JP6446384B2 - Nuclear power plant and method for injecting precious metal thereof - Google Patents

Nuclear power plant and method for injecting precious metal thereof Download PDF

Info

Publication number
JP6446384B2
JP6446384B2 JP2016070292A JP2016070292A JP6446384B2 JP 6446384 B2 JP6446384 B2 JP 6446384B2 JP 2016070292 A JP2016070292 A JP 2016070292A JP 2016070292 A JP2016070292 A JP 2016070292A JP 6446384 B2 JP6446384 B2 JP 6446384B2
Authority
JP
Japan
Prior art keywords
reactor
noble metal
water
power plant
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016070292A
Other languages
Japanese (ja)
Other versions
JP2017181351A (en
Inventor
麻由 佐々木
麻由 佐々木
亮介 清水
亮介 清水
太田 信之
信之 太田
石田 一成
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2016070292A priority Critical patent/JP6446384B2/en
Priority to US15/418,853 priority patent/US10457583B2/en
Publication of JP2017181351A publication Critical patent/JP2017181351A/en
Application granted granted Critical
Publication of JP6446384B2 publication Critical patent/JP6446384B2/en
Priority to US16/577,502 priority patent/US20200055758A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、原子力プラント及びこれの貴金属注入方法に関する。   The present invention relates to a nuclear power plant and a method for injecting a noble metal thereof.

沸騰水型原子炉においては、原子炉に充填されている水(炉水)の放射線分解により酸化種(酸素、過酸化水素)が発生する。この酸化種は、原子炉構造材として使用されているステンレス鋼やニッケル基合金の応力腐食割れを引き起こすことが知られている。   In a boiling water reactor, oxidizing species (oxygen, hydrogen peroxide) are generated by radiolysis of water (reactor water) filled in the reactor. This oxidizing species is known to cause stress corrosion cracking of stainless steel and nickel base alloys used as nuclear reactor structural materials.

この応力腐食割れを抑制する方法としては、貴金属注入が行われている。貴金属注入は、炉水に貴金属を注入して原子炉構造材に貴金属を付着させることにより、上記の酸化種と水素注入によって炉水に混合した水素との再結合反応を促進し、酸化種の濃度を低減させる技術である。   As a method for suppressing this stress corrosion cracking, noble metal injection is performed. Noble metal injection promotes the recombination reaction between the above-mentioned oxidizing species and hydrogen mixed into the reactor water by hydrogen injection by injecting the noble metal into the reactor water and attaching the noble metal to the reactor structural material. This is a technique for reducing the concentration.

また、貴金属注入により白金が付着した炭素鋼配管では、白金付着がない場合と比べて腐食が抑制されるという報告もある。これまで、米国ゼネラル・エレクトリック・カンパニイによって、原子炉運転中に白金を注入する技術が開発され、広く適用されている。   In addition, there is a report that the corrosion is suppressed in the carbon steel pipe to which platinum is adhered by the noble metal injection as compared with the case in which platinum is not adhered. To date, a technology for injecting platinum during reactor operation has been developed and widely applied by the US General Electric Company.

特許文献1は、その技術の内容を開示したものであり、この文献には、炉水に注入する貴金属化合物として貴金属のアセチルアセトナート化合物及び貴金属の硝酸化合物が例示されている。   Patent Document 1 discloses the contents of the technology, and in this document, a noble metal acetylacetonate compound and a noble metal nitric acid compound are exemplified as noble metal compounds to be injected into the reactor water.

原子炉構造材の応力腐食割れを抑制するためには、ステンレス鋼及びニッケル基合金で構成される原子炉圧力容器、ステンレス鋼で構成される再循環系配管、ステンレス鋼で構成される原子炉冷却材浄化系配管等に対して、十分な量の白金を付着させることが必要となる。注入した貴金属は、特に高温部において機器・配管への付着が大きいことから、従来の貴金属注入では、上記構造材(原子炉圧力容器、再循環系配管、原子炉冷却材浄化系配管)への白金付着を最大化するため、原子炉圧力容器に接続される給水配管が白金の注入点として採用されてきた。   In order to suppress stress corrosion cracking of nuclear reactor structural materials, a reactor pressure vessel made of stainless steel and nickel-base alloy, a recirculation system pipe made of stainless steel, a reactor cooling made of stainless steel It is necessary to attach a sufficient amount of platinum to the material purification system piping or the like. Since the injected noble metal has a large adhesion to equipment and piping, particularly in high-temperature parts, the conventional noble metal injection can be applied to the above structural materials (reactor pressure vessel, recirculation system piping, reactor coolant purification system piping). In order to maximize platinum adhesion, water supply piping connected to the reactor pressure vessel has been employed as the platinum injection point.

特許文献2には、浄化装置の出口から浄化系配管と復水の給水配管との合流点までの間に貴金属注入装置が配置された原子力プラントが記載されている。   Patent Document 2 describes a nuclear power plant in which a noble metal injection device is arranged between an outlet of a purification device and a junction between a purification system pipe and a condensate water supply pipe.

特開平7−311296号公報JP 7-311296 A 特開2015−114251号公報JP2015-114251A

貴金属注入を適用した原子力プラントでは、白金の注入点である給水配管で白金が析出し、注入点の閉塞が生じる可能性がある。これは、給水温度が高いため、白金化合物が熱分解し、白金が析出することが原因であると考えられる。   In a nuclear power plant to which noble metal injection is applied, there is a possibility that platinum is deposited in a water supply pipe, which is an injection point of platinum, and the injection point is blocked. This is considered to be because the platinum water is thermally decomposed and platinum is precipitated because the feed water temperature is high.

また、給水配管から炉水に注入された白金のうち構造材及び配管に付着しなかったものは、原子炉冷却材浄化系(CUW)で除去されるため、CUWの浄化装置の下流にある配管及び機器には白金が付着しないと想定される。   Moreover, since the platinum injected into the reactor water from the water supply pipe and not attached to the structural material and the pipe is removed by the reactor coolant purification system (CUW), the pipe downstream of the CUW purification device And it is assumed that platinum does not adhere to the equipment.

一般に、CUWの浄化装置下流の配管材料の多くは、炭素鋼またはステンレス鋼である。白金が付着しないCUWの浄化装置の下流側では、ステンレス鋼配管の場合は応力腐食割れの抑制効果を得ることができないと考えられる。   In general, most of the piping material downstream of the CUW purifier is carbon steel or stainless steel. On the downstream side of the CUW purification device to which platinum does not adhere, it is considered that the effect of suppressing stress corrosion cracking cannot be obtained in the case of stainless steel piping.

また、貴金属注入により炉水中の酸化種濃度が大幅に低下するため、CUWの浄化装置の下流側が炭素鋼配管の場合は、配管表面への酸素供給量が不足して安定酸化皮膜の形成が抑制される懸念があり、その結果、流れ加速腐食のリスクが高くなると考えられる。   In addition, since the concentration of oxidizing species in the reactor water is significantly reduced by the injection of precious metals, when the downstream side of the CUW purification device is a carbon steel pipe, the amount of oxygen supplied to the pipe surface is insufficient and the formation of a stable oxide film is suppressed. As a result, it is considered that the risk of flow accelerated corrosion increases.

本発明の目的は、原子力プラントにおいて、貴金属の注入点における貴金属の析出及び配管の閉塞リスクを低減するとともに、CUWの浄化装置の下流にある配管の腐食リスクを低減することにある。   An object of the present invention is to reduce the risk of precious metal deposition and piping clogging at a noble metal injection point in a nuclear power plant, and the risk of corrosion of piping downstream of a CUW purification device.

上記課題を解決するために、本発明の原子力プラントは、炉水を保有する原子炉圧力容器と、原子炉圧力容器を内蔵する原子炉格納容器と、原子炉圧力容器に復水を供給する給水配管と、炉水を浄化する原子炉冷却材浄化装置と、原子炉冷却材浄化装置を有する浄化系配管と、貴金属を含む液を炉水に注入する貴金属注入装置と、浄化系配管に設けられ、浄化される前の炉水を、浄化された後の炉水により冷却される熱交換器を備え、貴金属注入装置は、原子炉冷却材浄化装置の出口から熱交換器までの間の配管に設けられている。   In order to solve the above-described problems, a nuclear power plant according to the present invention includes a reactor pressure vessel that holds reactor water, a reactor containment vessel that contains the reactor pressure vessel, and water supply that supplies condensate to the reactor pressure vessel. Piping, a reactor coolant purification device for purifying reactor water, a purification system piping having a reactor coolant purification device, a noble metal injection device for injecting a liquid containing noble metal into the reactor water, and a purification system piping , Equipped with a heat exchanger that cools the reactor water before purification with the reactor water after purification, and the precious metal injection device is connected to the pipe between the outlet of the reactor coolant purification device and the heat exchanger. Is provided.

本発明によれば、原子力プラントにおいて、貴金属の注入点における貴金属の析出及び配管の閉塞リスクを低減するとともに、CUWの浄化装置の下流にある配管の腐食リスクを低減することができる。   According to the present invention, in a nuclear power plant, it is possible to reduce the risk of precious metal deposition and piping blockage at the injection point of the precious metal, and the risk of corrosion of piping downstream of the CUW purification device.

実施例の沸騰水型原子力発電プラントを示す概略構成図である。It is a schematic block diagram which shows the boiling water type nuclear power plant of an Example.

以下、図示した実施例に基づいて本発明の貴金属注入点からの貴金属注入方法並びに原子力発電プラント(「原子力プラント」ともいう。)を説明する。なお、本明細書に記載の「注入点」は、所定の断面積を有する「注入部」を意味する。   Hereinafter, a method for injecting a noble metal from a noble metal injection point and a nuclear power plant (also referred to as “nuclear power plant”) according to the present invention will be described based on the illustrated embodiments. The “injection point” described in the present specification means an “injection part” having a predetermined cross-sectional area.

本実施例の炉水への貴金属注入は、沸騰水型原子力発電所の原子炉圧力容器、給水系配管、再循環系配管及び原子炉冷却材浄化系配管に適用される。本実施例では、貴金属の注入は沸騰水型原子力発電所の運転停止中または運転中に行われる。   The precious metal injection into the reactor water of this embodiment is applied to the reactor pressure vessel, feed water system piping, recirculation system piping, and reactor coolant purification system piping of the boiling water nuclear power plant. In the present embodiment, the noble metal injection is performed during the shutdown or operation of the boiling water nuclear power plant.

図1は、炉水への貴金属注入方法を実施する際に用いられる沸騰水型原子力発電所の構成を示したものである。   FIG. 1 shows a configuration of a boiling water nuclear power plant used when a method for injecting noble metal into reactor water is performed.

本図に示すように、原子力プラント100(沸騰水型原子力発電プラント)は、原子炉圧力容器1、タービン3、復水器4、給水系、再循環系、原子炉冷却材浄化系等を備えている。   As shown in the figure, a nuclear power plant 100 (boiling water nuclear power plant) includes a reactor pressure vessel 1, a turbine 3, a condenser 4, a water supply system, a recirculation system, a reactor coolant purification system, and the like. ing.

給水系は、復水器4と原子炉圧力容器1とを連絡する給水配管13に、復水ポンプ5、復水浄化装置6、給水ポンプ7及び給水加熱器8をこの順に設置している。   In the feed water system, a condensate pump 5, a condensate purification device 6, a feed water pump 7 and a feed water heater 8 are installed in this order in a feed water pipe 13 that connects the condenser 4 and the reactor pressure vessel 1.

原子炉冷却水浄化系は、再循環系配管15と給水配管13とを連絡する浄化系配管12に、熱交換器9、浄化系ポンプ10、原子炉冷却材浄化装置11をこの順に設置している。原子炉冷却材浄化系を流れる冷却材(炉水)は、浄化系配管12に流入し、熱交換器9で冷却された後、原子炉冷却材浄化装置11で浄化される。浄化された冷却材は、熱交換器9で加熱された後、浄化系配管12及び給水配管13を経由して原子炉圧力容器1内に流入する。原子炉圧力容器1は、原子炉格納容器14内に設置されている。   In the reactor cooling water purification system, a heat exchanger 9, a purification system pump 10, and a reactor coolant purification device 11 are installed in this order on a purification system pipe 12 that connects the recirculation system pipe 15 and the feed water pipe 13. Yes. The coolant (reactor water) flowing through the reactor coolant purification system flows into the purification system pipe 12, is cooled by the heat exchanger 9, and is then purified by the reactor coolant purification device 11. The purified coolant is heated by the heat exchanger 9 and then flows into the reactor pressure vessel 1 through the purification system pipe 12 and the feed water pipe 13. The reactor pressure vessel 1 is installed in the reactor containment vessel 14.

貴金属注入装置16は、原子炉冷却材浄化装置11の出口から熱交換器9までの間の浄化系配管に設置されている。原子炉において、貴金属注入装置16の注入点から注入される貴金属は、給水配管13を経由して、原子炉圧力容器1、再循環系配管15及び原子炉冷却材浄化系に移動し、構造材の表面に付着する。   The noble metal injection device 16 is installed in the purification system piping from the outlet of the reactor coolant purification device 11 to the heat exchanger 9. In the nuclear reactor, the precious metal injected from the injection point of the precious metal injection device 16 moves to the reactor pressure vessel 1, the recirculation system pipe 15 and the reactor coolant purification system via the water supply pipe 13, and the structural material. Adhere to the surface.

貴金属としては、白金、パラジウム、ロジウム、ルテニウム、オスミウム及びイリジウムのいずれかを用いる。貴金属は、貴金属化合物(例えばヘキサヒドロキソ白金酸ナトリウム水和物(Na[Pt(OH)]・nHO))を水に溶解した状態もしくは分散した状態で使用する。 As the noble metal, any one of platinum, palladium, rhodium, ruthenium, osmium and iridium is used. The noble metal is used in a state where a noble metal compound (for example, sodium hexahydroxoplatinate hydrate (Na 2 [Pt (OH) 6 ] · nH 2 O)) is dissolved or dispersed in water.

貴金属の注入と併用される水素注入装置17は、復水浄化装置6の下流部に設置されている。復水浄化装置6の下流部から注入された水素は、給水系を経て原子炉圧力容器1へ移動し、原子炉圧力容器1内において酸化種との再結合反応に寄与する。未反応の水素のうち大部分は、主蒸気系配管2を通り、タービン4へ到達する一方で、一部は、再循環系配管15を経由して原子炉冷却材浄化系へ移動する。   The hydrogen injection device 17 used in combination with the injection of the noble metal is installed in the downstream portion of the condensate purification device 6. Hydrogen injected from the downstream portion of the condensate purification apparatus 6 moves to the reactor pressure vessel 1 through the water supply system, and contributes to the recombination reaction with the oxidizing species in the reactor pressure vessel 1. Most of the unreacted hydrogen passes through the main steam system pipe 2 and reaches the turbine 4, while a part moves to the reactor coolant purification system via the recirculation system pipe 15.

なお、本実施例においては、貴金属注入点の温度は、約50℃であり、従来の注入点の温度(約225℃)よりも低い。よって、熱分解により貴金属が析出するリスクが低下する。また、本実施例においては、貴金属注入点における水素濃度は約0.05ppmであり、これは従来の注入点の濃度(約0.3ppm)よりも低い。よって、水素による貴金属の還元析出のリスクも低減することが可能となる。   In this embodiment, the temperature of the noble metal injection point is about 50 ° C., which is lower than the temperature of the conventional injection point (about 225 ° C.). Therefore, the risk that noble metals precipitate due to thermal decomposition is reduced. In this embodiment, the hydrogen concentration at the noble metal injection point is about 0.05 ppm, which is lower than the concentration at the conventional injection point (about 0.3 ppm). Therefore, it is possible to reduce the risk of noble metal reduction precipitation with hydrogen.

まとめると、貴金属の注入点における炉水の温度は、30〜70℃であることが望ましく、40〜60℃であることが更に望ましい。   In summary, the temperature of the reactor water at the injection point of the noble metal is preferably 30 to 70 ° C, and more preferably 40 to 60 ° C.

貴金属の注入点における炉水の水素濃度は、0.1ppm以下であることが望ましく、0.05ppm以下であることが更に望ましい。   The hydrogen concentration in the reactor water at the noble metal injection point is preferably 0.1 ppm or less, and more preferably 0.05 ppm or less.

さらに、本発明における貴金属注入点から注入された白金等の貴金属は、CUWに設置された浄化装置の下流側にある配管にも付着することが期待できる。よって、浄化装置の下流側にある配管が炭素鋼配管の場合は、流れ加速腐食のリスクが、ステンレス鋼配管の場合は応力腐食割れのリスクが低下すると考えられる。   Furthermore, it can be expected that noble metals such as platinum injected from the noble metal injection point in the present invention also adhere to the piping on the downstream side of the purification device installed in the CUW. Therefore, it is considered that the risk of flow accelerated corrosion is reduced when the pipe on the downstream side of the purification device is a carbon steel pipe, and the risk of stress corrosion cracking is reduced when the pipe is a stainless steel pipe.

1:原子炉圧力容器、2:主蒸気系配管、3:タービン、4:復水器、5:復水ポンプ、6:復水浄化装置、7:給水ポンプ、8:給水加熱器、9:熱交換器、10:浄化系ポンプ、11:原子炉冷却材浄化装置、12:浄化系配管、13:給水配管、14:原子炉格納容器、15:再循環系配管、16:貴金属注入装置、17:水素注入装置、100:原子力プラント。   1: Reactor pressure vessel, 2: Main steam system piping, 3: Turbine, 4: Condenser, 5: Condensate pump, 6: Condensate purification device, 7: Feed water pump, 8: Feed water heater, 9: Heat exchanger, 10: purification system pump, 11: reactor coolant purification device, 12: purification system piping, 13: feed water piping, 14: reactor containment vessel, 15: recirculation system piping, 16: noble metal injection device, 17: Hydrogen injection device, 100: Nuclear power plant.

Claims (11)

炉水を保有する原子炉圧力容器と、
前記原子炉圧力容器を内蔵する原子炉格納容器と、
前記原子炉圧力容器に復水を供給する給水配管と、
前記炉水を浄化する原子炉冷却材浄化装置と、
前記原子炉冷却材浄化装置を有する浄化系配管と、
貴金属を含む液を前記炉水に注入する貴金属注入装置と、
前記浄化系配管に設けられ、浄化される前の炉水を、浄化された後の炉水により冷却する熱交換器を備え、
前記貴金属注入装置は、前記原子炉冷却材浄化装置の出口から前記熱交換器までの間の配管に設けられている、原子力プラント。
A reactor pressure vessel holding reactor water;
A containment vessel containing the reactor pressure vessel;
A water supply pipe for supplying condensate to the reactor pressure vessel;
A reactor coolant purification device for purifying the reactor water;
A purification system pipe having the reactor coolant purification device;
A noble metal injection device for injecting a liquid containing noble metal into the reactor water;
A heat exchanger is provided in the purification system pipe, and the reactor water before being purified is cooled by the reactor water after being purified,
The noble metal injection device is a nuclear power plant provided in a pipe from an outlet of the reactor coolant purification device to the heat exchanger.
前記給水配管と前記浄化系配管との合流点は、前記原子炉格納容器の外部に設けられている、請求項1記載の原子力プラント。   The nuclear power plant according to claim 1, wherein a junction of the water supply pipe and the purification system pipe is provided outside the reactor containment vessel. 前記貴金属は、白金である、請求項1又は2に記載の原子力プラント。   The nuclear plant according to claim 1 or 2, wherein the noble metal is platinum. 前記貴金属の注入点における前記炉水の温度は、30〜70℃である、請求項1〜3のいずれか一項に記載の原子力プラント。   The nuclear power plant according to any one of claims 1 to 3, wherein a temperature of the reactor water at the injection point of the noble metal is 30 to 70 ° C. 前記貴金属の注入点における前記炉水の水素濃度は、0.1ppm以下である、請求項1〜4のいずれか一項に記載の原子力プラント。   The nuclear power plant according to any one of claims 1 to 4, wherein a hydrogen concentration of the reactor water at an injection point of the noble metal is 0.1 ppm or less. 前記浄化系配管のうち前記原子炉冷却材浄化装置の出口から前記給水配管との合流点までの間は、炭素鋼又はステンレス鋼で構成されている、請求項1〜5のいずれか一項に記載の原子力プラント。   Between the said purification system piping and the confluence | merging point with the said feed water piping from the exit of the said reactor coolant purification apparatus is comprised by carbon steel or stainless steel to any one of Claims 1-5. The described nuclear power plant. 原子炉圧力容器に充填された炉水の一部を原子炉格納容器の外部に送り、
その炉水を冷却し、浄化し、
その後、その炉水に貴金属を含む液を注入する方法であって、
前記原子炉格納容器の外部に送られた炉水は、浄化される前に、浄化され前記貴金属を含む液が注入された後の炉水により冷却される、原子力プラントの貴金属注入方法。
Send a portion of the reactor water filled in the reactor pressure vessel to the outside of the reactor containment vessel,
Cooling and purifying the reactor water,
Thereafter, a method of injecting a liquid containing a noble metal into the reactor water,
A reactor water injection method for a nuclear power plant, wherein the reactor water sent to the outside of the reactor containment vessel is purified and cooled by the reactor water after the liquid containing the noble metal is injected before being purified.
前記貴金属を含む液を注入された前記炉水は、前記原子炉圧力容器に送られる復水に、前記原子炉格納容器の外部にて混合される、請求項7記載の原子力プラントの貴金属注入方法。   The nuclear reactor plant noble metal injection method according to claim 7, wherein the reactor water injected with the liquid containing the noble metal is mixed with condensate sent to the reactor pressure vessel outside the reactor containment vessel. . 前記貴金属は、白金である、請求項7又は8に記載の原子力プラントの貴金属注入方法。   The noble metal injection method for a nuclear power plant according to claim 7 or 8, wherein the noble metal is platinum. 前記貴金属の注入をする際の前記炉水の温度は、30〜70℃である、請求項7〜9のいずれか一項に記載の原子力プラントの貴金属注入方法。   The method for injecting a noble metal in a nuclear power plant according to any one of claims 7 to 9, wherein a temperature of the reactor water when injecting the noble metal is 30 to 70 ° C. 前記貴金属の注入をする際の前記炉水の水素濃度は、0.1ppm以下である、請求項7〜10のいずれか一項に記載の原子力プラントの貴金属注入方法。   The method for injecting a noble metal into a nuclear power plant according to any one of claims 7 to 10, wherein the hydrogen concentration of the reactor water when injecting the noble metal is 0.1 ppm or less.
JP2016070292A 2016-03-31 2016-03-31 Nuclear power plant and method for injecting precious metal thereof Active JP6446384B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016070292A JP6446384B2 (en) 2016-03-31 2016-03-31 Nuclear power plant and method for injecting precious metal thereof
US15/418,853 US10457583B2 (en) 2016-03-31 2017-01-30 Method for relieving corrosive environment of boiling water reactor, nuclear power plant, and method for injecting noble metal which is carried out in nuclear power plant
US16/577,502 US20200055758A1 (en) 2016-03-31 2019-09-20 Method for Relieving Corrosive Environment of Boiling Water Reactor, Nuclear Power Plant, and Method for Injecting Noble Metal Which is Carried Out in Nuclear Power Plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070292A JP6446384B2 (en) 2016-03-31 2016-03-31 Nuclear power plant and method for injecting precious metal thereof

Publications (2)

Publication Number Publication Date
JP2017181351A JP2017181351A (en) 2017-10-05
JP6446384B2 true JP6446384B2 (en) 2018-12-26

Family

ID=60004452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070292A Active JP6446384B2 (en) 2016-03-31 2016-03-31 Nuclear power plant and method for injecting precious metal thereof

Country Status (1)

Country Link
JP (1) JP6446384B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887410B2 (en) * 2018-09-28 2021-06-16 日立Geニュークリア・エナジー株式会社 Corrosion control methods for nuclear power plants, oxygen injection devices, dissolved oxygen concentration meters, and nuclear power plants
CN110334908B (en) * 2019-06-03 2021-12-03 华中科技大学 Multi-risk assessment method and system for water supply power generation environment of drainage basin water resource

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600691A (en) * 1993-10-29 1997-02-04 General Electric Company Noble metal doping or coating of crack interior for stress corrosion cracking protection of metals
JP2000329895A (en) * 1999-05-21 2000-11-30 Hitachi Ltd Operation method of nuclear reactor plant and waste liquid processing method of nuclear reactor plant
WO2001057879A1 (en) * 2000-02-02 2001-08-09 Hitachi, Ltd. Method for mitigating stress corrosion cracking of structural member of atomic reactor plant
JP4434436B2 (en) * 2000-06-12 2010-03-17 株式会社東芝 Operation method of boiling water nuclear power plant
JP2003035797A (en) * 2001-07-25 2003-02-07 Hitachi Ltd Method for relaxing stress corrosion cracking of reactor structural member
JP4717388B2 (en) * 2004-07-15 2011-07-06 東京電力株式会社 Hydrogen injection method for boiling water nuclear power plant
JP2015161664A (en) * 2014-02-28 2015-09-07 日立Geニュークリア・エナジー株式会社 Surface treatment method for structural member of nuclear power plant, structure member of nuclear power plant, nuclear power plant, anti-corrosive material injection device for nuclear power plant, and surface treatment device for structural member of nuclear power plant
JP2014130160A (en) * 2014-03-24 2014-07-10 Hitachi-Ge Nuclear Energy Ltd Method of reducing doses in nuclear power plant constituting members

Also Published As

Publication number Publication date
JP2017181351A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP2996890B2 (en) Method for mitigating initiation or propagation of cracks on the surface of a metal component of a water-cooled reactor or related equipment, and metal component having a crack on the surface
JP5637867B2 (en) Plant operating method and system
JP6446384B2 (en) Nuclear power plant and method for injecting precious metal thereof
JP5059325B2 (en) Method and apparatus for inhibiting corrosion of carbon steel
TW200926204A (en) Boiling water reactor nuclear power plant with alcohol injection
US20120031435A1 (en) Scaling, deposition and general copper corrosion elimination in closed cooling water systems
JP6486860B2 (en) Method for mitigating corrosive environment of boiling water reactor and nuclear power plant
JP5500958B2 (en) Method for forming ferrite film on nuclear member, method for suppressing progress of stress corrosion cracking, and ferrite film forming apparatus
EP2180483B1 (en) Method of inhibiting adhesion of radioactive substance
US20170287573A1 (en) Method for Relieving Corrosive Environment of Boiling Water Reactor, Nuclear Power Plant, and Method for Injecting Noble Metal Which Is Carried out in Nuclear Power Plant
JP2005003565A (en) Corrosion reduction method for reactor structural material
JP6868545B2 (en) Corrosion control method for carbon steel parts of plants
JP4668152B2 (en) Stress corrosion cracking mitigation method for nuclear reactor structural materials and boiling water nuclear power plant
JP4356012B2 (en) Nuclear power plant
JP6887410B2 (en) Corrosion control methods for nuclear power plants, oxygen injection devices, dissolved oxygen concentration meters, and nuclear power plants
JP4370466B2 (en) Stress corrosion crack mitigation method, chemical injection device, and nuclear power plant
EP3438990B1 (en) Method of repairing fuel assembly, method of producing fuel assembly, and fuel assembly
JP4437256B2 (en) Methods for preventing corrosion and thinning of carbon steel
EP3093369B1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JP4309105B2 (en) Turbine system dose reduction method
JP4366227B2 (en) Stress corrosion cracking suppression method
JP2004020411A (en) Nuclear power plant and its operation method
JP6894862B2 (en) Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants
JPH05288893A (en) Control method of concentration of chromium of boiling water nuclear power plant
JP2015161664A (en) Surface treatment method for structural member of nuclear power plant, structure member of nuclear power plant, nuclear power plant, anti-corrosive material injection device for nuclear power plant, and surface treatment device for structural member of nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150