JP6439248B2 - Medium / high carbon steel sheet with excellent punchability and method for producing the same - Google Patents
Medium / high carbon steel sheet with excellent punchability and method for producing the same Download PDFInfo
- Publication number
- JP6439248B2 JP6439248B2 JP2013261091A JP2013261091A JP6439248B2 JP 6439248 B2 JP6439248 B2 JP 6439248B2 JP 2013261091 A JP2013261091 A JP 2013261091A JP 2013261091 A JP2013261091 A JP 2013261091A JP 6439248 B2 JP6439248 B2 JP 6439248B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- annealing
- cementite
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、打ち抜き性に優れる中・高炭素熱延鋼板およびその製造する方法に関するものである。 The present invention relates to a medium / high carbon hot-rolled steel sheet having excellent punchability and a method for producing the same.
中・高炭素鋼板は、自動車のチェーン、ギヤー、クラッチ等の駆動系部品及び鋸、刃物等の素材として用いられる。中・高炭素鋼の鋼帯あるいは鋼帯から切り出した鋼板から金型で所定の形状に打ち抜かれた元素材は絞り、穴拡げ、増肉、減肉等の塑性加工により部品形状へと成形される。 Medium and high carbon steel plates are used as materials for drive system parts such as automobile chains, gears, and clutches, as well as saws and blades. The original material punched into a predetermined shape with a die from a steel strip cut out from a medium or high carbon steel strip or from a steel strip is formed into a part shape by plastic working such as drawing, hole expansion, thickening, and thinning. The
従前は熱間鍛造により部品が成形されることが多かった。近年は低コスト化のために前述の冷間での塑性加工により部品を製造する動きがある。加工後は所定の寸法を得るために切削が施されるが、トータル製造コストに占める切削コストの割合は大きいため、冷間での塑性加工により成形された部品に求められる寸法精度は高まってきている。塑性加工のスタートは、鋼帯あるいは切板から打ち抜かれたブランク板であるため、打抜きで高い寸法精度をもつ鋼板を製造する技術の確立が要求される。 In the past, parts were often formed by hot forging. In recent years, there has been a movement to manufacture parts by cold plastic working as described above for cost reduction. After processing, cutting is performed in order to obtain a predetermined dimension, but since the ratio of the cutting cost to the total manufacturing cost is large, the dimensional accuracy required for parts formed by cold plastic processing is increasing. Yes. Since the start of plastic working is a blank plate punched from a steel strip or a cut plate, establishment of a technique for manufacturing a steel plate having high dimensional accuracy by punching is required.
本発明で示す打ち抜き性の改善とは、寸法精度の改善として打ち抜きブランク板のダレの減少、打抜き端面の性状改善、更には金型寿命の延長である。 The improvement of punchability shown in the present invention means reduction of punching blank plate, improvement of properties of the punching end face, and extension of die life as improvement of dimensional accuracy.
これまで、打ち抜き性を改善する技術について多くの提案がなされてきた(例えば、特許文献1〜6、参照)。 Until now, many proposals have been made on techniques for improving punchability (for example, see Patent Documents 1 to 6).
例えば、特許文献1には、精密打抜き性に優れ高周波焼入れ可能な精密打抜き用高炭素鋼板として、C:0.15〜0.90重量%の中炭素又は高炭素鋼板を、球状化率80%
以上、平均粒径0.4〜1.0μmの炭化物がフェライトマトリックスに分散した組織に
調整し、切欠き引張伸びElVを20%以上とし、更にD値[=(3×ElV2+18×ElV)/TS、TS:引張強さ]を3以上にすることで金型寿命を改善する発明が開示されているものの、内部の組織形態の制御による打ち抜き端面性状の改善に関するものであり、打ち抜きダレを改善できる技術ではない。
For example, in Patent Document 1, C: 0.15 to 0.90% by weight of a medium carbon or high carbon steel plate as a precision punching high carbon steel plate that has excellent precision punchability and can be induction hardened, has a spheroidization rate of 80%.
As described above, a structure in which carbide having an average particle size of 0.4 to 1.0 μm is dispersed in the ferrite matrix is adjusted, the notch tensile elongation ElV is set to 20% or more, and the D value [= (3 × ElV2 + 18 × ElV) / TS. , TS: Tensile strength] is 3 or more, an invention for improving the mold life is disclosed, but it relates to the improvement of the punching end face property by controlling the internal structure, and can improve the punching sagging It's not technology.
さらに特許文献2には、加工性が優れるばかりでなく、打抜きおよびシェービング加工時に加工金型を損耗させることのない軟質な組織形態の中・高炭素鋼板の発明が開示されているが、この組織形態の製造には熱延酸洗鋼板に対して、1回もしくは2回以上の冷間圧延を施す必要があり、抜本的な低コスト化には至らない。
Further,
特許文献3は、Cを0.70質量%以上0.95質量%以下含有する高炭素鋼板において、焼鈍条件と冷却条件の組合せで、鋼組織にボイドを導入することで、打抜き性材質の軟質化と打抜き性の向上を図る発明が開示されている。 Patent Document 3 is a high carbon steel sheet containing 0.70 mass% or more and 0.95 mass% or less of C. By introducing voids into the steel structure by a combination of annealing conditions and cooling conditions, a soft punchable material is disclosed. An invention that aims to improve the speed and punchability is disclosed.
特許文献4は、打抜き加工性を劣化させず、製造工程の簡略化を可能とする高炭素冷延鋼板の製造方法及び高炭素冷延鋼板に係る発明で、所定の成分の高炭素冷延鋼板を、(Ar3変態点−20℃)以上の仕上温度で熱間圧延し、120℃/s超えの冷却速度で400℃以上550℃以下の冷却停止温度まで冷却し、600℃以上Ac1変態点以下の巻取り温度域まで温度上昇させた後、該温度域でコイル状に巻取り、鋼板温度が400℃になるまで平均冷却速度20℃/hr以下で冷却して、熱延鋼板とし、酸洗後、圧延率30%以上で冷間圧延を行い、600℃以上Ac1変態点以下の焼鈍温度で焼鈍する発明が開示されている。 Patent Document 4 discloses a high carbon cold-rolled steel sheet manufacturing method and a high-carbon cold-rolled steel sheet that can simplify the manufacturing process without deteriorating punching workability, and a high-carbon cold-rolled steel sheet having a predetermined component. Is hot-rolled at a finishing temperature of (Ar3 transformation point−20 ° C.) or more, cooled to a cooling stop temperature of 400 ° C. or more and 550 ° C. or less at a cooling rate exceeding 120 ° C./s, and 600 ° C. or more and Ac1 transformation point or less. After the temperature was raised to the coiling temperature range, coiled in that temperature range, cooled at an average cooling rate of 20 ° C./hr or less until the steel plate temperature reached 400 ° C. to obtain a hot rolled steel plate, pickling Thereafter, an invention is disclosed in which cold rolling is performed at a rolling rate of 30% or more and annealing is performed at an annealing temperature of 600 ° C. or more and Ac1 transformation point or less.
特許文献5は、長時間を要する多段階焼鈍を用いることなく製造でき、打抜き端面の割れが発生しにくい伸びフランジ性に優れた高炭素熱延鋼板とするもので、炭化物平均粒径を0.1μm以上1.2μm未満、炭化物を含まないフェライト粒の体積率を10%以下に制御することを特徴とする発明が開示されている。
特許文献6は、熱間圧延工程と短時間の焼鈍工程のみで、微細でかつ均一な球状炭化物分散鋼と同等の特性を有し、しかも従来の微細炭化物分散鋼の問題点であった加工性とくに精密打ち抜き加工性ならびに曲げ加工性の点についても有利に改善した高炭素熱延鋼板の製造方法に係る発明が開示されている。 Patent Document 6 has the same characteristics as a fine and uniform spherical carbide-dispersed steel only in a hot rolling process and a short annealing process, and has the workability that was a problem of the conventional fine carbide-dispersed steel. In particular, an invention relating to a method for producing a high carbon hot-rolled steel sheet that has been advantageously improved in terms of precision punching workability and bending workability is disclosed.
しかし、これらのいずれの発明にも、塑性加工品の寸法精度に影響を及ぼす打ち抜きダレを改善する技術については何らの開示もされていない。 However, none of these inventions disclose any technique for improving punching sagging that affects the dimensional accuracy of a plastic workpiece.
本発明は、上記実情に鑑み、優れた打ち抜き性、特に打ち抜きダレの少ない中・高炭素鋼板とその製造方法を提供することを課題とするものである。 In view of the above circumstances, an object of the present invention is to provide a medium / high carbon steel sheet with excellent punchability, particularly with less punching sagging, and a method for producing the same.
本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、優れた打ち抜き性、特に打ち抜きダレ量の抑制には、鉄の体心立方格子の(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度を2.5以上に制御することが有効であることを知見した。加えて、熱延板焼鈍板のビッカース硬さを100HV以上160HV以下とし、さらに鋼板の組織としてフェライト粒径を10μm以上50μm以下、セメンタイト粒子径を0.1μm以上2.0μm以下、セメンタイトの球状化率を85%以上とすることにより打抜き部品における端面性状の改善及び金型の高寿命化が可能であることを知見した。 The inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, in order to achieve excellent punchability, particularly suppression of punching sagging, the degree of accumulation of crystal orientations in which the (110) plane of the iron body-centered cubic lattice is within ± 5 ° parallel to the steel plate surface is 2 It was found that it is effective to control to .5 or more. In addition, the hot-rolled sheet annealed sheet has a Vickers hardness of 100 HV or more and 160 HV or less, and the steel sheet has a ferrite grain size of 10 μm or more and 50 μm or less, a cementite particle diameter of 0.1 μm or more and 2.0 μm or less, and cementite spheroidization It has been found that by setting the rate to 85% or more, it is possible to improve the end face properties of the punched parts and to increase the life of the mold.
また、これを満足する鋼板の製造方法は、単に熱延条件や焼鈍条件などを単一にて工夫しても製造困難であり、熱延・焼鈍工程などのいわゆる一貫工程にて最適化を達成することでしか製造できないことも、種々の研究を積み重ねることで知見し、本発明を完成した。 In addition, steel sheet manufacturing methods that satisfy these requirements are difficult to manufacture even if the hot rolling conditions and annealing conditions are devised simply, and optimization is achieved through so-called integrated processes such as hot rolling and annealing processes. The fact that it can be produced only by doing this has been found by accumulating various studies, and the present invention has been completed.
本発明の要旨は、次の通りである。 The gist of the present invention is as follows.
(1)質量%で、
C:0.10〜0.70%、
Si:0.01〜1.0%、
Mn:0.1〜3.0%、
P:0.001〜0.025%、
S:0.0001〜0.010%、
Al:0.001〜0.10%、
N:0.001〜0.010%、
を含有し、残部がFeおよび不純物からなる鋼板であり、
前記鋼板の組織がフェライトおよびセメンタイトからなり、
鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であることを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板。
(1) In mass%,
C: 0.10 to 0.70%,
Si: 0.01 to 1.0%,
Mn: 0.1 to 3.0%
P: 0.001 to 0.025%,
S: 0.0001 to 0.010%,
Al: 0.001 to 0.10%,
N: 0.001 to 0.010%,
And the balance is a steel plate made of Fe and impurities,
The steel sheet structure is composed of ferrite and cementite,
Punchability characterized in that in the region from the steel sheet surface layer to the plate thickness direction 200 μm, the degree of accumulation of crystal orientations in which the (110) plane falls within the parallelism within ± 5 ° with respect to the steel sheet surface is 2.5 or more Medium and high carbon hot-rolled steel sheet with excellent resistance.
(2)前記鋼板が、添加元素として質量%で、さらに、
Ti:0.01〜0.20%、
Cr:0.01〜1.50%、
Mo:0.01〜0.50%、
B:0.0001〜0.010%、
Nb:0.001〜0.10%、
V:0.001〜0.2%、
Cu:0.001〜0.4%
W:0.001〜0.5%、
Ta:0.001〜0.5%、
Ni:0.001〜0.5%、
Mg:0.001〜0.03%、
Ca:0.001〜0.03%、
Y:0.001〜0.03%、
Zr:0.001〜0.03%、
La:0.001〜0.03%
Ce:0.001〜0.030%
の内の1種または2種以上を含有することを特徴とする前記(1)に記載の打ち抜き性に優れる中・高炭素熱延鋼板。
(2) The steel sheet is mass% as an additive element,
Ti: 0.01-0.20%,
Cr: 0.01 to 1.50%,
Mo: 0.01 to 0.50%,
B: 0.0001 to 0.010%,
Nb: 0.001 to 0.10%,
V: 0.001 to 0.2%,
Cu: 0.001 to 0.4%
W: 0.001 to 0.5%,
Ta: 0.001 to 0.5%,
Ni: 0.001 to 0.5%,
Mg: 0.001 to 0.03%,
Ca: 0.001 to 0.03%,
Y: 0.001 to 0.03%,
Zr: 0.001 to 0.03%,
La: 0.001 to 0.03%
Ce: 0.001 to 0.030%
The medium / high carbon hot-rolled steel sheet having excellent punchability according to (1) above, comprising one or more of the above.
(3)前記(1)または(2)に記載の鋼板は、
フェライト粒径が10μm以上50μm以下であり、
セメンタイト粒子径が0.1μm以上2.0μm以下であり、
セメンタイトの球状化率が85%以上である組織を有し、
ビッカース硬さが100HV以上160HV以下であることを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板。
(3) The steel sheet according to (1) or (2) is
The ferrite particle size is 10 μm or more and 50 μm or less,
The cementite particle size is 0.1 μm or more and 2.0 μm or less,
Having a structure in which the spheroidization rate of cementite is 85% or more,
A medium / high carbon hot-rolled steel sheet excellent in punchability characterized by having a Vickers hardness of 100HV or more and 160HV or less.
(4)前記(1)または(2)に記載の成分の連続鋳造鋳片を直接、または一旦冷却後、加熱し熱間圧延する際に、粗熱延終了後粗バーを加熱して20〜150℃昇温させ、600℃以上Ae3−20℃未満の温度域で仕上げ熱延を完了し、400℃以上650℃未満で捲取った熱延鋼板をそのまま、あるいは酸洗し、箱焼鈍して製造し、前記熱延鋼板の組織がフェライトおよびセメンタイトからなり、鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であることを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板の製造方法。 (4) When the continuous cast slab of the component described in (1) or (2) is directly or once cooled and then heated and hot-rolled, the rough bar is heated after the completion of the rough hot rolling, and then 20 to The temperature is raised to 150 ° C., and finish hot rolling is completed in a temperature range of 600 ° C. or more and less than Ae 3-20 ° C., and the hot-rolled steel sheet picked up at 400 ° C. or more and less than 650 ° C. is left as it is or pickled and annealed in a box. Produced, the structure of the hot-rolled steel sheet is composed of ferrite and cementite, and in the region from the steel sheet surface layer to the sheet thickness direction 200 μm, the (110) plane has a crystal orientation that falls within the parallelism within ± 5 ° with respect to the steel sheet surface. A method for producing a medium / high carbon hot-rolled steel sheet excellent in punchability, characterized in that the degree of integration is 2.5 or more .
(5)前記(4)に記載の箱焼鈍として680℃以上720℃以下の焼鈍温度で3hr以上60hr以下の焼鈍時間の焼鈍を施すことを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板の製造方法。 (5) Medium / high carbon hot-rolled steel sheet having excellent punching characteristics, characterized by performing annealing at an annealing temperature of 680 ° C. or more and 720 ° C. or less for an annealing time of 3 hours or more and 60 hours or less as the box annealing described in (4). Manufacturing method.
(6)前記(4)に記載の箱焼鈍として680℃以上720℃以下の焼鈍温度で3hr以上60hr以下の焼鈍時間の1段目の焼鈍を施した後に、730℃以上790℃以下の焼鈍温度で1hr以上12hr以下の焼鈍時間の2段目の焼鈍を施し、650℃まで1℃/hr以上20℃/hr以下の冷却速度にて冷却し、その後室温まで冷却するステップ型の焼鈍を施すことを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板の製造方法。
(6) As the box annealing described in (4) above, after performing the first stage annealing at an annealing temperature of 680 ° C. or more and 720 ° C. or less and an annealing time of 3 hours or more and 60 hours or less, annealing temperature of 730 ° C. or more and 790 ° C. or
本発明によれば、打抜きによるダレを抑制する中・高炭素鋼板及びその製造方法を提供できる。更には打ち抜き端面の性状に優れ、金型寿命も延長できるという顕著な効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, the medium and high carbon steel plate which suppresses the droop by punching, and its manufacturing method can be provided. In addition, the punched end face is excellent in properties and the mold life can be extended.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、本発明の鋼板の化学成分を限定した理由について説明する。ここで成分についての「%」は質量%を意味する。 First, the reason why the chemical components of the steel sheet of the present invention are limited will be described. Here, “%” for a component means mass%.
(C:0.10〜0.70%)
Cは、圧延における転位の増殖を促す強力な元素である。圧延中に変態したフェライトの転位の増殖及び蓄積により(110)方位に集積するため、0.10%以上の添加が望ましい。0.10%未満では、熱延での転位の増殖が抑えられるため集積度が低下する。このため、下限を0.10%とする。一方、0.70%を超えると、熱延においてフェライトが変態しがたくなり、(110)方位への集積が得られないため上限を0.70%とする。より好ましくは0.15〜0.65%である。
(C: 0.10 to 0.70%)
C is a powerful element that promotes the growth of dislocations in rolling. Addition of 0.10% or more is desirable because it accumulates in the (110) orientation due to growth and accumulation of dislocations of ferrite transformed during rolling. If it is less than 0.10%, the growth of dislocations in hot rolling is suppressed, so the degree of integration is lowered. For this reason, a minimum is made into 0.10%. On the other hand, if it exceeds 0.70%, ferrite hardly transforms in hot rolling, and accumulation in the (110) direction cannot be obtained, so the upper limit is made 0.70%. More preferably, it is 0.15-0.65%.
(Si:0.01〜1.0%)
Siは、脱酸剤として作用し、また、熱延中におけるフェライト変態を促進させる元素である。0.01%未満では、添加効果が得られないので、下限を0.01%とする。一方、1.0%を超えると、延性が低下するため、熱延中に耳割れが発生し、歩留まりの低下及びコスト増加を招く。このため、上限を1.0%とする。より好ましくは0.05〜0.8%であり、さらに好ましくは0.08〜0.35%である。
(Si: 0.01-1.0%)
Si is an element that acts as a deoxidizer and promotes ferrite transformation during hot rolling. If it is less than 0.01%, the effect of addition cannot be obtained, so the lower limit is made 0.01%. On the other hand, if it exceeds 1.0%, the ductility is lowered, so that ear cracks occur during hot rolling, resulting in a decrease in yield and an increase in cost. For this reason, the upper limit is made 1.0%. More preferably, it is 0.05-0.8%, More preferably, it is 0.08-0.35%.
(Mn:0.1〜3.0%)
Mnは、圧延における転位の蓄積を促す元素である。圧延中に変態したフェライトの転位の増殖及び蓄積により(110)方位に集積するため、0.10%以上の添加が望ましい。0.10%未満では、熱延での転位の蓄積が抑えられるため集積度が低下する。このため、下限を0.10%とする。一方、3.0%を超えると、熱延中にフェライトが変態しがたくなり、(110)方位への集積が得られないため上限を3.0%とする。より好ましくは0.3〜2.5%、さらに好ましくは0.5〜1.5%である。
(Mn: 0.1-3.0%)
Mn is an element that promotes the accumulation of dislocations during rolling. Addition of 0.10% or more is desirable because it accumulates in the (110) orientation due to growth and accumulation of dislocations of ferrite transformed during rolling. If the content is less than 0.10%, accumulation of dislocations in hot rolling can be suppressed, and the degree of integration decreases. For this reason, a minimum is made into 0.10%. On the other hand, if it exceeds 3.0%, the ferrite hardly transforms during hot rolling, and accumulation in the (110) direction cannot be obtained, so the upper limit is made 3.0%. More preferably, it is 0.3-2.5%, More preferably, it is 0.5-1.5%.
(P:0.001〜0.025%)
Pは、圧延における転位の増殖を促す元素である。0.001%未満では、添加効果が得られないので、下限を0.001%とする。一方、0.025%を超えると、延性が低下するため、熱延中に耳割れが発生し、歩留まりの低下及びコスト増加を招く。このため上限を0.025%とする。より好ましくは0.002〜0.02%である。
(P: 0.001 to 0.025%)
P is an element that promotes the growth of dislocations in rolling. If it is less than 0.001%, the effect of addition cannot be obtained, so the lower limit is made 0.001%. On the other hand, if it exceeds 0.025%, the ductility is lowered, so that ear cracks occur during hot rolling, resulting in a decrease in yield and an increase in cost. For this reason, the upper limit is made 0.025%. More preferably, it is 0.002 to 0.02%.
(S:0.0001〜0.010%)
Sは、MnSなどの非金属介在物を形成し、打抜き端面の性状を悪化させるため、上限を0.010%とする。しかし、Sを0.0001%未満に低減することは、精錬コストの大幅な上昇を招くため、下限を0.0001%とする。より好ましくは0.0003%〜0.007%である。
(S: 0.0001 to 0.010%)
S forms nonmetallic inclusions such as MnS and deteriorates the properties of the punched end face, so the upper limit is made 0.010%. However, reducing S to less than 0.0001% causes a significant increase in refining costs, so the lower limit is made 0.0001%. More preferably, it is 0.0003% to 0.007%.
(Al:0.001〜0.10%)
Alは、脱酸剤として作用し、また、熱延中におけるフェライト変態を促進させる元素である。0.001%未満では、添加効果が十分に得られないので、下限を0.001%とする。一方、0.10%を超えると添加効果は飽和し、鋼板の延性を低下させ、熱延コイルの耳割れ及び巻ほどしにおける脆化割れを引き起こす。このため、上限を0.10%とする。より好ましくは0.01%〜0.08%であり、さらに好ましくは0.015〜0.04%である。
(Al: 0.001-0.10%)
Al is an element that acts as a deoxidizer and promotes ferrite transformation during hot rolling. If it is less than 0.001%, the effect of addition cannot be obtained sufficiently, so the lower limit is made 0.001%. On the other hand, if it exceeds 0.10%, the effect of addition is saturated, the ductility of the steel sheet is lowered, and the cracking of the hot rolled coil and the embrittlement crack in unwinding are caused. For this reason, the upper limit is made 0.10%. More preferably, it is 0.01%-0.08%, More preferably, it is 0.015-0.04%.
(N:0.001〜0.010%)
Nは、熱延中の転位の増殖に有効に働く元素である。0.001%未満では添加効果が充分に得られないため、下限を0.001%とする。一方、過剰な含有により鋼板の延性低下を招くため、上限を0.010%とする。より好ましくは0.002%〜0.008%である。
(N: 0.001 to 0.010%)
N is an element that works effectively for the growth of dislocations during hot rolling. If it is less than 0.001%, the effect of addition cannot be sufficiently obtained, so the lower limit is made 0.001%. On the other hand, the excessive content causes a reduction in the ductility of the steel sheet, so the upper limit is made 0.010%. More preferably, it is 0.002% to 0.008%.
本発明は、上記成分を鋼板の基本成分とするが、さらに、鋼板の機械的特性を向上させる目的で、以下に述べる成分を選択的に含有させることができる。 Although this invention makes the said component the basic component of a steel plate, the component described below can be selectively contained in order to improve the mechanical characteristic of a steel plate further.
(Ti:0.01〜0.2%)
Tiは熱延中のオーステナイト粒の微細化に有効な添加元素である。オーステナイト粒の微細化によりフェライト変態が促進され、(110)への方位集積が促進するため、0.01%以上の添加が望ましい。0.01%未満では効果が得られないため、下限を0.01%とする。一方、過剰な添加では鋼板の延性低下を招き、熱延鋼帯の耳割れを引き起こすため、上限を0.2%とする。より好ましくは0.015%〜0.1%である。
(Ti: 0.01-0.2%)
Ti is an additive element effective for refining austenite grains during hot rolling. Addition of 0.01% or more is desirable because ferrite transformation is promoted by refinement of austenite grains and orientation accumulation in (110) is promoted. If less than 0.01%, the effect cannot be obtained, so the lower limit is made 0.01%. On the other hand, excessive addition leads to a decrease in the ductility of the steel sheet and causes cracking of the hot-rolled steel strip, so the upper limit is made 0.2%. More preferably, it is 0.015% to 0.1%.
(Cr:0.01〜1.50%)
Crは、熱延中におけるフェライト変態を促進し、部品熱処理時の焼入れ性を改善する添加元素である。0.01%未満では大きな添加の効果が得られないため、下限を0.01%とする。一方、1.50%を超える添加では、鋼板の延性低下を招き、熱延鋼帯の耳割れを引き起こすため、上限を1.50%とする。より好ましくは0.05%〜1.10%である。
(Cr: 0.01-1.50%)
Cr is an additive element that promotes ferrite transformation during hot rolling and improves hardenability during heat treatment of parts. If less than 0.01%, the effect of large addition cannot be obtained, so the lower limit is made 0.01%. On the other hand, if it exceeds 1.50%, the ductility of the steel sheet is reduced and the hot-rolled steel strip is cracked, so the upper limit is made 1.50%. More preferably, it is 0.05% to 1.10%.
(Mo:0.01〜0.50%)
Moは、熱延中におけるフェライト変態を促進し、部品熱処理時の焼入れ性を改善する添加元素である。0.01%未満では大きな添加の効果が得られないため、下限を0.01%とする。一方、0.50%を超える添加では、鋼板の延性低下を招き、熱延鋼帯の耳割れを引き起こすため、上限を0.50%とする。より好ましくは0.05%〜0.30%である。
(Mo: 0.01 to 0.50%)
Mo is an additive element that promotes ferrite transformation during hot rolling and improves hardenability during heat treatment of parts. If less than 0.01%, the effect of large addition cannot be obtained, so the lower limit is made 0.01%. On the other hand, if added over 0.50%, the ductility of the steel sheet is reduced, and the hot-rolled steel strip is cracked, so the upper limit is made 0.50%. More preferably, it is 0.05% to 0.30%.
(B:0.0001〜0.010%)
Bは、熱延中のオーステナイト粒を微細化させ、部品熱処理時の焼入れ性を改善する添加元素である。0.0001%未満では、添加効果がないので、下限を0.0001%とする。0.010%を超えると、鋼板の延性低下を招き、熱延鋼帯の耳割れを引き起こすため、上限を0.010%とする。より好ましくは0.0005%〜0.005%である。
(B: 0.0001 to 0.010%)
B is an additive element that refines austenite grains during hot rolling and improves the hardenability during heat treatment of parts. If it is less than 0.0001%, there is no effect of addition, so the lower limit is made 0.0001%. If it exceeds 0.010%, the ductility of the steel sheet will be reduced, and the hot-rolled steel strip will be cracked, so the upper limit is made 0.010%. More preferably, it is 0.0005% to 0.005%.
(Nb:0.001〜0.10%)
Nbは、窒化物を形成し、鋼材の強度増加に有効な元素である。その効果を有効に発揮させるためには0.001%以上を含有させることが好ましい。しかし、0.10%を超えると、延性の低下を招き、鋼帯の耳割れを引き起こすため、上限を0.10%とする。より好ましくは0.01%〜0.08%である。
(Nb: 0.001-0.10%)
Nb is an element that forms nitrides and is effective in increasing the strength of steel. In order to exhibit the effect effectively, it is preferable to contain 0.001% or more. However, if it exceeds 0.10%, the ductility is lowered, and the steel strip is cracked, so the upper limit is made 0.10%. More preferably, it is 0.01% to 0.08%.
(V:0.001〜0.2%)
Vも、Nbと同様に、窒化物を形成し、鋼材の強度増加に有効な元素である。その効果を有効に発揮させるためには0.001%以上を含有させることが好ましい。0.2%を超えると、延性の低下を招き、鋼帯の耳割れを引き起こすため、上限を0.2%とする。 より好ましくは0.01%〜0.15%である。
(V: 0.001 to 0.2%)
V, like Nb, is an element that forms nitrides and is effective in increasing the strength of steel. In order to exhibit the effect effectively, it is preferable to contain 0.001% or more. If it exceeds 0.2%, the ductility is reduced and the steel strip is cracked, so the upper limit is made 0.2%. More preferably, it is 0.01% to 0.15%.
(Cu:0.001〜0.4%)
Cuは、微細な析出物の形成により鋼材の強度を増加させる元素である。強度増加の効果を有効に発揮するためには0.001%以上の含有が好ましい。強度増加には含有量は多いほど望ましいが、0.4%を超える含有では、鋼板の熱間脆化を招き、熱延中の板破断を引き越すため、上限を0.4%とする。より好ましくは0.01%〜0.35%である。
(Cu: 0.001 to 0.4%)
Cu is an element that increases the strength of the steel material by forming fine precipitates. In order to effectively exhibit the effect of increasing the strength, the content is preferably 0.001% or more. A higher content is desirable for increasing the strength. However, if the content exceeds 0.4%, hot embrittlement of the steel plate is caused and the plate breakage during hot rolling is moved over, so the upper limit is made 0.4%. More preferably, it is 0.01% to 0.35%.
(W:0.001〜0.5%)
Wは、部品熱処理時の焼入れ性の向上に有効な元素である。その効果を有効に発揮させるためには0.001%以上を含有させることが好ましい。0.5%を超えると、延性の低下を招き、鋼帯の耳割れを引き起こすため、上限を0.5%とする。より好ましくは0.01%〜0.4%である。
(W: 0.001 to 0.5%)
W is an element effective for improving the hardenability during heat treatment of parts. In order to exhibit the effect effectively, it is preferable to contain 0.001% or more. If it exceeds 0.5%, the ductility is lowered and the steel strip is cracked, so the upper limit is made 0.5%. More preferably, it is 0.01% to 0.4%.
(Ta:0.001〜0.5%)
Taは、窒化物を形成し、鋼板の強度を増加させるとともに、焼入れ性も向上させる元素である。その効果を有効に発揮させるためには0.001%以上を含有させることが好ましい。0.5%を超えると、延性の低下を招き、鋼帯の耳割れを引き起こすため、上限を0.5%とする。より好ましくは0.01%〜0.4%である。
(Ta: 0.001 to 0.5%)
Ta is an element that forms a nitride, increases the strength of the steel sheet, and improves the hardenability. In order to exhibit the effect effectively, it is preferable to contain 0.001% or more. If it exceeds 0.5%, the ductility is lowered and the steel strip is cracked, so the upper limit is made 0.5%. More preferably, it is 0.01% to 0.4%.
(Ni:0.001〜0.5%)
Niは、部品の靭性の向上や、焼入れ性の向上に有効な元素である。その効果を有効に発揮させるためには0.001%以上を含有させることが好ましい。しかし、Niは高価な合金元素であるため、多量の添加によりコスト増加を招く。このため、上限を0.5%とする。より好ましくは0.01%〜0.4%である。
(Ni: 0.001 to 0.5%)
Ni is an element effective for improving the toughness of parts and improving hardenability. In order to exhibit the effect effectively, it is preferable to contain 0.001% or more. However, since Ni is an expensive alloy element, the addition of a large amount causes an increase in cost. For this reason, the upper limit is made 0.5%. More preferably, it is 0.01% to 0.4%.
(Mg:0.001〜0.03%)
Mgは微量添加で硫化物の形態を制御できる元素であり、必要に応じて含有できる。0.001%未満ではその効果は得られないため下限を0.001%以上とする。一方、過剰の含有では粗大なMg−酸化物を形成し、打ち抜き端面の性状の低下を招くため、上限を0.03%とする。より好ましくは0.001〜0.015%である。
(Mg: 0.001 to 0.03%)
Mg is an element that can control the form of sulfide by adding a small amount, and can be contained as required. If less than 0.001%, the effect cannot be obtained, so the lower limit is made 0.001% or more. On the other hand, if the content is excessive, a coarse Mg-oxide is formed and the properties of the punched end face are lowered, so the upper limit is made 0.03%. More preferably, it is 0.001 to 0.015%.
(Ca:0.001〜0.03%)
Caは、Mgと同様に微量添加で硫化物の形態を制御できる元素であり、必要に応じて含有できる。0.001%未満ではその効果は得られないため下限を0.001%以上とする。一方、過剰の含有では粗大なCa−酸化物を形成し、打ち抜き端面の性状の低下を招くため、上限を0.03%とする。より好ましくは0.001〜0.015%である。
(Ca: 0.001 to 0.03%)
Ca, like Mg, is an element that can control the form of sulfide by addition of a trace amount, and can be contained if necessary. If less than 0.001%, the effect cannot be obtained, so the lower limit is made 0.001% or more. On the other hand, if the content is excessive, a coarse Ca-oxide is formed and the properties of the punched end face are lowered, so the upper limit is made 0.03%. More preferably, it is 0.001 to 0.015%.
(Y:0.001〜0.03%)
Yは、Mg、Caと同様に微量添加で硫化物の形態を制御できる元素であり、必要に応じて含有できる。0.001%未満ではその効果は得られないため下限を0.001%以上とする。また、過剰の含有では粗大なY−酸化物を形成し、打ち抜き端面の性状の低下を招くため、上限を0.03%とする。より好ましくは0.001〜0.015%である。
(Y: 0.001 to 0.03%)
Y is an element that can control the form of the sulfide by addition of a trace amount similarly to Mg and Ca, and can be contained if necessary. If less than 0.001%, the effect cannot be obtained, so the lower limit is made 0.001% or more. Further, if the content is excessive, a coarse Y-oxide is formed and the properties of the punched end face are lowered, so the upper limit is made 0.03%. More preferably, it is 0.001 to 0.015%.
(Zr:0.001〜0.03%)
Zrは、Mg、Ca、Yと同様に微量添加で硫化物の形態を制御できる元素であり、必要に応じて含有できる。0.001%未満ではその効果は得られないため下限を0.001%以上とする。また過剰の含有では粗大なZr−酸化物などを形成し、打ち抜き端面の性状の低下を招くため、上限を0.03%とする。より好ましくは0.001〜0.015%である。
(Zr: 0.001 to 0.03%)
Zr is an element that can control the form of sulfide by addition of a trace amount like Mg, Ca, and Y, and can be contained if necessary. If less than 0.001%, the effect cannot be obtained, so the lower limit is made 0.001% or more. Further, if it is excessively contained, coarse Zr-oxide or the like is formed and the properties of the punched end face are lowered, so the upper limit is made 0.03%. More preferably, it is 0.001 to 0.015%.
(La:0.001〜0.03%)
Laは、Mg、Ca、Y、Zrと同じように微量添加で硫化物の形態制御に有効な元素であり、必要に応じて添加できる。0.001%未満ではその効果は得られないため下限を0.001%以上とする。またLaは酸化物を形成しやすく、それらの化合物は成形時に割れの起点となり、成形性の低下を招くため、上限を0.03%とする。
(La: 0.001 to 0.03%)
La, like Mg, Ca, Y, and Zr, is an element that is effective for controlling the form of sulfides when added in a trace amount, and can be added as necessary. If less than 0.001%, the effect cannot be obtained, so the lower limit is made 0.001% or more. Further, La easily forms oxides, and those compounds serve as starting points for cracking during molding, leading to a decrease in moldability, so the upper limit is made 0.03%.
(Ce:0.001〜0.030%)
Ceは、Mg、Ca、Y、Zr、Laと同様に微量添加で硫化物の形態を制御できる元素であり、必要に応じて添加できる。0.001%未満ではその効果は得られないため下限を0.001%以上とする。また過剰の含有では粗大なCe−酸化物を形成し、打ち抜き端面の性状の低下を招くため、上限を0.030%とする。より好ましくは0.001〜0.015%である。
(Ce: 0.001 to 0.030%)
Ce, like Mg, Ca, Y, Zr, and La, is an element that can control the form of sulfide by addition of a trace amount, and can be added as necessary. If less than 0.001%, the effect cannot be obtained, so the lower limit is made 0.001% or more. Further, if it is excessively contained, coarse Ce-oxide is formed and the properties of the punched end face are lowered, so the upper limit is made 0.030%. More preferably, it is 0.001 to 0.015%.
なお、本発明鋼板では、上記に述べた成分の残部はFeおよび不可避不純物である。また、上記に述べた選択成分の成分範囲未満であっても本発明鋼板の特性を阻害するものではないので、成分範囲未満をも許容する。さらに、本発明鋼板の原料としてスクラップを用いた場合、不可避的にSn、Sb、及び、Asの1種又は2種以上が、0.003%以上混入するが、いずれも、0.03%以下であれば、本発明鋼板の焼入れ性を阻害しないため、本発明鋼板においては、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上の含有を不可避不純物として許容する。 In the steel sheet of the present invention, the balance of the components described above is Fe and inevitable impurities. Moreover, even if it is less than the component range of the selective component described above, it does not inhibit the properties of the steel sheet of the present invention. Furthermore, when scrap is used as a raw material of the steel sheet of the present invention, one or more of Sn, Sb, and As are inevitably mixed in by 0.003% or more, but both are 0.03% or less. Then, since the hardenability of the steel sheet of the present invention is not impaired, Sn: 0.003-0.03%, Sb: 0.003-0.03%, and As: 0.003 in the steel sheet of the present invention. Inclusion of one or more of ˜0.03% is allowed as an inevitable impurity.
本発明鋼板において、O量は規定していないが、酸化物が凝集して粗大化すると、成形性は低下するので、Oは、0.003%以下が好ましい。Oは、少ないほうが好ましいが、0.0001%未満に低減することは、技術的に困難であるので、0.0001%以上の含有は不可避不純物として許容される。 In the steel sheet of the present invention, the amount of O is not specified, but if the oxide aggregates and becomes coarser, the formability deteriorates, so O is preferably 0.003% or less. A smaller amount of O is preferable, but since it is technically difficult to reduce it to less than 0.0001%, a content of 0.0001% or more is allowed as an inevitable impurity.
本発明鋼板は、前述した成分組成に加え、最適な熱延及び焼鈍を施し、鋼板表層から板厚方向に200μmまでの領域において、体心立方格子の鉄の(110)面から±5°以内の結晶が鋼板表面に対して平行である方位の集積度を2.5以上とすることにより、打ち抜き時のダレを著しく抑制し、さらに鋼板の組織としてフェライト粒径を10μm以上50μm以下、セメンタイト粒子径を0.1μm以上2.0μm以下、セメンタイトの球状化率を85%以上とし、また、鋼板の硬度としてビッカース硬さで100HV以上160HV以下に制御することにより、打ち抜き端面の性状を改善し、金型の寿命を向上することは、本発明者らが見いだした新規な知見である。 The steel sheet of the present invention is subjected to optimum hot rolling and annealing in addition to the above-described component composition, and within ± 5 ° from the iron (110) surface of the body-centered cubic lattice in the region from the steel sheet surface layer to 200 μm in the sheet thickness direction. By setting the degree of accumulation of orientation in which the crystal of the crystal is parallel to the steel sheet surface to 2.5 or more, dripping at the time of punching is remarkably suppressed, and the ferrite grain size is 10 μm or more and 50 μm or less as the structure of the steel sheet. The diameter is 0.1 μm or more and 2.0 μm or less, the spheroidization rate of cementite is 85% or more, and the steel sheet hardness is controlled to 100 HV or more and 160 HV or less by Vickers hardness, thereby improving the properties of the punched end face, Improving the life of the mold is a new finding found by the present inventors.
鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度を2.5以上とすることにより打ち抜きダレを著しく抑制できることについて説明する。 In the region from the steel sheet surface layer to the plate thickness direction 200 μm, the accumulation of crystal orientations in which the (110) plane falls within the parallelism within ± 5 ° with respect to the steel sheet surface is made 2.5 or more, and punching sagging is remarkably suppressed. Explain what you can do.
図1に鋼板表面に対して(110)面が±5°以内の方位差で向く結晶方位の集積度と打ち抜きダレの関係を示す。(110)への方位集積度と打ち抜きダレには明確な相関が認められ、鋼板表面から板厚中心方向に200μmまでの領域における方位集積度を2.5以上に制御することで鋼板表面から剪断面までのダレ長さが200μm以下となり、打ち抜きダレが著しく抑えられていることがわかる。このように、(110)への方位集積度が2.5以上となることで、打ち抜きダレが抑制できる理由は明確でないが、打抜き時において鋼板がポンチとダイスから受ける剪断変形が鉄の体心立方格子の主すべり面である(110)と平行であるため、ランダム方位の場合に比べて剪断変形とは異なる方向へのすべりが抑制され、打ち抜きダレが小さくなったと推察される。方位集積度は高い方が良く、特に3.0以上であれば更に好ましい。方位集積度は高い方が好ましいのであるから、上限は特に限定するものではないが、打ち抜きダレの抑制効果は方位集積度がほぼ5.0で飽和する。 FIG. 1 shows the relationship between the degree of accumulation of crystal orientations in which the (110) plane is oriented within ± 5 ° with respect to the steel sheet surface and punching sagging. There is a clear correlation between the orientation accumulation degree to (110) and punching sagging, and shearing from the steel sheet surface is controlled by controlling the orientation accumulation degree to 2.5 or more in the region from the steel sheet surface to the center of the plate thickness up to 200 μm. It can be seen that the sagging length to the surface is 200 μm or less, and the punching sagging is remarkably suppressed. As described above, the reason why the punching sag can be suppressed when the orientation accumulation degree to (110) is 2.5 or more is not clear, but the shear deformation that the steel sheet receives from the punch and the die at the time of punching is the iron core. Since it is parallel to (110) which is the main slip surface of the cubic lattice, it is surmised that slip in a direction different from shear deformation is suppressed and punching sag is reduced compared to the case of random orientation. A higher degree of orientation integration is better, and more preferably 3.0 or more. Since the higher azimuth accumulation degree is preferable, the upper limit is not particularly limited, but the effect of suppressing punching sagging is saturated when the azimuth accumulation degree is approximately 5.0.
方位集積度は、特定の向きの結晶方位がどの程度存在するかを表わす指標である。結晶方位としては特定軸の周りの回転角を5°きざみの領域に分け、その範囲に存在するそれぞれの方位を一つの同一の方位として見なす。また、各方位の結晶の集積度は、完全にランダムな結晶方位をもつ材料ではいずれの方位の集積度も1と規格し、全ての方位の集積度の総量を全ての方位で平均した値が1となるように調整して求められる。すなわちある方位の集積度が増えれば、相対的に別の方位の集積度が減ることとなる。 The orientation accumulation degree is an index representing how much crystal orientation in a specific direction exists. As the crystal orientation, the rotation angle around a specific axis is divided into 5 ° increments, and each orientation existing in the range is regarded as one identical orientation. In addition, the degree of integration of crystals in each orientation is specified as 1 for all orientations in materials with completely random crystal orientations, and the total amount of integration in all orientations is averaged over all orientations. It is obtained by adjusting to be 1. That is, if the degree of integration in one direction increases, the degree of integration in another direction relatively decreases.
方位集積度はEBSD(電子線後方散乱回折法)により評価することが望ましい。従来実施されるようなXRD(X線回折)による評価では、鋼板表面から200μm位置までの領域における結晶方位の情報を得る精度が薄膜サンプルの作製精度に大きく依存し、さらに各面方位で単位体積あたりの反射強度が異なるためXRDにより測定及び計算した方位集積度は必ずしも実際の体積率の状態を反映しない場合があるためである。 It is desirable to evaluate the orientation integration degree by EBSD (electron beam backscatter diffraction method). In the conventional XRD (X-ray diffraction) evaluation, the accuracy of obtaining crystal orientation information in the region from the steel plate surface to the 200 μm position depends greatly on the preparation accuracy of the thin film sample. This is because the degree of azimuth accumulation measured and calculated by XRD does not necessarily reflect the actual volume ratio state because the perimeter reflection intensity is different.
