JP6439884B1 - Soft magnetic alloys and magnetic parts - Google Patents

Soft magnetic alloys and magnetic parts Download PDF

Info

Publication number
JP6439884B1
JP6439884B1 JP2018002049A JP2018002049A JP6439884B1 JP 6439884 B1 JP6439884 B1 JP 6439884B1 JP 2018002049 A JP2018002049 A JP 2018002049A JP 2018002049 A JP2018002049 A JP 2018002049A JP 6439884 B1 JP6439884 B1 JP 6439884B1
Authority
JP
Japan
Prior art keywords
soft magnetic
heat treatment
magnetic alloy
nanocrystal
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018002049A
Other languages
Japanese (ja)
Other versions
JP2019121738A (en
JP6439884B6 (en
Inventor
和宏 吉留
和宏 吉留
裕之 松元
裕之 松元
賢治 堀野
賢治 堀野
暁斗 長谷川
暁斗 長谷川
一 天野
一 天野
健輔 荒
健輔 荒
明洋 原田
明洋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018002049A priority Critical patent/JP6439884B6/en
Priority to TW107145174A priority patent/TWI707957B/en
Priority to US16/221,977 priority patent/US10991495B2/en
Priority to CN201811548568.1A priority patent/CN110021469B/en
Priority to EP18213518.6A priority patent/EP3511957A3/en
Priority to KR1020180164178A priority patent/KR102195302B1/en
Application granted granted Critical
Publication of JP6439884B1 publication Critical patent/JP6439884B1/en
Publication of JP6439884B6 publication Critical patent/JP6439884B6/en
Publication of JP2019121738A publication Critical patent/JP2019121738A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/38Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites amorphous, e.g. amorphous oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

【課題】保磁力が低く、飽和磁束密度が高い軟磁性合金を提供する。【解決手段】ナノ結晶部および非晶質部を含む軟磁性合金である。ナノ結晶部は、主成分としてαFe(−Si)を、副成分としてB,P,C,Ti,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Zn,Cuから選択される1種以上の元素を含む。【選択図】なしA soft magnetic alloy having a low coercive force and a high saturation magnetic flux density is provided. A soft magnetic alloy including a nanocrystalline part and an amorphous part. The nanocrystal part is composed of αFe (—Si) as a main component and B, P, C, Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, Zn, and Cu as subcomponents. Contains one or more selected elements. [Selection figure] None

Description

本発明は、軟磁性圧粉磁心の製造方法および軟磁性圧粉磁心に関する。   The present invention relates to a method for producing a soft magnetic dust core and a soft magnetic dust core.

近年、電子・情報・通信機器等において低消費電力化および高効率化が求められている。さらに、低炭素化社会へ向け、上記の要求が一層強くなっている。そのため、電子・情報・通信機器等の電源回路にも、エネルギー損失の低減や電源効率の向上が求められている。そして、電源回路に使用させる磁器素子の磁心には透磁率の向上およびコアロス(磁心損失)の低減が求められている。コアロスを低減すれば、電力エネルギーのロスが小さくなり、高効率化および省エネルギー化が図られる。   In recent years, low power consumption and high efficiency have been demanded in electronic / information / communication equipment and the like. Furthermore, the above demands are becoming stronger toward a low-carbon society. For this reason, reduction of energy loss and improvement of power supply efficiency are also required for power supply circuits of electronic, information, and communication devices. And the magnetic core of the porcelain element used for the power supply circuit is required to improve the permeability and reduce the core loss (magnetic core loss). If the core loss is reduced, the loss of power energy is reduced, and high efficiency and energy saving can be achieved.

特許文献1には、αFe(−Si)結晶相を部分的に析出させたナノ結晶軟磁性合金粉末を用いる圧粉磁心の発明が記載されている。しかし、現在ではより飽和磁束密度が高くコアロスが小さい磁心が求められている。   Patent Document 1 describes an invention of a dust core using a nanocrystalline soft magnetic alloy powder in which an αFe (-Si) crystal phase is partially precipitated. However, a magnetic core with a higher saturation magnetic flux density and a smaller core loss is now required.

特開2015−167183号公報Japanese Patent Laying-Open No. 2015-167183

磁心のコアロスを低減する方法として、磁心を構成する磁性体の保磁力を低減することが考えられる。   As a method for reducing the core loss of the magnetic core, it is conceivable to reduce the coercive force of the magnetic body constituting the magnetic core.

本発明の目的は、保磁力が低く、飽和磁束密度が高い軟磁性合金を提供することである。   An object of the present invention is to provide a soft magnetic alloy having a low coercive force and a high saturation magnetic flux density.

上記の目的を達成するために、本発明に係る軟磁性合金は、
ナノ結晶部および非晶質部を含む軟磁性合金であって、
前記ナノ結晶部は主成分としてαFe(−Si)を含み、副成分としてB,P,C,Ti,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Zn,Cuから選択される1種以上の元素を含むことを特徴とする。
In order to achieve the above object, the soft magnetic alloy according to the present invention comprises:
A soft magnetic alloy comprising a nanocrystalline part and an amorphous part,
The nanocrystal part contains αFe (-Si) as a main component, and B, P, C, Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, Zn, Cu as subcomponents. It contains one or more elements selected from:

本発明に係る軟磁性合金は、上記の特徴を有することにより、保磁力が低くなり、飽和磁束密度が高くなる。   Since the soft magnetic alloy according to the present invention has the above-described characteristics, the coercive force is reduced and the saturation magnetic flux density is increased.

本発明に係る軟磁性合金は、結晶化度が15%以上70%以下であってもよい。   The soft magnetic alloy according to the present invention may have a crystallinity of 15% to 70%.

本発明に係る軟磁性合金は、前記ナノ結晶部における副成分の合計含有割合をα(at%)として、0.5≦α≦20であってもよい。   The soft magnetic alloy according to the present invention may be 0.5 ≦ α ≦ 20, where α (at%) is a total content of subcomponents in the nanocrystal part.

本発明に係る軟磁性合金は、前記非晶質部に含まれる前記ナノ結晶部の副成分の合計含有割合をβ(at%)として、10≦β≦60であってもよい。   In the soft magnetic alloy according to the present invention, 10 ≦ β ≦ 60 may be set, where β (at%) is the total content of subcomponents of the nanocrystal part contained in the amorphous part.

本発明に係る軟磁性合金は、前記ナノ結晶部における副成分の合計含有割合をα(at%)、前記非晶質部に含まれる前記ナノ結晶部の副成分の合計含有割合をβ(at%)として、0.05<(α/β)<0.20であってもよい。   In the soft magnetic alloy according to the present invention, the total content of subcomponents in the nanocrystal part is α (at%), and the total content of subcomponents of the nanocrystal part contained in the amorphous part is β (at %) May be 0.05 <(α / β) <0.20.

本発明に係る軟磁性合金は、組成式FeCuM1SiM2で表され、
M1はTi,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Znから選択される1種以上であり、
M2はB,P,Cから選択される1種以上であり、
a+b+c+d+e=100
0.0≦b≦3.0
0.0≦c≦15.0
0.0≦d≦17.5
0.0≦e≦20.0
であってもよい。
The soft magnetic alloy according to the present invention is represented by a composition formula Fe a Cu b M1 c Si d M2 e ,
M1 is at least one selected from Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, Zn,
M2 is at least one selected from B, P, and C,
a + b + c + d + e = 100
0.0 ≦ b ≦ 3.0
0.0 ≦ c ≦ 15.0
0.0 ≦ d ≦ 17.5
0.0 ≦ e ≦ 20.0
It may be.

本発明に係る軟磁性合金は、薄帯形状であってもよい。   The soft magnetic alloy according to the present invention may have a ribbon shape.

本発明に係る軟磁性合金は、粉末形状であってもよい。   The soft magnetic alloy according to the present invention may be in powder form.

本発明に係る磁性部品は、上記のいずれかに記載の軟磁性合金からなる。   The magnetic component according to the present invention is made of any of the soft magnetic alloys described above.

図1は、本発明の軟磁性合金におけるFeの分布を3DAPで観察した結果である。FIG. 1 shows the result of observation of the Fe distribution in the soft magnetic alloy of the present invention by 3DAP. 図2は、本発明の軟磁性合金を3DAPで観察し、Feの含有量で2値化した結果を表す模式図である。FIG. 2 is a schematic diagram showing the result of observing the soft magnetic alloy of the present invention with 3DAP and binarizing with the Fe content. 図3は、単ロール法の模式図である。FIG. 3 is a schematic diagram of the single roll method.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本実施形態に係る軟磁性合金は、主成分としてαFe(−Si)を含む。主成分としてαFe(−Si)を含むとは、具体的には、軟磁性合金全体に占めるαFe(−Si)の含有量が合計80原子%以上であることを指す。さらに、副成分として、B,P,C,Ti,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Zn,Cuから選択される1種以上の元素を含む。   The soft magnetic alloy according to the present embodiment includes αFe (—Si) as a main component. The phrase “containing αFe (—Si) as a main component” specifically means that the content of αFe (—Si) in the entire soft magnetic alloy is 80 at% or more in total. Furthermore, as a subcomponent, one or more elements selected from B, P, C, Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, Zn, and Cu are included.

以下、本実施形態に係る軟磁性合金の微細構造について図面を参考にして説明する。   Hereinafter, the microstructure of the soft magnetic alloy according to the present embodiment will be described with reference to the drawings.

本実施形態に係る軟磁性合金についてFeの分布を3次元アトムプローブ(以下、3DAPと表記する場合がある)を用いて厚み5nmで観察すると図1に示すようにFeの含有量が多い部分と少ない部分とが存在していることが観察できる。なお、図1は後述する実施例、試料No.54に対して3DAPを用いて観察した結果である。   When the Fe distribution of the soft magnetic alloy according to the present embodiment is observed at a thickness of 5 nm using a three-dimensional atom probe (hereinafter sometimes referred to as 3DAP), a portion having a high Fe content as shown in FIG. It can be observed that there are few parts. 1 shows Examples and Sample Nos. Described later. 54 is a result of observation using 3DAP.

ここで、図1とは別の測定箇所についてFeの含有量が多い部分と少ない部分とで2値化した結果の概略図が図2である。そして、Feの含有量が多い部分をナノ結晶部11、Feの含有量が少ない部分を非晶質部13とする。さらに具体的には、軟磁性合金全体の平均組成に対し、Feの含有量が平均組成より多い部分をナノ結晶部11、Feの含有量が平均組成未満かつFeが存在する部分を非晶質部13とする。ナノ結晶部11のFeおよびSiの少なくとも一部はαFe(−Si)ナノ結晶の態様で存在していると考えられる。本実施形態では、ナノ結晶とは粒径が概ね5nm以上50nm以下の結晶のことを指す。   Here, FIG. 2 is a schematic diagram of the result of binarization of a portion having a large Fe content and a portion having a small Fe content at a measurement location different from FIG. A portion having a high Fe content is referred to as a nanocrystal portion 11, and a portion having a low Fe content is referred to as an amorphous portion 13. More specifically, with respect to the average composition of the entire soft magnetic alloy, the portion where the Fe content is larger than the average composition is the nanocrystal portion 11, the portion where the Fe content is less than the average composition and Fe is present is amorphous. This is part 13. It is considered that at least a part of Fe and Si in the nanocrystal part 11 exists in the form of αFe (-Si) nanocrystals. In the present embodiment, the nanocrystal refers to a crystal having a particle size of approximately 5 nm to 50 nm.

