと異なるものになりうる。そうした誤りは、典型的には、伝送路に存在する雑音によって引き起こされる。誤りの量は、一般に、存在する雑音の量に対する送信信号強度に関連する。誤り訂正符号化は、送信前にデータに冗長性を挿入するための技法である。受信時に、この冗長性は、伝送プロセスの間に導入された誤りを訂正するために使用される。
ブロック符号化は、送信されるべきディジタルデータが固定サイズのメッセージに分割される、誤り訂正符号化の1種である。送信前に、各メッセージは符号器によって符号語(「ブロック」ともいう)に符号化される。符号化プロセスの間に、符号語がメッセージより大きくなるように冗長性が挿入される。符号語は各々、nビットからなるものとする。nビットのある特定のパターンのみが符号語であり、残りのパターンは無効である。符号語は次いで送信され、送信は符号語を破損させる可能性もある。受信すると、復号器は、受信された、破損した可能性のある符号語から元のメッセージを推論しようと試みる。
線形ブロック誤り訂正符号は、符号語の任意の線形結合も符号語とする誤り訂正符号である。生成行列を使用して、符号化プロセスにおいてメッセージを有効な符号語に符号化することができる。受信時には、パリティ検査行列を使用して、復号プロセスにおいて誤りベクトルを生成することができ、誤りベクトルは受信された符号語における誤りの存在を表示する。パリティ検査行列は、生成行列から導出されうるという点において、生成行列に関連するものである。
低密度パリティ検査(LDPC)符号は、疎なパリティ検査行列を特徴とする線形ブロック誤り訂正符号のサブカテゴリである。これは、パリティ検査行列が主に、0と、比較的少数の1とからなることを意味する。
LDPC符号は最初1960年代に導入されたが、最近になってますます注目されている。これは、少なくとも一部は、LDPC符号をハードウェア実装に適するものとする、復号における固有の並列性によるものであり、また、LDPC符号が様々な用途において使用されることを可能にする、LDPC符号の設計における柔軟性によるものである。
LDPC符号は、線形誤り訂正符号であり、疎な2進パリティ検査行列Hによって完全に定義される。2部タナーグラフが、パリティ検査行列Hを表す広く使用される方法である。このグラフは、2つのノード集合、すなわち、検査ノードと変数ノードからなる。Hの各行は、タナーグラフの検査ノードとして図式的に表されるパリティ検査方程式に対応し、各列は、変数ノードとして図式的に表される、符号語ビットに対応する。H行列におけるH(ace)は、対応する変数ノードと検査ノードとの間の連結を表示する。LDPC符号を復号するためのメッセージ伝播アルゴリズムは、タナーグラフのエッジに沿って情報を反復して受け渡すことによって動作する。ある意味では、変数ノードは、受け取られる語、メッセージとパリティ両方のビットに対応し、検査ノードは、パリティ検査方程式に対応する。
LDPC符号の復号は、確率伝播法(belief propagation)とも呼ばれる、Sum−productメッセージ伝播法に基づくものとすることができる。この場合には、特定のLDPC符号についてのタナーグラフは、タナーグラフのノードを演算要素で置き換え、ノード間のエッジを、演算要素を接続する通信バスで置き換えることによって、符号のハードウェア復号器を構築するためのガイドとして使用することができる。確率的情報を、対数尤度比(log−likelihood ratio、 LLR)の形で、演算要素間の通信バスに沿って受け渡すことができる。
Sum−productメッセージ伝播法(確率伝播法)はLDPC符号について近似最適とみなされるが、実際のLDPC復号器は、復号器サイズや待ち時間といった考慮事項を考慮に入れなければならない。このことは、その符号語長が、例えば、648ビット、1296ビット、または1944ビット、あるいはそれ以上の長さとなりうるLDPC符号について特に当てはまる。よって、複雑度を低減するために、ハードウェア復号器は一般に、Min−Sumアルゴリズムやその変形(例えば、正規化Min−Sum、オフセットMin−Sum、補正Min−Sumなど)といった、Sum−productアルゴリズムの近似を使用する。
Min−Sumアルゴリズムおよびその変形に基づくメッセージ伝播法を用いる、誤り訂正復号器のノードプロセッサ内で典型的に行われる演算は、より多数の入力の中から2つの最小値を識別することを伴う。2つの最小値を識別する既存の方法は、ハードウェア、待ち時間、および電力消費の点で、比較的高い複雑度を有する回路を必要とする傾向にある。
本発明は、値集合の中から選択値を識別することを対象とする。一実施形態によれば、複数の値の中から2つの選択値を識別する方法は、複数の値を値の対に分割することと、値の対ごとに、2つの値のうちの1つを選択することにより各対の選択値からベクトルを形成するために比較器を使用することと、ベクトルを、ベクトルの値の中から第1の極値および第2の極値を識別するハードウェアユニットに適用することと、を含む。
別の実施形態によれば、複数の値の中から2つの選択値を識別する装置は、各比較回路が、複数の値から分割される値の対を受け取り、各対の値のうちの1つを出力として選択するように構成されている、複数の比較回路、を含む。本装置は、複数の比較回路から出力される選択値を受け取り、複数の値の全部の中から選択される第1の最小値、および複数の値の部分集合の中から選択される第2の最小値を識別するように構成された選択回路であって、第1の最小値および第2の最小値を出力するように構成されている、選択回路、をさらに含む。
本発明は、本発明の特定の例示的実施形態に関連して説明され、図面がしかるべく参照される。
本発明の実施形態を実装することができる通信システムを示す図である。
本発明の一実施形態による誤り訂正復号器を示す図である。
本発明の一実施形態による、複数の値の中から2つの選択値を識別する方法を示す図である。
本発明の一実施形態による、複数の値の中から2つの選択値を識別するための装置を示す図である。
本発明の一実施形態による、2つの値を比較し、2つのうちの最低の値を識別するための装置を示す図である。
本発明の一実施形態による、複数の値の中から2つの選択値を反復して識別するための装置を示す図である。
本発明の一実施形態による、2つの値を比較し、どちらの値が最小であり、どちらの値が第2の最小であるかを識別するための装置を示す図である。
本発明の一実施形態による、複数の値の中から最低の2つの値を識別するための装置を示す図である。
本発明の一実施形態による、ごく限られた性能劣化を示すシミュレーション結果を示す図である。
本発明の一実施形態による、ごく限られた性能劣化を示すシミュレーション結果を示す図である。
本発明の一実施形態による、必要とされる比較器の数に関して、複雑度の低減の概要を示す図である。
本発明の一実施形態による、必要とされるマルチプレクサの数に関して複雑度の低減の概要を示す図である。
本発明の一実施形態による、min_2nd値が低減係数で乗算される、複数の値の中から2つの選択値を識別するための装置を示す図である。
本発明の一実施形態による、追加回路が、結果として得られる第2の最小値が常に第1の最小値より大きいことを保証する、複数の値の中から2つの選択値を識別するための装置を示す図である。
Min−Sumアルゴリズムおよびその変形(例えば、正規化Min−Sum、オフセットMin−Sum、補正Min−Sumなど)に基づくメッセージ伝播法を利用する誤り訂正復号器、具体的にはLDPC復号器は、中間結果の集合の中から2つの最小値を識別する回路を含む。本発明は、値集合の中から選択値を識別するための方法および装置を対象とする。選択値は必ずしも2つの最小値とは限らないが、本発明の実施形態は、2つの最小値を近似する値を識別する。より詳細には、本発明の一実施形態は、値集合の中の最小値である第1の値、および値集合の中の第2の最小値を近似する第2の値を識別する。第2の値は、値の部分集合の中の最小値とすることができる。
結果は必ずしも値集合の中の2つの最小値と数値的に同一になるとは限らないが、本発明の実施形態は、さほどの欠点を伴わずに様々な状況で用いることができる。例えば、シミュレーションが示すところによれば、Min−Sumアルゴリズムおよびその変形を用いるLDPC復号器における本技法の使用は、十分な符号化利得を達成する。本手法の重要な利点は、本明細書で開示する技法を実装するプロセッサの複雑度が大幅に低減されることである。例えば、本発明の実施形態は、いくつかの入力メッセージを並列に処理するLDPC復号器内の検査ノードプロセッサにおいて用いることができる。
この簡略化は、入力メッセージの第1の最小および第2の最小を見つけるという問題を、入力メッセージの完全集合の最小を見つけると共に、入力メッセージの部分集合の中の最小である第2のメッセージを見つけるという異なる問題によって、近似することによって達成することができる。この要件の緩和、およびそれに付随する扱われる問題の複雑度の低減は、訂正能力の許容できるほどわずかな劣化を代償とするハードウェア簡略化につながる。
本発明の実施形態は、入力メッセージの集合における2つの最小を見つけるという問題を、その解決が大幅に少ない比較回数で済むより簡単な問題によって近似する。そうした回路は、例えば、LDPC復号器内の検査ノードプロセッサにおいて用いることができる。したがって、符号化利得のわずかな損失と交換に、LDPC復号器内の検査ノードプロセッサの実装のハードウェア複雑度の大幅な低減が達成される。
図1に、本発明の実施形態を実装することのできる通信システム100を示す。図1に示すように、送信されるべきディジタルデータ102が送信機104に入力される。送信機104は、符号器106と変調器108とを含むことができる。符号器106は、例えば、データ102を固定サイズのメッセージに分割し、各メッセージを符号語に符号化することによって、データの誤り訂正符号化を行う。符号化プロセスの間に、符号語がメッセージより大きくなるように冗長性を挿入することができる。
変調器108は、次いで、符号語に従って、1つまたは複数の搬送波信号を変調することによって、符号語を送信のために準備することができる。一例として、変調は、直交周波数分割多重化(OFDM)に従って行うこともできる。変調され、符号化された各信号を、次いで、通信路110を介して送信することができる。通信路110は、例えば無線通信路とすることができ、無線通信路は、例えば、無線ローカル・エリア・ネットワーク(WLAN)の一部とすることができる。
受信機112が通信路110から送信信号を受信する。受信機112は、復調器114と復号器116とを含むことができる。復調器114は、符号語を再構築するように受信信号を復調する。符号語は、次いで、元のデータ102を再構築するために、復号器116によって復号することができる。復号器116は、通信プロセスによって導入されるある一定の誤りを訂正することができるが、復号器112から出力されるデータ118は、残存する未訂正の誤りにより元のデータ102と異なる可能性がある。
図2に、本発明の一実施形態による誤り訂正復号器200を示す。図2に示す誤り訂正復号器200は、図1の誤り訂正復号器116に含めることができる。図2に示すように、復号器200は、複数の変数ノードプロセッサ202、204、206、および複数の検査ノードプロセッサ208、210を含む。通信バス212、214、216、218が、変数ノードプロセッサ202、204、206と検査ノードプロセッサ208、210との間で、メッセージを受け渡す手段を提供する。
例示のために、図2の復号器200は、3つの変数ノードプロセッサおよび2つの検査ノードプロセッサと共に示されているが、変数ノードおよび検査ノードの数は、一般に、個々の誤り訂正符号のパリティ検査行列の次元に関連するものであることは明らかであろう。例えば、LDPC符号の符号語長は、例えば、648ビット、1296ビット、または1944ビット、あるいはそれ以上の長さとすることができる。復号器200の通信バスの数および位置は、一般に、個々の誤り訂正符号のためのパリティ検査行列内の1の位置に関連するものになる。よって、変数ノードプロセッサおよび検査ノードプロセッサの各々の数、ならびにそれらの間の通信バスの配置は、タナーグラフから、かつ/または特定の誤り訂正符号のためのパリティ検査行列から導出することができる。
変数ノードプロセッサおよび検査ノードプロセッサの各々はハードウェア回路を含み、ハードウェア回路は、メモリ、レジスタ、論理回路、汎用プロセッサおよび/または専用プロセッサ、機械可読ソフトウェア、特定用途向け集積回路(ASIC)、プログラマブル論理アレイ(PLA)などを含むことができる。復号器200のこの特定の配置は例示であり、本発明の実施形態は他の復号器配置およびアーキテクチャと併せて用いることもできることは明らかであろう。
Sum−productメッセージ伝播法は、復号器200によって行うことができる。この場合には、確率的情報を、例えば対数尤度比(LLR)の形で、変数ノードプロセッサ202、204、206と検査ノードプロセッサ208、210との間の通信バス212、214、216、218に沿って受け渡すことができる。復号器200は、通信路110から受信される各符号語のビットに関するLLRで初期設定することができる。半反復ごとに、変数ノードプロセッサ202、204、206は検査ノードプロセッサ208、210から入力を取り込み、検査ノードプロセッサ208、210のための出力を算出する。次の半反復で、検査ノードプロセッサ208、210は変数ノードプロセッサ202、204、206から入力を取り込み、変数ノードプロセッサ202、204、206のための出力を算出する。これらの反復は、符号語が見つかり、または他の何らかの停止基準に到達するまでの間、繰り返すことができる。
図3に、本発明の一実施形態による、複数の値の中から2つの選択値を識別する方法300を示す。方法300は、図2の復号器200によって行うことができる。より詳細には、方法300は、図2の検査ノードプロセッサ208、210の各々によって行うことができる。方法300に従って処理されるべき値集合は、図2の変数ノードプロセッサ202、204、206から獲得される確率値を含むことができる。
ステップ302で、値集合は対に分割される。例えば、入力値の集合はDであり、D=[1,3,4,6,3,6,2,1]であるものと仮定する。ステップ302では、Dを、P=[{1,3},{4,6},{3,6},{2,1}]として対に分割することができる。一実施形態においては、初期分割をどのように行いうるかに関する制約がない。言い換えると、各値は任意の対に分割することができる。集合が奇数の数の値を有する場合、集合全体を対に分割することができるように、集合に値を追加することができる。例えば、追加される値は、追加される値と対になるすでに集合に含まれる値以上とすることができる。
ステップ304で、値の対ごとの最小値が識別され、最小値のベクトルが形成される。このステップは、例えば、1つまたは複数の比較器を使用して行うことができる。例に戻って、ステップ304を集合P=[{1,3},{4,6},{3,6},{2,1}]に適用した結果がベクトルm=[1,4,3,1]である。ベクトルmは、Pの各対の最小を含む。ステップ304では、Pの最大を含む第2のベクトルMを生成することができる。本例では、M=[3,6,6,2]である。一実施形態においては、Mは無視され、または生成されない。他の実施形態においては、ベクトルMはさらに処理されうる。
ステップ306で、m内の2つの最小が識別される。本例では、2つの最小は、1と1である。
第2のステップの他の変形を実施することもできる。例えば、mの2つの最小を見つける代わりに、第1のステップで記述されている手順を反復して適用することもできる。この場合には、例を見ると、mを[{1,4},{3,1}]としてさらに分割することができ、次いで本方法は[1,1]を返す。
図4に、本発明の一実施形態による、複数の値の中から2つの選択値を識別するための装置400を示す。装置400は、図3の方法300を行うのに使用することができる。図4に示すように、複数の入力メッセージ(または値)が、入力x、入力x、入力x、入力x、入力x、入力x、入力x、入力xに適用される。D内の値をこれらの入力に適用することができる。装置400は、入力x、入力x、入力x、入力x、入力x、入力x、入力x、入力xの対ごとに1つずつ、複数の比較器ブロック402、404、406、408を含む。D内の値の対を、比較器ブロック402、比較器ブロック404、比較器ブロック406、比較器ブロック408の各入力に適用することにより、値がベクトルPと同様に対に分割される。これは図3のステップ302に対応する。
比較器ブロック402、比較器ブロック404、比較器ブロック406、比較器ブロック408の各々は、各対の最小値を識別するために、その入力において値の対を比較する。具体的には、ブロック402は、入力x、入力xの最小を識別するためにそれら2つを比較する。ブロック402の最小値出力x10は、入力として最小算出ブロック410に適用される。同様に、ブロック404も、入力x、入力xの最小を識別するためにそれら2つを比較し、出力x11は入力としてブロック410に適用される。ブロック406は、入力x、入力xの最小を識別するためにそれら2つを比較し、出力x12は入力としてブロック410に適用される。ブロック408は、入力x、入力xの最小を識別するためにそれら2つを比較し、出力x13は入力としてブロック410に適用される。ブロック410に入力される値はベクトルmに対応する。比較器ブロック402、比較器ブロック404、比較器ブロック406、比較器ブロック408の演算およびベクトルmの形成は、図3のステップ304に対応する。
図5に、本発明の一実施形態による、2つの値を比較し、2つのうちの最低の値を識別するための比較装置500を示す。図5に示すように、入力x、入力xが、比較器502とマルチプレクサ504とに適用される。比較器502の出力cpは、2つの値x、xのうちのどちらの方が低いかに依存する2進値である。出力cpは、2つの値のうちの低い方が比較装置の出力x10に渡されるように、マルチプレクサ504を制御する。装置500は、図4の比較器ブロック402、比較器ブロック404、比較器ブロック406、比較器ブロック408の各々に含めることができる。
図4に戻って、最小算出ブロック410は、その入力として、入力x10、入力x11、入力x12、入力x13においてベクトルmを受け取る。最小算出ブロック410は、次いで、m内の値の中から第1の最小および第2の最小を識別し、これらの値をmin_1stおよびmin_2ndとして出力する。これは、図3に示すステップ306に対応する。
図6に、本発明の一実施形態による、複数の値の中から2つの選択値を反復して識別するための装置600を示す。図6は、ステップ304が(おそらくはステップ306も)反復して適用される、方法300の前述の変形を行うのに使用することができる。より詳細には、図6に示すように、複数の入力メッセージ(または値)が、入力x、入力x、入力x、入力x、入力x、入力x、入力x、入力xに適用される。装置600は、入力x、入力x、入力x、入力x、入力x、入力x、入力x、入力xの対ごとに1つずつ、複数の比較器ブロック402、404、406、408を含む。これらのブロックは、図4の同じ参照番号を有するブロックと同一とすることができる。比較器ブロック402、比較器ブロック404、比較器ブロック406、比較器ブロック408の各々は、各対の最小値を識別するために、その入力において値の対を比較する。
次の段の比較器ブロック602、比較器ブロック604は、第1の段によって識別された値を受け取り、各対の最小値を識別するために、その入力において値の対を再度、各々比較する。値が選別されて単一の対になるように、任意の数のそうした段を追加することができる。この単一の対x20、x21は「第1の最小および第2の最小を見つける」ブロック606に適用される。このブロック606は、どちらが最小であり、どちらが第2の最小であるかを識別する。
図7に、本発明の一実施形態による、2つの値を比較し、どちらの値が最小であり、どちらの値が第2の最小であるかを識別するための比較装置700を示す。図7に示すように、入力x20、入力x21が、比較器702と2つのマルチプレクサ704、706とに適用される。比較器702の出力cpは、2つの値x20、x21のうちのどちらの方が低いかに依存する2進値である。出力cpは、2つの値のうちの低い方が出力min_1stに渡され、高い方の値が比較装置700の出力min_2ndに渡されるように、マルチプレクサ704およびマルチプレクサ706を制御する。装置700は、図6の「第1の最小および第2の最小」を見つけるブロック606に含めることができる。
図8に、本発明の一実施形態による、複数の値の中から最低の2つの選択値を識別するための装置800を示す。装置800は、最小算出ブロック410に含めることができる。図8を参照すると、出力x10、出力x11が、図7に記載されているように、「第1の最小および第2の最小を見つける」ブロック802に適用される。2つの値のうちの低い方は、比較装置802の出力x20に、高い方の値は出力x21に渡される。同様に、出力x12、出力x13も、「第1の最小および第2の最小を見つける」ブロック804に適用される。2つの値のうちの低い方は、比較装置の出力x22に、高い方の値は出力x23に渡される。出力x20、出力x22が比較器ブロック806に適用される。比較器ブロック806の出力min_1stは、ベクトルmの値の中からの(また元の値集合Dの中からの)最小値に対応する。
出力x20、出力x23が比較器ブロック808に適用される。出力x30は2つの値x20、x23のうちの低い方に対応する。出力x21、出力x22が比較器ブロック810に適用される。出力x31は2つの値x21、x22のうちの低い方に対応する。比較器ブロック806の出力cpは、2つの値x30、x31のうちの正しい方が出力min_2ndに経路指定されるように、マルチプレクサ812を制御する。これにより、次の最小値min_2ndが獲得される。値min_2nd値は、ベクトルmの値の中の最小値である。min_2nd値は必ずしも元の値集合Dの中からの2番目に低い値であるとは限らないが、代わりに、元の値集合Dの中からの2番目に低い値の近似である。
例示の集合Dは説明のために8つの値を含むが、実際には、集合Dは異なる数の値を有しうる。例えば、集合Dを著しく大きくすることもできる。この場合には、図2および図4〜図8に示す装置に適切な変更を加えることができる。図2および図4〜図8に示す装置は例示であり、本発明の利点は、装置の変更があっても、異なる装置でも達成することができることは明らかであろう。また、最小値を識別するのではなく、本発明の実施形態は、より一般的に、極値、例えば最大値を識別するのに利用することができることも明らかであろう。これは、例えば、本明細書で開示されるマルチプレクサへの入力の順番を逆にすることによって、または本明細書で開示されるマルチプレクサへの制御入力を反転させることによって成し遂げることができる。
提案の方法によって得られる結果は必ずしも、元の問題の解と数値的に同一であるとは限らないが、シミュレーションが示すところによれば、本手法は、Min−Sumおよびその変形を利用するLDPC復号方法において使用することができ、十分な符号化利得を達成する。本発明の実施形態は、復号器の訂正能力におけるほとんど無視できるほどの劣化を代償として、大幅な複雑度低減を可能にする(IEEE802.11ac符号、符号化率1/2で、おおよそ0.02dB)。一例として、IEEE802.11ac規格の符号化率1/2、1944ビットの符号についての図9に示すビット誤り率(BER)プロットのシミュレーション結果は、符号化利得における0.015dBの性能劣化を明らかにしている。別の例として、図10に、IEEE802.11ac規格の符号化率5/6、1944ビットの符号についてのシミュレーションのBERプロットを示す。これは、統計的誤差の限度内の、問題にならない程度の性能劣化を示している。その利益は、検査ノードプロセッサにおいて必要とされるメッセージ比較回数がはるかに少なく、したがって、検査ノードプロセッサの複雑度が大幅に低減されることである。
この複雑度低減は、ステップ304の適用回数に比例することが判明している。図11および図12に、複雑度低減の概要を、ステップ304適用回数および入力値の数の関数としての、それぞれ必要とされる比較器およびマルチプレクサの数として示す。
他方、方法300のステップ304が複数回反復して適用されるに従って、誤り、すなわち、計算されるmin_2nd値が元の値集合Dの2番目に低い値ではない可能性が増大する。近似される第2の最小値は常に、実際の第2の最小値以上である。本発明の一実施形態においては、min_2nd値は、図13に示すように、1未満の値の正の補正係数で乗算される。シミュレーションが示すところによれば、min_2nd値に対するこの低減係数の適用は、訂正能力劣化を低減することができる。
低減係数を算出する1つの可能な方法は、LDPC復号器のシミュレーション中に獲得される、多数の値についての、推定される第2の最小に対する実際の第2の最小の比の平均値を算出することである。
低減係数によるmin_2nd値乗算の結果は、最小値より低い値となる場合もある。これを防ぐために、図14に示す別の実施形態においては、いくつかの追加回路が、結果として得られる第2の最小値が常に第1の最小値より大きいことを保証する。
図13および図14に示す機能要素には、図4の対応する要素と同様の参照番号が付されている。図13および図14において、マルチプレクサ1302は、補正値を生成するための低減係数による乗算を行う。比較ブロック1402および選択ブロック1404は、2つの値を比較し、2つのうちの低い方をmin_2ndとして選択する。
Min−Sumアルゴリズムおよびその変形は、より単純な実装を可能とするlog−Sum−Productアルゴリズム(LogSP)の近似である。これらのアルゴリズムは、LDPC復号に加えて、等化その他の分野においても適用することができる。よって、本発明の実施形態はLDPC復号だけに限定されない。
本発明の以上の詳細な説明は、例示のために提供するものであり、網羅的であることも、本発明を開示の実施形態だけに限定することも意図していない。したがって、本発明の範囲は、添付の特許請求の範囲によって定義されるものである。

Claims (12)

  1. 複数の値の中から2つの選択値を識別する方法であって、
    前記複数の値を値の対に分割するステップと、
    値の対ごとに、前記2つの値のうちの1つを選択することにより、各対の前記選択値からベクトルを形成するために、比較器を使用するステップと、
    前記ベクトルを、前記ベクトルの前記値の中から第1の極値および第2の極値を識別するハードウェアユニットに適用するステップと
    補正された第2の極値を生成するために、前記極値の前記第2の極値に補正係数を適用するステップと、
    前記補正された極値が前記第1の極値より極端ではないことを保証するために、前記補正された第2の極値を前記第1の極値と比較するステップと、
    を含む方法。
  2. 前記2つの値のうちの1つを選択するために比較器を使用する前記ステップは、前記2つの値のうちの最低を選択し、前記第1の極値および前記第2の極値は、前記ベクトルの前記値の中からの1番目に低い値および2番目に低い値である、請求項1に記載の方法。
  3. 通信路から、誤り訂正符号に従って符号化されている符号語を受信するステップ、をさらに含み、前記分割するステップ、前記使用するステップ、前記形成するステップ、および前記適用するステップは、前記符号語を復号するプロセスの間に行われる、請求項2に記載の方法。
  4. 前記符号語を復号する前記プロセスは、復号装置の算出ノードの間で、Sum−productメッセージ伝播法を行うステップを含む、請求項3に記載の方法。
  5. 複数の値が対数尤度比(LLR)を含む、請求項4に記載の方法。
  6. 前記誤り訂正符号は低密度パリティ検査(LDPC)符号である、請求項4に記載の方法。
  7. 複数の値の中から2つの選択値を識別するための装置であって、
    各比較回路が、前記複数の値から分割される値の対を受け取り、各対の値のうちの1つを出力として選択するように構成されている、複数の比較回路と、
    前記複数の比較回路から出力される前記選択値を受け取り、前記複数の前記値の全部の中から選択される第1の最小値、および前記複数の前記値の部分集合の中から選択される第2の最小値を識別するように構成された選択回路であって、前記第1の最小値および前記第2の最小値を出力するように構成されている、選択回路と
    補正された第2の最小値を生成するために、前記第2の最小値に補正係数を適用し、前記補正された第2の最小値が前記第1の最小値より低くないことを保証するために、前記補正された第2の最小値を前記第1の最小値と比較するように構成されている、追加回路と、
    を含む装置。
  8. 前記複数の比較回路の各々が比較器とマルチプレクサとを含む、請求項に記載の装置。
  9. 2つの選択値を識別するための前記装置は、誤り訂正復号装置において用いられる、請求項に記載の装置。
  10. 前記誤り訂正復号装置は、前記誤り訂正復号装置の算出ノードの間でSum−productメッセージ伝播法を行う、請求項に記載の装置。
  11. 前記複数の値は対数尤度比(LLR)を含む、請求項10に記載の装置
  12. 前記誤り訂正復号装置は、低密度パリティ検査(LDPC)符号語を復号するように構成されている、請求項10に記載の装置。
JP2016541844A 2013-09-13 2014-09-12 値集合の中から第1の極値および第2の極値を識別するための方法および装置 Active JP6446459B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/027,081 US8930790B1 (en) 2013-09-13 2013-09-13 Method and apparatus for identifying selected values from among a set of values
US14/027,081 2013-09-13
PCT/EP2014/002475 WO2015036122A1 (en) 2013-09-13 2014-09-12 Method and apparatus for identifying first and second extreme values from among a set of values

Publications (2)

Publication Number Publication Date
JP2016530839A JP2016530839A (ja) 2016-09-29
JP6446459B2 true JP6446459B2 (ja) 2018-12-26

Family

ID=51662039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016541844A Active JP6446459B2 (ja) 2013-09-13 2014-09-12 値集合の中から第1の極値および第2の極値を識別するための方法および装置

Country Status (5)

Country Link
US (1) US8930790B1 (ja)
EP (1) EP3044882B1 (ja)
JP (1) JP6446459B2 (ja)
CN (1) CN105556851B (ja)
WO (1) WO2015036122A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391647B2 (en) * 2014-07-18 2016-07-12 Storart Technology Co., Ltd. Decoder and decoding method thereof for min-sum algorithm low density parity-check code
TWI537817B (zh) * 2014-09-18 2016-06-11 國立清華大學 找小値方法以及找小値器
JP6511284B2 (ja) * 2015-02-13 2019-05-15 パナソニック株式会社 最小値選択回路、復号器及び最小値選択方法
US11206045B1 (en) * 2020-07-23 2021-12-21 Xilinx, Inc. Efficient determination of parity bit location for polar codes
TWI774417B (zh) * 2021-06-11 2022-08-11 瑞昱半導體股份有限公司 基於權重調整演算法參數的解碼方法與解碼系統

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633856B2 (en) 2001-06-15 2003-10-14 Flarion Technologies, Inc. Methods and apparatus for decoding LDPC codes
KR100891782B1 (ko) 2002-06-11 2009-04-07 삼성전자주식회사 고속 데이터 전송 시스템에서 순방향 오류 정정 장치 및방법
US7139959B2 (en) 2003-03-24 2006-11-21 Texas Instruments Incorporated Layered low density parity check decoding for digital communications
US7484158B2 (en) 2003-12-03 2009-01-27 Infineon Technologies Ag Method for decoding a low-density parity check (LDPC) codeword
US7174495B2 (en) 2003-12-19 2007-02-06 Emmanuel Boutillon LDPC decoder, corresponding method, system and computer program
JP3891186B2 (ja) * 2004-03-22 2007-03-14 住友電気工業株式会社 復号装置および前処理装置
WO2006120844A1 (ja) * 2005-05-13 2006-11-16 Nec Corporation Ldpc符号化方式によるエンコーダ及びデコーダ
US8132080B2 (en) * 2005-07-13 2012-03-06 Mitsubishi Electric Corporation Communication apparatus and decoding method
US7941737B2 (en) 2006-04-19 2011-05-10 Tata Consultancy Services Limited Low density parity check code decoder
WO2007126328A1 (en) 2006-04-28 2007-11-08 Intel Corporation Multi-theshold message passing decoding of low density parity check codes using the min-sum principle
TWI318507B (en) * 2006-05-19 2009-12-11 Univ Nat Chiao Tung Method and apparatus for self-compensation on belief-propagation algorithm
US7895500B2 (en) * 2006-07-28 2011-02-22 Via Telecom Co., Ltd. Systems and methods for reduced complexity LDPC decoding
FR2905209B1 (fr) 2006-08-24 2008-10-31 St Microelectronics Sa Procede et dispositif de decodage de blocs encodes avec un code ldpc
KR101492595B1 (ko) 2007-05-21 2015-02-11 라모트 앳 텔-아비브 유니버시티 리미티드 메모리 효율적인 ldpc 디코딩
US8234320B1 (en) * 2007-10-25 2012-07-31 Marvell International Ltd. Bitwise comparator for selecting two smallest numbers from a set of numbers
CN101431336B (zh) * 2007-11-06 2012-05-23 瑞昱半导体股份有限公司 低密度奇偶校验码的解码单元的搜寻电路及搜寻方法
JP4645640B2 (ja) * 2007-11-30 2011-03-09 住友電気工業株式会社 復号器、受信装置及び符号化データの復号方法
KR101065480B1 (ko) * 2007-12-19 2011-09-19 한국전자통신연구원 저밀도 패리티 검사 부호의 고속 검사노드 갱신 장치 및 그방법
US8201049B2 (en) 2008-02-23 2012-06-12 Montage Technology Inc. Low density parity check (LDPC) decoder
CN101267209B (zh) * 2008-04-29 2010-09-08 清华大学 Ldpc译码的循环式分级最小值计算方法及其实现装置
US8429512B2 (en) 2008-06-23 2013-04-23 Romat At Tel Aviv University Ltd. Reduced complexity LDPC decoder
CN101577555A (zh) * 2009-06-17 2009-11-11 清华大学 Ldpc译码中的最小值比较方法及其实现装置
US20130275827A1 (en) * 2012-04-12 2013-10-17 Lsi Corporation Multi-Section Non-Binary LDPC Decoder

Also Published As

Publication number Publication date
CN105556851B (zh) 2019-05-17
WO2015036122A1 (en) 2015-03-19
JP2016530839A (ja) 2016-09-29
CN105556851A (zh) 2016-05-04
EP3044882B1 (en) 2019-11-06
US8930790B1 (en) 2015-01-06
EP3044882A1 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
US10826529B2 (en) Parallel LDPC decoder
US8489957B2 (en) Lower-complexity layered belief propagation decoding LDPC codes
JP6446459B2 (ja) 値集合の中から第1の極値および第2の極値を識別するための方法および装置
JP5506878B2 (ja) 低密度パリティ検査符号のパリティ検査行列生成方法
WO2007045961A1 (en) Block serial pipelined layered decoding architecture for structured low-density parity-check (ldpc) codes
EP2957037A1 (en) Ldpc design using quasi-cyclic constructions and puncturing for high rate, high parallelism, and low error floor
JP2007104685A (ja) 低密度パリティ検査復号器における検査ノード更新方法
US8201049B2 (en) Low density parity check (LDPC) decoder
US20200091933A1 (en) Iterative decoding with early termination criterion that permits errors in redundancy part
JP6472790B2 (ja) 共通ハードウェアリソースを共用する、異なる低密度パリティ検査(ldpc)符号のための低密度パリティ検査の符号化
US20160049962A1 (en) Method and apparatus of ldpc encoder in 10gbase-t system
US20170134048A1 (en) Message-passing based decoding using syndrome information, and related methods
EP1832001A1 (en) 3-stripes gilbert low density parity-check codes
CN101106383A (zh) 一种低密度奇偶校验码的译码方法
US8019020B1 (en) Binary decoding for correlated input information
JP6567238B1 (ja) 誤り訂正復号装置および誤り訂正復号方法
CN115296675B (zh) 用于ldpc码的解码的提前收敛
WO2019042543A1 (en) DECODING CONVOLUTIVE TURBO-CODES OF LOW DENSITY PARITY CHECK
Yin et al. High Throughput Parallel Concatenated Encoding and Decoding for Polar Codes: Design, Implementation and Performance Analysis
JP2011160491A (ja) 復号器
WO2022089293A1 (zh) 编码方法以及装置
Tiwari et al. Hybrid weighted bit flipping low density parity check decoding
WO2020155146A1 (en) Parallel ldpc decoder
Ahmed LDPC codes: code construction and encoder hardware implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250