JP6439943B2 - Steel plate bottom surface cooling method and cooling device - Google Patents

Steel plate bottom surface cooling method and cooling device Download PDF

Info

Publication number
JP6439943B2
JP6439943B2 JP2016069918A JP2016069918A JP6439943B2 JP 6439943 B2 JP6439943 B2 JP 6439943B2 JP 2016069918 A JP2016069918 A JP 2016069918A JP 2016069918 A JP2016069918 A JP 2016069918A JP 6439943 B2 JP6439943 B2 JP 6439943B2
Authority
JP
Japan
Prior art keywords
steel plate
width direction
shielding
plate
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069918A
Other languages
Japanese (ja)
Other versions
JP2017177186A (en
Inventor
雄太 田村
雄太 田村
上岡 悟史
悟史 上岡
伸夫 西浦
伸夫 西浦
園美 白崎
園美 白崎
享 松本
享 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016069918A priority Critical patent/JP6439943B2/en
Publication of JP2017177186A publication Critical patent/JP2017177186A/en
Application granted granted Critical
Publication of JP6439943B2 publication Critical patent/JP6439943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、鋼板の下面冷却方法および冷却装置に関し、詳しくは、スラブを熱間圧延してなる熱間の鋼板(熱延鋼帯、厚鋼板等)の下面に、鋼板幅方向(熱間の鋼板の搬送(通板)方向に対し直交する方向)に整列された複数のノズルから冷却水を噴射して当該下面の冷却を行う方法および装置に関するものである。   TECHNICAL FIELD The present invention relates to a steel plate lower surface cooling method and cooling device, and more specifically, to a lower surface of a hot steel plate (hot rolled steel strip, thick steel plate, etc.) formed by hot rolling a slab, The present invention relates to a method and an apparatus for cooling the lower surface by injecting cooling water from a plurality of nozzles arranged in a direction orthogonal to the conveying (passing plate) direction of the steel plate.

熱間鋼板、例えば熱延鋼板の製造ラインでは、図11に示すように、加熱炉で高温に加熱されたスラブを一次スケール除去のためにデスケーリングした後、粗圧延機および仕上圧延機よりなる熱間圧延機によって圧延して熱延鋼板とし、その後、この熱延鋼板に対してランアウトテーブルでの搬送中に水冷式または空冷式の冷却設備により制御冷却を行うこととしている。ランアウトテーブルでの搬送中の冷却は、鋼板の析出物や変態組織を制御して、目的の強度や延びなどの材質を得るために行われている。しかし、冷却後の鋼板の幅方向温度分布が不均一になると、鋼板の幅方向で強度や延びなどの機械的性質が変化して、局所的に所定の材質を得ることができない問題がある。   In a production line for hot steel plates, for example, hot-rolled steel plates, as shown in FIG. 11, the slab heated to a high temperature in a heating furnace is descaled for primary scale removal, and then comprises a rough rolling mill and a finish rolling mill. The hot-rolled steel sheet is rolled into a hot-rolled steel sheet by means of a hot rolling mill, and thereafter, the hot-rolled steel sheet is controlled and cooled by a water-cooled or air-cooled cooling facility during conveyance on a run-out table. Cooling during conveyance on the run-out table is performed in order to obtain a desired material such as strength and elongation by controlling precipitates and transformation structure of the steel sheet. However, when the temperature distribution in the width direction of the steel sheet after cooling becomes uneven, there is a problem that mechanical properties such as strength and elongation change in the width direction of the steel sheet, and a predetermined material cannot be obtained locally.

熱延鋼板の冷却では、上面にはラミナーフローによる冷却、下面にはスプレーによる冷却が採用されることが多く、一般的に上面のラミナーフローによる冷却が原因で鋼板幅方向に不均一な温度分布が生じるといわれている。
すなわち、ラミナーフローで鋼板の上面の冷却を行う際には、鋼板の進行方向と直角に配設されたヘッダーに複数のノズルを取り付け、各ノズルから一斉に冷却水を噴射するが、鋼板の上面に到達した冷却水が鋼板の幅方向に向かう水流を形成するため、鋼板のエッジ部(幅方向端部)に向かうほど通過水量が増加し、より多く冷却される。そのため、鋼板のエッジ部近傍に対する冷却能力は中央部に対するそれと比べて高くなり、鋼板の両エッジ部が中央部に比べて低温となる温度分布となることが多い。
In hot-rolled steel sheet cooling, laminar flow cooling is often used for the upper surface, and spray cooling is often used for the lower surface. It is said that will occur.
That is, when cooling the upper surface of the steel sheet by laminar flow, a plurality of nozzles are attached to the header arranged at right angles to the traveling direction of the steel sheet, and cooling water is sprayed from each nozzle all at once. Since the cooling water which reached | attains forms the water flow which goes to the width direction of a steel plate, passing water amount increases so that it goes to the edge part (width direction edge part) of a steel plate, and it cools more. Therefore, the cooling capacity for the vicinity of the edge portion of the steel plate is higher than that for the central portion, and the temperature distribution is often lower at both edge portions of the steel plate than at the central portion.

一方、下面のスプレーによる冷却が原因で鋼板の幅方向に不均一な温度分布が生じることもある。
すなわち、多くのランアウトテーブルでは、通板安定性のためテーブルロールが密に配置されており、テーブルロール間のスペースが狭くなっている。そのため、鋼板下面を冷却する際は、狭いスペースに設置可能でかつ広い冷却面積を確保できるスプレーノズルが鋼板幅方向に複数個配置されることが多い。さらに、高い冷却能力を確保するため、鋼板幅方向のノズルピッチは密とされるケースがある。このスプレーノズルを用いた鋼板下面の冷却では、図12に示すように、上方を鋼板が通過しない位置、つまり鋼板の幅方向端部よりも幅方向外側に配置されたスプレーノズルから噴射される冷却水は、パスラインから数100mm〜数m吹き上がったのち落下するが、一部の冷却水は鋼板の上面に落下する。また、鋼板の幅方向端面に冷却水が直接衝突することもある。これら落下水や鋼板の幅方向端面への冷却水の直接衝突が鋼板の幅方向端部の過冷却の原因となっている。このような問題は熱延鋼板のランアウト冷却だけでなく、厚鋼板の制御冷却や厚鋼板、熱延鋼板の圧延時の冷却装置でも発生しており同様の課題がある。
On the other hand, a non-uniform temperature distribution may occur in the width direction of the steel sheet due to cooling by spraying the lower surface.
That is, in many run-out tables, the table rolls are densely arranged for the passage stability, and the space between the table rolls is narrow. Therefore, when the steel plate lower surface is cooled, a plurality of spray nozzles that can be installed in a narrow space and can secure a wide cooling area are often arranged in the steel plate width direction. Furthermore, in order to ensure a high cooling capacity, there are cases in which the nozzle pitch in the steel plate width direction is made dense. In the cooling of the lower surface of the steel plate using this spray nozzle, as shown in FIG. 12, the cooling is sprayed from a position where the steel plate does not pass above, that is, from the spray nozzle arranged outside the width direction end of the steel plate. The water drops after several hundred mm to several m from the pass line, but a part of the cooling water falls on the upper surface of the steel plate. Further, the cooling water may directly collide with the end face in the width direction of the steel plate. Direct impingement of the falling water and the cooling water on the end surface in the width direction of the steel sheet causes overcooling of the end portion in the width direction of the steel sheet. Such problems occur not only in run-out cooling of hot-rolled steel sheets, but also in controlled cooling of thick steel sheets and cooling devices during rolling of thick steel sheets and hot-rolled steel sheets, and have similar problems.

このような鋼板の幅方向端部の過冷却を防止するために、特許文献1には、鋼板の下面側に配置された複数のスプレーノズルからなるスプレーノズル群の直上に、該スプレーノズルに対応した複数の孔部を有する有孔遮蔽板と当該有孔遮蔽板を鋼板幅方向に移動させる駆動機構とを設け、有孔遮蔽板を鋼板幅方向に移動させることにより、鋼板幅方向の端側のノズルからの冷却水を一部または全部遮断する技術が開示されており、この技術によれば、鋼板上面への冷却水廻り込みや鋼板の幅方向端面への冷却水の直接衝突を防止して鋼板の幅方向端部の過冷却を防止することができる。   In order to prevent such overcooling of the end in the width direction of the steel plate, Patent Document 1 describes that the spray nozzle corresponds to the spray nozzle group composed of a plurality of spray nozzles arranged on the lower surface side of the steel plate. Provided with a perforated shielding plate having a plurality of holes and a drive mechanism for moving the perforated shielding plate in the steel plate width direction, and moving the perforated shielding plate in the steel plate width direction, thereby providing an end side in the steel plate width direction. A technique for blocking part or all of the cooling water from the nozzle of the steel sheet is disclosed. According to this technique, the cooling water wraps around the upper surface of the steel sheet and the cooling water directly collides with the end face in the width direction of the steel sheet. Thus, overcooling of the end portion in the width direction of the steel plate can be prevented.

また、特許文献2には、鋼板の上面側のノズルについて、鋼板の幅方向端部に落下する冷却水量を鋼板の幅方向中央部と比べて少なく調整するための桶をノズル下方に設けて、鋼板の幅方向端部の過冷却を防止する方法が開示されている。このような手法は、特許文献2以外にも複数開示されており、例えば、鋼板の幅方向端部に冷却水が落下しないように、遮蔽板を設ける手法もその応用として提案されている。また、このような手法は鋼板の上面だけでなく、下面に対しても適用される例がある。   In addition, in Patent Document 2, for the nozzle on the upper surface side of the steel plate, a hook for adjusting the amount of cooling water falling at the end in the width direction of the steel plate to be less than the central portion in the width direction of the steel plate is provided below the nozzle, A method for preventing overcooling of the end in the width direction of the steel sheet is disclosed. A plurality of such methods are disclosed in addition to Patent Document 2, and for example, a method of providing a shielding plate so that the cooling water does not fall at the widthwise end of the steel plate is also proposed as its application. In addition, there is an example in which such a technique is applied not only to the upper surface of the steel sheet but also to the lower surface.

特開2012−91194号公報JP 2012-91194 A 特開2005−238283号公報JP 2005-238283 A

熱延鋼板の下面冷却装置におけるスプレーノズルの配置の一例を図12〜14に示す。ここで、図12は下面冷却装置を搬送方向に正対して見た正面図、図13はランアウトテーブルのテーブルロール間に配置された複数のスプレーノズルの平面図、図14はテーブルロール間に配置されたスプレーノズルを下面冷却ヘッダーとともに示す側面図である。   An example of arrangement | positioning of the spray nozzle in the lower surface cooling apparatus of a hot-rolled steel plate is shown to FIGS. Here, FIG. 12 is a front view of the lower surface cooling device as viewed in the conveying direction, FIG. 13 is a plan view of a plurality of spray nozzles arranged between the table rolls of the runout table, and FIG. 14 is arranged between the table rolls. It is a side view which shows the made spray nozzle with a lower surface cooling header.

一般的な鋼板の下面冷却装置は、図12〜14に示すように、テーブルロール間に鋼板幅方向に沿って所定ノズルピッチで配置された複数のスプレーノズルを備えており、各スプレーノズルは、ノズル先端部から冷却水が偏平、扇状に噴射されるフラットタイプである。スプレーノズルは高い冷却能力を得るため、鋼板幅方向のノズルピッチを50〜200mm程度として密に配置されることが多い。スプレーノズルはまた、鋼板の幅方向全体に冷却水が行き渡るように、平面視でその噴射平面が搬送方向に対して傾けられている。噴射平面とは、図13および図14に示すように、扇状の噴射範囲の前縁および後縁を含む平面である。   As shown in FIGS. 12 to 14, a general steel plate lower surface cooling device includes a plurality of spray nozzles arranged at a predetermined nozzle pitch along the steel plate width direction between table rolls. This is a flat type in which cooling water is jetted flat and fan-shaped from the nozzle tip. In order to obtain a high cooling capacity, the spray nozzle is often arranged densely with the nozzle pitch in the steel plate width direction being about 50 to 200 mm. In addition, the spray nozzle is inclined with respect to the transport direction in plan view so that the cooling water spreads over the entire width direction of the steel plate. As shown in FIGS. 13 and 14, the ejection plane is a plane including the front and rear edges of the fan-shaped ejection range.

このようなスプレーノズルから冷却水が噴射されると、図12に示すように、鋼板の幅方向外側から噴射される冷却水は広がって噴射されるため、冷却水が鋼板上面に落下したり、鋼板の幅方向端面に直接冷却水が衝突したりして、鋼板の幅方向端部の過冷却の原因となる。   When cooling water is sprayed from such a spray nozzle, as shown in FIG. 12, the cooling water sprayed from the outside in the width direction of the steel sheet spreads and is sprayed, so that the cooling water falls on the upper surface of the steel sheet, Cooling water directly collides with the end surface in the width direction of the steel plate, causing overcooling of the end portion in the width direction of the steel plate.

特許文献1に開示される方法は、各段階における噴射冷却水と遮蔽板との関係を上から見た図を図15に、各段階における噴射冷却水と遮蔽板との関係を搬送方向に正対して見た図を図16に示すように、複数の孔部を有する有孔遮蔽板を鋼板幅方向に移動させることで、鋼板の幅方向端部の外側のノズルからの冷却水を一部または全て遮断し、鋼板の幅方向端部の過冷却を防止するものであり、具体的には、板幅が大きい場合には、図15(a)および図16(a)に示すように、遮蔽板を、全てのスプレーノズルから噴射された冷却水が矩形孔部を通過する位置に配置し、板幅がスプレーノズルが配置された幅方向範囲よりも小さい場合には、図15(b)および図16(b)に示すように、遮蔽板を、鋼板の幅方向端部の外側のノズルが半分遮蔽される位置に移動させ、これにより鋼板上面への落下水や鋼板の幅方向端面への冷却水の直接衝突を防止するものである。しかし、図15や図16に示すような短形の孔部を有する遮蔽板ではノズル個々での遮蔽制御が難しく、板幅によっては鋼板の幅方向端部の外側だけでなく内側のノズルも半分遮蔽される場合もあり、この場合、鋼板の幅方向端部に噴射される冷却水が半減するため、鋼板の幅方向端部の冷却不足や冷却むらが懸念される。また、図15に示すように、矩形孔部通過時の噴射冷却水の鋼板幅方向に沿った長さをLとすると、遮蔽パターンを1水準ずらすために必要な最小ストロークはL/2であり、例えばL=45mmで幅方向のノズルピッチPが80mmである場合は、図17のように遮蔽パターンが1種類のみとなり、対応可能な板幅が限定される問題がある。   The method disclosed in Patent Document 1 is a diagram in which the relationship between the jet cooling water and the shielding plate at each stage viewed from above is shown in FIG. 15, and the relationship between the jet cooling water and the shield plate at each stage is corrected in the transport direction. As shown in FIG. 16, the perforated shielding plate having a plurality of holes is moved in the steel plate width direction so that a part of the cooling water from the nozzle outside the width direction end of the steel plate is obtained. Alternatively, all of them are blocked to prevent overcooling of the end in the width direction of the steel plate. Specifically, when the plate width is large, as shown in FIGS. 15 (a) and 16 (a), When the shielding plate is disposed at a position where the cooling water sprayed from all the spray nozzles passes through the rectangular hole, and the plate width is smaller than the width direction range in which the spray nozzles are disposed, FIG. And as shown in FIG.16 (b), let the shielding board be a nozzle of the outer side of the width direction edge part of a steel plate. Is moved to a position where half is shielded, thereby it is to prevent direct impingement of the cooling water in the widthwise end face of the falling water and the steel plate to the steel plate top surface. However, with a shielding plate having a short hole as shown in FIGS. 15 and 16, it is difficult to control the shielding of each nozzle, and depending on the plate width, not only the outer side of the width direction end of the steel plate but also the inner nozzle is half. In some cases, the cooling water sprayed to the end in the width direction of the steel sheet is halved, and there is a concern about insufficient cooling or uneven cooling at the end in the width direction of the steel sheet. Moreover, as shown in FIG. 15, when the length along the steel plate width direction of the jet cooling water when passing through the rectangular hole is L, the minimum stroke required to shift the shielding pattern by one level is L / 2. For example, when L = 45 mm and the nozzle pitch P in the width direction is 80 mm, there is only one type of shielding pattern as shown in FIG.

特許文献2に開示される方法は、桶や遮蔽板などによって鋼板の幅方向端部の冷却水量を調整することで、当該幅方向端部の過冷却を防止するものであるが、主に鋼板の上面側の冷却を対象にしており、テーブルロールの間隔が広い場合のノズル配置について述べている。遮蔽板の駆動機構としては、ワイヤーやスクリューなどを用いるが、一般的な熱延鋼板では最小幅が600mm、最大幅が2400mm程度であり、遮蔽板の幅方向駆動距離は片側900mmと長い距離を駆動させる必要がある。さらに、特に厚鋼板のように板幅が5000mmを超えるラインの場合では、最小板幅(1500〜2000mm)と最大板幅(4000〜5500mm)の差が大きく、遮蔽板の幅方向駆動距離も片側1000〜2000mmと長い距離を駆動させるため、熱延鋼板よりもさらに規模が大きくなる。また、鋼板下面ではノズルから噴射した冷却水が鋼板に衝突した後に落下するため、スクリューやワイヤーなどの駆動機構が被水してしまい、錆などを起因とした故障が非常に多い。そのため、下面の遮蔽板によるマスキング装置は、実態として安定的に稼動していなかった。   The method disclosed in Patent Document 2 is to prevent the overcooling of the width direction end portion by adjusting the amount of cooling water at the width direction end portion of the steel plate by using a gutter or a shielding plate. Nozzle arrangement in the case where the distance between the table rolls is wide is described. As a driving mechanism for the shielding plate, a wire or a screw is used, but a general hot-rolled steel sheet has a minimum width of about 600 mm and a maximum width of about 2400 mm, and the width direction driving distance of the shielding plate is as long as 900 mm on one side. It is necessary to drive. Furthermore, especially in the case of a line having a plate width exceeding 5000 mm, such as a thick steel plate, the difference between the minimum plate width (1500 to 2000 mm) and the maximum plate width (4000 to 5500 mm) is large, and the width direction driving distance of the shielding plate is also on one side. Since a long distance of 1000 to 2000 mm is driven, the scale becomes larger than that of a hot-rolled steel sheet. Moreover, since the cooling water sprayed from the nozzle falls on the lower surface of the steel plate after colliding with the steel plate, the drive mechanism such as a screw or wire gets wet, and there are very many failures due to rust and the like. For this reason, the masking device using the shielding plate on the lower surface has not been operated stably in practice.

本発明は、上記の問題を解決し、鋼板の幅方向端部の過冷却防止を実現し、材質ばらつきの少ない高品質の鋼板を確保できる技術を提供することを目的としている。   An object of the present invention is to solve the above-mentioned problems, to realize a technique capable of preventing overcooling of the end portion in the width direction of the steel sheet and ensuring a high-quality steel sheet with little material variation.

上記課題を解決するため、本発明の鋼板の下面冷却方法は、搬送中の鋼板の下面を冷却する鋼板の下面冷却方法であって、
鋼板幅方向に整列され、その各々が冷却水を扇状に噴射するとともに扇状の噴射範囲の前縁および後縁を含む噴射平面が搬送方向に対して傾けられた複数のノズルと、
前記ノズルおよび前記鋼板の相互間で鋼板幅方向に移動可能に設けられ、その移動量に応じて前記ノズルから噴射された冷却水を通過させまたは遮蔽する複数の開口部を有する遮蔽板であって、該開口部を区画する開口縁のうち前記遮蔽板の移動量に応じて冷却水を遮蔽する遮蔽縁部が搬送方向に対し、前記噴射平面の傾斜側と同一側に傾斜した遮蔽板と、を用い、
前記遮蔽板を鋼板幅に応じて鋼板幅方向中心に対し近接離間させることにより、鋼板幅方向の端側のノズルからの冷却水の一部または全部を遮蔽することを特徴とするものである。
In order to solve the above problems, the lower surface cooling method of the steel sheet of the present invention is a lower surface cooling method of the steel sheet for cooling the lower surface of the steel sheet being conveyed,
A plurality of nozzles that are aligned in the width direction of the steel sheet, each of which sprays cooling water in a fan shape, and the spray plane including the front and rear edges of the fan-shaped spray range is inclined with respect to the transport direction;
A shielding plate having a plurality of openings that are provided so as to be movable in the width direction of the steel plate between the nozzle and the steel plate, and allow or pass the cooling water sprayed from the nozzle according to the amount of movement. A shielding plate that shields cooling water according to the amount of movement of the shielding plate among the opening edges that define the opening, and is inclined to the same side as the inclined side of the ejection plane with respect to the transport direction; Use
A part or all of the cooling water from the nozzle on the end side in the steel plate width direction is shielded by moving the shielding plate close to and away from the center in the steel plate width direction according to the steel plate width.

本発明の鋼板の下面冷却方法にあっては、搬送方向に対する前記遮蔽縁の傾斜角をφ[rad]とし、搬送方向に対する前記噴射平面の傾斜角をθ[rad]としたとき、前記遮蔽縁部の傾斜角φを、0<φ<arctan(2tanθ)を満たすよう設定することが好ましい。   In the lower surface cooling method of the steel sheet of the present invention, when the inclination angle of the shielding edge with respect to the conveyance direction is φ [rad] and the inclination angle of the injection plane with respect to the conveyance direction is θ [rad], the shielding edge The inclination angle φ of the part is preferably set so as to satisfy 0 <φ <arctan (2 tan θ).

また、本発明の鋼板の下面冷却方法にあっては、前記開口部の幅方向寸法を2種類以上設けることが好ましい。   Moreover, in the lower surface cooling method of the steel plate of this invention, it is preferable to provide 2 or more types of the width direction dimensions of the said opening part.

上記課題を解決するため、本発明の鋼板の下面冷却装置は、搬送中の鋼板の下面を冷却する鋼板の下面冷却装置であって、
鋼板幅方向に整列され、その各々が冷却水を扇状に噴射するとともに扇状の噴射範囲の前縁および後縁を含む噴射平面が搬送方向に対して傾けられた複数のノズルと、
前記ノズルおよび前記鋼板の相互間で鋼板幅方向に移動可能に設けられ、その移動量に応じて前記ノズルから噴射された冷却水を通過させまたは遮蔽する複数の開口部を有する遮蔽板と、
前記遮蔽板を鋼板幅方向に移動させる駆動機構と、を備え、
前記開口部を区画する開口縁のうち前記遮蔽板の移動量に応じて冷却水を遮蔽する遮蔽縁部は搬送方向に対し、前記噴射平面の傾斜側と同一側に傾斜していることを特徴とするものである。
In order to solve the above problems, the lower surface cooling device for a steel plate of the present invention is a lower surface cooling device for a steel plate that cools the lower surface of the steel plate being conveyed,
A plurality of nozzles that are aligned in the width direction of the steel sheet, each of which sprays cooling water in a fan shape, and the spray plane including the front and rear edges of the fan-shaped spray range is inclined with respect to the transport direction;
A shielding plate having a plurality of openings that are provided so as to be movable in the steel plate width direction between the nozzle and the steel plate, and allow or pass cooling water sprayed from the nozzle according to the amount of movement;
A drive mechanism for moving the shielding plate in the width direction of the steel plate,
Among the opening edges that define the opening, the shielding edge that shields the cooling water according to the movement amount of the shielding plate is inclined to the same side as the inclined side of the injection plane with respect to the transport direction. It is what.

本発明の鋼板の下面冷却装置にあっては、搬送方向に対する前記遮蔽縁部の傾斜角をφ[rad]とし、搬送方向に対する前記噴射平面の傾斜角をθ[rad]としたとき、前記遮蔽縁部の傾斜角φは、0<φ<arctan(2tanθ)を満たすよう設定されていることが好ましい。   In the lower surface cooling apparatus for a steel sheet of the present invention, when the inclination angle of the shielding edge with respect to the conveying direction is φ [rad] and the inclination angle of the ejection plane with respect to the conveying direction is θ [rad], the shielding is performed. The inclination angle φ of the edge is preferably set so as to satisfy 0 <φ <arctan (2 tan θ).

また、本発明の鋼板の下面冷却装置にあっては、前記開口部の幅方向寸法が2種類以上設けられていることが好ましい。   Moreover, in the lower surface cooling apparatus of the steel plate of this invention, it is preferable that the width direction dimension of the said opening part is provided 2 or more types.

さらに、本発明の鋼板の下面冷却装置にあっては、前記駆動機構は、その駆動ストロークを鋼板幅方向に整列されたノズルのノズルピッチ未満とされていることが好ましい。   Furthermore, in the steel plate lower surface cooling device of the present invention, it is preferable that the drive mechanism has a drive stroke less than the nozzle pitch of the nozzles aligned in the steel plate width direction.

さらに、本発明の鋼板の下面冷却装置にあっては、前記開口部を区画する開口縁のうち、前記遮蔽縁部と鋼板幅方向で対向する縁部に、前記遮蔽板により遮蔽された水を落下させる垂れ鍔を有することが好ましい。   Furthermore, in the lower surface cooling apparatus for a steel plate of the present invention, water that is shielded by the shielding plate is applied to an edge that faces the shielding edge in the width direction of the steel plate among the opening edges that define the opening. It is preferable to have a sagging drop to drop.

さらに、本発明の鋼板の下面冷却装置にあっては、前記駆動機構は、その駆動ストローク内で前記遮蔽板の鋼板幅方向位置を3段階以上に変更可能とされていることが好ましい。   Furthermore, in the steel plate lower surface cooling device of the present invention, it is preferable that the drive mechanism can change the steel plate width direction position of the shielding plate in three or more stages within the drive stroke.

さらに、本発明の鋼板の下面冷却装置にあっては、鋼板幅方向に整列されたノズルからなるノズル列が搬送方向に2列以上設置されており、前記遮蔽板に前記開口部からなる遮蔽パターンが搬送方向で2種類以上設けられていることが好ましい。   Furthermore, in the lower surface cooling apparatus for a steel sheet according to the present invention, two or more nozzle rows composed of nozzles aligned in the width direction of the steel plate are provided in the transport direction, and a shielding pattern comprising the openings on the shielding plate. It is preferable that two or more types are provided in the transport direction.

本発明の鋼板の下面冷却方法および冷却装置によれば、遮蔽板に形成された開口部の遮蔽縁部を、ノズルからの冷却水の噴射平面の傾斜に対応して傾斜させたことにより、個々のノズルに対する的確な遮蔽制御が可能となり、鋼板を幅方向に均一に冷却でき、材質ばらつきの少ない高品質の鋼板の製造が可能となる。   According to the steel plate lower surface cooling method and cooling device of the present invention, the shielding edge of the opening formed in the shielding plate is inclined according to the inclination of the injection plane of the cooling water from the nozzle. Therefore, it is possible to precisely control the shielding of the nozzle, to cool the steel plate uniformly in the width direction, and to manufacture a high-quality steel plate with less material variation.

本発明の鋼板の下面冷却方法の一実施形態を実施するための、本発明の鋼板の下面冷却装置の一実施形態を示す正面図である。It is a front view which shows one Embodiment of the lower surface cooling apparatus of the steel plate of this invention for enforcing one Embodiment of the lower surface cooling method of the steel plate of this invention. 図1の鋼板の下面冷却装置において、スプレーノズルの噴射平面を搬送方向に対して傾斜させた幾つかの例を示す平面図である。In the lower surface cooling apparatus of the steel plate of FIG. 1, it is a top view which shows some examples which inclined the injection plane of the spray nozzle with respect to the conveyance direction. 本発明の鋼板の下面冷却装置に適用可能な遮蔽板の例を示す平面図であり、(a)は遮蔽板の遮蔽縁部を反時計回り側に傾斜させた例であり、(b)は、遮蔽板の遮蔽縁部を時計回り側に傾斜させた例である。It is a top view which shows the example of the shielding board applicable to the lower surface cooling device of the steel plate of this invention, (a) is the example which inclined the shielding edge part of the shielding board to the counterclockwise side, (b) This is an example in which the shielding edge portion of the shielding plate is inclined clockwise. 遮蔽縁部の傾斜角φが冷却水の噴射平面の傾斜角θよりも小さくされた、本発明に適用可能な遮蔽板の一例を示す拡大平面図である。FIG. 6 is an enlarged plan view showing an example of a shielding plate applicable to the present invention in which the inclination angle φ of the shielding edge is made smaller than the inclination angle θ of the cooling water injection plane. 遮蔽縁部の傾斜角φが冷却水の噴射平面の傾斜角θよりも大きくされた、本発明に適用可能な遮蔽板の一例を示す拡大平面図である。FIG. 6 is an enlarged plan view showing an example of a shielding plate applicable to the present invention in which the inclination angle φ of the shielding edge is larger than the inclination angle θ of the cooling water injection plane. 本発明に適用可能な遮蔽板の一例を鋼板幅方向に移動させたときの様子を示す平面図である。It is a top view which shows a mode when moving an example of the shielding board applicable to this invention to the steel plate width direction. 本発明に適用可能な遮蔽板の他の一例を鋼板幅方向に移動させたときの様子を示す平面図である。It is a top view which shows a mode when moving another example of the shielding plate applicable to this invention to the steel plate width direction. 本発明に適用可能な遮蔽板のさらに他の一例を示す平面図である。It is a top view which shows another example of the shielding board applicable to this invention. 本発明の鋼板の下面冷却装置の実施形態において、遮蔽板により遮蔽された冷却水が該遮蔽板の下面に沿って流れる様子を示した正面図である。In embodiment of the lower surface cooling device of the steel plate of this invention, it is the front view which showed a mode that the cooling water shielded with the shielding board flows along the lower surface of this shielding board. 遮蔽板により遮蔽された冷却水が垂れ鍔に案内されて下方に流れる様子を示した正面図である。It is the front view which showed a mode that the cooling water shielded by the shielding board was guide | induced to the dredge, and flowed below. 本発明の鋼板の下面冷却装置を適用可能な一例として、熱延鋼板の製造ラインを示す概略構成図である。It is a schematic block diagram which shows the manufacturing line of a hot-rolled steel plate as an example which can apply the lower surface cooling device of the steel plate of this invention. 従来の一般的な鋼板の下面冷却装置の一例を示す正面図である。It is a front view which shows an example of the conventional general steel plate lower surface cooling device. 図12に対応する平面図である。FIG. 13 is a plan view corresponding to FIG. 12. 図12に対応する側面図である。FIG. 13 is a side view corresponding to FIG. 12. 従来の鋼板の下面冷却装置における遮蔽板を移動させたときの様子を示す平面図である。It is a top view which shows a mode when the shielding board in the lower surface cooling device of the conventional steel plate is moved. 図15に対応する正面図である。FIG. 16 is a front view corresponding to FIG. 15. 図15に示す状態から遮蔽板をさらに移動させたときの様子を示す平面図である。It is a top view which shows a mode when the shielding board is further moved from the state shown in FIG.

以下、本発明の実施の形態を図面に基づき詳細に説明する。ここで、図1は、本発明の鋼板の下面冷却方法の一実施形態を実施するための、本発明の鋼板の下面冷却装置の一実施形態を示す正面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, FIG. 1 is a front view showing an embodiment of a steel sheet lower surface cooling apparatus of the present invention for carrying out an embodiment of the steel sheet lower surface cooling method of the present invention.

本実施形態の鋼板の下面冷却装置10は、熱間圧延後のテーブルロール(ランアウトテーブルのロール)で搬送中の熱間の鋼板の下面を冷却するものであって、図1に示すように、鋼板幅方向に整列された複数のスプレーノズル(以下、単に「ノズル」という。)11と、ノズル11および鋼板Sの相互間で鋼板幅方向に移動可能に設けられ、その移動量に応じてノズル11から噴射された冷却水を通過させまたは遮蔽する複数の開口部12aを有する遮蔽板12と、遮蔽板12を鋼板幅方向中心Cに対し近接離間させる駆動装置13とを備えている。各ノズル11は、鋼板幅方向に延びる下面冷却ヘッダー14に接続され、そこから冷却水が分配されるようになっている。駆動装置13は遮蔽板12を鋼板幅方向に移動させることができれば特に制限はなく、例えば電動アクチュエータ(直線駆動機構)や油圧シリンダ、空圧シリンダなどを用いることができる。   The steel plate lower surface cooling device 10 of the present embodiment cools the lower surface of the hot steel plate being conveyed by a table roll after hot rolling (roll-out table roll), as shown in FIG. A plurality of spray nozzles (hereinafter simply referred to as “nozzles”) 11 arranged in the steel plate width direction are provided so as to be movable in the steel plate width direction between the nozzle 11 and the steel plate S, and the nozzles according to the amount of movement. 11 is provided with a shielding plate 12 having a plurality of openings 12a through which the cooling water sprayed from 11 is passed or shielded, and a drive device 13 that moves the shielding plate 12 close to and away from the center C in the steel plate width direction. Each nozzle 11 is connected to a lower surface cooling header 14 extending in the steel plate width direction, and cooling water is distributed therefrom. The driving device 13 is not particularly limited as long as it can move the shielding plate 12 in the width direction of the steel plate. For example, an electric actuator (linear drive mechanism), a hydraulic cylinder, a pneumatic cylinder, or the like can be used.

本実施形態においてノズル11は、図13および図14を参照して前述したものと同様に、噴射される冷却水が偏平かつ扇状に広がるフラットスプレータイプのノズルであり、テーブルロール間で鋼板幅方向に所定のピッチにて複数配置されている。ノズルピッチは、高い冷却能力を得るために約50〜200mmとすることが好ましい。また、図2に示すように、鋼板下面全面に冷却水が噴射されるように、ノズルから噴射される冷却水の噴射平面は平面視で搬送方向に対して傾けられ、つまり搬送方向に対して傾斜角θ[rad]をなす。噴射平面とは、図14に示すように、扇状の噴射範囲において扇角をなす2つの縁(鋼板の搬送方向でみて前方に位置する一方の縁を前縁、後方に位置する他方の縁を後縁という。)を含む平面を指す。噴射平面の傾斜角θとは、平面視で搬送方向に対してなす角のうち鋭角側の角を指す。この傾斜角θは0<θ≦π/2であり、図2に、搬送方向に対して噴射平面を傾斜させた幾つかの例を示す。図2中、符号Nfは噴射範囲の前縁、Nbは噴射範囲の後縁、Nは前縁Nfおよび後縁Nbを含む噴射平面であり、wはノズルから噴射される冷却水である。図2(a)は噴射平面Nが時計回りに比較的大きく傾斜した例であり、(b)は噴射平面Nが時計回りに比較的小さく傾斜した例であり、(c)は噴射平面Nが反時計回りに比較的小さく傾斜した例であり、(d)は噴射平面Nが反時計回りに比較的大きく傾斜した例である。   In the present embodiment, the nozzle 11 is a flat spray type nozzle in which the injected cooling water spreads in a flat and fan-like manner as described above with reference to FIG. 13 and FIG. Are arranged at a predetermined pitch. The nozzle pitch is preferably about 50 to 200 mm in order to obtain a high cooling capacity. Further, as shown in FIG. 2, the injection plane of the cooling water injected from the nozzle is inclined with respect to the conveying direction in plan view so that the cooling water is injected on the entire lower surface of the steel plate, that is, with respect to the conveying direction. An inclination angle θ [rad] is formed. As shown in FIG. 14, the ejection plane is defined by two edges forming a fan angle in the fan-shaped ejection range (one edge positioned in the front as viewed in the conveying direction of the steel sheet is the front edge, and the other edge positioned in the rear is (Referred to as a trailing edge). The inclination angle θ of the ejection plane refers to an acute angle angle among angles formed with respect to the transport direction in plan view. The inclination angle θ is 0 <θ ≦ π / 2, and FIG. 2 shows several examples in which the ejection plane is inclined with respect to the transport direction. In FIG. 2, Nf is a leading edge of the injection range, Nb is a trailing edge of the injection range, N is an injection plane including the leading edge Nf and the trailing edge Nb, and w is cooling water injected from the nozzle. 2A is an example in which the injection plane N is inclined relatively large clockwise, FIG. 2B is an example in which the injection plane N is inclined relatively small clockwise, and FIG. 2C is an example in which the injection plane N is inclined. In this example, the injection plane N is inclined relatively small counterclockwise, and (d) is an example in which the injection plane N is inclined relatively large counterclockwise.

そして、本実施形態では、図3に示すように、遮蔽板12の開口部12aを区画する開口縁のうち、遮蔽板12の移動量に応じて冷却水wを遮蔽する遮蔽縁部12a1は、搬送方向に対し噴射平面Nの傾斜側と同一側に傾斜している。例えば、図3(a)に示す例では、冷却水wの噴射平面Nが搬送方向に対して反時計回り側に傾斜しているため、遮蔽板12の遮蔽縁部12a1も反時計回り側に傾斜し、図3(b)に示す例では、冷却水wの噴射平面Nが搬送方向に対して時計回り側に傾斜しているため、遮蔽板12の遮蔽縁部12a1も時計回り側に傾斜している。このように、遮蔽板12の遮蔽縁部12a1を冷却水wの噴射平面Nの傾斜方向に合わせて傾斜させることで、ノズル個々での冷却水遮蔽制御が可能となって広範囲の板幅に対して鋼板Sを幅方向で均一に冷却することできる。なお、これをより確かなものとするため、搬送方向に対する遮蔽縁部12a1の傾斜角をφ[rad]とすると、当該傾斜角φは、ノズル11から噴射された冷却水wの噴射平面の傾斜角θ[rad]との関係で、0<φ<arctan(2tanθ)を満たすように設定することが好ましい。開口部12aを区画する開口縁のうち、遮蔽縁部12a1とは反対側の対向縁部12a2は搬送方向に平行としてもよいが、図示例のように遮蔽縁部12a1と同じ側に傾斜させることが好ましく、このようにすれば、遮蔽板12の開口面積を減ずることができるため、遮蔽板12の強度を高めることができる。   And in this embodiment, as shown in FIG. 3, among the opening edges that define the opening 12a of the shielding plate 12, the shielding edge 12a1 that shields the cooling water w according to the amount of movement of the shielding plate 12 is: It is inclined to the same side as the inclined side of the ejection plane N with respect to the transport direction. For example, in the example shown in FIG. 3A, since the injection plane N of the cooling water w is inclined counterclockwise with respect to the transport direction, the shielding edge 12a1 of the shielding plate 12 is also counterclockwise. In the example shown in FIG. 3B, since the injection plane N of the cooling water w is inclined clockwise with respect to the transport direction, the shielding edge 12a1 of the shielding plate 12 is also inclined clockwise. doing. In this way, by inclining the shielding edge 12a1 of the shielding plate 12 in accordance with the inclination direction of the injection plane N of the cooling water w, the cooling water shielding control can be performed for each nozzle, and a wide range of plate widths can be achieved. Thus, the steel sheet S can be uniformly cooled in the width direction. In order to make this more reliable, when the inclination angle of the shielding edge 12a1 with respect to the transport direction is φ [rad], the inclination angle φ is the inclination of the injection plane of the cooling water w injected from the nozzle 11. It is preferable to set so as to satisfy 0 <φ <arctan (2 tan θ) in relation to the angle θ [rad]. Of the opening edges that define the opening 12a, the opposite edge 12a2 opposite to the shielding edge 12a1 may be parallel to the transport direction, but is inclined to the same side as the shielding edge 12a1 as shown in the example of the drawing. In this case, the opening area of the shielding plate 12 can be reduced, so that the strength of the shielding plate 12 can be increased.

遮蔽板12が図3のような遮蔽パターンを持つ場合、ノズル11から噴射された冷却水wの、開口部通過位置での幅方向長さ(鋼板幅方向に沿った長さ)をLとすると、遮蔽板12を1水準ずらす、すなわち開口部12aを通過する冷却水wの状態を全噴射から半分噴射とするために必要な最小ストロークは、φ<θの場合は図4で示すように(1−tanφ/tanθ)・L/2となり、θ<φの場合は図5で示すように(tanφ/tanθ−1)・L/2となる。またθ=φの場合は、冷却水の部分遮蔽はなく、全噴射から完全遮蔽するパターンとなり、遮蔽板12を1水準ずらす場合に必要な最小ストロークは、開口部通過時の冷却水wの幅方向厚みdと等しくなる(図6)。一般的にフラットスプレータイプの冷却水(噴射水)wの幅方向厚みは10mm程度であるため、非常に短いストロークで冷却水を遮断することができることになる。つまり、図6に一例として、ノズルピッチが100mm、冷却水wの幅方向厚みdが10mmであり、開口部12の幅方向寸法が鋼板幅方向外側から内側にかけて10mmずつ長くなっている場合、遮蔽板12を鋼板幅方向外側に10mm移動させるごとに遮蔽される冷却水wが鋼板幅方向端側から1つずつ増えていく。このとき、ノズルピッチが100mmであるため、遮蔽パターンは全幅噴射を含めて10段階とすることができ、一般的な熱延鋼板の板幅600〜2400mmに対応可能となる上、駆動ストロークは90mmと短いため安定的な動作が期待できる。   When the shielding plate 12 has a shielding pattern as shown in FIG. 3, the length of the cooling water w sprayed from the nozzle 11 in the width direction at the opening passage position (the length along the steel plate width direction) is L. The minimum stroke required to shift the shielding plate 12 by one level, that is, to change the state of the cooling water w passing through the opening 12a from full injection to half injection, as shown in FIG. 1−tan φ / tan θ) · L / 2, and when θ <φ, as shown in FIG. 5, (tan φ / tan θ−1) · L / 2. In the case of θ = φ, there is no partial shielding of the cooling water, and the pattern is a complete shielding from all injections. The minimum stroke required when the shielding plate 12 is shifted by one level is the width of the cooling water w when passing through the opening. It becomes equal to the direction thickness d (FIG. 6). In general, since the thickness in the width direction of the flat spray type cooling water (spray water) w is about 10 mm, the cooling water can be shut off with a very short stroke. That is, as an example in FIG. 6, when the nozzle pitch is 100 mm, the width d of the cooling water w is 10 mm, and the width dimension of the opening 12 is 10 mm longer from the outer side to the inner side in the steel plate width direction, Each time the plate 12 is moved 10 mm outward in the steel plate width direction, the cooling water w that is shielded increases from the end in the steel plate width direction one by one. At this time, since the nozzle pitch is 100 mm, the shielding pattern can be divided into 10 stages including full width injection, and can correspond to a plate width of 600 to 2400 mm of a general hot-rolled steel sheet, and the driving stroke is 90 mm. Because it is short, stable operation can be expected.

また、遮蔽板12の遮蔽縁部12a1が搬送方向に対してなす角度φを0<φ<arctan(2tanθ)とすることで、短いストロークで冷却水wの遮蔽が可能となる。すなわち、遮蔽板12を1水準ずらす場合に必要な最小ストロークがL/2未満であれば、従来の短形の開口部よりも短いストロークで冷却水wを遮蔽することができ、ノズル個々での冷却水遮蔽制御が可能となって広範囲の板幅に対して鋼板幅方向を均一に冷却できる。φ<θの時は0<φ、θ<φの時はtanφ/tanθ−1<1、つまり0<φ<arctan(2tanθ)であれば良い。これによって、例えば各段階の遮蔽板12による冷却水wの遮蔽の様子を図7に平面図として示すように、ノズル個々での遮蔽制御が容易となり、鋼板幅方向中央のノズル11が遮蔽されることなく、板幅に依らずに鋼板幅方向端部のノズル11のみを遮蔽できる。遮蔽に必要なストロークを小さくし、ノズル個々での遮蔽制御性を容易とするには、φは5÷180×π≦φ≦arctan(2tanθ)−5÷180×πであることが好ましく、φ=θであることがさらに好ましい。なお、「5÷180×π」は、5°のラジアン表記である。   In addition, the angle φ formed by the shielding edge 12a1 of the shielding plate 12 with respect to the conveyance direction is set to 0 <φ <arctan (2 tan θ), so that the cooling water w can be shielded with a short stroke. That is, if the minimum stroke required for shifting the shielding plate 12 by one level is less than L / 2, the cooling water w can be shielded with a shorter stroke than the conventional short opening, Cooling water shielding control is possible, and the steel plate width direction can be uniformly cooled over a wide range of plate widths. When φ <θ, 0 <φ, and when θ <φ, tanφ / tanθ-1 <1, that is, 0 <φ <arctan (2 tanθ). Thus, for example, as shown in a plan view of the cooling water w by the shielding plate 12 at each stage, the shielding control of each nozzle is facilitated, and the nozzle 11 at the center in the steel plate width direction is shielded. Therefore, it is possible to shield only the nozzle 11 at the end in the steel plate width direction without depending on the plate width. In order to reduce the stroke required for shielding and facilitate the shielding control performance of each nozzle, it is preferable that φ is 5 ÷ 180 × π ≦ φ ≦ arctan (2 tan θ) −5 ÷ 180 × π. More preferably, = θ. “5 ÷ 180 × π” is expressed in 5 ° radians.

また、本実施形態によれば、駆動機構13の駆動ストロークを短くすることができるため、駆動機構13を遮蔽板12の幅方向外側に配置できるという利点もある。これによって、駆動装置13への冷却水wの飛散などを防止することができ、駆動装置13を長期に亘って安定的に駆動させることが可能となる。   Moreover, according to this embodiment, since the drive stroke of the drive mechanism 13 can be shortened, there exists an advantage that the drive mechanism 13 can be arrange | positioned in the width direction outer side of the shielding board 12. FIG. As a result, scattering of the cooling water w to the drive device 13 can be prevented, and the drive device 13 can be stably driven over a long period of time.

また、鋼板幅方向に整列された開口部12の幅方向寸法を2種類以上設けることで、複数の鋼板幅に対応する遮蔽パターンを設けることができ、好ましくは3種類以上、さらに好ましくは4種類以上設けることで、広範囲の板幅に対して鋼板を幅方向で均一に冷却することできる。   Moreover, by providing two or more types of width direction dimensions of the openings 12 aligned in the steel plate width direction, a shielding pattern corresponding to a plurality of steel plate widths can be provided, preferably three or more types, more preferably four types. By providing as described above, the steel plate can be uniformly cooled in the width direction with respect to a wide range of plate widths.

なお、上記実施形態では、鋼板Sの下面側に設置されるノズル11に関して、鋼板幅方向に複数配置されたノズル列がテーブルロール間に1列のみ配置される例を示したが、同様のノズル列が複数のテーブルロール間に設置される場合においても、ノズル11の上方に開口部12aを持つ遮蔽板12を設置することで同様の効果が得られる。また、テーブルロール間に2列以上の複数のノズル列が設置される場合においても、図8にノズル11が千鳥状に3列配置された場合を示すように、遮蔽板の各開口部12aをノズル列が1列の場合と同様に各ノズル11に対応させることで、同様の効果を得ることができる。   In the above-described embodiment, an example in which only one row of nozzle rows arranged in the steel plate width direction is arranged between the table rolls with respect to the nozzles 11 installed on the lower surface side of the steel plate S has been described. Even when the row is installed between a plurality of table rolls, the same effect can be obtained by installing the shielding plate 12 having the opening 12 a above the nozzle 11. Further, even when two or more nozzle rows are installed between the table rolls, the openings 12a of the shielding plate are formed so that the nozzles 11 are arranged in three rows in a staggered manner in FIG. Similar effects can be obtained by making each nozzle 11 correspond to the case where the number of nozzle rows is one.

また、遮蔽板12に単に開口部12aを設けただけのものとした場合は、図9のように遮蔽板12の遮蔽縁部12a1により遮断された冷却水は、遮蔽板12の下面に沿って鋼板幅方向の中央側に流れ、幅方向中央側で隣接するノズル11から噴射される冷却水wに干渉し、これによって、冷却水wの噴射が不安定となって鋼板幅端部の冷却がやや不均一となる可能性がある。このため、図10のように開口部12を区画する開口縁のうち、遮蔽縁部12a1と鋼板幅方向で対向する対向縁部12a2に垂れ鍔12bを設けることが好ましく、これによれば、遮蔽板12に沿って流れる冷却水を垂れ鍔12bに衝突させ、落下させることができるため、上述した隣接するノズル11から噴射される冷却水wへの干渉を回避して冷却水wを安定して噴射させることができる。図10では、垂れ鍔12bを対向縁部12a2にのみ設けたが、垂れ鍔12bは遮蔽縁部12a1や開口縁の全周に設けてもよい。   Further, when the shielding plate 12 is simply provided with the opening 12a, the cooling water blocked by the shielding edge portion 12a1 of the shielding plate 12 as shown in FIG. It flows to the center side in the width direction of the steel sheet and interferes with the cooling water w injected from the adjacent nozzle 11 on the center side in the width direction. May be slightly non-uniform. For this reason, it is preferable to provide the drooping ridge 12b on the opposing edge 12a2 that faces the shielding edge 12a1 in the width direction of the steel plate among the opening edges that define the opening 12 as shown in FIG. Since the cooling water flowing along the plate 12 can collide with the dripping rod 12b and be dropped, the interference with the cooling water w ejected from the adjacent nozzle 11 described above can be avoided and the cooling water w can be stabilized. Can be injected. In FIG. 10, the hanging rod 12b is provided only on the opposing edge portion 12a2, but the hanging rod 12b may be provided on the entire periphery of the shielding edge portion 12a1 or the opening edge.

さらに図示は省略するが、鋼板幅方向に整列された複数のノズル11からなるノズル列が搬送方向に2列以上設置されている場合、開口部12aからなる遮蔽パターンを搬送方向で2種類以上設けることが好ましく、これによれば、より広範囲の板幅に対して鋼板幅方向を均一に冷却することができる。例えばノズル(噴射された冷却水wの幅方向厚みdが10mm)11をノズルピッチ100mmで鋼板幅方向に整列させてなるノズル列が搬送方向に10列配置されている場合、鋼板幅600〜2400mmに対応可能な、開口部12aの幅方向寸法が鋼板幅方向端外側から内側にかけて10mmずつ長くなっている遮蔽パターンを持つ列を5列、鋼板幅2400〜4200mmに対応可能な、開口部12aの幅方向寸法が鋼板幅方向端外側から内側にかけて10mmずつ長くなっている遮蔽パターンを持つ列を5列配置することで、広範囲の板幅に対して鋼板を幅方向に均一に冷却することができる。   Furthermore, although illustration is omitted, when two or more nozzle rows composed of a plurality of nozzles 11 aligned in the steel plate width direction are provided in the transport direction, two or more types of shielding patterns composed of the openings 12a are provided in the transport direction. Preferably, according to this, the steel plate width direction can be uniformly cooled with respect to a wider range of plate widths. For example, when 10 nozzle rows in which nozzles (thickness d in the width direction of the injected cooling water w are 10 mm) 11 are arranged in the steel plate width direction at a nozzle pitch of 100 mm are arranged in the transport direction, the steel plate width is 600 to 2400 mm. Of the opening 12a, the width of the opening 12a is 5 rows having a shielding pattern that is longer by 10 mm from the outer side to the inner side in the width direction of the steel plate, the width of the opening 12a that can correspond to the width of the steel plate 2400 to 4200 mm. By arranging five rows having a shielding pattern whose width direction dimension is 10 mm longer from the outer side to the inner side in the width direction of the steel plate, the steel plate can be uniformly cooled in the width direction with respect to a wide range of plate widths. .

本発明の鋼板の下面冷却方法の一実施形態は、上述した鋼板の下面冷却装置を用いることで実現することができるものであり、すなわち、本実施形態の鋼板の下面冷却方法は、熱間圧延後のテーブルロールで搬送中の熱間の鋼板Sの下面を冷却する鋼板の下面冷却方法であって、鋼板幅方向に整列され、その各々が冷却水wを扇状に噴射するとともに扇状の噴射範囲の前縁Nfおよび後縁Nbを含む噴射平面Nが搬送方向に対して傾けられた複数のノズル11と、ノズル11および鋼板Sの相互間で鋼板幅方向に移動可能に設けられ、その移動量に応じてノズル11から噴射された冷却水wを通過させまたは遮蔽する複数の開口部12aを有する遮蔽板12であって、該開口部12aを区画する開口縁のうち遮蔽板12の移動量に応じて冷却水wを遮蔽する遮蔽縁部12a1が搬送方向に対し、噴射平面Nの傾斜側と同一側に傾斜した遮蔽板12と、を用い、遮蔽板12を鋼板幅に応じて鋼板幅方向中心Cに対し近接離間させることにより、鋼板幅方向の端側のノズル11からの冷却水の一部または全部を遮蔽するものである。   One embodiment of the steel sheet lower surface cooling method of the present invention can be realized by using the above-described steel sheet lower surface cooling device, that is, the steel sheet lower surface cooling method of the present embodiment is hot-rolled. A lower surface cooling method for a steel plate that cools the lower surface of a hot steel plate S that is being conveyed by a subsequent table roll, the steel plate being aligned in the width direction of the steel plate, each of which injects the cooling water w in a fan shape and a fan-shaped injection range. The injection plane N including the front edge Nf and the rear edge Nb is provided so as to be movable in the steel plate width direction between the nozzles 11 and the steel plate S, and the amount of movement thereof. And a plurality of openings 12a through which the cooling water jetted from the nozzles 11 passes or is shielded according to the amount of movement of the shielding plate 12 among the opening edges that define the openings 12a. According to cooling The shielding edge 12a1 that shields w is used with the shielding plate 12 inclined to the same side as the inclined side of the ejection plane N with respect to the transport direction, and the shielding plate 12 is made to the steel plate width direction center C according to the steel plate width. A part or all of the cooling water from the nozzle 11 on the end side in the width direction of the steel sheet is shielded by being closely spaced.

本実施形態の鋼板の下面冷却方法によれば、遮蔽板12の遮蔽縁部12a1を冷却水wの噴射平面Nの傾斜方向に合わせて傾斜させたことにより、ノズル個々での冷却水遮蔽制御が可能となって広範囲の板幅に対して鋼板Sを幅方向で均一に冷却することできる。   According to the lower surface cooling method of the steel plate of the present embodiment, the cooling edge shielding control for each nozzle is performed by inclining the shielding edge 12a1 of the shielding plate 12 in accordance with the inclination direction of the injection plane N of the cooling water w. It becomes possible, and the steel plate S can be uniformly cooled in the width direction with respect to a wide range of plate widths.

また、本実施形態の鋼板の下面冷却方法において、搬送方向に対する遮蔽縁部12a1の傾斜角をφ[rad]とすると、当該傾斜角φは、ノズル11から噴射された冷却水wの噴射平面Nの傾斜角θ[rad]との関係で、0<φ<arctan(2tanθ)を満たすように設定することが好ましく、これによれば、遮蔽板12の移動量(ストローク)が小さくても冷却水wの確実な遮蔽が可能となる。   Moreover, in the lower surface cooling method of the steel plate of the present embodiment, when the inclination angle of the shielding edge 12a1 with respect to the conveying direction is φ [rad], the inclination angle φ is the injection plane N of the cooling water w injected from the nozzle 11. It is preferable to set so as to satisfy 0 <φ <arctan (2 tan θ) in relation to the inclination angle θ [rad] of the cooling water. According to this, even if the moving amount (stroke) of the shielding plate 12 is small, the cooling water A reliable shielding of w is possible.

(実施例)
以下、本発明の実施例を説明する。
(Example)
Examples of the present invention will be described below.

図11で示したような熱延鋼板の製造ラインを用い、250mm厚みのスラブから15mm厚みの熱延鋼板を製造した。具体的には厚み250mmのスラブを加熱炉で再加熱した後、一次スケールをデスケーリングによって除去し、このスラブを粗圧延機によって50mm厚みまで粗圧延し、続いて仕上圧延機によって15mm厚みまで仕上圧延することにより熱延鋼板とし、その後この熱延鋼板をランアウトテーブルでの搬送中に冷却し、コイラーで巻き取った。本製造ラインで製造可能な板幅は最小で600mm、最大で2000mmであり、本実施例では、ランアウトテーブルでの搬送中に900℃から550℃まで冷却し、板幅は600mm、1200mm、2000mmとした。   A hot-rolled steel sheet having a thickness of 15 mm was manufactured from a slab having a thickness of 250 mm using a production line for hot-rolled steel sheets as shown in FIG. Specifically, after the slab having a thickness of 250 mm is reheated in a heating furnace, the primary scale is removed by descaling, the slab is roughly rolled to a thickness of 50 mm by a roughing mill, and then finished to a thickness of 15 mm by a finishing mill. The hot-rolled steel sheet was rolled to obtain a hot-rolled steel sheet, and then the hot-rolled steel sheet was cooled during conveyance on the run-out table and wound with a coiler. The plate width that can be produced in this production line is 600 mm at the minimum and 2000 mm at the maximum. In this embodiment, the plate width is cooled from 900 ° C. to 550 ° C. during the conveyance on the run-out table, and the plate width is 600 mm, 1200 mm, and 2000 mm. did.

ランアウトテーブルでは、鋼板上面をヘアピンラミナータイプの上側冷却装置で冷却し、鋼板下面をフラットスプレータイプの下面冷却装置で冷却した。また、上面および下面冷却装置の幅は、最大板幅まで冷却できるように通板幅2000mmの範囲で冷却水を噴射できるようになっている。また、冷却前後の鋼板の温度分布は放射温度計によって測定することができる。   In the run-out table, the upper surface of the steel plate was cooled by a hairpin laminar type upper cooling device, and the lower surface of the steel plate was cooled by a flat spray type lower surface cooling device. Moreover, the width | variety of an upper surface and a lower surface cooling device can inject a cooling water in the range of 2000 mm of plate width so that it can cool to the maximum plate width. Moreover, the temperature distribution of the steel plate before and after cooling can be measured with a radiation thermometer.

下面冷却装置の冷却水噴射条件は、ノズル噴射口から鋼板下面までの距離を150mm、ノズル中心軸からのスプレー拡がり角度(扇角)を70°、ノズルの幅方向ピッチを100mm、ノズル1本当りの流量を30L/min、搬送方向に対する、冷却水の噴射平面の傾斜角θを30°とした。   The cooling water injection conditions of the bottom surface cooling device are: the distance from the nozzle injection port to the steel plate bottom surface is 150 mm, the spray spread angle (fan angle) from the nozzle central axis is 70 °, the nozzle width direction pitch is 100 mm, and per nozzle Was 30 L / min, and the inclination angle θ of the cooling water injection plane with respect to the conveying direction was 30 °.

本発明例1〜6では、図1で示したように、開口部12aを有する遮蔽板12を下面冷却装置10のノズル11の上方に設置するとともに、この遮蔽板12を鋼板幅方向に移動させる駆動装置13をスプレーノズル列の幅方向外側に設置し、鋼板下面の冷却を行った。開口部通過時の冷却水の幅方向長さLは50mm、噴射冷却水wの幅方向厚みdは10mmであった(図5,図6参照)。なお、板幅2000mmの場合は、板幅と下面冷却水噴射幅(スプレーノズル列の幅)が同じなので、下面冷却水が上方に噴き上がらない上、鋼板の幅方向端面に下面冷却水が直接衝突することもなく、鋼板の幅方向端部の過冷却は発生しなかった。   In the inventive examples 1 to 6, as shown in FIG. 1, the shielding plate 12 having the opening 12a is installed above the nozzle 11 of the lower surface cooling device 10, and the shielding plate 12 is moved in the steel plate width direction. The driving device 13 was installed on the outer side in the width direction of the spray nozzle row, and the lower surface of the steel plate was cooled. The width L in the width direction of the cooling water when passing through the opening was 50 mm, and the thickness d in the width direction of the jet cooling water w was 10 mm (see FIGS. 5 and 6). In the case of a plate width of 2000 mm, since the plate width and the lower surface cooling water injection width (spray nozzle row width) are the same, the lower surface cooling water does not spray upward, and the lower surface cooling water is directly applied to the end surface in the width direction of the steel plate. There was no collision, and no supercooling occurred at the end in the width direction of the steel sheet.

所定の材質を得るためには鋼板の幅方向中央部と幅方向端部の温度偏差ΔTを40℃以内とする必要があり、製造条件のばらつきを考慮すると、30℃以内とすることが好ましく、20℃以内とすればさらに良い。40℃<ΔTでは材質不良が生じるため不可(記号「×」で示す。)とし、30℃<ΔT≦40℃では材質と温度均一性は基準を満足するがややばらつきがあるため可(記号「△」で示す。)とし、20℃<ΔT≦30℃は材質と温度均一性が共に良好であるため良(記号「○」で示す。)とし、ΔT≦20℃は材質と温度均一性が極めて良好であるため優良(記号「◎」で示す。)と評価した。遮蔽板12の遮蔽縁部12a1の、搬送方向に対する傾斜角φを含む条件を評価結果とともに表1に示す。   In order to obtain a predetermined material, it is necessary to set the temperature deviation ΔT between the width direction center portion and the width direction end portion of the steel sheet to be within 40 ° C., and considering variation in manufacturing conditions, it is preferable to be within 30 ° C., It is even better if it is within 20 ° C. Material failure occurs when 40 ° C <ΔT, so it is not possible (indicated by the symbol “x”). At 30 ° C <ΔT ≦ 40 ° C, the material and temperature uniformity satisfy the standard, but are acceptable because there is some variation (the symbol “ 20 ° C. <ΔT ≦ 30 ° C. is good because the material and temperature uniformity are both good (indicated by the symbol “◯”), and ΔT ≦ 20 ° C. is material and temperature uniformity. Since it was very good, it was evaluated as excellent (indicated by symbol “「 ”). Table 1 shows the conditions including the inclination angle φ of the shielding edge 12a1 of the shielding plate 12 with respect to the conveyance direction, together with the evaluation results.

本発明例1〜6はいずれも、0<φ<arctan(2tanθ)を満たしており、いずれの板幅においてもΔTは30℃以内となっており、材質ばらつきの少ない高品質の鋼板を製造することができた。特に発明例2〜4は5÷180×π≦φ≦arctan(2tanθ)−5÷180×πを満たしており、温度偏差はより小さくなった。さらに、発明例5はφ=θであるため、ノズル個々での冷却水遮蔽制御が可能となって、広範囲の板幅に対して鋼板幅方向を均一に冷却でき、材質ばらつきの少ない高品質の鋼板の製造が可能となった。発明例6では開口部縁部分の鋼板幅方向中央部側に、冷却水が下方に落下するように垂直方向に垂れ鍔12bを設置したことで、鋼板幅方向をさらに均一に冷却することができた。   Each of Invention Examples 1 to 6 satisfies 0 <φ <arctan (2 tan θ), and ΔT is within 30 ° C. in any plate width, and manufactures a high-quality steel plate with little material variation. I was able to. In particular, Invention Examples 2 to 4 satisfied 5 ÷ 180 × π ≦ φ ≦ arctan (2 tan θ) −5 ÷ 180 × π, and the temperature deviation became smaller. Furthermore, since the invention example 5 is (phi) = (theta), the cooling water shielding control in each nozzle is attained, the steel plate width direction can be cooled uniformly with respect to a wide plate width, and high quality with little material variation Steel sheets can be manufactured. In Invention Example 6, the drooping gutter 12b is installed in the vertical direction so that the cooling water falls downward on the central side of the opening edge portion in the steel plate width direction, so that the steel plate width direction can be cooled more uniformly. It was.

比較例1は遮蔽板を有さないこと以外は、本発明例1〜6と同じ条件で熱延鋼板を製造したものであり、板幅600mmと1200mmの熱延鋼板において、鋼板の幅方向端外側から噴き上がって落下した冷却水や鋼板の幅方向端面への下面冷却水の直接衝突の影響で鋼板の幅方向端部が過冷却となり、所定の材質が得られなかった。   Comparative Example 1 is a hot-rolled steel sheet manufactured under the same conditions as in Invention Examples 1 to 6 except that it does not have a shielding plate. In a hot-rolled steel sheet with a plate width of 600 mm and 1200 mm, the end in the width direction of the steel sheet The edge of the steel sheet in the width direction was overcooled due to the direct impact of the cooling water sprayed and dropped from the outside and the lower surface cooling water on the width direction end face of the steel sheet, and a predetermined material could not be obtained.

比較例2〜4では、0<φ<arctan(2tanθ)を満たしておらず、1水準ずらすために必要なストローク量が大きいため、ノズル個々での遮蔽制御が難しく、板幅によっては鋼板幅方向の端外側だけでなく内側のノズルも半分遮蔽された状態となって、半分遮蔽された噴射冷却水が鋼板下面に衝突し、鋼板幅方向端部の冷却むらが発生した。比較例2は、ΔTは40℃以内ではあるものの、0<φ<arctan(2tanθ)を満たす場合と比較して、冷却均一性が若干劣った。比較例3と比較例4は、1水準ずらすためのストロークがノズルピッチに対して大きすぎるため、各板幅に応じた遮蔽パターンを作れず、ΔTが大きくなった。   In Comparative Examples 2 to 4, 0 <φ <arctan (2 tan θ) is not satisfied, and the stroke amount necessary for shifting by one level is large. Therefore, it is difficult to control the shielding of each nozzle. As a result, not only the outer side of the nozzle but also the inner nozzle was half-shielded, and the half-shielded jet cooling water collided with the lower surface of the steel plate, resulting in uneven cooling at the end in the steel plate width direction. In Comparative Example 2, although ΔT was within 40 ° C., the cooling uniformity was slightly inferior compared with the case where 0 <φ <arctan (2 tan θ) was satisfied. In Comparative Example 3 and Comparative Example 4, the stroke for shifting one level was too large with respect to the nozzle pitch, so that a shielding pattern corresponding to each plate width could not be made, and ΔT became large.

以上、本発明を図面に基づき説明したが、本発明は上述の実施形態に限定されず、種々の変更が可能である。例えば、上述の実施形態では、ランアウトテーブルでの搬送中の熱延鋼板の下面の冷却について説明したが、本発明はこれに限らず、厚鋼板の制御冷却にも適用することができ、また、厚鋼板や熱延鋼板の圧延時の冷却にも適用することができるものである。   As mentioned above, although this invention was demonstrated based on drawing, this invention is not limited to the above-mentioned embodiment, A various change is possible. For example, in the above-described embodiment, the cooling of the lower surface of the hot-rolled steel sheet during conveyance at the run-out table has been described, but the present invention is not limited to this, and can be applied to the controlled cooling of the thick steel sheet, The present invention can also be applied to cooling when rolling thick steel plates and hot-rolled steel plates.

本発明によれば、鋼板の幅方向端部の過冷却防止を実現し、材質ばらつきの少ない高品質の鋼板を確保できる技術を提供することが可能となった。   ADVANTAGE OF THE INVENTION According to this invention, it became possible to provide the technique which implement | achieves the supercooling prevention of the width direction edge part of a steel plate, and can ensure a high quality steel plate with few material dispersion | variation.

10 鋼板の下面冷却装置
11 スプレーノズル
12 遮蔽板
12a 開口部
12a1 遮蔽縁部
12a2 対向縁部
12b 垂れ鍔
13 駆動装置
14 下面冷却ヘッダー
N 噴射平面
Nf 冷却水の噴射範囲の前縁
Nb 冷却水の噴射範囲の後縁
S 鋼板
w 冷却水
θ 搬送方向に対する噴射平面の傾斜角
φ 搬送方向に対する遮蔽縁部の傾斜角
DESCRIPTION OF SYMBOLS 10 Steel plate lower surface cooling device 11 Spray nozzle 12 Shielding plate 12a Opening portion 12a1 Shielding edge portion 12a2 Opposing edge portion 12b Dripping rod 13 Drive device 14 Lower surface cooling header N Injection plane Nf Front edge of cooling water injection range Nb Injection of cooling water Range trailing edge S Steel plate w Cooling water θ Inclination angle of spray plane relative to transport direction φ Inclination angle of shielding edge relative to transport direction

Claims (8)

搬送中の鋼板の下面を冷却する鋼板の下面冷却方法であって、
鋼板幅方向に整列され、その各々が冷却水を扇状に噴射するとともに扇状の噴射範囲の前縁および後縁を含む噴射平面が搬送方向に対して傾けられた複数のノズルと、
前記ノズルおよび前記鋼板の相互間で鋼板幅方向に移動可能に設けられ、その移動量に応じて前記ノズルから噴射された冷却水を通過させまたは遮蔽する複数の開口部を有する遮蔽板であって、該開口部を区画する開口縁のうち前記遮蔽板の移動量に応じて冷却水を遮蔽する遮蔽縁部が搬送方向に対し、前記噴射平面の傾斜側と同一側に傾斜した遮蔽板と、を用い、
前記遮蔽板を鋼板幅に応じて鋼板幅方向中心に対し近接離間させることにより、鋼板幅方向の端側のノズルからの冷却水の一部または全部を遮蔽し、
搬送方向に対する前記遮蔽縁部の傾斜角をφ[rad]とし、搬送方向に対する前記噴射平面の傾斜角をθ[rad]としたとき、前記遮蔽縁部の傾斜角φを、0<φ<arctan(2tanθ)を満たすよう設定することを特徴とする鋼板の下面冷却方法。
A method of cooling the lower surface of a steel plate that cools the lower surface of the steel plate being conveyed,
A plurality of nozzles that are aligned in the width direction of the steel sheet, each of which sprays cooling water in a fan shape, and the spray plane including the front and rear edges of the fan-shaped spray range is inclined with respect to the transport direction;
A shielding plate having a plurality of openings that are provided so as to be movable in the width direction of the steel plate between the nozzle and the steel plate, and allow or pass the cooling water sprayed from the nozzle according to the amount of movement. A shielding plate that shields cooling water according to the amount of movement of the shielding plate among the opening edges that define the opening, and is inclined to the same side as the inclined side of the ejection plane with respect to the transport direction; Use
By shielding and separating the shielding plate with respect to the steel plate width direction center according to the steel plate width, a part or all of the cooling water from the nozzle on the end side in the steel plate width direction is shielded ,
When the inclination angle of the shielding edge with respect to the conveying direction is φ [rad] and the inclination angle of the ejection plane with respect to the conveying direction is θ [rad], the inclination angle φ of the shielding edge is 0 <φ <arctan A method of cooling the lower surface of the steel sheet, wherein the setting is made to satisfy (2 tan θ) .
前記開口部の幅方向寸法を2種類以上設ける、請求項1に記載の鋼板の下面冷却方法。 The method for cooling the lower surface of a steel sheet according to claim 1, wherein two or more types in the width direction of the opening are provided. 搬送中の鋼板の下面を冷却する鋼板の下面冷却装置であって、
鋼板幅方向に整列され、その各々が冷却水を扇状に噴射するとともに扇状の噴射範囲の前縁および後縁を含む噴射平面が搬送方向に対して傾けられた複数のノズルと、
前記ノズルおよび前記鋼板の相互間で鋼板幅方向に移動可能に設けられ、その移動量に応じて前記ノズルから噴射された冷却水を通過させまたは遮蔽する複数の開口部を有する遮蔽板と、
前記遮蔽板を鋼板幅方向に移動させる駆動機構と、を備え、
前記開口部を区画する開口縁のうち前記遮蔽板の移動量に応じて冷却水を遮蔽する遮蔽縁部は搬送方向に対し、前記噴射平面の傾斜側と同一側に傾斜しており、搬送方向に対する前記遮蔽縁部の傾斜角をφ[rad]とし、搬送方向に対する前記噴射平面の傾斜角をθ[rad]としたとき、前記遮蔽縁部の傾斜角φは、0<φ<arctan(2tanθ)を満たすよう設定されていることを特徴とする鋼板の下面冷却装置。
A steel sheet lower surface cooling device for cooling the lower surface of the steel sheet being conveyed,
A plurality of nozzles that are aligned in the width direction of the steel sheet, each of which sprays cooling water in a fan shape, and the spray plane including the front and rear edges of the fan-shaped spray range is inclined with respect to the transport direction;
A shielding plate having a plurality of openings that are provided so as to be movable in the steel plate width direction between the nozzle and the steel plate, and allow or pass cooling water sprayed from the nozzle according to the amount of movement;
A drive mechanism for moving the shielding plate in the width direction of the steel plate,
Among the opening edges that define the opening, the shielding edge that shields the cooling water according to the amount of movement of the shielding plate is inclined to the same side as the inclined side of the ejection plane with respect to the transport direction, and the transport direction The angle of inclination of the shielding edge is φ [rad], and the angle of inclination of the ejection plane with respect to the transport direction is θ [rad]. The inclination angle φ of the shielding edge is 0 <φ <arctan (2 tan θ ) Is set so as to satisfy the above) .
前記開口部の幅方向寸法が2種類以上設けられている、請求項に記載の鋼板の下面冷却装置。 The lower surface cooling apparatus of the steel plate according to claim 3 , wherein two or more types in the width direction of the opening are provided. 前記駆動機構は、その駆動ストロークを鋼板幅方向に整列されたノズルのノズルピッチ未満とされている、請求項3または4に記載の鋼板の下面冷却装置。 The steel plate lower surface cooling device according to claim 3 or 4 , wherein the drive mechanism has a drive stroke less than a nozzle pitch of nozzles aligned in the steel plate width direction. 前記開口部を区画する開口縁のうち、前記遮蔽縁部と鋼板幅方向で対向する縁部に、前記遮蔽板により遮蔽された水を落下させる垂れ鍔を有する、請求項のいずれか一項に記載の鋼板の下面冷却装置。 Of opening edges defining the said opening, the opposing edges at the shielding edge and the steel plate width direction, having a sagging flange dropping the water that has been shielded by the shielding plate, any one of claims 3-5 The lower surface cooling apparatus of the steel plate as described in one item | term. 前記駆動機構は、その駆動ストローク内で前記遮蔽板の鋼板幅方向位置を3段階以上に変更可能とされている、請求項のいずれか一項に記載の鋼板の下面冷却装置。 The steel plate lower surface cooling device according to any one of claims 3 to 6 , wherein the drive mechanism is capable of changing the steel plate width direction position of the shielding plate in three or more stages within the drive stroke. 鋼板幅方向に整列されたノズルからなるノズル列が搬送方向に2列以上設置されており、前記開口部のピッチと開口部の幅方向寸法とで決まる遮蔽板の遮蔽パターンが搬送方向で2種類以上設けられていることを特徴とする、請求項のいずれか一項に記載の鋼板の下面冷却装置。 Two or more nozzle rows composed of nozzles aligned in the width direction of the steel plate are installed in the transport direction, and there are two types of shielding patterns on the shield plate determined by the pitch of the openings and the width direction dimensions of the openings in the transport direction. The lower surface cooling apparatus for a steel sheet according to any one of claims 3 to 7 , wherein the apparatus is provided as described above.
JP2016069918A 2016-03-31 2016-03-31 Steel plate bottom surface cooling method and cooling device Active JP6439943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069918A JP6439943B2 (en) 2016-03-31 2016-03-31 Steel plate bottom surface cooling method and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069918A JP6439943B2 (en) 2016-03-31 2016-03-31 Steel plate bottom surface cooling method and cooling device

Publications (2)

Publication Number Publication Date
JP2017177186A JP2017177186A (en) 2017-10-05
JP6439943B2 true JP6439943B2 (en) 2018-12-19

Family

ID=60003137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069918A Active JP6439943B2 (en) 2016-03-31 2016-03-31 Steel plate bottom surface cooling method and cooling device

Country Status (1)

Country Link
JP (1) JP6439943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558344B2 (en) * 2016-11-08 2019-08-14 Jfeスチール株式会社 Steel plate lower surface cooling device and lower surface cooling method
JP7406093B2 (en) * 2020-03-05 2023-12-27 日本製鉄株式会社 Cooling device and method for hot-rolled steel sheets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919705B2 (en) * 1993-06-14 1999-07-19 新日本製鐵株式会社 Spray cooling equipment
JP4337157B2 (en) * 1998-12-22 2009-09-30 住友金属工業株式会社 Steel plate cooling method and apparatus
JP4678112B2 (en) * 2001-09-21 2011-04-27 Jfeスチール株式会社 Steel plate cooling method and apparatus
DE102009060256A1 (en) * 2009-12-23 2011-06-30 SMS Siemag AG, 40237 Method for hot rolling a slab and hot rolling mill
JP5597989B2 (en) * 2009-12-25 2014-10-01 Jfeスチール株式会社 Bottom surface cooling device for hot-rolled steel strip
JP5640648B2 (en) * 2010-10-26 2014-12-17 Jfeスチール株式会社 Method and apparatus for cooling bottom surface of hot steel sheet

Also Published As

Publication number Publication date
JP2017177186A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
EP1935522B1 (en) Reversing rolling mill with cooling facility and corresponding method of cooling a steel plate or sheet
JP4238260B2 (en) Steel plate cooling method
JP4449991B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP4903913B2 (en) Method and apparatus for cooling hot-rolled steel sheet
KR20080108333A (en) Cooler and cooling method of hot rolled steel band
JP6439943B2 (en) Steel plate bottom surface cooling method and cooling device
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
KR100580357B1 (en) Method and device for cooling steel sheet
JP5640648B2 (en) Method and apparatus for cooling bottom surface of hot steel sheet
JP5597989B2 (en) Bottom surface cooling device for hot-rolled steel strip
JP6816772B2 (en) Cooling device and cooling method for hot-rolled steel sheet
JP4398898B2 (en) Thick steel plate cooling device and method
JP2898873B2 (en) Lower surface cooling device for high temperature metal plate
JP5663848B2 (en) Hot-rolled steel sheet cooling device and operation control method thereof
JP4720198B2 (en) Thick steel plate cooling device and cooling method
JP6558344B2 (en) Steel plate lower surface cooling device and lower surface cooling method
JP6460071B2 (en) Steel plate top surface cooling device and top surface cooling method
KR20190009368A (en) Cooling method and cooling device for hot-rolled steel sheet
JP5741165B2 (en) Thermal steel sheet bottom surface cooling device
JP2004306064A (en) Cooling system of high temperature steel sheet
JP4061286B2 (en) Metal plate cooling device and cooling method
JP5597916B2 (en) Steel cooling equipment
JP4478083B2 (en) Steel plate top and bottom uniform cooling system
JPH11285723A (en) Method for uniformly cooling thin steel plate
JP4377832B2 (en) Steel plate top and bottom uniform cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181106

R150 Certificate of patent or registration of utility model

Ref document number: 6439943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250