なお、サンプルの真の情報を得るためにはEBSDのサンプル作製や方位解析のプロセスにも注意が必要である。評価用のサンプルは鋼帯及び鋼帯から切り出した切板、または打ち抜かれたブランク板で歪が与えられていない箇所から放電ワイヤ加工機で切り出し、鋼板表面に対して垂直な面を観察面として準備する。EBSDの測定精度は観察面の平坦度や研磨により与えられた歪の影響を受けるため、観察面を湿式研磨およびダイヤモンド砥粒研磨により鏡面に仕上げた後に、歪取りの研磨を施す。歪取り研磨は、振動研磨装置(ビューラー製のバイブロメット2)を用いて出力40%、研磨時間60minの条件にて実施する。なお、電界研磨やフッ化水素系の腐食溶液でサンプル表面を溶解させる化学エッチングでは、観察面の表層部と鋼板表面の角が優先的に溶解し、ダレが発生するためEBSDによる鋼板表面から200μm位置までの領域における結晶方位の測定には適用できない。SEM−EBSDであればSEMや菊池線検出器の装置種は特に限定しない。菊池線の検出器に対して観察面が70°であるようにサンプルを設置し、板厚の表層において板厚方向に200μm、板幅方向に900μmの領域を0.5μmの測定ステップ間隔で4視野測定し、得られた結晶方位の情報から(100)の逆極点図を作製し、(110)から±5°以内の集積度を求める。測定データの解析はTSL社のOIM解析ソフトが良く、ノイズによる測定誤差のデータ影響を除くため、クリーンアップは施さずに、CI値が0.1以下のデータを除き、解析する。 In order to obtain the true information of the sample, attention must be paid to the process of EBSD sample preparation and orientation analysis. Samples for evaluation were cut with a discharge wire processing machine from a steel strip, a cut plate cut out from the steel strip, or a punched blank plate from a place where distortion was not applied, and a plane perpendicular to the steel plate surface was used as the observation surface prepare. Since the measurement accuracy of EBSD is affected by the flatness of the observation surface and the strain given by the polishing, the observation surface is finished to a mirror surface by wet polishing and diamond abrasive polishing, and then polishing for distortion removal is performed. The strain relief polishing is performed using a vibration polishing apparatus (Bueller Vibromet 2) under the conditions of an output of 40% and a polishing time of 60 minutes. In addition, in chemical etching in which the sample surface is dissolved by electropolishing or a hydrogen fluoride-based corrosive solution, the corners of the surface layer portion of the observation surface and the steel plate surface are preferentially dissolved, and sagging occurs, so 200 μm from the steel plate surface by EBSD. It cannot be applied to the measurement of crystal orientation in the region up to the position. If it is SEM-EBSD, the device type of SEM or Kikuchi line detector will not be specifically limited. A sample is set so that the observation surface is 70 ° with respect to the detector of the Kikuchi line, and the surface layer of the plate thickness has an area of 200 μm in the plate thickness direction and 900 μm in the plate width direction at a measurement step interval of 0.5 μm. The field of view is measured, a reverse pole figure of (100) is produced from the obtained crystal orientation information, and the degree of integration within ± 5 ° from (110) is obtained. For the analysis of measurement data, OSL analysis software of TSL is good, and in order to eliminate the data influence of measurement error due to noise, analysis is performed without performing cleanup and excluding data with a CI value of 0.1 or less.
打ち抜き前の鋼板の組織としてフェライト粒径を10μm以上、50μm以下とすることで、打ち抜き性を更に改善することができる。フェライト粒径が10μm未満であると、打ち抜きサンプルの表面にストレッチャーストレインが発生し、表面美観を損なうため、下限を10μm以上とする。また、フェライト粒径が50μmを超えると、打ち抜きサンプルの表面に梨地が発生し、表面美観を損なうため、上限を50μm以下とする。フェライト粒径は3%硝酸−アルコール溶液などでエッチングした組織を光学顕微鏡、もしくは走査型電子顕微鏡にて観察し、撮影した画像に対して線分法により測定する。 The punchability can be further improved by setting the ferrite grain size to 10 μm or more and 50 μm or less as the structure of the steel sheet before punching. If the ferrite particle size is less than 10 μm, stretcher strain is generated on the surface of the punched sample and the surface appearance is impaired, so the lower limit is made 10 μm or more. On the other hand, if the ferrite grain size exceeds 50 μm, a textured surface is generated on the surface of the punched sample and the surface appearance is impaired, so the upper limit is made 50 μm or less. The ferrite grain size is measured by a line segment method on a photographed image obtained by observing a structure etched with a 3% nitric acid-alcohol solution with an optical microscope or a scanning electron microscope.
また、セメンタイトの粒子径を0.1μm以上、2.0μm以下、球状化率を85%以上とすることで打ち抜き性を更に改善することができる。セメンタイト粒子径が0.1μm未満であると、打ち抜き端面において微細炭化物を連結するように破断面が発達することにより剪断面比率が低下し、性状を低下させるため、下限を0.1μm以上とする。また、セメンタイト粒子径が2.0μmを超えると、打ち抜き端面において粗大なセメンタイト粒子を連結するように、鋸歯状の破断面を形成するため、上限を2.0μm以下とする。 Moreover, the punchability can be further improved by setting the particle diameter of cementite to 0.1 μm or more and 2.0 μm or less and the spheroidization ratio to 85% or more. When the cementite particle diameter is less than 0.1 μm, the fracture surface develops so as to connect fine carbides at the punched end face, so that the shear plane ratio is lowered and the properties are lowered. Therefore, the lower limit is made 0.1 μm or more. . Further, when the cementite particle diameter exceeds 2.0 μm, a serrated fracture surface is formed so as to connect coarse cementite particles on the punched end face, so the upper limit is made 2.0 μm or less.
さらに、セメンタイトの球状化率は85%以上とすることで打ち抜き性を更に改善することができる。85%未満であると、針状の炭化物に応力が集中し、それらを連結するように破断面が進展するため、打ち抜き端面の性状が低下する。このため、下限を85%以上とする。なお、球状化率は高いほど望ましいが、100%に制御するには非常に長時間の焼鈍を施す必要があり、製造コストの増加を招くため、上限は100%未満が望ましい。上記のように、鋼板の組織及び硬さを制御することにより、打ち抜きダレを低減でき、さらに良好な端面性状(美観)と金型損耗低減を達成できる。 Furthermore, the punchability can be further improved by setting the spheroidization rate of cementite to 85% or more. If it is less than 85%, stress concentrates on the needle-like carbides, and the fracture surface develops so as to connect them, so that the properties of the punched end surface are lowered. For this reason, a minimum is made into 85% or more. The higher the spheroidization rate, the better. However, in order to control it to 100%, it is necessary to perform annealing for a very long time, leading to an increase in manufacturing cost. Therefore, the upper limit is preferably less than 100%. As described above, by controlling the structure and hardness of the steel sheet, it is possible to reduce punching sagging, and to achieve better end face properties (aesthetics) and reduced die wear.
なお、セメンタイトの観察は、走査型電子顕微鏡で行なう。組織観察用のサンプルは、エメリー紙による湿式研磨及び粒子サイズが1μmのダイヤモンド砥粒による研磨にて観察面を鏡面に仕上げた後、飽和ピクリン酸アルコール溶液にてエッチングを施して準備する。観察の倍率は1000〜10000倍、本発明では、3000倍にて組織観察面上に炭化物が500個以上含まれる視野を16個所選択し、組織画像を取得する。得られた組織画像に対して三谷商事株式会社製(Win ROOF)に代表される画像解析ソフトにより、その領域中に含まれる各炭化物の面積を詳細に測定する。ノイズによる測定誤差の影響を抑えるため、面積が0.01μm2以下の炭化物は評価の対象から除外し、1個あたりの平均面積を円形で近似した際の直径を平均セメンタイト粒子径として求める。各炭化物の長軸長と短軸長の比が3以上の場合を針状炭化物とし、3未満の場合を球状炭化物として算出する。球状炭化物の個数を全炭化物の個数で除した値をセメンタイトの球状化率とする。 The cementite is observed with a scanning electron microscope. A sample for tissue observation is prepared by wet polishing with emery paper and polishing with diamond abrasive grains having a particle size of 1 μm, and then etching with a saturated picric alcohol solution after finishing the mirror surface. The observation magnification is 1000 to 10,000 times, and in the present invention, 16 fields of view containing 500 or more carbides on the tissue observation surface are selected at 3000 times, and a tissue image is acquired. The area of each carbide contained in the region is measured in detail with the image analysis software represented by Mitani Corporation (Win ROOF) on the obtained tissue image. In order to suppress the influence of measurement error due to noise, carbides having an area of 0.01 μm 2 or less are excluded from the evaluation target, and the diameter when the average area per piece is approximated by a circle is obtained as the average cementite particle diameter. The case where the ratio of the major axis length to the minor axis length of each carbide is 3 or more is calculated as acicular carbide, and the case where the ratio is less than 3 is calculated as spherical carbide. A value obtained by dividing the number of spherical carbides by the total number of carbides is defined as the spheroidization rate of cementite.
また、打ち抜き前の鋼板(サンプル)の硬さをビッカース硬さで100HV以上160HV以下とすることで、打ち抜き性を更に改善することができる。ビッカース硬さは荷重2.94Nにて板厚方向に0.1mm間隔で10か所測定した平均値(算術平均値)とする。ビッカース硬さが100HV未満であると、打ち抜きサンプルの表面に梨地が発生し、美観を損なう。このため下限を100HV以上とする。また、ビッカース硬さが160HVを超えると、金型の寿命が低下し、打ち抜き精度の低下を招きやすくなる。このため、上限を160HV以下とする。 Moreover, the punchability can be further improved by setting the hardness of the steel plate (sample) before punching to 100 HV or more and 160 HV or less in terms of Vickers hardness. The Vickers hardness is an average value (arithmetic average value) measured at 10 points at 0.1 mm intervals in the thickness direction with a load of 2.94N. If the Vickers hardness is less than 100 HV, pear texture is generated on the surface of the punched sample, and the aesthetic appearance is impaired. For this reason, a minimum is made into 100HV or more. On the other hand, when the Vickers hardness exceeds 160 HV, the life of the mold is reduced and the punching accuracy is likely to be lowered. For this reason, an upper limit shall be 160 HV or less.
次に、本発明鋼板の製造方法について説明する。 Next, the manufacturing method of this invention steel plate is demonstrated.
本発明の製造方法の技術的思想は上述した成分範囲の材料を用いて、熱間圧延と焼鈍条件の一貫した管理によるのを特徴としている。 The technical idea of the production method of the present invention is characterized by consistent management of hot rolling and annealing conditions using the materials in the component ranges described above.
本発明の具体的な製造方法の特徴は以下の通りである。 Specific features of the production method of the present invention are as follows.
熱延の特徴;所定の成分を有するスラブを連続鋳造後、常法通りそのまま、または一旦冷却後に加熱し、熱間で圧延する際に、粗圧延終了後、仕上げ圧延開始前に粗バーを加熱し、表層のオーステナイト粒の粒度分布を整える。粗バーを加熱後、仕上げ圧延を開始し、600℃以上、Ae3―20℃未満の温度域にて仕上げ熱延を終了し、熱間圧延機の中で変態したフェライトを圧延する。仕上げ圧延後の鋼帯を400℃以上、650℃未満の温度範囲で巻き取り熱延コイルとする。熱延コイルをそのまま、あるいは酸洗後に箱焼鈍を施して打ち抜き性に優れる中・高炭素鋼板を得る。 Features of hot rolling: After continuous casting of a slab having a predetermined component, it is heated as it is as usual or once after cooling, and when rolling hot, the rough bar is heated after the rough rolling is finished and before the finish rolling is started. Then, the particle size distribution of the austenite grains in the surface layer is adjusted. After the coarse bar is heated, finish rolling is started, finish hot rolling is finished in a temperature range of 600 ° C. or more and less than Ae 3-20 ° C., and the transformed ferrite is rolled in a hot rolling mill. The steel strip after finish rolling is wound into a hot rolled coil in a temperature range of 400 ° C. or higher and lower than 650 ° C. The hot-rolled coil is subjected to box annealing as it is or after pickling to obtain a medium / high carbon steel sheet having excellent punchability.
以下に、本発明の製造方法について具体的に説明してゆく。 Below, the manufacturing method of this invention is demonstrated concretely.
(熱間圧延)
所定の成分を有するスラブを連続鋳造後、そのまま、または一旦冷却後に加熱し、熱間で圧延する際に、粗圧延終了後、仕上げ圧延開始前に粗バーを加熱して、仕上げ圧延を開始し、600℃以上、Ae3―20℃未満の温度域にて仕上げ熱延を終了し、得られた鋼帯を400℃以上、650℃未満の温度範囲で巻き取る。
(Hot rolling)
After continuous casting of a slab having a predetermined component, heat it as it is or once after cooling and rolling it hot, after finishing rough rolling, heating the rough bar before starting finish rolling, and then starting finish rolling. The finish hot rolling is finished in a temperature range of 600 ° C. or more and less than Ae 3-20 ° C., and the obtained steel strip is wound in a temperature range of 400 ° C. or more and less than 650 ° C.
スラブの加熱温度が1150℃を超える場合はAe3−20℃までの冷却に多大な時間を要して生産性を低下させる他、鋳片表層に厚いスケールを生成させ鋼帯への疵発生を助長する。このため、スラブ加熱温度は1150℃以下を上限とする。また、加熱温度が900℃未満の場合は鋳造で形成したミクロ偏析やマクロ偏析が解消せず、圧延及び焼鈍後にも鋼材内部にSiやMn等の合金元素が濃化した領域が残存し、打ち抜き部品の端面に偏析量に応じた凹凸を形成し、端面の美観を損なうため下限を900℃とする。 When the heating temperature of the slab exceeds 1150 ° C, it takes a long time to cool down to Ae3-20 ° C and lowers the productivity. In addition, a thick scale is formed on the surface of the slab to promote the generation of wrinkles on the steel strip. To do. For this reason, slab heating temperature sets 1150 degrees C or less as an upper limit. In addition, when the heating temperature is less than 900 ° C., microsegregation and macrosegregation formed by casting cannot be eliminated, and a region where alloy elements such as Si and Mn are concentrated remains in the steel material after rolling and annealing, and punching is performed. Concavities and convexities corresponding to the amount of segregation are formed on the end face of the component, and the lower limit is set to 900 ° C. in order to impair the aesthetic appearance of the end face.
粗熱延終了後、仕上げ熱延素材は表層のオーステナイトが粗バー長手方向にわたって混粒の状態にある。これは熱延加熱炉における炉床のスラブ支持台との接触の有無により生じた温度差が粗圧延終了後にも影響を及ぼしており、粗バー長手方向にわたって温度差があるためである。仕上げ熱延開始前の粗バーを加熱しないまま、仕上げ熱延を開始すると混粒の組織が解消せず、熱間圧延途中にオーステナイト粒の微細な箇所から優先的にフェライト変態が開始するため、仕上げ圧延完了直後に鋼板表層に存在するフェライトに蓄積された歪の量は不均一となり、(110)への方位集積にバラツキが生まれたり、方位集積度が低下したりする。このため、仕上げ熱延素材の表層のオーステナイト粒径を粗バー長手方向にわたって均一に制御し、熱延機内でのフェライト変態のタイミングを揃えるために、粗バーの加熱による長手方向の温度差の低減が必要となる。粗バーの加熱温度は特に限定しないが、粗圧延終了後の温度より20℃以上高い温度に加熱(昇温)することが好ましいと考えられる。加熱温度は高いほど望ましいものの、150℃以上の加熱温度(焼鈍)では、鋼板表層に厚いスケールが生成し、鋼帯表面の疵生成を招くため、上限を150℃とする。 After completion of the rough hot rolling, the finished hot rolled material has a surface layer of austenite in a mixed grain state in the longitudinal direction of the coarse bar. This is because the temperature difference caused by the presence or absence of contact with the slab support of the hearth in the hot-rolling heating furnace has an influence even after the end of rough rolling, and there is a temperature difference in the longitudinal direction of the coarse bar. If the hot rolling is started without heating the rough bar before finishing hot rolling, the mixed grain structure will not be eliminated, and ferrite transformation will preferentially start from the fine austenite grains during hot rolling. Immediately after finishing rolling, the amount of strain accumulated in the ferrite existing on the surface layer of the steel sheet becomes non-uniform, resulting in variations in orientation accumulation to (110) or a decrease in orientation accumulation degree. Therefore, in order to uniformly control the austenite grain size of the surface layer of the finished hot rolled material over the longitudinal direction of the coarse bar and to align the timing of ferrite transformation in the hot rolling machine, the longitudinal temperature difference is reduced by heating the coarse bar. Is required. The heating temperature of the rough bar is not particularly limited, but it is considered preferable to heat (temperature increase) to a temperature 20 ° C. higher than the temperature after the end of the rough rolling. Although a higher heating temperature is desirable, a heating scale of 150 ° C. or higher (annealing) generates a thick scale on the surface layer of the steel sheet and causes wrinkle formation on the surface of the steel strip, so the upper limit is set to 150 ° C.
仕上げ熱延は600℃以上、Ae3−20℃未満で終了させることが好ましい。仕上げ熱延温度が600℃未満であると、鋼材の変形抵抗の増加から、圧延負荷が顕著に高まり、更にロール磨耗量の増大を招き、生産性の低下を引き起こす。このため下限を600℃以上とする。また、Ae3−20℃以上であると、仕上げ熱延中に微量のフェライトしか変態しなくなり、(110)方位への集積が低下し、本発明の効果が得られなくなる。このため、上限をAe3−20℃未満とする。 The finish hot rolling is preferably finished at 600 ° C. or more and less than Ae 3-20 ° C. When the finish hot rolling temperature is less than 600 ° C., the rolling load is remarkably increased due to an increase in deformation resistance of the steel material, and the roll wear amount is further increased, resulting in a decrease in productivity. For this reason, a lower limit shall be 600 degreeC or more. On the other hand, when the temperature is Ae3-20 ° C. or higher, only a small amount of ferrite is transformed during hot rolling of the finish, the accumulation in the (110) direction is lowered, and the effect of the present invention cannot be obtained. For this reason, let an upper limit be less than Ae3-20 degreeC.
巻き取り温度は400℃以上、650℃未満とする。巻き取り温度が400℃未満であると、仕上げ圧延中に未変態であったオーステナイトがマルテンサイトに変態し、コイルの脆化を招き、巻きほどし時に割れを引き起こすため、下限を400℃以上とする。また、巻き取り温度が650℃以上の時は、未変態のオーステナイトが粗大なラメラーをもつパーライトに変態し、打ち抜き端面の性状の低下を引き起こす。このため上限を650℃未満とする。 The winding temperature is 400 ° C. or higher and lower than 650 ° C. If the coiling temperature is less than 400 ° C., austenite that has not been transformed during finish rolling is transformed into martensite, causing embrittlement of the coil and causing cracking during unwinding, so the lower limit is 400 ° C. or more. To do. Further, when the coiling temperature is 650 ° C. or higher, untransformed austenite is transformed into pearlite having coarse lamellar, and the properties of the punched end face are lowered. For this reason, an upper limit shall be less than 650 degreeC.
前述の条件で製造した熱延コイルをそのまま、あるいは酸洗後に箱焼鈍を施すことで打ち抜き性を更に向上させることができる。 The punchability can be further improved by subjecting the hot-rolled coil manufactured under the above-described conditions as it is or by performing box annealing after pickling.
Ae3温度はThermo−Calcなどの熱力学計算ソフトにより求めることが望ましい。
(フェライト+セメンタイト域における焼鈍条件)
前述の熱延コイルを、680℃以上720℃以下で3hr以上60hr保持後に室温まで冷却する箱焼鈍を施す。
It is desirable to obtain the Ae3 temperature by thermodynamic calculation software such as Thermo-Calc .
(Annealing conditions in ferrite + cementite region)
The above-mentioned hot-rolled coil is subjected to box annealing for cooling to room temperature after holding at 680 ° C. to 720 ° C. for 3 hours to 60 hours.
焼鈍温度は680℃以上720℃以下とすることが好ましい。焼鈍温度が680℃未満であると、フェライト粒やセメンタイト粒子の粗大化が不十分であり、打ち抜き部品へのストレッチャーストレインの発生や、打ち抜き端面の性状の低下を引き起こす。このため下限を680℃以上とする。また、焼鈍温度が720℃を超えると焼鈍中にオーステナイト相が生成する。この状態で単純に室温まで冷却すると、オーステナイト相から新たにパーライトが生成し、セメンタイトの球状化率の低下や素材硬度の増加を引き起こす。このため、上限を720℃以下とする。 The annealing temperature is preferably 680 ° C. or more and 720 ° C. or less. When the annealing temperature is less than 680 ° C., ferrite grains and cementite particles are not sufficiently coarsened, causing stretcher strain on the punched parts and deterioration of the properties of the punched end face. For this reason, a minimum is made into 680 degreeC or more. Further, when the annealing temperature exceeds 720 ° C., an austenite phase is generated during annealing. When simply cooled to room temperature in this state, pearlite is newly generated from the austenite phase, causing a decrease in the spheroidization rate of cementite and an increase in material hardness. For this reason, an upper limit shall be 720 degrees C or less.
焼鈍の保持時間は3hr(時間)以上60hr以下とすることが好ましい。保持時間が3hr未満であると、フェライト粒やセメンタイト粒子の粗大化が不十分であり、打ち抜き部品へのストレッチャーストレインの発生や、打ち抜き端面の性状の低下を引き起こす。このため、下限を3hr以上とする。保持時間が60hrを超えると、フェライト粒やセメンタイト粒子が粗大化しすぎて、打ち抜き部品に梨地の発生や、打ち抜き端面の性状の低下を引き起こす。このため、上限を60hr以下とする。 The annealing holding time is preferably 3 hr (hour) or more and 60 hr or less. If the holding time is less than 3 hours, the ferrite grains and cementite particles are not sufficiently coarsened, causing the occurrence of stretcher strain on the punched parts and the deterioration of the properties of the punched end face. For this reason, a minimum is made into 3 hours or more. When the holding time exceeds 60 hours, ferrite grains and cementite particles are excessively coarsened, which causes the occurrence of satin on the punched parts and the deterioration of the properties of the punched end face. For this reason, the upper limit is set to 60 hr or less.
(フェライト+オーステナイト+セメンタイト域における焼鈍条件)
前述の熱延コイルを、680℃以上720℃以下で3hr以上60hr保持する1段目の焼鈍を施した後に、更に730℃以上790℃以下で1hr以上12hr以下保持する2段目の焼鈍を施し、その後650℃までの冷却速度を20℃/hr以下とし、室温まで冷却する焼鈍を施すことが好ましい。1段目の焼鈍において、セメンタイトにMn等の合金元素を濃化させ、熱的安定性を高める。続く2段目の高温焼鈍において、オーステナイトを生成させ、合金元素の濃化していないセメンタイトをオーステナイト中に溶かし、その後に徐冷を施すことで、未溶解のセメンタイトへオーステナイト中のCを吸着させることにより、セメンタイトの球状化率を高めることができるからである。
(Annealing conditions in ferrite + austenite + cementite region)
The above-mentioned hot-rolled coil is subjected to the first stage annealing for holding at 680 ° C. or more and 720 ° C. or less for 3 hours or more and 60 hours, and then further subjected to the second stage annealing for holding 730 ° C. or more and 790 ° C. or less for 1 hr or more and 12 hours or less. Then, it is preferable to set the cooling rate to 650 ° C. to 20 ° C./hr or less and perform annealing to cool to room temperature. In the first stage of annealing, alloy elements such as Mn are concentrated in cementite to enhance thermal stability. In the subsequent high-temperature annealing of the second stage, austenite is generated, cementite that is not concentrated in the alloy elements is dissolved in austenite, and then gradually cooled to adsorb C in the austenite to undissolved cementite. This is because the spheroidization rate of cementite can be increased.
1段目の焼鈍温度は680℃以上720℃以下とする。焼鈍温度が680℃未満であると、セメンタイト粒子への合金元素の濃化が不十分であり、2段目の焼鈍において未溶解のセメンタイトを残存することはできず、2段目の焼鈍後の冷却速度を徐冷に制御したとしても、新たなパーライトの生成を抑制できないため、セメンタイトの球状化率の低下や硬度の増加を引き起こす。このため下限を680℃以上とする。また、1段目の焼鈍温度が720℃を超えると焼鈍中にオーステナイト相が生成する。1段目の焼鈍でオーステナイト相が生成した箇所では、2段目の焼鈍において未溶解のセメンタイトを残存することはできず、2段目の焼鈍後の冷却速度を徐冷に制御したとしても、新たなパーライトの生成を抑制できないため、セメンタイトの球状化率の低下や硬度の増加を引き起こす。このため、上限を720℃以下とする。 The first stage annealing temperature is set to 680 ° C. or more and 720 ° C. or less. When the annealing temperature is less than 680 ° C., the concentration of the alloy element in the cementite particles is insufficient, and undissolved cementite cannot remain in the second stage annealing, and after the second stage annealing. Even if the cooling rate is controlled to be gradually cooled, generation of new pearlite cannot be suppressed, which causes a decrease in cementite spheroidization rate and an increase in hardness. For this reason, a minimum is made into 680 degreeC or more. In addition, when the first stage annealing temperature exceeds 720 ° C., an austenite phase is generated during annealing. In the place where the austenite phase is generated by the first stage annealing, undissolved cementite cannot remain in the second stage annealing, and even if the cooling rate after the second stage annealing is controlled to be gradually cooled, Since the formation of new pearlite cannot be suppressed, it causes a decrease in the cementite spheroidization rate and an increase in hardness. For this reason, an upper limit shall be 720 degrees C or less.
1段目の焼鈍の保持時間は3hr以上60hr以下とする。保持時間が3hr未満であると、セメンタイト粒子への合金元素の濃化が十分でなく、2段目の焼鈍において未溶解のセメンタイトを残存することはできず、2段目の焼鈍後の冷却速度を徐冷に制御したとしても、新たなパーライトの生成を抑制できないため、セメンタイトの球状化率の低下や硬度の増加を引き起こす。このため、下限を3hr以上とする。保持時間が60hrを超えると、フェライト粒が粗大化しすぎて、打ち抜き部品に梨地の発生を引き起こす。このため、上限を60hr以下とする。 The holding time for the first stage annealing is set to 3 hours or more and 60 hours or less. If the holding time is less than 3 hr, the concentration of the alloy element in the cementite particles is not sufficient, and undissolved cementite cannot remain in the second stage annealing, and the cooling rate after the second stage annealing. Even if it is controlled to be gradually cooled, the formation of new pearlite cannot be suppressed, which causes a decrease in the spheroidization rate of cementite and an increase in hardness. For this reason, a minimum is made into 3 hours or more. If the holding time exceeds 60 hours, the ferrite grains become too coarse, and the punched parts are caused to have a satin finish. For this reason, the upper limit is set to 60 hr or less.
2段目の焼鈍温度は730℃以上790℃以下とする。焼鈍温度が730℃未満であると、焼鈍中にオーステナイト相が生成しない。このため下限を730℃以上とする。また、2段目の焼鈍温度が790℃を超えるとオーステナイト相へのセメンタイトの溶解が促進し、未溶解のセメンタイトを残存させることが難しくなるため、2段目の焼鈍後に徐冷したとしても、新たなパーライトの生成を抑制できず、セメンタイトの球状化率の低下や硬度の増加を引き起こす。このため、上限を790℃以下とする。 The second stage annealing temperature is set to be 730 ° C. or higher and 790 ° C. or lower. If the annealing temperature is less than 730 ° C., an austenite phase is not generated during annealing. For this reason, a minimum is made into 730 degreeC or more. Further, if the annealing temperature of the second stage exceeds 790 ° C, the dissolution of cementite in the austenite phase is promoted, and it becomes difficult to leave undissolved cementite, so even if it is gradually cooled after the second stage annealing, The formation of new pearlite cannot be suppressed, causing a decrease in cementite spheroidization rate and an increase in hardness. For this reason, an upper limit shall be 790 degrees C or less.
2段目の焼鈍の保持時間は1hr以上12hr以下とする。保持時間が1hr未満であると、箱焼鈍ではコイル全体を均一な温度にすることはできず、コイル長手方向に材質バラツキを生み、商品力を低下させるため、下限を1hr以上とする。保持時間が12hrを超えると、オーステナイト相へのセメンタイトの溶解が促進し、未溶解のセメンタイトを残存させることが難しくなる。このため、上限を12hr以下とする。 The holding time for the second stage annealing is 1 hr or more and 12 hr or less. If the holding time is less than 1 hr, the entire coil cannot be made uniform temperature by box annealing, and material fluctuation occurs in the longitudinal direction of the coil and the product power is reduced. Therefore, the lower limit is set to 1 hr or more. When the holding time exceeds 12 hours, the dissolution of cementite in the austenite phase is promoted, and it becomes difficult to leave undissolved cementite. For this reason, an upper limit shall be 12 hr or less.
2段目焼鈍後の650℃までの冷却速度は20℃/hr以下とする。冷却速度は遅いほど、フェライト/オーステナイト界面の移動速度は小さくなり、未溶解セメンタイトへのC吸着が促進する。一方で、遅くしすぎると焼鈍の時間が長くなるため、生産性の低下を招く。このため、好ましくは1℃/hr以上の冷却速度とする。また、冷却速度が20℃/hrを超えると、フェライト/オーステナイト界面の移動速度が増し、未溶解セメンタイトへのC吸着が不十分となり、このような箇所から新たにパーライトが生成する。これにより、セメンタイトの球状化率の低下や、素材の硬度増加を引き起こすため、上限を20℃/hr以下とする。2段目焼鈍後の冷却は、650℃まで冷却速度を制御することで未溶解セメンタイトへのC吸着を促進させるのに重要で、その後に室温まで冷却するステップ型の焼鈍を施す。 The cooling rate to 650 ° C. after the second stage annealing is 20 ° C./hr or less. The slower the cooling rate, the lower the moving speed of the ferrite / austenite interface, and the C adsorption to undissolved cementite is promoted. On the other hand, if the time is too slow, the annealing time becomes longer, leading to a decrease in productivity. Therefore, the cooling rate is preferably 1 ° C./hr or more. On the other hand, when the cooling rate exceeds 20 ° C./hr, the moving speed of the ferrite / austenite interface increases, C adsorption to undissolved cementite becomes insufficient, and pearlite is newly generated from such a location. This causes a decrease in the spheroidization rate of cementite and an increase in the hardness of the material, so the upper limit is made 20 ° C./hr or less. Cooling after the second stage annealing is important for promoting C adsorption to undissolved cementite by controlling the cooling rate to 650 ° C., and then performing step type annealing for cooling to room temperature.
なお、箱焼鈍の雰囲気は特に限定せず、95%以上窒素の雰囲気、95%以上水素の雰囲気、大気雰囲気いずれの条件でも良い。 The atmosphere of the box annealing is not particularly limited, and may be any condition of 95% or more nitrogen atmosphere, 95% or more hydrogen atmosphere, or air atmosphere.
以上の本発明の製造方法によれば、鋼板表層から板厚方向に200μmまでの領域において、体心立方格子の鉄の(110)面から±5°以内の結晶が鋼板表面に対して平行である方位の集積度を2.5以上に制御し、打ち抜き時のダレを著しく抑制できる鋼板を得ることができ、さらに焼鈍の条件を適正化することにより、素材のフェライト粒径を10μm以上50μm以下、セメンタイト粒子径を0.1μm以上2.0μm以下、セメンタイトの球状化率を85%以上、ビッカース硬さを100HV以上160HV以下に制御し、打ち抜き端面の性状を改善し、金型の寿命を向上可能な、打ち抜き性に優れる中・高炭素鋼板を得ることができる。 According to the manufacturing method of the present invention described above, in the region from the steel sheet surface layer to 200 μm in the thickness direction, crystals within ± 5 ° from the (110) plane of iron of the body-centered cubic lattice are parallel to the steel sheet surface. By controlling the degree of integration in a certain direction to 2.5 or more and obtaining a steel sheet that can significantly suppress sagging during punching, and further optimizing the annealing conditions, the ferrite grain size of the material is 10 μm or more and 50 μm or less. The cementite particle size is controlled to 0.1μm or more and 2.0μm or less, the cementite spheroidization ratio is controlled to 85% or more, the Vickers hardness is controlled to 100HV or more and 160HV or less, the properties of the punched end face are improved, and the die life is improved. It is possible to obtain a medium / high carbon steel plate having excellent punchability.
次に実施例により本発明の効果を説明する。 Next, effects of the present invention will be described with reference to examples.
実施例の水準は、本発明の実施可能性ならびに効果を確認するために採用した実行条件の一例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明要旨を逸脱せず、本発明目的を達する限りにおいては、種々の条件を採用可能とするものである。 The level of the embodiment is an example of execution conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
表1−1〜表1−3に示す成分組成を有する連続鋳造鋳片(鋼塊)を、1030℃で1hr加熱後に熱間圧延し、250mmのスラブを30mmまで粗熱延後、仕上げ熱延素材の粗バーを38℃昇温させ、仕上げ熱延を開始し、700℃で仕上げ熱延後、510℃で巻き取り、板厚3.5mmの熱延コイルを製造した。熱延コイルを酸洗し、95%水素−5%窒素雰囲気において700℃で14hr保持する焼鈍を施し打ち抜き評価用のサンプルを作製した。打ち抜き試験はダイス径10.7mm、ポンチ径10mm、片側クリアランス10%の条件で実施し、円形に打ち抜いたサンプルの表面ダレを実測し、表面性状の観察により打ち抜き性を評価した。打ち抜きダレ長さの測定や打ち抜き端面の表面性状の観察は、キーエンス製のマイクロスコープ(VHX−1000)を用いて実施した。各サンプルの方位集積度は段落(0057)〜(0059)、組織は段落(0060)〜(0063)、硬さは段落(0064)に記載する方法にて測定した。表2−1、表2−2に製造した焼鈍サンプルの打ち抜き性の評価結果を示す。 Continuous cast slabs (steel ingots) having the composition shown in Table 1-1 to Table 1-3 are hot-rolled after heating for 1 hr at 1030 ° C., and after hot-rolling a 250 mm slab to 30 mm, finish hot rolling The raw material bar was heated to 38 ° C. and finishing hot rolling was started. After finishing hot rolling at 700 ° C., winding was performed at 510 ° C. to produce a hot rolled coil having a thickness of 3.5 mm. The hot-rolled coil was pickled, annealed at 700 ° C. for 14 hours in a 95% hydrogen-5% nitrogen atmosphere, and a sample for punching evaluation was produced. The punching test was performed under the conditions of a die diameter of 10.7 mm, a punch diameter of 10 mm, and a one-side clearance of 10%. The surface sagging of the sample punched into a circle was measured, and the punching property was evaluated by observing the surface properties. The measurement of the punching sag length and the observation of the surface properties of the punched end face were carried out using a KEYENCE microscope (VHX-1000). The orientation of each sample was measured by the method described in paragraphs (0057) to (0059), the structure in paragraphs (0060) to (0063), and the hardness in the paragraph (0064). Tables 2-1 and 2-2 show the evaluation results of the punchability of the annealed samples manufactured.
表2−1、表2−2に示すように、発明例のNo.2、3、4、6、7、8、9、10、13、15、16、18、19、21、22、23、26、27、28、29、31、33、34、35、36、37、38、39、40、41、42、43、44、45は、いずれも鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であり、打ち抜きダレの量(mm)が低く、良好な打ち抜き端面性状を示した。 As shown in Tables 2-1 and 2-2, No. 2, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 are all parallel to the (110) plane within ± 5 ° with respect to the steel sheet surface in the region from the steel sheet surface layer to the plate thickness direction 200 μm. The degree of accumulation of the crystal orientation that fits was 2.5 or more, the amount of punching sagging (mm) was low, and good punching end face properties were shown.
これに対して、比較例1は、鋼成分のC量が低いので、熱延での歪蓄積が抑えられたため、集積度が低下し、打ち抜きダレの量が高く、打ち抜き端面性状が劣っていた。比較例5は、高Nによる延性低下のため、熱延中に耳割れが発生した。比較例11は、S量が高いことにより粗大なSulfideの形成のため、打抜き端面の性状度の低下を招いた。比較例12は、Si量が高いことによる延性低下のため、熱延中に耳割れが発生した。比較例14は、P量が高いことによる延性低下のため、熱延中に耳割れが発生した。比較例17は、Al量が高いことによる延性低下のため、熱延中に耳割れが発生した。比較例20は、Mn量が高いことにより、熱延でのフェライト変態が抑えられたため、集積度が低下し、打ち抜きダレの量が高く、打ち抜き端面性状が劣っていた。比較例24は、C量が高いことにより、熱延でのフェライト変態が抑えられたため、集積度が低下し、打ち抜きダレの量が高く、打ち抜き端面性状が劣っていた。比較例25は、Ti量が高いことによる延性低下のため、熱延中に耳割れが発生した。比較例30は、Cr量が高いことによる延性低下のため、熱延中に耳割れが発生した。比較例32は、Ce量が高いことによる粗大なCe−Oxideの形成のため、打抜き端面の性状度の低下を招いた。比較例34は、Mo量が高いことによる延性低下のため、熱延中に耳割れが発生した。比較例35は、Nb量が高いことによる延性低下のため、熱延中に耳割れが発生した。 On the other hand, in Comparative Example 1, since the amount of C in the steel component was low, strain accumulation in hot rolling was suppressed, so the degree of integration was reduced, the amount of punching sagging was high, and the punching end face properties were inferior. . In Comparative Example 5, ear cracks occurred during hot rolling due to a decrease in ductility due to high N. In Comparative Example 11, since the amount of S was high, coarse sulfides were formed, and the quality of the punched end face was lowered. In Comparative Example 12, ear cracks occurred during hot rolling due to a decrease in ductility due to the high Si content. In Comparative Example 14, ear cracks occurred during hot rolling because of a decrease in ductility due to the high amount of P. In Comparative Example 17, ear cracks occurred during hot rolling due to a decrease in ductility due to the high amount of Al. In Comparative Example 20, since the ferrite transformation in hot rolling was suppressed due to the high amount of Mn, the degree of integration was reduced, the amount of punching sagging was high, and the punching end face properties were inferior. In Comparative Example 24, since the ferrite transformation in hot rolling was suppressed due to the high amount of C, the degree of integration was lowered, the amount of punching sagging was high, and the punching end face properties were inferior. In Comparative Example 25, ear cracks occurred during hot rolling due to a decrease in ductility due to the high Ti content. In Comparative Example 30, ear cracks occurred during hot rolling due to a decrease in ductility due to the high Cr content. In Comparative Example 32, due to the formation of coarse Ce-Oxide due to the high amount of Ce, the quality of the punched end face was lowered. In Comparative Example 34, ear cracks occurred during hot rolling because of a decrease in ductility due to the high amount of Mo. In Comparative Example 35, ear cracks occurred during hot rolling because of a decrease in ductility due to a high Nb content.
熱間圧延条件の影響を調べるために、表1−1〜表1−3に示す2、3、4、6、7、8、9、10、13、15、16、18、19、21、22、23、26、27、28、29、31、33、34、35、36、37、38、39、40、41、42、43、44、45の成分をもつスラブを鋳造し、そのまま、あるいは一旦冷却後に1060℃で0.5〜2hr加熱後に粗熱延を開始し、板厚28mmの粗バーを製造し、仕上げ熱延前に粗バーを加熱し、あるいは加熱せずに仕上げ熱延を開始し、種々の温度で仕上げ熱延とコイルへの巻き取りを行い、酸洗あるいは未酸洗の状態で700℃×14hrの焼鈍を施して、製造条件の影響を調査する打ち抜き試験用サンプルを作製した。
表3−1、表3−2に製造条件及び製造した焼鈍サンプルの打ち抜き性の評価結果を示す。
In order to investigate the influence of hot rolling conditions, 2, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 18, 19, 21, shown in Table 1-1 to Table 1-3, Cast a slab having the components 22, 23, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, Alternatively, after hot cooling at 1060 ° C. for 0.5 to 2 hours, rough hot rolling is started, a rough bar having a thickness of 28 mm is manufactured, and the hot bar is heated before finishing hot rolling, or finish hot rolling without heating. Punching test sample that investigates the influence of manufacturing conditions after finishing hot rolling at various temperatures and winding on a coil, annealing at 700 ° C. for 14 hours in a pickled or unpickled state Was made.
Tables 3-1 and 3-2 show the manufacturing conditions and the evaluation results of the punchability of the manufactured annealing samples.
表3−1、表3−2に示すように、発明例2−B、3−A、4−A、6−B、7−A、8−B、9−B、10−B、13−A、15−A、16−B、18−A、19−A、21−B、22−B、23−B、26−B、27−A、28−B、29−B、31−A、33−B、36−A、36−B、37−A、37−B、38−A、38−B、39−A、39−B、40−A、40−B、41−A、41−B、42−A、42−B、43−A、43−B、44−A、44−B、45−A、45−Bは、いずれも鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であり、打ち抜きダレの量(mm)が0.15mm以下と低く、良好な打ち抜き端面性状を示した。 As shown in Table 3-1 and Table 3-2, Invention Examples 2-B, 3-A, 4-A, 6-B, 7-A, 8-B, 9-B, 10-B, 13- A, 15-A, 16-B, 18-A, 19-A, 21-B, 22-B, 23-B, 26-B, 27-A, 28-B, 29-B, 31-A, 33-B, 36-A, 36-B, 37-A, 37-B, 38-A, 38-B, 39-A, 39-B, 40-A, 40-B, 41-A, 41- B, 42-A, 42-B, 43-A, 43-B, 44-A, 44-B, 45-A, 45-B are all in the region from the steel plate surface layer to the plate thickness direction 200 μm ( 110) The degree of accumulation of crystal orientations in which the plane falls within a parallelism within ± 5 ° with respect to the steel sheet surface is 2.5 or more, and the amount of punching sag (mm) is as low as 0.15 mm or less, and a good punching end face sex It is shown.
これに対して、比較例2−Aは、低CT(巻取り温度)により鋼板が脆化し、コイル巻きほどき時に割れが発生し、製造条件が適切でなかった例である。比較例3−Bは、粗バー非加熱により表層が混粒となったため、(110)への方位集積度が2.5未満であって、打ち抜きダレの量(mm)が高く、打ち抜き性が劣っていた。比較例4−Bは、低FT(熱延仕上げ温度)により圧延荷重が増加したため通板性が低下し、更に低CTにより鋼板が脆化してコイル巻きほどき時に割れが発生した。 On the other hand, Comparative Example 2-A is an example in which the steel sheet becomes brittle due to low CT (winding temperature), cracks occur during coil unwinding, and manufacturing conditions are not appropriate. In Comparative Example 3-B, since the surface layer became mixed grains due to the non-heating of the coarse bar, the orientation accumulation degree to (110) was less than 2.5, the amount of punching sag (mm) was high, and the punchability was high It was inferior. In Comparative Example 4-B, the rolling load increased due to the low FT (hot rolling finishing temperature), so that the plate passing property was lowered. Further, the steel plate became brittle due to the low CT, and cracking occurred when the coil was unwound .
比較例7−Bは、高FTため(110)への方位集積が2.5未満であり、更に高CTにより粗大なパーライトラメラが生成したため打抜き端面性状が低下した。 Since Comparative Example 7-B had a high FT, the orientation accumulation in (110) was less than 2.5, and further, a coarse pearlite lamella was generated by high CT, and the punched end face properties were deteriorated.
比較例8−Aは、低FTにより圧延荷重が増加したため通板性が低下した。 In Comparative Example 8-A, the rolling load increased due to the low FT, so that the plate passing property was lowered.
比較例9−Aは、高FTため(110)への方位集積が2.5未満であり、打ち抜きダレの量が高く、打ち抜き端面性状が劣っていた。 Since Comparative Example 9-A had a high FT, the orientation accumulation in (110) was less than 2.5, the amount of punching sagging was high, and the punching end face properties were inferior.
比較例10−Aは、高CTにより粗大なパーライトラメラが生成したため打抜き端面性状が低下した。 In Comparative Example 10-A, a rough pearlite lamella was generated by high CT, and thus the punched end face properties were deteriorated.
比較例15−Bは、高CTにより粗大なパーライトラメラが生成したため打抜き端面性状が低下した。 In Comparative Example 15-B, a rough pearlite lamella was generated by high CT, and thus the punched end face properties were deteriorated.
比較例16−Aは、低FTにより圧延荷重が増加したため通板性が低下した。 In Comparative Example 16-A, the rolling load was increased due to the low FT, and thus the plate passing property was lowered.
比較例18−Bは、高CTにより粗大なパーライトラメラが生成したため打抜き端面性状が低下した。 In Comparative Example 18-B, a rough pearlite lamella was generated by high CT, and thus the punched end face properties were deteriorated.
比較例19−Bは、低FTにより圧延荷重が増加したため通板性が低下し、更に低CTにより鋼板が脆化してコイル巻きほどき時に割れが発生した。 In Comparative Example 19-B, the rolling load increased due to the low FT, so that the sheet passing property decreased. Further, the steel plate became brittle due to the low CT, and cracking occurred when the coil was unwound.
比較例21−Aは、粗バー非加熱により表層が混粒となったため、(110)への方位集積度が2.5未満であって、打ち抜きダレの量が高く、打ち抜き端面性状が劣っていた。 In Comparative Example 21-A, the surface layer became mixed grains due to the non-heating of the coarse bar, so the orientation accumulation degree to (110) was less than 2.5, the amount of punching sagging was high, and the punching end face property was inferior. It was.
比較例22−Aは、低CTにより鋼板が脆化し、コイル巻きほどき時に割れが発生した。 In Comparative Example 22-A, the steel plate became brittle due to low CT, and cracking occurred when the coil was unwound.
比較例27−Bは、高FTため(110)への方位集積が2.5未満であって、打ち抜きダレの量が高く、打ち抜き端面性状が劣っていた。 In Comparative Example 27-B, the orientation accumulation in (110) was less than 2.5 due to the high FT, the amount of punching sagging was high, and the punching end face properties were inferior.
比較例29−Aは、粗バー非加熱により表層が混粒となったため、(110)への方位集積度が2.5未満であって、打ち抜きダレの量が高く、打ち抜き端面性状が劣っていた。 The ratio Comparative Examples 29-A, because the surface layer becomes mixed grains by the rough bar unheated, be less than the orientation degree of integration of the (110) 2.5, high amount of punching sagging, inferior punched end surface properties It was.
比較例31−Bは、高CTにより粗大なパーライトラメラが生成したため打抜き端面性状が低下した。 In Comparative Example 31-B, a rough pearlite lamella was generated due to high CT, and thus the punched end face properties were deteriorated.
比較例33−Aは、低FTにより圧延荷重が増加したため通板性が低下した。
以上のように、製造条件が適切でなければ、品質の良い鋼板を製造することが困難となる。
In Comparative Example 33-A, the rolling load was increased due to the low FT, and thus the sheet passing property was lowered.
As described above, if the manufacturing conditions are not appropriate, it is difficult to manufacture a high-quality steel sheet.
続いて、フェライト+セメンタイト域における焼鈍条件の影響を調べるために、表1に示す2、3、4、6、7、8、9、10、13、15、16、18、19、21、22、23、26、27、28、29、31、33、34、35、36、37、38、39、40、41、42、43、44、45の成分をもつスラブを鋳造し、そのまま、あるいは一旦冷却後に1010℃で0.5〜2hr加熱後に粗熱延を開始し、粗熱延後の板厚35mmの粗バーを仕上げ圧延開始前に加熱した後に、仕上げ熱延を開始し、種々の温度で仕上げ熱延とコイルへの巻き取りを行い、酸洗あるいは未酸洗の状態で焼鈍を施して、製造条件の影響を調査する打ち抜き試験用サンプルを作製した。
表4に焼鈍条件及び製造した焼鈍サンプルの打ち抜き性の評価結果を示す。
Subsequently, 2, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 18, 19, 21, 22 shown in Table 1 to examine the influence of annealing conditions in the ferrite + cementite region. , 23, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, cast as-is, or After cooling, the hot rolling is started after heating at 1010 ° C. at 0.5 to 2 hours, and the rough bar having a thickness of 35 mm after the hot rolling is heated before the finishing rolling is started, and then the finishing hot rolling is started. Finishing hot rolling at a temperature and winding on a coil were performed, and annealing was performed in a pickled or non-pickled state, and a sample for a punch test for investigating the influence of manufacturing conditions was produced.
Table 4 shows the annealing conditions and the evaluation results of the punchability of the manufactured annealing samples.
表4に示すように、発明例2−C、3−C、4−C、6−C、8−C、9−C、16−C、18−C、19−C、21−C、23−C、27−C、29−C、31−C、33−C、36−C、37−C、38−C、39−C、40−C、41−C、42−C、43−C、44−C、45−Cは、いずれも鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であり、打ち抜きダレの量(mm)が低く、良好な打ち抜き端面性状を示した。 As shown in Table 4, Invention Examples 2-C, 3-C, 4-C, 6-C, 8-C, 9-C, 16-C, 18-C, 19-C, 21-C, 23 -C, 27-C, 29-C, 31-C, 33-C, 36-C, 37-C, 38-C, 39-C, 40-C, 41-C, 42-C, 43-C 44-C and 45-C both have a degree of accumulation of crystal orientations in which the (110) plane falls within the parallelism within ± 5 ° with respect to the steel plate surface in the region from the steel sheet surface layer to the plate thickness direction of 200 μm. The amount of punching sagging (mm) was low, and the punched end face properties were good.
これに対して、比較例7−Cは、焼鈍温度が高く、針状セメンタイトに起因して打抜き端面性状が低下した。 On the other hand, Comparative Example 7-C had a high annealing temperature, and the punched end face properties were deteriorated due to acicular cementite.
比較例10−Cは、焼鈍温度が高く、針状セメンタイトに起因して打抜き端面性状が低下した。 In Comparative Example 10-C, the annealing temperature was high, and the punched end face properties were lowered due to the acicular cementite.
比較例13−Cは、焼鈍時間が長すぎて、ダレ面周辺に梨地が発生し、低硬度のためダレ量は増加した。 In Comparative Example 13-C, the annealing time was too long, pear texture was generated around the sagging surface, and the sagging amount increased due to low hardness.
比較例15−Cは、焼鈍時間が短すぎて、微細セメンタイトに起因して破断面比率が増加したため端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 15-C, the annealing time was too short, and the fracture surface ratio was increased due to the fine cementite, so that the end face properties were lowered, and the mold was damaged due to high hardness.
比較例22−Cは、焼鈍温度が低いため、ダレ面周辺にストレッチャーストレインが発生し、高硬度のため金型が損傷した。比較例26−Cは、焼鈍温度が低いため、微細セメンタイトに起因して破断面比率が増加したため打ち抜き端面性状が低下した。 In Comparative Example 22-C, since the annealing temperature was low, stretcher strain was generated around the sag surface, and the mold was damaged due to high hardness. In Comparative Example 26-C, since the annealing temperature was low, the fracture surface ratio was increased due to the fine cementite, and thus the punched end face properties were deteriorated.
比較例38−Cは、焼鈍時間が長すぎて、粗大セメンタイトに起因して打抜き端面性状が低下し、低硬度のためダレ量は増加した。 In Comparative Example 38-C, the annealing time was too long, the punched end face properties were lowered due to coarse cementite, and the sagging amount was increased due to low hardness.
最後に、フェライト+オーステナイト+セメンタイト域における焼鈍条件の影響を調べるために、表1−1〜表1−3に示す2、3、4、6、7、8、9、10、13、15、16、18、19、21、22、23、26、27、28、29、31、33、36、37、38、39、40、41、42、43、44、45の成分をもつスラブを鋳造し、そのまま、あるいは一旦冷却後に1040℃で0.5〜2hr加熱後に粗熱延を開始し、粗圧延後の板厚33mmの粗バーを仕上げ圧延前に加熱した後に、仕上げ熱延を開始し、種々の温度で仕上げ熱延とコイルへの巻き取りを行い、酸洗あるいは未酸洗の状態でフェライト+オーステナイト+セメンタイト域で焼鈍を施して、製造条件の影響を調査する打ち抜き試験用サンプルを作製した。表5に製造条件及び製造した焼鈍サンプルの打ち抜き性の評価結果を示す。
Finally, in order to investigate the influence of annealing conditions in the ferrite + austenite + cementite region, 2, 3, 4, 6, 7, 8, 9, 10, 13, 15, shown in Table 1-1 to Table 1-3, Casting slabs with components 16, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 As it is, or after cooling, it starts rough hot rolling after heating at 1040 ° C. for 0.5 to 2 hours. After heating the rough bar having a thickness of 33 mm after rough rolling before finish rolling, finish hot rolling is started. Samples for punching tests to investigate the effects of manufacturing conditions by performing hot rolling and coiling on coils at various temperatures, annealing in ferrite + austenite + cementite region in pickled or
表5に示すように、発明例2−D、3−D、4−D、6−D、7−D、8−D、15−D、18−D、19−D、22−D、28−D、29−D、31−D、33−D、36−D、37−D、38−D、39−D、40−D、41−D、42−D、43−D、44−D、45−Dは、いずれも鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であり、打ち抜きダレの量(mm)が低く、良好な打ち抜き端面性状を示した。 As shown in Table 5, Invention Examples 2-D, 3-D, 4-D, 6-D, 7-D, 8-D, 15-D, 18-D, 19-D, 22-D, 28 -D, 29-D, 31-D, 33-D, 36-D, 37-D, 38-D, 39-D, 40-D, 41-D, 42-D, 43-D, 44-D , 45-D has a crystal orientation accumulation degree of 2.5 or more in which the (110) plane falls within the parallelism within ± 5 ° with respect to the steel plate surface in the region from the steel sheet surface layer to the plate thickness direction of 200 μm. Yes, the amount of punching sagging (mm) was low, and good punching end face properties were shown.
これに対して、比較例9−Dは、1段目の焼鈍温度が高く、針状セメンタイトに起因して打抜き端面性状が低下した。 On the other hand, in Comparative Example 9-D, the annealing temperature at the first stage was high, and the punching end face properties were deteriorated due to acicular cementite.
比較例10−Dは、2段目の焼鈍温度が高く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 10-D, the annealing temperature at the second stage was high, the punched end face properties were lowered due to acicular cementite, and the mold was damaged due to high hardness.
比較例13−Dは、2段目の焼鈍時間が長く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 13-D, the annealing time in the second stage was long, the punched end face properties were lowered due to acicular cementite, and the mold was damaged due to high hardness.
比較例16−Dは、1段目の焼鈍時間が長く、ダレ面周辺に梨地が発生し打抜き部材の美観が低下した。 In Comparative Example 16-D, the annealing time of the first stage was long, and a satin finish was generated around the sag surface, and the aesthetic appearance of the punched member was lowered.
比較例21−Dは、1段目の焼鈍時間が短く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した
比較例23−Dは、冷却速度が速すぎて、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した
比較例26−Dは、2段目の焼鈍時間が短く、コイル長手方向で材質バラツキが発生した。
In Comparative Example 21-D, the annealing time of the first stage was short, the punched end face property was lowered due to acicular cementite, and the mold was damaged due to high hardness. Comparative Example 23-D had a high cooling rate. In comparison example 26-D, the die end face was deteriorated due to needle-like cementite, and the mold was damaged due to high hardness. In Comparative Example 26-D, the annealing time of the second stage was short, and material variation occurred in the coil longitudinal direction. did.
比較例27−Dは、1段目の焼鈍温度が低く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 27-D, the annealing temperature at the first stage was low, the punched end face properties were lowered due to acicular cementite, and the mold was damaged due to high hardness.
表4及び表5で作製したサンプルの組織形態を表6−1、表6−2に示す。素材のフェライト粒径を10μm以上50μm以下、セメンタイト粒子径を0.1μm以上2.0μm以下、セメンタイトの球状化率を85%以上、ビッカース硬さを100HV以上160HV以下に制御することで、打ち抜き面の美観(打ち抜きダレの減少)、打ち抜き端面の性状や、更には金型寿命の延長をさらに改善できることは明らかである。 Table 6-1 and Table 6-2 show the tissue morphology of the samples prepared in Tables 4 and 5. By controlling the ferrite particle diameter of the material from 10 μm to 50 μm, the cementite particle diameter from 0.1 μm to 2.0 μm, the spheroidization rate of cementite to 85% or more, and the Vickers hardness from 100 HV to 160 HV, It is clear that the aesthetic appearance (reduction in punching sagging), the properties of the punched end face, and further the extension of the die life can be further improved.
すなわち、表6−1、表6−2に示すように、発明例2−C、3−C、4−C、6−C、8−C、9−C、16−C、18−C、19−C、21−C、23−C、27−C、29−C、31−C、33−C、36−C、37−C、38−C、39−C、40−C、41−C、42−C、43−C、44−C、45−C、2−D、3−D、4−D、6−D、7−D、8−D、15−D、18−D、19−D、22−D、28−D、29−D、31−D、36−D、37−D、38−D、39−D、40−D、41−D、42−D、43−D、44−D、45−Dは、いずれもセメンタイト粒子径が0.1μm以上2.0μm以下、セメンタイトの球状化率が85%以上、フェライト粒径が10μm以上50μm以下、ビッカース硬さが100HV以上160HV以下となっていて、打ち抜きダレの減少、打抜き端面の性状、更には金型寿命の延長に良好な結果を示していた。 That is, as shown in Table 6-1 and Table 6-2, Invention Examples 2-C, 3-C, 4-C, 6-C, 8-C, 9-C, 16-C, 18-C, 19-C, 21-C, 23-C, 27-C, 29-C, 31-C, 33-C, 36-C, 37-C, 38-C, 39-C, 40-C, 41- C, 42-C, 43-C, 44-C, 45-C, 2-D, 3-D, 4-D, 6-D, 7-D, 8-D, 15-D, 18-D, 19-D, 22-D, 28-D, 29-D, 31-D, 36-D, 37-D, 38-D, 39-D, 40-D, 41-D, 42-D, 43- D, 44-D and 45-D all have a cementite particle size of 0.1 μm or more and 2.0 μm or less, a cementite spheroidization ratio of 85% or more, a ferrite particle size of 10 μm or more and 50 μm or less, and a Vickers hardness of 100 HV. It becomes less over 160HV, decreased punching sag, properties of the punched end surface was further showed good results in the extension of die life.
これに対して、比較例7−Cは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下した。 In contrast, in Comparative Example 7-C, the spheroidization rate of cementite was low, and the punched end face properties were lowered due to the acicular cementite.
比較例10−Cは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下した。 In Comparative Example 10-C, the spheroidization rate of cementite was low, and the punched end face properties were lowered due to the acicular cementite.
比較例13−Cは、ダレ面周辺に梨地が発生し、低硬度のためダレ量は増加した。 In Comparative Example 13-C, a satin texture was generated around the sagging surface, and the sagging amount increased due to low hardness.
比較例15−Cは、セメンタイト粒子径が小さすぎ、微細セメンタイトに起因して破断面比率が増加したため端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 15-C, the cementite particle diameter was too small, and the fractured surface ratio was increased due to fine cementite. Therefore, the end face properties were lowered, and the mold was damaged due to high hardness.
比較例22−Cは、ダレ面周辺にストレッチャーストレインが発生し、高硬度のため金型が損傷した。 In Comparative Example 22-C, stretcher strain occurred around the sag surface, and the mold was damaged due to high hardness.
比較例26−Cは、微細セメンタイトに起因して破断面比率が増加したため端面性状が低下した。 In Comparative Example 26-C, the fractured surface ratio increased due to the fine cementite, and therefore the end face properties decreased.
比較例28−Cは、粗大セメンタイトに起因して打抜き端面性状が低下し、低硬度のためダレ量は増加した。 In Comparative Example 28-C, the punched end face properties decreased due to coarse cementite, and the amount of sagging increased due to low hardness.
比較例9−Dは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下した。 In Comparative Example 9-D, the spheroidization rate of cementite was low, and the punched end face properties were lowered due to the acicular cementite.
比較例10−Dは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 10-D, the spheroidization rate of cementite was low, the punched end face properties were deteriorated due to acicular cementite, and the mold was damaged due to high hardness.
比較例13−Dは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 13-D, the spheroidization rate of cementite was low, the punched end face properties were deteriorated due to acicular cementite, and the mold was damaged due to high hardness.
比較例16−Dは、フェライト粒径が小さく、ダレ面周辺に梨地が発生し打抜き部材の美観が低下した。 In Comparative Example 16-D, the ferrite grain size was small, a satin texture was generated around the sag surface, and the appearance of the punched member was lowered.
比較例21−Dは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 21-D, the spheroidization rate of cementite was low, the punched end face property was lowered due to acicular cementite, and the mold was damaged due to high hardness.
比較例23−Dは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下し、高硬度のため金型が損傷した。 In Comparative Example 23-D, the spheroidization rate of cementite was low, the punched end face properties were deteriorated due to acicular cementite, and the mold was damaged due to high hardness.
比較例26−Dは、コイル長手方向で材質バラツキが発生し、低硬度のためダレ量は増加した。 In Comparative Example 26-D, material variation occurred in the longitudinal direction of the coil, and the sagging amount increased due to low hardness.
比較例27−Dは、セメンタイトの球状化率が低く、針状セメンタイトに起因して打抜き端面性状が低下した In Comparative Example 27-D, the spheroidization rate of cementite was low, and the punched end face properties were lowered due to the acicular cementite.
表3−1、表3−2の実施例をもとに作成した製造条件の最適範囲を図2に示す。図2は熱延仕上げ温度と巻取温度の最適製造範囲を示す図で、図中において○印は発明例、×印は比較例を示している。600℃以上Ae3−20℃未満の温度域で仕上げ熱延を完了し、400℃以上650℃未満で巻取ることにより、○印の発明例に示すように、打ち抜き性に優れる中・高炭素熱延鋼板を得ることができることが分る。 FIG. 2 shows the optimum range of manufacturing conditions created based on the examples of Tables 3-1 and 3-2. FIG. 2 is a diagram showing the optimum manufacturing range of the hot rolling finishing temperature and the coiling temperature. In the figure, a circle indicates an invention example and a cross indicates a comparative example. Finishing hot rolling in a temperature range of 600 ° C. or more and less than Ae 3-20 ° C., and winding it at 400 ° C. or more and less than 650 ° C. It can be seen that a rolled steel sheet can be obtained.
表6−1、表6−2の実施例から作成した打ち抜き性に優れる中・高炭素鋼板の最適組織マップを図3に示す。図3はフェライト粒径とセメンタイト粒子径の最適形態範囲を示す図で、○印は打ち抜き性が最も良好(Best)な例で、×印は打ち抜き性が良好(Better)な例を示していて、鋼板表面から200μmの領域での結晶方位の制御による打ち抜きダレの低減に加えて、特に、鋼板の組織をフェライト粒径が10μm以上50μm以下、セメンタイト粒子径が0.1μm以上2.0μm以下の組織(○印の例)とすることにより、打ち抜き端面の性状や金型損耗の低減を果たすことができ、打ち抜き性は×印で示す例よりも更に向上することが分る。 FIG. 3 shows an optimum structure map of the medium and high carbon steel plates having excellent punchability created from the examples in Table 6-1 and Table 6-2. FIG. 3 is a diagram showing the optimum form ranges of the ferrite particle size and the cementite particle size. The circles indicate examples with the best punchability (Best), and the crosses indicate examples with the best punchability (Better). In addition to the reduction of punching by controlling the crystal orientation in the region of 200 μm from the surface of the steel sheet, in particular, the structure of the steel sheet has a ferrite particle size of 10 μm to 50 μm and a cementite particle size of 0.1 μm to 2.0 μm. By using the structure (example of ◯), it is possible to reduce the properties of the punched end face and the wear of the mold, and it is understood that the punchability is further improved as compared to the example indicated by X.
Claims (6)
C:0.10〜0.70%、
Si:0.01〜1.0%、
Mn:0.1〜3.0%、
P:0.001〜0.025%、
S:0.0001〜0.010%、
Al:0.001〜0.10%、
N:0.001〜0.010%、
を含有し、残部がFeおよび不純物からなる鋼板であり、
前記鋼板の組織がフェライトおよびセメンタイトからなり、
鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であることを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板。 % By mass
C: 0.10 to 0.70%,
Si: 0.01 to 1.0%,
Mn: 0.1 to 3.0%
P: 0.001 to 0.025%,
S: 0.0001 to 0.010%,
Al: 0.001 to 0.10%,
N: 0.001 to 0.010%,
And the balance is a steel plate consisting of Fe and impurities,
The steel sheet structure is composed of ferrite and cementite,
Punchability characterized in that in the region from the steel sheet surface layer to the plate thickness direction 200 μm, the degree of accumulation of crystal orientations in which the (110) plane falls within the parallelism within ± 5 ° with respect to the steel sheet surface is 2.5 or more Medium and high carbon hot-rolled steel sheet with excellent resistance.
Ti:0.01〜0.20%、
Cr:0.01〜1.50%、
Mo:0.01〜0.50%、
B:0.0001〜0.010%、
Nb:0.001〜0.10%、
V:0.001〜0.2%、
Cu:0.001〜0.4%
W:0.001〜0.5%、
Ta:0.001〜0.5%、
Ni:0.001〜0.5%、
Mg:0.001〜0.03%、
Ca:0.001〜0.03%、
Y:0.001〜0.03%、
Zr:0.001〜0.03%、
La:0.001〜0.03%
Ce:0.001〜0.030%
の内の1種または2種以上を含有することを特徴とする請求項1記載の打ち抜き性に優れる中・高炭素熱延鋼板。 The steel sheet is in mass% as an additive element, and
Ti: 0.01-0.20%,
Cr: 0.01 to 1.50%,
Mo: 0.01 to 0.50%,
B: 0.0001 to 0.010%,
Nb: 0.001 to 0.10%,
V: 0.001 to 0.2%,
Cu: 0.001 to 0.4%
W: 0.001 to 0.5%,
Ta: 0.001 to 0.5%,
Ni: 0.001 to 0.5%,
Mg: 0.001 to 0.03%,
Ca: 0.001 to 0.03%,
Y: 0.001 to 0.03%,
Zr: 0.001 to 0.03%,
La: 0.001 to 0.03%
Ce: 0.001 to 0.030%
The medium / high carbon hot-rolled steel sheet having excellent punchability according to claim 1, wherein one or more of them are contained.
フェライト粒径が10μm以上50μm以下であり、
セメンタイト粒子径が0.1μm以上2.0μm以下であり、
セメンタイトの球状化率が85%以上である組織を有し、
ビッカース硬さが100HV以上160HV以下
であることを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板。 The steel sheet according to claim 1 or 2,
The ferrite particle size is 10 μm or more and 50 μm or less,
The cementite particle size is 0.1 μm or more and 2.0 μm or less,
Having a structure in which the spheroidization rate of cementite is 85% or more,
A medium / high carbon hot-rolled steel sheet excellent in punchability characterized by having a Vickers hardness of 100HV or more and 160HV or less.
前記熱延鋼板の組織がフェライトおよびセメンタイトからなり、
鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であることを特徴とする打ち抜き性に優れる中・高炭素熱延鋼板の製造方法。 When the continuous cast slab of the component according to claim 1 or 2 is directly or once cooled and then heated and hot-rolled, the rough bar is heated after the completion of the rough hot rolling to raise the temperature by 20 to 150 ° C. , Finish hot rolling in a temperature range of 600 ° C. or more and less than Ae 3-20 ° C., and hot-rolled steel sheet picked up at 400 ° C. or more and less than 650 ° C. as it is, or pickled and manufactured by box annealing ,
The structure of the hot-rolled steel sheet is composed of ferrite and cementite,
Punchability characterized in that in the region from the steel sheet surface layer to the plate thickness direction 200 μm, the degree of accumulation of crystal orientations in which the (110) plane falls within the parallelism within ± 5 ° with respect to the steel sheet surface is 2.5 or more Method for producing medium and high carbon hot-rolled steel sheets that excel in heat resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013261091A JP6439248B2 (en) | 2013-12-18 | 2013-12-18 | Medium / high carbon steel sheet with excellent punchability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013261091A JP6439248B2 (en) | 2013-12-18 | 2013-12-18 | Medium / high carbon steel sheet with excellent punchability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015117406A JP2015117406A (en) | 2015-06-25 |
JP6439248B2 true JP6439248B2 (en) | 2018-12-19 |
Family
ID=53530419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013261091A Active JP6439248B2 (en) | 2013-12-18 | 2013-12-18 | Medium / high carbon steel sheet with excellent punchability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6439248B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111655893A (en) * | 2018-01-30 | 2020-09-11 | 杰富意钢铁株式会社 | High carbon hot-rolled steel sheet and method for producing same |
CN111884437B (en) * | 2020-07-08 | 2021-10-29 | 东风汽车集团有限公司 | Composite torsion device and torsion method for motor flat wire winding |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2017012858A (en) * | 2015-04-10 | 2018-01-15 | Nippon Steel & Sumitomo Metal Corp | Steel sheet with excellent cold workability during forming, and process for producing same. |
CN107614727B (en) * | 2015-05-26 | 2020-01-14 | 日本制铁株式会社 | Steel sheet and method for producing same |
CN107614728B (en) | 2015-05-26 | 2020-04-21 | 日本制铁株式会社 | Steel sheet and method for producing same |
TWI612154B (en) * | 2015-05-26 | 2018-01-21 | Nippon Steel & Sumitomo Metal Corp | Steel plate and method of manufacturing same |
US20180171445A1 (en) * | 2015-06-17 | 2018-06-21 | Nippon Steel & Sumitomo Metal Corporation | Steel plate and method of production of same |
CN105441808B (en) * | 2016-01-30 | 2017-08-29 | 山东旋金机械有限公司 | A kind of material for being used to prepare crude wood rotary cutter pressure roller |
CN105599791A (en) * | 2016-03-04 | 2016-05-25 | 国网山东省电力公司平邑县供电公司 | Wire pole transport cart |
JP6728929B2 (en) * | 2016-04-20 | 2020-07-22 | 日本製鉄株式会社 | High carbon steel sheet excellent in workability and wear resistance after quenching and tempering and method for producing the same |
US20190211415A1 (en) * | 2016-05-10 | 2019-07-11 | Borgwarner Inc. | Niobium and chromium low alloy carbon steel for high wear resistant automotive chain link plates |
JP6747228B2 (en) * | 2016-10-04 | 2020-08-26 | 日本製鉄株式会社 | Method for producing high carbon steel strip with excellent workability |
CN110325657A (en) * | 2017-02-21 | 2019-10-11 | 杰富意钢铁株式会社 | High-carbon hot-rolled steel sheet and its manufacturing method |
CN107420485A (en) * | 2017-06-21 | 2017-12-01 | 苏州顺革智能科技有限公司 | A kind of wear-resisting durable high-strength chain |
CN107314081A (en) * | 2017-09-05 | 2017-11-03 | 苏州顺革智能科技有限公司 | A kind of durable chain of high yield tension |
WO2019163828A1 (en) | 2018-02-23 | 2019-08-29 | Jfeスチール株式会社 | High-carbon cold-rolled steel sheet and production method therefor |
CN109082602A (en) * | 2018-09-17 | 2018-12-25 | 四川易亨机械制造有限公司 | A kind of steel alloy of excellent combination property and preparation method thereof |
CN109023096A (en) * | 2018-09-17 | 2018-12-18 | 四川易亨机械制造有限公司 | A kind of high performance low-alloy steel and preparation method thereof for pitching the heart for manufacturing railway |
KR102209555B1 (en) * | 2018-12-19 | 2021-01-29 | 주식회사 포스코 | Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor |
KR102209556B1 (en) * | 2018-12-19 | 2021-01-29 | 주식회사 포스코 | Steel sheet having excellent hole-expandability, formed member, and manufacturing method of therefor |
EP3933055A4 (en) | 2019-02-28 | 2022-01-05 | JFE Steel Corporation | Steel sheet, member, and methods for producing same |
KR102289519B1 (en) * | 2019-11-22 | 2021-08-12 | 현대제철 주식회사 | Hot-rolled steel and method of manufacturing the same |
KR102415764B1 (en) * | 2019-12-20 | 2022-07-01 | 주식회사 포스코 | Hot rolled steel sheet, annealed hot rolled steel sheet, parts having excellent austampering heat treatment property and method of manufacturing thereof |
KR102415763B1 (en) * | 2019-12-20 | 2022-07-04 | 주식회사 포스코 | Hot rolled steel suitable for post heat treatable complex shaped parts with excellent hold expansion ratio and excellent yield ratio, parts, and menufacturing for the same |
CN113322409B (en) * | 2020-02-28 | 2022-06-28 | 宝山钢铁股份有限公司 | High-strength and high-toughness mining chain steel and manufacturing method thereof |
CN115244202B (en) * | 2020-05-08 | 2023-06-13 | 日本制铁株式会社 | Hot-rolled steel sheet and method for producing same |
JP7513008B2 (en) | 2021-12-21 | 2024-07-09 | Jfeスチール株式会社 | Manufacturing method for steel plate with low edge crack occurrence rate |
KR20230095153A (en) * | 2021-12-21 | 2023-06-29 | 주식회사 포스코 | Hot rolled steel with excellent cold bendability, steel tube, steel member after heat treatment, and method for manufacturing thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4486334B2 (en) * | 2003-09-30 | 2010-06-23 | 新日本製鐵株式会社 | High yield ratio high strength hot-rolled steel sheet and high yield ratio high strength hot dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high strength alloyed hot dip galvanized steel sheet and manufacturing method thereof |
JP5292698B2 (en) * | 2006-03-28 | 2013-09-18 | Jfeスチール株式会社 | Extremely soft high carbon hot-rolled steel sheet and method for producing the same |
JP4992275B2 (en) * | 2006-03-31 | 2012-08-08 | Jfeスチール株式会社 | Steel plate excellent in fine blanking workability and manufacturing method thereof |
JP4992277B2 (en) * | 2006-03-31 | 2012-08-08 | Jfeスチール株式会社 | Steel plate excellent in fine blanking workability and manufacturing method thereof |
-
2013
- 2013-12-18 JP JP2013261091A patent/JP6439248B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111655893A (en) * | 2018-01-30 | 2020-09-11 | 杰富意钢铁株式会社 | High carbon hot-rolled steel sheet and method for producing same |
CN111655893B (en) * | 2018-01-30 | 2022-05-03 | 杰富意钢铁株式会社 | High carbon hot-rolled steel sheet and method for producing same |
CN111884437B (en) * | 2020-07-08 | 2021-10-29 | 东风汽车集团有限公司 | Composite torsion device and torsion method for motor flat wire winding |
Also Published As
Publication number | Publication date |
---|---|
JP2015117406A (en) | 2015-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6439248B2 (en) | Medium / high carbon steel sheet with excellent punchability and method for producing the same | |
JP6119924B1 (en) | Steel sheet and manufacturing method thereof | |
JP6160783B2 (en) | Steel sheet and manufacturing method thereof | |
JP4903839B2 (en) | Soft high carbon steel plate excellent in punchability and manufacturing method thereof | |
JP5064525B2 (en) | High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same | |
JP6070912B1 (en) | Steel sheet excellent in cold workability during forming and method for producing the same | |
WO2016204288A1 (en) | Steel sheet and manufacturing method | |
JP5358914B2 (en) | Super soft high carbon hot rolled steel sheet | |
JP2007291514A (en) | Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor | |
US9896750B2 (en) | Steel wire rod having high strength and ductility and method for producing same | |
CN109207696B (en) | Production method of ultra-deep drawing cold-rolled annealed low-carbon steel strip with low earing rate | |
JP5197076B2 (en) | Medium and high carbon steel sheet with excellent workability and manufacturing method thereof | |
KR20120099507A (en) | Steel plate having excellent moldability and shape retention, and method for producing same | |
JP6809653B1 (en) | Ferritic stainless steel sheet and its manufacturing method | |
JP2016216809A (en) | Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor | |
JP2010202922A (en) | Method for manufacturing cold-rolled steel sheet superior in recrystallization softening resistance, and cold-rolled steel sheet for automatic transmission | |
JP5639573B2 (en) | High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same | |
CN111742076B (en) | High carbon cold rolled steel sheet and method for manufacturing same | |
JP7472992B2 (en) | Cold-rolled steel sheet and method for producing the same | |
JP7564420B2 (en) | Manufacturing method of hot stamped parts | |
JP7564419B2 (en) | Manufacturing method of hot stamped parts | |
JP7525773B2 (en) | Steel sheet for hot stamped parts and its manufacturing method | |
WO2024203318A1 (en) | Ferritic stainless steel sheet | |
JP5639572B2 (en) | High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same | |
JP6331511B2 (en) | Cold rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180919 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181105 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6439248 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |