JP6442334B2 - Superconducting wire inspection method and manufacturing method - Google Patents

Superconducting wire inspection method and manufacturing method Download PDF

Info

Publication number
JP6442334B2
JP6442334B2 JP2015054118A JP2015054118A JP6442334B2 JP 6442334 B2 JP6442334 B2 JP 6442334B2 JP 2015054118 A JP2015054118 A JP 2015054118A JP 2015054118 A JP2015054118 A JP 2015054118A JP 6442334 B2 JP6442334 B2 JP 6442334B2
Authority
JP
Japan
Prior art keywords
superconducting wire
superconducting
acidic liquid
layer
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015054118A
Other languages
Japanese (ja)
Other versions
JP2016173331A (en
Inventor
渉 平田
渉 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2015054118A priority Critical patent/JP6442334B2/en
Publication of JP2016173331A publication Critical patent/JP2016173331A/en
Application granted granted Critical
Publication of JP6442334B2 publication Critical patent/JP6442334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超電導線材の検査方法及びこれを用いた超電導線材の製造方法に関する。   The present invention relates to a superconducting wire inspection method and a superconducting wire manufacturing method using the same.

REBaCu7−x(RE123、RE:希土類元素)で表記されるY系酸化物超電導体を用いた超電導線材の構造として、金属テープなどの基材上に中間層を介し、超電導層を成膜した後、超電導層を保護する保護層を形成した構造が知られている。超電導層は、水分による劣化が起こりやすく、外周にめっきを施したり、銅箔等で覆ったりする等の工夫が行われている。 As a structure of a superconducting wire using a Y-based oxide superconductor represented by REBa 2 Cu 3 O 7-x (RE123, RE: rare earth element), a superconducting layer is formed on a base material such as a metal tape via an intermediate layer. A structure in which a protective layer for protecting the superconducting layer is formed after the film is formed is known. The superconducting layer is likely to be deteriorated by moisture and has been devised such as plating on the outer periphery or covering with a copper foil or the like.

超電導線材に保護層、めっき、銅箔等の被覆を施す際、長手方向に超電導線材を拘束で搬送しながら加工を行うため、加工途中で被覆が破れることが起こり得る。超電導線材を保護している被覆に破れた箇所(開口箇所)が存在すると、その開口箇所から水分が侵入して超電導層が化学反応を起こし、超電導特性が低下するという問題がある。プレッシャークッカー試験(特許文献1参照)のように、超電導線材を高温・高湿度下にさらすことで、開口箇所から超電導層を顕著に劣化させ、開口箇所の位置を検出することが可能である。しかし、正常な部分まで劣化を発生させると、検査を実施した超電導線材は、通常の使用ができなくなるおそれがある。   When the superconducting wire is coated with a protective layer, plating, copper foil or the like, the superconducting wire is processed while being transported in the longitudinal direction by restraint, so that the coating may be broken during the processing. If there is a torn portion (opening portion) in the coating protecting the superconducting wire, there is a problem that moisture enters from the opening portion and the superconducting layer causes a chemical reaction to deteriorate the superconducting characteristics. As in the pressure cooker test (see Patent Document 1), by exposing the superconducting wire to high temperature and high humidity, it is possible to significantly deteriorate the superconducting layer from the opening and detect the position of the opening. However, if deterioration occurs to the normal part, the superconducting wire that has been inspected may not be able to be used normally.

特開2014−17090号公報JP 2014-17090 A

本発明は、上記事情に鑑みてなされたものであり、検査を実施しても超電導線材の使用が可能な酸化物超電導線材の検査方法及び製造方法を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the inspection method and manufacturing method of an oxide superconducting wire which can use a superconducting wire even if it implements a test | inspection.

前記課題を解決するため、本発明は、酸化物超電導体と被覆を含む超電導線材の検査方法であって、前記超電導線材を酸性の液体に接触させた後、前記超電導線材の臨界電流を測定することにより、前記酸性の液体に接触して前記酸化物超電導体が劣化した箇所の有無又はその箇所の位置を特定することを特徴とする超電導線材の検査方法を提供する。   In order to solve the above-mentioned problems, the present invention is a method for inspecting a superconducting wire including an oxide superconductor and a coating, wherein after the superconducting wire is brought into contact with an acidic liquid, the critical current of the superconducting wire is measured. Accordingly, the present invention provides a method for inspecting a superconducting wire characterized by identifying the presence or absence of a location where the oxide superconductor has deteriorated in contact with the acidic liquid or the location of the location.

前記超電導線材を酸性の液体に接触させる工程が、前記超電導線材を酸性の液体中に浸漬させる工程を有してもよい。
前記超電導線材を酸性の液体に接触させた後、前記超電導線材の臨界電流値を測定する前に、前記酸性の液体に接触させた前記超電導線材を加熱する工程を有してもよい。
前記超電導線材を加熱する工程において、前記超電導線材に接触した前記酸性の液体を濃縮してもよい。
The step of bringing the superconducting wire into contact with an acidic liquid may include a step of immersing the superconducting wire in an acidic liquid.
After the superconducting wire is brought into contact with the acidic liquid, the superconducting wire brought into contact with the acidic liquid may be heated before the critical current value of the superconducting wire is measured.
In the step of heating the superconducting wire, the acidic liquid in contact with the superconducting wire may be concentrated.

また、本発明は、酸化物超電導体と被覆を含む超電導線材の製造方法であって、前記超電導線材の検査方法により、超電導線材を検査する工程を有することを特徴とする超電導線材の製造方法を提供する。
前記検査する工程の後、前記酸化物超電導体が劣化した箇所を除去する工程を有してもよい。
The present invention also provides a method for producing a superconducting wire comprising an oxide superconductor and a coating, the method comprising inspecting a superconducting wire by the method for inspecting a superconducting wire. provide.
You may have the process of removing the location which the said oxide superconductor deteriorated after the said process to test | inspect.

本発明によれば、被覆に開口等の不良箇所が存在した場合、酸性の液体に接触させることで、その箇所の酸化物超電導体の劣化を促進させることにより、不良箇所の有無又はその位置を特定することができる。   According to the present invention, when there is a defective portion such as an opening in the coating, by contacting the acidic liquid, the deterioration of the oxide superconductor at that portion is promoted, whereby the presence or absence of the defective portion or its position is determined. Can be identified.

コイル状の超電導線材を液体に浸漬する工程を例示する説明図である。It is explanatory drawing which illustrates the process of immersing a coil-shaped superconducting wire in a liquid. 超電導線材を搬送しながら液体に浸漬する工程を例示する説明図である。It is explanatory drawing which illustrates the process of immersing in a liquid, conveying a superconducting wire.

以下、好適な実施形態に基づいて、本発明を説明する。
本実施形態の超電導線材の検査方法は、超電導線材を酸性の液体に接触させる工程を有する。超電導線材を酸性の液体に接触させると、被覆の破れがある箇所から酸性の液体が侵入する。酸化物超電導体が酸性の液体に接触すると、水分に接触したときよりも劣化が促進される。超電導線材の臨界電流を測定することにより、酸化物超電導体が劣化した箇所の有無、さらにはその箇所の位置を特定することができる。
Hereinafter, the present invention will be described based on preferred embodiments.
The superconducting wire inspection method of this embodiment includes a step of bringing the superconducting wire into contact with an acidic liquid. When the superconducting wire is brought into contact with the acidic liquid, the acidic liquid enters from a portion where the coating is broken. When the oxide superconductor is in contact with an acidic liquid, the deterioration is promoted more than when it is in contact with moisture. By measuring the critical current of the superconducting wire, it is possible to specify the presence or absence of a portion where the oxide superconductor has deteriorated, and the position of the portion.

超電導線材を酸性の液体に接触させる工程としては、超電導線材を酸性の液体中に浸漬させる工程、超電導線材に酸性の液体を塗布する工程、超電導線材に酸性の液体を注ぐ工程、超電導線材に酸性の液体を噴霧する工程等が挙げられる。液体に接触させる際、超電導線材を搬送してもよく、停止させてもよい。酸性の液体の種類としては、酸化物超電導体が化学反応を起こし、かつ超電導線材の被覆や基材等に対して影響が小さいものが好ましい。酸性の液体は、水よりも酸化物超電導体を劣化させやすいので好ましい。また、酸性のガスなどの腐食性ガスを用いることも考えられるが、酸性の液体などの腐食性液体を用いると、ガスに比べて被覆(破れがない正常な箇所)を浸透しにくいので、正常な箇所の劣化を抑制することができる。   The process of bringing a superconducting wire into contact with an acidic liquid includes a process of immersing the superconducting wire in an acidic liquid, a process of applying an acidic liquid to the superconducting wire, a process of pouring an acidic liquid into the superconducting wire, and an acid in the superconducting wire. And a step of spraying the liquid. When contacting the liquid, the superconducting wire may be transported or stopped. As the kind of the acidic liquid, one in which the oxide superconductor causes a chemical reaction and has a small influence on the coating of the superconducting wire or the base material is preferable. An acidic liquid is preferable because it easily deteriorates the oxide superconductor than water. It is also possible to use a corrosive gas such as an acidic gas. However, if a corrosive liquid such as an acidic liquid is used, it is less likely to penetrate the coating (a normal part that does not break) compared to the gas. It is possible to suppress the deterioration of various parts.

酸性の液体としては、酸と酸以外の物質を含む液体(溶液など)、酸のみを含む液体(酸自体が液体)が挙げられる。酸(酸性物質)としては、硫酸、塩酸、リン酸、硝酸等の無機酸、カルボン酸、スルホン酸、ホスホン酸等の有機酸が挙げられる。酸の溶液等を用いる場合、酸自体が固体又は気体であってもよい。酸の種類としては、不揮発性の酸、揮発性の酸、強酸、弱酸、酸化性の酸、還元性の酸などが挙げられる。反応性に応じて、酸の濃度、液体の温度、流速等を適宜調節してもよい。酸性溶液の溶媒としては、水や有機溶媒が挙げられる。溶媒は、2種以上の混合溶媒でもよい。有機溶媒としては、アルコール(ヒドロキシ化合物)、エーテル、ケトン、エステル等の極性溶媒が好ましい。   Examples of the acidic liquid include a liquid containing an acid and a substance other than the acid (such as a solution), and a liquid containing only the acid (the acid itself is a liquid). Examples of the acid (acidic substance) include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid, and organic acids such as carboxylic acid, sulfonic acid, and phosphonic acid. When an acid solution or the like is used, the acid itself may be solid or gas. Examples of the acid include non-volatile acids, volatile acids, strong acids, weak acids, oxidizing acids, reducing acids, and the like. Depending on the reactivity, the acid concentration, liquid temperature, flow rate, and the like may be adjusted as appropriate. Examples of the solvent for the acidic solution include water and organic solvents. The solvent may be a mixed solvent of two or more. As the organic solvent, polar solvents such as alcohol (hydroxy compound), ether, ketone, ester and the like are preferable.

超電導線材を酸性の液体中に一定時間浸漬した後、水又はそれよりも酸化物超電導体を劣化させにくい洗浄剤で超電導線材を洗浄することが好ましい。超電導線材を洗浄する工程としては、超電導線材を洗浄剤中に浸漬させる工程、超電導線材に洗浄剤を塗布する工程、超電導線材に洗浄剤を注ぐ工程、超電導線材に洗浄剤を噴霧する工程等が挙げられる。洗浄剤は、有機溶媒等の液体が挙げられる。有機溶媒としては、アルコール(ヒドロキシ化合物)、エーテル、ケトン、エステル等の極性溶媒が好ましい。溶媒は、2種以上の混合溶媒でもよい。洗浄工程では、超電導線材に付着した酸性の液体をすべて除去してもよい。あるいは、被覆の破れがある箇所に残留した酸性の液体を残して、被覆表面などに付着した酸性の液体を除去してもよい。   After immersing the superconducting wire in an acidic liquid for a certain period of time, it is preferable to wash the superconducting wire with water or a cleaning agent that is less likely to degrade the oxide superconductor. The process of cleaning the superconducting wire includes the step of immersing the superconducting wire in the cleaning agent, the step of applying the cleaning agent to the superconducting wire, the step of pouring the cleaning agent on the superconducting wire, the step of spraying the cleaning agent on the superconducting wire, etc. Can be mentioned. Examples of the cleaning agent include liquids such as organic solvents. As the organic solvent, polar solvents such as alcohol (hydroxy compound), ether, ketone, ester and the like are preferable. The solvent may be a mixed solvent of two or more. In the cleaning process, all of the acidic liquid adhering to the superconducting wire may be removed. Or you may remove the acidic liquid adhering to the coating | coated surface etc., leaving the acidic liquid which remained in the location with a tearing of a coating | cover.

酸性の液体又は洗浄用の液体に超電導線材を浸漬する場合の構成について、図1、図2に例示する。図1は、コイル状の超電導線材10を浴槽20中の液体21に浸漬する工程を示す。浴槽中に2以上のコイルを同時に浸漬させてもよい。コイルを支持するため、枠、棚などの支持治具(図示せず)を用いてもよい。また、図2は、超電導線材11を長手方向に連続的に搬送しながら浴槽20中の液体21に浸漬する工程を示す。超電導線材11を案内するローラー12を浴槽20中に2以上設置し、より長い距離にわたって超電導線材11を液体21中に浸漬させてもよい。浴槽20中の液体21は、静置してもよい。あるいは、液体21と超電導線材11との接触を促進するため、超音波の印加、撹拌、振盪(振動)等を実施してもよい。   The configuration in the case where the superconducting wire is immersed in an acidic liquid or a cleaning liquid is illustrated in FIGS. FIG. 1 shows a step of immersing a coiled superconducting wire 10 in a liquid 21 in a bathtub 20. Two or more coils may be simultaneously immersed in the bath. In order to support the coil, a support jig (not shown) such as a frame or a shelf may be used. Moreover, FIG. 2 shows the process of immersing the superconducting wire 11 in the liquid 21 in the bathtub 20 while continuously conveying in the longitudinal direction. Two or more rollers 12 for guiding the superconducting wire 11 may be installed in the bathtub 20 and the superconducting wire 11 may be immersed in the liquid 21 over a longer distance. The liquid 21 in the bathtub 20 may be left still. Or in order to promote the contact with the liquid 21 and the superconducting wire 11, you may implement the application of an ultrasonic wave, stirring, shaking (vibration), etc.

超電導線材を酸性の液体に接触させた後、超電導線材の臨界電流値を測定する前に、酸性の液体に接触させた超電導線材を加熱する工程を有してもよい。加熱工程により、酸性の液体との化学反応が促進され、酸化物超電導体の劣化が促進される。加熱工程は、超電導線材を洗浄する工程の前、洗浄途中又は洗浄後に行うことができる。加熱工程を洗浄工程後に行う場合などでは、加熱工程において、被覆の破れがある箇所に残留した酸性の液体を濃縮してもよい。これにより、酸性の液体の反応性が上がり、酸化物超電導体の劣化を局所的に促進することができる。加熱温度は、酸の作用に対する影響(効果)と超電導線材への影響を考慮して適宜調整できるが、例えば、60〜100℃が挙げられる。   You may have the process of heating the superconducting wire contacted with the acidic liquid, after contacting the superconducting wire with the acidic liquid and before measuring the critical current value of the superconducting wire. The heating step promotes a chemical reaction with the acidic liquid and promotes deterioration of the oxide superconductor. The heating step can be performed before, during or after the step of cleaning the superconducting wire. In the case where the heating step is performed after the cleaning step, the acidic liquid remaining in the portion where the coating is broken may be concentrated in the heating step. As a result, the reactivity of the acidic liquid is increased, and deterioration of the oxide superconductor can be locally promoted. The heating temperature can be appropriately adjusted in consideration of the influence (effect) on the action of the acid and the influence on the superconducting wire, and examples thereof include 60 to 100 ° C.

被覆の破れがある箇所において、酸性の液体により酸化物超電導体を劣化させた後、劣化箇所の有無又は位置を特定することができる。例えば磁化法により臨界電流を測定すると、長手方向に沿って微弱な磁場の応答を測定プログラムで臨界電流に換算することにより、劣化箇所の位置を特定することができる。また、例えば臨界電流の測定方法が、超電導線材の全長にわたって超電導電流が流れるかどうかを判定するものである場合には、劣化箇所の有無を特定することができる。   After the oxide superconductor is deteriorated with an acidic liquid at a location where the coating is broken, the presence or absence or location of the deteriorated location can be specified. For example, when the critical current is measured by the magnetization method, the position of the deteriorated portion can be specified by converting the response of the weak magnetic field along the longitudinal direction into the critical current by the measurement program. Further, for example, when the method for measuring the critical current is to determine whether or not the superconducting current flows over the entire length of the superconducting wire, it is possible to specify the presence / absence of the deterioration portion.

本実施形態の超電導線材の検査方法は、超電導線材の製造工程に組み込んで実施することができる。超電導線材の検査工程により酸化物超電導体の劣化箇所を特定して、劣化箇所がないことを確認したり、劣化箇所を除去したりすることで、信頼性の高い超電導線材を製造することができる。検査を経て酸化物超電導体の劣化箇所をなくすことにより、被覆の破れ(開口)箇所がない超電導線材を得られるので、使用中に水分の侵入等による超電導線材の特性劣化を抑制することができる。   The superconducting wire inspection method of the present embodiment can be implemented by being incorporated into the superconducting wire manufacturing process. A superconducting wire with high reliability can be manufactured by identifying the deteriorated part of the oxide superconductor through the inspection process of the superconducting wire and confirming that there is no deteriorated part or removing the deteriorated part. . By eliminating the deteriorated part of the oxide superconductor through inspection, it is possible to obtain a superconducting wire that does not have a coating breakage (opening), so that deterioration of the characteristics of the superconducting wire due to intrusion of moisture during use can be suppressed. .

本発明を適用可能な超電導線材としては、酸化物超電導体と、この酸化物超電導体を覆う被覆を含むものであれば特に限定されない。酸化物超電導体としては、一般式REBaCu7−X(RE123)等で表されるY系超電導体や、一般式BiSrCaCu8+δ(Bi2212)またはBiSrCaCu10+δ(Bi2223)で表されるBi系超電導体が挙げられる。被覆としては、保護層、めっき層、半田層、安定化層、安定化材、金属テープ等の1種又は2種以上が挙げられる。 The superconducting wire to which the present invention is applicable is not particularly limited as long as it includes an oxide superconductor and a coating covering the oxide superconductor. Examples of the oxide superconductor include a Y-based superconductor represented by a general formula REBa 2 Cu 3 O 7-X (RE123), a general formula Bi 2 Sr 2 CaCu 2 O 8 + δ (Bi2212), or Bi 2 Sr 2 Ca. A Bi-based superconductor represented by 2 Cu 3 O 10 + δ (Bi2223) can be given. Examples of the coating include one or more of a protective layer, a plating layer, a solder layer, a stabilizing layer, a stabilizing material, a metal tape, and the like.

酸化物超電導体としてY系超電導体を用いた超電導線材の構造としては、基材と超電導層を含む積層体(超電導積層体)を備え、さらに、超電導層の周囲又は超電導積層体の周囲を、めっき、半田、安定化材、金属テープ等の1種又は2種以上でさらに被覆した構造が挙げられる。基材の一部又は全部(裏面等)が被覆の外に露出されてもよいが、超電導層の基材側以外の各面(上面および幅方向両側の端面)が被覆に覆われることが好ましい。超電導積層体としては、テープ状の基材と中間層と超電導層と保護層がこの順に積層された構成が挙げられる。基材はテープ状であり、例えば金属基材である。基材を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni−W合金などが挙げられる。   As a structure of a superconducting wire using a Y-based superconductor as an oxide superconductor, a laminate (superconducting laminate) including a base material and a superconducting layer is provided. Further, around the superconducting layer or the superconducting laminate, The structure further covered with 1 type (s) or 2 or more types, such as plating, solder, a stabilizing material, a metal tape, is mentioned. Part or all of the substrate (such as the back surface) may be exposed outside the coating, but it is preferable that each surface (upper surface and end surfaces on both sides in the width direction) other than the substrate side of the superconducting layer is covered with the coating. . Examples of the superconducting laminate include a configuration in which a tape-like base material, an intermediate layer, a superconducting layer, and a protective layer are laminated in this order. The substrate is tape-shaped, for example, a metal substrate. Specific examples of the metal constituting the substrate include nickel alloys typified by Hastelloy (registered trademark), stainless steel, and oriented Ni—W alloys in which a texture is introduced into the nickel alloy.

中間層は、基材と超電導層との間に設けられる。中間層は、多層構成でもよく、例えば基材側から超電導層側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。   The intermediate layer is provided between the base material and the superconducting layer. The intermediate layer may have a multilayer structure, and may include a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in order from the base material side to the superconducting layer side. These layers are not necessarily provided one by one, and some layers may be omitted, or two or more of the same kind of layers may be laminated repeatedly.

拡散防止層の材質としては、例えば、Si、Al、GZO(GdZr)等が挙げられる。
ベッド層の材質としては、例えばY、Er、CeO、Dy、Er、Eu、Ho、La等が挙げられる。
配向層の材質としては、例えば、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。この配向層はIBAD(Ion-Beam-Assisted Deposition)法で形成することが好ましい。
キャップ層の材質としては、例えば、CeO、Y、Al、Gd、ZrO、YSZ、Ho、Nd、LaMnO等が挙げられる。
Examples of the material for the diffusion preventing layer include Si 3 N 4 , Al 2 O 3 , GZO (Gd 2 Zr 2 O 7 ), and the like.
Examples of the material of the bed layer include Y 2 O 3 , Er 2 O 3 , CeO 2 , Dy 2 O 3 , Er 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , and La 2 O 3 .
Examples of the material of the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Examples thereof include metal oxides such as Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 . This alignment layer is preferably formed by an IBAD (Ion-Beam-Assisted Deposition) method.
The material of the cap layer, for example, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, YSZ, Ho 2 O 3, Nd 2 O 3, LaMnO 3 , and the like.

超電導層(酸化物超電導層)は、酸化物超電導体から構成される。酸化物超電導体としては、特に限定されないが、上述のY系酸化物超電導体が挙げられる。希土類元素REとしては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。超電導層は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、パルスレーザ堆積法(PLD法)、化学気相成長法(CVD法)、有機金属塗布熱分解法(MOD法)等で積層することができる。   The superconducting layer (oxide superconducting layer) is composed of an oxide superconductor. Although it does not specifically limit as an oxide superconductor, The above-mentioned Y type oxide superconductor is mentioned. Examples of the rare earth element RE include one or more of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is done. The superconducting layer is formed by sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, pulsed laser deposition (PLD), chemical vapor deposition (CVD), metal organic coating pyrolysis (MOD), etc. Can be laminated.

保護層は、事故時に発生する過電流をバイパスしたり、超電導層と保護層の上に設けられる層との間で起こる化学反応を抑制したりする等の機能を有する。保護層の材質としては、例えば銀(Ag)、金(Au)、金と銀との合金、その他の銀合金又は金合金が挙げられる。   The protective layer has functions such as bypassing overcurrent generated at the time of an accident and suppressing a chemical reaction occurring between the superconducting layer and the layer provided on the protective layer. Examples of the material for the protective layer include silver (Ag), gold (Au), an alloy of gold and silver, other silver alloys, and gold alloys.

安定化材としては、銅、銅合金、アルミニウム、アルミニウム合金等の良導電性の金属や、Ni−Cr等のNi系合金など高抵抗金属が挙げられる。良導電性金属は、常電導状態への転移時に発生する過電流を転流させるバイパスとして機能することができる。高抵抗金属は、超電導限流器等において常電導状態への転移時に発生する過電流を瞬時に抑制することができる。安定化材は、接合材により、超電導積層体と接合してもよい。接合材を構成する材料としては、例えばSn−Pb系、Pb−Sn−Sb系、Sn−Pb−Bi系、Bi−Sn系、Sn−Cu系、Sn−Pb−Cu系、Sn−Ag系などの半田、Sn、Sn合金、In(インジウム)、In合金などの金属が挙げられる。安定化材は、めっき等により、接合材を介して、又は接合材を介することなく、安定化層として超電導積層体上に形成されてもよい。   Examples of the stabilizing material include highly conductive metals such as copper, copper alloys, aluminum and aluminum alloys, and Ni-based alloys such as Ni-Cr. The highly conductive metal can function as a bypass that commutates an overcurrent that is generated at the time of transition to the normal conducting state. The high resistance metal can instantaneously suppress the overcurrent generated at the time of transition to the normal conducting state in a superconducting current limiting device or the like. The stabilizing material may be bonded to the superconducting laminate by a bonding material. Examples of the material constituting the bonding material include Sn—Pb, Pb—Sn—Sb, Sn—Pb—Bi, Bi—Sn, Sn—Cu, Sn—Pb—Cu, and Sn—Ag. Examples thereof include metals such as solder, Sn, Sn alloy, In (indium), and In alloy. The stabilizing material may be formed on the superconducting laminate as a stabilizing layer by plating or the like via the bonding material or without the bonding material.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
超電導線材を用いて、超電導ケーブル、超電導コイル等を作製することができる。例えば超電導コイルを作製するには、超電導線材を巻き枠の外周面に沿って必要な層数巻き付けてコイル形状(多層巻きコイル)とした後、巻き付けた超電導線材を覆うようにエポキシ樹脂等の樹脂を含浸させて超電導線材を固定することができる。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
A superconducting cable, a superconducting coil, etc. can be produced using a superconducting wire. For example, in order to manufacture a superconducting coil, a superconducting wire is wound around the outer peripheral surface of the winding frame to form a coil shape (multilayer winding coil) and then a resin such as an epoxy resin so as to cover the wound superconducting wire. Can be impregnated to fix the superconducting wire.

(実施例1)
テープ状の金属基板上に、IBAD法等を用いて中間膜を成膜した。その上にPLD法によって厚みが約2μmの超電導層(GdBaCu層)を成膜し、続けてスパッタ法により銀層を形成した。このようにして得られた超電導積層体の上に厚み20μmのテープ状の銅箔を半田で貼り合わせた。この際、超電導層のエッジ部分(幅方向の両端部)を保護するため銅箔が超電導積層体の両側面を覆うように加工することで、被覆を有する超電導線材を作製した。
Example 1
An intermediate film was formed on the tape-shaped metal substrate using the IBAD method or the like. A superconducting layer (GdBa 2 Cu 3 O X layer) having a thickness of about 2 μm was formed thereon by the PLD method, and then a silver layer was formed by the sputtering method. A tape-shaped copper foil having a thickness of 20 μm was bonded to the superconducting laminate thus obtained with solder. At this time, in order to protect edge portions (both ends in the width direction) of the superconducting layer, the copper foil was processed so as to cover both side surfaces of the superconducting laminate, thereby producing a superconducting wire having a coating.

超電導線材の検査のため、超電導線材をパンケーキ状に巻き取り、硫酸(濃度5%)を満たした容器中に入れ、1時間浸漬した。その後、超電導線材を取り出して流水で洗浄した後、送風により乾燥した。乾燥後の超電導線材を電気炉に入れて80℃で1時間保持することにより、加熱処理を行った。加熱処理後の超電導線材の長手方向の臨界電流値を、ホールセンサーを用いた磁化法により測定した。その結果、長さが約300mの超電導線材に対し、局所的に特性(臨界電流値)が低下している箇所が4箇所発見された。これらの箇所の周辺を切り出し、顕微鏡で観察したところ、超電導線材の表面を覆う銅箔に0.1〜0.2mm程度の開口部(被覆の破れ)が発見された。   In order to inspect the superconducting wire, the superconducting wire was wound into a pancake, placed in a container filled with sulfuric acid (concentration 5%), and immersed for 1 hour. Thereafter, the superconducting wire was taken out, washed with running water, and then dried by blowing. The dried superconducting wire was placed in an electric furnace and held at 80 ° C. for 1 hour to perform heat treatment. The critical current value in the longitudinal direction of the superconducting wire after the heat treatment was measured by a magnetization method using a Hall sensor. As a result, four locations where the characteristics (critical current values) were locally lowered were found for the superconducting wire having a length of about 300 m. When the periphery of these portions was cut out and observed with a microscope, an opening (coating breakage) of about 0.1 to 0.2 mm was found in the copper foil covering the surface of the superconducting wire.

一方、測定により特性低下が発見されなかった部分(正常部)について、プレッシャークッカー試験を実施した後、再度臨界電流を測定したところ、いずれも特性低下は発見されなかった。最初の測定により局所的な特性低下が発見されなかった箇所については、被覆に破れがなく、内部の超電導層が確実に保護されているといえる。   On the other hand, when a critical cooker test was performed on a portion where no characteristic deterioration was found by measurement (normal part), the critical current was measured again, and no characteristic deterioration was found. It can be said that the portions where no local characteristic degradation was found by the first measurement were not broken, and the internal superconducting layer was reliably protected.

(対比例1)
硫酸(5%)の代わりに、水のみを容器に入れて超電導線材を浸漬した以外は、実施例1と同様に検査を実施した。臨界電流測定において局所的な劣化箇所は発見されたものの、劣化の程度が小さく、被覆の破れ箇所を確実に検出できているとは言い難い。そのため、実施例1のように、超電導層との反応性が高い液体を用いることが望ましいと言える。
以上の結果から、超電導線材の正常部には影響を与えず、臨界電流値の低下から、被覆が破れている位置を特定することが可能であると確認した。
(Comparison 1)
The inspection was carried out in the same manner as in Example 1 except that instead of sulfuric acid (5%), only water was put in a container and the superconducting wire was immersed. Although a local degradation point was found in the critical current measurement, the degree of degradation is small, and it is difficult to say that the coating breakage point can be reliably detected. Therefore, it can be said that it is desirable to use a liquid having high reactivity with the superconducting layer as in Example 1.
From the above results, it was confirmed that the normal part of the superconducting wire was not affected and the position where the coating was broken could be identified from the decrease in the critical current value.

(実施例2)
実施例1と同様の方法で超電導線材を作製した。硫酸(5%)を満たした長さ約3mの処理槽と、超電導線材を洗浄するための水を満たした洗浄槽を隣接させ、超電導線材を長手方向に搬送しながら2つの槽を通過させた。搬送速度は10m/minとし、いずれの槽にも超音波を印加して液体の接触及び反応を促進するようにした。洗浄後の超電導線材は送風により乾燥した後に、巻取り用リールに巻き取った。
巻き取った超電導線材を電気炉に入れて実施例1と同様に加熱処理し、さらに長手方向の臨界電流値を測定した。その結果、長手方向で複数箇所に劣化が発見された。また、これらの劣化箇所について、実施例1と同様に、被覆の開口部を特定することができた。したがって、超電導線材を搬送しながら液体に浸漬させる方法でも、被覆が破れている位置を特定することができると確認された。
(Example 2)
A superconducting wire was produced in the same manner as in Example 1. A treatment tank with a length of about 3 m filled with sulfuric acid (5%) and a washing tank filled with water for washing the superconducting wire were placed adjacent to each other, and the two tanks were passed while conveying the superconducting wire in the longitudinal direction. . The conveyance speed was set to 10 m / min, and ultrasonic waves were applied to all the tanks to promote liquid contact and reaction. The superconducting wire after washing was dried by blowing and wound on a winding reel.
The wound superconducting wire was put into an electric furnace and heat-treated in the same manner as in Example 1, and the critical current value in the longitudinal direction was measured. As a result, deterioration was found in a plurality of locations in the longitudinal direction. Moreover, the opening part of the coating | cover was able to be specified similarly to Example 1 about these deterioration locations. Therefore, it was confirmed that the position where the coating was broken could be specified even by the method of immersing the superconducting wire in the liquid while transporting it.

10…コイル状の超電導線材、11…超電導線材、12…ローラー、20…浴槽、21…液体。 DESCRIPTION OF SYMBOLS 10 ... Coiled superconducting wire, 11 ... Superconducting wire, 12 ... Roller, 20 ... Bathtub, 21 ... Liquid.

Claims (6)

酸化物超電導体と被覆を含む超電導線材の検査方法であって、
前記超電導線材を酸性の液体に接触させた後、前記超電導線材の臨界電流を測定することにより、前記酸性の液体に接触して前記酸化物超電導体が劣化した箇所の有無又はその箇所の位置を特定することを特徴とする超電導線材の検査方法。
A method for inspecting a superconducting wire including an oxide superconductor and a coating,
After contacting the superconducting wire with an acidic liquid, by measuring the critical current of the superconducting wire, the presence or absence of a location where the oxide superconductor deteriorates due to contact with the acidic liquid is determined. A superconducting wire inspection method characterized by specifying.
前記超電導線材を酸性の液体に接触させる工程が、前記超電導線材を酸性の液体中に浸漬させる工程を有することを特徴とする請求項1に記載の超電導線材の検査方法。   The method for inspecting a superconducting wire according to claim 1, wherein the step of bringing the superconducting wire into contact with an acidic liquid includes a step of immersing the superconducting wire in an acidic liquid. 前記超電導線材を酸性の液体に接触させた後、前記超電導線材の臨界電流値を測定する前に、前記酸性の液体に接触させた前記超電導線材を加熱する工程を有することを特徴とする請求項1又は2に記載の超電導線材の検査方法。   The step of heating the superconducting wire brought into contact with the acidic liquid after contacting the superconducting wire with the acidic liquid and before measuring a critical current value of the superconducting wire. The superconducting wire inspection method according to 1 or 2. 前記超電導線材を加熱する工程において、前記超電導線材に接触した前記酸性の液体を濃縮することを特徴とする請求項3に記載の超電導線材の検査方法。   The method for inspecting a superconducting wire according to claim 3, wherein in the step of heating the superconducting wire, the acidic liquid in contact with the superconducting wire is concentrated. 酸化物超電導体と被覆を含む超電導線材の製造方法であって、
請求項1〜4のいずれか1項に記載の超電導線材の検査方法により、超電導線材を検査する工程を有することを特徴とする超電導線材の製造方法。
A method of manufacturing a superconducting wire including an oxide superconductor and a coating,
A method for manufacturing a superconducting wire, comprising a step of inspecting a superconducting wire by the method for inspecting a superconducting wire according to any one of claims 1 to 4.
前記検査する工程の後、前記酸化物超電導体が劣化した箇所を除去する工程を有することを特徴とする請求項5に記載の超電導線材の製造方法。   6. The method of manufacturing a superconducting wire according to claim 5, further comprising a step of removing a portion where the oxide superconductor has deteriorated after the step of inspecting.
JP2015054118A 2015-03-18 2015-03-18 Superconducting wire inspection method and manufacturing method Expired - Fee Related JP6442334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054118A JP6442334B2 (en) 2015-03-18 2015-03-18 Superconducting wire inspection method and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054118A JP6442334B2 (en) 2015-03-18 2015-03-18 Superconducting wire inspection method and manufacturing method

Publications (2)

Publication Number Publication Date
JP2016173331A JP2016173331A (en) 2016-09-29
JP6442334B2 true JP6442334B2 (en) 2018-12-19

Family

ID=57008993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054118A Expired - Fee Related JP6442334B2 (en) 2015-03-18 2015-03-18 Superconducting wire inspection method and manufacturing method

Country Status (1)

Country Link
JP (1) JP6442334B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812430B (en) * 2022-03-08 2023-02-17 上海超导科技股份有限公司 Sample-setting analysis method for microstructure of superconducting tape

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370906A (en) * 1991-06-19 1992-12-24 Mitsubishi Electric Corp Method and apparatus for winding of drawn wire
JP2000028669A (en) * 1998-07-10 2000-01-28 Showa Electric Wire & Cable Co Ltd Method and device for detecting flaws in metal twisted wire
US7554317B2 (en) * 2004-09-24 2009-06-30 Superpower, Inc. Critical current testing techniques for superconducting conductors
US20080088304A1 (en) * 2006-07-25 2008-04-17 Coulter J Y Method and apparatus for measuring magnetic anisotropy of a conductive wire or tape
JP5401298B2 (en) * 2009-12-24 2014-01-29 株式会社フジクラ Inspection method and inspection apparatus for oxide superconducting conductor
JP5701253B2 (en) * 2012-06-15 2015-04-15 株式会社フジクラ Oxide superconducting wire and method for producing the same
KR101486993B1 (en) * 2012-09-19 2015-01-29 한국전력공사 Test device of superconducting cable
WO2014126149A1 (en) * 2013-02-15 2014-08-21 株式会社フジクラ Oxide superconducting wire
JP2015045617A (en) * 2013-08-29 2015-03-12 株式会社フジクラ Critical current evaluation device and evaluation method of superconductive wire rod for long size

Also Published As

Publication number Publication date
JP2016173331A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP5933781B2 (en) Oxide superconducting wire
RU2573645C1 (en) Wire based on oxide superconductor and superconducting coil
Machi et al. Reliable fabrication process for long-length multi-filamentary coated conductors by a laser scribing method for reduction of AC loss
JP4845040B2 (en) Thin film superconducting wire connection method and connection structure thereof
US9362026B2 (en) Oxide superconductor wire, connection structure thereof, and superconductor equipment
RU2606959C1 (en) Oxide superconducting wire
KR20120120119A (en) Low ac-loss multi-filament type superconductive wire material, and manufacturing method thereof
JP2013232297A (en) Oxide superconducting wire
WO2013153973A1 (en) Oxide superconducting wire having reinforcing materials
JP6442334B2 (en) Superconducting wire inspection method and manufacturing method
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP2014220194A (en) Oxide superconductive wire material and production method thereof
JP2010129214A (en) Superconductive wire material and manufacturing method
JP2013122822A (en) Oxide superconductive wiring material
CN114207745B (en) Oxide superconducting wire
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
EP3696826A1 (en) Connection structure for oxide superconducting wire materials
JP2012150914A (en) High-resistance material composite oxide superconducting wire material
JP6775407B2 (en) Oxide superconducting wire
JP6743232B1 (en) Oxide superconducting wire
WO2018216064A1 (en) Superconducting wire material and superconducting coil
JP6766947B2 (en) Superconducting wires, superconducting coils and superconducting cable conductors
WO2018150469A1 (en) Superconducting wire material and superconducting coil
JP2015210981A (en) Production method of oxide superconductive wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6442334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees