JP3365660B2 - Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst - Google Patents

Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst

Info

Publication number
JP3365660B2
JP3365660B2 JP28986393A JP28986393A JP3365660B2 JP 3365660 B2 JP3365660 B2 JP 3365660B2 JP 28986393 A JP28986393 A JP 28986393A JP 28986393 A JP28986393 A JP 28986393A JP 3365660 B2 JP3365660 B2 JP 3365660B2
Authority
JP
Japan
Prior art keywords
ruthenium
catalyst
compound
carrier
impregnating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28986393A
Other languages
Japanese (ja)
Other versions
JPH07116516A (en
Inventor
寛人 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP28986393A priority Critical patent/JP3365660B2/en
Publication of JPH07116516A publication Critical patent/JPH07116516A/en
Application granted granted Critical
Publication of JP3365660B2 publication Critical patent/JP3365660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ルテニウム触媒製造用
含浸液に関し、より詳しく言うと、触媒担体に、ルテニ
ウム成分を極く簡単な操作によって高分散状態でしかも
熱安定性よく担持することができるルテニウム触媒製造
用含浸液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impregnating solution for producing a ruthenium catalyst. More specifically, it can support a ruthenium component on a catalyst carrier in a highly dispersed state and with good thermal stability by a very simple operation. The present invention relates to an impregnating liquid for producing a ruthenium catalyst.

【0002】本発明は、また、ルテニウム触媒の製造方
法に関し、より詳しく言うと、各種の反応に高活性・高
選択性を示し、しかも含有ルテニウム当たりの活性が高
く工業用触媒としても好適に使用することができる各種
の高性能担持ルテニウム系触媒を上記本発明の含浸液を
用いることによって簡単な操作で効率よく製造する方法
に関する。
The present invention also relates to a method for producing a ruthenium catalyst, and more specifically, it exhibits high activity and high selectivity in various reactions and has a high activity per contained ruthenium and is suitable for use as an industrial catalyst. The present invention relates to a method for efficiently producing various high-performance supported ruthenium-based catalysts that can be produced by a simple operation by using the impregnating liquid of the present invention.

【0003】[0003]

【従来の技術】ルテニウムは、例えば、カルボニル化合
物や芳香族化合物等の不飽和化合物の水素化、アンモニ
ア合成、窒素化合物の還元、炭化水素の水蒸気改質、フ
ィッシャー・トロプシュ合成(FT合成)等の様々な反
応に有効な触媒若しくは触媒成分となり、一般に、鉄、
ニッケル、コバルト等の卑金属類、あるいは場合によっ
ては白金、パラジウム等の他の貴金属類よりも高い活性
及び優れた選択性を示すことが知られている。しかしな
がら、ルテニウムは高価なため、鉄、ニッケル、コバル
ト等の多くの金属よりも活性や選択性が優れているにも
かかわらず工業的に使用される例は少ない。したがっ
て、十分に高活性でしかもコスト的にも問題のない実用
的なルテニウム系触媒を得るには、ルテニウム成分を適
当な担体できるだけ高分散状態で有効に担持し、含有ル
テニウム当たりの活性を大きく向上させることが必要と
されている。また、低温時においてはもとより焼成、前
処理、反応、再生等を高温において行う場合にも、その
高分散状態が安定に維持できるようにうまく担持するこ
とも実用上しばしば重要となる。
Ruthenium is used in, for example, hydrogenation of unsaturated compounds such as carbonyl compounds and aromatic compounds, ammonia synthesis, reduction of nitrogen compounds, steam reforming of hydrocarbons, Fischer-Tropsch synthesis (FT synthesis) and the like. It becomes an effective catalyst or catalyst component for various reactions.
It is known to show higher activity and higher selectivity than base metals such as nickel and cobalt or, in some cases, other noble metals such as platinum and palladium. However, since ruthenium is expensive, it is rarely used industrially, although it has better activity and selectivity than many metals such as iron, nickel, and cobalt. Therefore, in order to obtain a practical ruthenium-based catalyst with sufficiently high activity and no problems in terms of cost, the ruthenium component should be supported as effectively as possible in a highly dispersed state as a suitable carrier, and the activity per contained ruthenium is greatly improved. Is required to be made. In addition, it is often practically important to carry well so that the highly dispersed state can be stably maintained even when firing, pretreatment, reaction, regeneration and the like are performed at high temperature as well as at low temperature.

【0004】ところが、従来の汎用性のある触媒調製法
では、一般に、ルテニウムを十分に高分散状態で担持す
ることは難しく、一方、特殊なルテニウム化合物を原料
として用いたり、特殊な調製法を用いたりしてルテニウ
ムの分散性を向上させる技術も提案されているが、これ
らの場合には、原料ルテニウム化合物自体が高価であっ
たり、分散安定性が悪く、特に高温時に凝集を起こした
り、あるいは、調製操作が煩雑であるなど、種々の問題
点があり、実用的でない。
However, it is generally difficult to support ruthenium in a sufficiently highly dispersed state by the conventional general-purpose catalyst preparation method. On the other hand, a special ruthenium compound is used as a raw material or a special preparation method is used. Although a technique for improving the dispersibility of ruthenium has also been proposed, in these cases, the raw material ruthenium compound itself is expensive, or the dispersion stability is poor, and particularly agglomeration occurs at high temperature, or, There are various problems such as complicated preparation operation, and it is not practical.

【0005】例えば、塩化ルテニウムは、各種のルテニ
ウム化合物の中でも最も安価で入手しやすく水溶性を示
すことから、担持ルテニウム触媒の調製用原料として、
最も一般的に用いられている。しかし、その水溶液は、
塩基性の水酸基の存在下では安定性が悪く、例えばアル
ミナ、マグネシア、酸化亜鉛等の水の存在下で塩基性の
水酸基を生成あるいは放出する担体に接触させ含浸担持
を行うと、ルテニウム水酸化物の黒色沈殿が生成するた
め、ルテニウムが凝集してしまい高分散状態で担持する
ことが困難となる。また、更に一般の担体の場合にも他
の共存成分や添加剤の作用や調製時の含浸液の組成の変
化等によって液のpHが上昇すると、同様な問題が生じ
る。
[0005] For example, ruthenium chloride is the cheapest of various ruthenium compounds, is easily available, and exhibits water solubility. Therefore, ruthenium chloride is used as a raw material for preparing a supported ruthenium catalyst.
Most commonly used. However, the aqueous solution
The stability is poor in the presence of basic hydroxyl groups, and ruthenium hydroxide can be obtained by impregnating and supporting by contacting with a carrier that generates or releases basic hydroxyl groups in the presence of water such as alumina, magnesia, and zinc oxide. Since a black precipitate is generated, ruthenium is aggregated, which makes it difficult to support ruthenium in a highly dispersed state. Further, even in the case of a general carrier, when the pH of the liquid increases due to the action of other coexisting components and additives, the change of the composition of the impregnating liquid during preparation, and the like, the same problem occurs.

【0006】そこで、ルテニウムの分散性を向上させる
べく、特殊な原料や調製手段を用いる技術が種々提案さ
れている。
Therefore, in order to improve the dispersibility of ruthenium, various techniques using special raw materials and preparation means have been proposed.

【0007】例えば、特開昭50−14594号公報に
は、ルテニウムのキレート化合物を用いる触媒調製法が
開示されている。しかし、この方法では、キレート化合
物が高価であるので結局は触媒コストの低減に限界があ
る上に、一般に400℃以上という高温ではキレートの
錯体構造が破壊されてしまうため、高温でルテニウムの
分散性を維持することは難しい。
For example, Japanese Unexamined Patent Publication No. 50-14594 discloses a catalyst preparation method using a ruthenium chelate compound. However, in this method, since the chelate compound is expensive, there is a limit to the reduction of the catalyst cost in the end, and in general, the chelate complex structure is destroyed at a high temperature of 400 ° C. or higher, so that the dispersibility of ruthenium at high temperature is high. Is difficult to maintain.

【0008】また、塩化ルテニウム等の汎用のルテニウ
ム化合物の水溶液に、塩酸等の酸を添加しpHの上昇を
抑え水酸化ルテニウム等の沈殿の生成を抑制するという
方法、あるいは塩基性でも比較的安定なアンミン錯塩の
水溶液を用いる方法もしばしば用いられる。しかし、こ
れらの場合にも、担持後のルテニウム成分の分散安定性
は悪く、高温雰囲気下でのルテニウムの凝集は著しい。
[0008] In addition, a method of adding an acid such as hydrochloric acid to an aqueous solution of a general-purpose ruthenium compound such as ruthenium chloride to suppress an increase in pH and suppress the formation of a precipitate such as ruthenium hydroxide, or is relatively stable even in the basic condition. A method using an aqueous solution of a simple ammine complex salt is also often used. However, also in these cases, the dispersion stability of the ruthenium component after loading is poor, and the aggregation of ruthenium in a high temperature atmosphere is significant.

【0009】すなわち、上記のように単に、キレート化
合物やアンミン錯塩といった特定のルテニウム化合物を
用いたり、酸の添加等によってpHの調整を行うという
従来の方法では、たとえルテニウムを低温で分散性よく
担持できたとしても、高温において、空気等による焼成
や水素還元等の前処理を行ったり、反応に用いたり、あ
るいは、再生を行うと、結局はルテニウムは凝集してし
まう。
That is, as described above, according to the conventional method of simply using a specific ruthenium compound such as a chelate compound or an ammine complex salt or adjusting the pH by adding an acid, ruthenium is supported at low temperature with good dispersibility. Even if it is possible, ruthenium will eventually aggregate if it is subjected to pretreatment such as calcination with air or the like, hydrogen reduction or the like, used for reaction, or regenerated at high temperature.

【0010】また、特開平2−71849号公報には、
ルテニウムの錯塩を担体に担持させた後、真空加熱する
ことによって高分散ルテニウム触媒を得るという方法が
開示されている。しかしながら、この場合には、高真空
を要するので工業的な触媒調製法としては適さない。ま
た、この場合にも、低温で焼成することにより分散性を
維持しているので、高温で使用したり、再生すると分散
性が低下することが予想される。
Further, Japanese Patent Laid-Open No. 2-71849 discloses that
A method of obtaining a highly dispersed ruthenium catalyst by supporting a complex salt of ruthenium on a carrier and then heating it in vacuum is disclosed. However, in this case, since a high vacuum is required, it is not suitable as an industrial catalyst preparation method. Also in this case, since the dispersibility is maintained by firing at a low temperature, it is expected that the dispersibility will be lowered when used or regenerated at a high temperature.

【0011】このほか、分散性の向上技術かどうかは不
明ではあるが、特開昭49−125289号公報には、
二酸化ルテニウムと、二酸化ルテニウムと安定な混合酸
化物を形成する金属酸化物(チタン、ジルコニウム、ハ
フニウム等の酸化物)とからなる触媒組成物について開
示されている。しかしながら、該公報には、ルテニウム
の分散性についての記載は全くないし、また、本発明の
含浸液の有効なpHを予見させる記述もない。実際、該
公報の実施例では、ルテニウム含有含浸液としてpHが
8のものを用いている。そこで、本発明者らは、該公報
の実施例に従って担持ルテニウム触媒を調製し、得られ
た触媒についてルテニウムの分散性等の評価を行った。
その結果、ルテニウムの分散性は不十分であることが判
明した。
In addition, although it is not clear whether this is a technique for improving dispersibility, Japanese Patent Application Laid-Open No. 49-125289 discloses that
A catalyst composition comprising ruthenium dioxide and metal oxides (oxides of titanium, zirconium, hafnium, etc.) that form stable mixed oxides with ruthenium dioxide is disclosed. However, this publication does not describe the dispersibility of ruthenium at all, nor does it predict the effective pH of the impregnating solution of the present invention. In fact, in the examples of the publication, a ruthenium-containing impregnating liquid having a pH of 8 is used. Therefore, the present inventors prepared a supported ruthenium catalyst according to the examples of the publication and evaluated the dispersibility of ruthenium and the like in the obtained catalyst.
As a result, it was found that the dispersibility of ruthenium was insufficient.

【0012】[0012]

【発明が解決しようとする課題】本発明の第一の目的
は、多種多様な触媒担体、特に酸化物系担体に、高価な
ルテニウムを簡単な操作によって高分散状態でしかも熱
安定性よく担持することができ、適当な担体に含浸担持
することによって、担持ルテニウム当たりの活性が著し
く向上した各種の高活性・高選択性担持ルテニウム系触
媒[例えば、カルボニル化合物、芳香族化合物、オレフ
ィンやジエン類等の不飽和化合物の選択的水素化触媒、
アンモニア合成触媒、FT合成用触媒、COやCO2
メタン化触媒、COやCO2のアルコール等への水素化
触媒、ニトロ化合物の水素化触媒、炭化水素類の水素化
分解触媒、芳香族アミン類の選択的水素化触媒等の様々
な水素化触媒、NOXの還元浄化触媒、炭化水素等の水
蒸気改質触媒、低温型完全酸化触媒、光半導体触媒、電
極触媒等々]を安価にかつ容易に得ることができる実用
上著しく有用なルテニウム触媒製造用含浸液を提供する
ことにある。
SUMMARY OF THE INVENTION The first object of the present invention is to support expensive ruthenium on a wide variety of catalyst supports, especially oxide supports, in a highly dispersed state and with good thermal stability by a simple operation. A variety of highly active and highly selective supported ruthenium-based catalysts [eg, carbonyl compounds, aromatic compounds, olefins and dienes, etc.] that have significantly improved activity per supported ruthenium by being impregnated and supported on a suitable carrier. A selective hydrogenation catalyst for unsaturated compounds,
Ammonia synthesis catalyst, FT synthesis catalyst, CO and CO 2 methanation catalyst, CO and CO 2 hydrogenation catalyst, nitro compound hydrogenation catalyst, hydrocarbon hydrocracking catalyst, aromatic amine Various hydrogenation catalysts such as selective hydrogenation catalysts, NO x reduction and purification catalysts, steam reforming catalysts such as hydrocarbons, low-temperature complete oxidation catalysts, optical semiconductor catalysts, electrode catalysts, etc.] at low cost and easily Another object of the present invention is to provide an impregnating liquid for producing a ruthenium catalyst, which is extremely useful in practice and can be obtained.

【0013】また、本発明は、各種の担体にルテニウム
が高分散状態でしかも熱安定性よく担持されていて、ル
テニウム当たりの活性が高く、少ないルテニウム含量で
も上記のような各種の反応に十分に高い活性及び選択性
を示す優れた担持ルテニウム系触媒、すなわち、工業用
触媒として好適に使用することができる各種の高性能ル
テニウム系触媒を上記本発明の含浸液を用いることによ
って簡単な操作で効率よく製造する方法を提供すること
も目的としている。
Further, according to the present invention, ruthenium is supported on various carriers in a highly dispersed state and with good thermal stability, the activity per ruthenium is high, and a small ruthenium content is sufficient for various reactions as described above. An excellent supported ruthenium-based catalyst exhibiting high activity and selectivity, that is, various high-performance ruthenium-based catalysts that can be suitably used as industrial catalysts can be efficiently used by a simple operation by using the impregnating solution of the present invention. It is also an object to provide a method of manufacturing well.

【0014】[0014]

【課題を解決するための手段】本発明者らは、実用的な
観点から高価な金属であるルテニウムをできるだけ有効
に活用すべく、所定の各種の触媒担体に分散性よく担持
し、担持ルテニウム当たりの活性が高く、前記したよう
な各種の反応に高活性・高選択性を示し工業的に有利に
使用することができる各種の優れた担持ルテニウム系触
媒を簡単な操作で容易に調製するための方法について、
鋭意検討を行った。その結果、例えば塩化ルテニウム等
のルテニウム化合物と共に少なくとも1種の周期表IV
a族元素(ジルコニウム、チタン、ハフニウム)の化合
物を溶解含有し、しかもpHが3以下に調整された特定
の組成及び物性を有する水溶液を含浸液として用いる
と、各種の触媒担体にルテニウム成分を簡単な操作で高
分散状態に担持することができ、しかも、高温雰囲気下
でも分散性の低下を十分に抑制することができ、したが
って、前記目的を容易に達成することができることを見
いだし、この知見に基づいて本発明を完成するに至っ
た。
Means for Solving the Problems In order to make the most effective use of ruthenium, which is an expensive metal from a practical point of view, the present inventors carried it on various predetermined catalyst supports with good dispersibility, For the purpose of easily preparing various excellent supported ruthenium-based catalysts having a high activity and exhibiting high activity and high selectivity for various reactions as described above and which can be industrially advantageously used, by a simple operation. About how
Diligently studied. As a result, for example, at least one periodic table IV with a ruthenium compound such as ruthenium chloride
When an aqueous solution containing a compound of a group a element (zirconium, titanium, hafnium) and having a specific composition and physical properties adjusted to pH 3 or less is used as the impregnating liquid, the ruthenium component can be easily added to various catalyst carriers. It was found that it can be supported in a highly dispersed state by various operations, and further, the deterioration of dispersibility can be sufficiently suppressed even in a high temperature atmosphere, and therefore the above-mentioned object can be easily achieved. Based on this, the present invention has been completed.

【0015】すなわち、本発明は、ルテニウム化合物と
周期表IVa族元素の化合物を含有する水溶液で、pH
が3以下であることを特徴とするルテニウム触媒製造用
含浸液を提供するものである。
That is, the present invention provides an aqueous solution containing a ruthenium compound and a compound of Group IVa of the periodic table,
Is 3 or less, and an impregnating solution for producing a ruthenium catalyst is provided.

【0016】また、本発明は、上記本発明の含浸液を用
いて所望の各種の反応に有効な各種の優れた担持ルテニ
ウム系触媒を簡単な操作で容易に得る方法として、該含
浸液に担体を接触させ、少なくとも該含浸液中に含まれ
る一部又は全てのルテニウム成分と一部又は全ての周期
表IVa族元素成分を該担体に担持し、該ルテニウム担
持組成物を、乾燥後、焼成することを特徴とするルテニ
ウム触媒の製造方法を併せて提供する。
Further, the present invention provides a method for easily obtaining various excellent supported ruthenium-based catalysts effective for various desired reactions using the above impregnating solution of the present invention by a simple operation. And at least part or all of the ruthenium component contained in the impregnating solution and part or all of the periodic table group IVa element component are supported on the carrier, and the ruthenium-supporting composition is dried and then calcined. A method for producing a ruthenium catalyst is also provided.

【0017】I.ルテニウム触媒製造用含浸液及びその
調製 本発明の含浸液は、少なくとも、1種又は2種以上のル
テニウム化合物と1種又は2種以上周期表IVa族元素
の化合物を溶解含有している水溶液であって、かつpH
が3以下であることを特徴としている。この含浸液を、
例えばアルミナ等の所定の各種の触媒担体に接触含浸さ
せることによって、その触媒担体の表面や細孔内に該含
浸液に含まれているルテニウム成分を周期表IVa族元
素からなる成分と共に適当な化合物の形態で分散性よく
むらなく担持することができ、その後、通常行われるよ
うな高温での焼成や還元等の前処理を行っても、そのル
テニウムの高分散状態を十分安定に維持することがで
き、結果として、少なくともルテニウムが金属や酸化物
等の活性成分の形態で分散性よく安定に担持されている
所望の各種の高性能担持ルテニウム系触媒を容易に得る
ことができる。
I. Impregnation liquid for producing ruthenium catalyst and preparation thereof The impregnation liquid of the present invention is an aqueous solution containing at least one or more ruthenium compounds and one or more compounds of Group IVa elements of the periodic table. And pH
Is 3 or less. This impregnating liquid
For example, a ruthenium component contained in the impregnating solution on the surface or in the pores of the catalyst support is impregnated into the catalyst support by impregnating it with a predetermined compound such as alumina or the like, and a suitable compound together with a component of Group IVa element of the periodic table. Can be supported evenly with good dispersibility in the form of, and after that, even if pretreatment such as firing or reduction at a high temperature that is usually carried out, the highly dispersed state of ruthenium can be maintained sufficiently stable. As a result, various desired high-performance supported ruthenium-based catalysts in which at least ruthenium is stably supported in the form of an active component such as a metal or an oxide with good dispersibility can be easily obtained.

【0018】ここで、重要な点は、本発明の含浸液がル
テニウム化合物と共に周期表IVa族元素の化合物を同
時に含有しているという点であり、これによってはじめ
て上記の優れた効果が発揮される。このように、ルテニ
ウム化合物と周期表IVa族元素の化合物を同時に溶解
している本発明の含浸液を用いると、なぜ上記のように
各種の担体にルテニウム成分を高分散状態でしかも熱安
定性よくうまく担持できるのかと言う点については、現
段階では不明の点も多いが、次のような点が重要な要因
となっているものと思われる。
Here, the important point is that the impregnating solution of the present invention contains a compound of Group IVa element of the periodic table at the same time as the ruthenium compound, and the above-mentioned excellent effects are exhibited for the first time. . Thus, when the impregnating solution of the present invention in which the ruthenium compound and the compound of the group IVa element of the periodic table are simultaneously dissolved is used, as described above, the ruthenium component is highly dispersed in various carriers and the thermal stability is good. There are many unclear points at this stage regarding whether or not it can be carried successfully, but the following points are thought to be important factors.

【0019】まず、本発明の含浸液はpHが3以下とい
う比較的強酸性に調整してあるので、ルテニウム化合物
もIVa族元素の化合物も各々それ自体で沈殿しにくい
安定な水溶液となっている。このことも重要ではある
が、それだけではなく、以下に示すように、ルテニウム
化合物と周期表IVa族元素の化合物が互いに反応し錯
体様の化合物を形成することによって上記の優れた効果
がもたらされるものと考えられる。
First, since the impregnating solution of the present invention is adjusted to have a relatively strong acidity of pH 3 or less, it is a stable aqueous solution in which neither the ruthenium compound nor the compound of group IVa is easily precipitated by itself. . This is also important, but not only that, as shown below, a ruthenium compound and a compound of the IVa group of the periodic table react with each other to form a complex-like compound, which brings about the above excellent effects. it is conceivable that.

【0020】すなわち、本発明者らは、塩化ルテニウム
等のルテニウム塩の水溶液と、例えばオキシ塩化ジルコ
ニウム等の周期表IVa族元素の化合物の水溶液を混合
すると、該ルテニウムとIVa族元素の間で錯体様の化
合物が生成すること、そして、このような錯体様の化合
物を形成している水溶液を含浸液として用いると、ルテ
ニウム化合物単独の酸性溶液の場合には黒色のルテニウ
ム水酸化物の沈殿を生じるような塩基性の担体に接触含
浸させても、あるいは含浸担持時に溶液のpHの多少上
昇させても、そのようなルテニウム水酸化物の生成は認
められないという重要な事実を見いだした。このよう
に、本発明の含浸液の場合には、凝集したあるいは凝集
の原因となりやすいルテニウムの水酸化物が極めて生成
しにくく、また、ルテニウムはIVa族元素の化合物に
よって安定化され錯体様化合物となって担体中に導入さ
れるので、結果として高分散状態でむらなく担持される
ものと理解することができる。しかも、この時、その錯
体様化合物がその化合物中のIVa族元素成分と担体の
水酸基との反応によって担体上に強く固定化されるの
で、その結果、高温での焼成や水素還元等の処理を行っ
ても高分散性が安定に維持されるものと考えることがで
きる。
That is, the inventors of the present invention mixed an aqueous solution of a ruthenium salt such as ruthenium chloride with an aqueous solution of a compound of the group IVa group of the periodic table such as zirconium oxychloride to form a complex between the ruthenium and the group IVa element. Of such a complex-like compound, and when an aqueous solution forming such a complex-like compound is used as an impregnating liquid, a black ruthenium hydroxide precipitates in the case of an acidic solution of the ruthenium compound alone. It was found that the formation of such ruthenium hydroxide is not observed even when such a basic carrier is impregnated by contact, or even when the pH of the solution is slightly increased during impregnation and loading. As described above, in the case of the impregnating liquid of the present invention, it is extremely difficult to generate a hydroxide of ruthenium which is agglomerated or is likely to cause agglomeration, and ruthenium is stabilized by a compound of the group IVa element to form a complex-like compound. Since it is introduced into the carrier as a result, it can be understood that as a result, it is uniformly supported in a highly dispersed state. Moreover, at this time, since the complex-like compound is strongly immobilized on the carrier by the reaction between the group IVa element component in the compound and the hydroxyl group of the carrier, as a result, treatment such as baking at high temperature or hydrogen reduction is performed. It can be considered that the high dispersibility is stably maintained even if it is performed.

【0021】本発明の含浸液は、水又は水を主成分とす
る水系溶媒に、少なくとも、pHが3以下の状態でルテ
ニウム化合物と周期表IVa族元素の化合物が溶解され
るように調製するならば、その調製原料として用いるル
テニウム化合物及び周期表IVa族元素の化合物として
は、一般に、どのような種類あるいは形態のもの用いて
もよい。
If the impregnating solution of the present invention is prepared in such a manner that the ruthenium compound and the compound of Group IVa element of the periodic table are dissolved in water or an aqueous solvent containing water as a main component at least at a pH of 3 or less. In general, as the ruthenium compound and the compound of the group IVa element of the periodic table, which are used as the raw materials for the preparation, generally any kind or form may be used.

【0022】すなわち、調製原料として用いるルテニウ
ム化合物としては、通常は、例えば三塩化ルテニウム等
の各種のハロゲン化ルテニウム、ヘキサクロロルテニウ
ム酸カリウム等の各種のハロゲン化ルテニウム酸塩、テ
トラオクソルテニウム酸カリウム等の各種のルテニウム
酸塩、四酸化ルテニウム、ヘキサアンミンルテニウム三
塩化物等の各種のアンミン錯塩、ヘキサシアノルテニウ
ム酸カリウム等のシアノ錯塩などが好適に使用される
が、これらに限定されるものではなく、通常の水に溶解
性を示すものに限らず酸や酸性化合物等の添加あるいは
共存によってpHが3以下の状態で十分に溶解できるも
のであれば各種のものが使用可能である。したがって、
例えば三酸化二ルテニウム等の酸化ルテニウムや水酸化
ルテニウム、あるいはオキシハロゲン化物などのpHが
7付近の水には不溶性であったり溶解しにくいものでも
適宜塩酸等の酸を添加し溶解して使用すればよい。
That is, as the ruthenium compound used as a starting material, for example, various ruthenium halides such as ruthenium trichloride, various halogenated ruthenates such as potassium hexachlororuthenate, potassium tetraoxorthenate and the like are usually used. Various ruthenium salts, ruthenium tetraoxide, various ammine complex salts such as hexaammineruthenium trichloride, cyano complex salts such as potassium hexacyanoruthenate are preferably used, but are not limited to these, Not limited to those which are soluble in water, various types can be used as long as they can be sufficiently dissolved in a state of pH of 3 or less by the addition or coexistence of an acid or an acidic compound. Therefore,
For example, ruthenium oxide such as diruthenium trioxide or ruthenium hydroxide, or oxyhalide such as oxyhalide, which is insoluble or difficult to dissolve in water having a pH of about 7, may be used by appropriately adding an acid such as hydrochloric acid and dissolving it. Good.

【0023】これら各種の原料ルテニウム化合物の中で
も特に塩化ルテニウムが好適に使用される。
Among these various starting ruthenium compounds, ruthenium chloride is particularly preferably used.

【0024】一方、前記周期表IVa族元素としては、
ジルコニウム、チタン及びハフニウムを挙げることがで
きるが、中でも特にジルコニウムが好適である。これら
の周期表IVa族元素の化合物についても同様に塩酸等
の酸や酸性化合物等を添加するなどしてpHが3以下で
溶解し水溶液となすことができる各種のものを調製原料
として選定することができ、具体的には例えば、四塩化
ジルコニウム、四塩化チタン、三塩化チタン、四塩化ハ
フニウム等の各種のハロゲン化物若しくはこれらの部分
加水分解生成物、塩化ジルコニル(オキシ塩化ジルコニ
ウム)、塩化チタニル(オキシ塩化チタン)等の各種の
オキシハロゲン化物、硫酸ジルコニル、硫酸チタニル、
硝酸ジルコニウム、硝酸ジルコニル、硝酸チタニル、硝
酸ハフニウム等の各種の酸素酸塩、テトラオクソジルコ
ニウム酸カリウム、ヘキサフルオロジルコニウム酸ナト
リウム、ヘキサクロロチタン酸カリウム、ヘキサフルオ
ロチタン酸アンモニウム等の各種のジルコニウム酸塩、
チタン酸塩及びハフニウム酸塩、酢酸ジルコニウム、酢
酸ジルコニル、蓚酸ジルコニル、蓚酸ハフニウム、テト
ラオキサラトジルコニウム酸カリウム等の各種の有機酸
塩あるいは有機系の配位化合物など、更には、ジルコニ
ウム、チタン、ハフニウムのアルコキシド、水酸化物、
各種の錯塩などを例示することができる。これら各種の
周期表IVa族元素の化合物の中でも、特に、オキシ塩
化ジルコニウム等が好ましい。
On the other hand, as the group IVa element of the periodic table,
Zirconium, titanium and hafnium can be mentioned, but zirconium is particularly preferable. Regarding these compounds of Group IVa elements of the periodic table, similarly, various kinds of materials that can be dissolved into an aqueous solution at a pH of 3 or less by adding an acid such as hydrochloric acid or an acidic compound should be selected as raw materials for preparation. Specifically, for example, various halides such as zirconium tetrachloride, titanium tetrachloride, titanium trichloride, hafnium tetrachloride and the like, or partial hydrolysis products thereof, zirconyl chloride (zirconium oxychloride), titanyl chloride ( Various oxyhalides such as titanium oxychloride), zirconyl sulfate, titanyl sulfate,
Zirconium nitrate, zirconyl nitrate, titanyl nitrate, various oxyacid salts such as hafnium nitrate, potassium tetraoxozirconate, sodium hexafluorozirconate, potassium hexachlorotitanate, various zirconates such as ammonium hexafluorotitanate,
Titanate and hafnate, zirconium acetate, zirconyl acetate, zirconyl oxalate, hafnium oxalate, potassium tetraoxalatozirconate, various organic acid salts or organic coordination compounds, and further zirconium, titanium, hafnium. Alkoxide, hydroxide,
Various complex salts and the like can be exemplified. Among these various compounds of Group IVa elements of the periodic table, zirconium oxychloride and the like are particularly preferable.

【0025】本発明の含浸液を調製するに際して、水等
の水系溶媒、ルテニウム化合物、周期表IVa族元素の
化合物、酸等の各成分の添加、混合、溶解の順序及び方
式については特に制限はなく、例えば、水又は予め酸を
添加した酸の水溶液に所定の成分を同時添加して溶解さ
せてもよいし、段階的に添加し溶解させてもよいし、あ
るいは、ルテニウム化合物の水溶液と周期表IVa族元
素の化合物の水溶液を別途に調製し、これらの溶液を混
合してもよいし、一方の水溶液に残りの化合物を溶解し
てもよい。
When preparing the impregnating solution of the present invention, there are no particular restrictions on the order and method of addition, mixing and dissolution of water-based solvents such as water, ruthenium compounds, compounds of Group IVa elements of the Periodic Table, acids and the like. Alternatively, for example, water or an aqueous solution of an acid to which an acid has been added in advance may be dissolved by adding predetermined components at the same time, or may be added stepwise and dissolved, or an aqueous solution of a ruthenium compound and a cycle. An aqueous solution of a compound of the group IVa element in Table IV may be separately prepared, and these solutions may be mixed, or the remaining compound may be dissolved in one aqueous solution.

【0026】なお、溶解性の向上及びpHの調整の際に
必要に応じて添加する酸としては、例えば、塩酸、硫
酸、硝酸等の無機酸、酢酸、蓚酸等の有機酸など各種の
ものを適宜選定して使用すればよい。
As the acid to be added as necessary when improving the solubility and adjusting the pH, various acids such as inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as acetic acid and oxalic acid are used. It may be appropriately selected and used.

【0027】本発明の含浸液において、溶解含有させる
ルテニウム成分と周期表IVa族元素成分の割合は、周
期表IVa族元素(M)とルテニウム原子(Ru)のモ
ル比(M/Ru)で表すと、該モル比(M/Ru)が、
通常、1〜40、好ましくは、1〜20の範囲になるよ
うに選定するのが好適である。ここで、もし、該モル比
(M/Ru)が1より小さいと周期表IVa族元素Mの
割合が少なくなりすぎてルテニウムの一部が、錯体様化
合物になれないため凝集しやすくなり、その分分散性の
向上効果が少なくなる。一方、このモル比(M/Ru)
を40より大きくしても、それに見合った分散性等の更
なる改善効果は認められず、場合によっては表面に露出
するルテニウム成分の量が低下したり、あるいは、担体
本来の特性が大きく変化し損なわれるなどの支障を生じ
ることがある。
In the impregnating liquid of the present invention, the ratio of the ruthenium component to be dissolved and contained and the IVa group element component of the periodic table is represented by the molar ratio (M / Ru) of the periodic table IVa group element (M) and the ruthenium atom (Ru). And the molar ratio (M / Ru) is
Usually, it is suitable to select the range of 1 to 40, preferably 1 to 20. Here, if the molar ratio (M / Ru) is less than 1, the proportion of the group IVa element M in the periodic table becomes too small, and a part of ruthenium cannot be a complex-like compound, which easily causes aggregation. The effect of improving the dispersibility is reduced. On the other hand, this molar ratio (M / Ru)
Even if the value is larger than 40, further improvement effect such as dispersibility corresponding to it is not recognized, and in some cases, the amount of ruthenium component exposed on the surface is decreased, or the original characteristics of the carrier are significantly changed. May cause problems such as damage.

【0028】その際、含浸液に溶解せしめる前記ルテニ
ウム化合物又は周期表IVa族元素の化合物の量(濃
度)としては、特に制限はないが、ルテニウム化合物の
濃度がルテニウム原子のモル濃度として、通常、0.0
1mol/l以上となるように選定するのが好ましい。
At that time, the amount (concentration) of the ruthenium compound or the compound of the group IVa element of the periodic table dissolved in the impregnation liquid is not particularly limited, but the concentration of the ruthenium compound is usually the molar concentration of ruthenium atoms, 0.0
It is preferable to select 1 mol / l or more.

【0029】なお、本発明の含浸液には、本発明の目的
を阻害しない範囲で、ルテニウム化合物及び周期表IV
a族元素の化合物あるいは酸以外の他の成分を適宜添加
してもよい。
The impregnating solution of the present invention contains a ruthenium compound and a periodic table IV as long as the object of the present invention is not impaired.
A compound other than the compound of the group a element or the acid may be appropriately added.

【0030】本発明の含浸液は、少なくとも担体と接触
させる前の時点において、前記したようにpHが3以下
であることが重要であり、場合によってはpHを2以下
にすることが好ましい。ここで、もし、含浸液のpHを
3より大きくすると周期表IVa族元素の化合物が加水
分解されやすくなり水酸化物様のソルやゲルを形成しや
すくなる。このような水酸化物様のゾルやゲル状が溶液
中に生成すると、ルテニウム成分を前記のような錯体様
化合物としてうまく担持することが困難となり、その結
果、所望の分散性等の改善効果が十分に達成できなくな
る。
It is important for the impregnating liquid of the present invention to have a pH of 3 or less as described above, at least before contact with the carrier, and it is preferable to set the pH to 2 or less in some cases. Here, if the pH of the impregnating liquid is higher than 3, the compound of Group IVa element of the periodic table is easily hydrolyzed, and a hydroxide-like sol or gel is easily formed. When such a hydroxide-like sol or gel form is generated in the solution, it becomes difficult to successfully support the ruthenium component as the complex-like compound as described above, and as a result, the desired effect of improving dispersibility and the like is obtained. It will not be fully achieved.

【0031】なお、一般に、チタン化合物の水溶液は、
pHが2より大きくなると水酸化物様のゾルが生じやす
くなり、また、ジルコニウム化合物の水溶液の場合に
は、pHが3より大きくなると、水酸化物様のゲルを生
じやすくなることが知られている。したがって、一般的
には、含浸液のpHを前記したように2以下に選定して
おくことが好ましい。
Generally, an aqueous solution of a titanium compound is
It is known that when the pH is higher than 2, a hydroxide-like sol is likely to be generated, and in the case of an aqueous solution of a zirconium compound, when the pH is higher than 3, a hydroxide-like gel is likely to be generated. There is. Therefore, it is generally preferable that the pH of the impregnating liquid is selected to be 2 or less as described above.

【0032】本発明の含浸液は、上記したように、従来
法では高分散担持が容易でなかった塩基性の水酸基を有
するあるいは生成する担体に対してもルテニウム成分を
容易に高分散状態でむらなく担持することができる優れ
たルテニウム触媒製造用含浸液である。もちろん、他の
一般のどのような担体に対しても同様に好適に適用する
ことができる。しかも、高温雰囲気下でも分散安定性が
良好であるので、担持後、高温での焼成や水素還元等の
前処理、あるいは高温での反応、更には高温での再生を
行っても、その高分散性を十分に安定に維持することが
できる。したがって、本発明の含浸液を用いることによ
って、各種の触媒反応に高活性・高選択性を示す優れた
担持ルテニウム系触媒、特に、ルテニウム含量が少なく
ても高活性を示す安価で工業用触媒としても好適な多種
多様な担持ルテニウム系触媒を容易に得ることができ
る。
As described above, the impregnating solution of the present invention can easily and evenly disperse the ruthenium component in a highly dispersed state even on a carrier having or having a basic hydroxyl group, which cannot be easily dispersed and supported by the conventional method. It is an excellent impregnating liquid for producing a ruthenium catalyst that can be supported without any treatment. Of course, it can be similarly suitably applied to any other general carrier. Moreover, since the dispersion stability is good even in a high temperature atmosphere, even after carrying, pre-treatment such as baking at high temperature or hydrogen reduction, reaction at high temperature, or regeneration at high temperature, high dispersion The sex can be maintained sufficiently stable. Therefore, by using the impregnating solution of the present invention, an excellent supported ruthenium-based catalyst showing high activity and high selectivity for various catalytic reactions, particularly as an inexpensive industrial catalyst showing high activity even if the ruthenium content is small. A wide variety of suitable supported ruthenium-based catalysts can be easily obtained.

【0033】なお、後述するように、対象とする担体の
種類や組成あるいは形状、担持方式などについては特に
制限はなく、また、対象とする触媒反応についても特に
制限はない。
As will be described later, there are no particular restrictions on the type, composition or shape of the target carrier, the loading system, etc., and there is also no particular restriction on the target catalytic reaction.

【0034】II.ルテニウム触媒の製造 前記本発明の含浸液を用い、これを適当な担体に接触含
浸させ、ルテニウム成分を周期表IVa族元素成分と共
に担持することによって、少なくともルテニウムからな
る活性成分が高分散状態で安定性よく担持された各種の
高活性担持ルテニウム系触媒を容易に調製することがで
きる。
II. Production of Ruthenium Catalyst By using the impregnating solution of the present invention, which is impregnated into a suitable carrier by contact, and supporting the ruthenium component together with the IVa group element component of the periodic table, at least the active component consisting of ruthenium is stable in a highly dispersed state. It is possible to easily prepare various highly active supported ruthenium-based catalysts supported with good properties.

【0035】すなわち、そのような高活性担持ルテニウ
ム系触媒を簡単な操作で容易に得る方法として、上記本
発明の含浸液に担体を接触させ、少なくとも該含浸液中
に含まれる一部又は全てのルテニウム成分と一部又は全
ての周期表IVa族元素成分を該担体に担持し、得られ
たルテニウム担持組成物を、乾燥後、焼成することを特
徴とするルテニウム触媒の製造方法を挙げることができ
る。
That is, as a method for easily obtaining such a highly active-supported ruthenium-based catalyst by a simple operation, a carrier is brought into contact with the impregnating solution of the present invention, and at least a part or all of the impregnating solution is contained. A method for producing a ruthenium catalyst is characterized in that a ruthenium component and a part or all of the periodic table group IVa element components are supported on the carrier, and the resulting ruthenium-supported composition is dried and calcined. .

【0036】以下、この製造方法について詳細に説明す
る。
Hereinafter, this manufacturing method will be described in detail.

【0037】この方法においては、まず、本発明の含浸
液を適当な担体に接触含浸させることによって、少なく
ともルテニウム成分を担持する。
In this method, first, at least the ruthenium component is supported by contact-impregnating the impregnating liquid of the present invention with a suitable carrier.

【0038】対象とする担体としては、例えば、γ−ア
ルミナ、α−アルミナ等の各種のアルミナ、シリカ、チ
タニア、ジルコニア、マグネシア等の単独金属酸化物系
のもの、アルミナボリア、シリカアルミナ、ゼオライ
ト、シリカジルコニア、シリカチタニア、チタニアアル
ミナ、シリカマグネシア等の混合若しくは複合金属酸化
物系のものなどを挙げることができるが、これらに限定
されるものではなく、一般に、どのような種類及び組成
のものも対象として選定することができる。
Examples of the target carrier include various kinds of alumina such as γ-alumina and α-alumina, single metal oxides such as silica, titania, zirconia and magnesia, alumina boria, silica alumina, zeolite, Examples thereof include silica zirconia, silica titania, titania alumina, mixed metal oxides such as silica magnesia, and the like, but are not limited to these, and generally any kind and composition Can be selected as a target.

【0039】これらの担体は、従来の場合と同様に、使
用目的等に応じて適宜選定して使用することになる。
As in the conventional case, these carriers are appropriately selected and used according to the purpose of use.

【0040】なお、こうした担体は、従来の場合と同様
に、添加物の添加や予備処理の実施あるいは調製法の選
定等によって、組成や物性が調整あるいは制御されたも
のとして使用することができる。例えば、酸処理、塩基
処理、イオン交換処理等の化学的処理を行って酸性度等
の調整を行ったり、加熱や焼成等による水分やOH含量
の調整を行ったり、更には、各種の手段により細孔径や
細孔径分布の制御、表面積の制御を行ったりして、組成
や触媒担体としての特性の調整や改善がなされているも
のでもよい。また、場合によっては、予め適当な金属成
分等を含有若しくは担持してあるものを用いてよい。ま
た、これらの担体は、予め乾燥や焼成が施されているも
のでもよいし、未焼成のものや未乾燥のものでもよい
し、加水分解等によって調製したゾル状のものなどスラ
リー状のものでもよい。
As in the conventional case, such a carrier can be used as the one whose composition and physical properties are adjusted or controlled by addition of additives, execution of pretreatment or selection of preparation method. For example, chemical treatment such as acid treatment, base treatment, ion exchange treatment, etc. is performed to adjust the acidity, etc., water or OH content is adjusted by heating or baking, and further, by various means. The composition and properties of the catalyst carrier may be adjusted or improved by controlling the pore size and the pore size distribution and the surface area. Further, in some cases, a material containing or supporting an appropriate metal component in advance may be used. Further, these carriers may be those which have been previously dried or calcined, may be uncalcined or undried, or may be slurry-shaped such as sol prepared by hydrolysis or the like. Good.

【0041】担体の形状やサイズとしても、特に制限は
なく、例えば、粉末状、ビーズ状、ペレット状、顆粒
状、モノリス等の構造体にコーティングしたもの、微粒
子状、超微粒子状のものを適宜使用することができる。
すなわち、造粒や成形を施したものでもよいし、あるい
は、特にそのような処理を施していないものでもよい。
The shape and size of the carrier are not particularly limited, and examples thereof include powder, beads, pellets, granules, those coated on a structure such as a monolith, fine particles, and ultrafine particles. Can be used.
That is, it may be granulated or molded, or may not be particularly treated.

【0042】本発明の触媒製造方法においては、前記所
定の含浸液(本発明の含浸液)を前記所定の担体に接触
含浸することによって、所定の金属成分を該担体に担持
し、得られた担持組成物を、乾燥後、適当な条件で焼成
する。
In the method for producing a catalyst of the present invention, the predetermined impregnating liquid (impregnating liquid of the present invention) is contact-impregnated into the predetermined carrier to support a predetermined metal component on the carrier, and thus obtained. The supporting composition is dried and then calcined under appropriate conditions.

【0043】含浸液と担体の接触による含浸担持操作
は、常法に従って行うことができ、例えば、常用される
各種の含浸法(加熱含浸法、常温含浸法、真空含浸法、
常圧含浸法、含浸乾固法、ポアフィリング法等、あるい
はこれらの任意の組み合わせ法など)、浸漬法、軽度浸
潤法、湿式吸着法、湿式混練法、スプレー法、塗布法な
ど、あるいはこれらの組み合わせ法など、含浸液と担体
とを接触させて担持させる方式であればどのような方式
によってもよい。また、この含浸担持、乾燥、焼成の一
連の操作は、少なくとも、1回は行われるが、必要に応
じて、これらの操作を2回以上に分けて複数回繰り返し
てもよい。
The impregnation-supporting operation by contacting the impregnating liquid with the carrier can be carried out by a conventional method. For example, various commonly used impregnation methods (heat impregnation method, room temperature impregnation method, vacuum impregnation method,
Normal pressure impregnation method, impregnation dry solidification method, pore filling method, etc., or any combination thereof), dipping method, light wetting method, wet adsorption method, wet kneading method, spray method, coating method, etc. Any method such as a combination method may be used as long as it is a method of bringing the impregnating liquid and the carrier into contact with each other to carry them. Further, the series of operations of impregnating, supporting, drying and firing is performed at least once, but if necessary, these operations may be repeated twice or more and repeated multiple times.

【0044】ここで、用いる担体と含浸液の量比は、目
標とする活性金属成分の担持率、用いる含浸液中の金属
化合物の濃度、含浸担持方式の種類、用いる担体の細孔
容積や比表面積などよって異なるので一律に定めること
ができないが、少なくとも、担持しようとする担体を十
分に濡らす量の含浸液を使用し、一方、担体に対する含
浸液の使用量(使用に供する量)の上限については、特
に制限はないが、通常は、使用する担体の乾燥重量10
0g当たり、含浸液の使用量を100ml以下の範囲に
選定するのが好ましい。
Here, the amount ratio of the carrier to be used and the impregnating liquid is the target active metal component loading rate, the concentration of the metal compound in the impregnating liquid to be used, the type of the impregnating and supporting system, the pore volume and the ratio of the carrier to be used. It cannot be uniformly determined because it depends on the surface area, etc., but at least the amount of impregnating liquid that sufficiently wets the carrier to be supported should be used, while the upper limit of the amount of impregnating liquid used on the carrier (the amount to be used) should be used. Is not particularly limited, but usually, the dry weight of the carrier used is 10
It is preferable to select the amount of the impregnating liquid to be used in an amount of 100 ml or less per 0 g.

【0045】この接触操作(含浸担持操作)は、従来の
場合と同様に、大気圧下あるいは減圧下(減圧排気下)
で好適に行うことができ、その際の操作温度としても特
に制限はなく、室温あるいは室温付近でも行うことがで
きるし、必要に応じて加熱あるいは加温し、例えば室温
〜80℃程度の温度でも好適に行うことができる。
This contacting operation (impregnation supporting operation) is carried out under atmospheric pressure or under reduced pressure (under reduced pressure exhaust) as in the conventional case.
The operating temperature at that time is not particularly limited, and it can be performed at or near room temperature, and heating or heating is performed as necessary, for example, at room temperature to about 80 ° C. It can be suitably performed.

【0046】以上のようにして、所定のルテニウムから
なる成分を所定の担体にむらなく均一性よく担持するこ
とができる。なお、上記に示した含浸担持方式の特徴か
らもわかるように、場合に応じて、用いた含浸液中に含
まれる全てのルテニウム成分を担持せしめてもよいし、
例えば、接触後任意の時点で余分な含浸液を除去するな
どしてし、用いた含浸液中のルテニウム成分の一部のみ
を担持してもよい。
As described above, the predetermined ruthenium component can be uniformly and uniformly loaded on the predetermined carrier. As can be seen from the characteristics of the impregnation supporting method shown above, depending on the case, all the ruthenium components contained in the impregnating solution used may be supported,
For example, only a part of the ruthenium component in the used impregnating liquid may be supported by removing the excess impregnating liquid at any time after the contact.

【0047】ルテニウム成分と周期表IVa族元素成分
の最終的な担持量は、担体の種類や表面積等の性状、あ
るいは、触媒の用途すなわち対象とする反応の種類や性
質等の諸条件を考慮して適宜選定すればよいのである
が、多くの場合には、所定の担体に対する担持量とし
て、ルテニウム成分をルテニウム金属に換算して、通
常、0.05〜5重量%、好ましくは、0.1〜1重量
%の範囲に選定し、一方、周期表IVa族元素成分を酸
化物(TiO2、ZrO2、HfO2)に換算して、通
常、0.05〜20重量%、好ましくは、1.0〜10
重量%の範囲に選定するのが好適である。
The final supported amount of the ruthenium component and the group IVa element of the periodic table is determined in consideration of properties such as the type and surface area of the carrier, or various conditions such as the use of the catalyst, that is, the type and properties of the target reaction. However, in many cases, the amount of ruthenium component converted to a ruthenium metal is usually 0.05 to 5% by weight, preferably 0.1 as the amount supported on a predetermined carrier. To 1% by weight, while the group IVa element component of the periodic table is converted to oxides (TiO 2 , ZrO 2 , HfO 2 ) and is usually 0.05 to 20% by weight, preferably 1 .0-10
It is preferable to select in the range of weight%.

【0048】本発明の触媒製造方法においては、上記の
ようにして得たルテニウム担持組成物を、乾燥後、適当
な温度で焼成する。
In the method for producing a catalyst of the present invention, the ruthenium-supporting composition obtained as described above is dried and then calcined at an appropriate temperature.

【0049】この乾燥は、通常、50〜150℃、好ま
しくは、80〜130℃の範囲で行うのが好適である。
但し、含浸担持方式によっては、多くの水分が蒸発し、
かなりの乾燥状態のものが得られるので、そのような場
合には、必ずしも、別途に乾燥操作を施さないでもよ
い。
This drying is usually carried out at a temperature of 50 to 150 ° C., preferably 80 to 130 ° C.
However, depending on the impregnation support method, a large amount of water evaporates,
Since a considerably dried product can be obtained, in such a case, a separate drying operation may not necessarily be performed.

【0050】前記焼成も、常法に従って行うことがで
き、通常は空気中若しくは空気気流中で、300〜70
0℃、好ましくは、400〜600℃の温度範囲で好適
に実施される。なお、空気の他に、純酸素化や酸素富化
空気などの酸素含有ガスを代用したり併用してもよい。
焼成時間は、通常、1〜24時間程度で十分である。
The above-mentioned calcination can also be carried out according to a conventional method, usually 300 to 70 in air or in an air stream.
It is suitably carried out in a temperature range of 0 ° C, preferably 400 to 600 ° C. In addition to air, an oxygen-containing gas such as pure oxygenated air or oxygen-enriched air may be substituted or used together.
A firing time of about 1 to 24 hours is usually sufficient.

【0051】なお、必要に応じて、焼成前のいずれかの
適当な時点で担持組成物を所定の形状及びサイズに成形
してもよい。成形を行う場合には、この成形は、常法に
従って好適に行うことができ、必要に応じて、適当なバ
インダー成分を添加してもよい。
If necessary, the carrier composition may be molded into a predetermined shape and size at any suitable time before firing. When molding is carried out, this molding can be suitably carried out in accordance with a conventional method, and if necessary, a suitable binder component may be added.

【0052】以上のようにして、所定のルテニウムから
なる成分が、所定の担持量でむらなく高分散状態で担持
された所望の反応に高活性を示す各種の担持ルテニウム
系触媒(若しくはその前駆体)を容易に得ることができ
る。
As described above, various supported ruthenium-based catalysts (or precursors thereof) exhibiting high activity for a desired reaction in which a predetermined ruthenium component is uniformly supported in a predetermined supported amount in a highly dispersed state. ) Can be easily obtained.

【0053】この焼成によって得られる触媒中の金属成
分は、通常、酸化物若しくは複合酸化物の形態となって
おり、ルテニウム成分も、通常、酸化物若しくは複合酸
化物の形態で高分散状態で担持されている。
The metal component in the catalyst obtained by this calcination is usually in the form of an oxide or a complex oxide, and the ruthenium component is also usually supported in the form of an oxide or a complex oxide in a highly dispersed state. Has been done.

【0054】こうして得た触媒は、そのまま、所定の触
媒反応の触媒あるいは触媒成分と利用することもできる
が、必要に応じて、種々の適当な前処理を行って活性化
してから触媒反応に用いてもよい。この前処理は、常法
に従って行うことができ、例えば、水素等の還元剤によ
って適度に還元して、ルテニウム成分を高分散状態の金
属状ルテニウムにして反応に供してもよい。
The catalyst thus obtained can be used as it is as a catalyst or a catalyst component for a predetermined catalytic reaction, but if necessary, various suitable pretreatments are carried out to activate it before use in the catalytic reaction. May be. This pretreatment can be performed according to a conventional method. For example, it may be appropriately reduced with a reducing agent such as hydrogen to convert the ruthenium component into highly dispersed metallic ruthenium and used for the reaction.

【0055】なお、この水素還元による高分散金属化処
理は、例えば、200〜800℃の温度で好適に行うこ
とができる。
The highly dispersed metallization treatment by hydrogen reduction can be suitably carried out, for example, at a temperature of 200 to 800 ° C.

【0056】ここで、対象とする触媒反応の種類として
は、特に制限はなく、この製造方法は、一般にルテニウ
ム系触媒が有効となるあらゆる反応に対して好適な触媒
の製造分野に適用することができる。
Here, the kind of the target catalytic reaction is not particularly limited, and this production method can be applied to the production field of a catalyst suitable for all reactions in which a ruthenium-based catalyst is generally effective. it can.

【0057】なお、そのような触媒反応の例として、例
えば、カルボニル化合物、芳香族化合物、オレフィン類
やジエン類等の不飽和化合物の選択的水素化反応、アン
モニア合成反応、FT合成反応、COやCO2のメタン
化反応、COやCO2のアルコールあるいは他の含酸素
化合物への選択的水素化反応、メタノールのCOと水素
によるエタノールへのホモロゲーション、オレフィンの
ヒドロカルボニル化反応、ニトロ化合物のアミンへの選
択的水素化反応、炭化水素類の水素化分解反応、芳香族
アミンの選択性水素化反応等々の様々な水素化反応、N
Xの還元浄化反応、炭化水素等の水蒸気改質反応、低
温での完全酸化反応、あるいは部分酸化反応、水の光分
解反応等々の多種多様な反応を挙げることができる。
Examples of such catalytic reaction include, for example, selective hydrogenation reaction of carbonyl compounds, aromatic compounds, unsaturated compounds such as olefins and dienes, ammonia synthesis reaction, FT synthesis reaction, CO and CO 2 methanation reaction, selective hydrogenation reaction of CO or CO 2 to alcohol or other oxygen-containing compound, homologation of methanol with CO and hydrogen to ethanol, hydrocarbonylation reaction of olefin, amine of nitro compound Hydrogenation reaction such as selective hydrogenation reaction to N, hydrogenolysis reaction of hydrocarbons, selective hydrogenation reaction of aromatic amine, etc., N
A wide variety of reactions such as a reduction purification reaction of O x , a steam reforming reaction of hydrocarbons, a complete oxidation reaction at low temperature, a partial oxidation reaction, a photolysis reaction of water, and the like can be mentioned.

【0058】ところで、こうした触媒反応の中には、触
媒の調製を前記含浸担持後に必ずしも前記のように高温
で焼成しなくても低温で乾燥する程度で十分な性能の触
媒となるような反応もある。すなわち、本発明の含浸液
を用いる触媒の一般的な製造方法としては、必ずしも焼
成を行わないでもよい。
By the way, among such catalytic reactions, there is also a reaction in which a catalyst having sufficient performance can be obtained only by drying at a low temperature after the impregnating and supporting the catalyst without necessarily firing at a high temperature as described above. is there. That is, as a general method for producing a catalyst using the impregnating liquid of the present invention, calcination may not necessarily be performed.

【0059】[0059]

【実施例】以下に、本発明の実施例とその比較例によっ
て、本発明を更に具体的に説明するが、本発明はこれら
の実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples of the present invention and Comparative Examples thereof, but the present invention is not limited to these Examples.

【0060】実施例1 塩化ルテニウム(RuCl3・nH2O)0.66gを水
に溶かして40ccの水溶液とし、更にオキシ塩化ジル
コニウム(ZrOCl2・8H2O)13.1gを溶解し
含浸液とした。この時の含浸液のpHは0.4であり、
溶液中にゲル状物質は認められなかった。この含浸液を
更に水で希釈すると緑色を呈し、塩化ルテニウム水溶液
を希釈した時(赤褐色)と異なることから、溶液中でル
テニウムとジルコニウムが錯体様の化合物が生成してい
ると推察される。なお、オキシ塩化ジルコニウムのみの
水溶液は無色透明であった。
Example 1 0.66 g of ruthenium chloride (RuCl 3 .nH 2 O) was dissolved in water to obtain a 40 cc aqueous solution, and 13.1 g of zirconium oxychloride (ZrOCl 2 .8H 2 O) was further dissolved to obtain an impregnating solution. did. The pH of the impregnating liquid at this time is 0.4,
No gel-like substance was found in the solution. When this impregnating solution is further diluted with water, it exhibits a green color, which is different from that when the ruthenium chloride aqueous solution is diluted (reddish brown), and it is speculated that ruthenium and zirconium complex-like compounds are formed in the solution. The aqueous solution containing only zirconium oxychloride was colorless and transparent.

【0061】本含浸液を用いて、γ−Al23担体ペレ
ット50gにポアフィリング法によりルテニウムの担持
を行った。含浸直後の触媒体の色は橙〜茶色を呈し、黒
色のルテニウム水酸化物の生成は認められなかった。1
20℃で1時間乾燥後、500℃で2時間空気中焼成を
行った。焼成後の触媒体は、緑色を呈した。なお、組成
分析による本触媒中のルテニウム含有量は、0.5重量
%であった。
Using this impregnating solution, 50 g of γ-Al 2 O 3 carrier pellets were loaded with ruthenium by the pore filling method. The color of the catalyst body immediately after impregnation was orange to brown, and formation of black ruthenium hydroxide was not observed. 1
After drying at 20 ° C. for 1 hour, firing was performed in air at 500 ° C. for 2 hours. The catalyst body after firing was green. The ruthenium content in this catalyst as determined by composition analysis was 0.5% by weight.

【0062】焼成後の触媒体を更に水素気流中、800
℃、4時間水素還元を実施した。この還元後のサンプル
について、透過型電子顕微鏡を用いて10〜40万倍の
倍率でルテニウム粒子の観察を行ったところ15Å以上
のルテニウム粒子は認められず、高温還元したにもかか
わらず極めて高分散にルテニウムが担持されていること
がわかった。
The catalyst body after calcination was further subjected to 800 times in a hydrogen stream.
Hydrogen reduction was carried out at ℃ for 4 hours. When the ruthenium particles of this reduced sample were observed with a transmission electron microscope at a magnification of 100,000-400,000 times, no ruthenium particles of 15 Å or more were observed, and extremely high dispersion was obtained despite reduction at high temperature. It was found that ruthenium was supported on.

【0063】実施例2 担体ペレットとしてα−Al23を使用し、実施例1と
同じ方法で調製した含浸液40ccのうち20ccをポ
アフィリング法にて該α−Al23担体ペレットに含浸
し、120℃で1時間乾燥後、500℃で2時間焼成を
行った。更に上記含浸液の残りの20ccを含浸し、1
20℃で1時間乾燥後、500℃で2時間焼成を行っ
た。組成分析によるルテニウム含有量は、0.5重量%
であった。含浸直後の触媒体の色は緑色を呈し、黒色の
ルテニウム水酸化物の生成は認められなかった。
[0063] Using the alpha-Al 2 O 3 as a second embodiment carrier pellets, 20cc of impregnation liquid 40cc prepared in the same manner as in Example 1 to the α-Al 2 O 3 carrier pellets by pore filling method After impregnation and drying at 120 ° C. for 1 hour, firing was performed at 500 ° C. for 2 hours. Further, the remaining 20 cc of the above impregnating liquid is impregnated,
After drying at 20 ° C. for 1 hour, firing was performed at 500 ° C. for 2 hours. Ruthenium content by composition analysis is 0.5% by weight
Met. Immediately after impregnation, the color of the catalyst body was green, and formation of black ruthenium hydroxide was not observed.

【0064】焼成後の触媒体を更に水素気流中、800
℃、4時間水素還元を実施した。この還元後のサンプル
について、透過型電子顕微鏡を用いて10〜40万倍の
倍率でルテニウム粒子の観察を行ったところ30Å以上
のルテニウム粒子は認められず、高温還元したにもかか
わらず極めて高分散にルデニウムが担持されていること
がわかった。
The catalyst body after calcination was further subjected to 800 times in a hydrogen stream.
Hydrogen reduction was carried out at ℃ for 4 hours. When the ruthenium particles of this reduced sample were observed with a transmission electron microscope at a magnification of 100,000 to 400,000 times, ruthenium particles of 30 Å or more were not observed, and extremely high dispersion was obtained despite reduction at high temperature. It was found that ruthenium was supported on the.

【0065】実施例3 塩化ルテニウム(RuCl3・nH2O)0.66gを水
に溶かして40ccの水溶液とし、更にオキシ塩化ジル
コニウム(ZrOCl2・8H2O)13.1gを溶解し
た。
Example 3 0.66 g of ruthenium chloride (RuCl 3 .nH 2 O) was dissolved in water to obtain a 40 cc aqueous solution, and 13.1 g of zirconium oxychloride (ZrOCl 2 .8H 2 O) was dissolved.

【0066】更に0.1規定のアンモニア水を8.0c
c添加したところ、pHは2.4になった。
Further, 0.1 N ammonia water is added to 8.0 c.
When c was added, the pH became 2.4.

【0067】この時、溶液中にゲル状物質はほとんど認
められなかった。
At this time, almost no gel-like substance was observed in the solution.

【0068】この含浸液を更に水で希釈すると緑色を呈
し、塩化ルテニウム水溶液を希釈した時(赤褐色)と異
なることから、溶液中でルテニウムとジルコニウムが錯
体様の化合物が生成していると推察される。
When this impregnating solution was further diluted with water, a green color was obtained, which was different from that when the aqueous ruthenium chloride solution was diluted (reddish brown). Therefore, it is presumed that ruthenium and zirconium complex-like compounds are formed in the solution. It

【0069】本含浸液を用いて、実施例1と同じγ−A
23担体ペレット50gにポアフィリング法によりル
テニウムの担持を行った。含浸直後の触媒体の色は緑色
を呈し、黒色のルテニウム水酸化物の生成は認められな
かった。120℃で1時間乾燥後、500℃で2時間空
気中焼成を行った。この焼成後の触媒体は、緑色を呈し
た。なお、組成分析による本触媒体中のルテニウム含有
量は、0.5重量%であった。
Using this impregnating solution, the same γ-A as in Example 1 was used.
Ruthenium was loaded on 50 g of the l 2 O 3 carrier pellet by the pore filling method. Immediately after impregnation, the color of the catalyst body was green, and formation of black ruthenium hydroxide was not observed. After drying at 120 ° C. for 1 hour, firing was performed in air at 500 ° C. for 2 hours. The catalyst body after this calcination was green. The ruthenium content in this catalyst was 0.5% by weight based on the composition analysis.

【0070】焼成後の触媒体を更に水素気流中、800
℃、4時間水素還元を実施した。還元後のサンプルにつ
いて、透過型電子顕微鏡を用いて10〜40万倍の倍率
でルテニウム粒子の観察を行ったところ15Å以上のル
テニウム粒子は認められず、高温還元したにもかかわら
ず極めて高分散にルテニウムが担持されていることがわ
かった。
The catalyst body after firing was further subjected to 800 times in a hydrogen stream.
Hydrogen reduction was carried out at ℃ for 4 hours. When the ruthenium particles of the reduced sample were observed with a transmission electron microscope at a magnification of 100,000-400,000 times, no ruthenium particles of 15 Å or more were observed, and even though they were reduced at a high temperature, the dispersion became extremely high. It was found that ruthenium was supported.

【0071】比較例1 塩化ルテニウム(RuCl3・nH2O)0.66gを水
に溶かして40ccの水溶液としたものを含浸液とし
た。含浸液のpHは1.5であった。
Comparative Example 1 0.66 g of ruthenium chloride (RuCl 3 .nH 2 O) was dissolved in water to obtain a 40 cc aqueous solution, which was used as an impregnating solution. The impregnation liquid had a pH of 1.5.

【0072】本含浸液を用いて、実施例1と同じγ−A
23担体ペレット50gにポアフィリング法によりル
テニウムの担持を行った。含浸直後の触媒体の色は黒色
を呈し、ルテニウム水酸化物の生成が認められた。
Using this impregnating solution, the same γ-A as in Example 1 was used.
Ruthenium was loaded on 50 g of the l 2 O 3 carrier pellet by the pore filling method. Immediately after impregnation, the color of the catalyst body was black, and formation of ruthenium hydroxide was observed.

【0073】次いで、120℃で1時間乾燥後、500
℃で2時間空気中焼成を行った。なお、組成分析による
本触媒体中のルテニウム含有量は、0.5重量%であっ
た。
Then, after drying at 120 ° C. for 1 hour, 500
Firing was performed in air at 0 ° C. for 2 hours. The ruthenium content in this catalyst was 0.5% by weight based on the composition analysis.

【0074】焼成後の触媒体を更に水素気流中、800
℃、4時間水素還元を実施した。この還元後のサンプル
について、透過型電子顕微鏡を用いて10〜40万倍の
倍率でルテニウム粒子の観察を行ったところ、ルテニウ
ム粒子径は75〜300Åあり、ルテニウムの分散性が
実施例と比較して非常に劣ることがわかる。
The catalyst body after calcination was further treated in a hydrogen stream at 800
Hydrogen reduction was carried out at ℃ for 4 hours. When the ruthenium particles of the reduced sample were observed with a transmission electron microscope at a magnification of 100,000 to 400,000 times, the ruthenium particle diameter was 75 to 300Å, and the dispersibility of ruthenium was compared with that of the example. It is very inferior.

【0075】比較例2 塩化ルテニウム(RuCl3・nH2O)0.66gを水
に溶かして40ccの水溶液としたものを含浸液とし
た。含浸液のpHは1.5であった。
Comparative Example 2 0.66 g of ruthenium chloride (RuCl 3 .nH 2 O) was dissolved in water to prepare a 40 cc aqueous solution, which was used as an impregnating solution. The impregnation liquid had a pH of 1.5.

【0076】本含浸液を用いて、実施例2と同じα−A
23担体ペレット50gに実施例2と同様に含浸液を
2回に分けてポアフィリング法によりルテニウムの担持
を行った。含浸直後の触媒体の色は黒色を呈し、ルテニ
ウム水酸化物の生成が認められた。
Using this impregnating solution, the same α-A as in Example 2 was used.
In the same manner as in Example 2, the impregnating liquid was divided into two portions and 50 g of the l 2 O 3 carrier pellets was loaded with ruthenium by the pore filling method. Immediately after impregnation, the color of the catalyst body was black, and formation of ruthenium hydroxide was observed.

【0077】次いで、120℃で1時間乾燥後、500
℃で2時間空気中焼成を行った。なお、組成分析による
本触媒体中のルテニウム含有量は、0.5重量%であっ
た。
Then, after drying at 120 ° C. for 1 hour, 500
Firing was performed in air at 0 ° C. for 2 hours. The ruthenium content in this catalyst was 0.5% by weight based on the composition analysis.

【0078】焼成後の触媒体を更に水素気流中、800
℃、4時間水素還元を実施した。この還元後のサンプル
について、透過型電子顕微鏡を用いて10〜40万倍の
倍率でルテニウム粒子の観察を行ったところ、ルテニウ
ム粒子径は75〜300Åあり、ルテニウムが凝集し、
分散性が実施例と比較して非常に劣ることがわかる。
The catalyst body after firing was further subjected to 800 times in a hydrogen stream.
Hydrogen reduction was carried out at ℃ for 4 hours. When the ruthenium particles were observed with a transmission electron microscope at a magnification of 100,000 to 400,000 times with respect to the sample after the reduction, the ruthenium particle diameter was 75 to 300Å, and the ruthenium aggregated,
It can be seen that the dispersibility is extremely inferior to the examples.

【0079】比較例3 塩化ルテニウム(RuCl3・nH2O)0.66gを水
に溶かして40ccの水溶液とし、オキシ塩化ジルコニ
ウム(ZrOCl2・8H2O)13.1gを溶解し含浸
液とした。
Comparative Example 3 0.66 g of ruthenium chloride (RuCl 3 .nH 2 O) was dissolved in water to obtain a 40 cc aqueous solution, and 13.1 g of zirconium oxychloride (ZrOCl 2 .8H 2 O) was dissolved to obtain an impregnating solution. .

【0080】更に徐々にアンモニア水を添加していった
ところ、pH3.5以上で強固なゲル状物質の生成が認
められた。これはジルコニウムの水酸化物の生成による
ものである。
When ammonia water was gradually added, formation of a strong gel-like substance was observed at pH 3.5 or higher. This is due to the formation of zirconium hydroxide.

【0081】上記のpH3.5の時の含浸液を用いて、
実施例1と同じγ−Al23担体ペレット50gにポア
フィリング法によりルテニウムの担持を行った。この
時、ゲル状物質はほとんど担体ペレット内部に侵入する
ことができず、120℃で1時間乾燥後には、ゲル固体
物がペレットとは分離して生成した。なお、500℃で
2時間空気中焼成を行った後、ペレットのみ抜き出して
組成分析を行ったが、担体ペレット中のルテニウム含有
量は0.1重量%以下であり、ルテニウムを担体ペレッ
ト中にほとんど導入することはできなかった。
Using the above impregnating solution at pH 3.5,
Ruthenium was carried on 50 g of the same γ-Al 2 O 3 carrier pellet as in Example 1 by the pore filling method. At this time, almost no gel-like substance could penetrate into the inside of the carrier pellets, and after drying at 120 ° C. for 1 hour, a gel solid substance was formed separately from the pellets. In addition, after firing in air at 500 ° C. for 2 hours, only the pellets were extracted and the composition was analyzed. The ruthenium content in the carrier pellets was 0.1% by weight or less, and ruthenium was mostly contained in the carrier pellets. It could not be introduced.

【0082】比較例4 オキシ塩化ジルコニウム(ZrOCl2・8H2O)1
3.1gを水に溶かして40ccの水溶液とたものを、
実施例1と同じγ−Al23担体ペレット50gにポア
フィリング法にて含浸した。120℃、1時間乾燥後、
更に500℃、2時間空気中焼成を行った。次に上記の
焼成後の担体に、塩化ルテニウム(RuCl3・nH
2O)0.66gを水に溶かして40ccの水溶液とし
たものをポアフィリング法にて含浸した。なお、この時
用いた含浸液のpHは1.5であった。
Comparative Example 4 Zirconium oxychloride (ZrOCl 2 .8H 2 O) 1
What melted 3.1 g in water and made a 40 cc aqueous solution,
50 g of the same γ-Al 2 O 3 carrier pellet as in Example 1 was impregnated by the pore filling method. After drying at 120 ° C for 1 hour,
Further, firing was performed in air at 500 ° C. for 2 hours. Then, ruthenium chloride (RuCl 3 · nH
2 O) 0.66 g was dissolved in water to obtain a 40 cc aqueous solution, which was impregnated by the pore filling method. The pH of the impregnating liquid used at this time was 1.5.

【0083】含浸直後の触媒体の色は黒色を呈し、ルテ
ニウム水酸化物の生成が認められた。120℃で1時間
乾燥後、500℃で2時間空気中焼成を行った。組成分
析による本触媒中のルテニム含有量は、0.5重量%で
あった。
Immediately after impregnation, the color of the catalyst body was black, and formation of ruthenium hydroxide was observed. After drying at 120 ° C. for 1 hour, firing was performed in air at 500 ° C. for 2 hours. The ruthenium content in the catalyst as determined by composition analysis was 0.5% by weight.

【0084】焼成後の触媒体を更に水素気流中、800
℃、4時間水素還元を実施した。この還元後のサンプル
について、透過型電子顕微鏡を用いて10〜40万倍の
倍率でルテニウム粒子の観察を行ったところ、ルテニウ
ム粒子径は75〜300Åあり、ルテニウムの分散性が
実施例と比較して非常に劣ることがわかる。
The catalyst body after calcination was further treated in a hydrogen stream at 800
Hydrogen reduction was carried out at ℃ for 4 hours. When the ruthenium particles of the reduced sample were observed with a transmission electron microscope at a magnification of 100,000 to 400,000 times, the ruthenium particle diameter was 75 to 300Å, and the dispersibility of ruthenium was compared with that of the example. It is very inferior.

【0085】実験結果の評価 実施例1〜3では、pH3以下のルテニウムとオキシ塩
化ジルコニウムを同時に溶解した水溶液を用いることに
よって、800℃の高温還元後も高分散にルテニウムを
担持できたことがわかる。
Evaluation of Experimental Results In Examples 1 to 3, by using an aqueous solution in which ruthenium having a pH of 3 or less and zirconium oxychloride were dissolved at the same time, it was found that ruthenium could be supported in a high dispersion even after high temperature reduction at 800 ° C. .

【0086】上記のような溶液を用いても、比較例3に
示すようにpHが3を超すとジルコニウムの水酸化物
(ゲル)が生成するために、担体中にルテニウムを導入
することができなくなることがわかる。
Even when the above solution is used, ruthenium can be introduced into the carrier because zirconium hydroxide (gel) is produced when the pH exceeds 3 as shown in Comparative Example 3. You can see it disappears.

【0087】比較例1、2では、塩化ルテニウムのみの
水溶液を用いて含浸したが、担体中の水酸基によりルテ
ニウムの水酸化物が生成するため、ルテニウムが凝集担
持され、ルテニウムの分散性が大きく低下することがわ
かる。
In Comparative Examples 1 and 2, impregnation was carried out using an aqueous solution containing only ruthenium chloride. However, since the hydroxide of ruthenium was produced by the hydroxyl groups in the carrier, ruthenium was agglomerated and supported, and the dispersibility of ruthenium was greatly reduced. I understand that

【0088】比較例4では、先ずジルコニウムを担体に
した後、塩化ルテニウム水溶液を含浸したが、水溶液中
では、依然として担体中に水酸基が生成するためにルテ
ニウムの水酸化物が生成する。このため比較例1、2と
同様にルテニウムの分散性が大きく低下することがわか
る。
In Comparative Example 4, first, zirconium was used as a carrier and then impregnated with an aqueous solution of ruthenium chloride. However, in the aqueous solution, a hydroxide of ruthenium is formed because hydroxyl groups are still formed in the carrier. For this reason, it can be seen that the dispersibility of ruthenium is greatly reduced as in Comparative Examples 1 and 2.

【0089】すなわち、実施例1〜3のように、ルテニ
ウム化合物とオキシ塩化ジルコニウムを同時に溶解した
水溶液を用いると、ルテニウムとジルコニウムの錯体様
化合物が生成するので、担体中の水酸基の存在下でもル
テニウムの水酸化物は生成しない。更に高温にしても、
上記のルテニウムとジルコニウムとの関係が維持される
ため、ルテニウムの高分散性は維持されると推察され
る。
That is, when an aqueous solution in which a ruthenium compound and zirconium oxychloride are simultaneously dissolved is used as in Examples 1 to 3, a complex-like compound of ruthenium and zirconium is produced, so that ruthenium is present even in the presence of a hydroxyl group in the carrier. No hydroxide is formed. Even at higher temperatures,
Since the above-mentioned relationship between ruthenium and zirconium is maintained, it is presumed that the high dispersibility of ruthenium is maintained.

【0090】[0090]

【発明の効果】本発明のルテニウム触媒製造用含浸液
は、少なくともルテニウム化合物と周期表IVa族元素
(すなわち、ジルコニウム、チタン、ハフニウム)の化
合物を溶解含有させ、かつpHを3以下とした特定の組
成及び物性を有する水溶液であるので、これを各種の担
体に接触含浸させることによって、ルテニウム成分を簡
単な操作によって高分散状態でしかも熱安定性よく有効
に担持することができ、適当な担体に含浸担持すること
によって、含有ルテニウム当たりの活性が著しく向上し
た各種の高活性・高選択性担持ルテニウム系触媒を容易
に得ることができる。したがって、この含浸液を用いる
と、ルテニウム成分を高分散状態で有効に担持すること
ができるので、高価な金属であるルテニウムの含有量を
低減することができ、安価で工業的に有利な各種の高性
能ルテニウム系触媒を容易に得ることができる。また、
この高分散状態は、高温での焼成、水素還元等の前処
理、高温での反応、再生など高温雰囲気にさらしても十
分に安定に維持されるので、そのような条件が要求され
る用途に対しても好適に適用することができる。
INDUSTRIAL APPLICABILITY The impregnating solution for producing a ruthenium catalyst according to the present invention contains at least a ruthenium compound and a compound of Group IVa element of the periodic table (ie, zirconium, titanium, hafnium) dissolved therein and has a pH of 3 or less. Since it is an aqueous solution having composition and physical properties, it can be effectively impregnated in a highly dispersed state with a ruthenium component in a highly dispersed state by a simple operation by impregnating it with various carriers by contact and impregnated into a suitable carrier. By carrying out impregnation, it is possible to easily obtain various highly active and highly selective supported ruthenium-based catalysts whose activity per contained ruthenium is remarkably improved. Therefore, when this impregnating liquid is used, the ruthenium component can be effectively supported in a highly dispersed state, so that the content of ruthenium, which is an expensive metal, can be reduced, and it is inexpensive and industrially advantageous. A high-performance ruthenium-based catalyst can be easily obtained. Also,
This highly dispersed state is maintained sufficiently stable even when exposed to a high temperature atmosphere such as baking at high temperature, pretreatment such as hydrogen reduction, reaction at high temperature, regeneration, etc. It can also be suitably applied.

【0091】すなわち、本発明によると、実用上著しく
有用なルテニウム触媒製造用含浸液とこれを用いて各種
の高性能の担持ルテニウム系触媒を簡単な操作で有利に
製造する方法を提供することができる。
That is, according to the present invention, it is possible to provide a practically remarkably useful impregnating solution for producing a ruthenium catalyst, and a method for producing various supported ruthenium-based catalysts of high performance by a simple operation. it can.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ルテニウム化合物と周期表IVa族元素
の化合物を含有する水溶液で、pHが3以下であること
を特徴とするルテニウム触媒製造用含浸液。
1. An impregnating solution for producing a ruthenium catalyst, which is an aqueous solution containing a ruthenium compound and a compound of a group IVa element of the periodic table and has a pH of 3 or less.
【請求項2】 請求項1に記載の含浸液に担体を接触さ
せ、該含浸液中に含まれるルテニウム成分と周期表IV
a族元素成分を該担体に担持し、得られたルテニウム担
持組成物を、乾燥後、焼成することを特徴とするルテニ
ウム触媒の製造方法。
2. A carrier is brought into contact with the impregnating liquid according to claim 1, the ruthenium component contained in the impregnating liquid and the periodic table IV.
A method for producing a ruthenium catalyst, which comprises supporting an a-group element component on the carrier, drying the resulting ruthenium-supporting composition, and then calcining the composition.
JP28986393A 1993-10-27 1993-10-27 Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst Expired - Fee Related JP3365660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28986393A JP3365660B2 (en) 1993-10-27 1993-10-27 Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28986393A JP3365660B2 (en) 1993-10-27 1993-10-27 Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst

Publications (2)

Publication Number Publication Date
JPH07116516A JPH07116516A (en) 1995-05-09
JP3365660B2 true JP3365660B2 (en) 2003-01-14

Family

ID=17748739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28986393A Expired - Fee Related JP3365660B2 (en) 1993-10-27 1993-10-27 Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst

Country Status (1)

Country Link
JP (1) JP3365660B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582992B2 (en) * 2002-07-09 2010-11-17 旭化成ケミカルズ株式会社 Method for producing alicyclic amine compound
JP5094028B2 (en) * 2006-03-20 2012-12-12 日揮触媒化成株式会社 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4252616B2 (en) * 2008-05-07 2009-04-08 Jfeエンジニアリング株式会社 Ammonia synthesis catalyst
JP7109015B2 (en) 2017-09-07 2022-07-29 国立研究開発法人宇宙航空研究開発機構 Catalyst for hydrogen reduction of carbon dioxide, method for producing the same, method for hydrogen reduction of carbon dioxide, and apparatus for hydrogen reduction of carbon dioxide
WO2022224993A1 (en) 2021-04-21 2022-10-27 大阪瓦斯株式会社 Molded body of carbon dioxide methanation catalyst and method for producing the same

Also Published As

Publication number Publication date
JPH07116516A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
US5977012A (en) Alloyed metal catalysts for the reduction of NOx in the exhaust gases from internal combustion engines containing excess oxygen
CN1980736B (en) A sol comprising hybrid transition metal oxide nanoparticles
RU2731104C2 (en) Catalysts based on platinum group metals (pgm) for automotive exhaust treatment
KR0170423B1 (en) Ceric oxide containing composition, its preparation and its use
KR100693956B1 (en) Composition based on zirconium oxide and oxides of cerium, lanthanum and of another rare earth, a method for preparing same and use thereof as catalyst
CN1222406A (en) Prep. of catalyst for inversion reaction of organic compound
CN101190413B (en) Petroleum naphtha reforming catalyst and preparation method thereof
JPS6313729B2 (en)
JP3667801B2 (en) Method for producing ruthenium catalyst and method for steam reforming hydrocarbon using the catalyst
JPH04214026A (en) Ceria with high surface area
JP4381071B2 (en) Method for producing exhaust gas treatment catalyst
JP3365660B2 (en) Impregnation liquid for producing ruthenium catalyst and method for producing ruthenium catalyst
JPH11165067A (en) Production of ceria-zirconia compound oxide for exhaust gas purifying auxiliary catalyst
JP3050558B2 (en) Catalyst support material and method for producing such support material
US3523912A (en) Preparation of multicomponent catalysts
JPS58156349A (en) Tertinally-component catalyst for purifying exhaust gas
JPH0929097A (en) Steam reforming catalyst of hydrocarbon
WO2006095392A1 (en) Process for producing catalyst for discharge gas treatment
JP3590654B2 (en) Hydrocarbon steam reforming method
JP3784859B2 (en) Hydrocarbon steam reforming catalyst
US6413905B1 (en) Supported catalyst and its use in hydrogenation
US3972990A (en) Method of preparing low density-high micropore volume refractory inorganic oxide particles
JP6909405B2 (en) Methaneization catalyst, its production method, and methane production method using it
JPH0822378B2 (en) Hydrocarbon steam reforming catalyst
JP2000107600A (en) High heat resistance catalyst carrier and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees