JP6442240B2 - Silver-coated particles and method for producing the same - Google Patents

Silver-coated particles and method for producing the same Download PDF

Info

Publication number
JP6442240B2
JP6442240B2 JP2014231640A JP2014231640A JP6442240B2 JP 6442240 B2 JP6442240 B2 JP 6442240B2 JP 2014231640 A JP2014231640 A JP 2014231640A JP 2014231640 A JP2014231640 A JP 2014231640A JP 6442240 B2 JP6442240 B2 JP 6442240B2
Authority
JP
Japan
Prior art keywords
silver
particles
coated
mother
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014231640A
Other languages
Japanese (ja)
Other versions
JP2016096031A (en
Inventor
寛人 赤池
寛人 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jemco Inc filed Critical Jemco Inc
Priority to JP2014231640A priority Critical patent/JP6442240B2/en
Publication of JP2016096031A publication Critical patent/JP2016096031A/en
Application granted granted Critical
Publication of JP6442240B2 publication Critical patent/JP6442240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性ペーストや異方性導電材料等に導電性フィラーとして含まれる銀被覆粒子及びその製造方法に関する。更に詳しくは、導電性に優れるとともに、微細な線幅での電極等の形成に好適な銀被覆粒子及びその製造方法に関するものである。   The present invention relates to silver-coated particles contained as a conductive filler in a conductive paste, an anisotropic conductive material, or the like, and a method for producing the same. More specifically, the present invention relates to a silver-coated particle that is excellent in conductivity and suitable for forming an electrode or the like with a fine line width and a method for producing the same.

例えば、太陽電池パネル又は液晶ディスプレイといった半導体素子、電子機器又は電子表示機器等が備える電子部品(電極又は電気配線等)の形成には、導電性ペーストが広く利用されている。導電性ペーストには、導電材料として金属粒子等からなる導電性フィラーが含まれており、この導電性フィラーと、更にバインダー成分としての樹脂や溶剤等の他の成分を混合してペースト状に調製される。導電性ペーストを用いて電極等を形成するには、先ず、導電性ペーストを基板等の表面に、スクリーン印刷法やオフセット印刷法等の塗工法により塗布して印刷パターンを形成する。次いで、形成した印刷パターンを所望の温度で乾燥又は焼成することにより電極等が形成される。このような導電性ペーストを用いた電極等の形成方法では、例えば真空中で行うスパッタ法のように多大な装置を必要としないことから、コスト面等で優れる。   For example, a conductive paste is widely used for forming a semiconductor element such as a solar cell panel or a liquid crystal display, an electronic device (such as an electrode or an electric wiring) included in an electronic device or an electronic display device, and the like. The conductive paste contains a conductive filler made of metal particles as a conductive material. This conductive filler is mixed with other components such as resin and solvent as a binder component to prepare a paste. Is done. In order to form an electrode or the like using a conductive paste, first, the conductive paste is applied to the surface of a substrate or the like by a coating method such as a screen printing method or an offset printing method to form a printing pattern. Next, an electrode or the like is formed by drying or baking the formed printed pattern at a desired temperature. Such a method for forming an electrode or the like using a conductive paste is excellent in terms of cost and the like because it does not require a large amount of equipment as in a sputtering method performed in a vacuum, for example.

また、電子機器等が備える電極や電気配線等を電気的に接続する材料には、異方性導電接着材や異方性導電フィルムといった異方性導電材料が一般的に利用されている。この異方性導電材料等にも、導電性ペーストと同様、導電材料として導電性フィラーが含まれる。   An anisotropic conductive material such as an anisotropic conductive adhesive or an anisotropic conductive film is generally used as a material for electrically connecting electrodes, electrical wiring, and the like included in an electronic device. The anisotropic conductive material or the like also contains a conductive filler as a conductive material, like the conductive paste.

近年、電子機器等の薄型化や軽量化への動きがめざましく、これらの分野では、微細配線等における導電性の更なる向上や信頼性の向上等が求められている。このような要求に対応するため、導電性ペーストや異方性導電材料等に含まれる導電性フィラーには、更なる低抵抗化、微小化等の改良が求められる。   In recent years, the movement toward thinner and lighter electronic devices has been remarkable, and in these fields, further improvement in conductivity and improvement in reliability in fine wiring and the like are required. In order to meet such requirements, conductive fillers contained in conductive pastes and anisotropic conductive materials are required to be further improved in resistance and miniaturization.

導電性ペーストに使用される導電性フィラーには、一般に、低抵抗化や耐酸化性等に優れることから、銀等が広く使用されている(例えば、特許文献1参照。)。この特許文献2に開示されている銀粉は、銀粉の粉粒表面に、微粒銀粒子を付着させることにより、非常に優れた低温焼結特性を備えるとされている。   In general, silver or the like is widely used as the conductive filler used in the conductive paste because of its low resistance and excellent oxidation resistance (see, for example, Patent Document 1). The silver powder disclosed in Patent Document 2 is said to have very excellent low-temperature sintering characteristics by attaching fine silver particles to the surface of silver powder.

また、異方性導電材料に使用される導電性フィラーには、配線同士の接続又は金属バンプと配線の接続時等において荷重を負荷した時の潰れ方、或いは荷重を除荷した時の回復率等の観点から、金−ニッケル等の金属をセラミックスや樹脂からなる粒子表面に被覆させた微粒子等が一般的に使用されている(例えば、特許文献2参照。)。この微粒子は、アクリル樹脂やスチレン樹脂等の樹脂粒子を基材微粒子(母粒子)とし、この基材微粒子の表面に形成された下地金属層と、下地金属層の表面に形成された導電層とを有する。そして、シースフロー電気抵抗方式粒度分布計を用いて粒子径分布を測定した場合に、平均粒子径の1.26倍以上の粒子径を有する導電性微粒子の比率が8%以下であり、粒子が2個以上結合した連結粒子が少なく信頼性の高い導電接続ができるとされている。この微粒子は、超音波を液中に印加しながら無電解めっきを行う方法により製造される。   In addition, the conductive filler used in the anisotropic conductive material has a method of crushing when a load is applied when connecting wires or connecting a metal bump and a wire, or a recovery rate when the load is removed. In view of the above, fine particles or the like in which a metal such as gold-nickel is coated on the surface of particles made of ceramics or resin are generally used (see, for example, Patent Document 2). The fine particles include resin particles such as acrylic resin and styrene resin as base fine particles (mother particles), a base metal layer formed on the surface of the base fine particles, a conductive layer formed on the surface of the base metal layer, Have When the particle size distribution is measured using a sheath flow electric resistance type particle size distribution meter, the ratio of the conductive fine particles having a particle size of 1.26 times or more of the average particle size is 8% or less, and the particles are It is said that a highly reliable conductive connection can be made with few connected particles bonded together. The fine particles are manufactured by a method of performing electroless plating while applying ultrasonic waves to the liquid.

また、アクリル樹脂等の樹脂表面に、錫吸着層を介して銀を被覆させた銀被覆球粒子が開示されている(例えば、特許文献3参照。)。この特許文献3等に示される銀被覆球状樹脂では、銀よりも低比重の樹脂を使用し、その表面に銀を被覆する構造とすることにより、低比重で、しかも銀と同等の導電性が得られるとされている。また、銀粉を導電性フィラーとして使用した導電性ペーストに比べて、コストの高い銀使用量が抑えられるため、生産コストの面等でも優れる。また、この銀被覆球状粒子は、アクリル樹脂等の弾性を持つ母粒子表面を金属で被覆する構造になっていることから、異方性導電材料に使用される導電性フィラーとしても好適に使用することができる。更に、銀は全単体金属中、常温で最も低抵抗であるとともに、現在、異方性導電材料用の導電性フィラーとして主に使用されている金よりも低コストであることから、性能面及び生産コストの面で優れた異方性導電材料を製造することができる。   Further, silver-coated sphere particles are disclosed in which silver is coated on a resin surface such as an acrylic resin via a tin adsorption layer (see, for example, Patent Document 3). In the silver-coated spherical resin shown in Patent Document 3 and the like, a resin having a specific gravity lower than that of silver is used, and the surface thereof is coated with silver. It is supposed to be obtained. In addition, compared to a conductive paste using silver powder as a conductive filler, since the amount of silver used is high, the production cost is excellent. Further, since the silver-coated spherical particles have a structure in which the surface of the mother particle having elasticity such as an acrylic resin is coated with a metal, the silver-coated spherical particles are also suitably used as a conductive filler used in an anisotropic conductive material. be able to. Furthermore, silver has the lowest resistance at room temperature among all single metals, and is lower in cost than gold, which is currently mainly used as a conductive filler for anisotropic conductive materials. An anisotropic conductive material excellent in terms of production cost can be manufactured.

その一方、このような被覆構造を採る銀被覆粒子の場合、例えば母粒子と銀被覆層との密着性に関する課題等、単一の銀粒子には存在しない改良すべき点等も多く残されている(例えば、特許文献4参照。)。   On the other hand, in the case of silver-coated particles having such a coating structure, for example, there are many points to be improved that do not exist in a single silver particle, such as problems related to adhesion between the mother particle and the silver coating layer. (For example, refer to Patent Document 4).

特開2005−146408号(請求項1、段落[0012])JP 2005-146408 (Claim 1, paragraph [0012]) 特許第5406544号公報(請求項4,5、段落[0009]〜段落[0011]、段落[0014]、段落[0021])Japanese Patent No. 5406544 (claims 4, 5, paragraphs [0009] to [0011], paragraph [0014], paragraph [0021]) 国際公開第2012/023566号パンフレット(請求項1、請求項9、段落[0010])International Publication No. 2012/023566 (Claim 1, Claim 9, Paragraph [0010]) 特開2010−229556号公報(請求項1、段落[0021])JP 2010-229556 A (Claim 1, paragraph [0021])

上記従来の特許文献3に示される銀被覆球状樹脂では、母粒子表面を被覆する銀被覆層の結晶子径が小さいと銀被覆層形成時に母粒子表面を被覆する銀の結晶が塊状に異常析出し、緻密な被膜が得られず、密着性が低下することから、銀の結晶子径を比較的大きな径に制御している。また、銀の結晶が塊状に異常析出すると、被覆ムラが生じ、被覆されていない部分が生じることで導電性が低下する場合がある。そのため、少ない量の銀で樹脂表面全体を被覆するのが困難となり、生産コストが上がるといった問題も生じる。   In the silver-coated spherical resin shown in the above-mentioned conventional patent document 3, if the crystallite diameter of the silver coating layer covering the mother particle surface is small, the silver crystals covering the mother particle surface are abnormally precipitated in a lump when the silver coating layer is formed However, since a dense film cannot be obtained and adhesion is lowered, the crystallite diameter of silver is controlled to a relatively large diameter. Further, when silver crystals are abnormally precipitated in a lump shape, coating unevenness occurs, and an uncoated portion may be generated, resulting in a decrease in conductivity. For this reason, it is difficult to coat the entire resin surface with a small amount of silver, resulting in a problem that the production cost increases.

一方、母粒子表面を被覆する銀の結晶子が大きいと、隣接する銀被覆球状樹脂同士が、母粒子表面を被覆する銀によって連鎖的に架橋凝集し、架橋凝集して一つになった銀被覆球状樹脂の2次粒子が肥大化するため、微細印刷に適した小さい粒径の銀被覆粒子が得られにくいという問題があった。   On the other hand, when the silver crystallite covering the surface of the mother particle is large, adjacent silver-coated spherical resins are cross-linked and aggregated in a chain by the silver covering the surface of the mother particle, and the silver is formed by cross-linking and aggregation. Since the secondary particles of the coated spherical resin are enlarged, there is a problem that it is difficult to obtain silver-coated particles having a small particle size suitable for fine printing.

また、上記特許文献2のように、超音波を液中に印加しながら無電解めっきを行う方法では、液中に超音波を照射するために投げ込み式の超音波装置を用いる必要がある。そのため、無電解めっきを行う際に超音波装置も金属によって被覆されてしまい、メンテナンスが困難で、かつ高コストになるという欠点があった。   Moreover, in the method of performing electroless plating while applying ultrasonic waves to the liquid as in Patent Document 2, it is necessary to use a throwing-type ultrasonic apparatus to irradiate the liquid with ultrasonic waves. For this reason, when performing electroless plating, the ultrasonic device is also covered with metal, which makes it difficult to perform maintenance and increases the cost.

本発明の目的は、導電性に優れるとともに、微細な線幅での電極等の形成に好適な銀被覆粒子であって、異方性導電材料にも使用できる銀被覆粒子及びその製造方法を提供することにある。   An object of the present invention is to provide a silver-coated particle that is excellent in conductivity and suitable for forming an electrode or the like with a fine line width, and that can also be used for an anisotropic conductive material, and a method for producing the same. There is to do.

本発明の第1の観点は、母粒子の表面が銀で被覆された構造を有する銀被覆粒子において、母粒子を被覆する銀の結晶子径が12.5〜17.9nmであり、水系溶液中における銀被覆粒子の分散粒子径D50が0.9〜10μmであり、100kPaの圧力をかけた状態で測定した体積抵抗率が1.0×10-3Ω・cm以下であり、前記母粒子が樹脂、金属(但し、銅を除く。)又は金属酸化物からなることを特徴とする。
A first aspect of the present invention is a silver-coated particle having a structure in which the surface of the mother particle is coated with silver, wherein the crystallite diameter of silver covering the mother particle is 12.5 to 17.9 nm, and the aqueous solution a dispersed particle diameter D 50 0.9~10μm silver-coated particles in the medium state, and are the volume resistivity measured by the state 1.0 × 10 -3 Ω · cm or less with a pressure of 100 kPa, the The mother particles are characterized by comprising a resin, a metal (however, excluding copper) or a metal oxide .

本発明の第2の観点は、第1の観点に基づく発明であって、更に分散粒子径D50と母粒子の一次粒子径DPの比(分散粒子径D50/母粒子の一次粒子径DP)が1.1〜3.0であることを特徴とする。 The second aspect of the present invention is an invention based on the first aspect, the primary particle size of more dispersed particle diameter D 50 and the ratio of the primary particle diameter D P of the mother particle (dispersed particle diameter D 50 / base particle D P ) is 1.1 to 3.0.

本発明の第の観点は、母粒子の表面が銀で被覆された構造を有する銀被覆粒子の製造方法において、ポリカルボン酸塩を含有する分散剤を用いた無電解めっき法により、母粒子の表面に銀を還元析出させる工程を含み、ポリカルボン酸塩の添加量が母粒子100質量部に対して0.05〜2.0質量部であり、母粒子を被覆する銀の結晶子径が12.5〜17.9nmであり、水系溶液中における銀被覆粒子の分散粒子径D50が0.9〜10μmであり、100kPaの圧力をかけた状態で測定した体積抵抗率が1.0×10-3Ω・cm以下である銀被覆粒子の製造方法である。
本発明の第4の観点は、第3の観点に基づく発明であって、前記母粒子が樹脂、金属又は金属酸化物からなる銀被覆粒子の製造方法である。
According to a third aspect of the present invention, in the method for producing silver-coated particles having a structure in which the surface of the mother particles is coated with silver, the mother particles are obtained by electroless plating using a dispersant containing a polycarboxylate. Including a step of reducing and precipitating silver on the surface of the material, the amount of polycarboxylate added is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the mother particles, and the crystallite diameter of silver covering the mother particles Is 12.5 to 17.9 nm, the dispersed particle diameter D 50 of the silver-coated particles in the aqueous solution is 0.9 to 10 μm, and the volume resistivity measured under a pressure of 100 kPa is 1.0. This is a method for producing silver-coated particles having a size of × 10 −3 Ω · cm or less.
The 4th viewpoint of this invention is invention based on the 3rd viewpoint, Comprising: The said mother particle is a manufacturing method of the silver covering particle which consists of resin, a metal, or a metal oxide.

本発明の第1の観点の銀被覆粒子は、母粒子を被覆する銀の結晶子径が12.5〜17.9nmと非常に小さいため、隣接する銀被覆粒子同士の銀による架橋凝集が抑制され、水系溶液中における分散粒子径D50が非常に小さい値を示す。また、銀の結晶子径が非常に小さいにも拘わらず、一つの母粒子を被覆する銀の結晶がその母粒子表面で塊状に異常析出することなく、均一に被覆する表面に沿って分散した状態で被覆することで、銀被覆層が母粒子表面をムラなく、かつ高い被覆率で被覆する。そのため、銀被覆粒子間に良好な導通が得られ、また母粒子表面を被覆する銀被覆層が緻密で密着性に優れた膜となる。これにより、銀被覆粒子の微細化が図られるとともに、高い導電性を発現させるため、この銀被覆粒子を、導電性ペーストや異方性導電材料等に含まれる導電性フィラーとして用いれば、微細で、かつ導電性に優れた電極又は電気配線等を形成することができ、高い導通を確保することができる。 Since the silver-coated particles of the first aspect of the present invention have a very small crystallite diameter of 12.5 to 17.9 nm covering the base particles, cross-linking aggregation due to silver between adjacent silver-coated particles is suppressed. And the dispersed particle diameter D 50 in the aqueous solution shows a very small value. In addition, although the crystallite diameter of silver is very small, silver crystals covering one base particle are dispersed along the surface to be coated uniformly without abnormal precipitation on the surface of the base particle. By covering in the state, the silver coating layer coats the surface of the mother particles uniformly and with a high coverage. Therefore, good conduction is obtained between the silver-coated particles, and the silver coating layer covering the surface of the mother particles becomes a dense film with excellent adhesion. As a result, the silver-coated particles can be made finer, and in order to develop high conductivity, if the silver-coated particles are used as a conductive filler contained in a conductive paste, an anisotropic conductive material, etc. In addition, an electrode or an electric wiring having excellent conductivity can be formed, and high continuity can be ensured.

本発明の第2の観点の銀被覆粒子は、分散粒子径D50と母粒子の一次粒子径DPの比(分散粒子径D50/母粒子の一次粒子径DP)が1.1〜3.0を示す。即ち、この銀被覆粒子は、1つの母粒子を被覆する銀量が少ないものの、非常に薄い銀被覆層で効率良く、母粒子表面全体が被覆される。そのため、導電性を損なうことなく、コストの高い銀の使用量が低減されるため、生産コストを大幅に抑えることができる。 Silver-coated particles of the second aspect of the present invention, the ratio of the primary particle diameter D P of the dispersed particle diameter D 50 and the primary particle (primary particle diameter D P of the dispersion particle diameter D 50 / mother particle) is 1.1 3.0 is shown. In other words, although the silver-coated particles have a small amount of silver covering one mother particle, the entire surface of the mother particle is efficiently coated with a very thin silver coating layer. Therefore, since the amount of high-cost silver used is reduced without impairing conductivity, production costs can be significantly reduced.

本発明の第3の観点の銀被覆粒子は、母粒子が樹脂、金属又は金属酸化物からなる。例えば、母粒子に銀よりもコストが低い樹脂粒子等を用いることにより、コストが高い銀の使用量を低減でき、生産コストを抑えることができる。また、母粒子に銀よりも比重が小さい樹脂粒子等を使用することで、導電性フィラーの自重による印刷パターンの形状崩れを防止できる等、印刷パターンの形状保持性に優れたペーストを調製できる。   In the silver-coated particles according to the third aspect of the present invention, the mother particles are made of resin, metal or metal oxide. For example, by using resin particles or the like having a cost lower than that of silver for the mother particles, it is possible to reduce the amount of silver used at a high cost and to suppress the production cost. In addition, by using resin particles having a specific gravity smaller than that of silver for the mother particles, it is possible to prepare a paste having excellent print pattern shape retention, such as prevention of deformation of the print pattern due to the self-weight of the conductive filler.

本発明の第4の観点の製造方法は、母粒子の表面が銀で被覆された構造を有する銀被覆粒子の製造方法において、ポリカルボン酸塩を含有する分散剤を用いた無電解めっき法により、母粒子の表面に銀を還元析出させる工程を含み、ポリカルボン酸塩の添加量を所望の割合に制御する。これにより、銀被覆粒子同士の架橋凝集が少なく、粒子径が小さい微細な銀被覆粒子であって、母粒子表面が銀被覆層により高い被覆率で被覆され、導電性に優れた銀被覆粒子を得ることができる。これにより、例えば、微細な電極又は電気配線等を形成する際に短絡等の不具合を生じさせることのない優れた導電性ペーストや異方性導電材料を製造できる。   The manufacturing method of the 4th viewpoint of this invention is the manufacturing method of the silver coating particle which has the structure where the surface of the mother particle was coat | covered with silver, By the electroless-plating method using the dispersing agent containing polycarboxylate And a step of reducing and precipitating silver on the surface of the mother particles, and controlling the amount of polycarboxylate added to a desired ratio. As a result, fine silver-coated particles with small cross-linking aggregation between the silver-coated particles and a small particle diameter, the mother particle surface being coated with a silver coating layer at a high coverage, and silver-coated particles having excellent conductivity Can be obtained. Thereby, for example, an excellent conductive paste or anisotropic conductive material that does not cause a problem such as a short circuit when a fine electrode or electric wiring is formed can be manufactured.

実施例1で得られた銀被覆粒子を走査型電子顕微鏡で観察したときの写真図である。It is a photograph figure when the silver coating particle obtained in Example 1 is observed with a scanning electron microscope. 比較例1で得られた銀被覆粒子を走査型電子顕微鏡で観察したときの写真図である。It is a photograph figure when the silver coating particle obtained by the comparative example 1 is observed with a scanning electron microscope. 比較例4で得られた銀被覆粒子を走査型電子顕微鏡で観察したときの写真図である。It is a photograph figure when the silver coating particle obtained in the comparative example 4 is observed with a scanning electron microscope.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明の銀被覆粒子は、導電性ペースト等に含まれる導電性フィラーとして利用される銀被覆粒子であり、母粒子の表面が銀で被覆された構造を有する。なお、銀を被覆する前の母粒子表面に、予め錫吸着層等が設けられた構造であっても良い。銀被覆粒子の形状は、球状に限らず、扁平状、棒状のものであっても良いが、球状であることが好ましい。その理由は、粒径の揃った球状粒子でないと、配線間の均一な導通接続が確保できないためである。また、導電性ペーストにおいても、球状の方が導電性フィラーの体積充填率を算出しやすいといった利点がある。なお、球状とは、完全な真球に限られず、楕円のような球形に近い形状や、表面に若干の凹凸がある形状等も含まれる。   The silver-coated particle of the present invention is a silver-coated particle used as a conductive filler contained in a conductive paste or the like, and has a structure in which the surface of the mother particle is coated with silver. In addition, the structure in which the tin adsorption layer etc. were previously provided in the mother particle surface before coat | covering silver may be sufficient. The shape of the silver-coated particles is not limited to a sphere, but may be a flat shape or a rod shape, but is preferably a sphere. The reason is that uniform conductive connection between the wirings cannot be ensured unless the spherical particles have a uniform particle diameter. Also, in the conductive paste, the spherical shape has an advantage that the volume filling rate of the conductive filler can be easily calculated. Note that the spherical shape is not limited to a perfect sphere, and includes a shape close to a spherical shape such as an ellipse, a shape having a slight unevenness on the surface, and the like.

母粒子を被覆する銀の結晶子径は12.5〜17.9nmの範囲である。母粒子を被覆する銀の結晶子径を上記範囲に限定したのは、下限値未満に結晶子径を制御しようとすると、母粒子表面で銀の結晶が塊状に異常析出し、銀被覆層が緻密な膜に形成されず、樹脂に対する銀の密着性が低下する。更に、塊状になった結晶は結晶成長しやすく、12.5nm未満の結晶子径を維持し続けることは困難であるためである。即ち、現状、本発明によっても、結晶子径が下限値未満の銀被覆粒子を得るのは困難である。一方、上限値を超えると、一の母粒子表面を被覆している銀と、隣接する他の母粒子表面を被覆している銀との間で凝集が起こり、一つの銀被覆粒子の大きさが連鎖的に肥大化して、所望の微細な粒子にならないからである。このうち、母粒子を被覆する銀の結晶子径は15〜17nmであることが好ましい。なお、本明細書中、母粒子を被覆する銀の結晶子径とは、X線回折装置(リガク社製 型式名:RINT2000)と、デバイ・シェラ−の式を用いて算出した値である。   The crystallite diameter of silver covering the mother particles is in the range of 12.5 to 17.9 nm. The reason for limiting the crystallite diameter of silver covering the mother particles to the above range is that if the crystallite diameter is controlled to be less than the lower limit value, silver crystals are abnormally precipitated in a lump on the mother particle surface, and the silver coating layer is formed. It is not formed into a dense film, and the adhesion of silver to the resin is lowered. Furthermore, it is because agglomerated crystals tend to grow and it is difficult to keep a crystallite diameter of less than 12.5 nm. That is, at present, it is difficult to obtain silver-coated particles having a crystallite diameter of less than the lower limit value even according to the present invention. On the other hand, when the upper limit is exceeded, aggregation occurs between the silver covering the surface of one base particle and the silver covering the surface of another adjacent base particle, and the size of one silver-covered particle This is because the chain is enlarged in a chain and does not become the desired fine particles. Among these, it is preferable that the crystallite diameter of silver which coat | covers a mother particle is 15-17 nm. In the present specification, the crystallite diameter of silver covering the mother particles is a value calculated using an X-ray diffractometer (model name: RINT2000, manufactured by Rigaku Corporation) and the Debye-Scherrer equation.

この銀被覆粒子は、母粒子を被覆する銀の結晶子径が所望の範囲に制御されることで、上述の銀被覆粒子同士の銀による架橋凝集が抑制され、これによって所望の粒子径を有し、微細な線幅での電極等の形成に適した銀被覆粒子となる。具体的には、水系溶液中における銀被覆粒子の分散粒子径D50が0.9〜10μmである。分散粒子径D50を上記範囲に限定したのは、粒子径が小さくなると、粒子同士が更に凝集、肥大化しやすくなるため、分散粒子径D50が1.0μm未満で、かつ導電材料に適した銀被覆粒子は現状では得られにくいからである。一方、上限値を超えると微細印刷による電極等の形成が困難になる。なお、本明細書中、上記水系溶液とは、水にヘキサメタリン酸ナトリウム等の分散剤を0.5質量%の割合で添加した溶液をいう。また、銀被覆粒子の分散粒子径D50とは、上記水系溶液に銀被覆粒子を0.1質量%の割合で添加し、超音波照射により分散させた後、回転速度100〜500rpmで撹拌した状態の粒子について、レーザー回折散乱式粒度分布測定器(島津製作所社製、型式名:SALD−200V ER)を用いて測定した体積基準の粒子径におけるメジアン値D50をいう。 In this silver-coated particle, the crystallite diameter of the silver covering the mother particle is controlled within a desired range, so that the above-described cross-linking and aggregation of the silver-coated particles with the silver is suppressed, thereby having a desired particle diameter. Thus, the silver-coated particles are suitable for forming electrodes and the like with a fine line width. Specifically, the dispersed particle diameter D 50 of the silver-coated particles in the aqueous solution is 0.9 to 10 μm. The dispersion particle diameter D 50 is limited to the range described above, when the particle diameter becomes smaller, further aggregation between the particles, consisting for easily enlarged, the dispersion particle diameter D 50 of less than 1.0 .mu.m, and suitable conductive material This is because silver-coated particles are difficult to obtain at present. On the other hand, when the upper limit is exceeded, it becomes difficult to form electrodes and the like by fine printing. In addition, in this specification, the said aqueous solution means the solution which added dispersing agents, such as sodium hexametaphosphate, in the ratio of 0.5 mass% to water. Further, the dispersed particle size D 50 of the silver-coated particles, silver-coated particles in the aqueous solution is added at a ratio of 0.1 mass% were dispersed by ultrasonic irradiation, and stirred at a rotational speed 100~500rpm For the particles in the state, the median value D 50 at the volume-based particle diameter measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Shimadzu Corporation, model name: SALD-200VER) is used.

また、銀で母粒子を被覆する際に、銀の結晶子径が小さいと、一つの母粒子を被覆する銀の結晶が塊状に異常析出しやすくなる。この異常析出が起こると、母粒子表面の一部が銀で被覆されず、被覆率が低下することで良好な導電性が得られなかったり、緻密な銀の被膜が得られずに、母粒子に対する銀の密着性が悪くなる傾向がみられる。一方、本発明の銀被覆粒子は、母粒子を被覆する銀の結晶子径が、上述のように非常に小さいものの、上述の凝集が抑制され、銀被覆層が母粒子表面をムラなく、かつ高い被覆率で被覆している。また、母粒子表面を被覆する銀被覆層が緻密で母粒子との密着性に優れた膜となるため、銀被覆粒子間に良好な導通が得られる。具体的には、100kPaの圧力をかけた状態で測定した体積抵抗率が1.0×10-3Ω・cm以下の値を示す。これによって、微細印刷による電極等の形成が可能になるとともに、優れた導電性を発現させることができる。被覆率が低下し、上記体積抵抗率が1.0×10-3Ω・cmを超えると、抵抗値が高すぎて、導電材料に適さない。このうち、上記体積抵抗率は、5.0×10-4Ω・cm以下であることが好ましい。 Further, when the mother particle is coated with silver, if the crystallite diameter of silver is small, the silver crystal covering one mother particle is likely to be abnormally precipitated in a lump shape. When this abnormal precipitation occurs, a part of the surface of the mother particle is not coated with silver, and the coverage is reduced, so that good conductivity cannot be obtained, or a dense silver film cannot be obtained, and the mother particle There is a tendency that the adhesiveness of silver with respect to is poor. On the other hand, in the silver-coated particles of the present invention, although the crystallite diameter of the silver covering the mother particles is very small as described above, the above-described aggregation is suppressed, and the silver-coated layer has a uniform surface of the mother particles, and Covers with high coverage. In addition, since the silver coating layer covering the surface of the mother particles becomes a dense film having excellent adhesion to the mother particles, good conduction can be obtained between the silver coated particles. Specifically, the volume resistivity measured in a state where a pressure of 100 kPa is applied shows a value of 1.0 × 10 −3 Ω · cm or less. This makes it possible to form electrodes and the like by fine printing and to exhibit excellent conductivity. When the covering ratio is reduced and the volume resistivity exceeds 1.0 × 10 −3 Ω · cm, the resistance value is too high and is not suitable for a conductive material. Among these, the volume resistivity is preferably 5.0 × 10 −4 Ω · cm or less.

また、分散粒子径D50と母粒子の一次粒子径DPの比(分散粒子径D50/母粒子の一次粒子径DP)が1.1〜3.0であることが好ましい。D50/DPの値が下限値未満では、被覆率等が低下して、体積抵抗率が高くなる等の不具合が生じる場合がある。一方、上限値を超えると、分散粒子径D50が大きくなることで、微細な電極又は電気配線等を形成する材料として不適になるとともに、ペースト調製時に分散不良等を起こす場合がある。このうち、D50/DPの値は、1.1〜2.0であることが特に好ましい。なお、上記母粒子の一次粒子径DPとは、後述の方法で算出された粒子1000個の直径の平均値をいう。 Further, it is preferable that the ratio of the primary particle diameter D P of the dispersed particle diameter D 50 and the primary particle (primary particle diameter D P of the dispersion particle diameter D 50 / mother particle) is 1.1 to 3.0. When the value of D 50 / D P is less than the lower limit value, there may be a problem that the covering rate or the like is lowered and the volume resistivity is increased. On the other hand, if the upper limit value is exceeded, the dispersed particle diameter D 50 becomes large, which makes it unsuitable as a material for forming fine electrodes or electrical wiring, and may cause poor dispersion during paste preparation. Of these, the value of D 50 / D P is particularly preferably 1.1 to 2.0. The primary particle diameter D P of the mother particles refers to the average value of the diameters of 1000 particles calculated by the method described later.

銀被覆粒子を構成する母粒子の材質は、特に限定されないが、樹脂、金属又は金属酸化物からなる粒子等が挙げられる。樹脂粒子としては、耐薬品性、耐熱性等の理由から、アクリル、フェノール、ポリスチレン、シリコーン、メラミン、エポキシ、ポリアミド及びPTFE(ポリテトラフルオロエチレン)からなる群より選ばれた1種又は2種以上が挙げられる。樹脂粒子は、金属粒子等に比べて低比重であることから、樹脂粒子を母粒子に用いることで、銀被覆粒子の比重も小さくすることができる。そのため、この銀被覆粒子を導電性ペースト等に含まれる導電性フィラーに用いれば、導電性フィラーの自重によって、印刷パターン(印刷後のペースト)の形状崩れを防止できる。即ち、印刷パターンの形状保持性に優れた導電性ペーストを調製しやすい点で優れる。また、金属粒子としては、銀より酸化還元電位的に卑な金属粒子であって、銅、ニッケル、鉄、アルミニウム、亜鉛、スズ、コバルト、インジウム、バナジウム又は鉛等の粒子が挙げられる。また、金属酸化物粒子としては、シリカ、アルミナ、酸化銅、酸化鉄又は酸化チタン等の粒子が挙げられる。   The material of the mother particles constituting the silver-coated particles is not particularly limited, and examples thereof include particles made of resin, metal, or metal oxide. As the resin particles, one or more selected from the group consisting of acrylic, phenol, polystyrene, silicone, melamine, epoxy, polyamide and PTFE (polytetrafluoroethylene) for reasons such as chemical resistance and heat resistance. Is mentioned. Since resin particles have a lower specific gravity than metal particles or the like, the specific gravity of silver-coated particles can be reduced by using resin particles as mother particles. Therefore, if this silver-coated particle is used as a conductive filler contained in a conductive paste or the like, it is possible to prevent deformation of the printed pattern (paste after printing) due to its own weight. That is, it is excellent in that it is easy to prepare a conductive paste having excellent printed pattern shape retention. Examples of the metal particles include metal particles that are lower in redox potential than silver and include particles of copper, nickel, iron, aluminum, zinc, tin, cobalt, indium, vanadium, or lead. Examples of the metal oxide particles include particles of silica, alumina, copper oxide, iron oxide, titanium oxide, and the like.

母粒子には、一次粒子径DPが、好ましくは0.3〜9.5μmの球状の粒子を用いる。それは、所望の比重、所望の分散粒子径D50を有する銀被覆粒子を得やすいからである。なお、ここでの球状も、完全な真球に限られない。また、母粒子の一次粒子径DPは、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製 型式名:SU−1500)にて、ソフトウェア(品名:PC SEM)により倍率5000倍で、1000個の粒子の直径を測定し、算出された平均値をいう。更に、球状のものを使用する場合、粒径の変動係数が、好ましくは7%以下、更に好ましくは5%以下であり、粒径が揃っているものを使用するのが好ましい。母粒子の変動係数(CV値、単位:%)は、上記1000個の母粒子の一次粒子径DPから、式:〔(標準偏差/一次粒子径DP)×100〕により求めた値をいう。 The base particles, primary particle diameter D P is preferably used spherical particles 0.3~9.5Myuemu. This is because easily obtained silver-coated particles with a desired specific gravity, the desired dispersed particle size D 50. The spherical shape here is not limited to a perfect sphere. The primary particle diameter D P of the mother particle is 1000 particles with a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, model name: SU-1500) at a magnification of 5000 times by software (product name: PC SEM). This is the average value calculated by measuring the diameter. Furthermore, when using a spherical thing, it is preferable to use the thing with the variation coefficient of a particle size, Preferably it is 7% or less, More preferably, it is 5% or less, and the particle size is uniform. The coefficient of variation (CV value, unit:%) of the base particle is a value obtained from the primary particle diameter D P of the above 1000 base particles by the formula: [(standard deviation / primary particle diameter D P ) × 100]. Say.

なお、母粒子に樹脂粒子と金属酸化物粒子を用いる場合には、銀を被覆する前の母粒子表面に、後述する前処理により、錫吸着層を設けることができる。一般に、有機質材料や無機質材料等の不導体の表面に無電解めっきを実施する際、予め不導体の表面に対して触媒化処理を行う必要がある。前処理として、この触媒化処理を実施して、母粒子表面に錫吸着層を設けることで、後述する無電解めっき法により、下記特性を有する銀(銀被覆層)が形成される。錫吸着層は、前処理で使用される錫化合物中の錫の2価イオンが、母粒子表面に付着することによって形成されたものである。   When resin particles and metal oxide particles are used for the mother particles, a tin adsorption layer can be provided on the surface of the mother particles before coating with silver by a pretreatment described later. Generally, when electroless plating is performed on the surface of a nonconductor such as an organic material or an inorganic material, it is necessary to perform a catalyst treatment on the surface of the nonconductor in advance. As a pretreatment, this catalyst treatment is carried out and a tin adsorption layer is provided on the surface of the mother particles, whereby silver (silver coating layer) having the following characteristics is formed by an electroless plating method described later. The tin adsorption layer is formed by adhering divalent ions of tin in the tin compound used in the pretreatment to the surface of the mother particle.

続いて、本発明の銀被覆粒子を製造する方法について説明する。先ず、母粒子に樹脂粒子と金属酸化物粒子を用いる場合には、母粒子に、錫化合物の水溶液による前処理を行う(錫吸着層の形成工程)。次いで、母粒子に、還元剤を用いて無電解銀めっきを行う(銀被覆層の形成工程)。   Subsequently, a method for producing the silver-coated particles of the present invention will be described. First, when resin particles and metal oxide particles are used for the mother particles, the mother particles are pretreated with an aqueous solution of a tin compound (a step of forming a tin adsorption layer). Next, electroless silver plating is performed on the mother particles using a reducing agent (a step of forming a silver coating layer).

前処理では、例えば、錫化合物の水溶液に母粒子を添加し、攪拌する。そして、母粒子を濾別して水洗する。攪拌時間は、以下の錫化合物の水溶液の温度及び錫化合物の含有量によって適宜決定されるが、好ましくは、0.5〜24時間である。   In the pretreatment, for example, mother particles are added to an aqueous solution of a tin compound and stirred. Then, the mother particles are filtered and washed with water. Although stirring time is suitably determined by the temperature of the following aqueous solution of a tin compound and the content of the tin compound, it is preferably 0.5 to 24 hours.

錫化合物の水溶液の温度は、20〜45℃であり、好ましくは27〜35℃である。錫化合物の水溶液の温度が20℃未満であると、温度低下により、水溶液の活性が低くなり、母粒子に錫化合物が十分に付着しない。一方、錫化合物の水溶液の温度が45℃より高い場合は、錫化合物が酸化するため、水溶液が不安定となり、母粒子に錫化合物が十分に付着しない。この前処理を20〜45℃の水溶液で実施することによって、適切な結晶子径の銀の結晶を析出させることができる。このため、密着性、緻密性に優れた銀めっき層(銀被覆層)を形成できる。   The temperature of the aqueous solution of the tin compound is 20 to 45 ° C, preferably 27 to 35 ° C. When the temperature of the aqueous solution of the tin compound is less than 20 ° C., the activity of the aqueous solution is lowered due to the temperature decrease, and the tin compound does not sufficiently adhere to the mother particles. On the other hand, when the temperature of the aqueous solution of the tin compound is higher than 45 ° C., the tin compound is oxidized, so that the aqueous solution becomes unstable and the tin compound does not sufficiently adhere to the mother particles. By carrying out this pretreatment with an aqueous solution at 20 to 45 ° C., silver crystals having an appropriate crystallite diameter can be precipitated. For this reason, the silver plating layer (silver coating layer) excellent in adhesiveness and denseness can be formed.

前処理で使用する錫化合物としては、塩化第一錫、フッ化第一錫、臭化第一錫、ヨウ化第一錫等が挙げられる。塩化第一錫を用いる場合、錫化合物の水溶液中に含まれる塩化第一錫の含有量は、30〜100g/dm3の範囲とするのが好ましい。塩化第一錫の含有量が30g/dm3以上であれば、均一な錫吸着層を形成しやすい。また、塩化第一錫の含有量が100g/dm3以下であると、塩化第一錫中の不可避不純物の量を抑制しやすい。なお、塩化第一錫は、飽和になるまで錫化合物の水溶液に含有させることができる。 Examples of the tin compound used in the pretreatment include stannous chloride, stannous fluoride, stannous bromide, stannous iodide, and the like. When stannous chloride is used, the content of stannous chloride contained in the tin compound aqueous solution is preferably in the range of 30 to 100 g / dm 3 . If the content of stannous chloride is 30 g / dm 3 or more, it is easy to form a uniform tin adsorption layer. Moreover, it is easy to suppress the amount of inevitable impurities in stannous chloride as the content of stannous chloride is 100 g / dm 3 or less. Note that stannous chloride can be contained in an aqueous solution of a tin compound until saturation.

錫化合物の水溶液は、塩化第一錫1gに対して、塩酸0.5〜2cm3を含有することが好ましい。塩酸の量が0.5cm3以上であると、塩化第一錫の溶解性が向上し、かつ錫の加水分解を抑制することができる。塩酸の量が2cm3以下であると、錫化合物の水溶液のpHが低くなり過ぎず、錫を母粒子に効率よく吸着させることができる。 It is preferable that the aqueous solution of a tin compound contains 0.5-2 cm < 3 > of hydrochloric acid with respect to 1 g of stannous chloride. When the amount of hydrochloric acid is 0.5 cm 3 or more, the solubility of stannous chloride can be improved and the hydrolysis of tin can be suppressed. When the amount of hydrochloric acid is 2 cm 3 or less, the pH of the aqueous solution of tin compound does not become too low, and tin can be efficiently adsorbed to the mother particles.

無電解めっき法は、還元剤の還元力による化学めっき法である、いわゆる湿式めっき法であり、例えば(1)水等の溶媒に母粒子を添加し、攪拌しながら、分散剤とともに錯化剤、還元剤等を添加、攪拌してスラリーを調製した後、銀塩水溶液を滴下する方法、(2)水等の溶媒に母粒子を添加し、攪拌しながら、分散剤とともに銀塩、錯化剤等を添加、攪拌してスラリーを調製した後、還元剤水溶液を滴下する方法、(3)水等の溶媒に母粒子を添加し、攪拌しながら、分散剤とともに錯化剤、還元剤等を添加、攪拌してスラリーを調製した後、銀塩を添加して、好ましくは5〜30℃の温度に保持し、更に水酸化ナトリウム水溶液等の苛性アルカリ水溶液を滴下してpHを好ましくは10.0以上に調整する方法が挙げられ、いずれの方法でも適用してもよい。なお、上記(1)〜(3)の方法において、上記スラリーを調製する際の手順については特に限定されず、例えば水等の溶媒に分散剤や還元剤等を添加して分散剤等を含む水溶液を予め調製してから、最後に母粒子を添加する手順等で調整してもよい。また、上記スラリーを調製する際、pH調整のため、水酸化ナトリウム等を添加してもよい。   The electroless plating method is a so-called wet plating method which is a chemical plating method based on the reducing power of a reducing agent. For example, (1) a complexing agent is added together with a dispersing agent while adding mother particles to a solvent such as water. A method of adding a reducing agent or the like and stirring to prepare a slurry, and then dropping a silver salt aqueous solution, and (2) adding a mother particle to a solvent such as water and stirring the silver salt together with the dispersing agent and complexing A method in which a slurry is prepared by adding a stirring agent and the like and then adding a reducing agent aqueous solution, and (3) adding a mother particle to a solvent such as water and stirring the complexing agent, a reducing agent, etc. together with the dispersing agent And stirring to prepare a slurry, and then adding a silver salt, preferably maintaining the temperature at 5 to 30 ° C., and further dropping a caustic aqueous solution such as an aqueous sodium hydroxide solution to adjust the pH to preferably 10. The method of adjusting to 0 or more is mentioned, whichever one But it may be applied. In addition, in the method of said (1)-(3), it does not specifically limit about the procedure at the time of preparing the said slurry, For example, a dispersing agent, a reducing agent, etc. are added to solvents, such as water, and a dispersing agent etc. are included. After preparing the aqueous solution in advance, it may be adjusted by the procedure of adding the mother particles at the end. Moreover, when preparing the said slurry, you may add sodium hydroxide etc. for pH adjustment.

本発明では、無電解めっき法により母粒子表面に銀を還元析出させ、銀被覆層を形成する際に、所定の分散剤を所定の割合で使用することで、母粒子表面を被覆する銀の結晶子径を上述の12.5〜17.9nmの範囲に制御する。母粒子表面を被覆する銀の結晶子径は、無電解めっきの際の温度条件や上述の前処理条件等を調整する方法等でも小さくすることはできるが、これらの方法で結晶子径を小さくすると、上述のように一つの母粒子を被覆する銀の結晶子が母粒子表面で塊状に異常析出し、緻密で密着性に優れた銀被覆層を高い被覆率で形成するのが困難になる。本発明において、分散剤にはポリカルボン酸塩を使用し、その添加量は、母粒子100質量部に対して0.05〜2.0質量部とする。なお、ここでの母粒子とは、前処理前の母粒子をいう。ポリカルボン酸塩の添加量を上記範囲に限定したのは、ポリカルボン酸塩の添加量が下限値未満であると、結晶子径が十分に小さくならず、一の母粒子表面を被覆している銀と、隣接する他の母粒子表面を被覆している銀との間で架橋凝集が起こり、一つの銀被覆粒子の大きさが連鎖的に肥大化して所望の分散粒子径D50を持つ銀被覆粒子が得られないからである。また、上限値を超えるとポリカルボン酸塩がめっき反応を阻害し、母粒子に対する銀被覆層の密着性が低下することで母粒子が銀で十分に被覆されず、所望の体積抵抗率が得られないといった不具合が生じるからである。このうち、ポリカルボン酸塩の添加量は、母粒子100質量部に対して0.2〜1.0質量部となる割合とするのが好ましい。また、好適なポリカルボン酸塩としては、ポリカルボン酸アンモニウム、ポリカルボン酸ナトリウム、ポリアクリル酸、ポリアクリル酸アンモニウム、ポリアクリル酸ナトリウム、ポリカルボン酸共重合体アンモニウム塩、ポリカルボン酸共重合体ナトリウム塩、ジカルボン酸重合体ナトリウム塩又はジカルボン酸共重合体塩等が挙げられる。 In the present invention, when a silver coating layer is formed by reducing and depositing silver on the surface of the mother particle by an electroless plating method, a predetermined dispersant is used at a predetermined ratio, so that The crystallite diameter is controlled in the above-mentioned range of 12.5 to 17.9 nm. The crystallite diameter of silver covering the surface of the mother particle can be reduced by adjusting the temperature conditions in the electroless plating or the above-mentioned pretreatment conditions, but the crystallite diameter is reduced by these methods. Then, as described above, silver crystallites covering one base particle are abnormally precipitated in a lump shape on the surface of the base particle, and it becomes difficult to form a dense and excellent silver coating layer with high coverage. . In the present invention, a polycarboxylate is used as the dispersant, and the amount added is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the base particles. Here, the mother particle refers to a mother particle before pretreatment. The addition amount of the polycarboxylate is limited to the above range because if the addition amount of the polycarboxylate is less than the lower limit, the crystallite diameter is not sufficiently reduced, and the surface of one base particle is coated. having a silver are, crosslinking occurs agglomeration between the silver coating the other adjacent surface of the base particles, the desired dispersion particle diameter D 50 size of each of the silver-coated particles are chained to bloat This is because silver-coated particles cannot be obtained. When the upper limit is exceeded, the polycarboxylate inhibits the plating reaction, and the adhesion of the silver coating layer to the mother particles decreases, so that the mother particles are not sufficiently covered with silver, and the desired volume resistivity is obtained. This is because there is a problem that it cannot be performed. Among these, it is preferable to make the addition amount of polycarboxylate into the ratio used as 0.2-1.0 mass part with respect to 100 mass parts of mother particles. Suitable polycarboxylates include ammonium polycarboxylate, sodium polycarboxylate, polyacrylic acid, ammonium polyacrylate, sodium polyacrylate, ammonium salt of polycarboxylic acid copolymer, polycarboxylic acid copolymer Examples thereof include sodium salts, dicarboxylic acid polymer sodium salts, and dicarboxylic acid copolymer salts.

銀塩としては、硝酸銀或いは銀を硝酸に溶解したもの等を用いることができる。錯化剤としては、アンモニア、エチレンジアミン四酢酸、エチレンジアミン四酢酸四ナトリウム、ニトロ三酢酸、トリエチレンテトラアンミン六酢酸、チオ硫酸ナトリウム又はヨウ化物塩等の塩類を用いることができる。還元剤としては、ホルマリン、ブドウ糖、ロッシェル塩(酒石酸ナトリウムカリウム)、ヒドラジン及びその誘導体、ヒドロキノン、L−アスコルビン酸又はギ酸等を用いることができる。還元剤としては、還元力の強さから、ホルムアルデヒドが好ましく、少なくともホルムアルデヒドを含む2種以上の還元剤の混合物がより好ましく、ホルムアルデヒドとブドウ糖を含む還元剤の混合物が最も好ましい。   As the silver salt, silver nitrate or silver dissolved in nitric acid can be used. As the complexing agent, salts such as ammonia, ethylenediaminetetraacetic acid, tetrasodium ethylenediaminetetraacetic acid, nitrotriacetic acid, triethylenetetraamminehexaacetic acid, sodium thiosulfate or iodide salt can be used. As the reducing agent, formalin, glucose, Rochelle salt (sodium potassium tartrate), hydrazine and its derivatives, hydroquinone, L-ascorbic acid, formic acid, or the like can be used. As the reducing agent, formaldehyde is preferable because of its strong reducing power, a mixture of two or more reducing agents containing at least formaldehyde is more preferable, and a mixture of reducing agent containing formaldehyde and glucose is most preferable.

以上の工程により、本発明の銀被覆粒子が得られる。この銀被覆粒子は、印刷法によって電気配線や電極等を形成する際に用いられる導電性ペーストや異方導電材料等に、導電性フィラーとして使用することができる。導電性ペーストは、導電性フィラー以外に、樹脂成分や硬化剤、溶剤等を用いて調製することできる。本発明の銀被覆粒子を導電性フィラーとして用いた導電性ペーストでは、微細で導電性に優れた電気配線又は電極等を形成することができる。   Through the above steps, the silver-coated particles of the present invention are obtained. The silver-coated particles can be used as a conductive filler in conductive pastes, anisotropic conductive materials, and the like that are used when forming electrical wirings and electrodes by a printing method. The conductive paste can be prepared using a resin component, a curing agent, a solvent and the like in addition to the conductive filler. With the conductive paste using the silver-coated particles of the present invention as a conductive filler, it is possible to form fine electric wires or electrodes having excellent conductivity.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、塩化第一錫20gと、濃度が35%の塩酸15cm3を、容量1dm3のメスフラスコを用いて水で1dm3に希釈(メスアップ)し、30℃に保温した。この水溶液に、母粒子として一次粒子径DPが2.0μmであり、かつ粒径の変動係数が2.1%である球状のアクリル樹脂50gを添加して、1時間撹拌し、その後、アクリル樹脂を濾別して水洗することにより前処理を行った。
<Example 1>
First, 20 g of stannous chloride and 15 cm 3 of hydrochloric acid having a concentration of 35% were diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask and kept at 30 ° C. To this aqueous solution, a 2.0μm primary particle diameter D P as mother particles, and by adding the acrylic resin 50g spherical a 2.1% coefficient of variation of particle size, and stirred for 1 hour, then, acrylic The resin was filtered off and washed with water for pretreatment.

次に、上記前処理により表面に錫被覆層が形成されたアクリル樹脂表面に、無電解めっきにより銀被覆層を形成した。具体的には、先ず、水2dm3に、錯化剤としてエチレンジアミン四酢酸ナトリウム40g、pH調整剤として水酸化ナトリウム20.0g、還元剤としてホルマリン(ホルムアルデヒド濃度37質量%)15mlを添加し、更に前処理前のアクリル樹脂100質量部に対して0.5質量部となる量のポリカルボン酸アンモニウム(即ち0.25g)を分散剤として添加し、これらを溶解させることにより、錯化剤、還元剤及び分散剤等を含む水溶液を調製した。次に、この水溶液に、上記前処理後のアクリル樹脂を浸漬させることによりスラリーを調製した。 Next, a silver coating layer was formed by electroless plating on the acrylic resin surface on which the tin coating layer was formed by the pretreatment. Specifically, first, 40 g of ethylenediaminetetraacetate as a complexing agent, 20.0 g of sodium hydroxide as a pH adjusting agent, and 15 ml of formalin (formaldehyde concentration 37% by mass) as a reducing agent are added to 2 dm 3 of water. Ammonium polycarboxylate (ie, 0.25 g) in an amount of 0.5 parts by mass with respect to 100 parts by mass of the acrylic resin before pretreatment is added as a dispersant, and these are dissolved to form a complexing agent, a reducing agent. An aqueous solution containing an agent, a dispersant and the like was prepared. Next, a slurry was prepared by immersing the pretreated acrylic resin in this aqueous solution.

次いで、硝酸銀30g、25%アンモニア水35ml、水50mlを混合して硝酸銀含有水溶液を調製し、上記スラリーを攪拌しながら、該硝酸銀含有水溶液を滴下した。更に、硝酸銀含有水溶液滴下後のスラリーに、水酸化ナトリウム水溶液を滴下してpHを12に調整し、325℃の温度に保持しながら撹拌することにより、銀を樹脂表面上に析出させた。その後、洗浄、濾過を行い、最後に80℃の温度で乾燥させ、以下の表1に示す銀被覆粒子を得た。   Next, 30 g of silver nitrate, 35 ml of 25% ammonia water, and 50 ml of water were mixed to prepare an aqueous solution containing silver nitrate, and the aqueous solution containing silver nitrate was added dropwise while stirring the slurry. Further, a sodium hydroxide aqueous solution was dropped into the slurry after dropping the silver nitrate-containing aqueous solution to adjust the pH to 12, and silver was deposited on the resin surface by stirring while maintaining the temperature at 325 ° C. Then, washing | cleaning and filtration were performed, and it was finally dried at the temperature of 80 degreeC, and the silver coating particle shown in the following Table 1 was obtained.

<実施例2>
母粒子を、一次粒子径DPが1.0μmであり、かつ粒径の変動係数が2.2%である球状のシリカ粒子に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 2>
The mother particles, a primary particle diameter D P is 1.0 .mu.m, and except that the coefficient of variation of particle diameter was changed to spherical silica particles is 2.2% in the same manner as in Example 1, the following table Silver-coated particles shown in 1 were obtained.

<実施例3>
母粒子を、一次粒子径DPが1.2μmであり、かつ粒径の変動係数が3.8%である球状の銅粒子に変更したこと、前処理を行わずに母粒子表面に銀被覆層を形成したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 3>
The mother particles, a primary particle diameter D P is 1.2 [mu] m, and the coefficient of variation of particle diameter was changed to copper particles spherical is 3.8% silver-coated on the surface of the base particles without pretreatment Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 1 except that the layer was formed.

<実施例4>
ポリカルボン酸アンモニウムの代わりに、分散剤としてポリカルボン酸ナトリウムを用いたこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 4>
Silver coated particles shown in Table 1 below were obtained in the same manner as in Example 1 except that sodium polycarboxylate was used as a dispersant instead of ammonium polycarboxylate.

<実施例5>
ポリカルボン酸アンモニウムの添加量を、前処理前のアクリル樹脂100質量部に対して0.05質量部となる量に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 5>
The silver shown in Table 1 below is the same as in Example 1 except that the amount of ammonium polycarboxylate added is changed to an amount of 0.05 parts by mass with respect to 100 parts by mass of the acrylic resin before pretreatment. Coated particles were obtained.

<実施例6>
ポリカルボン酸アンモニウムの添加量を、前処理前のアクリル樹脂100質量部に対して2.0質量部となる量に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 6>
The silver shown in Table 1 below is the same as in Example 1 except that the amount of ammonium polycarboxylate added is changed to 2.0 parts by mass with respect to 100 parts by mass of the acrylic resin before pretreatment. Coated particles were obtained.

<実施例7>
母粒子を、一次粒子径DPが0.3μmであり、かつ粒径の変動係数が12.0%である球状のアクリル樹脂に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 7>
The mother particles, a primary particle diameter D P is 0.3 [mu] m, and except that the coefficient of variation of particle diameter was changed to spherical acrylic resin which is a 12.0 percent in the same manner as in Example 1, the following table Silver-coated particles shown in 1 were obtained.

<実施例8>
母粒子を、一次粒子径DPが5.0μmであり、かつ粒径の変動係数が2.4%である球状のアクリル樹脂に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 8>
The mother particles, a primary particle diameter D P is 5.0 .mu.m, and was changed to spherical acrylic resin is 2.4% coefficient of variation of particle diameter in the same manner as in Example 1, the following table Silver-coated particles shown in 1 were obtained.

<実施例9>
母粒子を、一次粒子径DPが9.5μmであり、かつ粒径の変動係数が2.2%である球状のアクリル樹脂に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Example 9>
The mother particles, a primary particle diameter D P is 9.5 .mu.m, and was changed to spherical acrylic resin is 2.2% coefficient of variation of particle diameter in the same manner as in Example 1, the following table Silver-coated particles shown in 1 were obtained.

<比較例1>
分散剤としてのポリカルボン酸アンモニウムを使用しなかったこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 1>
Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 1 except that ammonium polycarboxylate as a dispersant was not used.

<比較例2>
分散剤としてのポリカルボン酸アンモニウムを使用しなかったこと以外は実施例2と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 2>
Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 2 except that ammonium polycarboxylate as a dispersant was not used.

<比較例3>
分散剤としてのポリカルボン酸アンモニウムを使用しなかったこと以外は実施例3と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 3>
Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 3 except that ammonium polycarboxylate as a dispersant was not used.

<比較例4>
ポリカルボン酸アンモニウムの代わりに、分散剤としてゼラチンを用いたこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative example 4>
Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 1 except that gelatin was used as a dispersant instead of ammonium polycarboxylate.

<比較例5>
ポリカルボン酸アンモニウムの添加量を、前処理前のアクリル樹脂100質量部に対して0.03質量部となる量に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 5>
The silver shown in Table 1 below is the same as in Example 1 except that the amount of ammonium polycarboxylate added is changed to an amount of 0.03 parts by mass with respect to 100 parts by mass of the acrylic resin before pretreatment. Coated particles were obtained.

<比較例6>
ポリカルボン酸アンモニウムの添加量を、前処理前のアクリル樹脂100質量部に対して2.1質量部となる量に変更したこと以外は実施例1と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 6>
The silver shown in Table 1 below is the same as Example 1 except that the amount of ammonium polycarboxylate added is changed to 2.1 parts by mass with respect to 100 parts by mass of the acrylic resin before pretreatment. Coated particles were obtained.

<比較例7>
分散剤としてのポリカルボン酸アンモニウムを使用しなかったこと以外は実施例7と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 7>
Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 7 except that ammonium polycarboxylate as a dispersant was not used.

<比較例8>
分散剤としてのポリカルボン酸アンモニウムを使用しなかったこと以外は実施例8と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 8>
Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 8 except that ammonium polycarboxylate as a dispersant was not used.

<比較例9>
分散剤としてのポリカルボン酸アンモニウムを使用しなかったこと以外は実施例9と同様にして、以下の表1に示す銀被覆粒子を得た。
<Comparative Example 9>
Silver-coated particles shown in Table 1 below were obtained in the same manner as in Example 9 except that ammonium polycarboxylate as a dispersant was not used.

<比較試験及び評価>
実施例1〜9及び比較例1〜9で得られた銀被覆粒子について、銀(銀被覆層)の結晶子径、銀被覆粒子の分散粒子径D50、体積抵抗率を測定し、銀被覆粒子の外観を評価した。これらの結果を、以下の表1に示す。また、実施例1、比較例1、4で得られた銀被覆粒子を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製 型式名:SU−1500)で観察したときの写真図を、それぞれ図1〜図3に示す。
<Comparison test and evaluation>
For the silver-coated particles obtained in Examples 1 to 9 and Comparative Examples 1 to 9, the crystallite diameter of silver (silver coating layer), the dispersed particle diameter D 50 of the silver-coated particles, and the volume resistivity were measured. The appearance of the particles was evaluated. These results are shown in Table 1 below. Moreover, the photograph figure when the silver coating particle obtained in Example 1 and Comparative Examples 1 and 4 was observed with the scanning electron microscope (Hitachi High-Technologies Corporation model name: SU-1500) is respectively shown in FIGS. As shown in FIG.

(i) 結晶子径:X線回折装置(リガク社製 型式名:RINT2000)と、デバイ・シェラ−の式を用いて算出した。   (i) Crystallite size: Calculated using an X-ray diffractometer (Rigaku Corporation model name: RINT2000) and Debye-Scherrer equation.

(ii) 分散粒子径D50:水にヘキサメタリン酸ナトリウムを0.5質量%添加して調製した水系溶液20mlを用意した。この水系溶液に、銀被覆粒子を0.1質量%の割合で添加した後、超音波照射により十分に分散させた。その後、銀被覆粒子が分散する水系溶液を、回転速度500rpmで撹拌し、この撹拌した状態にある銀被覆粒子について、レーザー回折散乱式粒度分布測定器(島津製作所社製、型式名:SALD−200V ER)を用いて体積基準の粒子径におけるメジアン値D50を測定した。また、測定された分散粒子径D50の値と母粒子の一次粒子径DPの値から、D50/DPの値を算出した。 (ii) Dispersed particle diameter D 50 : 20 ml of an aqueous solution prepared by adding 0.5% by mass of sodium hexametaphosphate to water was prepared. To this aqueous solution, silver-coated particles were added at a ratio of 0.1% by mass and then sufficiently dispersed by ultrasonic irradiation. Thereafter, the aqueous solution in which the silver-coated particles are dispersed is stirred at a rotation speed of 500 rpm, and the silver-coated particles in the stirred state are subjected to laser diffraction scattering type particle size distribution analyzer (manufactured by Shimadzu Corporation, model name: SALD-200V). ER) was used to measure the median value D 50 at the volume-based particle size. Further, the value of D 50 / D P was calculated from the measured value of the dispersed particle diameter D 50 and the value of the primary particle diameter D P of the mother particles.

(iii) 体積抵抗率:銀被覆粒子について、抵抗率計(三菱化学アナリテック社製 型式名:ロレスタGP MCP)を用い、100kPaの圧力をかけた状態の粉体の体積抵抗率を測定した。   (iii) Volume resistivity: The silver coated particles were measured for the volume resistivity of the powder in a state where a pressure of 100 kPa was applied using a resistivity meter (model name: Loresta GP MCP manufactured by Mitsubishi Chemical Analytech Co., Ltd.).

(iv) 外観:銀被覆粒子の外観を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製 型式名:SU−1500)で観察し、評価した。表1中、「A」は、SEM画像に写し出された銀被覆粒子1個の面積100%に対し、銀が占める面積が80%以上であった場合を示し、「B」は、銀が占める面積が50%以上80%未満であった場合を示し、「C」は、銀が占める面積が50%未満であった場合を示す。   (iv) Appearance: The appearance of the silver-coated particles was observed and evaluated with a scanning electron microscope (model name: SU-1500, manufactured by Hitachi High-Technologies Corporation). In Table 1, “A” indicates a case where the area occupied by silver is 80% or more with respect to 100% area of one silver-coated particle projected on the SEM image, and “B” indicates that silver occupies. The case where the area is 50% or more and less than 80% is shown, and “C” shows the case where the area occupied by silver is less than 50%.

表1から明らかなように、実施例1〜9と比較例1〜9と比較すると、分散剤としてポリカルボン酸塩を使用せず、銀の結晶子径が17.9μmを超える比較例1〜3及び比較例7〜9では、体積抵抗率及び外観の評価では、いずれも実施例1〜9と同程度の優れた結果が得られた。一方、図2に示すように、比較例1等では隣接する銀被覆粒子同士の銀による架橋凝集が起こり、一つの銀被覆粒子の大きさが連鎖的に肥大化したため、分散粒子径D50の値等は、実施例1〜8に比べて大きい値を示した。このことから、微細印刷等の面では、実施例1〜8の方が優れることが判る。なお、実施例9では、母粒子に一次粒子径DPが比較的大きいものを使用しているため、比較例1に比べると分散粒子径D50が大きい値を示しているが、外観の評価が高く、しかもD50/D10の値が1.1と非常に小さい値を示していることから、凝集も少なく、極めて薄い銀被覆層で高い被覆率を達成している。そのため、生産性の面で比較例1よりも優れる。 As is clear from Table 1, when compared with Examples 1-9 and Comparative Examples 1-9, Comparative Examples 1 to 9 without using a polycarboxylate as a dispersant and having a crystallite diameter of silver exceeding 17.9 μm. In Example 3 and Comparative Examples 7-9, the same results as in Examples 1-9 were obtained in terms of volume resistivity and appearance evaluation. On the other hand, as shown in FIG. 2, in Comparative Example 1 and the like, cross-linking aggregation due to silver between adjacent silver-coated particles occurred, and the size of one silver-coated particle was enlarged in a chain, so that the dispersed particle diameter D 50 Values and the like were larger than those in Examples 1 to 8. From this, it can be seen that Examples 1 to 8 are superior in terms of fine printing and the like. In Example 9, due to the use of those relatively large primary particle diameter D P to the base particles, while indicating a large value is dispersed particle diameter D 50 as compared to Comparative Example 1, evaluation of appearance In addition, since the value of D 50 / D 10 is a very small value of 1.1, there is little aggregation, and a high coverage is achieved with an extremely thin silver coating layer. Therefore, it is superior to Comparative Example 1 in terms of productivity.

また、ポリカルボン酸塩以外の分散剤を使用した比較例4では、銀による架橋凝集が若干抑えられ、分散剤を全く使用していない比較例1等よりも分散粒子径D50の値等が小さくなっているものの、分散剤自体が銀被覆層の形成を阻害する原因になったこと等から、図3に示すように母粒子表面の一部が銀によって被覆されていない粒子が多くみられた。そのため、銀の被覆率が大幅に低下し、体積抵抗率が実施例1〜9に比べて非常に高い値を示した。 In Comparative Example 4 using a dispersant other than polycarboxylate, cross-linking aggregation due to silver is somewhat suppressed, and the value of the dispersed particle diameter D 50 is higher than that in Comparative Example 1 using no dispersant. Although the particle size is small, many particles whose surface of the mother particle is not covered with silver as shown in FIG. 3 are observed because the dispersing agent itself causes the formation of the silver coating layer. It was. Therefore, the silver coverage was significantly reduced, and the volume resistivity was very high compared to Examples 1-9.

また、分散剤としてポリカルボン酸塩を使用したものの、その使用量が所定の量に満たない、銀の結晶子径が17.9μmを若干上回った比較例5では、実施例5よりも、凝集や肥大化の程度が大きくなり、「分散粒子径D50」や「D50/DP」が高い値を示した。また、分散剤としてポリカルボン酸塩を使用したものの、その使用量が所定の量を超える比較例6では、銀の被覆率が低下し、体積抵抗率が高い値を示した。 Moreover, although the polycarboxylate was used as the dispersant, the amount used was less than the predetermined amount, and in Comparative Example 5 in which the crystallite diameter of silver slightly exceeded 17.9 μm, the aggregation was more than in Example 5. The degree of enlargement and the degree of enlargement increased, and “dispersed particle diameter D 50 ” and “D 50 / D P ” showed high values. Moreover, although the polycarboxylic acid salt was used as a dispersing agent, in the comparative example 6 in which the usage-amount exceeds predetermined amount, the silver coating rate fell and the volume resistivity showed the high value.

これに対して、実施例1〜9では、図1に示すように、銀被覆粒子同士の凝集や被覆ムラ等はみられず、微細印刷による電極等の形成に適し、導電性にも優れた銀被覆粒子が得られた。   On the other hand, in Examples 1 to 9, as shown in FIG. 1, aggregation of silver-coated particles, coating unevenness, and the like were not observed, which was suitable for forming electrodes and the like by fine printing, and was excellent in conductivity. Silver-coated particles were obtained.

本発明は、微細な線幅での形成が要求される、例えば半導体素子、電子機器又は電子表示機器等が備える電子部品(電極又は電気配線等)や異方性導電材料の形成等に好適に利用できる。   The present invention is suitable for forming an electronic component (electrode or electrical wiring, etc.) or an anisotropic conductive material provided in a semiconductor element, electronic device, electronic display device, or the like, which requires formation with a fine line width. Available.

Claims (4)

母粒子の表面が銀で被覆された構造を有する銀被覆粒子において、
前記母粒子を被覆する前記銀の結晶子径が12.5〜17.9nmであり、
水系溶液中における前記銀被覆粒子の分散粒子径D50が0.9〜10μmであり、
100kPaの圧力をかけた状態で測定した体積抵抗率が1.0×10-3Ω・cm以下であり、
前記母粒子が樹脂、金属(但し、銅を除く。)又は金属酸化物からなることを特徴とする銀被覆粒子。
In the silver-coated particle having a structure in which the surface of the mother particle is coated with silver,
The silver crystallite diameter covering the mother particles is 12.5 to 17.9 nm,
The dispersed particle diameter D 50 of the silver-coated particles in the aqueous solution is 0.9 to 10 μm,
Volume resistivity measured while applying a pressure of 100kPa is Ri der 1.0 × 10 -3 Ω · cm or less,
Silver-coated particles , wherein the base particles are made of resin, metal (except copper) or metal oxide .
前記分散粒子径D50と前記母粒子の一次粒子径DPの比(分散粒子径D50/母粒子の一次粒子径DP)が1.1〜3.0である請求項記載の銀被覆粒子。 Silver of the dispersed particle diameter D 50 and is according to claim 1, which is a 1.1 to 3.0 (primary particle diameter D P of the dispersion particle diameter D 50 / base particles) the ratio of the primary particle diameter D P of the mother particle Coated particles. 母粒子の表面が銀で被覆された構造を有する銀被覆粒子の製造方法において、
ポリカルボン酸塩を含有する分散剤を用いた無電解めっき法により、前記母粒子の表面に銀を還元析出させる工程を含み、
前記ポリカルボン酸塩の添加量が前記母粒子100質量部に対して0.05〜2.0質量部であり、
前記母粒子を被覆する前記銀の結晶子径が12.5〜17.9nmであり、水系溶液中における前記銀被覆粒子の分散粒子径D50が0.9〜10μmであり、100kPaの圧力をかけた状態で測定した体積抵抗率が1.0×10-3Ω・cm以下である銀被覆粒子の製造方法。
In the method for producing silver-coated particles having a structure in which the surface of the mother particle is coated with silver,
Including a step of reducing and precipitating silver on the surface of the mother particles by an electroless plating method using a dispersant containing a polycarboxylate,
The addition amount of the polycarboxylate is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the base particles,
The crystallite diameter of the silver covering the mother particles is 12.5 to 17.9 nm, the dispersed particle diameter D 50 of the silver-coated particles in the aqueous solution is 0.9 to 10 μm, and the pressure is 100 kPa. A method for producing silver-coated particles, wherein the volume resistivity measured in the applied state is 1.0 × 10 −3 Ω · cm or less.
前記母粒子が樹脂、金属又は金属酸化物からなる請求項3記載の銀被覆粒子の製造方法。The method for producing silver-coated particles according to claim 3, wherein the mother particles are made of resin, metal, or metal oxide.
JP2014231640A 2014-11-14 2014-11-14 Silver-coated particles and method for producing the same Active JP6442240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014231640A JP6442240B2 (en) 2014-11-14 2014-11-14 Silver-coated particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014231640A JP6442240B2 (en) 2014-11-14 2014-11-14 Silver-coated particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016096031A JP2016096031A (en) 2016-05-26
JP6442240B2 true JP6442240B2 (en) 2018-12-19

Family

ID=56070073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014231640A Active JP6442240B2 (en) 2014-11-14 2014-11-14 Silver-coated particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6442240B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185936A (en) * 2018-04-05 2019-10-24 三菱マテリアル株式会社 Silver coating elastomer particle and flexible conductive material and conductive paste therewith
US20220288681A1 (en) * 2019-08-26 2022-09-15 Kyocera Corporation Silver particles, method for producing silver particles, paste composition, semiconductor device, and electrical and/or electronic components
JP7324299B2 (en) * 2019-09-25 2023-08-09 富士フイルム株式会社 Plating solution, plating set, manufacturing method of conductive substrate
JP7302487B2 (en) 2020-01-14 2023-07-04 トヨタ自動車株式会社 Composite particles and method for producing composite particles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4047304B2 (en) * 2003-10-22 2008-02-13 三井金属鉱業株式会社 Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
JP5406544B2 (en) * 2008-01-29 2014-02-05 積水化学工業株式会社 Method for producing conductive fine particles, and conductive fine particles
JP2010275578A (en) * 2009-05-27 2010-12-09 Mitsui Mining & Smelting Co Ltd Silver powder and production method therefor
JP5505156B2 (en) * 2010-06-30 2014-05-28 デクセリアルズ株式会社 Conductive particles, method for producing the same, and anisotropic conductive adhesive
KR101539913B1 (en) * 2010-08-20 2015-07-28 미쓰비시 마테리알 가부시키가이샤 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP5785532B2 (en) * 2012-11-30 2015-09-30 三井金属鉱業株式会社 Silver-coated copper powder and method for producing the same
JP6096143B2 (en) * 2013-09-04 2017-03-15 Dowaエレクトロニクス株式会社 Silver-coated flaky copper powder, method for producing the same, and conductive paste

Also Published As

Publication number Publication date
JP2016096031A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP5497183B2 (en) Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP6442240B2 (en) Silver-coated particles and method for producing the same
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP2007173075A (en) Conductive particulate and anisotropic conductive material
JP2007242307A (en) Conductive particulate and anisotropic conductive material
WO2017057301A1 (en) Coating liquid for forming electroconductive layer, and method for manufacturing electroconductive layer
JP5327582B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP2016139598A (en) Silver coated copper powder, and copper paste, conductive coating and conductive sheet using the same
TWI731192B (en) Metal-coated particle and resin composition
JP2004156062A (en) Double layer-coated copper powder, method for production thereof, and conductive paste obtained by using the same
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP6443732B2 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP5368611B1 (en) Conductive fine particles
JP2016060966A (en) Silver coat copper powder and conductive paste using the same, conductive coating and conductive sheet
JP5707247B2 (en) Method for producing conductive particles
JP2017066443A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME
JP5858202B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
WO2017057231A1 (en) Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER
WO2016027597A1 (en) Solder-coated ball and method for manufacturing same
JP2015004079A (en) Nickel powder and production method of the same
TWI553661B (en) Silver powder and its use of conductive paste, conductive paint, conductive film
JP2014210970A (en) Nickel powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6442240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250