JP6443846B2 - 窒素インフラシステム - Google Patents

窒素インフラシステム Download PDF

Info

Publication number
JP6443846B2
JP6443846B2 JP2017084042A JP2017084042A JP6443846B2 JP 6443846 B2 JP6443846 B2 JP 6443846B2 JP 2017084042 A JP2017084042 A JP 2017084042A JP 2017084042 A JP2017084042 A JP 2017084042A JP 6443846 B2 JP6443846 B2 JP 6443846B2
Authority
JP
Japan
Prior art keywords
nitrogen
hydrogen
infrastructure
gas
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017084042A
Other languages
English (en)
Other versions
JP2018175730A (ja
Inventor
富永 淳
淳 富永
富永 聡
聡 富永
小田 浩一
浩一 小田
Original Assignee
富永 淳
淳 富永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富永 淳, 淳 富永 filed Critical 富永 淳
Priority to JP2017084042A priority Critical patent/JP6443846B2/ja
Publication of JP2018175730A publication Critical patent/JP2018175730A/ja
Application granted granted Critical
Publication of JP6443846B2 publication Critical patent/JP6443846B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution

Landscapes

  • Fuel Cell (AREA)
  • Pipeline Systems (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

発明の詳細な説明
本発明は、来るべき水素社会の到来に備え水素に起因する火災・爆発災害を防止するため新たに導管を用いた窒素インフラを構築して水素インフラに付加し、水素による災害を未然に防止すると共に構築された窒素インフラを物流倉庫等に代表される大型の密閉型建屋の防消火設備として使用する手段を提供する。
次世代のクリーンエネルギーとして期待される水素は地球温暖化防止に向けたクリーン・ガスとして新しい用途の開発が進んでいる。中でも燃料電池車向けの水素は既に実用車が市販され実用化の段階を迎えている。一方、需要拡大への最大の課題は燃料電池車へ水素を供給するための水素ステ−ションの整備であるといわれている。本発明の窒素インフラの構築はこの水素ステーション向けの水素インフラと密接に関係する。
最初に窒素インフラの構築に不可欠な水素ステーション向けの水素インフラの現状を記す。水素ステーションは水素製造所と水素充填所の存在場所により、オンサイト型とオフサイト型に区分される。オンサイト型とは、両者が同一場所にあるステーションを指し、オフサイト型は充填所から離れた場所で水素を製造する方式を指す。
両者は製造場所の立地条件や水素の輸送方法で各々長所短所があり、現時点でどちらの方式が優位かについて結論は出ていない。オフサイト型の水素ステーションについては水素を集中して大量に製造でき水素の製造コストを安くできる利点があるが、水素製造所から水素ステーションまで水素を輸送しなければならない。
水素の輸送方法として水素ガスを高圧ボンベに充填し専用の車両で運ぶ方法、水素を液化し液化水素ローリ車で運ぶ方法及び導管を用いてガス状態で運ぶ方法がある。本発明ではこの中から導管を使用する方法を選び、この導管輸送による水素インフラの存在を前提に新たな提案を行う。
実際に導管を使用して水素ステーションへ水素を供給する方式は2011年に水素・燃料電池実証プロジェクトの一環として北九州市で試行された。この水素ステーションでは隣接する製鉄所で副生した水素から製造された純水素を地上に敷設した導管を使用して受け入れた。導管の長さは全長で約2kmである。同プロジェクトはこの方式を「導管を使用した日本初の次世代型水素ステーション」として紹介した。
本提案の第一目標はこの水素の導管中に窒素を添加して水素・窒素の混合ガスとして輸送された窒素を利用し、新たな窒素インフラを構築して水素による火災・爆発災害を未然に防止するものである。以下にその背景を記す。
可燃性ガスの爆発・火災の危険性を回避するため窒素を用いることは古くから化学工業界では活用されている方法である。この理由は特に水素の場合、空気中での爆発範囲が広いこと、着火エネルギーが小さいこと、燃焼速度が速いこと等極めて燃え易いガスのため、窒素を添加して水素の危険度を安全側に移行させるためである。
水素の輸送に導管を使用する方法は欧米では既に実績があり、我が国でも石油コンビナート等の企業間においてその流通に使われている。しかし水素を単独とせず水素・窒素の混合ガスとして輸送する方法は化学工場のアンモニア・プラント設備の一部で使われているが、その活用方法は限定されており、市街地を含む広域な地域で実施されたことは国内は無論のこと世界でも例はない。
一方で水素中に窒素を混入させて水素輸送の安全性を高めようとする試みは最近になり見直しが行われ、幾つかの新たな提案がある。 導管を使用して水素を水素・窒素の混合ガスとして輸送する方法として次の文献が公開されている。
特開2004−146312号公報 特開2004−220802号公報 特開2006−207785号公報 特開2016−193810号公報
文献1,2には水素の爆発危険性を回避するため、水素を単独ではなく水素・窒素の混合ガスとして輸送する方法が記載されている。 文献3には水素ステーションで水素・窒素の混合ガスから水素と窒素を簡便な方法で分離する方法が記載されている。文献4では導管からの水素ガスの漏洩を監視するため、導管から漏れた水素の検知方法が記載されている
特許文献1〜4に示す方法で水素インフラを構築する場合限定された地域おいて実施する場合は極めて有効である。例えば国内において北九州市から山陽道、近畿、東海を経て関東に至る経路は我が国屈指の人口過密地帯であり上記の特許文献に示す輸送方法はその対応に適している。
一方で国内で東北、北海道地方更に世界規模、例えば広大な国土を有する米国や中国等で上記の方法を展開する場合はこれらの地域では水素製造所と消費先が荒野を挟んで数十キロ以上離れているケースも稀ではない。これ等の全ての地域までも水素に市街地並みの窒素を混合する試みは危険度への対応として過剰であり、適切ではない。
この考えは水素インフラに付加する窒素インフラの構築についても同様である。即ち、新しく構築される窒素インフラは対象とする地域の特性を考慮してその地域に最もふさわしい安全対策を実施することが重要である。 更に構築された窒素インフラは水素ステーションの安全対策だけに限定せず、従来にない新しい用途を付加する必要がある。
本提案の第二目標は水素インフラに付加して構築された窒素インフラを導管を用いて広範囲な地域において新たなタイプの防消火設備として活用する。以下にその背景を記す。
美術館や博物館等で使用される消火設備では貴重な美術品が水消火により損傷されることを避けるため窒息性ガスを吹込んで消火させる設備は既に実用化されている。窒息性ガスとして実績あるガスはハロゲン系ガスと窒素である。これ等のガスは通常は専用ボンベに充填し消火を対象とする建屋の近傍に保管され万一の発災時にはここから火災の発生場所へ向け放出される。
建屋内に窒素を吹き込み内部の酸素濃度を下げる場合、内部の空気は窒素とほぼ均一に混合し、排気口を経由して大気に放散される。学術的にはこの混合を「完全混合」と呼ぶ。
建屋内部の酸素濃度は徐々に低下し、可燃性ガスが燃焼できない濃度に達する。この時の酸素濃度を「限界酸素濃度」という。この値は可燃性ガスによって固有の値を持ち、水素の場合5.0%、メタンでは12.1%である。
可燃物が液体や固体の場合も高温により液体の蒸発や固体の分解で可燃性ガスを発生させるので、窒素を使用してその燃焼を止めるためには気体の場合と同様に建屋内の酸素濃度が可燃性ガスの限界酸素濃度以下になるまで窒素を吹き込めば良い。また窒素を大量に吹き込む場合は、建屋内が過圧にならないよう、建屋内のガスを十分に排気できる排気経路を確保することが必要である。
通常ボンベに貯蔵可能なガス量は数m/本であるから、消火対象とする建屋の容量は概ね数10m〜100m程度に限定される。このため従来の消火対象は建屋全体ではなく、建屋の中で最も貴重な美術品を収納する部屋に限定せざるを得なかった。 従ってこれ等の窒息性ガスによる消火設備を美術館全館や容積で数千m規模の物流倉庫等の大型建屋を対象としてする試みは未だ公開されていない。
上記の消火対象となる建屋としては通販向けの大型物流倉庫に加えて、貴重な絵画を所有する美術館、可燃性美術品を収納す博物館、金色堂に代表される神社・仏閣、内部で塗料等可燃性危険物を取り扱う工場、更に事故時に可燃性ガスを発生する恐れのある密閉型建屋等広範囲な建屋が挙げられる。
これ等の対象物は従来の消火方法では煙検知器とスプリンクラーを組み合わせた水消火を基本としており建屋全域をカバーするには対処が困難で、これに代わる新たな消火設備が切望されていた。本発明はこの課題に対し既存の対応を一新させる有効でかつ独創的な手段を提供する。
一方で本発明を全国規模で利用する際、特に注意しなければならない重要な課題は酸欠症即ち酸素欠乏に伴う人的災害や事故の防止である。
本発明は、上記問題点に鑑みてなされたもので、水素ステーション向けの水素インフラに付加して新たに構築された窒素インフラを活用して、水素による火災・爆発災害の発生を防止すると共に大型物流倉庫に代表される密閉型建屋の防消火設備として活用する手段を提供するものである。
窒素インフラの構築への第一番目の解決手段は新たな窒素インフラの構築は本インフラとは別途に建設される水素インフラの構築と時期を合わせて実施できる手段を提供することである。既に詳述したように今までに窒素インフラを構築するという発想は一切検討されたことはなく、その関連情報も公開されていない。その最大の理由は窒素単独のインフラでは、窒素を活用する需要が無かったためである。
しかし今世紀に至り地球温暖化防止に向けたクリーン・エネルギーとして水素が注目され、燃料電池車向けの水素ステーションの建設が始まっている。更にネット販売の急増に伴う大型物流倉庫や自動車向けの無人塗装工場での大規模な火災事故があり、その消火体制の見直しが行われている。 これ等の新しい需要に対しては防災上窒素の助けがどうしても必要である。 この解決のために第二番目の解決手段は窒素は水素と共に全国規模の需要先に向けて供給する手段を見出すことである。
第三番目の解決手段は供給される窒素及び水素はその需要先の環境に併せて最も効率的な方式で供給することである。水素や窒素の需要先はその製造元と離れている場合が殆どである。例えば需要先が東京都のような大都市、地方の中核都市、寒村地域では万一の事故が発生する危険度は大きく異なる。従ってその供給方法は一律ではなく、その地域に適した固有な方式を提供しなければならない。更にこの窒素インフラを全国に展開するには上記の方式を最も効率よく組み合わた方式を選択することが大切である。
この固有な方式を提供するため本発明では水素・窒素の組成比率を任意に調整できることが大きな特徴である。このために水素・窒素の混合ガス成分を正確に検知する技術と組成比率を任意に調整できる機器が必要となる。本提案ではこれ等の機器について既に実績のある機種の中から最適な機器を選択して指定している。
次に窒素インフラが定着するための第四番目の解決手段は需要先の更なる拡大を目指して従来にない新たな用途を見出すことである。本発明ではその用途として大型物流倉庫に代表される密閉型建屋の防消火設備への活用を提示している。
窒素を建屋内に吹き込んで防消火に活用することは建屋内の支燃性ガスである酸素を窒素で置換して燃焼を継続できなくすることである。以下に窒素を使用した建屋内の支燃性ガス(=酸素)を窒素で置換することについて基本的な事項を記す。
容積(Am)を有する建屋の内部に容量(Vm)の窒素を吹き込み建屋内の同量のガスを放出させて、建屋内の酸素濃度を通常濃度(a=21%)から目標の酸素濃度(a%)まで低減させる場合、その低減曲線は「完全混合式」に従い、次の関数で示される。 ここでeはネピアの数と呼ばれる定数である。
Figure 0006443846
上式より空気中の酸素を限界酸素濃度aまで低下させる窒素量 Vは
Figure 0006443846
例えば建屋容積=7,000m3、目標の酸素濃度(=水素の限界酸素濃度)=5%を
Figure 0006443846
即ち容積7,000m3の建屋内の酸素を窒素で置換して燃焼を継続できない酸素濃度まで低減させるには可燃性ガスを水素と仮定した場合、容量で約10,000m3の窒素が必要である。
第五番目の解決手段は窒素の活用に伴う負の効果とも言われる酸欠事故に対する防止対策を確立することである。人間は大気中の酸素濃度が下がり、約10%レベルまで低下すると意識を失い、更に6%以下では数分で死に至る危険が生じる。これ等の症例は人間の人為的ミスのよって引き起こされるケースが圧倒的に多いが、稀に作為的な行為や悪意によって引き起こされる危険性がある。
窒素は燃焼に必要な支燃性ガス濃度を下げて防消火には有効である一方、酸素不足による酸素欠乏症を引き起こす恐れがある。この防止対策は事前に十分検討され、必ず実行されなければならない。この防護手段なくして窒素インフラが安定して普及することは困難である。防護手段の詳細については次の「実施に向けての最良の形態」で説明する。
火災・爆発が発生する確率から判断して、水素はガソリンや灯油に比べ極めて危険度の高い物質である。 本発明により窒素インフラを活用した水素インフラに対する安全上のバックアップ可能になれば、次世代エネルギーとして期待される水素社会の実現に向けて防災面で大きく貢献する。
更に広範囲の地域に構築された窒素インフラは簡潔な方法で大型建屋等の防消火設備として活用でき、その用途は拡大される。一方で窒素の導入に伴い新たに懸念される酸欠事故の発生については、その防止に向けて十分な配慮が必要である。
既に詳述したように本発明は導管を用いた水素インフラに付随して構築されるので、最初に水素インフラを[図2]に示す。水素製造所で製造された水素は通常は導管を用いて水素供給先である水素ステーションに送られるが、本発明では水素の供給先を火災・爆発の発生危険度によりA,B,Cの3地域に区分けする。
この発生危険度は通常は人口密度の高低によるが、区分は周囲環境により変更することも可能である。 上記地域の区分は厳密ではない。今後新たなインフラが構築される場合、その地区を管轄する監督官庁が指導する諸規制に従って決定されるが、ここではCは人口過密地域、Bは人口過疎地域、Aは人口平均地域とする。
例えば北海道の室蘭市の製造所で製造された水素を導管を用いて札幌市に輸送する場合、室蘭市はA地域、札幌市はC地域、両市を結ぶ田園地区はB地域とする。従来の導管を用いて水素を始めとする可燃性ガスを輸送する場合はこのような地域の区分は行われず、全地域を通じて同一の対応が取られていた。 しかし本発明では供給先を区分してその地域に最も適合した輸送方法を選択する。
次に本発明のうち窒素インフラ部分だけを取り出して[図3]に示す。図3に示す窒素インフラは図2の水素インフラと同様、供給先をA,B,C地域へ供給するが、各々の地域により機器の構成が異なっている。 図3で構成される主な設備と機器は窒素製造所、窒素導管、水素・窒素混合器、水素・窒素分離器及び水素精製器である。
A地域は窒素製造所、窒素導管、水素・窒素混合器及び水素精製器で構成される。この地域での窒素製造所は水素製造所からの水素に出来るだけ早期に窒素を混合するため水素製造所の近傍に設置する。例えば製鉄所で発生するCOGガスからの水素を使う場合は、同じ製鉄所の酸素製鋼用に使用される酸素と共に副生する窒素を窒素製造所として活用する。
B地域は水素・窒素分離器、水素導管及び水素精製器で構成され、更にC地域は窒素製造所、水素・窒素混合器、窒素導管、水素精製器及び窒素リサイクル配管で構成される。この窒素インフラを前記の水素インフラに上乗せした場合の構成を[図1]に示す。図1は図2と図3で示した構想を合体したもので、本発明の構成を示す代表図である。
最初に水素・窒素の混合ガスが送られるのはA地域である。例えばこの水素・窒素混合ガスは両ガスの混合比率はH2/N2=70/30(容量比)に調整し、同地域に存在する水素ステーションに送られる。水素ステーション内では水素精製器で窒素を完全に分離して水素を燃料電池車に充填する。分離された窒素は窒素ベント管を経て大気に放出される。
次いで水素・窒素の混合ガスはB地域に送られる。B地域は水素製造所と水素の主たる供給先あるC地域を結ぶ過疎地帯で、火災・爆発の発生危険度から見れば最もその発生確率が低い地帯である。ここでは先ず水素・窒素分離器を用いて混合ガス中の窒素の大部分を除去し、水素・窒素の混合比率を例えばH2/N2=90/10(容量比)に調整する。
この組成で、同地域に散在する水素ステーションに送り、更に水素ステーション内では水素精製器で窒素を完全に分離して燃料電池車に水素を充填する。この地域で分離された窒素は窒素ベント管を経て大気に放出される。B地域で大部分の窒素を分離する理由は導管敷設費の削減と輸送コストの低減のためである。
次いで水素・窒素の混合ガスはC地域に送られる。C地域は水素の最大の消費地でかつ人口密度が最も高く、火災・爆発の発生確率の高い地域である。ここでは先ず水素・窒素混合器を用いて窒素製造所から窒素を混合ガスに混合し、水素・窒素の混合比率を例えばH2/N2=50/50(容量比)に調整し、同地域に存在する水素ステーションに送る。水素ステーションでは水素精製器を用いて窒素を完全に分離した後、水素を燃料電池車に充填する。
C地域で分離された窒素は他の地域と異なり、配管を通して窒素製造所へリサイクルされる。この窒素のリサイクルには通常は独立した配管を設けて輸送するが、窒素リサイクル配管の全部又は一部に二重管を用いて内管側には水素・窒素の混合ガスを外管側には窒素を流す方式としても良い。更にC地域に設置される窒素製造所には上記の水素ステーションからのリサイクル窒素を受け入れる設備の他に後述する液化窒素を受け入れる設備も設置する。
以上が本発明が第一の目標である「窒素インフラを水素インフラの火災・爆発事故の発生を防ぐために活用する」ことへの基本的な構成である。 実際の窒素インフラはこれ等に地域を多岐に組み合わせて構成される。その例を[図4]に示す。これ等の組み合わせは図1に示された構成を基本とするが、広域な地域に展開する際にはその組み合わせは任意で良い。例えば図4に示すようにA地域から直接C地域に供給したり、C地域を更に分割して並列又は直列に繋げて供給しても良い。
本発明を日本全域で行う場合、例えば、数十ケ所のオフサイト型水素製造所と数千ケ所の水素ステーションが本発明で示す水素インフラ及び窒素インフラの元で図4に示すような自由な組み合わせで結ばれる。この結果、水素及び窒素インフラを従来までに提言された手段に比べてより安全で人手を要しない方法で同時並行的に構築することが可能となる。
更に従来までの水素インフラの実証は既述した北九州市での例に見られるようにその展開が一部の地域に限定されていた。地球温暖化防止に向けた水素インフラや窒素インフラの構築は少なくとも日本全域、更に中国、米国等の広大な国土を有する国々でも展開できる構想でなくてはならない。本発明はこの地球規模での展開の可能性を残す。
次に本発明で使用する水素・窒素の分離、混合、精製について補足を行う。本発明の大きな特徴は構築される水素及び窒素インフラでは水素と窒素の混合比率を任意にかつ正確に調整できることである。このためには先ず両者の混合比率を正確に測定する技術が不可欠である。
窒素ガス中の水素ガス濃度を正確に測定する方法として第一候補として選択したのは熱伝導度を利用する方法である。この測定法は水素の熱伝導度は窒素のそれに比べて1桁小さいことを利用する。幸い本発明が対象とする水素や窒素は燃料電池車向けであり、水素と窒素以外の不純物が極めて少なく純度が極めて高いので本測定法に最適である。
第二候補は電気伝導度を利用する方法である。 例えばPt/WOやSnOの薄膜を使用した測定法は新しい水素濃度の測定として十分対応可能である。この方法は前項の方法と共通して小型でかつ自動化が易しいという特色を持つ。更に測定部に加熱部を有しないという安全面の長所を有している。
次の課題は上記に示した測定結果をどのような機種を使用して水素と窒素の分離・精製を行うかである。第一の機種は水素と窒素の分子の大きさ違いを利用した膜分離方式を使う機種である。次いでモレキュラー・シーブに代表される固体吸着物質資への吸着力の差を利用する機種がある。これ等の機種を活用したガスの分離・精製法は既に実用化されており、本発明に適用することは十分に可能である。
本発明ではこれ等の機器を水素・窒素混合器、水素・窒素分離器及び水素精製器に活用する。この内水素精製器は通常は水素ステーション内に設置され、その敷地面積上の制約を受けるケースが多いので小型化が容易な膜分離方式が適している。
一方で水素・窒素分離器と水素・窒素混合器は通常は水素・窒素の混合ガスの主要導管に設けられ、敷地上の制約を受ける心配は少ない。更にこれ等の機種はガス濃度の測定に加えて、正確な分離と混合操作を行うため前記の濃度の測定結果と流量計を組み合わせた比例制御を行う必要があり、本発明では「器」と表示しているが、むしろ装置に近い。この場合は設置場所の環境に併せて上記に記載した機種から適切な組み合わせを選択する。
次に本発明の第二の目標である「窒素インフラを建屋の防消火対策に活用する」ことについて記す。窒素は燃焼の三要素である「可燃物」「支燃性ガス」「着火源」のうち支燃性ガス(=酸素)の濃度を低減させて燃焼を食い止めることは既に記述した。ここでは本発明の窒素インフラを建屋の防消火対策に用いる具体的な方法を記す。
窒素インフラを建屋の防消火設備として活用する略図を[図5]に示す。この図には先の地域の区分けに従い、窒素供給設備から配管を用いて対象となる建屋に向けて窒素を供給する経路が示されている。 防消火の対象となる建屋は本文の技術背景で既に記載したように大型の物流倉庫に代表される密閉型建屋である。
地域区分に従えば、A地域の窒素供給設備としては水素製造所内又は近傍の窒素製造所が挙げられる。現在、水素製造所として有望な候補は化学工場、石油化学コンビナート各社、製鉄所等があり、これ等の会社は全て自消用や保安用に十分な窒素を確保しており、供給面で不安はない。これ等の窒素供給設備から対象建屋に向けて窒素を専用配管を使用して供給圧力で1MPa以下の中圧で供給する。
B地域の窒素供給設備としては、水素・窒素の混合ガスの導管に設置される水素・窒素分離器から放出される窒素を活用する。この窒素は通常は大気中に放散されている。一般的にこの地域に存在する建屋数は他の地域に比べて少ないが、万一の緊急時には、この放散を取りやめ専用配管を用いて対象建屋へ窒素を供給する。
更にB地区に孤立した対象建屋が存在し、かつ水素・窒素分離器から遠距離になり配管による窒素輸送が困難な場合は、特例として後述する液化窒素ローリ車によるバックアップ方式を採用して建屋内に直接液化窒素吹き込むことも可能である。例えばB地区に自衛 の基地が存在し、その敷地内にある爆薬等危険物を保管する倉庫が火災・爆発の危険に曝されたケースがこれに該当する。
C地区は他の地域に比べて圧倒的に対象とする建屋数の多い地域である。この地域の窒素供給設備としては地域内の窒素製造所が挙げられる。この窒素製造所は自ら窒素を製造する他に地域内の水素ステーションから配管を用いて窒素がリサイクルされている。 更に対象となる建屋数が多いので、 万一緊急時に窒素の供給が途絶えないよう窒素のバックアップ体制を確立しておくことが大切である。
このバックアップとして[図5]に液化窒素ローリ車による供給を示す。現在都市部では病院における酸素吸入向けに専用ローリ車による液化酸素の流通が既に定着している。液化酸素は同じ地域にある空気・深冷分離装置で製造されるが、この際液化窒素が併産される。 この液化窒素を専用ローリ車を使用して窒素供給設備に運搬し、バックアップ用の窒素として活用する。
次に専用配管を使用して供給される窒素を対象建屋において防消火設備として使用する方法について記す。窒素による窒息効果を高めるためには建屋の気密性を出来るだけ保った状態で内部に滞留する空気を吹き込んだ窒素と共に排気系に導くことが大切である。先ず本発明の効果を有効に活用させるために対象建屋本体の構造について記す。
本発明の対象となる建屋は物流倉庫に代表される大型建屋で通常は数階建て、かつ出入口を除けば開口部の少ない密閉型構造を有するものが多い。建屋の最上階には大気に通じる換気部を有するが、緊急時に吹き込むような大量の窒素を排気できる構造となってない。
このような構造を有する建屋には通常の換気部に加えて、緊急時の大量の窒素の吹き込みに備えて臨時に使用できる排気経路を別途確保しておく必要がある。具体的にはこの経路に換気ゲートやラプチュア・デスク(=破裂板)を設けて通常は大気と遮断しておき、緊急時だけこれ等の機器を開放できる構造とすれば良い。この処置により、地上部から導入された大量の窒素は建屋内の空気と十分に混合し建屋内を加圧することなく、排気経路を経由して建屋上部から大気に放散される。
次に窒素インフラから分岐された窒素配管を対象建屋敷地で建屋の防消火設備と連結する方法について記す。[図6]には連結部の略図を示す。両配管は図6に示すように平常時には連結せず、緊急時のみ専用の連結用配管を用いて連結する。これは建屋内に人間が在室している場合、誤って窒素が導入されると酸素欠乏により重大災害が発生する恐れがあるからである。
この危険の防止のため、図6の上段には 緊急時に連結用配管を用いて窒素配管と連結した後、予め指定された管理者が所有する特定パスワードをパスワード入力装置に入力しない限り、窒素元弁ロック機能を解除できない防護策が示されている。図6の下段にはこの防護策に加えて「煙検知による火災発生情報」「赤外線センサーによる無人確認情報」「換気ゲート開放等の換気確認情報」を組み込み、この回路が作動しない限り同ロック機能が解除できない防護策を追加し安全面での冗長化を図っている。
窒素インフラの普及に当たっては上記のハード面の対策に加え、ソフト面でも酸素欠乏による事故や災害を防止に関し対応策を確立しておかなければならない。具体的な対応として対象となる建屋は全て所轄官庁の許認可制として、かつ建屋には酸欠防止管理者の常駐を義務付ける等の対応が考えられる。 安全を確保するために導入した窒素インフラが人命を奪う凶器となってはならない。
本発明により導管を使用する窒素インフラが確立できれば、全国規模の燃料電池車向け水素ステーションの安全対策に寄与するだけでなく密閉型の大型建屋が火災の危険に遭遇した場合従来にない新しいタイプの防消火設備として活用できる。
導管を用いた水素インフラと窒素インフラの構成を示す概略図である。 導管を用いた水素インフラの構成を示す概略図である。 導管を用いた窒素インフラの構成を示す概略図である 水素インフラと窒素インフラを組み合わせた構成を示す概略図である。 窒素インフラの建屋への防消火とバックアップを示す概略図である。 窒素による防消火設備を示す概略図である。
1 水素製造所
2 窒素製造所
3 水素・窒素混合器
4 水素・窒素分離器
5 水素精製器
6 水素ステーション
7 燃料電池車
8 水素・窒素混合ガス導管
9 窒素導管
9 窒素ベント管
10 窒素配管
11 窒素リサイクル配管
12 対象建屋
13 空気分離器
14 病院
15 液化酸素ローリ輸送
16 液化窒素ローリ輸送
17 窒素元弁ロック機能
18 (窒素元弁開閉)パスワード入力装置
19 連結用配管
20 水素導管
A 人口平均地域
B 人口過疎地域
C 人口密集地域
D 対象建屋敷地

Claims (5)

  1. 導管を用いた水素インフラが存在する広域な地域において使用される窒素製造所の窒素供給設備であって窒素製造所から導管を用いて水素導管中に窒素を混合して水素・窒素の混合ガスとし、更に供給先の人口密度により供給地域を人口過疎地域、人口密集地域及び人口平均地域の三地域に分類して窒素製造所、窒素導管、水素・窒素混合器、水素・窒素分離器及び水素精製器を用いて上記の地域毎に水素・窒素の混合ガス中の水素と窒素の混合比率が異なる構成の供給方式を定め、各々の地域に窒素を水素・窒素の混合ガス又は窒素単独ガスとして供給することを特徴とする窒素インフラ システム。
  2. 前記窒素製造所の窒素供給設備が窒素製造設備又は窒素リサイクル設備のいずれかあるいはその両方を備え、水素・窒素混合器及び水素・窒素分離器を使用してガス中の水素と窒素の混合比率を任意の組成に調整して水素・窒素の混合ガス又は窒素単独ガスとし、前記の地域区分に従って地域を三地域に分類しこれ等の三地域を組み合わせた供給先に導管を用いて窒素を水素・窒素の混合ガス又は窒素単独ガスとして供給することを特徴とする請求項1に記載の窒素インフラシステム。
  3. 前記窒素インフラの水素・窒素分離器が水素分子と窒素分子の大きさの差を利用した膜方式又は水素分子と窒素分子の固体吸着物質への吸着力の差を利用した吸着方式であって、水素・窒素の混合ガス中の水素及び窒素濃度を測定するに当たり両ガスの熱伝導度又は電気伝導度の差を利用して水素・窒素混合ガス中の水素と窒素の濃度を測定し、これ等の濃度と水素及び窒素の流量を組み合わせて水素・窒素の混合比率を任意に調節できることを特徴とする請求項1に記載の窒素インフラ システム。
  4. 前記窒素インフラが水素インフラの防災設備として使用されることに加え窒素インフラの窒素供給設備から新たに配管を使用して窒素を分岐し、前記、請求項1に記載の三地域に存在する物流倉庫、美術館等の密閉型建屋における災害の発生時又は発生予想時に建屋内に窒素ガスを吹き込むことにより建屋内の酸素濃度を低下させて建屋の火災・爆発災害を防ぐ防消火設備として活用することを特徴とする請求項1に記載の窒素インフラシステム。
  5. 前記窒素インフラの窒素供給設備が同設備が存在する地域の空気分離装置から分離された窒素を液化窒素とし、これを液化窒素ローリ車を用いて窒素供給設備まで輸送して窒素供給のためのバックアップとして使用することを特徴とする請求項1に記載の窒素インフラシステム。
JP2017084042A 2017-04-05 2017-04-05 窒素インフラシステム Active JP6443846B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017084042A JP6443846B2 (ja) 2017-04-05 2017-04-05 窒素インフラシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084042A JP6443846B2 (ja) 2017-04-05 2017-04-05 窒素インフラシステム

Publications (2)

Publication Number Publication Date
JP2018175730A JP2018175730A (ja) 2018-11-15
JP6443846B2 true JP6443846B2 (ja) 2018-12-26

Family

ID=64281882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084042A Active JP6443846B2 (ja) 2017-04-05 2017-04-05 窒素インフラシステム

Country Status (1)

Country Link
JP (1) JP6443846B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7245457B2 (ja) * 2020-07-01 2023-03-24 淳 富永 戸建て建屋向けの防消火設備
CN116293448A (zh) * 2021-12-20 2023-06-23 未势能源科技有限公司 液氢加注系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346775Y2 (ja) * 1985-06-03 1991-10-03
JPH01239089A (ja) * 1987-11-30 1989-09-25 Toshiba Corp 化合物半導体単結晶の製造方法及び製造装置
JP4485699B2 (ja) * 2001-02-13 2010-06-23 東京瓦斯株式会社 水素ガス供給方法
JP4232865B2 (ja) * 2002-08-09 2009-03-04 株式会社大同 消火ガス供給システム
JP4471065B2 (ja) * 2002-08-26 2010-06-02 淳 富永 水素の供給方法
JP3671040B2 (ja) * 2003-01-09 2005-07-13 征一 武藤 水素基軸インフラシステム
JP5099466B2 (ja) * 2005-01-24 2012-12-19 淳 富永 水素充填設備
JP5246530B2 (ja) * 2007-03-08 2013-07-24 淳 富永 タイヤへの窒素充填設備
JP6265166B2 (ja) * 2015-03-31 2018-01-24 富永 淳 導管からの水素漏洩監視システム

Also Published As

Publication number Publication date
JP2018175730A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
Chakrabarti et al. Applying HAZAN methodology to hazmat transportation risk assessment
JP6265166B2 (ja) 導管からの水素漏洩監視システム
Pan et al. Safety study of a wind–solar hybrid renewable hydrogen refuelling station in China
JP6443846B2 (ja) 窒素インフラシステム
Aprea Hydrogen energy demonstration plant in Patagonia: Description and safety issues
Kim et al. Quantitative risk assessment of a mobile hydrogen refueling station in Korea
Veres et al. Safety Aspects of Hydrogen Fuelling Stations
Bernatik et al. Modelling accidental releases of dangerous gases into the lower troposphere from mobile sources
Kumar et al. Hydrogen safety/standards (national and international document standards on hydrogen energy and fuel cell)
Pasculescu et al. Numerical modelling of hydrogen release and dispersion
Barilo Safety considerations for hydrogen and fuel cell applications
Tuśnio et al. Hazards and challenges of using hydrogen as motor vehicle fuel
Rivkin et al. Guide to Permitting Hydrogen Motor Fuel Dispensing Facilities
Davis et al. New investigation findings on the 2006 Danvers, MA explosion
Chow et al. Fire safety concerns on residential areas located adjacent to oil tanks
Ehrhart et al. Setback Distances for Liquefied Hydrogen Stations.
Priambodo et al. Evaluation of accident consequences of LPG skid tank to the RSG GAS plant using ALOHA software
Oberholzer QUANTITATIVE RISK ASSESSMENT FOR THE FISHWATER FLATS WASTEWATER TREATMENT WORKS BIOGAS PROJECT AT GQEBERHA, EASTERN CAPE
Oland et al. Studies for the requirements of automatic and remotely controlled shutoff valves on hazardous liquids and natural gas pipelines with respect to public and environmental safety
Moy Tort Law Considerations for the Hydrogen Economy
To Fire safety in existing road tunnels and confined spaces of Hong Kong
Elatabani Boiling liquid expanded vapor explosion (BLEVE) of petroleum storage and transportation facilities case study Khartoum State
Nasser Alternative Vehicles-Confined Space Fire Scenarios-Road Tunnels
Wahyudi Harmonisation of relevant international standards and regulations to achieve hydrogen risk reduction measurement at NORCE laboratories in the risk management perspective
Chae et al. Quantitative Risk Assessment of a Liquid Organic Hydrogen Carriers-Based Hydrogen Refueling Station

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6443846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250