本実施形態に係る軟磁性合金は、ナノ結晶部11において、FeおよびSi以外に副成分としてB,P,C,Ti,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Zn,Cuから選択される1種以上を含む。ナノ結晶部11に副成分が含まれることにより、耐酸化性が向上する。さらに、飽和磁束密度を維持したまま、保磁力が低下する。すなわち、軟磁気特性が向上する。特に高周波領域において好適な軟磁気特性が得られる。   The soft magnetic alloy according to the present embodiment includes B, P, C, Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, as subcomponents other than Fe and Si in the nanocrystal part 11. 1 type or more selected from Mn, Zn, Cu is included. By including the subcomponent in the nanocrystal part 11, the oxidation resistance is improved. Furthermore, the coercive force decreases while maintaining the saturation magnetic flux density. That is, soft magnetic characteristics are improved. Particularly suitable soft magnetic characteristics can be obtained in a high frequency region.

軟磁性合金全体の組成はICP測定および蛍光X線測定により確認することが可能である。また、ナノ結晶部の組成および非晶質部の組成は3DAPにより測定することが可能である。ここで、Cuは軟磁性合金に添加されているにも関わらず、ナノ結晶部、非晶質部から検出されるCu量が少ないもしくは検出されない場合がある。これはナノ結晶部及び非晶質部とは関係なくCuの結晶子が独立で存在するためである。なお、図2ではCuの結晶子を省略している。   The composition of the entire soft magnetic alloy can be confirmed by ICP measurement and fluorescent X-ray measurement. The composition of the nanocrystal part and the composition of the amorphous part can be measured by 3DAP. Here, although Cu is added to the soft magnetic alloy, the amount of Cu detected from the nanocrystal part and the amorphous part may be small or may not be detected. This is because Cu crystallites exist independently regardless of the nanocrystal part and the amorphous part. In FIG. 2, Cu crystallites are omitted.

本実施形態に係る軟磁性合金のナノ結晶部11における副成分の合計含有割合をα(at%)として、0.5≦α≦20であることが好ましく、1≦α≦10であることがより好ましい。また、非晶質部13に含まれるナノ結晶部11の副成分の合計含有割合をβ(at%)として、10≦β≦60であることが好ましく、20≦β≦50であることがより好ましい。さらに、0.00<(α/β)<0.80であることが好ましく、0.01≦(α/β)≦0.75であることがより好ましい
The total content of subcomponents in the nanocrystal part 11 of the soft magnetic alloy according to the present embodiment is preferably α ≦ at ≦, preferably 0.5 ≦ α ≦ 20 and 1 ≦ α ≦ 10. More preferred. Moreover, it is preferable that 10 ≦ β ≦ 60, and more preferably 20 ≦ β ≦ 50, where β (at%) is the total content of the subcomponents of the nanocrystal part 11 included in the amorphous part 13. preferable. Further, 0.00 <(α / β) < is preferably 0.80, 0.01 ≦ (α / β ) ≦ 0.75 is a more preferred arbitrariness.

ナノ結晶部11における副成分の合計含有割合αを0.5≦α≦20に制御することで、保磁力を低下させ、軟磁気特性を向上させることができる。さらに非晶質部13に含まれるナノ結晶部11の副成分の合計含有割合βを10≦β≦60に制御することにより、飽和磁束密度の低下を防ぐことができる。つまり軟磁気特性がさらに良好になる。さらに、0.00<(α/β)<0.80であることによって耐酸化性の効果が加わり、軟磁気特性を向上させかつ耐酸化性の合金にすることが可能となる。   By controlling the total content α of the subcomponents in the nanocrystal part 11 to 0.5 ≦ α ≦ 20, the coercive force can be reduced and the soft magnetic characteristics can be improved. Further, by controlling the total content ratio β of the subcomponents of the nanocrystal part 11 included in the amorphous part 13 to 10 ≦ β ≦ 60, it is possible to prevent the saturation magnetic flux density from being lowered. That is, the soft magnetic characteristics are further improved. Further, when 0.00 <(α / β) <0.80, an effect of oxidation resistance is added, so that soft magnetic characteristics can be improved and an oxidation resistance alloy can be obtained.

本実施形態に係る軟磁性合金の結晶化度が15%以上70%以下であることが好ましい。軟磁性合金の結晶化度は、粉末X線回折によって測定することができる。具体的には、軟磁性合金を粉末化した後にX線回折装置(XRD)によってX線回折パターンを得る。そして、バックグラウンドと装置に起因する回折の非対称性を補正する。その後、αFe(−Si)結晶の回折パターンと非晶質に特有の回折パターンを分離し、それぞれの回折強度を求める。そして、全回折強度に対するαFe(−Si)結晶の回折強度の比を計算することにより得られる。   The degree of crystallinity of the soft magnetic alloy according to this embodiment is preferably 15% or more and 70% or less. The crystallinity of the soft magnetic alloy can be measured by powder X-ray diffraction. Specifically, an X-ray diffraction pattern is obtained by an X-ray diffractometer (XRD) after powdering a soft magnetic alloy. Then, the asymmetry of diffraction caused by the background and the apparatus is corrected. Thereafter, the diffraction pattern of the αFe (-Si) crystal and the diffraction pattern peculiar to amorphous are separated, and the respective diffraction intensities are obtained. Then, it is obtained by calculating the ratio of the diffraction intensity of the αFe (-Si) crystal to the total diffraction intensity.

また、本実施形態に係る軟磁性合金において、ナノ結晶の平均粒径については特に制限はないが、5nm以上50nm以下であることが好ましい。なお、ナノ結晶の平均粒径については、XRDを用いた粉末X線回折によって測定することができる。   In the soft magnetic alloy according to the present embodiment, the average grain size of the nanocrystal is not particularly limited, but is preferably 5 nm or more and 50 nm or less. The average particle diameter of the nanocrystal can be measured by powder X-ray diffraction using XRD.

本実施形態に係る軟磁性合金の組成は、主成分としてαFe(−Si)を含み、副成分として上記の元素を含む点以外は任意である。好ましくは、組成式FeCuM1SiM2で表される軟磁性合金であって、M1はTi,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Znから選択される1種以上であり、M2はB,P,Cから選択される1種以上であり、
a+b+c+d+e=100
0.0≦b≦3.0
0.0≦c≦15.0
0.0≦d≦17.5
0.0≦e≦20.0
である。
The composition of the soft magnetic alloy according to the present embodiment is arbitrary except that αFe (—Si) is included as a main component and the above elements are included as subcomponents. Preferably, a soft magnetic alloy represented by a composition formula Fe a Cu b M1 c Si d M2 e , wherein M1 is Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, One or more selected from Zn, M2 is one or more selected from B, P, and C;
a + b + c + d + e = 100
0.0 ≦ b ≦ 3.0
0.0 ≦ c ≦ 15.0
0.0 ≦ d ≦ 17.5
0.0 ≦ e ≦ 20.0
It is.

なお、以下の記載では、軟磁性合金の各元素の含有率について、特に母数の記載が無い場合は、軟磁性合金全体を100原子%とする。   In the following description, regarding the content of each element of the soft magnetic alloy, unless there is a description of the parameter, the entire soft magnetic alloy is 100 atomic%.

Cuの含有量(b)は、3.0原子%以下(0を含む)であることが好ましく、1.0原子%以下(0を含む)であることがより好ましい。すなわち、Cuを含有しなくてもよい。また、Cuの含有量が少ないほど、後述する単ロール法により軟磁性合金からなる薄帯を作製し易くなる傾向にある。一方、Cuの含有量が多いほど、ナノ結晶の平均粒子径を小さくすることが可能となり、保磁力を減少させる効果が大きくなる。保磁力を減少させる観点からはCuの含有量は、0.1原子%以上であることが好ましい。   The Cu content (b) is preferably 3.0 atomic% or less (including 0), and more preferably 1.0 atomic% or less (including 0). That is, it is not necessary to contain Cu. Further, the smaller the Cu content, the easier it is to produce a ribbon made of a soft magnetic alloy by the single roll method described later. On the other hand, the greater the Cu content, the smaller the average particle diameter of the nanocrystals, and the greater the effect of reducing the coercive force. From the viewpoint of reducing the coercive force, the Cu content is preferably 0.1 atomic% or more.

M1はTi,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Znから選択される1種以上である。好ましくは、Nb、Zr、Hfから選択される1種以上を含む。   M1 is at least one selected from Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, and Zn. Preferably, at least one selected from Nb, Zr, and Hf is included.

M1の含有量(c)は、15.0原子%以下(0を含む)であることが好ましく、8原子%以下(0を含む)であることがより好ましい。すなわち、M1を含有しなくてもよい。M1を上記の範囲内で添加することで(非晶質部を安定させナノ結晶部を形成することができる。   The content (c) of M1 is preferably 15.0 atomic percent or less (including 0), and more preferably 8 atomic percent or less (including 0). That is, it is not necessary to contain M1. By adding M1 within the above range (the amorphous part can be stabilized and the nanocrystal part can be formed.

Siの含有量(d)は、好ましくは17.5原子%以下(0を含む)であり、より好ましくは15.5原子%以下(0を含む)である。すなわち、Siを含有しなくてもよい。Siの含有量を上記の範囲内とすることでナノ結晶部の組成を制御することができる。   The Si content (d) is preferably 17.5 atomic% or less (including 0), more preferably 15.5 atomic% or less (including 0). That is, Si does not have to be contained. By making the Si content within the above range, the composition of the nanocrystal part can be controlled.

M2はB,P,Cから選択される1種以上である。好ましくは、2種以上を含む。   M2 is at least one selected from B, P, and C. Preferably, 2 or more types are included.

M2の含有量(e)は、20.0原子%以下(0を含む)であることが好ましく、8.0〜15.0原子%であることがより好ましい。すなわち、M2を含有しなくてもよい。M2を上記の範囲内で添加することで非晶質部の組成を制御とすることができる。   The content (e) of M2 is preferably 20.0 atomic percent or less (including 0), and more preferably 8.0 to 15.0 atomic percent. That is, it is not necessary to contain M2. By adding M2 within the above range, the composition of the amorphous part can be controlled.

なお、Feは、好ましくは、組成式FeCuM1SiM2で表される軟磁性合金の残部である。すなわち、a+b+c+d+e=100である。また本実施形態の軟磁性合金は、前述の通り、ナノ結晶部および非晶質部を含む。ここで、M1,M2およびSiから選択される2種以上が非晶質部を形成するために必要である。したがって、c,dおよびeのうち少なくとも2つは0ではない。 Incidentally, Fe is preferably the remainder of the soft magnetic alloy represented by a composition formula Fe a Cu b M1 c Si d M2 e. That is, a + b + c + d + e = 100. Further, as described above, the soft magnetic alloy of the present embodiment includes a nanocrystal part and an amorphous part. Here, two or more selected from M1, M2 and Si are necessary for forming the amorphous part. Therefore, at least two of c, d and e are not zero.

以下、本実施形態に係る軟磁性合金の製造方法について説明する。   Hereinafter, the manufacturing method of the soft magnetic alloy which concerns on this embodiment is demonstrated.

本実施形態に係る軟磁性合金の製造方法は任意であるが、たとえば単ロール法により軟磁性合金の薄帯を製造する方法が挙げられる。   Although the manufacturing method of the soft magnetic alloy which concerns on this embodiment is arbitrary, the method of manufacturing the ribbon of a soft magnetic alloy by a single roll method is mentioned, for example.

単ロール法では、まず、最終的に得られる軟磁性合金に含まれる各金属元素の純金属等の各種原料を準備し、最終的に得られる軟磁性合金と同組成となるように秤量する。そして、各金属元素の純金属を溶解し、混合して母合金を作製する。なお、前記純金属の溶解方法は任意であるが、例えばチャンバー内で真空引きした後に高周波加熱にて溶解させる方法がある。なお、母合金と最終的に得られる軟磁性合金とは通常、同組成となる。   In the single roll method, first, various raw materials such as pure metals of each metal element contained in the finally obtained soft magnetic alloy are prepared and weighed so as to have the same composition as the finally obtained soft magnetic alloy. And the pure metal of each metal element is melt | dissolved and mixed, and a mother alloy is produced. The pure metal can be dissolved by any method. For example, there is a method in which the pure metal is melted by high-frequency heating after evacuation in a chamber. The master alloy and the finally obtained soft magnetic alloy usually have the same composition.

次に、作製した母合金を加熱して溶融させ、溶融金属(浴湯)を得る。溶融金属の温度には特に制限はないが、例えば1200〜1500℃とすることができる。   Next, the produced mother alloy is heated and melted to obtain a molten metal (bath water). Although there is no restriction | limiting in particular in the temperature of a molten metal, For example, it can be 1200-1500 degreeC.

単ロール法に用いられる装置の模式図を図3に示す。本実施形態に係る単ロール法においては、チャンバー35内部において、ノズル31から溶融金属32を矢印の方向に回転しているロール33へ噴射し供給することでロール33の回転方向へ薄帯34が製造される。なお、本実施形態ではロール33の材質には特に制限はない。例えばCuからなるロールが用いられる。   A schematic diagram of an apparatus used in the single roll method is shown in FIG. In the single roll method according to the present embodiment, the ribbon 34 is formed in the rotation direction of the roll 33 by injecting and supplying the molten metal 32 from the nozzle 31 to the roll 33 rotating in the direction of the arrow inside the chamber 35. Manufactured. In the present embodiment, the material of the roll 33 is not particularly limited. For example, a roll made of Cu is used.

単ロール法においては、主にロール33の回転速度を調整することで得られる薄帯の厚さを調整することができるが、例えばノズル31とロール33との間隔や溶融金属の温度などを調整することでも得られる薄帯の厚さを調整することができる。薄帯の厚さには特に制限はないが、例えば15〜30μmとすることができる。   In the single roll method, the thickness of the ribbon obtained mainly by adjusting the rotation speed of the roll 33 can be adjusted. For example, the distance between the nozzle 31 and the roll 33, the temperature of the molten metal, etc. are adjusted. By doing so, the thickness of the obtained ribbon can be adjusted. Although there is no restriction | limiting in particular in the thickness of a ribbon, For example, it can be set as 15-30 micrometers.

後述する熱処理前の時点では、薄帯は非晶質または粒径の小さい微結晶のみが存在する状態であることが好ましい。そのような薄帯に対して後述する熱処理を施すことにより、本実施形態に係る軟磁性合金が得られる。   At the time before the heat treatment described later, the ribbon is preferably in a state where only amorphous or microcrystals having a small particle size are present. The soft magnetic alloy which concerns on this embodiment is obtained by performing the heat processing mentioned later with respect to such a thin strip.

なお、熱処理前の軟磁性合金の薄帯に粒径の大きな結晶が存在するか否かを確認する方法には特に制限はない。例えば、粒径0.01〜10μm程度の結晶の有無については、通常のX線回折測定により確認することができる。また、上記の非晶質中に結晶が存在するが結晶の体積割合が小さい場合には、通常のX線回折測定では結晶がないと判断されてしまう。この場合の結晶の有無については、例えば、イオンミリングにより薄片化した試料に対して、透過電子顕微鏡を用いて、制限視野回折像、ナノビーム回折像、明視野像または高分解能像を得ることで確認できる。制限視野回折像またはナノビーム回折像を用いる場合、回析パターンにおいて非晶質の場合にはリング状の回折が形成されるのに対し、非晶質ではない場合には結晶構造に起因した回折斑点が形成される。また、明視野像または高分解能像を用いる場合には、倍率1.00×10〜3.00×10倍で目視にて観察することで結晶の有無を確認できる。なお、本明細書では、通常のX線回折測定により結晶が有ることが確認できる場合には「結晶が有る」とし、通常のX線回折測定では結晶が有ることが確認できないが、イオンミリングにより薄片化した試料に対して、透過電子顕微鏡を用いて、制限視野回折像、ナノビーム回折像、明視野像または高分解能像を得ることで結晶が有ることが確認できる場合には、「微結晶が有る」とする。 There is no particular limitation on the method for confirming whether or not crystals having a large grain size are present in the soft magnetic alloy ribbon before the heat treatment. For example, the presence or absence of crystals having a particle size of about 0.01 to 10 μm can be confirmed by ordinary X-ray diffraction measurement. Further, when crystals exist in the amorphous material but the volume ratio of the crystals is small, it is determined that there are no crystals in the normal X-ray diffraction measurement. The presence or absence of crystals in this case is confirmed by obtaining a limited-field diffraction image, nanobeam diffraction image, bright-field image, or high-resolution image using a transmission electron microscope, for example, on a sample sliced by ion milling. it can. When using a limited-field diffraction image or a nanobeam diffraction image, a diffraction pattern is formed when the diffraction pattern is amorphous, whereas when it is not amorphous, diffraction spots caused by the crystal structure are formed. Is formed. When a bright field image or a high resolution image is used, the presence or absence of crystals can be confirmed by visual observation at a magnification of 1.00 × 10 5 to 3.00 × 10 5 times. In this specification, when it can be confirmed that there is a crystal by ordinary X-ray diffraction measurement, it is assumed that “there is a crystal”, and it cannot be confirmed by ordinary X-ray diffraction measurement that there is a crystal, but by ion milling When it is possible to confirm that a crystal is present by obtaining a limited-field diffraction image, a nanobeam diffraction image, a bright-field image, or a high-resolution image using a transmission electron microscope on a thinned sample, Yes. "

ここで、本発明者らは、ロール33の温度およびチャンバー35内部の蒸気圧を適切に制御することで、熱処理前の軟磁性合金の薄帯を非晶質にしやすくなり、熱処理後に好ましいナノ結晶部11および非晶質部13を得られやすくなることを見出した。具体的には、ロール33の温度を50〜70℃、好ましくは70℃とし、露点調整を行ったArガスを用いてチャンバー35内部の蒸気圧を11hPa以下、好ましくは4hPa以下とすることにより、軟磁性合金の薄帯を非晶質にしやすくなることを見出した。   Here, by appropriately controlling the temperature of the roll 33 and the vapor pressure inside the chamber 35, the inventors can easily make the soft magnetic alloy ribbon before the heat treatment amorphous, and preferable nanocrystals after the heat treatment. It has been found that the part 11 and the amorphous part 13 can be easily obtained. Specifically, the temperature of the roll 33 is set to 50 to 70 ° C., preferably 70 ° C., and the vapor pressure inside the chamber 35 is adjusted to 11 hPa or less, preferably 4 hPa or less using Ar gas adjusted for dew point. It has been found that the soft magnetic alloy ribbon can be made amorphous easily.

また、ロール33の温度は50〜70℃とし、さらにチャンバー35内部の蒸気圧を11hPa以下とすることが好ましい。ロール33の温度およびチャンバー35内部の蒸気圧を上記の範囲内に制御することで、溶融金属32が均等に冷却され、得られる軟磁性合金の熱処理前の薄帯を均一な非晶質にしやすくなる。なお、チャンバー内部の蒸気圧の下限は特に存在しない。露点調整したアルゴンを充填して蒸気圧を1hPa以下にしてもよく、真空に近い状態として蒸気圧を1hPa以下にしてもよい。また、蒸気圧が高くなると熱処理前の薄帯を非晶質にしにくくなり、非晶質になっても、後述する熱処理後に上記の好ましい微細構造を得にくくなる。   The temperature of the roll 33 is preferably 50 to 70 ° C., and the vapor pressure inside the chamber 35 is preferably 11 hPa or less. By controlling the temperature of the roll 33 and the vapor pressure inside the chamber 35 within the above range, the molten metal 32 can be cooled uniformly, and the resulting soft magnetic alloy can be easily made into a uniform amorphous ribbon before heat treatment. Become. There is no particular lower limit on the vapor pressure inside the chamber. The vapor pressure may be reduced to 1 hPa or less by filling with dew point-adjusted argon, or the vapor pressure may be reduced to 1 hPa or less in a state close to vacuum. Further, when the vapor pressure increases, it becomes difficult to make the ribbon before the heat treatment amorphous, and even if it becomes amorphous, it becomes difficult to obtain the above-mentioned preferable fine structure after the heat treatment described later.

得られた薄帯34を熱処理することで上記の好ましいナノ結晶部11および非晶質部13を得ることができる。この際に薄帯34が完全な非晶質であると上記の好ましい微細構造を得やすくなる。   The preferable nanocrystal part 11 and amorphous part 13 can be obtained by heat-treating the obtained ribbon 34. At this time, if the ribbon 34 is completely amorphous, the above-described preferable fine structure can be easily obtained.

本実施形態では、熱処理を2段階で行うことで、上記の好ましい微細構造を得やすくなる。1段階目の熱処理(以下、第1熱処理ともいう)はいわゆる歪とりのために行う。これは、軟磁性金属を可能な範囲で均一な非晶質にするためである。   In the present embodiment, the preferable fine structure is easily obtained by performing the heat treatment in two stages. The first stage heat treatment (hereinafter also referred to as first heat treatment) is performed for so-called distortion removal. This is to make the soft magnetic metal as uniform and amorphous as possible.

本実施形態では、2段階目の熱処理(以下、第2熱処理ともいう)を1段階目よりも高い温度で行う。そして、2段階目の熱処理において薄帯の自己発熱を抑制するため、熱伝導率の高い材料のセッターを用いることが重要である。また、セッターの材料は比熱が低いことがより好ましい。従来、セッターの材料としてはアルミナがよく用いられていたが、本実施形態では、熱伝導率がさらに高い材料、例えばカーボンまたはSiCなどを用いることができる。具体的には、熱伝導率が150W/m以上の材料を用いることが好ましい。さらに、比熱が750J/kg以下の材料を用いることが好ましい。さらに、セッターの厚みをできるだけ薄くし、セッターの下に制御用熱電対を置き、ヒータの熱応答を高めることが好ましい。   In the present embodiment, the second stage heat treatment (hereinafter also referred to as second heat treatment) is performed at a higher temperature than the first stage. In order to suppress the self-heating of the ribbon in the second stage heat treatment, it is important to use a setter made of a material having high thermal conductivity. The setter material preferably has a low specific heat. Conventionally, alumina is often used as a material for the setter, but in the present embodiment, a material having higher thermal conductivity, such as carbon or SiC, can be used. Specifically, it is preferable to use a material having a thermal conductivity of 150 W / m or more. Furthermore, it is preferable to use a material having a specific heat of 750 J / kg or less. Furthermore, it is preferable to make the setter as thin as possible and place a control thermocouple under the setter to increase the thermal response of the heater.

熱処理を上記の2段階で行うことの利点について述べる。1段階目の熱処理の役割について説明する。本軟磁性合金は高温から急冷し凝固することにより非晶質を形成する。その際、高温から急冷されるため熱収縮による応力が軟磁性金属内に残り、歪や欠陥が発生する。1段階目の熱処理はこの軟磁性合金内の歪や欠陥を熱処理により緩和することにより、均一な非晶質を形成させる。続いて2段階目の熱処理の役割について説明する。2段階目の熱処理では、αFe(−Si)結晶を生成させる。1段階目の熱処理で歪や欠陥を抑制することができ、均一な非晶質状態を形成しているため、2段階目の熱処理により生成されるαFe(−Si)結晶の粒径を均一化することができる。すなわち、比較的低温で熱処理を行っても安定的にαFe(−Si)結晶を生成させることが可能となる。このため2段階目の熱処理での熱処理温度は、従来の1段階で熱処理を行う場合の熱処理温度と比較して低くなる傾向にある。言い換えれば、1段階で熱処理を行う場合には非晶質形成時に残っている歪や欠陥およびその周辺が先行してαFe(−Si)結晶になる反応が進行してしまいαFe(−Si)結晶の粒径を均一化することができない。さらに、ボライドからなる異相を形成してしまい、軟磁気特性を悪化させてしまう。また、1段階熱処理で可能な限り均一に熱処理させるためには軟磁性合金全体で可能な限り同時にαFe(−Si)結晶を生成させる必要がある。このため、1段階熱処理では前述した2段階熱処理よりも熱処理温度が高くなる傾向にある。   The advantages of performing the heat treatment in the above two steps will be described. The role of the first stage heat treatment will be described. The soft magnetic alloy forms an amorphous state by being rapidly cooled and solidified. At that time, since it is rapidly cooled from a high temperature, stress due to thermal shrinkage remains in the soft magnetic metal, and distortion and defects occur. In the first stage heat treatment, a uniform amorphous material is formed by relaxing strains and defects in the soft magnetic alloy by the heat treatment. Next, the role of the second stage heat treatment will be described. In the second heat treatment, αFe (-Si) crystals are generated. Strain and defects can be suppressed by the first stage heat treatment, and a uniform amorphous state is formed, so the particle diameter of the αFe (-Si) crystal generated by the second stage heat treatment is made uniform. can do. That is, αFe (-Si) crystals can be stably generated even when heat treatment is performed at a relatively low temperature. For this reason, the heat treatment temperature in the second heat treatment tends to be lower than the heat treatment temperature in the conventional one heat treatment. In other words, when the heat treatment is performed in one stage, the strain and defects remaining at the time of amorphous formation and the periphery thereof advance in advance to become an αFe (-Si) crystal, and the αFe (-Si) crystal The particle size cannot be made uniform. Furthermore, a heterogeneous phase composed of boride is formed, and the soft magnetic characteristics are deteriorated. In addition, in order to perform heat treatment as uniformly as possible by one-step heat treatment, it is necessary to form αFe (-Si) crystals as simultaneously as possible in the entire soft magnetic alloy. For this reason, the heat treatment temperature tends to be higher in the one-step heat treatment than in the two-step heat treatment described above.

本実施形態において、第1熱処理および第2熱処理の好ましい熱処理温度および好ましい熱処理時間は軟磁性合金の組成により異なる。概ね、Siを含む組成の方がSiを含まない組成と比較して熱処理温度が低くなる傾向にある。第1熱処理の熱処理温度は概ね350℃以上550℃以下であり、熱処理時間は概ね0.1時間以上10時間以下である。第2熱処理の熱処理温度は概ね475℃以上675℃以下であり、熱処理時間は概ね0.1時間以上10時間以下である。しかし、組成によっては上記の範囲を外れたところに好ましい熱処理温度および熱処理時間が存在する場合もある。   In the present embodiment, the preferred heat treatment temperature and the preferred heat treatment time for the first heat treatment and the second heat treatment vary depending on the composition of the soft magnetic alloy. In general, a composition containing Si tends to have a lower heat treatment temperature than a composition containing no Si. The heat treatment temperature of the first heat treatment is approximately 350 ° C. or more and 550 ° C. or less, and the heat treatment time is approximately 0.1 hours or more and 10 hours or less. The heat treatment temperature of the second heat treatment is approximately 475 ° C. or more and 675 ° C. or less, and the heat treatment time is approximately 0.1 hour or more and 10 hours or less. However, depending on the composition, there may be a preferred heat treatment temperature and heat treatment time outside the above range.

熱処理条件が好適に制御されていない場合や、好適な熱処理装置が選択されていない場合には、ナノ結晶部に副成分が含有されず、耐酸化性が低下する他、良好な軟磁気特性が得にくくなる。   When the heat treatment conditions are not suitably controlled, or when a suitable heat treatment apparatus is not selected, no subcomponent is contained in the nanocrystal part, oxidation resistance is reduced, and good soft magnetic properties are exhibited. It becomes difficult to obtain.

また、本実施形態に係る軟磁性合金を得る方法として、上記した単ロール法以外にも、例えば水アトマイズ法またはガスアトマイズ法により本実施形態に係る軟磁性合金の粉体を得る方法がある。以下、ガスアトマイズ法について説明する。   Further, as a method for obtaining the soft magnetic alloy according to the present embodiment, there is a method for obtaining the soft magnetic alloy powder according to the present embodiment by, for example, a water atomizing method or a gas atomizing method other than the single roll method described above. Hereinafter, the gas atomization method will be described.

ガスアトマイズ法では、上記した単ロール法と同様にして1200〜1500℃の溶融合金を得る。その後、前記溶融合金をチャンバー内で噴射させ、粉体を作製する。   In the gas atomization method, a molten alloy at 1200 to 1500 ° C. is obtained in the same manner as the single roll method described above. Thereafter, the molten alloy is sprayed in a chamber to produce a powder.

このとき、ガス噴射温度を50〜100℃とし、チャンバー内の蒸気圧4hPa以下とすることで、最終的に上記の好ましい微細構造を得やすくなる。   At this time, by setting the gas injection temperature to 50 to 100 ° C. and the vapor pressure in the chamber to 4 hPa or less, it is finally easy to obtain the preferable microstructure described above.

ガスアトマイズ法で粉体を作製した後に、単ロール法による場合と同様に二段階で熱処理を行うことで、好適な微細構造を得やすくなる。そして、特に耐酸化性が高く、良好な軟磁性特性を有する軟磁性合金粉末を得ることができる。   After the powder is produced by the gas atomization method, a suitable fine structure can be easily obtained by performing heat treatment in two stages as in the case of the single roll method. A soft magnetic alloy powder having particularly high oxidation resistance and good soft magnetic properties can be obtained.

以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されない。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to said embodiment.

本実施形態に係る軟磁性合金の形状には特に制限はない。上記した通り、薄帯形状や粉末形状が例示されるが、それ以外にも薄膜形状やブロック形状等も考えられる。   There is no restriction | limiting in particular in the shape of the soft-magnetic alloy which concerns on this embodiment. As described above, a ribbon shape and a powder shape are exemplified, but a thin film shape, a block shape, and the like are also conceivable.

本実施形態に係る軟磁性合金の用途には特に制限はない。例えば、磁心が挙げられる。インダクタ用、特にパワーインダクタ用の磁心として好適に用いることができる。本実施形態に係る軟磁性合金は、磁心の他にも薄膜インダクタ、磁気ヘッド、変圧トランスにも好適に用いることができる。   There is no restriction | limiting in particular in the use of the soft-magnetic alloy which concerns on this embodiment. An example is a magnetic core. It can be suitably used as a magnetic core for an inductor, particularly a power inductor. The soft magnetic alloy according to the present embodiment can be suitably used for a thin film inductor, a magnetic head, and a transformer transformer in addition to a magnetic core.

以下、本実施形態に係る軟磁性合金から磁心およびインダクタを得る方法について説明するが、本実施形態に係る軟磁性合金から磁心およびインダクタを得る方法は下記の方法に限定されない。   Hereinafter, a method for obtaining the magnetic core and the inductor from the soft magnetic alloy according to the present embodiment will be described. However, the method for obtaining the magnetic core and the inductor from the soft magnetic alloy according to the present embodiment is not limited to the following method.

薄帯形状の軟磁性合金から磁心を得る方法としては、例えば、薄帯形状の軟磁性合金を巻き回す方法や積層する方法が挙げられる。薄帯形状の軟磁性合金を積層する際に絶縁体を介して積層する場合には、さらに特性を向上させた磁芯を得ることができる。   Examples of a method for obtaining a magnetic core from a ribbon-shaped soft magnetic alloy include a method of winding and laminating a ribbon-shaped soft magnetic alloy. When laminating thin ribbon-shaped soft magnetic alloys via an insulator, a magnetic core with further improved characteristics can be obtained.

粉末形状の軟磁性合金から磁心を得る方法としては、例えば、適宜バインダと混合した後、金型を用いて成形する方法が挙げられる。また、バインダと混合する前に、粉末表面に酸化処理や絶縁被膜等を施すことにより、比抵抗が向上し、より高周波帯域に適合した磁心となる。   Examples of a method for obtaining a magnetic core from a powder-shaped soft magnetic alloy include a method in which a magnetic core is appropriately mixed with a binder and then molded using a mold. In addition, by applying an oxidation treatment, an insulating film or the like to the powder surface before mixing with the binder, the specific resistance is improved and the magnetic core is adapted to a higher frequency band.

成形方法に特に制限はなく、金型を用いる成形やモールド成形などが例示される。バインダの種類に特に制限はなく、シリコーン樹脂が例示される。軟磁性合金粉末とバインダとの混合比率にも特に制限はない。例えば軟磁性合金粉末100質量%に対し、1〜10質量%のバインダを混合させる。   There is no restriction | limiting in particular in a shaping | molding method, Molding using a metal mold | die, mold shaping | molding, etc. are illustrated. There is no restriction | limiting in particular in the kind of binder, A silicone resin is illustrated. There is no particular limitation on the mixing ratio of the soft magnetic alloy powder and the binder. For example, a binder of 1 to 10% by mass is mixed with 100% by mass of the soft magnetic alloy powder.

例えば、軟磁性合金粉末100質量%に対し、1〜5質量%のバインダを混合させ、金型を用いて圧縮成形することで、占積率(粉末充填率)が70%以上、1.6×10A/mの磁界を印加したときの磁束密度が0.4T以上、かつ比抵抗が1Ω・cm以上である磁心を得ることができる。上記の特性は、一般的なフェライト磁心よりも優れた特性である。 For example, a space factor (powder filling rate) is 70% or more and 1.6% by mixing a binder of 1 to 5% by mass with 100% by mass of the soft magnetic alloy powder and compression molding using a mold. A magnetic core having a magnetic flux density of 0.4 T or more and a specific resistance of 1 Ω · cm or more when a magnetic field of × 10 4 A / m is applied can be obtained. The above characteristics are superior to general ferrite cores.

また、例えば、軟磁性合金粉末100質量%に対し、1〜3質量%のバインダを混合させ、バインダの軟化点以上の温度条件下の金型で圧縮成形することで、占積率が80%以上、1.6×10A/mの磁界を印加したときの磁束密度が0.9T以上、かつ比抵抗が0.1Ω・cm以上である圧粉磁心を得ることができる。上記の特性は、一般的な圧粉磁心よりも優れた特性である。 Further, for example, by mixing 1 to 3% by weight of a binder with respect to 100% by weight of the soft magnetic alloy powder and compressing with a mold under a temperature condition equal to or higher than the softening point of the binder, the space factor is 80% As described above, a dust core having a magnetic flux density of 0.9 T or more and a specific resistance of 0.1 Ω · cm or more when a magnetic field of 1.6 × 10 4 A / m is applied can be obtained. The above characteristics are superior to general dust cores.

