JP6441454B2 - Gold hydroxo anion complex solution - Google Patents

Gold hydroxo anion complex solution Download PDF

Info

Publication number
JP6441454B2
JP6441454B2 JP2017504947A JP2017504947A JP6441454B2 JP 6441454 B2 JP6441454 B2 JP 6441454B2 JP 2017504947 A JP2017504947 A JP 2017504947A JP 2017504947 A JP2017504947 A JP 2017504947A JP 6441454 B2 JP6441454 B2 JP 6441454B2
Authority
JP
Japan
Prior art keywords
gold
solution
hydroxo
carrier
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017504947A
Other languages
Japanese (ja)
Other versions
JPWO2016143490A1 (en
Inventor
宏昭 櫻井
宏昭 櫻井
健司 古賀
健司 古賀
木内 正人
正人 木内
哲郎 神
哲郎 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2016143490A1 publication Critical patent/JPWO2016143490A1/en
Application granted granted Critical
Publication of JP6441454B2 publication Critical patent/JP6441454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

本発明は、金ヒドロキソ陰イオン錯体溶液及びその製造方法、並びに当該金ヒドロキソ陰イオン錯体溶液を用いた金ナノ粒子担持体の製造方法に関する。   The present invention relates to a gold hydroxo anion complex solution and a method for producing the same, and a method for producing a gold nanoparticle carrier using the gold hydroxo anion complex solution.

近年、金をナノ粒子として酸化物等の担体表面に担持させた金ナノ粒子触媒の種々の分野への応用が検討されている。例えば、一酸化炭素酸化除去などの室内空気浄化、NOx低減等の大気環境保全、水素中の一酸化炭素選択酸化等の燃料電池関連反応、プロピレンからのプロピレンオキサイド合成反応等の化学プロセス用反応等が代表的な応用分野である。これらの場合、適用する反応の種類に応じて担体の種類を変える必要があるが、金を10nm以下、好ましくは5nm以下の半球状のナノ粒子として担体表面に密着させることで、いずれの触媒の場合もその性能を向上させることが可能である。このため、性能を発揮させるための調製法の選択が特に重要である。   In recent years, application of gold nanoparticle catalysts in which gold is supported as a nanoparticle on the surface of a support such as an oxide is being studied in various fields. For example, indoor air purification such as carbon monoxide oxidation removal, atmospheric environment conservation such as NOx reduction, fuel cell related reactions such as selective oxidation of carbon monoxide in hydrogen, reactions for chemical processes such as propylene oxide synthesis reaction from propylene, etc. Is a typical application field. In these cases, it is necessary to change the type of the carrier according to the type of reaction to be applied. However, by attaching gold to the surface of the carrier as hemispherical nanoparticles of 10 nm or less, preferably 5 nm or less, Even in this case, the performance can be improved. For this reason, selection of the preparation method for exhibiting performance is especially important.

白金触媒やパラジウム触媒など、古くから利用されている触媒については、塩化白金酸などの貴金属化合物を水などの溶媒に溶かした溶液に担体を浸漬し、蒸発乾固などの方法で溶媒を除去して担体表面に塩化白金酸を分散担持させ、これを焼成還元して白金微粒子とする、いわゆる含浸法で調製されることが多い。白金の場合には、この方法で粒径5nm以下の白金ナノ粒子を担持することも可能である。この方法によれば、貴金属化合物と担体の組み合わせにより、容易に多種類の触媒が調製でき、量産化も容易であるために広く実施されている。   For catalysts that have been used for a long time, such as platinum catalysts and palladium catalysts, the carrier is immersed in a solution of a precious metal compound such as chloroplatinic acid in a solvent such as water, and the solvent is removed by a method such as evaporation to dryness. In many cases, it is prepared by a so-called impregnation method in which chloroplatinic acid is dispersed and supported on the surface of the carrier and calcined and reduced to form platinum fine particles. In the case of platinum, it is possible to support platinum nanoparticles having a particle size of 5 nm or less by this method. According to this method, a wide variety of catalysts can be easily prepared by combining a noble metal compound and a carrier, and mass production is easy.

しかしながら、金の場合には、通常の含浸法では高活性な触媒が得られない。例えば、塩化金酸を用いて白金触媒と同様の含浸法で調製しても、金の粒径は30nm程度と大きくなる。これは、原料の塩化金酸に含まれる塩化物イオンが熱分解の際に金を凝集させ粗大化した粒子となるためであると指摘されている。更に、熱分解処理後も、残存した塩化物イオンが多くの触媒反応に対して活性点の被毒を起こすため、金の凝集と併せて二重の負要因となり活性は著しく低くなる。   However, in the case of gold, a highly active catalyst cannot be obtained by a normal impregnation method. For example, even when prepared by an impregnation method similar to that for a platinum catalyst using chloroauric acid, the particle size of gold becomes as large as about 30 nm. It has been pointed out that this is because chloride ions contained in the raw material chloroauric acid result in particles that have become agglomerated and agglomerated during the thermal decomposition. Furthermore, even after the thermal decomposition treatment, the remaining chloride ions cause poisoning of the active sites for many catalytic reactions, so that the activity becomes extremely low due to a double negative factor together with the aggregation of gold.

このため、共沈法や析出沈殿法による金触媒の調製手法が確立するまで、金は触媒としては不活性な元素であるとして扱われてきた。金を初めて高活性な触媒とするのに成功した共沈法では、原料としては塩化金酸を用いるものの、塩基を加えて中和し担体酸化物の前駆体と共に沈殿させることにより、塩化物イオンを含まない水酸化金Au(OH)3の形とし、この段階で共沈物の水洗を行い、塩化物イオンを除去し、その後乾燥焼成して高活性な金触媒を得ている。共沈物を洗浄する操作は特に重要であり、300ppm程度という微量でも塩化物イオンが残存すると焼成時に金の粒径を増大させることが報告されている。このため、洗浄操作は大量の水を用い繰り返し行う必要があるが、表面積の大きな高活性触媒を得るためには担体酸化物も微細粒子とする必要があるため、洗浄操作において通常用いられるろ過法、デカンテ−ション法、遠心分離法のいずれの方法で行った場合にも水と沈殿物の分離は長時間を要する場合が多く、繰り返し洗浄して塩化物イオンが検出されなくなるまで洗浄を行うことは大変手間のかかる操作である。For this reason, gold has been treated as an inactive element as a catalyst until a method for preparing a gold catalyst by a coprecipitation method or a precipitation method is established. In the coprecipitation method that succeeded in making gold a highly active catalyst for the first time, although chloroauric acid is used as a raw material, it is neutralized by adding a base and precipitated together with a precursor of a carrier oxide. was in the form of gold hydroxide Au (OH) 3 which does not contain, followed by washing with water of the coprecipitate at this stage, to remove chloride ions, to obtain a highly active gold catalysts and then drying and firing. The operation of washing the coprecipitate is particularly important, and it has been reported that the presence of chloride ions even in a trace amount of about 300 ppm increases the particle size of gold during firing. For this reason, the washing operation needs to be repeated using a large amount of water, but in order to obtain a highly active catalyst with a large surface area, the carrier oxide also needs to be made into fine particles. In many cases, the separation of water and precipitates takes a long time regardless of the decantation method or the centrifugal separation method, and it is necessary to wash repeatedly until no chloride ions are detected. Is a very time-consuming operation.

また、液相中に残存している金は洗浄操作により洗い流されるため、仕込み条件の金担持量に比べて最終的に表面に担持された金の量が少なくなることも大きな問題である。金/酸化チタン触媒では、析出沈殿法を用いpH7付近で調製するとCO酸化に活性の高い触媒が調製できるが、例えば3質量%の金の仕込み量で調製しても、調製後の実際の金/酸化チタンに含まれる金は1.5質量%程度であり、仕込み量の約50%しか担持されない。また析出沈殿法で金を担持できる担体は塩基性〜両性酸化物に限定されるため、シリカやシリカ−アルミナ等の酸性酸化物には金を担持することができない。   Further, since the gold remaining in the liquid phase is washed away by the washing operation, it is a big problem that the amount of gold finally supported on the surface is smaller than the amount of gold supported under the charging conditions. With a gold / titanium oxide catalyst, a catalyst having a high activity for CO oxidation can be prepared by using a precipitation method in the vicinity of pH 7. For example, even if it is prepared with a charge amount of 3% by weight of gold, the actual gold after preparation is prepared. / The gold contained in titanium oxide is about 1.5% by mass, and only about 50% of the charged amount is supported. Further, since the carrier capable of supporting gold by the precipitation method is limited to basic to amphoteric oxides, it cannot support gold on acidic oxides such as silica and silica-alumina.

また、下記特許文献1、非特許文献1等には、塩化金酸を酸化チタンに含浸させ、更に炭酸ナトリウムを含浸させることによって細孔内に水酸化金を析出させ、水洗した後、120℃で乾燥することにより高い活性を示す金/酸化チタンとする方法が記載されている。しかしながら、この方法では、水洗により完全な塩化物イオンの除去はできず、析出沈殿法に比して多くの塩化物イオンが検出されており、400℃程度で焼成すると活性が低下する。   Further, in the following Patent Document 1, Non-Patent Document 1, etc., after impregnating titanium oxide with chloroauric acid and further impregnating with sodium carbonate, gold hydroxide is precipitated in the pores, washed with water, A method is described in which gold / titanium oxide showing high activity is dried by drying. However, in this method, chloride ions cannot be completely removed by washing with water, and many chloride ions are detected as compared with the precipitation method, and the activity is reduced when firing at about 400 ° C.

一方、塩化物イオンを含まない金化合物として酢酸金を用い、通常の析出沈殿法と同じ調製条件でAu/TiO2を調製する方法が報告されている(下記非特許文献2参照)。この方法では、酢酸金を用いることで洗浄により失われる金の量が減少して金の担持率が向上したが、触媒活性については、塩化金酸を原料とした場合より劣る結果であった。On the other hand, a method has been reported in which gold acetate is used as a gold compound not containing chloride ions, and Au / TiO 2 is prepared under the same preparation conditions as in a conventional precipitation method (see Non-Patent Document 2 below). In this method, the amount of gold lost by washing was reduced by using gold acetate, and the gold loading rate was improved, but the catalytic activity was inferior to the case of using chloroauric acid as a raw material.

以上のように、液相の金ナノ粒子調製プロセスには各種の欠点があり、このため気相法や固相法による金ナノ粒子触媒調製法も検討されている。気相法の代表的なものとしては、ジメチル金アセチルアセトナト錯体(CH32Au(acac)を真空ライン内で気化させて担持させる気相グラフティング法があり、また固相法の一種として同じ錯体を担体と乳鉢で混合粉砕し昇華した金前駆体を表面に高分散で担持させる固相混合法がある。これらの方法では、金の原料自体に塩化物イオンが含まれていない上に、従来の液相法では担持できない酸性酸化物、活性炭、ポリマ−、多孔性高分子錯体など種々の担体への担持が可能となる。しかしながら、前駆体の金錯体は高価であり、昇華性の金錯体は人体に有害であり吸引しないよう取り扱う必要があり、装置的にも量産化は必ずしも容易ではない。As described above, the liquid phase gold nanoparticle preparation process has various drawbacks, and therefore, gold nanoparticle catalyst preparation methods using a gas phase method or a solid phase method have been studied. A typical example of the gas phase method is a gas phase grafting method in which dimethylgold acetylacetonate complex (CH 3 ) 2 Au (acac) is vaporized and supported in a vacuum line. There is a solid phase mixing method in which the same complex is mixed and pulverized in a carrier and a mortar, and a sublimated gold precursor is supported on the surface with high dispersion. In these methods, the gold raw material itself does not contain chloride ions and is supported on various carriers such as acidic oxides, activated carbon, polymers, porous polymer complexes that cannot be supported by the conventional liquid phase method. Is possible. However, the gold complex of the precursor is expensive, and the sublimable gold complex is harmful to the human body and needs to be handled so as not to be sucked, and mass production is not always easy in terms of equipment.

以上のような液相の金ナノ粒子調製プロセスの種々の問題点を解決する方法としては、例えば、特許文献2に開示された方法が挙げられる。   As a method for solving various problems of the liquid phase gold nanoparticle preparation process as described above, for example, the method disclosed in Patent Document 2 can be mentioned.

US2007/0219090A1US2007 / 0219090A1 WO2012/144532WO2012 / 144532

M.Bowker et al., Catalysis Today 122 (2007) 245−247M.M. Bowker et al. , Catalysis Today 122 (2007) 245-247 C.Cellier et al., Studies in Surface Scinence and Catalysis, 162, p.545, Jan 2006C. Cellier et al. , Studies in Surface Science and Catalysis, 162, p. 545, Jan 2006

特許文献2に開示された技術によれば、液相法を適用した金ナノ粒子触媒の調製方法において、原料として塩化物イオンなどのハロゲン化物イオンを含まない金化合物を用い、これを効率よく担持させることができ、しかも簡単な調製方法によって、高活性の金ナノ粒子担持触媒を作製することが可能となる。   According to the technique disclosed in Patent Document 2, in a method for preparing a gold nanoparticle catalyst using a liquid phase method, a gold compound containing no halide ions such as chloride ions is used as a raw material, and this is efficiently supported. In addition, a highly active gold nanoparticle-supported catalyst can be produced by a simple preparation method.

ところが、特許文献2に開示された技術においては、金ナノ粒子触媒の調製に用いる金ヒドロキソ陰イオン錯体溶液のpHは、原料である酢酸金を溶解させるために8以上に設定する必要があった。担持された金ナノ粒子の粒子径を調節するためには、金の担持量を変えたり、担持後の熱処理温度を変えたりする必要があり、溶液の違いにより粒子径制御を行うことは不可能であった。また、例えば、金ヒドロキソ陰イオン錯体溶液を担持させる担体として、シリカやゼオライトなどのアルカリ性に弱い担体を選択することが必ずしも好ましくない場合がある。
このような状況下、本発明は、金ナノ粒子の粒子径制御を容易に行うことができ、従来より低いpHにおいて、金ナノ粒子触媒の製造に使用し得る金ヒドロキソ陰イオン錯体溶液を提供することを主な目的とする。さらに、本発明は、当該金ヒドロキソ陰イオン錯体溶液の製造方法、及び当該金ヒドロキソ陰イオン錯体溶液を用いた金ナノ粒子担持体の製造方法を提供することも主な目的とする。
However, in the technique disclosed in Patent Document 2, it is necessary to set the pH of the gold hydroxo anion complex solution used for the preparation of the gold nanoparticle catalyst to 8 or more in order to dissolve the raw material gold acetate. . In order to adjust the particle size of the supported gold nanoparticles, it is necessary to change the amount of gold supported or the heat treatment temperature after loading, and it is impossible to control the particle size depending on the solution. Met. Further, for example, it may not always be preferable to select a weakly alkaline carrier such as silica or zeolite as the carrier for supporting the gold hydroxo anion complex solution.
Under such circumstances, the present invention provides a gold hydroxo anion complex solution that can easily control the particle size of gold nanoparticles and can be used for the production of gold nanoparticle catalysts at a lower pH than before. The main purpose. Furthermore, the main object of the present invention is to provide a method for producing the gold hydroxo anion complex solution and a method for producing a gold nanoparticle carrier using the gold hydroxo anion complex solution.

本発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、ハロゲン化物イオン含まない3価の金化合物を水に懸濁又は分散させたpH8以上の溶液中で、弱酸の共役塩基の存在下において、金化合物の加水分解反応を進行させた反応液を調製する工程1と、前記反応液と弱酸とを混合する工程2とを備える、金ヒドロキソ陰イオン錯体溶液の製造方法により、より低いpH(8未満)において、金ナノ粒子触媒の製造に好適に使用し得る金ヒドロキソ陰イオン錯体溶液が得られることを見出した。従来の知見では、特許文献2において、pHは少なくとも8以上に設定する必要があると考えられていたため、この結果は非常に意外なものであった。また、このような製造方法では、pHが8未満だけでなく、pHが8以上においても、金ナノ粒子触媒の製造に好適に使用し得る金ヒドロキソ陰イオン錯体溶液が得られ、弱酸の混合比により溶液のpHを変えることで担持される金ナノ粒子の粒子径制御を容易に行い得ることも見出した。本発明は、このような知見に基づいて、さらに検討を重ねることにより完成された発明である。   The present inventors have intensively studied to solve the above problems. As a result, a reaction solution in which the hydrolysis reaction of the gold compound was advanced in the presence of a conjugate base of a weak acid in a solution having a pH of 8 or higher in which a trivalent gold compound not containing halide ions was suspended or dispersed in water. Suitable for the production of gold nanoparticle catalyst at a lower pH (less than 8) by the method for producing a gold hydroxo anion complex solution comprising the step 1 for preparing a solution and the step 2 for mixing the reaction solution and a weak acid. It was found that a gold hydroxo anion complex solution that can be used in the present invention is obtained. According to the conventional knowledge, it has been considered in Patent Document 2 that the pH needs to be set to at least 8 or more, so this result is very unexpected. Further, in such a production method, a gold hydroxo anion complex solution that can be suitably used for the production of a gold nanoparticle catalyst is obtained not only at a pH of less than 8, but also at a pH of 8 or more, and a mixing ratio of weak acids. It was also found that the particle size of the gold nanoparticles supported can be easily controlled by changing the pH of the solution. The present invention has been completed by further studies based on such findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. ハロゲン化物イオンを含まない3価の金化合物を水に懸濁又は分散させたpH8以上の溶液中で、弱酸の共役塩基の存在下において、金化合物の加水分解反応を進行させた反応液を調製する工程1と、
前記反応液と弱酸とを混合する工程2と、
を備える、金ヒドロキソ陰イオン錯体溶液の製造方法。
項2. 前記工程2における前記弱酸が、カルボン酸、リン酸、及び炭酸からなる群から選択された少なくとも1種である、項1に記載の金ヒドロキソ陰イオン錯体溶液の製造方法。
項3. 前記工程1における前記ハロゲン化物イオンを含まない3価の金化合物が、金カルボキシラ−ト、酸化金、水酸化金、及び金とアルカリ金属との複酸化物からなる群から選択された少なくとも1種である、項1または2に記載の金ヒドロキソ陰イオン錯体溶液の製造方法。
項4. 前記工程1における前記弱酸の共役塩基が、カルボキシレ−ト陰イオン、炭酸イオン、炭酸水素イオン、リン酸イオン、及びホウ酸イオンからなる群から選ばれた少なくとも1種である、項1〜3のいずれかに記載の金ヒドロキソ陰イオン錯体溶液の製造方法。
項5. 前記工程2において、前記弱酸によって金ヒドロキソ陰イオン錯体溶液のpHを8未満に調整する、項1〜4のいずれかに記載の金ヒドロキソ陰イオン錯体溶液の製造方法。
項6. 項1〜5のいずれかに記載の金ヒドロキソ陰イオン錯体溶液の製造方法により製造された金ヒドロキソ陰イオン錯体溶液を、担体に含浸させる工程Aと、
前記金ヒドロキソ陰イオン錯体溶液が含浸された担体から水分を除去し、熱処理を行う工程Bと、
を備える、金ナノ粒子担持体の製造方法。
項7. 前記担体が、金属酸化物、多孔質ケイ酸塩、多孔質金属錯体、多孔質ポリマ−ビ−ズ、炭素材料、セラミックハニカム、及びメタルハニカムからなる群から選ばれた少なくとも1種である、項6に記載の金ナノ粒子担持体の製造方法。
項8. 少なくとも一つの配位子がOH-であって、ハロゲン陰イオンを配位子として含まない平面四角形構造の3価金のヒドロキソ陰イオン錯体と、金に配位していない弱酸の共役塩基を含み、ハロゲン陰イオンを含まない、pHが8未満の透明溶液からなる、金ヒドロキソ陰イオン錯体溶液。
項9. 金ナノ粒子担持体を製造するための含浸液である、項8に記載の金ヒドロキソ陰イオン錯体溶液。
That is, this invention provides the invention of the aspect hung up below.
Item 1. Preparation of a reaction solution in which a hydrolysis reaction of a gold compound proceeds in a solution of pH 8 or higher in which a trivalent gold compound not containing halide ions is suspended or dispersed in water in the presence of a conjugate base of a weak acid Step 1 to perform,
Step 2 of mixing the reaction solution and a weak acid;
A method for producing a gold hydroxo anion complex solution.
Item 2. Item 2. The method for producing a gold hydroxo anion complex solution according to Item 1, wherein the weak acid in Step 2 is at least one selected from the group consisting of carboxylic acid, phosphoric acid, and carbonic acid.
Item 3. The trivalent gold compound not containing the halide ion in the step 1 is at least one selected from the group consisting of gold carboxylate, gold oxide, gold hydroxide, and a double oxide of gold and an alkali metal. Item 3. A method for producing a gold hydroxo anion complex solution according to Item 1 or 2, which is a seed.
Item 4. Claims 1-3 wherein the conjugate base of the weak acid in Step 1 is at least one selected from the group consisting of carboxylate anions, carbonate ions, bicarbonate ions, phosphate ions, and borate ions. A method for producing a gold hydroxo anion complex solution according to any one of the above.
Item 5. Item 5. The method for producing a gold hydroxo anion complex solution according to any one of Items 1 to 4, wherein in the step 2, the pH of the gold hydroxo anion complex solution is adjusted to less than 8 with the weak acid.
Item 6. The step A of impregnating a carrier with the gold hydroxo anion complex solution produced by the method for producing a gold hydroxo anion complex solution according to any one of Items 1 to 5,
Removing water from the carrier impregnated with the gold hydroxo anion complex solution and performing a heat treatment; and
A method for producing a gold nanoparticle carrier.
Item 7. The carrier is at least one selected from the group consisting of metal oxides, porous silicates, porous metal complexes, porous polymer beads, carbon materials, ceramic honeycombs, and metal honeycombs. 6. A method for producing a gold nanoparticle carrier according to 6.
Item 8. At least one ligand is OH - an A, includes a hydroxo anionic complex of 3 Ataikin square planar structure containing no halogen anion as a ligand, the conjugate base of a weak acid that does not coordinate to gold A gold hydroxo anion complex solution comprising a transparent solution having a pH of less than 8 and containing no halogen anion.
Item 9. Item 9. The gold hydroxo anion complex solution according to Item 8, which is an impregnating solution for producing a gold nanoparticle carrier.

本発明の金ヒドロキソ陰イオン錯体溶液の製造方法によれば、ハロゲン化物イオンを含まない3価の金化合物を水に懸濁又は分散させたpH8以上の溶液中で、弱酸の共役塩基の存在下において、金化合物の加水分解反応を進行させた反応液を調製する工程1と、当該反応液と弱酸とを混合する工程2とを備えることにより、例えばpHが8未満という、従来は金ナノ粒子触媒の製造に使用できないと考えられていた塩化物イオン等のハロゲン化物イオンを含有しない金ヒドロキソ陰イオン錯体溶液を好適に製造することができる。また、本発明の金ヒドロキソ陰イオン錯体溶液の製造方法においては、pHが8未満だけでなく、pHが8以上においても、金ナノ粒子触媒の製造に使用し得る金ヒドロキソ陰イオン錯体溶液が好適に製造できる。さらに、本発明によれば、当該金ヒドロキソ陰イオン錯体溶液、及び当該金ヒドロキソ陰イオン錯体溶液を用い、粒子径が制御された金ナノ粒子担持体の製造方法を提供することもできる。   According to the method for producing a gold hydroxo anion complex solution of the present invention, a trivalent gold compound not containing a halide ion is suspended or dispersed in water at a pH of 8 or higher in the presence of a conjugate base of a weak acid. In the prior art, for example, a gold nanoparticle having a pH of less than 8 is prepared by including a step 1 for preparing a reaction solution in which a hydrolysis reaction of a gold compound proceeds and a step 2 for mixing the reaction solution and a weak acid. A gold hydroxo anion complex solution that does not contain halide ions such as chloride ions, which have been thought to be unusable for the production of catalysts, can be suitably produced. Further, in the method for producing a gold hydroxo anion complex solution of the present invention, a gold hydroxo anion complex solution that can be used for producing a gold nanoparticle catalyst not only at a pH of less than 8 but also at a pH of 8 or more is suitable. Can be manufactured. Furthermore, according to this invention, the manufacturing method of the gold | metal | money nanoparticle support body by which the particle diameter was controlled using the said gold hydroxo anion complex solution and the said gold hydroxo anion complex solution can also be provided.

C.F.B.Jr., R.E.Mesmer, The Hydrolysis of Cations, Wiley, 1976に記載の溶液中におけるハロゲンイオン濃度とpHと金錯体の組成との関係を示すグラフである。C. F. B. Jr. , R.M. E. It is a graph which shows the relationship between the halogen ion density | concentration in the solution as described in Mesmer, The Hydrolysis of Cations, Wiley, 1976, pH, and a composition of a gold complex. 実施例及び比較例で得られた金ナノ粒子酸化セリウム担持体における金の粒子径と、金ナノ粒子担持体の調製に用いた金ヒドロキソ陰イオン錯体溶液のpHとの関係を示すグラフである。It is a graph which shows the relationship between the particle diameter of the gold | metal | money in the gold nanoparticle cerium oxide support body obtained by the Example and the comparative example, and the pH of the gold hydroxo anion complex solution used for preparation of a gold nanoparticle support body. 実施例及び比較例で得られた金ナノ粒子酸化セリウム担持体を用いてCO酸化反応を行った場合におけるCO転化率(%)と、金ナノ粒子担持体の調製に用いた金ヒドロキソ陰イオン錯体溶液のpHとの関係を示すグラフである。CO conversion rate (%) in the case of performing CO oxidation reaction using the gold nanoparticle cerium oxide support obtained in Examples and Comparative Examples, and the gold hydroxo anion complex used for the preparation of the gold nanoparticle support It is a graph which shows the relationship with pH of a solution. 図2と図3のデータから、金の粒子径とCO酸化活性の関係についてプロットした図である。図の横軸には金の粒子径(nm)の逆数をとり、縦軸にはCO転化率(%)をとっている。It is the figure which plotted about the relationship between the particle diameter of gold | metal | money and CO oxidation activity from the data of FIG. 2 and FIG. In the figure, the horizontal axis represents the reciprocal of the particle diameter (nm) of gold, and the vertical axis represents the CO conversion rate (%). 実施例及び比較例で得られた金ナノ粒子βゼオライト担持体および金ナノ粒子を担持していないH型βゼオライトの粉末X線回折の測定結果である。It is a measurement result of the powder X-ray diffraction of the gold | metal | money nanoparticle beta zeolite support body obtained by the Example and the comparative example, and the H-type beta zeolite which is not carrying | supporting a gold nanoparticle. 実施例及び比較例で得られた金ナノ粒子酸化チタン担持体を光触媒として用い、メタノールを犠牲剤とする水分解水素発生反応に対する活性を評価した結果である。It is the result of having evaluated the activity with respect to the water-splitting hydrogen generation reaction which uses methanol as a sacrificial agent using the gold nanoparticle titanium oxide support body obtained by the Example and the comparative example as a photocatalyst. 実施例で得られた金ナノ粒子酸化チタン担持体を光触媒として用い、グリセリンを犠牲剤とする水分解水素発生反応に対する活性を評価した結果である。It is the result of having evaluated the activity with respect to the water-splitting hydrogen generation reaction which uses glycerin as a sacrificial agent using the gold nanoparticle titanium oxide support body obtained in the Example as a photocatalyst.

1.金ヒドロキソ陰イオン錯体溶液の製造方法
本発明の金ヒドロキソ陰イオン錯体溶液の製造方法は、ハロゲン化物イオンを含まない3価の金化合物を水に懸濁又は分散させたpH8以上の溶液中で、弱酸の共役塩基の存在下において、金化合物の加水分解反応を進行させた反応液を調製する工程1と、前記反応液と弱酸とを混合する工程2とを備えていることを特徴とする。以下、本発明の金ヒドロキソ陰イオン錯体溶液の製造方法について詳述する。
1. Method for Producing Gold Hydroxo Anion Complex Solution The method for producing a gold hydroxo anion complex solution of the present invention comprises a solution having a pH of 8 or more in which a trivalent gold compound not containing a halide ion is suspended or dispersed in water. It comprises a step 1 for preparing a reaction solution in which a hydrolysis reaction of a gold compound proceeds in the presence of a conjugate base of a weak acid, and a step 2 for mixing the reaction solution and a weak acid. Hereinafter, the manufacturing method of the gold hydroxo anion complex solution of this invention is explained in full detail.

(工程1)
原料化合物
本発明の工程1において使用する原料としては、ハロゲン化物イオンを含まない3価の金を含む金化合物を用いる。一般に、金ナノ粒子触媒の製造原料としては、塩化金酸が用いられることが多いが、塩化金酸を用いる場合には、高分散・高活性の触媒を得るためには、残留する塩化物イオンを除去することが必要である。このため、処理工程が煩雑となり、金の利用率が低いという問題がある。
(Process 1)
Raw Material Compound As the raw material used in Step 1 of the present invention, a gold compound containing trivalent gold not containing halide ions is used. In general, chloroauric acid is often used as a raw material for the production of gold nanoparticle catalysts. However, in the case of using chloroauric acid, in order to obtain a highly dispersed and highly active catalyst, residual chloride ions are used. Need to be removed. For this reason, a process process becomes complicated and there exists a problem that the utilization factor of gold is low.

しかも、World Gold Councilの金参照触媒である析出沈殿法Au/TiO2(Au 1.5質量%))について、塩化物イオンの分析値として47ppmという報告があり(M. Azar et al., Journal of Catalysis 239 (2006) 307−312)、通常の塩化金酸を用いる従来調製法ではこれより大きく塩化物イオンを減らすことは困難である。Moreover, there is a report of 47 ppm as an analytical value of chloride ion for the precipitation / precipitation method Au / TiO 2 (Au 1.5 mass%) which is a gold reference catalyst of World Gold Council (M. Azar et al., Journal). of Catalysis 239 (2006) 307-312), it is difficult to reduce chloride ions by a conventional preparation method using ordinary chloroauric acid.

本発明では、ハロゲン化物イオンを含まない3価の金化合物を原料として用い、後述する方法で、金化合物が均一に溶解した金のヒドロキソ陰イオン錯体溶液を調製し、これを用いて含浸法によって金ナノ粒子触媒を作製することにより、ハロゲン化物イオンの存在による問題点を解消して、高分散・高活性の触媒を得ることが可能である。また、仮に原料の金化合物が0.01質量%の不純物ハロゲン化物イオンを含んでおり、調製後の金触媒中に全て残存したとしても金担持量が1.5質量%であれば、ハロゲン化物イオンは最大でも3ppm以下となり、従来法よりも大幅に塩化物イオンを減らすことが可能である。   In the present invention, a trivalent gold compound not containing halide ions is used as a raw material, and a gold hydroxo anion complex solution in which the gold compound is uniformly dissolved is prepared by the method described later, and this is used to impregnate the solution. By producing a gold nanoparticle catalyst, it is possible to eliminate the problems caused by the presence of halide ions and obtain a highly dispersed and highly active catalyst. In addition, if the gold compound as a raw material contains 0.01% by mass of impurity halide ions and remains in the gold catalyst after preparation, if the amount of gold supported is 1.5% by mass, the halide Ions are 3 ppm or less at maximum, and chloride ions can be greatly reduced as compared with conventional methods.

本発明では、ハロゲン化物イオンを含まない3価の金化合物としては、例えば、下記の(1)〜(4)項に示す金化合物を好適に用いることができる。
(1)金カルボキシラ−ト:Au(CH3COO)3,Au(C25COO)3等(塩基性塩であるAu(OH)(CH3COO)2,Au(OH)2(CH3COO)等を含んでいてもよい)
(2)酸化金:Au23
(3)水酸化金:Au(OH)3
(4)金とアルカリ金属との複酸化物:NaAuO2, KAuO2
In the present invention, as the trivalent gold compound not containing halide ions, for example, gold compounds shown in the following items (1) to (4) can be preferably used.
(1) Gold carboxylate: Au (CH 3 COO) 3 , Au (C 2 H 5 COO) 3, etc. (basic salt Au (OH) (CH 3 COO) 2 , Au (OH) 2 ( CH 3 COO) etc. may be included)
(2) Gold oxide: Au 2 O 3
(3) Gold hydroxide: Au (OH) 3
(4) Gold and alkali metal double oxide: NaAuO 2 , KAuO 2, etc.

反応液の調製
本発明の工程1においては、まず、上記したハロゲン化物イオンを含まない3価の金化合物を原料として用い、これを水に懸濁又は分散させたpH8以上、好ましくはpH10以上の溶液中で、弱酸の共役塩基の存在下において、金化合物の加水分解反応を進行させて反応液を得る。この反応液における金化合物の濃度については特に限定的ではなく、均一な分散液を形成できればよいが、通常、0.001〜10質量%程度の範囲とすればよい。
Preparation of reaction solution In step 1 of the present invention, first, the above-described trivalent gold compound not containing halide ions is used as a raw material, and this is suspended or dispersed in water at pH 8 or more, preferably pH 10 or more. In the solution, the hydrolysis reaction of the gold compound proceeds in the presence of a conjugated base of a weak acid to obtain a reaction solution. The concentration of the gold compound in this reaction solution is not particularly limited, and it is sufficient that a uniform dispersion can be formed, but it is usually within a range of about 0.001 to 10% by mass.

上記溶液中に存在させる弱酸の共役塩基とは、具体的には、弱酸HAの下記電離式で表されるA-を意味するものである。Specifically, the conjugate base of the weak acid present in the solution means A represented by the following ionization formula of the weak acid HA.

Figure 0006441454
Figure 0006441454

本発明では、弱酸の共役塩基としては、上記定義に当てはまるものであれば特に限定無く使用できる。このような弱酸の共役塩基の具体例としては、カルボキシレ−ト陰イオン、炭酸イオン、炭酸水素イオン、リン酸イオン、及びホウ酸イオン等を挙げることができる。カルボキシレ−ト陰イオンとしては、好ましくは、ギ酸イオン、酢酸イオン、プロピオン酸イオン、乳酸イオン、酪酸イオンなどのモノカルボン酸イオン;シュウ酸イオン、コハク酸イオン、リンゴ酸イオン、酒石酸イオン、フマル酸イオンなどのジカルボン酸イオン;クエン酸イオンなどのトリカルボン酸イオンなどが挙げられる。   In the present invention, the conjugate base of the weak acid can be used without particular limitation as long as it meets the above definition. Specific examples of such weak acid conjugate bases include carboxylate anions, carbonate ions, hydrogen carbonate ions, phosphate ions, and borate ions. As the carboxylate anion, monocarboxylate ions such as formate ion, acetate ion, propionate ion, lactate ion, butyrate ion; oxalate ion, succinate ion, malate ion, tartrate ion, fumarate And dicarboxylic acid ions such as acid ions; and tricarboxylic acid ions such as citrate ions.

金化合物を水に懸濁又は分散させた、弱酸の共役塩基を含むpH8以上の反応液を調製するには、予め、弱酸と強塩基との塩を水に溶解しpHが8以上となるように調整した水溶液に3価の金化合物を添加してもよく、或いは、3価の金化合物を水に懸濁又は分散させた溶液に弱酸と強塩基との塩を添加してpHを8以上としてもよい。これらの場合には、弱酸と強塩基との塩の量は、金化合物を水に懸濁又は分散させた溶液のpHが8以上となる量とすればよい。また、金化合物として酢酸金等を用いる場合には、金化合物自体から弱酸の共役塩基である酢酸イオンが生じるので、NaOH等の強塩基を用いてpH調整を行ってもよい。   In order to prepare a reaction solution having a pH of 8 or more containing a conjugate base of a weak acid in which a gold compound is suspended or dispersed in water, a salt of a weak acid and a strong base is previously dissolved in water so that the pH becomes 8 or more. A trivalent gold compound may be added to an aqueous solution adjusted to 1 or a salt of a weak acid and a strong base is added to a solution in which a trivalent gold compound is suspended or dispersed in water to adjust the pH to 8 or more. It is good. In these cases, the amount of the salt of the weak acid and the strong base may be such that the pH of the solution in which the gold compound is suspended or dispersed in water is 8 or more. In addition, when gold acetate or the like is used as the gold compound, acetate ions that are conjugate bases of weak acids are generated from the gold compound itself, and thus pH adjustment may be performed using a strong base such as NaOH.

該溶液のpHが8以上であることによって、均一な溶液を得ることができるが、工程1におけるpH値がこれを下回ると、水酸化金Au(OH)3の沈殿が生じ易く、均一な溶液を得ることが困難である。When the pH of the solution is 8 or more, a uniform solution can be obtained. However, if the pH value in step 1 is lower than this, precipitation of gold hydroxide Au (OH) 3 is likely to occur, and the uniform solution Is difficult to get.

尚、pHを8以上に調整するために用いる弱酸と強塩基との塩としては、例えば、陽イオン成分としてアルカリ金属イオン(K+, Na+等)、アルカリ土類金属イオン(Ca2+, Ba2+等)等を含み、上記した共役塩基を生じる弱酸の塩を用いればよく、特に、陽イオン成分としてアルカリ金属イオンを含む弱酸の塩を用いることが好ましい。Examples of the salt of a weak acid and a strong base used for adjusting the pH to 8 or more include, for example, alkali metal ions (K + , Na + etc.), alkaline earth metal ions (Ca 2+ , It is sufficient to use a salt of a weak acid containing Ba 2+ or the like and generating the above-mentioned conjugate base, and it is particularly preferable to use a salt of a weak acid containing an alkali metal ion as a cation component.

尚、pHの上限については特に限定はないが、通常14程度以下とすればよい。   The upper limit of the pH is not particularly limited, but is usually about 14 or less.

上記した方法で調製される3価の金化合物を水に懸濁又は分散させた、弱酸の共役塩基を含むpH8以上の溶液は、金化合物の加水分解が徐々に進行して、常温でも長時間をかけると金化合物が金ヒドロキソ陰イオン錯体として完全に溶解して透明な均一溶液(反応液)が得られる。通常は、透明溶液の調製時間を短縮するために、80℃以上に加熱することが好ましく、特に、煮沸還流することが好ましい。また、加熱前に超音波洗浄機などを用いて均一に分散させても直ちに均一な金化合物の水溶液を得ることはできないが、濃度によっては当該金化合物のコロイド溶液とすることができ、その後の加水分解に要する時間を短縮することができる。但し、超音波分散を過度に行うと生成物に黒色沈殿が混じることがある。   A solution with a pH of 8 or more containing a conjugate base of a weak acid, in which the trivalent gold compound prepared by the above method is suspended or dispersed in water, the gold compound is gradually hydrolyzed, and the solution continues for a long time even at room temperature. , The gold compound is completely dissolved as a gold hydroxo anion complex, and a transparent homogeneous solution (reaction solution) is obtained. Usually, in order to shorten the preparation time of the transparent solution, it is preferable to heat to 80 ° C. or higher, and it is particularly preferable to boil and reflux. Moreover, even if it is uniformly dispersed using an ultrasonic cleaner or the like before heating, a uniform aqueous solution of gold compound cannot be obtained immediately, but depending on the concentration, a colloidal solution of the gold compound can be obtained. The time required for hydrolysis can be shortened. However, if ultrasonic dispersion is excessively performed, black precipitates may be mixed with the product.

金化合物として水酸化金、酸化金等を用いる場合には、酢酸金を用いる場合と比較すると、同条件では透明溶液を得るために長時間を要するが、いずれの反応条件を用いた場合でも、原料粉末の溶け残りやコロイドが無くなるまで反応させれば、目的とする透明溶液を得ることができる。尚、原料粉末の溶け残りが存在する場合であっても、上澄み液を分取すれば、金化合物を溶解した透明溶液を得ることができる。   When using gold hydroxide, gold oxide or the like as the gold compound, compared to using gold acetate, it takes a long time to obtain a transparent solution under the same conditions, but no matter which reaction condition is used, If the reaction is performed until the raw material powder remains undissolved and the colloid disappears, a desired transparent solution can be obtained. Even when the raw powder remains undissolved, a clear solution in which the gold compound is dissolved can be obtained by separating the supernatant.

具体的な溶液調製方法の例としては、例えば、金化合物として酢酸金を用い、pH調整に炭酸ナトリウムを用いる場合には、酢酸金を脱イオン水に加え、これに炭酸ナトリウム水溶液を加えてpH8以上として、沸騰還流すると、数分で茶色のコロイド液から黄色の透明溶液となり、約10分程度で無色透明の反応液が得られる。   As an example of a specific solution preparation method, for example, when gold acetate is used as a gold compound and sodium carbonate is used for pH adjustment, gold acetate is added to deionized water, and an aqueous sodium carbonate solution is added thereto to adjust pH 8 As described above, when boiling to reflux, a brown colloidal solution turns into a yellow transparent solution in a few minutes, and a colorless and transparent reaction solution is obtained in about 10 minutes.

反応終了後、室温に戻せば均一透明な反応液が得られる。この反応液を用いて、後述する工程2を行い、その後に金ナノ粒子担持体(金ナノ粒子触媒)を調製することができる。反応液を一日程度放置すると、微量の黒色沈殿が分離することがあるが、メンブランフィルタ−等を用いてろ過して沈殿を除去した溶液を使用することも可能である。   After completion of the reaction, the reaction solution is returned to room temperature to obtain a uniform transparent reaction solution. Using this reaction solution, Step 2 described later is performed, and then a gold nanoparticle carrier (gold nanoparticle catalyst) can be prepared. When the reaction solution is allowed to stand for about a day, a small amount of black precipitate may be separated, but it is also possible to use a solution from which the precipitate has been removed by filtration using a membrane filter or the like.

上記した方法で調製される反応液(透明溶液)は、塩化物イオンなどのハロゲン化物イオンを含まない金のヒドロキソ陰イオン錯体が均一に溶解した溶液であり、金粒子を粗大化させる要因となり、触媒反応に対して被毒物質となるハロゲン化物イオンを含まない。このため、後述する工程2でこの反応液を弱酸と混合し、得られた溶液を担体に含浸させた後、熱処理する方法によれば、金のナノ粒子を均一に担持した高活性の触媒を容易に得ることができる。なお、前述の特許文献2に開示された技術のように、当該反応液を担体に含浸させた後、熱処理する方法によって、金のナノ粒子を均一に担持した高活性の触媒を容易に得ることもできるが、この方法の場合、担体に含浸させる溶液のpHを8以上に設定する必要があるという制限がある。   The reaction solution (transparent solution) prepared by the above-described method is a solution in which a gold hydroxo anion complex that does not contain halide ions such as chloride ions is uniformly dissolved, which causes coarsening of the gold particles. Does not contain halide ions that are poisonous to catalytic reactions. For this reason, according to the method of mixing the reaction solution with a weak acid in Step 2 to be described later, impregnating the obtained solution into a support, and then performing a heat treatment, a highly active catalyst uniformly supporting gold nanoparticles is obtained. Can be easily obtained. As in the technique disclosed in the above-mentioned Patent Document 2, a highly active catalyst in which gold nanoparticles are uniformly supported can be easily obtained by a method in which the support is impregnated with the reaction solution and then heat-treated. However, in this method, there is a limitation that the pH of the solution impregnated on the carrier needs to be set to 8 or more.

この金のヒドロキソ陰イオン錯体を含む反応液は、少なくとも一つの配位子がOH-であって、ハロゲン陰イオンを配位子として含まない平面四角形構造の3価金のヒドロキソ陰イオン錯体と、金に配位していない弱酸の共役塩基を含み、ハロゲン陰イオンを含まない、pHが8以上の透明溶液である。The reaction liquid containing the gold hydroxo anion complex includes a trivalent gold hydroxo anion complex having a planar quadrangular structure in which at least one ligand is OH and does not contain a halogen anion, It is a clear solution having a pH of 8 or more, which contains a weak acid conjugate base that is not coordinated to gold and does not contain a halogen anion.

この反応液は、塩化物イオンなどのハロゲ化物イオンンを含まない金のヒドロキソ陰イオン錯体を均一に溶解した溶液であり、金粒子を粗大化させる要因となり、触媒反応に対して被毒物質となるハロゲン化物イオンを含まないために、工程2で弱酸と混合した後、得られた混合液を担体に含浸させ、熱処理する方法によれば、金のナノ粒子を均一に担持した高活性の触媒を容易に得ることができる。また、弱酸の共役塩基が存在するために、工程2において弱酸を加えた後にも、溶液が緩衝作用を持ちpHが安定する。これにより、溶液中の金錯体が一定の条件で担体と相互作用し、均一な金ナノ粒子が生成するのに役立つと考えられる。   This reaction solution is a solution in which a gold hydroxo anion complex that does not contain a halide ion such as chloride ion is uniformly dissolved, which causes coarsening of the gold particles and becomes a poison for the catalytic reaction. In order not to contain halide ions, after mixing with a weak acid in Step 2, the resulting mixture is impregnated into a support and heat treated, whereby a highly active catalyst uniformly supporting gold nanoparticles is obtained. Can be easily obtained. Further, since a weak acid conjugate base is present, the solution has a buffering action and the pH is stable even after the weak acid is added in Step 2. Thereby, it is considered that the gold complex in the solution interacts with the carrier under a certain condition, and helps to generate uniform gold nanoparticles.

この反応液に含まれる3価の金のヒドロキソ陰イオン錯体としては、例えば、下記(1)〜(4)の条件を満足するものを好適に用いることができる。
(1)下記式:

Figure 0006441454
で表される平面四角形構造を持つ金錯体であること、
(2)金は3価であり、アニオン配位子a,b,c,dの配位により全体として負電荷を持つ陰イオン錯体であること、
(3)配位子a,b,c,dのうち、少なくとも1つはOH-であること、
(4)配位子a,b,c,dは、いずれもハロゲン陰イオンではないこと、As the trivalent gold hydroxo anion complex contained in this reaction solution, for example, those satisfying the following conditions (1) to (4) can be preferably used.
(1) The following formula:
Figure 0006441454
A gold complex having a planar rectangular structure represented by
(2) Gold is trivalent and is an anionic complex having a negative charge as a whole due to the coordination of anionic ligands a, b, c, d.
(3) at least one of the ligands a, b, c and d is OH ;
(4) The ligands a, b, c and d are all not halogen anions,

上記した金のヒドロキソ陰イオン錯体において、配位子a,b,c,dのうちOH-以外の配位子は、ハロゲン陰イオンではないアニオン配位子であればどのようなものでもよい。例えば、酢酸イオンCH3COO-、炭酸イオンCO3 2-等を例示することができる。In the above-described gold hydroxo anion complex, any ligand other than OH among the ligands a, b, c, and d may be any anion ligand that is not a halogen anion. For example, acetate ion CH 3 COO , carbonate ion CO 3 2− and the like can be exemplified.

尚、上記式において、nの値は、アニオン配位子の種類によって決まる負電荷の価数を示すものであり、アニオン配位子a,b,c,dの合計価数から金の価数である3を引いた値がnの値となる。   In the above formula, the value of n indicates the valence of the negative charge determined by the type of anion ligand, and the total valence of the anion ligands a, b, c, d is the valence of gold. The value obtained by subtracting 3 is the value of n.

このような金のヒドロキソ陰イオン錯体としては、下記の化合物を例示できる。

Figure 0006441454
Examples of such a gold hydroxo anion complex include the following compounds.
Figure 0006441454

上記の各式の金のヒドロキソ陰イオン錯体については、[Au(OH)4]-,[Au(OH)2(CH3COO)2]-,[Au(OH)3(CO3)]2-等と略記することができる。For the gold hydroxo anion complexes of the above formulas, [Au (OH) 4 ] , [Au (OH) 2 (CH 3 COO) 2 ] , [Au (OH) 3 (CO 3 )] 2 - it can be referred to as such.

これらの金錯体は、含浸液中で単一種である必要はなく、混合物であってもよい。例えば、金のヒロドキソ陰イオン錯体として[Au(OH)4]-を90%と、[Au(OH)3(CH3COO)]-を10%含む溶液であってもよい。These gold complexes do not need to be a single species in the impregnation solution, and may be a mixture. For example, a solution containing 90% of [Au (OH) 4 ] and 10% of [Au (OH) 3 (CH 3 COO)] as a gold hydroxo anion complex may be used.

(工程2)
本発明においては、工程1で得られた反応液と弱酸とを混合する工程2を行う。例えば、前述の特許文献2の技術によれば、pH8以上の溶液を担体に含浸させて金ナノ粒子担持体を製造する必要があるが、本発明の製造方法によれば、工程2において、pH8以上の反応液と弱酸を混合する工程を行うため、当該反応液よりもpHの低い溶液を担体に含浸させて金ナノ粒子担持体を製造することが可能となる。
(Process 2)
In this invention, the process 2 which mixes the reaction liquid and weak acid which were obtained at the process 1 is performed. For example, according to the technique of the above-mentioned Patent Document 2, it is necessary to produce a gold nanoparticle carrier by impregnating a carrier with a solution having a pH of 8 or higher. However, according to the production method of the present invention, in step 2, the pH is 8 Since the above-described step of mixing the reaction solution and the weak acid is performed, it is possible to produce a gold nanoparticle support by impregnating the support with a solution having a pH lower than that of the reaction solution.

前述の通り、特許文献2のように、従来の知見では、担体に含浸させる金ヒドロキソ陰イオン錯体溶液のpHは少なくとも8以上に設定する必要があると考えられていたため、この結果は非常に意外なものであった。工程1で得られる反応液中の金錯イオン種は[Au(OH)4-と考えられる。例えば、塩化金酸中の[AuCl4-イオンは、アルカリ性に変化させると、順次Cl-配位子がOH-配位子に置換し、[Au(OH)4-に近づくものの、Cl-は配位子として残りやすいことが知られている。例えば、酢酸金の場合、もともとCl-を含まないため、pH11程度での支配種は、[Au(OH)4-と考えられる。この溶液に、室温でHClを加えて酸性にすると、直ちに黄色の溶液が生成し、Cl-がAuに容易に再配位する。すなわち、Au(III)−OH――Cl―系では、Au濃度にもよるが、沈殿は生じ難いといえる。これに対して、Cl―の無いAu(III)−OH―系では、図1に示されるように、[Au(OH)4-溶液のpHを下げると、Au(OH)3として沈殿することが報告されている(C.F.B.Jr., R.E.Mesmer, The Hydrolysis of Cations, Wiley, 1976)。このため、例えば、酢酸金などから調製した[Au(OH)4-溶液は、アルカリ性条件でこそ安定であり、pH7付近で調製することは不可能と考えられていた。ところが、本発明者が検討を重ねたところ、前述の工程1において、pH8以上の反応液を調製した後、工程2において、当該反応液と弱酸を混合して得られた金ヒドロキソ陰イオン錯体溶液を担体に含浸させることにより、例えばpHが8未満の金ヒドロキソ陰イオン錯体溶液を用いても、好適に金ナノ粒子担持体を製造できることを見出した。As described above, as in Patent Document 2, according to the conventional knowledge, it was considered that the pH of the gold hydroxo anion complex solution to be impregnated into the support had to be set to at least 8 or more, and this result was very unexpected. It was something. The gold complex ion species in the reaction solution obtained in step 1 is considered to be [Au (OH) 4 ] . For example, when [AuCl 4 ] ions in chloroauric acid are changed to alkaline, Cl ligands are sequentially replaced by OH 2 ligands and approach [Au (OH) 4 ] −. - it is known that tends to remain as a ligand. For example, since gold acetate originally does not contain Cl , the dominant species at about pH 11 is considered to be [Au (OH) 4 ] . When this solution is acidified by adding HCl at room temperature, a yellow solution is immediately formed and Cl - is readily re-coordinated to Au. That is, in the Au (III) —OH—Cl— system, although it depends on the Au concentration, it can be said that precipitation hardly occurs. In contrast, in the absence Au (III) -OH- system of Cl-, as shown in Figure 1, [Au (OH) 4 ] - lowering the pH of the solution is precipitated as Au (OH) 3 (C.F.B.Jr., R.E. Mesmer, The Hydrology of Cations, Wiley, 1976). Thus, for example, prepared from such gold acetate [Au (OH) 4] - solution is stable precisely under alkaline conditions, was considered to be impossible to prepare in the vicinity of pH 7. However, as a result of repeated studies by the inventor, a gold hydroxo anion complex solution obtained by preparing a reaction solution having a pH of 8 or higher in Step 1 and then mixing the reaction solution and a weak acid in Step 2 described above. It has been found that a gold nanoparticle carrier can be suitably produced by impregnating a carrier with a gold hydroxo anion complex solution having a pH of less than 8, for example.

また、本発明者は、この現象を確認する過程において、例えば硝酸などの強酸を混合することも検討を行ったが、強酸を用いた場合には、pHが同じ金ヒドロキソ陰イオン錯体溶液を調製しても、金の粒子径が小さく、CO添加率の高い金ナノ粒子担持体は好適に製造されないことが明らかとなった。   In addition, in the process of confirming this phenomenon, the present inventor also examined mixing a strong acid such as nitric acid, but when a strong acid was used, a gold hydroxo anion complex solution having the same pH was prepared. Even so, it has been clarified that a gold nanoparticle carrier having a small gold particle diameter and a high CO addition rate cannot be suitably produced.

弱酸の添加により、pH7付近でも安定な錯体溶液が得られる理由は明らかではないが、例えば次のような機構が考えられる。弱酸の添加により溶液が強いpH緩衝作用を持つようになりpHが安定化すると共に、加えた弱酸が解離して生じる共役塩基である酢酸イオン等の陰イオンが3価の金イオンに配位することにより安定化すると考えられる。また、シュウ酸のようにカルボキシル基を2つ以上持つ弱酸を用いた場合には、共役塩基のカルボキシレートが多座配位しキレート錯体を形成するため、モノカルボン酸を用いる場合に比してより安定な錯体となると考えられる。   The reason why a stable complex solution can be obtained even in the vicinity of pH 7 by addition of a weak acid is not clear, but the following mechanism can be considered, for example. The addition of a weak acid causes the solution to have a strong pH buffering action and stabilizes the pH, and an anion such as acetate ion, which is a conjugate base generated by dissociation of the added weak acid, coordinates to a trivalent gold ion. This is thought to stabilize. In addition, when a weak acid having two or more carboxyl groups such as oxalic acid is used, the carboxylate of the conjugate base is multidentate to form a chelate complex, so compared with the case of using a monocarboxylic acid. It is thought to be a more stable complex.

工程2において混合する弱酸としては、一般的に弱酸と認めうるpKaが1〜7の範囲の酸を用いればよい。その構造については特に制限されないが、好ましくはカルボン酸、リン酸、炭酸などが挙げられる。好ましいカルボン酸としては、ギ酸、酢酸、プロピオン酸、乳酸、酪酸などのモノカルボン酸;シュウ酸、コハク酸、リンゴ酸、酒石酸、フマル酸などのジカルボン酸;クエン酸などのトリカルボン酸などが挙げられる。ジカルボン酸またはトリカルボン酸の使用は、前述のキレート錯体の形成が可能である点から好ましい。但し、クエン酸のようなカルボキシル基と水酸基の両者を有するヒドロキソカルボン酸は、塩化金酸イオンを還元して金コロイド(金粒子径10nm以上)を生成する能力があることが知られている。このため、工程1で得られた塩化物イオンを含まない3価の金のヒドロキソ陰イオン錯体についてもpH7以下の酸性領域においては金コロイドが生成しやすく、10nm以下の小さな金ナノ粒子を得ることが難しくなりやすい。また、シュウ酸の場合は、自身がCO2に酸化されると同時に金イオンから金属状の金を生成する還元剤として作用することも知られており、このような還元作用はpH7以下で起こりやすく、生成した金は粗大粒子になりやすい。弱酸は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。As the weak acid to be mixed in Step 2, an acid having a pKa in the range of 1 to 7 that can be generally recognized as a weak acid may be used. The structure is not particularly limited, but preferably includes carboxylic acid, phosphoric acid, carbonic acid and the like. Preferred carboxylic acids include monocarboxylic acids such as formic acid, acetic acid, propionic acid, lactic acid and butyric acid; dicarboxylic acids such as oxalic acid, succinic acid, malic acid, tartaric acid and fumaric acid; and tricarboxylic acids such as citric acid. . The use of dicarboxylic acid or tricarboxylic acid is preferable because the above-mentioned chelate complex can be formed. However, it is known that a hydroxocarboxylic acid having both a carboxyl group and a hydroxyl group such as citric acid has the ability to reduce a chloroauric acid ion to produce a gold colloid (gold particle diameter of 10 nm or more). For this reason, the trivalent gold hydroxo anion complex that does not contain chloride ions obtained in Step 1 is likely to produce colloidal gold in the acidic region at pH 7 or less, and obtain small gold nanoparticles of 10 nm or less. Tends to be difficult. In addition, oxalic acid is known to act as a reducing agent that generates metallic gold from gold ions at the same time that it is oxidized to CO 2. Such a reducing action occurs at a pH of 7 or less. It is easy and the produced | generated gold | metal | money tends to become a coarse particle. A weak acid may be used individually by 1 type, and may be used in combination of 2 or more types.

また、弱酸の混合量としては、特に制限されず、目的とする金ナノ粒子担持体における金の粒子径に応じたpHとなるよう混合量を調節すればよい。この際、例えば工程1において、金化合物に加える物質が炭酸ナトリウムであって、工程2で溶液に加える弱酸が酢酸である場合、陽イオンがNa+とH+、陰イオンがCO3 2-とCH3COO-からなる緩衝液として、各成分の量比からpHの概算が可能である。実際には、これに金化合物に由来するイオンが加わるが、例えば金化合物が酢酸金である場合、そのpHへの影響は大きくないことが分かっている。このようにして、pHを予め設定することにより、調製される金ナノ粒子担持体の金の粒子径を容易に制御することができる。更に、担体のアルカリ性への耐性が十分でない場合にも、弱酸の混合量を調節して、所望のpHとなるように調整すればよい。工程2により得られる金ヒドロキソ陰イオン錯体溶液のpHとしては、特に制限されず、例えば従来は困難と考えられていたpH8未満に調整することもできるし、pH8以上に調整することもできる。なお、金ヒドロキソ陰イオン錯体溶液から調製される金ナノ粒子担持体における金の粒子径を小さくする観点からは、好ましくはpH6程度以上、より好ましくはpH6.5程度以上が挙げられる。尚、pHの上限については特に限定はないが、通常14程度以下とすればよい。Moreover, the amount of the weak acid mixed is not particularly limited, and may be adjusted so that the pH corresponds to the gold particle diameter in the target gold nanoparticle carrier. At this time, for example, when the substance added to the gold compound in step 1 is sodium carbonate and the weak acid added to the solution in step 2 is acetic acid, the cation is Na + and H + , and the anion is CO 3 2- As a buffer solution composed of CH 3 COO , the pH can be estimated from the amount ratio of each component. Actually, ions derived from a gold compound are added to this, but it is known that, for example, when the gold compound is gold acetate, the influence on the pH is not great. Thus, by setting the pH in advance, the gold particle diameter of the prepared gold nanoparticle carrier can be easily controlled. Further, even when the carrier is not sufficiently resistant to alkalinity, the amount of the weak acid may be adjusted so as to obtain a desired pH. The pH of the gold hydroxo anion complex solution obtained in step 2 is not particularly limited, and can be adjusted to, for example, less than pH 8, which has been conventionally considered difficult, or can be adjusted to pH 8 or more. From the viewpoint of reducing the gold particle size in the gold nanoparticle carrier prepared from the gold hydroxo anion complex solution, the pH is preferably about pH 6 or more, more preferably about pH 6.5 or more. The upper limit of the pH is not particularly limited, but is usually about 14 or less.

工程2において得られる金ヒドロキソ陰イオン錯体溶液は、金ナノ粒子担持体を製造するための含浸液として使用される。   The gold hydroxo anion complex solution obtained in step 2 is used as an impregnating solution for producing a gold nanoparticle carrier.

2.金ナノ粒子担持体の製造方法
本発明の金ナノ粒子担持体の製造方法は、前述の金ヒドロキソ陰イオン錯体溶液の製造方法により製造された金ヒドロキソ陰イオン錯体溶液を、担体に含浸させる工程Aと、金ヒドロキソ陰イオン錯体溶液が含浸された担体から水分を除去し、熱処理を行う工程Bとを備えることを特徴とする。以下、本発明の金ナノ粒子担持体(金ナノ粒子触媒)の製造方法について詳述する。
2. Method for Producing Gold Nanoparticle Carrier A method for producing a gold nanoparticle carrier according to the present invention is the step A of impregnating a carrier with the gold hydroxo anion complex solution produced by the method for producing a gold hydroxo anion complex solution described above. And a step B of removing water from the carrier impregnated with the gold hydroxo anion complex solution and performing a heat treatment. Hereinafter, the manufacturing method of the gold nanoparticle carrier (gold nanoparticle catalyst) of the present invention will be described in detail.

(工程A)担体への含浸
工程Aにおいては、前述の金ヒドロキソ陰イオン錯体溶液の製造方法により製造された金ヒドロキソ陰イオン錯体溶液を、担体に含浸させる。
(Step A) Impregnation on carrier In step A, the carrier is impregnated with the gold hydroxo anion complex solution produced by the method for producing a gold hydroxo anion complex solution described above.

金ヒドロキソ陰イオン錯体を含む溶液を担体に含浸させる方法については特に限定はなく、担体の体積に対して溶液を過剰に用いて該溶液中に担体を浸漬する方法であってもよく、或いは、担体の細孔容積に見合う量の溶液を担体に滴下させるincipient wetness法によって含浸させてもよい。これらの場合、目的とする金の担持量となるように、金ヒドロキソ陰イオン錯体溶液の濃度を予め調整することが必要である。   The method of impregnating the carrier with the solution containing the gold hydroxo anion complex is not particularly limited, and may be a method of immersing the carrier in the solution by using the solution in excess of the volume of the carrier, or The impregnation may be performed by an incipient wetness method in which an amount of a solution corresponding to the pore volume of the support is dropped onto the support. In these cases, it is necessary to adjust the concentration of the gold hydroxo anion complex solution in advance so that the target amount of gold is supported.

次いで、水分を除去して金ヒドロキソ陰イオン錯体を担体表面に固定化する。水分の除去方法としては、特に限定はなく、ホットプレ−ト上での加熱による蒸発乾固、ロ−タリ−エバポレ−タ−での減圧乾燥、凍結乾燥法などの任意の方法を適用できる。   Next, moisture is removed to immobilize the gold hydroxo anion complex on the support surface. The method for removing water is not particularly limited, and any method such as evaporation to dryness by heating on a hot plate, reduced pressure drying with a rotary evaporator, freeze drying method and the like can be applied.

この際、弱酸の共役塩基であるCO3 2-やCH3COO-がアルカリ金属イオン、アルカリ土類金属イオン等と共に存在することによって、溶液が緩衝作用を持ちpHが安定する。これにより、溶液中の金錯体が一定の条件で担体と相互作用し、均一な金ナノ粒子が生成するのに役立つと考えられる。At this time, the presence of CO 3 2− or CH 3 COO , which is a conjugate base of a weak acid, together with alkali metal ions, alkaline earth metal ions, etc., the solution has a buffering action and the pH is stabilized. Thereby, it is considered that the gold complex in the solution interacts with the carrier under a certain condition, and helps to generate uniform gold nanoparticles.

これに対して、弱酸の共役塩基が存在しない場合には、溶液を担体表面に含浸させた後、水分を除去する過程で溶液は濃縮されてpHが次第に高くなり強塩基条件になると考えられる。この間、金錯体の担体表面への吸着状態は変化し不均一な金ナノ粒子を生成する原因になると共に、強アルカリ性により担体酸化物の表面を損傷する原因にもなると考えられる。   On the other hand, when a weak acid conjugate base is not present, it is considered that the solution is concentrated in the process of removing moisture after impregnating the surface of the carrier with the solution, resulting in a gradually increasing pH and a strong base condition. During this time, the state of adsorption of the gold complex on the surface of the carrier changes, which causes non-uniform gold nanoparticles to be generated, and also causes damage to the surface of the carrier oxide due to strong alkalinity.

担体としては、通常貴金属触媒の担体として用いられるものであれば、特に限定なく使用できる。下記に示したような金属酸化物;ゼオライト、メソポ−ラスシリケ−ト、粘土などの多孔質ケイ酸塩;多孔質金属錯体(MOF);多孔質ポリマ−ビ−ズ;カ−ボンナノチュ−ブ、活性炭等の炭素材料;セラミックハニカム、メタルハニカム等を例示できる。どの担体を用いるかは目的とする触媒反応及び使用条件により異なるが、一酸化炭素の酸化反応を例にとると、金ナノ粒子との良好な密着性と接合界面での活性点の形成のしやすさ、耐熱性等の観点から金属酸化物を用いることが好ましい。   Any carrier can be used without particular limitation as long as it is usually used as a carrier for a noble metal catalyst. Metal oxides as shown below; porous silicates such as zeolite, mesoporous silicate, clay; porous metal complex (MOF); porous polymer beads; carbon nanotubes, activated carbon Examples thereof include carbon materials such as ceramic honeycombs and metal honeycombs. Which carrier is used depends on the target catalytic reaction and the conditions of use. However, taking the oxidation reaction of carbon monoxide as an example, good adhesion to gold nanoparticles and formation of active sites at the bonding interface are possible. It is preferable to use a metal oxide from the viewpoints of ease and heat resistance.

この様な金属酸化物担体としては、例えば、ベリリウム、マグネシウム、アルミニウム、ケイ素、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、ジルコニウム、カドミウム、インジウム、スズ、バリウム、ランタノイド元素等の金属元素を含む酸化物を用いることができる。これらの金属酸化物は、上記金属元素を一種のみ含む単一金属の酸化物であってもよく、2種以上の金属元素を含む複合酸化物であってもよい。   Examples of such metal oxide carriers include beryllium, magnesium, aluminum, silicon, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, strontium, yttrium, An oxide containing a metal element such as zirconium, cadmium, indium, tin, barium, or a lanthanoid element can be used. These metal oxides may be single metal oxides containing only one of the above metal elements, or complex oxides containing two or more metal elements.

これらの金属酸化物の内で、特に、チタン、マンガン、鉄、コバルト、ニッケル、亜鉛、ジルコニウム、ランタン、セリウム等の金属元素を一種又は二種以上含む金属酸化物又は複合酸化物が好ましい。上記した単一金属の金属酸化物と複合酸化物は、必要に応じて混合して用いることも可能である。なお、周期律第2族元素のベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムについては、製造方法によっては、対応する酸化物の他に、水酸化物、塩基性炭酸塩等が含まれる場合がある。本発明では、金をナノ粒子状に担持する「酸化物」には、これらの水酸化物、塩基性炭酸塩等が含まれていてもよい。   Among these metal oxides, metal oxides or composite oxides containing one or more metal elements such as titanium, manganese, iron, cobalt, nickel, zinc, zirconium, lanthanum, and cerium are particularly preferable. The above-mentioned single metal metal oxide and composite oxide can be mixed and used as necessary. In addition, beryllium, magnesium, calcium, strontium, and barium of the periodic group 2 elements may include hydroxides, basic carbonates, and the like in addition to the corresponding oxides depending on the manufacturing method. In the present invention, the “oxide” supporting gold in the form of nanoparticles may contain these hydroxides, basic carbonates, and the like.

本発明において、前述のようなpH8未満の金ヒドロキソ陰イオン錯体溶液を用いる場合には、アルカリ性水溶液に溶解しやすい担体(例えば、シリカ、ゼオライト、メソポーラスシリケート等)を好適に担体とすることができる。   In the present invention, when a gold hydroxo anion complex solution having a pH of less than 8 as described above is used, a carrier (for example, silica, zeolite, mesoporous silicate, etc.) that can be easily dissolved in an alkaline aqueous solution can be suitably used as the carrier. .

本発明の金ナノ粒子担持体において、金の含有量は、金をナノ粒子状態に保持できるよう調製できる限りは特に制限はない。例えば、担体の種類と調製法を適宜選択することにより、金ナノ粒子と担体の合計量を基準として、0.1〜60質量%程度の金含有量を持つ金ナノ粒子担持体を調製できる。   In the gold nanoparticle carrier of the present invention, the gold content is not particularly limited as long as it can be prepared so that gold can be held in a nanoparticle state. For example, a gold nanoparticle carrier having a gold content of about 0.1 to 60% by mass can be prepared based on the total amount of gold nanoparticles and the carrier by appropriately selecting the type of carrier and the preparation method.

本発明の金ナノ粒子担持体の形態は、その使用目的に応じて適宜選択可能である。例えば、粉末状で用いることもできるし、顆粒状、ペレット状に成形して用いることもできる。また支持体上に金ナノ粒子を担持した担体を固定化して、支持体の形状として用いることもできる。支持体については、表面に金ナノ粒子を担持した担体を固定化することができれば形状は特に限定されず、平板状、ブロック状、繊維状、網状、ビ−ズ状、ハニカム状等何でもよい。例えばハニカム状として用いる場合、粉末状で調製した担持体をハニカムの表面に付着させて用いることもできるし、ハニカムの表面に予め担体を固定化しておき、本発明の担持法を適用してこの表面に金ナノ粒子を直接担持することもできる。支持体の材質についても特に限定的ではなく、金ナノ粒子を担持させる条件や反応条件下において安定なものであればよく、例えば、各種のセラミックスを使用することができる。   The form of the gold nanoparticle carrier of the present invention can be appropriately selected according to the purpose of use. For example, it can be used in the form of powder, or can be used after being formed into granules or pellets. In addition, a support carrying gold nanoparticles on a support can be immobilized and used as a shape of the support. The shape of the support is not particularly limited as long as the carrier supporting gold nanoparticles on the surface can be fixed, and may be any shape such as a flat plate shape, a block shape, a fiber shape, a net shape, a bead shape, and a honeycomb shape. For example, when used as a honeycomb, a carrier prepared in a powder form can be used by adhering to the surface of the honeycomb, or a carrier is fixed in advance on the surface of the honeycomb, and the carrying method of the present invention is applied. Gold nanoparticles can also be directly supported on the surface. The material of the support is not particularly limited as long as it is stable under the conditions for supporting the gold nanoparticles and under the reaction conditions. For example, various ceramics can be used.

金ナノ粒子を担持した状態における担体の比表面積は、BET法による測定値として、1〜2000m2/g程度であることが好ましく、5〜1000m2/g程度であることがより好ましい。このような金ナノ粒子担持体を得るためには、例えば、金ナノ粒子を担持させる担体として上記した範囲の比表面積を有するものを用いればよい。The specific surface area of the support in a state carrying the gold nanoparticles, as measured by the BET method, is preferably about 1~2000m 2 / g, and more preferably about 5~1000m 2 / g. In order to obtain such a gold nanoparticle carrier, for example, a carrier having a specific surface area in the above-described range may be used as a carrier for supporting gold nanoparticles.

(工程B)熱処理による金ナノ粒子の生成
工程Aにおいて、担体表面に金ヒドロキソ陰イオン錯体を固定化した後、加熱することによって、金を金属ナノ粒子として担持させることができる。加熱雰囲気としては、特に限定はなく、酸素含有雰囲気中、還元性ガス雰囲気中、不活性ガス雰囲気中等の各種の雰囲気中で熱処理を行うことができる。例えば、酸素含有雰囲気としては、大気雰囲気、酸素を窒素、ヘリウム、アルゴン等で希釈した混合気体雰囲気などを利用できる。還元性ガスとしては、例えば、窒素ガスで希釈した1〜10体積%程度の水素ガス、一酸化炭素ガス等を用いることができる。不活性ガスとしては、例えば、窒素、ヘリウム、アルゴンなどを利用できる。
(Step B) Generation of gold nanoparticles by heat treatment In step A, gold is supported as metal nanoparticles by heating after immobilizing the gold hydroxo anion complex on the surface of the carrier. There is no particular limitation on the heating atmosphere, and the heat treatment can be performed in various atmospheres such as an oxygen-containing atmosphere, a reducing gas atmosphere, and an inert gas atmosphere. For example, as the oxygen-containing atmosphere, an air atmosphere, a mixed gas atmosphere in which oxygen is diluted with nitrogen, helium, argon, or the like can be used. As the reducing gas, for example, about 1 to 10% by volume of hydrogen gas or carbon monoxide gas diluted with nitrogen gas can be used. For example, nitrogen, helium, argon, or the like can be used as the inert gas.

熱処理温度は担体の耐熱温度以下で、通常、100〜600℃程度とすればよく、安定かつ微細な金粒子を得るためには、200〜400℃程度とすることが好ましい。熱処理時間については特に限定されないが、上記した温度範囲の所定の熱処理温度に達した後、5分程度以上加熱すればよい。   The heat treatment temperature is not higher than the heat resistance temperature of the carrier and is usually about 100 to 600 ° C. In order to obtain stable and fine gold particles, it is preferably about 200 to 400 ° C. The heat treatment time is not particularly limited, but may be heated for about 5 minutes or more after reaching the predetermined heat treatment temperature in the above temperature range.

次いで、上記した熱処理後の担持体を水洗することが好ましい。熱処理後の担持体には、酢酸イオン、炭酸イオン等の弱酸の共役塩基がアルカリ金属塩、アルカリ土類金属塩等の形で残存する。これらの塩類は、ハロゲン陰イオンほど強い被毒の原因とはならないが、塩類が表面に残存すると物理的に活性点を塞ぐなどして活性低下の原因となる。このため、熱処理後の担持体を水洗して残存する塩類を除去することが好ましい。   Next, it is preferable to wash the carrier after the above heat treatment. On the support after the heat treatment, conjugate bases of weak acids such as acetate ions and carbonate ions remain in the form of alkali metal salts, alkaline earth metal salts and the like. These salts do not cause as much poisoning as halogen anions, but if the salts remain on the surface, they cause a decrease in activity by physically blocking the active site. For this reason, it is preferable to remove the remaining salts by washing the carrier after heat treatment with water.

水洗の方法としては、特に限定はなく、例えば、吸引ろ過器を用いてろ紙上で脱イオン水をかけながら洗浄する方法;ビ−カ−に担持体粉末と脱イオン水を入れて上澄み液を入れ替えながら洗浄するデカンテ−ション法;遠心分離機を用いて沈殿と水を分離しながら洗浄する方法など、通常行われている水洗方法を適宜適用できる。   The washing method is not particularly limited. For example, washing with deionized water on a filter paper using a suction filter; placing the carrier powder and deionized water in a beaker, A decantation method of washing while exchanging; a method of washing usually performed, such as a method of washing while separating precipitates and water using a centrifuge, can be appropriately applied.

水洗後は、乾燥することによって、金ナノ粒子を担持した担持体を得ることができる。乾燥温度は、熱処理による金ナノ粒子の生成の際の温度を下回る温度であればよく、通常、室温〜150℃の間の温度とすればよい。   After washing with water, a carrier carrying gold nanoparticles can be obtained by drying. The drying temperature may be a temperature lower than the temperature at the time of producing gold nanoparticles by heat treatment, and it may be usually a temperature between room temperature and 150 ° C.

3.金ナノ粒子担持体
上記した方法によれば、ハロゲン化物イオンを含まない3価金化合物を原料として、金ナノ粒子が均一に担持された担持体を得ることができる。
3. Gold nanoparticle carrier According to the above-described method, a carrier in which gold nanoparticles are uniformly supported can be obtained using a trivalent gold compound containing no halide ions as a raw material.

本発明方法によって得られる金ナノ粒子担持体は、金ナノ粒子が担体に均一に担持されたものであり、触媒反応に対して被毒物質となるハロゲン化物イオンを含有しないために、各種の触媒反応に対して高い活性を有するものとなる。このため、一酸化炭素酸化除去などの室内空気浄化、NOx低減等の大気環境保全、水素中の一酸化炭素選択酸化等の燃料電池関連反応、プロピレンからのプロピレンオキサイド合成反応等の化学プロセス用反応等の従来から金ナノ粒子触媒が用いられている各種の分野において熱触媒として有効に利用することができる。   The gold nanoparticle carrier obtained by the method of the present invention is one in which gold nanoparticles are uniformly supported on a carrier and does not contain halide ions that become poisonous substances for the catalytic reaction. It has high activity for the reaction. Therefore, indoor air purification such as carbon monoxide oxidation removal, atmospheric environment conservation such as NOx reduction, fuel cell related reactions such as selective oxidation of carbon monoxide in hydrogen, reactions for chemical processes such as propylene oxide synthesis reaction from propylene It can be effectively used as a thermal catalyst in various fields where gold nanoparticle catalysts are conventionally used.

また、金ナノ粒子担持体は、光触媒としても有効に使用できる。酸化チタンを代表とする光触媒に貴金属を助触媒として担持することにより、水の分解反応、有機物含有水溶液からの水素発生反応、人工光合成のモデル反応としてのCO2の光還元反応、汚染物質の酸化分解による空気浄化や水質浄化、光照射下での各種有機合成反応などに高い活性を示すことが知られている。助触媒として働く貴金属としてはPtが最も広く用いられているが、Auも有用であることが知られている。また、酸化チタン以外の光触媒としては、チタン酸ストロンチウム、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化タンタル等も知られており、これらの酸化物に対しても上記した方法によって金ナノ粒子担持体を得ることができる。The gold nanoparticle carrier can also be used effectively as a photocatalyst. By supporting a noble metal as a cocatalyst on a photocatalyst represented by titanium oxide, water decomposition reaction, hydrogen generation reaction from organic substance-containing aqueous solution, CO 2 photoreduction reaction as a model reaction of artificial photosynthesis, oxidation of pollutants It is known to show high activity in air purification and water purification by decomposition, various organic synthesis reactions under light irradiation, and the like. Pt is most widely used as a noble metal serving as a promoter, but Au is also known to be useful. In addition, as photocatalysts other than titanium oxide, strontium titanate, tungsten oxide, zinc oxide, zirconium oxide, tantalum oxide, and the like are also known. Can be obtained.

金ナノ粒子担持体に担持された金ナノ粒子の粒子径としては、特に制限されないが、好ましくは100nm以下、より好ましくは10nm以下、さらに好ましくは5nm以下が挙げられる。金ナノ粒子の粒子径の下限値としては、通常1nm程度である。なお、金ナノ粒子の粒子径は、粉末X線回折法により測定された体積平均値であり、より具体的には実施例で用いた方法により測定された値である。但し、2nmよりも小さな粒子径については粉末X線回折法によっては測定ができないため、別途に透過型電子顕微鏡観察などの他の測定を行い、粒径を求める必要がある。   The particle size of the gold nanoparticles supported on the gold nanoparticle support is not particularly limited, but preferably 100 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less. The lower limit of the particle diameter of the gold nanoparticles is usually about 1 nm. The particle diameter of the gold nanoparticles is a volume average value measured by a powder X-ray diffraction method, and more specifically a value measured by the method used in the examples. However, since the particle diameter smaller than 2 nm cannot be measured by the powder X-ray diffraction method, it is necessary to separately perform other measurements such as observation with a transmission electron microscope to obtain the particle diameter.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

<実施例1>
酢酸金[Au(CH3COO)3,Alfa Aesar製、メ−カ−の分析証明書に記載の純度99.99%]の茶色粉末96mgを炭酸ナトリウム(0.1mol/L)の水溶液100mLに入れ、マグネチックスターラーで撹拌しつつ、ホットプレ−ト上で加熱し沸騰還流の状態を保ったところ、沸騰後約10分で茶色がほぼ消失した。沸騰後1時間で加熱を止めて室温に戻し、無色透明の溶液(pH11.5)を得た。次に、得られた溶液の20mLに、表1のpHとなるように酢酸水溶液(0.1mol/L)を加えて攪拌して、各金ヒドロキソ陰イオン錯体溶液を得た。
<Example 1>
96 mg of brown powder of gold acetate [Au (CH 3 COO) 3 , manufactured by Alfa Aesar, purity 99.99% described in the manufacturer's certificate of analysis] in 100 mL of an aqueous solution of sodium carbonate (0.1 mol / L) Then, while stirring with a magnetic stirrer and heating on a hot plate to maintain boiling reflux, the brown color almost disappeared about 10 minutes after boiling. In 1 hour after boiling, the heating was stopped and the temperature was returned to room temperature to obtain a colorless and transparent solution (pH 11.5). Next, to 20 mL of the obtained solution, an aqueous acetic acid solution (0.1 mol / L) was added and stirred so as to have the pH shown in Table 1, and each gold hydroxo anion complex solution was obtained.

一方、酸化セリウム (第一稀元素製、グレ−ドA)の黄色粉末1.0gをPFA製のシャ−レに取り、上記した方法で得た金ヒドロキソ陰イオン錯体溶液を加えて混合した。溶液量は酸化セリウム1gに対し酢酸を加える前の金ヒドロキソ陰イオン錯体溶液として20mLとし、酢酸を添加した溶液では添加による体積増加分を含め全量を加えた。次いで、PFAシャ−レを約40℃に加熱して水分を蒸発させて蒸発乾固させた後、るつぼに移してマッフル炉で、350℃、1時間焼成することによって、金ナノ粒子が酸化セリウムに担持された黒色〜灰色の粉末(Au/CeO2担持体)を得た。On the other hand, 1.0 g of yellow powder of cerium oxide (manufactured by 1st rare element, Grade A) was placed in a PFA petri dish, and the gold hydroxo anion complex solution obtained by the above method was added and mixed. The amount of the solution was 20 mL as a gold hydroxo anion complex solution before adding acetic acid to 1 g of cerium oxide, and the total amount including the volume increase due to addition was added to the solution to which acetic acid was added. Next, the PFA dish was heated to about 40 ° C. to evaporate the water and evaporated to dryness, and then transferred to a crucible and baked in a muffle furnace at 350 ° C. for 1 hour, whereby gold nanoparticles were converted to cerium oxide. A black to gray powder (Au / CeO 2 support) supported on the substrate was obtained.

次いで、残留する可溶性塩類を除去するために、脱イオン水にて洗浄した後、100℃で乾燥して、酸化セリウム上に金ナノ粒子が担持された担持体を得た。得られた担持体における金の担持量は1.0質量%であった。得られた担持体は、ガラス製スクリュ−管瓶に入れ保存した。   Subsequently, in order to remove the remaining soluble salts, it was washed with deionized water, and then dried at 100 ° C. to obtain a support having gold nanoparticles supported on cerium oxide. The amount of gold supported on the obtained support was 1.0% by mass. The obtained carrier was stored in a glass screw tube.

(金粒子径の測定)
酸化セリウムに金ナノ粒子が担持されたことは粉末X線回折(XRD)測定により確認した。XRD装置としてリガク製UltimaIVを用い、Au(111)回折線の半値幅から以下のシェラーの式により金の体積平均粒子径を計算した。下記式による計算結果を表1及び図2に示す。
(Measurement of gold particle diameter)
It was confirmed by powder X-ray diffraction (XRD) measurement that gold nanoparticles were supported on cerium oxide. Using the Rigaku Ultima IV as the XRD apparatus, the volume average particle diameter of gold was calculated from the half width of the Au (111) diffraction line by the following Scherrer equation. The calculation results by the following formula are shown in Table 1 and FIG.

D=Kλ/(Bcosθ)
D:結晶子の大きさ(体積平均粒子径に相当)
K:シェラー定数(上記式ではK=0.849を用いた)
λ:CuKαX線の波長0.154nm
B:回折線幅(上記式ではAu(111)の実測半値幅から装置幅の0.18°を差し引いた角を用いた)
θ:Au(111)のブラッグ角19.1°
D = Kλ / (Bcosθ)
D: Size of crystallite (corresponding to volume average particle diameter)
K: Scherrer constant (K = 0.849 was used in the above formula)
λ: CuKα X-ray wavelength 0.154 nm
B: Diffraction line width (In the above formula, the angle obtained by subtracting 0.18 ° of the device width from the half-value width of Au (111) measured) was used.
θ: Bragg angle of Au (111) 19.1 °

(CO転化率の測定)
上記した方法で得られた金ナノ粒子担持体について、下記の方法で固定床流通反応装置を用いて室温(23℃)における一酸化炭素の酸化反応を行い、触媒活性を評価した。
(Measurement of CO conversion)
The gold nanoparticle support obtained by the above method was subjected to an oxidation reaction of carbon monoxide at room temperature (23 ° C.) using a fixed bed flow reactor by the following method, and the catalytic activity was evaluated.

まず、内径6mmの石英反応管に、20mgの担持体粉末を0.5gの石英砂と混合して充填した。この反応管に、CO(1%)+O2(20%)+He(バランスガス)の混合ガスを100mL/minで流通させ、反応管出口のガスを光音響分析計(PAS)で分析した。安定後のCO,CO2の濃度分析値からCO転化率を計算した値を表1及び図3に示す。First, a quartz reaction tube having an inner diameter of 6 mm was filled with 20 mg of carrier powder mixed with 0.5 g of quartz sand. A mixed gas of CO (1%) + O 2 (20%) + He (balance gas) was passed through this reaction tube at 100 mL / min, and the gas at the outlet of the reaction tube was analyzed with a photoacoustic analyzer (PAS). Table 1 and FIG. 3 show values obtained by calculating the CO conversion rate from the concentration analysis values of CO and CO 2 after stabilization.

<実施例2>
実施例1において、得られた無色透明の溶液に、表1のpHとなるようにクエン酸水溶液(0.1mol/L)を加えたこと以外は、実施例1と同様にして、各金ヒドロキソ陰イオン錯体溶液を得た。次に、実施例1と同様にして、金ナノ粒子担持体を製造し、触媒活性を評価した。また、金の粒子径についても、実施例1と同様にして測定した。結果を表1及び図2,3に示す。
<Example 2>
In Example 1, each gold hydroxo was prepared in the same manner as in Example 1 except that an aqueous citric acid solution (0.1 mol / L) was added to the obtained colorless and transparent solution so as to have the pH shown in Table 1. An anion complex solution was obtained. Next, a gold nanoparticle carrier was produced in the same manner as in Example 1, and the catalytic activity was evaluated. Further, the particle diameter of gold was also measured in the same manner as in Example 1. The results are shown in Table 1 and FIGS.

<実施例3>
実施例1において、得られた無色透明の溶液に、表1のpHとなるようにシュウ酸水溶液(0.1mol/L)を加えたこと以外は、実施例1と同様にして、各金ヒドロキソ陰イオン錯体溶液を得た。次に、実施例1と同様にして、金ナノ粒子担持体を製造し、触媒活性を評価した。また、金の粒子径についても、実施例1と同様にして測定した。結果を表1及び図2,3に示す。
<Example 3>
In Example 1, each gold hydroxo was prepared in the same manner as in Example 1 except that an aqueous oxalic acid solution (0.1 mol / L) was added to the obtained colorless and transparent solution to have the pH shown in Table 1. An anion complex solution was obtained. Next, a gold nanoparticle carrier was produced in the same manner as in Example 1, and the catalytic activity was evaluated. Further, the particle diameter of gold was also measured in the same manner as in Example 1. The results are shown in Table 1 and FIGS.

<比較例1>
実施例1において、得られた無色透明の溶液に、表1のpHとなるように硝酸水溶液(0.1mol/L)を加えたこと以外は、実施例1と同様にして、各金ヒドロキソ陰イオン錯体溶液を得た。次に、実施例1と同様にして、金ナノ粒子担持体を製造し、触媒活性を評価した。また、金の粒子径についても、実施例1と同様にして測定した。結果を表1及び図2,3に示す。
<Comparative Example 1>
In Example 1, each gold hydrosodium was treated in the same manner as in Example 1 except that an aqueous nitric acid solution (0.1 mol / L) was added to the obtained colorless and transparent solution so as to have the pH shown in Table 1. An ion complex solution was obtained. Next, a gold nanoparticle carrier was produced in the same manner as in Example 1, and the catalytic activity was evaluated. Further, the particle diameter of gold was also measured in the same manner as in Example 1. The results are shown in Table 1 and FIGS.

<比較例2>
実施例1において、得られた無色透明の溶液に、酢酸水溶液を加えなかったこと以外は、実施例1と同様にして、各金ヒドロキソ陰イオン錯体溶液を得た。次に、実施例1と同様にして、金ナノ粒子担持体を製造し、触媒活性を評価した。また、金の粒子径についても、実施例1と同様にして測定した。結果を表1及び図2,3に示す。なお、比較例2におけるpHの相異は実験誤差である。
<Comparative Example 2>
In Example 1, each gold hydroxo anion complex solution was obtained in the same manner as in Example 1 except that no acetic acid aqueous solution was added to the colorless and transparent solution obtained. Next, a gold nanoparticle carrier was produced in the same manner as in Example 1, and the catalytic activity was evaluated. Further, the particle diameter of gold was also measured in the same manner as in Example 1. The results are shown in Table 1 and FIGS. The difference in pH in Comparative Example 2 is an experimental error.

Figure 0006441454
Figure 0006441454

表1及び図2,3に示したように、硝酸を添加によりした場合は金の粒径が10nmを超えるのに対し、酢酸、クエン酸、シュウ酸では溶液pHが7〜8で10nm以下の小さな金が担持でき、酢酸ではpHを10から4.5まで変えることで20nm以下での金の粒径を制御することができた。CO酸化の触媒活性においても、硝酸を添加すると2%以下の低いCO転化率となるのに対し、酢酸、クエン酸、シュウ酸では溶液pHが7以上で3.5%以上の高いCO転化率を示し、特にシュウ酸を添加しpHを7〜8とした場合には比較例2の弱酸を加えない場合よりも高い触媒活性を示した。   As shown in Table 1 and FIGS. 2 and 3, when adding nitric acid, the particle size of gold exceeds 10 nm, whereas in acetic acid, citric acid and oxalic acid, the solution pH is 7 to 8 and 10 nm or less. Small gold could be supported, and with acetic acid, the particle size of gold at 20 nm or less could be controlled by changing the pH from 10 to 4.5. Also in the catalytic activity of CO oxidation, the addition of nitric acid results in a low CO conversion of 2% or less, whereas acetic acid, citric acid and oxalic acid have a high CO conversion of 3.5% or more at a solution pH of 7 or more. In particular, when oxalic acid was added and the pH was adjusted to 7 to 8, a higher catalytic activity was exhibited than when the weak acid of Comparative Example 2 was not added.

図4は、金の粒径とCO酸化触媒活性の関係を示している。金ナノ粒子触媒によるCO酸化反応に関しては、2nm以上の金ナノ粒子であれば、その粒子径が小さいほど触媒活性が高いことが多数報告されている(2nm未満については報告者により違いがある)。金ナノ粒子と担体の界面が活性点であると考えられており、触媒活性はその界面長さに比例する。金の粒径との関係で言えば、金の粒径の逆数と触媒活性が比例することになる。図4から、多くのデータが比例関係示す直線の近くに分布することが明らかである。なお、破線で囲んだ2点のデータ(クエン酸添加のpH5.8の場合、およびシュウ酸添加のpH5.6の場合)については、直線関係から大きく外れており、粒径(各々16.2nm、96.3nm)から期待されるよりも遥かに高い活性を示した。これは、求めた粒径がX線回折法による体積平均値であり、少数の粗大粒子が混じることにより平均値が大きくなったためと考えられる。体積平均値が15nm以上であっても、多くの数の粒子が10nm以下である場合は、高いCO転化率が期待できる。   FIG. 4 shows the relationship between the particle size of gold and the CO oxidation catalyst activity. Regarding the CO oxidation reaction by the gold nanoparticle catalyst, it has been reported that the gold nanoparticle of 2 nm or more has a higher catalytic activity as the particle diameter is smaller (the reporter has a difference for less than 2 nm). . The interface between the gold nanoparticles and the support is considered to be the active point, and the catalytic activity is proportional to the interface length. In relation to the particle size of gold, the reciprocal of the particle size of gold is proportional to the catalytic activity. From FIG. 4, it is clear that a lot of data is distributed near a straight line indicating a proportional relationship. Note that the data at two points surrounded by a broken line (in the case of pH 5.8 with citric acid addition and pH 5.6 with oxalic acid addition) are greatly deviated from the linear relationship, and the particle size (each 16.2 nm). The activity was much higher than expected from 96.3 nm). This is presumably because the obtained particle diameter is a volume average value by the X-ray diffraction method, and the average value is increased by mixing a small number of coarse particles. Even if the volume average value is 15 nm or more, when a large number of particles are 10 nm or less, a high CO conversion can be expected.

<実施例4>
実施例1と同様にして酢酸金96mgを炭酸ナトリウム水溶液(0.1mol/L)100mLに溶解しpH10.8の溶液を得た。この溶液1.0mLにpH調整のため酢酸(0.1mol/L)を1.2mL加えて得られた金ヒドロキソ陰イオン錯体溶液のpHは7.1であった。この溶液をるつぼに取ったシリカ(日本アエロジル、Aerosil 200)粉末50mgに加えたこと以外は、実施例1の酸化セリウムへの担持と同様にして、金/シリカ担持体を得た。得られた担持体における金の担持量は1.0質量%であった。金/シリカ担持体について、粉末X線回折装置(リガク社製のUltimaIV)を用いて、金の粒子径(体積平均値)を測定した。結果を表2に示す。
<Example 4>
In the same manner as in Example 1, 96 mg of gold acetate was dissolved in 100 mL of an aqueous sodium carbonate solution (0.1 mol / L) to obtain a solution having a pH of 10.8. The pH of the gold hydroxo anion complex solution obtained by adding 1.2 mL of acetic acid (0.1 mol / L) to 1.0 mL of this solution for pH adjustment was 7.1. A gold / silica carrier was obtained in the same manner as the loading on cerium oxide in Example 1 except that this solution was added to 50 mg of silica (Nippon Aerosil, Aerosil 200) powder in a crucible. The amount of gold supported on the obtained support was 1.0% by mass. About the gold / silica carrier, the particle diameter (volume average value) of gold was measured using a powder X-ray diffractometer (Ultima IV manufactured by Rigaku Corporation). The results are shown in Table 2.

<実施例5>
酢酸の代りにクエン酸(0.1mol/L)0.4mLを加え、溶液のpHを7.4としたこと以外は実施例4と同様にして金/シリカ担持体を調製した。得られた担持体における金の担持量は1.0質量%であった。実施例4と同様にして金の粒子径(体積平均値)を測定した。結果を表2に示す。
<Example 5>
A gold / silica carrier was prepared in the same manner as in Example 4 except that 0.4 mL of citric acid (0.1 mol / L) was added instead of acetic acid, and the pH of the solution was adjusted to 7.4. The amount of gold supported on the obtained support was 1.0% by mass. In the same manner as in Example 4, the gold particle diameter (volume average value) was measured. The results are shown in Table 2.

<実施例6>
酢酸の代りにシュウ酸(0.1mol/L)0.6mLを加え、溶液のpHを7.1としたこと以外は実施例4と同様にして金/シリカ担持体を調製した。得られた担持体における金の担持量は1.0質量%であった。実施例4と同様にして金の粒子径(体積平均値)を測定した。結果を表2に示す。
<Example 6>
A gold / silica support was prepared in the same manner as in Example 4 except that 0.6 mL of oxalic acid (0.1 mol / L) was added instead of acetic acid, and the pH of the solution was 7.1. The amount of gold supported on the obtained support was 1.0% by mass. In the same manner as in Example 4, the gold particle diameter (volume average value) was measured. The results are shown in Table 2.

<比較例3>
実施例1と同様にして酢酸金96mgを炭酸ナトリウム水溶液(0.1mol/L)100mLに溶解した後、弱酸を加えなかったこと以外は実施例4と同様にして金/シリカ担持体を調製した。得られた担持体における金の担持量は1.0質量%であった。実施例4と同様にして金の粒子径(体積平均値)を測定した。結果を表2に示す。
<Comparative Example 3>
A gold / silica carrier was prepared in the same manner as in Example 4 except that 96 mg of gold acetate was dissolved in 100 mL of an aqueous sodium carbonate solution (0.1 mol / L) in the same manner as in Example 1 and then no weak acid was added. . The amount of gold supported on the obtained support was 1.0% by mass. In the same manner as in Example 4, the gold particle diameter (volume average value) was measured. The results are shown in Table 2.

Figure 0006441454
Figure 0006441454

表2に示すように、金ヒドロキソ陰イオン錯体溶液を用いたシリカへの金ナノ粒子の担持においては、弱酸を用いpHを7〜8に調整した実施例4〜6においては、pHを調製せず10.8のまま用いた比較例3に比べ、より小さい金ナノ粒子を担持することができた。   As shown in Table 2, in Examples 4 to 6 in which the pH was adjusted to 7 to 8 using a weak acid in supporting gold nanoparticles on silica using a gold hydroxo anion complex solution, adjust the pH. Compared to Comparative Example 3 used at 10.8, smaller gold nanoparticles could be supported.

<実施例7>
実施例1と同様にして酢酸金48mgを炭酸ナトリウム水溶液(0.05mol/L)50mLに溶解しpH11.1の溶液を得た。この溶液5.0mLにpH調整のため酢酸(0.1mol/L)を2.8mL加えて得られた金ヒドロキソ陰イオン錯体溶液のpHは7.4であった。この溶液をPFAシャ−レに取ったSiO2/Al23(mol/mol)比500のH型βゼオライト(東ソー製HSZ980HOA)粉末0.25gに加えたこと以外は、実施例1と同様にして、金/βゼオライト担持体を得た。得られた担持体における金の担持量は1.0質量%であった。実施例1と同様に粉末X線回折の測定を行い、金を担持した後もゼオライトの結晶構造を保持しているかどうかについて確認を行うと共に、実施例1と同様にAu(111)回折線の半値幅からシェラーの式により金の体積平均粒子径を計算した。結果を表3及び図5に示す。
<Example 7>
In the same manner as in Example 1, 48 mg of gold acetate was dissolved in 50 mL of an aqueous sodium carbonate solution (0.05 mol / L) to obtain a solution having a pH of 11.1. The pH of the gold hydroxo anion complex solution obtained by adding 2.8 mL of acetic acid (0.1 mol / L) for pH adjustment to 5.0 mL of this solution was 7.4. Except that this solution was added to 0.25 g of an H-type β zeolite (HSZ980HOA manufactured by Tosoh) powder having a SiO 2 / Al 2 O 3 (mol / mol) ratio of 500 taken in a PFA dish, the same as in Example 1. Thus, a gold / β zeolite support was obtained. The amount of gold supported on the obtained support was 1.0% by mass. The powder X-ray diffraction measurement was performed in the same manner as in Example 1, and it was confirmed whether or not the crystal structure of the zeolite was retained after supporting gold. From the full width at half maximum, the volume average particle diameter of gold was calculated by the Scherrer equation. The results are shown in Table 3 and FIG.

<実施例8>
酢酸の代りにクエン酸(0.1mol/L)0.9mLを加え、溶液のpHを7.4としたこと以外は実施例7と同様にして金/βゼオライト担持体を調製した。得られた担持体における金の担持量は1.0質量%であった。実施例4と同様にして粉末X線回折の測定を行い金の粒子径(体積平均値)を計算した。結果を表3及び図5に示す。
<Example 8>
A gold / β zeolite support was prepared in the same manner as in Example 7 except that 0.9 mL of citric acid (0.1 mol / L) was added instead of acetic acid, and the pH of the solution was adjusted to 7.4. The amount of gold supported on the obtained support was 1.0% by mass. In the same manner as in Example 4, powder X-ray diffraction was measured, and the particle size (volume average value) of gold was calculated. The results are shown in Table 3 and FIG.

<実施例9>
酢酸の代りにシュウ酸(0.1mol/L)1.3mLを加え、溶液のpHを7.6としたこと以外は実施例7と同様にして金/βゼオライト担持体を調製した。得られた担持体における金の担持量は1.0質量%であった。実施例4と同様にして粉末X線回折の測定を行い金の粒子径(体積平均値)を計算した。結果を表3及び図5に示す。
<Example 9>
A gold / β zeolite support was prepared in the same manner as in Example 7 except that 1.3 mL of oxalic acid (0.1 mol / L) was added instead of acetic acid, and the pH of the solution was 7.6. The amount of gold supported on the obtained support was 1.0% by mass. In the same manner as in Example 4, powder X-ray diffraction was measured, and the particle size (volume average value) of gold was calculated. The results are shown in Table 3 and FIG.

<比較例4>
実施例7と同様にして酢酸金48mgを炭酸ナトリウム水溶液(0.05mol/L)50mLに溶解した後、弱酸を加えなかったこと以外は実施例7と同様にして金/βゼオライト担持体を調製した。得られた担持体における金の担持量は1.0質量%であった。実施例4と同様にして粉末X線回折の測定を行い金の粒子径(体積平均値)を計算した。結果を表3及び図5に示す。
<Comparative example 4>
A gold / β zeolite support was prepared in the same manner as in Example 7 except that 48 mg of gold acetate was dissolved in 50 mL of an aqueous sodium carbonate solution (0.05 mol / L) in the same manner as in Example 7 and then no weak acid was added. did. The amount of gold supported on the obtained support was 1.0% by mass. In the same manner as in Example 4, powder X-ray diffraction was measured, and the particle size (volume average value) of gold was calculated. The results are shown in Table 3 and FIG.

Figure 0006441454
Figure 0006441454

図5に示されるように、弱酸を添加し調製した実施例7,8,9のAu/βゼオライトでは強度は弱くなるものの元のHβゼオライトと同じ角度に回折線が見られ、結晶を保持している。これに対して、弱酸を添加せずにpH11.1で含浸した比較例4においては、ゼオライトの結晶構造を示す回折線が非常に弱くなると同時に2θ=22°付近にハローが観測され結晶破壊が起こったことを示唆している。   As shown in FIG. 5, the Au / β zeolites of Examples 7, 8, and 9 prepared by adding a weak acid showed a diffraction line at the same angle as that of the original Hβ zeolite, although the strength was weak, and retained the crystals. ing. On the other hand, in Comparative Example 4 impregnated with pH 11.1 without adding weak acid, the diffraction line indicating the crystal structure of the zeolite becomes very weak and at the same time, a halo is observed in the vicinity of 2θ = 22 °, causing crystal destruction. Suggests what happened.

表3はゼオライトの結晶構造の保持の有無と担持された金の粒子径についてまとめた結果である。いずれの場合も10nm以下の金ナノ粒子を担持できているものの、結晶構造を保持するためには金ヒドロキソ錯体溶液に弱酸を添加しpHを7.5付近とすることが大変有効であることが示された。   Table 3 summarizes the presence or absence of retention of the crystal structure of the zeolite and the particle size of the supported gold. In either case, although gold nanoparticles of 10 nm or less can be supported, it is very effective to add a weak acid to the gold hydroxo complex solution to make the pH around 7.5 in order to maintain the crystal structure. Indicated.

上記した方法で得られたAu/SiO2とAu/βゼオライトのうち実施例5、比較例3、実施例7、比較例4の金ナノ粒子担持体を選んで、下記の方法で100℃におけるグルコース酸化反応を行い、触媒活性を評価した。これらの金ナノ粒子担持体に用いた担体のみの触媒活性についても検討するため、比較例5としてSiO2、比較例6としてHβゼオライトについても触媒活性を評価した。結果を表4に示す。Of the Au / SiO 2 and Au / β zeolite obtained by the method described above, the gold nanoparticle carriers of Example 5, Comparative Example 3, Example 7, and Comparative Example 4 were selected and the following method was used at 100 ° C. Glucose oxidation reaction was performed and the catalytic activity was evaluated. In order to examine the catalytic activity of only the carrier used for these gold nanoparticle carriers, the catalytic activity was also evaluated for SiO 2 as Comparative Example 5 and Hβ zeolite as Comparative Example 6. The results are shown in Table 4.

(グルコース酸化反応活性の測定)
容量10mLのねじ口試験管に、撹拌子と担持体粉末10mgを入れ、更にグルコース水溶液(グルコース15mgを水3mLに溶解したものを全量)加えた。テフロンコートパッキン付きの蓋を用い密栓し、恒温槽内に設置した耐熱マグネチックスターラー(HP40163、国内総発売元(株)アイシス)により撹拌しつつ100℃で4時間反応を行った。反応後の溶液を室温まで冷却した後に、酵素法による分析キット(F−kit No.428191、国内総発売元(株)J.K.インターナショナル、世界総発売元バイオファーム社)を用い、酸化生成物であるグルコン酸の量を定量し、収率を計算した。
(Measurement of glucose oxidation activity)
A stirrer and 10 mg of support powder were put into a 10 mL capacity screw-tube test tube, and an aqueous glucose solution (a total amount of 15 mg glucose dissolved in 3 mL water) was added. The reaction was carried out at 100 ° C. for 4 hours while stirring with a heat-resistant magnetic stirrer (HP40163, ISIS Co., Ltd., a general domestic distributor in Japan) installed in a thermostat and sealed with a lid with Teflon-coated packing. After the solution after the reaction is cooled to room temperature, it is oxidized using an enzyme analysis kit (F-kit No. 428191, domestic general sales agency JK International, global total sales agency Biofarm) The amount of gluconic acid as a product was quantified, and the yield was calculated.

Figure 0006441454
Figure 0006441454

表4から明らかなように、担体のみではグルコン酸はほとんど生じないのに対し、金ナノ粒子の担持によって高いグルコン酸収率が得られた。Au/SiO2の場合は工程2での弱酸の添加の有無でグルコン酸収率の違いは大きくなかったが、弱酸を添加しなかった比較例3では反応後の溶液の色が赤紫に着色し、担持したAuがコロイドとして脱離しやすいことを示した。実施例5のクエン酸添加の場合には、反応後の液色は完全に無色であった。Au/βゼオライトの実施例7と比較例4では、どちらも反応後の溶液はごくわずかに赤紫の着色が見られるのみで差はみられなかった。グルコース収率を比較すると大きな違いがみられ、酢酸を添加した実施例7では添加しなかった比較例4と比べ2倍以上の高い収率が得られた。これらの比較から、工程2で弱酸を添加した金ヒドロキソ錯体陰イオン溶液を用いた場合には、金ナノ粒子をより安定に担持できたり、触媒活性が高くなるなど、好ましい効果が見られることが明らかとなった。As is apparent from Table 4, gluconic acid was hardly generated with the carrier alone, whereas a high yield of gluconic acid was obtained by supporting the gold nanoparticles. In the case of Au / SiO 2 , the difference in yield of gluconic acid was not great depending on whether or not the weak acid was added in Step 2, but in Comparative Example 3 where no weak acid was added, the color of the solution after the reaction was colored magenta. It was shown that the supported Au was easily detached as a colloid. In the case of addition of citric acid in Example 5, the liquid color after the reaction was completely colorless. In both Example 7 and Comparative Example 4 of the Au / β zeolite, the solution after the reaction showed only a slight reddish purple coloration, and no difference was observed. When the glucose yield was compared, a large difference was observed, and in Example 7 in which acetic acid was added, a yield two times or more higher than that in Comparative Example 4 in which acetic acid was not added was obtained. From these comparisons, when the gold hydroxo complex anion solution added with a weak acid in Step 2 is used, favorable effects can be seen such that gold nanoparticles can be supported more stably and the catalytic activity becomes higher. It became clear.

<実施例10>
実施例1と同様にして、酢酸金115mgを炭酸ナトリウム水溶液(0.1mol/L)120mLに溶解し、pH10.8の溶液を得た。次に、得られた溶液の20mLに、表5のpHとなるようにクエン酸水溶液(0.1mol/L)を加えて攪拌して、各金ヒドロキソ陰イオン錯体溶液を得た。この溶液を、PFAシャ−レに取った酸化チタン(日本アエロジル製P25)粉末1.0gに加えた。次に、約40℃に加熱して水分を蒸発させて蒸発乾固させた後、るつぼに移し、マッフル炉で350℃、1時間焼成することによって、青紫色の金/酸化チタン担持体(Au/TiO2)を得た。次いで、残留する可溶性塩類を除去するために、脱イオン水にて洗浄した後、100℃で乾燥した。得られた担持体における金の担持量は、1.0質量%であった。得られた担持体は、ガラス製スクリュ−管瓶に入れ、保存した。次に、実施例1と同様にして、粉末X線回折の測定を行なった。実施例1と同様、回折線の半値幅からシェラーの式により金の体積平均粒子径を計算したが、この時、Au(111)回折線は、酸化チタンのピークと重なってしまうため、Au(311)回折線を用いて計算を行った。また、COの酸化活性についても、実施例1と同様にして測定した。結果を表5に示す。
<Example 10>
In the same manner as in Example 1, 115 mg of gold acetate was dissolved in 120 mL of an aqueous sodium carbonate solution (0.1 mol / L) to obtain a solution having a pH of 10.8. Next, to 20 mL of the obtained solution, an aqueous citric acid solution (0.1 mol / L) was added and stirred so as to achieve the pH shown in Table 5, and each gold hydroxo anion complex solution was obtained. This solution was added to 1.0 g of titanium oxide (P25 manufactured by Nippon Aerosil Co., Ltd.) powder taken in a PFA dish. Next, after heating to about 40 ° C. to evaporate the water and evaporating it to dryness, it is transferred to a crucible and baked at 350 ° C. for 1 hour in a muffle furnace, whereby a blue-purple gold / titanium oxide support (Au / TiO 2 ) was obtained. Subsequently, in order to remove the remaining soluble salts, it was washed with deionized water and then dried at 100 ° C. The amount of gold supported on the obtained support was 1.0% by mass. The obtained carrier was stored in a glass screw tube. Next, in the same manner as in Example 1, powder X-ray diffraction was measured. Similar to Example 1, the volume average particle diameter of gold was calculated from the half-width of the diffraction line by the Scherrer equation. At this time, the Au (111) diffraction line overlaps with the peak of titanium oxide, so Au (111) 311) Calculation was performed using diffraction lines. The CO oxidation activity was also measured in the same manner as in Example 1. The results are shown in Table 5.

<比較例7>
予め調製しておいた塩化金酸の0.1mol/L水溶液0.5mLに水を加えて10mLとし、この溶液(pH2.5)をPFAシャ−レに取った酸化チタン(日本アエロジル製P25)粉末1.0gに加えた。次いで、PFAシャ−レを約40℃に加熱して水分を蒸発させて蒸発乾固させた後、るつぼに移し、マッフル炉で、350℃、1時間焼成することにより、金/酸化チタン担持体(Au/TiO2)を得た。得られた担持体における金の担持量は、1.0質量%であった。得られた担持体は、ガラス製スクリュ−管瓶に入れて保存した。実施例10と同様、回折線の半値幅からシェラーの式により金の体積平均粒子径を計算し、COの酸化活性についても、実施例10と同様にして測定した。結果を表5に示す。
<Comparative Example 7>
Titanium oxide (P25 manufactured by Nippon Aerosil Co., Ltd.) was prepared by adding water to 0.5 mL of a 0.1 mol / L aqueous solution of chloroauric acid prepared in advance to make 10 mL, and taking this solution (pH 2.5) into a PFA dish. Added to 1.0 g of powder. Next, the PFA dish is heated to about 40 ° C. to evaporate water to evaporate to dryness, and then transferred to a crucible and baked in a muffle furnace at 350 ° C. for 1 hour, thereby supporting a gold / titanium oxide carrier. (Au / TiO 2 ) was obtained. The amount of gold supported on the obtained support was 1.0% by mass. The obtained carrier was stored in a glass screw tube. Similarly to Example 10, the volume average particle diameter of gold was calculated from the half-width of the diffraction line by the Scherrer equation, and the CO oxidation activity was also measured in the same manner as in Example 10. The results are shown in Table 5.

Figure 0006441454
Figure 0006441454

表5から明らかなように、クエン酸の添加量が少なくpHが上がると金の粒子径は小さくなり、COの転化率は増加した。比較例7では、金ヒドロキソ錯体を用いることなく、塩化金酸を直接担持したところ、金の粒子径は40mnを超え、CO転化の触媒活性は見られなかった。実施例10の金ヒドロキソ錯体にクエン酸を添加した溶液を用いることで、金ナノ粒子の粒子径制御を行いつつ、CO転化活性が高い触媒が得られることが明らかとなった。   As is apparent from Table 5, when the amount of citric acid added was small and the pH was raised, the gold particle size was reduced and the CO conversion was increased. In Comparative Example 7, when chloroauric acid was directly supported without using a gold hydroxo complex, the particle size of gold exceeded 40 mn, and no catalytic activity for CO conversion was observed. It was revealed that by using a solution obtained by adding citric acid to the gold hydroxo complex of Example 10, a catalyst having high CO conversion activity can be obtained while controlling the particle size of the gold nanoparticles.

(光触媒反応活性の測定)
マグネチックスターラーと100W高圧水銀ランプ(SEN特殊光源(株)製 HL100G)を配した反応装置を用い、メタノールを犠牲剤とする水分解水素発生反応に対する担持体粉末の光触媒反応活性を評価した。反応管として用いる試験管(日電理化硝子(株)製 P−18M、内部に水を満たして実測した内容積35.4mL)に、撹拌子と担持体粉末10mgを入れ、更にメタノール水溶液(50vol%)8mLを加えた。次に、ゴム製Wキャップをかぶせ、隙間からテフロンチューブを液中まで差し入れて、そこから窒素ガスを10分間バブリングすることにより、液中の溶存酸素を除去すると共に、試験管上部の空気も窒素置換した。次に、テフロンチューブを引き抜くと同時にWキャップで密栓し、さらにパラフィルムを巻いて空気が入らないようにした。ガスタイトシリンジの針をWキャップに突き刺して内部のガスを0.2mLサンプリングし、TCDガスクロマトグラフ(モレキュラーシーブ13Xカラム)により分析して、酸素がほぼ残っていないことを確認した。次に、予め高圧水銀ランプを点灯しておき、十分安定させた後に、マグネチックスターラーに反応管をセットし、担持体粉末が懸濁状態となるよう反応液を攪拌すると共に、高圧水銀ランプの紫外可視光を試験管側方より照射して反応を開始した。15分ごとに反応管を取り出してガスタイトシリンジで0.2mLのガスをサンプリングし、TCDガスクロによりH2,O2,N2を分析した。得られたピーク面積比から予め求めておいた相対モル感度から、H2発生量を計算した。H2発生量を光照射時間に対してプロットした結果を図6に示す。
(Measurement of photocatalytic activity)
Using a reactor equipped with a magnetic stirrer and a 100 W high-pressure mercury lamp (HL100G manufactured by SEN Special Light Source Co., Ltd.), the photocatalytic reaction activity of the support powder for the water-splitting hydrogen generation reaction using methanol as a sacrificial agent was evaluated. In a test tube used as a reaction tube (P-18M manufactured by Nidec Rika Glass Co., Ltd., an internal volume of 35.4 mL measured by filling the interior with water), a stirrer and 10 mg of support powder were placed, and further an aqueous methanol solution (50 vol%). ) 8 mL was added. Next, a rubber W cap is put on, a Teflon tube is inserted into the liquid from the gap, and nitrogen gas is bubbled from there for 10 minutes to remove dissolved oxygen in the liquid and the air above the test tube is also nitrogen. Replaced. Next, the Teflon tube was pulled out and sealed at the same time with a W cap, and further parafilm was wound to prevent air from entering. The needle of a gas tight syringe was pierced into the W cap, 0.2 mL of the internal gas was sampled, and analyzed by TCD gas chromatograph (Molecular Sieve 13X column) to confirm that almost no oxygen remained. Next, turn on the high-pressure mercury lamp in advance and stabilize it sufficiently. Then, set the reaction tube on the magnetic stirrer, stir the reaction solution so that the carrier powder is suspended, UV-visible light was irradiated from the side of the test tube to initiate the reaction. The reaction tube was taken out every 15 minutes, 0.2 mL of gas was sampled with a gas tight syringe, and H 2 , O 2 , and N 2 were analyzed by TCD gas chromatography. The amount of H 2 generation was calculated from the relative molar sensitivity obtained in advance from the obtained peak area ratio. The result of plotting the H 2 generation amount against the light irradiation time is shown in FIG.

また、メタノール水溶液の代わりにグリセリン水溶液(0.5wt%)8mLを用いた以外は、上記と同様の手順で、グリセリンを犠牲剤とする水分解水素発生反応に対する担持体粉末の光触媒反応活性の測定を行った。結果を図7に示す。   Further, the photocatalytic reaction activity of the support powder for the water-splitting hydrogen generation reaction using glycerin as a sacrificial agent in the same procedure as above except that 8 mL of glycerin aqueous solution (0.5 wt%) was used instead of the methanol aqueous solution. Went. The results are shown in FIG.

図6に示したように、実施例10の金ヒドロキソ錯体にクエン酸を添加した溶液を用いることで、メタノールを犠牲剤とする水素発生反応に光触媒活性を示す金ナノ粒子担持体が得られ、従来法である比較例7により調製した場合よりも活性が高くなることが分かった。さらに、調製液のpHを高くし、金の粒子径を小さく制御すると、活性も高くなることが分かった。また、図7に示したように、犠牲剤としてグリセリンを用いた場合には、メタノール犠牲剤よりもはるかに少ない量でも、十分な水素発生速度の得られることが明らかとなった。   As shown in FIG. 6, by using a solution obtained by adding citric acid to the gold hydroxo complex of Example 10, a gold nanoparticle support showing photocatalytic activity in a hydrogen generation reaction using methanol as a sacrificial agent is obtained. It turned out that activity becomes higher than the case where it prepares by the comparative example 7 which is a conventional method. Furthermore, it was found that the activity increases when the pH of the preparation liquid is increased and the gold particle size is controlled to be small. Further, as shown in FIG. 7, when glycerin is used as the sacrificial agent, it has been clarified that a sufficient hydrogen generation rate can be obtained even with a much smaller amount than the methanol sacrificial agent.

Claims (8)

ハロゲン化物イオンを含まない3価の金化合物を水に懸濁又は分散させたpH8以上の溶液中で、弱酸の共役塩基の存在下において、金化合物の加水分解反応を進行させた反応液を調製する工程1と、
前記反応液とpKaが1〜7の範囲の酸である弱酸とを混合する工程2と、
を備え
前記工程1における前記弱酸の共役塩基が、カルボキシレ−ト陰イオン、炭酸イオン、炭酸水素イオン、リン酸イオン、及びホウ酸イオンからなる群から選ばれた少なくとも1種である、金ヒドロキソ陰イオン錯体溶液の製造方法。
Preparation of a reaction solution in which a hydrolysis reaction of a gold compound proceeds in a solution of pH 8 or higher in which a trivalent gold compound not containing halide ions is suspended or dispersed in water in the presence of a conjugate base of a weak acid Step 1 to perform,
Mixing the reaction solution with a weak acid having a pKa in the range of 1 to 7 ; and
Equipped with a,
Conjugate base of the weak acid in the step 1, carboxylate - DOO anion, carbonate ions, hydrogen carbonate ions, phosphate ions, and Ru at least Tanedea selected from the group consisting of borate ion, gold hydroxo Yin A method for producing an ion complex solution.
前記工程2における前記弱酸が、カルボン酸、リン酸、及び炭酸からなる群から選択された少なくとも1種である、請求項1に記載の金ヒドロキソ陰イオン錯体溶液の製造方法。   The method for producing a gold hydroxo anion complex solution according to claim 1, wherein the weak acid in the step 2 is at least one selected from the group consisting of carboxylic acid, phosphoric acid, and carbonic acid. 前記工程1における前記ハロゲン化物イオンを含まない3価の金化合物が、金カルボキシラ−ト、酸化金、水酸化金、及び金とアルカリ金属との複酸化物からなる群から選択された少なくとも1種である、請求項1または2に記載の金ヒドロキソ陰イオン錯体溶液の製造方法。   The trivalent gold compound not containing the halide ion in the step 1 is at least one selected from the group consisting of gold carboxylate, gold oxide, gold hydroxide, and a double oxide of gold and an alkali metal. The manufacturing method of the gold hydroxo anion complex solution of Claim 1 or 2 which is a seed | species. 前記工程2において、前記弱酸によって金ヒドロキソ陰イオン錯体溶液のpHを8未満に調整する、請求項1〜のいずれかに記載の金ヒドロキソ陰イオン錯体溶液の製造方法。 The method for producing a gold hydroxo anion complex solution according to any one of claims 1 to 3 , wherein in the step 2, the pH of the gold hydroxo anion complex solution is adjusted to less than 8 with the weak acid. 請求項1〜のいずれかに記載の金ヒドロキソ陰イオン錯体溶液の製造方法により製造された金ヒドロキソ陰イオン錯体溶液を、担体に含浸させる工程Aと、
前記金ヒドロキソ陰イオン錯体溶液が含浸された担体から水分を除去し、熱処理を行う工程Bと、
を備える、金ナノ粒子担持体の製造方法。
A step A of impregnating a carrier with the gold hydroxo anion complex solution produced by the method for producing a gold hydroxo anion complex solution according to any one of claims 1 to 4 ,
Removing water from the carrier impregnated with the gold hydroxo anion complex solution and performing a heat treatment; and
A method for producing a gold nanoparticle carrier.
前記担体が、金属酸化物、多孔質ケイ酸塩、多孔質金属錯体、多孔質ポリマ−ビ−ズ、炭素材料、セラミックハニカム、及びメタルハニカムからなる群から選ばれた少なくとも1種である、請求項に記載の金ナノ粒子担持体の製造方法。 The carrier is at least one selected from the group consisting of metal oxides, porous silicates, porous metal complexes, porous polymer beads, carbon materials, ceramic honeycombs, and metal honeycombs. Item 6. A method for producing a gold nanoparticle carrier according to Item 5 . 少なくとも一つの配位子がOH-であって、ハロゲン陰イオンを配位子として含まない平面四角形構造の3価金のヒドロキソ陰イオン錯体と、金に配位していない弱酸の共役塩基を含み、ハロゲン陰イオンを含まない、pHが8未満の透明溶液からなり、前記弱酸の共役塩基が、カルボキシレ−ト陰イオン、炭酸イオン、炭酸水素イオン、及びホウ酸イオンからなる群より選択される少なくとも1種である、金ヒドロキソ陰イオン錯体溶液。 At least one ligand is OH - an A, includes a hydroxo anionic complex of 3 Ataikin square planar structure containing no halogen anion as a ligand, the conjugate base of a weak acid that does not coordinate to gold free of halogen anions, pH Ri is do a transparent solution of less than 8, conjugate base of the weak acid is, carboxylate - DOO anion, carbonate ions, hydrogen carbonate ions, and is selected from the group consisting of borate ion At least Tanedea Ru, gold hydroxo anionic complex solution that. 金ナノ粒子担持体を製造するための含浸液である、請求項に記載の金ヒドロキソ陰イオン錯体溶液。 The gold hydroxo anion complex solution according to claim 7 , which is an impregnation liquid for producing a gold nanoparticle carrier.
JP2017504947A 2015-03-09 2016-02-22 Gold hydroxo anion complex solution Active JP6441454B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015046161 2015-03-09
JP2015046161 2015-03-09
PCT/JP2016/055027 WO2016143490A1 (en) 2015-03-09 2016-02-22 Gold hydroxo anion complex solution

Publications (2)

Publication Number Publication Date
JPWO2016143490A1 JPWO2016143490A1 (en) 2018-01-18
JP6441454B2 true JP6441454B2 (en) 2018-12-19

Family

ID=56879378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017504947A Active JP6441454B2 (en) 2015-03-09 2016-02-22 Gold hydroxo anion complex solution

Country Status (2)

Country Link
JP (1) JP6441454B2 (en)
WO (1) WO2016143490A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321488B (en) * 2022-06-30 2023-10-27 苏州大学 Method for preparing self-dispersion nano metal oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH507293A (en) * 1967-12-12 1971-05-15 Hoechst Ag Process for the production of gold hydroxide diacetate
US4933204A (en) * 1988-09-23 1990-06-12 Rockwell International Corporation Method of producing a gold film
SA97180048B1 (en) * 1996-05-24 2005-12-21 هوكست سيلانس كوربوريشن HETEROGENEOUS BIMETALLIC VINYL ACETATE FOR THE PRODUCTION OF VINYL ACETATE
JP2003183258A (en) * 2001-12-19 2003-07-03 Tanaka Kikinzoku Kogyo Kk Gold complex
WO2012144532A1 (en) * 2011-04-19 2012-10-26 独立行政法人産業技術総合研究所 Solution of gold/hydroxoanion complex and process for producing substance loaded with gold nanoparticles

Also Published As

Publication number Publication date
JPWO2016143490A1 (en) 2018-01-18
WO2016143490A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
Li et al. Layered double hydroxide‐based nanomaterials as highly efficient catalysts and adsorbents
CN108295848B (en) Preparation method of high-dispersion nano catalyst
Müller et al. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: properties of Cu/ZnO@ MOF-5 as catalyst for methanol synthesis
JP5740658B2 (en) Gold hydroxo anion complex solution and method for producing gold nanoparticle carrier
JP6225786B2 (en) Method for producing metal oxide particles
Huang et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method
JP6160874B2 (en) Catalyst carrier comprising gold nanoparticles and method for producing the same
JP5888415B2 (en) Visible light responsive photocatalyst particles and method for producing the same
WO2014045570A1 (en) Catalyst using pd-ru solid-solution-type alloy particles
US20200391185A1 (en) Highly active metal oxide supported atomically dispersed platinum group metal catalysts
JP5715726B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
CN110404573A (en) A kind of preparation method and application of extra small palladium-base alloy material
TW201805064A (en) Catalyst for methanation reaction, method for producing catalyst for methanation reaction, and method for producing methane
JP2010017649A (en) Highly active catalyst and its preparing method
JP4777891B2 (en) Catalyst and process for producing cycloolefin
JP5548548B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP6441454B2 (en) Gold hydroxo anion complex solution
JPH0397623A (en) Production of titanium oxide for fixing gold superfine grains
CN115155578B (en) Preparation method of controllable active component and loading single-atom catalyst
JPH0929097A (en) Steam reforming catalyst of hydrocarbon
JP3784859B2 (en) Hydrocarbon steam reforming catalyst
JP4931099B2 (en) Catalyst for producing cycloolefin and method for producing cycloolefin
JP3365660B2 (en) Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst
CN114522681B (en) Method for improving stability of noble metal solitary atoms in hydrogen atmosphere
Noble Investigation of Oxidized carbon supported Au catalysts synthesized via Strong Electrostatic Adsorption of Au (en) 2Cl3 for the Hydrochlorination of Acetylene to Vinyl Chloride Monomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R150 Certificate of patent or registration of utility model

Ref document number: 6441454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250