さらに、上記の磁心を成す成形体に対し、歪取り熱処理として成形後に熱処理することで、さらにコアロスが低下し、有用性が高まる。   Furthermore, the core loss is further reduced and the usefulness is increased by heat-treating the formed body having the above-described magnetic core after the forming as a strain removing heat treatment.

また、上記磁心に巻線を施すことでインダクタンス部品が得られる。巻線の施し方およびインダクタンス部品の製造方法には特に制限はない。例えば、上記の方法で製造した磁心に巻線を少なくとも1ターン以上巻き回す方法が挙げられる。   An inductance component can be obtained by winding the magnetic core. There are no particular restrictions on the manner in which the winding is applied and the method of manufacturing the inductance component. For example, a method of winding a winding at least one turn or more around the magnetic core manufactured by the above method can be mentioned.

さらに、軟磁性合金粒子を用いる場合には、巻線コイルが磁性体に内蔵されている状態で加圧成形し一体化することでインダクタンス部品を製造する方法がある。この場合には高周波かつ大電流に対応したインダクタンス部品を得やすい。   Further, when soft magnetic alloy particles are used, there is a method of manufacturing an inductance component by press-molding and integrating the winding coil in a state where the winding coil is built in the magnetic body. In this case, it is easy to obtain an inductance component corresponding to a high frequency and a large current.

さらに、軟磁性合金粒子を用いる場合には、軟磁性合金粒子にバインダおよび溶剤を添加してペースト化した軟磁性合金ペースト、および、コイル用の導体金属にバインダおよび溶剤を添加してペースト化した導体ペーストを交互に印刷積層した後に加熱焼成することで、インダクタンス部品を得ることができる。あるいは、軟磁性合金ペーストを用いて軟磁性合金シートを作製し、軟磁性合金シートの表面に導体ペーストを印刷し、これらを積層し焼成することで、コイルが磁性体に内蔵されたインダクタンス部品を得ることができる。   Further, when soft magnetic alloy particles are used, a soft magnetic alloy paste obtained by adding a binder and a solvent to the soft magnetic alloy particles and a paste obtained by adding a binder and a solvent to the conductor metal for the coil. An inductance component can be obtained by heating and firing after alternately laminating and laminating the conductive paste. Alternatively, by producing a soft magnetic alloy sheet using a soft magnetic alloy paste, printing a conductor paste on the surface of the soft magnetic alloy sheet, laminating and firing these, an inductance component in which the coil is built in the magnetic body is obtained. Can be obtained.

ここで、軟磁性合金粒子を用いてインダクタンス部品を製造する場合には、最大粒径が篩径で45μm以下、中心粒径(D50)が30μm以下の軟磁性合金粉末を用いることが、優れたQ特性を得る上で好ましい。最大粒径を篩径で45μm以下とするために、目開き45μmの篩を用い、篩を通過する軟磁性合金粉末のみを用いてもよい。   Here, when producing an inductance component using soft magnetic alloy particles, it is excellent to use a soft magnetic alloy powder having a maximum particle size of 45 μm or less and a center particle size (D50) of 30 μm or less. It is preferable for obtaining the Q characteristic. In order to set the maximum particle size to 45 μm or less in terms of sieve diameter, a sieve having an opening of 45 μm may be used, and only the soft magnetic alloy powder passing through the sieve may be used.

最大粒径が大きな軟磁性合金粉末を用いるほど高周波領域でのQ値が低下する傾向があり、特に最大粒径が篩径で45μmを超える軟磁性合金粉末を用いる場合には、高周波領域でのQ値が大きく低下する場合がある。ただし、高周波領域でのQ値を重視しない場合には、バラツキの大きな軟磁性合金粉末を使用可能である。バラツキの大きな軟磁性合金粉末は比較的安価で製造できるため、バラツキの大きな軟磁性合金粉末を用いる場合には、コストを低減することが可能である。   The Q value in the high frequency region tends to decrease as the soft magnetic alloy powder having a large maximum particle size is used. Particularly when the soft magnetic alloy powder having a maximum particle size exceeding 45 μm in the sieve diameter is used, The Q value may be greatly reduced. However, if the Q value in the high frequency region is not important, soft magnetic alloy powder having a large variation can be used. Since soft magnetic alloy powders with large variations can be manufactured at a relatively low cost, it is possible to reduce costs when using soft magnetic alloy powders with large variations.

本実施形態に係る圧粉磁心の用途には特に制限はない。例えば、インダクタ用、特にパワーインダクタ用の磁心として好適に用いることができる。   There is no restriction | limiting in particular in the use of the powder magnetic core which concerns on this embodiment. For example, it can be suitably used as a magnetic core for an inductor, particularly a power inductor.

以下、実施例に基づき本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

(実験1)
Fe:84原子%、B:9.0原子%、Nb:7.0原子%の組成の母合金が得られるように各種原料金属等をそれぞれ秤量した。そして、チャンバー内で真空引きした後、高周波加熱にて溶解し母合金を作製した。
(Experiment 1)
Various raw materials were weighed so as to obtain a master alloy having a composition of Fe: 84 atomic%, B: 9.0 atomic%, and Nb: 7.0 atomic%. And after evacuating in a chamber, it melt | dissolved by the high frequency heating and produced mother alloy.

その後、作製した母合金を加熱して溶融させ、1300℃の溶融状態の金属とした後に、ロール温度70℃、チャンバー内の蒸気圧4hPaとして単ロール法により前記金属をロールに噴射させ、薄帯を作成した。また、ロールの回転数を適切に調整することで得られる薄帯の厚さを20μmとした。蒸気圧は露点調整を行ったArガスを用いることで調整した。   Thereafter, the prepared master alloy is heated and melted to obtain a metal in a molten state of 1300 ° C., and then the metal is jetted onto the roll by a single roll method with a roll temperature of 70 ° C. and a vapor pressure of 4 hPa in the chamber. It was created. Moreover, the thickness of the ribbon obtained by appropriately adjusting the rotation speed of the roll was set to 20 μm. The vapor pressure was adjusted by using Ar gas with dew point adjustment.

次に、作製した各薄帯に対して熱処理を行い、単板状の試料を得た。本実験例では、試料No.7〜12以外の試料については、2回の熱処理を行った。熱処理条件を表1に示す。また、各薄帯に対して熱処理を行う際には、表1に記載した材質のセッターの上に薄帯を置き、セッターの下に制御用熱電対を置いた。このときのセッター厚みは1mmで統一した。なお、アルミナは熱伝導率31W/m、比熱779J/kgのものを用いた。カーボンは熱伝導率150W/m、比熱691J/kgのものを用いた。SiC(炭化ケイ素)は熱伝導率180W/m、比熱740J/kgのものを用いた。   Next, heat treatment was performed on each of the produced ribbons to obtain a single plate-like sample. In this experimental example, sample no. Samples other than 7-12 were heat-treated twice. Table 1 shows the heat treatment conditions. Moreover, when heat-treating each ribbon, the ribbon was placed on a setter made of the material shown in Table 1, and a control thermocouple was placed under the setter. The setter thickness at this time was unified at 1 mm. Alumina having a thermal conductivity of 31 W / m and a specific heat of 779 J / kg was used. Carbon having a thermal conductivity of 150 W / m and a specific heat of 691 J / kg was used. SiC (silicon carbide) having a thermal conductivity of 180 W / m and a specific heat of 740 J / kg was used.

熱処理前の各薄帯の一部を粉砕して粉末化した後にX線回折測定を行い、結晶の有無を確認した。さらに、透過電子顕微鏡を用いて制限視野回折像および30万倍で明視野像を観察し微結晶の有無を確認した。その結果、各実施例および比較例の薄帯には結晶および微結晶が存在せず非晶質であることを確認した。なお、試料全体の組成は母合金の組成とほぼ一致することをICP測定および蛍光X線測定により確認した。   After pulverizing and pulverizing a part of each ribbon before heat treatment, X-ray diffraction measurement was performed to confirm the presence or absence of crystals. Furthermore, the presence or absence of microcrystals was confirmed by observing a limited-field diffraction image and a bright-field image at 300,000 times using a transmission electron microscope. As a result, it was confirmed that the ribbons of the examples and comparative examples were amorphous with no crystals and microcrystals present. In addition, it was confirmed by ICP measurement and fluorescent X-ray measurement that the composition of the whole sample almost coincided with the composition of the mother alloy.

そして、各薄帯を熱処理した後の各試料の飽和磁束密度および保磁力を測定した。結果を表1に示す。飽和磁束密度(Bs)は振動試料型磁力計(VSM)を用いて磁場1000kA/mで測定した。保磁力(Hc)は直流BHトレーサーを用いて磁場5kA/mで測定した。また、各試料について耐酸化性を評価した。具体的には温度80度、湿度85%中で3時間、高温耐湿試験をおこない、表面を観察し点錆ができたかどうかを判断した。結果を表1に示す。   And the saturation magnetic flux density and coercive force of each sample after heat-treating each ribbon was measured. The results are shown in Table 1. The saturation magnetic flux density (Bs) was measured at a magnetic field of 1000 kA / m using a vibrating sample magnetometer (VSM). The coercive force (Hc) was measured at a magnetic field of 5 kA / m using a direct current BH tracer. Each sample was evaluated for oxidation resistance. Specifically, a high-temperature moisture resistance test was performed for 3 hours at a temperature of 80 ° C. and a humidity of 85%, and the surface was observed to determine whether spot rust was formed. The results are shown in Table 1.

さらに、各試料について3DAP(3次元アトムプローブ)を用いて観察範囲40nm×40nm×200nmの範囲を観察し、全ての試料がナノ結晶部および非晶質部を含むことを確認した。さらに、3DAPを用いてナノ結晶部組成および非晶質部組成を測定した。結果を表2に示す。さらに、ナノ結晶部におけるナノ結晶の平均粒径およびナノ結晶部における結晶化度についてもXRDを用いて算出した。結果を表2に示す。   Furthermore, the observation range of 40 nm × 40 nm × 200 nm was observed for each sample using 3DAP (three-dimensional atom probe), and it was confirmed that all the samples included a nanocrystal part and an amorphous part. Furthermore, the nanocrystal part composition and the amorphous part composition were measured using 3DAP. The results are shown in Table 2. Furthermore, the average particle diameter of the nanocrystals in the nanocrystal part and the crystallinity in the nanocrystal part were also calculated using XRD. The results are shown in Table 2.

Figure 0006439884
Figure 0006439884

Figure 0006439884
Figure 0006439884

表1より、セッターの材質が、熱伝導率が比較的高く比熱が比較的低いカーボンまたはSiCであり、かつ、熱処理温度を2段階で行い、第1熱処理温度および第2熱処理温度を適切に制御した実施例は、耐酸化性が特に良好な結果となった。これに対し、セッターの材質が、熱伝導率が比較的低く比熱が比較的高いアルミナである試料No.1−5、熱処理を1段階で行った試料No.7−12、第2熱処理の温度が高すぎた試料No.19および39、第1熱処理の温度が低すぎた試料No.20、および、第1熱処理の温度が高すぎた試料No.24aは、いずれも耐酸化性が実施例よりも劣る結果となった。   From Table 1, the material of the setter is carbon or SiC having relatively high thermal conductivity and relatively low specific heat, and the heat treatment temperature is performed in two stages, and the first heat treatment temperature and the second heat treatment temperature are appropriately controlled. In the examples, oxidation resistance was particularly good. On the other hand, the material of the setter is Sample No. 2 in which the heat conductivity is relatively low and the specific heat is relatively high. 1-5, sample No. 1 subjected to heat treatment in one stage 7-12, sample No. 2 in which the temperature of the second heat treatment was too high. 19 and 39, sample No. 1 in which the temperature of the first heat treatment was too low. 20 and Sample No. in which the temperature of the first heat treatment was too high. All of 24a resulted in inferior oxidation resistance to the examples.

表2より、各実施例ではナノ結晶部にM1(Nb)および/またはM2(B)が含まれていたのに対し、各比較例ではナノ結晶部にはM1およびM2が含まれなかったことが分かる。   According to Table 2, each example contained M1 (Nb) and / or M2 (B) in the nanocrystal part, whereas each comparative example did not contain M1 and M2 in the nanocrystal part. I understand.

(実験2)
Fe:73.5原子%、Cu:1.0原子%、Nb:3.0原子%、Si:13.5原子%、B:9.0原子%の組成の母合金が得られるように各種原料金属等をそれぞれ秤量した。そして、チャンバー内で真空引きした後、高周波加熱にて溶解し母合金を作製した。以下、実験1と同様にして試料No.40〜63の試料を作製した。結果を表3および表4に示す。
(Experiment 2)
Various master alloys having compositions of Fe: 73.5 atomic%, Cu: 1.0 atomic%, Nb: 3.0 atomic%, Si: 13.5 atomic%, and B: 9.0 atomic% are obtained. Raw material metals and the like were weighed. And after evacuating in a chamber, it melt | dissolved by the high frequency heating and produced mother alloy. Hereinafter, in the same manner as in Experiment 1, sample No. 40-63 samples were prepared. The results are shown in Table 3 and Table 4.

なお、熱処理前の各薄帯に対してX線回折測定を行い、結晶の有無を確認した。さらに、透過電子顕微鏡を用いて制限視野回折像および30万倍で明視野像を観察し微結晶の有無を確認した。その結果、各実施例および比較例の薄帯には結晶および微結晶が存在せず非晶質であることを確認した。試料全体の組成は母合金の組成とほぼ一致することをICP測定および蛍光X線測定により確認した。   In addition, the X-ray-diffraction measurement was performed with respect to each thin strip before heat processing, and the presence or absence of the crystal | crystallization was confirmed. Furthermore, the presence or absence of microcrystals was confirmed by observing a limited-field diffraction image and a bright-field image at 300,000 times using a transmission electron microscope. As a result, it was confirmed that the ribbons of the examples and comparative examples were amorphous with no crystals and microcrystals present. It was confirmed by ICP measurement and fluorescent X-ray measurement that the composition of the entire sample almost coincided with the composition of the mother alloy.

Figure 0006439884
Figure 0006439884

Figure 0006439884
Figure 0006439884

表3より、セッターの材質が、熱伝導率が比較的高く比熱が比較的低いカーボンまたはSiCであり、かつ、熱処理温度を2段階で行い、第1熱処理温度および第2熱処理温度を適切に制御した実施例は、耐酸化性が特に良好な結果となった。これに対し、セッターの材質が、熱伝導率が比較的低く比熱が比較的高いアルミナである試料No.40−45、熱処理を1段階で行った試料No.46−51、第2熱処理の温度が高すぎた試料No.56、57、62および63は、いずれも軟磁気特性および耐酸化性が両立できず、実施例よりも劣る結果となった。   From Table 3, the material of the setter is carbon or SiC with relatively high thermal conductivity and relatively low specific heat, and the heat treatment temperature is performed in two stages, and the first heat treatment temperature and the second heat treatment temperature are appropriately controlled. In the examples, oxidation resistance was particularly good. On the other hand, the material of the setter is Sample No. 2 in which the heat conductivity is relatively low and the specific heat is relatively high. 40-45, sample No. 1 subjected to heat treatment in one stage. 46-51, sample No. 2 in which the temperature of the second heat treatment was too high. Nos. 56, 57, 62 and 63 were inferior to the examples because both the soft magnetic properties and the oxidation resistance were not compatible.

表4より、各実施例ではナノ結晶部にM1(Nb)、M2(B)および/またはCuが含まれていたのに対し、各比較例ではナノ結晶部にはM1、M2およびCuが含まれなかったことが分かる。   From Table 4, each example contained M1 (Nb), M2 (B) and / or Cu in the nanocrystal part, whereas each comparative example contained M1, M2 and Cu in the nanocrystal part. You can see that it was not.

(実験例3)
実験例3では、母合金の組成を表5〜表9に記載の組成に変化させた。そして、熱処理工程の前までは実験例1および実験例2と同条件で実施した。そして、熱処理を1段階で実施する場合と2段階で実施する場合とで保磁力および耐酸化性の違いを確認した。結果を表5〜表9に示す。1段階で熱処理を実施する場合には675℃で60分間とした。2段階で熱処理を実施する場合には、第1熱処理を450℃で60分間、第2熱処理を650℃で60分間とした。熱処理はセッターの材質を実験例1と同様のカーボンとして行った。なお、熱処理前の薄帯に結晶が存在していた場合については、1段階熱処理での保磁力が著しく大きくなったため、2段階熱処理を行わなかった。また、2段階熱処理後の試料については、3DAPを用いてナノ結晶部におけるM1+M2+Cuの含有量(α)、非晶質部におけるM1+M2+Cuの含有量(β)を測定した。さらに、ナノ結晶の平均粒径およびナノ結晶部の結晶化度についても測定した。また耐酸化性については温度80度、湿度85%中で、高温耐湿試験をおこない、30分後ごとに表面を観察し点錆ができたかどうかを判断した。2段階熱処理における点錆発生までの時間が1段階熱処理における点錆発生までの時間よりも2.0倍以上であった場合を◎、1.2倍以上2.0倍未満の場合を○、1.0倍超1.2倍未満の場合を△とし、1.0倍以下の場合を×とした。なお、◎、○、△、×の順番に優れており、本実験例では△以上の評価である場合を良好とした。
(Experimental example 3)
In Experimental Example 3, the composition of the mother alloy was changed to the compositions shown in Tables 5 to 9. And it carried out on the same conditions as Experimental example 1 and Experimental example 2 until the heat treatment process. And the difference in coercive force and oxidation resistance was confirmed between the case where the heat treatment was carried out in one stage and the case where it was carried out in two stages. The results are shown in Tables 5-9. When heat treatment was performed in one stage, the temperature was set at 675 ° C. for 60 minutes. When heat treatment was performed in two stages, the first heat treatment was performed at 450 ° C. for 60 minutes, and the second heat treatment was performed at 650 ° C. for 60 minutes. The heat treatment was carried out using the same carbon as in Experimental Example 1 as the setter material. In the case where crystals were present in the ribbon before the heat treatment, the coercive force in the one-step heat treatment was remarkably increased, so that the two-step heat treatment was not performed. For the sample after the two-step heat treatment, the content (α) of M1 + M2 + Cu in the nanocrystal part and the content (β) of M1 + M2 + Cu in the amorphous part were measured using 3DAP. Furthermore, the average particle diameter of the nanocrystal and the crystallinity of the nanocrystal part were also measured. As for oxidation resistance, a high temperature humidity resistance test was performed at a temperature of 80 degrees and a humidity of 85%, and the surface was observed every 30 minutes to determine whether spot rust was formed. When the time until spot rust generation in the two-stage heat treatment is 2.0 times or more than the time until spot rust occurrence in the one-stage heat treatment ◎, when the time is 1.2 times or more and less than 2.0 times, The case of more than 1.0 times and less than 1.2 times was indicated by Δ, and the case of 1.0 times or less was indicated by ×. In addition, it is excellent in the order of ◎, ○, Δ, and ×, and in this experimental example, a case where the evaluation is Δ or more is considered good.

Figure 0006439884
Figure 0006439884

Figure 0006439884
Figure 0006439884

Figure 0006439884
Figure 0006439884

Figure 0006439884
Figure 0006439884

Figure 0006439884
Figure 0006439884

各実施例では、組成を適宜変化させても、熱処理を2段階で行う場合において、1段階で行う場合と比較して、保磁力が著しく低下し、耐酸化性が向上した。また、2段階で熱処理を行う場合には、ナノ結晶部にM1、M2および/またはCuが存在した。   In each example, even when the composition was changed as appropriate, in the case where the heat treatment was performed in two stages, the coercive force was remarkably reduced and the oxidation resistance was improved as compared with the case where the heat treatment was performed in one stage. In addition, when heat treatment was performed in two stages, M1, M2 and / or Cu existed in the nanocrystal part.

(実験例4)
実験例4では、母合金の組成を表10に記載の組成に変化させた。そして、熱処理工程の前までは実験例1および実験例2と同条件で実施した。そして、熱処理を1段階で実施する場合と2段階で実施する場合とで保磁力および耐酸化性の違いを確認した。結果を表10に示す。1段階で熱処理を実施する場合には450℃で60分間とした。2段階で熱処理を実施する場合には、第1熱処理を350℃で60分間、第2熱処理を425℃で60分間とした。熱処理はセッターの材質を実験例1と同様のカーボンとして行った。なお、熱処理前の薄帯に結晶が存在していた場合については、1段階熱処理での保磁力が著しく大きくなったため、2段階熱処理を行わなかった。また、2段階熱処理後の試料については、3DAPを用いてナノ結晶部におけるM1+M2+Cuの含有量(α)、非晶質部におけるM1+M2+Cuの含有量(β)を測定した。さらに、ナノ結晶の平均粒径およびナノ結晶部の結晶化度についても測定した。また耐酸化性については温度80度、湿度85%中で、高温耐湿試験をおこない、30分後ごとに表面を観察し点錆ができたかどうかを判断した。2段階熱処理における点錆発生までの時間が1段階熱処理における点錆発生までの時間よりも2.0倍以上であった場合を◎、1.2倍以上2.0倍未満の場合を○、1.0倍超1.2倍未満の場合を△とし、1.0倍以下の場合を×とした。なお、◎、○、△、×の順番に優れており、本実験例では△以上の評価である場合を良好とした。
(Experimental example 4)
In Experimental Example 4, the composition of the master alloy was changed to the composition shown in Table 10. And it carried out on the same conditions as Experimental example 1 and Experimental example 2 until the heat treatment process. And the difference in coercive force and oxidation resistance was confirmed between the case where the heat treatment was carried out in one stage and the case where it was carried out in two stages. The results are shown in Table 10. When heat treatment was performed in one stage, the heat treatment was performed at 450 ° C. for 60 minutes. When heat treatment was performed in two stages, the first heat treatment was performed at 350 ° C. for 60 minutes, and the second heat treatment was performed at 425 ° C. for 60 minutes. The heat treatment was carried out using the same carbon as in Experimental Example 1 as the setter material. In the case where crystals were present in the ribbon before the heat treatment, the coercive force in the one-step heat treatment was remarkably increased, so that the two-step heat treatment was not performed. For the sample after the two-step heat treatment, the content (α) of M1 + M2 + Cu in the nanocrystal part and the content (β) of M1 + M2 + Cu in the amorphous part were measured using 3DAP. Furthermore, the average particle diameter of the nanocrystal and the crystallinity of the nanocrystal part were also measured. As for oxidation resistance, a high temperature humidity resistance test was performed at a temperature of 80 degrees and a humidity of 85%, and the surface was observed every 30 minutes to determine whether spot rust was formed. When the time until spot rust generation in the two-stage heat treatment is 2.0 times or more than the time until spot rust occurrence in the one-stage heat treatment ◎, when the time is 1.2 times or more and less than 2.0 times, The case of more than 1.0 times and less than 1.2 times was indicated by Δ, and the case of 1.0 times or less was indicated by ×. In addition, it is excellent in the order of ◎, ○, Δ, and ×, and in this experimental example, a case where the evaluation is Δ or more is considered good.

Figure 0006439884
Figure 0006439884

実験例4の各実施例では、組成を適宜変化させても、熱処理を2段階で行う場合において、1段階で行う場合と比較して、保磁力が著しく低下し、耐酸化性が向上した。また、2段階で熱処理を行う場合には、ナノ結晶部にM1、M2および/またはCuが存在した。   In each Example of Experimental Example 4, even when the composition was appropriately changed, the coercive force was significantly reduced and the oxidation resistance was improved in the case where the heat treatment was performed in two stages as compared with the case where the heat treatment was performed in one stage. In addition, when heat treatment was performed in two stages, M1, M2 and / or Cu existed in the nanocrystal part.

(実験例5)
実験例5では、母合金の組成を表11に記載の組成に変化させた。そして、熱処理工程の前までは実験例1および実験例2と同条件で実施した。そして、熱処理を1段階で実施する場合と2段階で実施する場合とで保磁力および耐酸化性の違いを確認した。結果を表11に示す。1段階で熱処理を実施する場合には550℃で60分間とした。2段階で熱処理を実施する場合には、第1熱処理を425℃で60分間、第2熱処理を525℃で60分間とした。熱処理はセッターの材質を実験例1と同様のカーボンとして行った。なお、熱処理前の薄帯に結晶が存在していた場合については、1段階熱処理での保磁力が著しく大きくなったため、2段階熱処理を行わなかった。また、2段階熱処理後の試料については、3DAPを用いてナノ結晶部におけるM1+M2+Cuの含有量(α)、非晶質部におけるM1+M2+Cuの含有量(β)を測定した。さらに、ナノ結晶の平均粒径およびナノ結晶部の結晶化度についても測定した。また耐酸化性については温度80度、湿度85%中で、高温耐湿試験をおこない、30分後ごとに表面を観察し点錆ができたかどうかを判断した。2段階熱処理における点錆発生までの時間が1段階熱処理における点錆発生までの時間よりも2.0倍以上であった場合を◎、1.2倍以上2.0倍未満の場合を○、1.0倍超1.2倍未満の場合を△とし、1.0倍以下の場合を×とした。なお、◎、○、△、×の順番に優れており、本実験例では△以上の評価である場合を良好とした。
(Experimental example 5)
In Experimental Example 5, the composition of the mother alloy was changed to the composition shown in Table 11. And it carried out on the same conditions as Experimental example 1 and Experimental example 2 until the heat treatment process. And the difference in coercive force and oxidation resistance was confirmed between the case where the heat treatment was carried out in one stage and the case where it was carried out in two stages. The results are shown in Table 11. When heat treatment was performed in one stage, the heat treatment was performed at 550 ° C. for 60 minutes. When heat treatment was performed in two stages, the first heat treatment was performed at 425 ° C. for 60 minutes, and the second heat treatment was performed at 525 ° C. for 60 minutes. The heat treatment was carried out using the same carbon as in Experimental Example 1 as the setter material. In the case where crystals were present in the ribbon before the heat treatment, the coercive force in the one-step heat treatment was remarkably increased, so that the two-step heat treatment was not performed. For the sample after the two-step heat treatment, the content (α) of M1 + M2 + Cu in the nanocrystal part and the content (β) of M1 + M2 + Cu in the amorphous part were measured using 3DAP. Furthermore, the average particle diameter of the nanocrystal and the crystallinity of the nanocrystal part were also measured. As for oxidation resistance, a high temperature humidity resistance test was performed at a temperature of 80 degrees and a humidity of 85%, and the surface was observed every 30 minutes to determine whether spot rust was formed. When the time until spot rust generation in the two-stage heat treatment is 2.0 times or more than the time until spot rust occurrence in the one-stage heat treatment ◎, when the time is 1.2 times or more and less than 2.0 times, The case of more than 1.0 times and less than 1.2 times was indicated by Δ, and the case of 1.0 times or less was indicated by ×. In addition, it is excellent in the order of ◎, ○, Δ, and ×, and in this experimental example, a case where the evaluation is Δ or more is considered good.

Figure 0006439884
Figure 0006439884

実験例5の各実施例では、組成を適宜変化させても、熱処理を2段階で行う場合において、1段階で行う場合と比較して、保磁力が著しく低下し、耐酸化性が向上した。また、2段階で熱処理を行う場合には、ナノ結晶部にM1、M2および/またはCuが存在した。   In each Example of Experimental Example 5, even when the composition was appropriately changed, the coercive force was significantly reduced and the oxidation resistance was improved in the case where the heat treatment was performed in two stages as compared with the case where the heat treatment was performed in one stage. In addition, when heat treatment was performed in two stages, M1, M2 and / or Cu existed in the nanocrystal part.

(実験例6)
実験例6では、母合金の組成を表12に記載の組成に変化させた点以外は実験例3と同条件で実施し、評価した。結果を表12に示す。
(Experimental example 6)
In Experimental Example 6, the evaluation was performed under the same conditions as in Experimental Example 3 except that the composition of the mother alloy was changed to the composition shown in Table 12. The results are shown in Table 12.

Figure 0006439884
Figure 0006439884

各実施例では、組成を適宜変化させても、熱処理を2段階で行う場合において、1段階で行う場合と比較して、保磁力が著しく低下し、耐酸化性が向上した。また、2段階で熱処理を行う場合には、ナノ結晶部にM1、M2および/またはCuが存在した。   In each example, even when the composition was changed as appropriate, in the case where the heat treatment was performed in two stages, the coercive force was remarkably reduced and the oxidation resistance was improved as compared with the case where the heat treatment was performed in one stage. In addition, when heat treatment was performed in two stages, M1, M2 and / or Cu existed in the nanocrystal part.

(実験例7)
実験例7では、表13に示す組成の母合金が得られるように各種原料をそれぞれ秤量した。そして、チャンバー内で真空引きした後、高周波加熱にて溶解し母合金を作製した。
(Experimental example 7)
In Experimental Example 7, various raw materials were weighed so that a mother alloy having the composition shown in Table 13 was obtained. And after evacuating in a chamber, it melt | dissolved by the high frequency heating and produced mother alloy.

その後、作製した母合金を加熱して溶融させ、1500℃の溶融状態の金属としたのちガスアトマイズ法により下表13に示す組成条件下で前記金属を噴射させ、粉体を作成した。実験7では、ガス噴射温度を100℃とし、チャンバー内の蒸気圧を4hPaとして試料を作製した。蒸気圧調整は露点調整をおこなったArガスを用いることで行った。     Thereafter, the produced master alloy was heated and melted to obtain a metal in a molten state at 1500 ° C., and then the metal was sprayed under the composition conditions shown in Table 13 below by a gas atomizing method to prepare a powder. In Experiment 7, a sample was prepared with a gas injection temperature of 100 ° C. and a vapor pressure in the chamber of 4 hPa. The vapor pressure was adjusted by using Ar gas with dew point adjustment.

そして、各粉体について、表13に示す条件で1段階熱処理または2段階熱処理を行い、磁気特性および耐酸化性を評価した。さらに、各試料粉末について3DAP(3次元アトムプローブ)を用いて観察範囲40nm×40nm×200nmの範囲を観察し、全ての試料粉末がナノ結晶部および非晶質部を含むことを確認した。なお、熱処理時のセッターの材質はカーボンとした。さらに、3DAPを用いてナノ結晶部組成および非晶質部組成を測定した。結果を表13に示す。さらに、ナノ結晶部におけるナノ結晶の平均粒径およびナノ結晶部における結晶化度についても3DAPを用いて算出した。結果を表14に示す。また耐酸化性については温度80度、湿度85%中で1時間、高温耐湿試験をおこない、表面を観察し錆ができたかどうかを判断した。     Each powder was subjected to one-step heat treatment or two-step heat treatment under the conditions shown in Table 13 to evaluate magnetic properties and oxidation resistance. Furthermore, the observation range of 40 nm × 40 nm × 200 nm was observed for each sample powder using 3DAP (three-dimensional atom probe), and it was confirmed that all the sample powders contained nanocrystal parts and amorphous parts. The material of the setter during the heat treatment was carbon. Furthermore, the nanocrystal part composition and the amorphous part composition were measured using 3DAP. The results are shown in Table 13. Furthermore, the average particle diameter of the nanocrystals in the nanocrystal part and the crystallinity in the nanocrystal part were also calculated using 3DAP. The results are shown in Table 14. As for oxidation resistance, a high-temperature moisture resistance test was conducted for 1 hour at a temperature of 80 degrees and a humidity of 85%, and the surface was observed to determine whether or not rust was formed.

Figure 0006439884
Figure 0006439884

Figure 0006439884
Figure 0006439884

熱処理を2段階で行った各実施例はナノ結晶部にM1、M2および/またはCuが含まれ、耐酸化性が向上した。これに対し、熱処理を1段階で行った各比較例はナノ結晶部にM1、M2およびCuが含まれず、耐酸化性が低下した。   In each Example in which the heat treatment was performed in two stages, M1, M2 and / or Cu were contained in the nanocrystal part, and the oxidation resistance was improved. On the other hand, each comparative example in which the heat treatment was performed in one stage did not contain M1, M2 and Cu in the nanocrystal part, and the oxidation resistance was lowered.

11… ナノ結晶部
13… 非晶質部
31… ノズル
32… 溶融金属
33… ロール
34… 薄帯
35… チャンバー
DESCRIPTION OF SYMBOLS 11 ... Nanocrystal part 13 ... Amorphous part 31 ... Nozzle 32 ... Molten metal 33 ... Roll 34 ... Strip 35 ... Chamber

Claims (9)

ナノ結晶部および非晶質部を含む軟磁性合金であって、
前記ナノ結晶部は主成分としてαFe(−Si)を含み、副成分としてB,P,C,Ti,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Zn,Cuから選択される1種以上の元素を含み、前記ナノ結晶部における副成分の合計含有割合をα(at%)、前記非晶質部に含まれる前記ナノ結晶部の副成分の合計含有割合をβ(at%)として、0.01≦(α/β)≦0.40であり、結晶化度が5%以上70%以下であり、
前記軟磁性合金は、組成式Fe Cu M1 Si M2 で表される軟磁性合金であって、
M1はTi,Zr,Hf,Nb,Ta,Mo,V,W,Cr,Al,Mn,Znから選択される1種以上であり、
M2はB,P,Cから選択される1種以上であり、
a+b+c+d+e=100
64.9≦a≦94.5
0.0≦b≦3.0
0.0≦c≦15.5
0.0≦d≦17.5
2.0≦e≦23.0
であり、
cおよびdのうち少なくとも1つは0ではないことを特徴とする軟磁性合金。
A soft magnetic alloy comprising a nanocrystalline part and an amorphous part,
The nanocrystal part contains αFe (-Si) as a main component, and B, P, C, Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, Zn, Cu as subcomponents. see contains one or more elements selected from the total content of subcomponents in the nanocrystals unit alpha (at%), the total content of subcomponents of the nanocrystals unit included in the amorphous portion Is β (at%), 0.01 ≦ (α / β) ≦ 0.40, and the crystallinity is 5% or more and 70% or less,
The soft magnetic alloy is a soft magnetic alloy represented by a composition formula Fe a Cu b M1 c Si d M2 e ,
M1 is at least one selected from Ti, Zr, Hf, Nb, Ta, Mo, V, W, Cr, Al, Mn, Zn,
M2 is at least one selected from B, P, and C,
a + b + c + d + e = 100
64.9 ≦ a ≦ 94.5
0.0 ≦ b ≦ 3.0
0.0 ≦ c ≦ 15.5
0.0 ≦ d ≦ 17.5
2.0 ≦ e ≦ 23.0
And
A soft magnetic alloy , wherein at least one of c and d is not 0 .
結晶化度が15%以上70%以下である請求項1に記載の軟磁性合金。   The soft magnetic alloy according to claim 1, wherein the degree of crystallinity is 15% or more and 70% or less. 前記ナノ結晶部における副成分の合計含有割合をα(at%)として、0.5≦α≦20である請求項1または2に記載の軟磁性合金。   3. The soft magnetic alloy according to claim 1, wherein a total content ratio of subcomponents in the nanocrystal portion is α ≦ at ≦ 20, and 0.5 ≦ α ≦ 20. 前記非晶質部に含まれる前記ナノ結晶部の副成分の合計含有割合をβ(at%)として、10≦β≦60である請求項1〜3のいずれかに記載の軟磁性合金。   The soft magnetic alloy according to any one of claims 1 to 3, wherein 10≤β≤60, where β (at%) is a total content of subcomponents of the nanocrystal part contained in the amorphous part. 前記ナノ結晶部における副成分の合計含有割合をα(at%)、前記非晶質部に含まれる前記ナノ結晶部の副成分の合計含有割合をβ(at%)として、0.05<(α/β)<0.20である請求項1〜4のいずれかに記載の軟磁性合金。   Assuming that the total content of subcomponents in the nanocrystal part is α (at%) and the total content of subcomponents of the nanocrystal part contained in the amorphous part is β (at%), 0.05 <( The soft magnetic alloy according to claim 1, wherein α / β) <0.20. 0.0≦c≦15.0および2.0≦e≦20.0である請求項1〜5のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to claim 1, wherein 0.0 ≦ c ≦ 15.0 and 2.0 ≦ e ≦ 20.0 . 薄帯形状である請求項1〜6のいずれかに記載の軟磁性合金。   The soft magnetic alloy according to any one of claims 1 to 6, which has a ribbon shape. 粉末形状である請求項1〜6のいずれかに記載の軟磁性合金。   It is a powder form, The soft-magnetic alloy in any one of Claims 1-6. 請求項1〜8のいずれかに記載の軟磁性合金からなる磁性部品。   A magnetic component comprising the soft magnetic alloy according to claim 1.
JP2018002049A 2018-01-10 2018-01-10 Soft magnetic alloys and magnetic parts Active JP6439884B6 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018002049A JP6439884B6 (en) 2018-01-10 2018-01-10 Soft magnetic alloys and magnetic parts
TW107145174A TWI707957B (en) 2018-01-10 2018-12-14 Soft magnetic alloy and magnetic parts
US16/221,977 US10991495B2 (en) 2018-01-10 2018-12-17 Soft magnetic alloy and magnetic component
EP18213518.6A EP3511957A3 (en) 2018-01-10 2018-12-18 Soft magnetic alloy and magnetic device
CN201811548568.1A CN110021469B (en) 2018-01-10 2018-12-18 Soft magnetic alloy and magnetic component
KR1020180164178A KR102195302B1 (en) 2018-01-10 2018-12-18 Soft magnetic alloy and magnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002049A JP6439884B6 (en) 2018-01-10 2018-01-10 Soft magnetic alloys and magnetic parts

Publications (3)

Publication Number Publication Date
JP6439884B1 true JP6439884B1 (en) 2018-12-19
JP6439884B6 JP6439884B6 (en) 2019-01-30
JP2019121738A JP2019121738A (en) 2019-07-22

Family

ID=64668573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002049A Active JP6439884B6 (en) 2018-01-10 2018-01-10 Soft magnetic alloys and magnetic parts

Country Status (6)

Country Link
US (1) US10991495B2 (en)
EP (1) EP3511957A3 (en)
JP (1) JP6439884B6 (en)
KR (1) KR102195302B1 (en)
CN (1) CN110021469B (en)
TW (1) TWI707957B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11615902B2 (en) 2019-02-28 2023-03-28 Taiyo Yuden Co., Ltd. Soft magnetic alloy powder and method for manufacturing same, as well as coil component made from soft magnetic alloy powder and circuit board carrying same
JP7459873B2 (en) 2019-05-31 2024-04-02 Tdk株式会社 Soft magnetic alloys and magnetic components

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257735B (en) * 2019-07-19 2020-08-11 横店集团东磁股份有限公司 Amorphous nanocrystalline soft magnetic material, preparation method and application thereof, amorphous strip, amorphous nanocrystalline strip and amorphous nanocrystalline magnetic sheet
CN110295322A (en) * 2019-07-19 2019-10-01 广东工业大学 A kind of new iron-based magnetically soft alloy of high saturated magnetic induction and preparation method thereof
CN111850431B (en) * 2019-09-23 2022-02-22 宁波中科毕普拉斯新材料科技有限公司 Iron-based amorphous alloy containing sub-nanoscale ordered clusters, preparation method and nanocrystalline alloy derivative thereof
CN110670000B (en) * 2019-09-24 2020-10-16 全球能源互联网研究院有限公司 Nanocrystalline magnetically soft alloy, amorphous magnetically soft alloy and preparation method thereof
CN110670001A (en) * 2019-11-20 2020-01-10 广东工业大学 Preparation method of silicon-rich P-containing iron-based amorphous nanocrystalline alloy and iron-based amorphous alloy nanocrystalline magnetic core
CN111739706B (en) * 2020-07-06 2023-01-20 青岛云路先进材料技术股份有限公司 Nanocrystalline magnetic powder core, nanocrystalline alloy strip and preparation method thereof
US11887760B2 (en) * 2020-11-12 2024-01-30 Tdk Corporation Soft magnetic alloy, magnetic core, and magnetic component
CN113789487B (en) * 2021-08-11 2022-07-26 北京航空航天大学 High-carbon high-resistivity soft magnetic iron-based amorphous alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431922A (en) * 1987-07-28 1989-02-02 Hitachi Metals Ltd Manufacture of fe-base magnetic alloy
WO2010084888A1 (en) * 2009-01-20 2010-07-29 日立金属株式会社 Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2011149045A (en) * 2010-01-20 2011-08-04 Hitachi Metals Ltd Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233313B2 (en) 1993-07-21 2001-11-26 日立金属株式会社 Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
WO2005033350A1 (en) * 2003-10-01 2005-04-14 Liquidmetal Technologies, Inc. Fe-base in-situ composite alloys comprising amorphous phase
DE102004024337A1 (en) 2004-05-17 2005-12-22 Vacuumschmelze Gmbh & Co. Kg Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same
CN102808140B (en) * 2012-09-07 2014-02-26 武汉科技大学 High saturation induction density iron-based nanocrystalline magnetically soft alloy material and preparation method thereof
JP6530164B2 (en) 2014-03-04 2019-06-12 株式会社トーキン Nanocrystalline soft magnetic alloy powder and dust core using the same
JP2016162947A (en) 2015-03-04 2016-09-05 Necトーキン株式会社 Soft magnetic material, soft magnetic powder, powder magnetic core, and manufacturing methods thereof
US10316396B2 (en) * 2015-04-30 2019-06-11 Metglas, Inc. Wide iron-based amorphous alloy, precursor to nanocrystalline alloy
JP6651082B2 (en) * 2015-07-31 2020-02-19 Jfeスチール株式会社 Method for manufacturing soft magnetic powder core
CN105047348B (en) * 2015-08-03 2017-08-25 江苏奥玛德新材料科技有限公司 A kind of current transformer core of amorphous and nanocrystalline soft magnetic alloy and preparation method thereof
US10043607B2 (en) * 2016-05-02 2018-08-07 International Business Machines Corporation Electrolessly formed high resistivity magnetic materials
SE543592C2 (en) * 2017-01-27 2021-04-06 Jfe Steel Corp SOFT MAGNETIC POWDER, Fe-BASED NANOCRYSTALLINE ALLOY POWDER, MAGNETIC COMPONENT AND DUST CORE
CN107177805B (en) * 2017-04-21 2019-03-15 宁波中科毕普拉斯新材料科技有限公司 A kind of good iron-based sub-nanometer alloy of production technology and preparation method thereof
JP7326777B2 (en) * 2019-03-11 2023-08-16 Tdk株式会社 Soft magnetic alloys and magnetic parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431922A (en) * 1987-07-28 1989-02-02 Hitachi Metals Ltd Manufacture of fe-base magnetic alloy
WO2010084888A1 (en) * 2009-01-20 2010-07-29 日立金属株式会社 Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2010189761A (en) * 2009-01-20 2010-09-02 Hitachi Metals Ltd Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2011149045A (en) * 2010-01-20 2011-08-04 Hitachi Metals Ltd Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11615902B2 (en) 2019-02-28 2023-03-28 Taiyo Yuden Co., Ltd. Soft magnetic alloy powder and method for manufacturing same, as well as coil component made from soft magnetic alloy powder and circuit board carrying same
JP7459873B2 (en) 2019-05-31 2024-04-02 Tdk株式会社 Soft magnetic alloys and magnetic components

Also Published As

Publication number Publication date
US10991495B2 (en) 2021-04-27
KR20190085474A (en) 2019-07-18
TW201930608A (en) 2019-08-01
CN110021469B (en) 2020-12-18
US20190214171A1 (en) 2019-07-11
CN110021469A (en) 2019-07-16
TWI707957B (en) 2020-10-21
EP3511957A3 (en) 2019-12-25
JP2019121738A (en) 2019-07-22
JP6439884B6 (en) 2019-01-30
KR102195302B1 (en) 2020-12-24
EP3511957A2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP6439884B1 (en) Soft magnetic alloys and magnetic parts
JP6501005B1 (en) Soft magnetic alloys and magnetic parts
JP6460276B1 (en) Soft magnetic alloys and magnetic parts
JP6245391B1 (en) Soft magnetic alloys and magnetic parts
JP6226094B1 (en) Soft magnetic alloys and magnetic parts
KR102423591B1 (en) Soft magnetic alloy and magnetic device
KR102031183B1 (en) Soft magnetic alloy and magnetic device
JP6451878B1 (en) Soft magnetic alloys and magnetic parts
JP6245394B1 (en) Soft magnetic alloy
JP6245390B1 (en) Soft magnetic alloys and magnetic parts
KR102265782B1 (en) Soft magnetic alloy and magnetic device
US20200357547A1 (en) Soft magnetic alloy and magnetic component
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
JP6436206B1 (en) Soft magnetic alloys and magnetic parts
JP6338004B1 (en) Soft magnetic alloys and magnetic parts
JP6260667B1 (en) Soft magnetic alloy
JP6237853B1 (en) Soft magnetic alloy
JP6662438B2 (en) Soft magnetic alloys and magnetic components
JP6604407B2 (en) Soft magnetic alloys and magnetic parts
JP2019052367A (en) Soft magnetic alloy and magnetic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150