JP6438309B2 - Torsional damper - Google Patents

Torsional damper Download PDF

Info

Publication number
JP6438309B2
JP6438309B2 JP2015011012A JP2015011012A JP6438309B2 JP 6438309 B2 JP6438309 B2 JP 6438309B2 JP 2015011012 A JP2015011012 A JP 2015011012A JP 2015011012 A JP2015011012 A JP 2015011012A JP 6438309 B2 JP6438309 B2 JP 6438309B2
Authority
JP
Japan
Prior art keywords
dynamic vibration
torsional
frequency
vibration absorber
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015011012A
Other languages
Japanese (ja)
Other versions
JP2016136030A (en
Inventor
泰邦 宮崎
泰邦 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2015011012A priority Critical patent/JP6438309B2/en
Publication of JP2016136030A publication Critical patent/JP2016136030A/en
Application granted granted Critical
Publication of JP6438309B2 publication Critical patent/JP6438309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車エンジンのクランクシャフト等、回転軸に取り付けられるトーショナルダンパに関する。   The present invention relates to a torsional damper attached to a rotating shaft such as a crankshaft of an automobile engine, for example.

自動車エンジンのクランクシャフトの端部に取り付けられるプーリには、エンジンの駆動に伴ってクランクシャフトに生じる捩り振動(回転方向の振動)による不具合の発生を防止するための捩り振動低減機能を備えており、すなわちトーショナルダンパが構成されている。この種のトーショナルダンパはゴム弾性体と質量体からなる動的吸振部を備え、この動的吸振部の共振周波数をクランクシャフトの捩り振幅が最大となる振動周波数域にチューニングし、動的吸振部の共振による振動変位が入力振動と逆方向へ生じることによって、クランクシャフトの捩り振幅のピークを低減する制振効果を発揮するものである。   The pulley attached to the end of the crankshaft of an automobile engine has a torsional vibration reduction function to prevent the occurrence of problems due to torsional vibration (vibration in the rotational direction) that occurs on the crankshaft as the engine is driven. That is, a torsional damper is configured. This type of torsional damper is equipped with a dynamic vibration absorber consisting of a rubber elastic body and a mass body. The resonance frequency of this dynamic vibration absorber is tuned to a vibration frequency region where the torsional amplitude of the crankshaft is maximized. The vibration displacement due to the resonance of the part is generated in the opposite direction to the input vibration, thereby exhibiting a vibration damping effect that reduces the peak of the torsional amplitude of the crankshaft.

特に、クランクシャフトの捩り振動の振幅が大きい場合は、一組の動的吸振部を設けたシングルマスダンパではなく、共振周波数の異なる二組の動的吸振部を設けたダブルマスダンパを用いて捩り振動の低減を図っている。   In particular, when the amplitude of the torsional vibration of the crankshaft is large, use a double mass damper with two sets of dynamic vibration absorbers with different resonance frequencies instead of a single mass damper with one set of dynamic vibration absorbers. The torsional vibration is reduced.

図4は、従来のダブルマス型トーショナルダンパの一例を示すもので、すなわち内周のボス部301において不図示のクランクシャフトの軸端に取り付けられるハブ300と、このハブ300の外周側に同心的に配置された環状質量体101を、ゴム状弾性材料(ゴム材料又はゴム状弾性を有する合成樹脂材料からなる第一の弾性体102を介して弾性的に連結した構造の第一の動的吸振部100と、ハブ300の外周側に第一の動的吸振部100と並んで同心的に配置された第二の質量体201を、ゴム状弾性材料からなる第二の弾性体202を介して弾性的に連結した構造の第二の動的吸振部200を備える。   FIG. 4 shows an example of a conventional double-mass type torsional damper, that is, a hub 300 attached to the shaft end of a crankshaft (not shown) in an inner peripheral boss portion 301 and a concentric outer peripheral side of the hub 300. The first dynamic vibration absorber having a structure in which the annular mass body 101 arranged on the elastic member is elastically connected via a first elastic body 102 made of a rubber-like elastic material (rubber material or synthetic resin material having rubber-like elasticity). The second mass body 201 concentrically arranged along with the first dynamic vibration absorbing portion 100 on the outer peripheral side of the portion 100 and the hub 300 via the second elastic body 202 made of a rubber-like elastic material A second dynamic vibration absorber 200 having an elastically connected structure is provided.

そして図5に示すように、従来のダブルマス型トーショナルダンパは、捩り方向共振周波数がクランクシャフトの捩り振幅のピークp1の周波数f1にチューニングされた第一の動的吸振部100によって、クランクシャフトの捩り振幅のピークp1をそれよりも振幅の小さい2つの振幅ピークp2,p3に分け、この分けられた振幅ピークp2,p3のうち振幅ピークp2の周波数f2にチューニングされた第二の動的吸振部200によって、振幅ピークp2をさらにそれよりも振幅の小さい2つの振幅ピークp4,p5に分けるものである。なお、この種のダブルマス型トーショナルダンパとしては、例えば特許文献1のようなものが開示されている。   As shown in FIG. 5, the conventional double mass type torsional damper has a crankshaft of a crankshaft driven by a first dynamic vibration absorber 100 whose torsion direction resonance frequency is tuned to a frequency f1 of a peak p1 of the crankshaft torsion amplitude. The torsional amplitude peak p1 is divided into two amplitude peaks p2 and p3 having smaller amplitudes, and the second dynamic vibration absorber tuned to the frequency f2 of the amplitude peak p2 out of the divided amplitude peaks p2 and p3. By 200, the amplitude peak p2 is further divided into two amplitude peaks p4 and p5 having smaller amplitudes. As this type of double-mass type torsional damper, for example, one disclosed in Patent Document 1 is disclosed.

実開昭60−1号公報Japanese Utility Model Publication No. 60-1

しかしながら、従来のダブルマス型トーショナルダンパによれば、第二の動的吸振部200は、第一の動的吸振部100によって分けられた振幅ピークp2,p3のうちの一方しか低減できないという問題がある。   However, according to the conventional double mass type torsional damper, the second dynamic vibration absorber 200 can reduce only one of the amplitude peaks p2 and p3 divided by the first dynamic vibration absorber 100. is there.

また、他方の振幅ピーク(図示の例ではp3)も低減するためには、さらに第三の動的吸振部を設けてトリプルマス型とすることが考えられるが、この場合はトーショナルダンパの重量が全体として重くなってしまうばかりか、取付スペースも増大してしまうといった問題がある。   Further, in order to reduce the other amplitude peak (p3 in the illustrated example), it is conceivable to further provide a third dynamic vibration absorber to form a triple mass type. In this case, the weight of the torsional damper is considered. Not only becomes heavy as a whole, but also increases the installation space.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、重量や取付スペースの増大をきたすことなくトリプルマス型と同様の振動低減効果を得ることの可能なトーショナルダンパを提供することにある。   The present invention has been made in view of the above points, and the technical problem is that it is possible to obtain the same vibration reduction effect as that of the triple mass type without increasing the weight and the installation space. To provide a torsional damper.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係るトーショナルダンパは、クランクシャフトの軸端に取り付けられるハブと、このハブの外周側に同心的に配置された環状質量体を、ゴム状弾性材料からなる第一の弾性体を介して円周方向変位可能に連結した構造の第一の動的吸振部と、前記ハブの外周側に配置された円周方向複数の断片状質量体を、ゴム状弾性材料からなる第二の弾性体を介して前記ハブに径方向及び円周方向変位可能に連結した構造であって捩り方向共振周波数が前記第一の動的吸振部の捩り方向共振周波数より低周波数側にチューニングされた第二の動的吸振部と、前記断片状質量体の外周に設けられて前記環状質量体の内周面と径方向に対向され遠心力によって前記環状質量体の内周面と摩擦係合可能な摩擦係合部を備え、前記第一の動的吸振部と第二の動的吸振部が前記摩擦係合部を介して互いに並列に連結されたときの捩り方向共振周波数が、前記第一の動的吸振部の捩り方向共振周波数より高周波数側にチューニングされたものである。   As a means for effectively solving the technical problem described above, a torsional damper according to the invention of claim 1 is arranged concentrically on a hub attached to a shaft end of a crankshaft and on an outer peripheral side of the hub. A first dynamic vibration absorber having a structure in which an annular mass body is connected to be displaceable in a circumferential direction via a first elastic body made of a rubber-like elastic material; and a circumferential direction disposed on the outer peripheral side of the hub A plurality of piece-like mass bodies are connected to the hub via a second elastic body made of a rubber-like elastic material so as to be displaceable in the radial direction and the circumferential direction, and the torsional direction resonance frequency is the first dynamic frequency. A second dynamic vibration absorber tuned to a frequency lower than the resonance frequency in the torsional direction of the dynamic vibration absorber, and provided on the outer periphery of the fragmented mass body so as to face the inner peripheral surface of the annular mass body in the radial direction. The inner circumferential surface of the annular mass body by centrifugal force A frictional engagement portion capable of frictional engagement, and a torsional direction resonance frequency when the first dynamic vibration absorption portion and the second dynamic vibration absorption portion are connected in parallel with each other via the friction engagement portion. The first dynamic vibration absorber is tuned to a higher frequency side than the torsional direction resonance frequency.

上記構成において、回転速度が所定未満の低速回転域では、断片状質量体の外周に設けられた摩擦係合部は環状質量体の内周面と非接触状態にあるため、第一の動的吸振部と第二の動的吸振部は互いに独立した捩り方向共振周波数を有し、第一の動的吸振部は所定周波数域のクランクシャフトの捩り振動を低減し、第二の動的吸振部はそれより低周波数側でクランクシャフトの捩り振動を低減することができる。また、回転速度が所定以上の高速回転域では、断片状質量体の外周に設けられた摩擦係合部が遠心力によって前記環状質量体の内周面と摩擦係合され、このため第一の動的吸振部と第二の動的吸振部は摩擦係合部を介して互いに並列に連結された状態となって、第一の動的吸振部の捩り方向共振周波数より高周波数側でクランクシャフトの捩り振動を低減することができる。   In the above configuration, in the low-speed rotation range where the rotation speed is less than a predetermined value, the friction engagement portion provided on the outer periphery of the fragmented mass body is in a non-contact state with the inner peripheral surface of the annular mass body. The vibration absorber and the second dynamic vibration absorber have a torsional direction resonance frequency independent from each other, and the first dynamic vibration absorber reduces the torsional vibration of the crankshaft in a predetermined frequency range, and the second dynamic vibration absorber Can reduce the torsional vibration of the crankshaft on the lower frequency side. Further, in a high-speed rotation range where the rotation speed is a predetermined value or more, the friction engagement portion provided on the outer periphery of the fragmented mass body is frictionally engaged with the inner peripheral surface of the annular mass body by centrifugal force. The dynamic vibration absorbing portion and the second dynamic vibration absorbing portion are connected to each other in parallel via the friction engagement portion, and the crankshaft is located on the higher frequency side than the torsional direction resonance frequency of the first dynamic vibration absorbing portion. Torsional vibration can be reduced.

請求項2の発明に係るトーショナルダンパは、請求項1に記載された構成において、第一の動的吸振部の捩り方向共振周波数が、クランクシャフトの捩り方向の振幅ピークとなる周波数域にチューニングされ、第二の動的吸振部の捩り方向共振周波数が、前記第一の動的吸振部によって二つに分けられた振幅ピークのうち低周波側の振幅ピークの周波数域にチューニングされ、第一の動的吸振部と第二の動的吸振部が摩擦係合部を介して互いに連結されたときの捩り方向共振周波数が、前記第一の動的吸振部によって二つに分けられた振幅ピークのうち高周波側の振幅ピークの周波数域にチューニングされたものである。   A torsional damper according to a second aspect of the present invention is the configuration described in the first aspect, wherein the torsional direction resonance frequency of the first dynamic vibration absorber is tuned to a frequency region in which the amplitude peak in the torsional direction of the crankshaft is obtained. And the torsional direction resonance frequency of the second dynamic vibration absorber is tuned to a frequency region of an amplitude peak on the low frequency side among the amplitude peaks divided into two by the first dynamic vibration absorber, The torsional direction resonance frequency when the dynamic vibration absorbing portion and the second dynamic vibration absorbing portion are coupled to each other via the friction engagement portion is divided into two amplitude peaks by the first dynamic vibration absorbing portion. Among them, it is tuned to the frequency region of the amplitude peak on the high frequency side.

上記構成によれば、クランクシャフトの捩り振幅のピークは第一の動的吸振部によって低減され、それによって分けられた振幅ピークのうち低周波側の振幅ピークは第二の動的吸振部によって低減され、高周波側の振幅ピークは摩擦係合部が環状質量体の内周面と摩擦係合されることによって互いに並列に連結された第一の動的吸振部と第二の動的吸振部によって低減される。   According to the above configuration, the torsional amplitude peak of the crankshaft is reduced by the first dynamic vibration absorber, and the amplitude peak on the low frequency side among the divided amplitude peaks is reduced by the second dynamic vibration absorber. The amplitude peak on the high frequency side is caused by the first dynamic vibration absorber and the second dynamic vibration absorber connected in parallel with each other by frictionally engaging the friction engagement portion with the inner peripheral surface of the annular mass body. Reduced.

請求項3の発明に係るトーショナルダンパは、請求項1又は2に記載された構成において、摩擦係合部が断片状質量体の外周に一体的に接合されたゴム状弾性材料で形成されたものである。   A torsional damper according to a third aspect of the present invention is the structure described in the first or second aspect, wherein the frictional engagement portion is formed of a rubber-like elastic material integrally joined to the outer periphery of the fragmentary mass body. Is.

上記構成によれば、ゴム状弾性材料からなる摩擦係合部の摩擦係合力が大きいことに加え、環状質量体に作用する遠心力によってこの環状質量体と環状質量体の内周面との間で摩擦係合部が圧縮されてそのばね定数が上昇するので、第一の動的吸振部と第二の動的吸振部が摩擦係合部を介して確実に連結され、しかも摩擦係合部と環状質量体の内周面との接触による打音や第一の動的吸振部と第二の動的吸振部の接触による打音や損傷を防止することができる。   According to the above configuration, in addition to the large frictional engagement force of the frictional engagement portion made of a rubber-like elastic material, the centrifugal mass acting on the annular mass body causes a gap between the annular mass body and the inner peripheral surface of the annular mass body. Since the frictional engagement portion is compressed and the spring constant increases, the first dynamic vibration absorption portion and the second dynamic vibration absorption portion are securely connected via the friction engagement portion, and the friction engagement portion Can be prevented from being hit by the contact between the annular mass body and the inner peripheral surface of the annular mass body, and can be prevented from being hit by the first dynamic vibration absorbing portion and the second dynamic vibration absorbing portion.

本発明に係るトーショナルダンパによれば、第一の動的吸振部と第二の動的吸振部が遠心力によって摩擦係合部を介して互いに並列に連結可能としたことによって、重量や取付スペースの増大をきたすことなくトリプルマス型のトーショナルダンパと同様の広い周波数域での振動低減効果を得ることができる。   According to the torsional damper according to the present invention, the first dynamic vibration absorbing portion and the second dynamic vibration absorbing portion can be connected in parallel with each other via the friction engagement portion by centrifugal force, so that weight and mounting The vibration reduction effect in a wide frequency range similar to that of the triple mass type torsional damper can be obtained without increasing the space.

本発明に係るトーショナルダンパの好ましい実施の形態を、軸心Oの延長方向から見た図である。It is the figure which looked at preferable embodiment of the torsional damper which concerns on this invention from the extension direction of the axial center O. FIG. 図1におけるII−O−II’線で切断して示す断面図である。It is sectional drawing cut | disconnected and shown by the II-O-II 'line | wire in FIG. 本発明に係るトーショナルダンパの特性を示す線図である。It is a diagram which shows the characteristic of the torsional damper which concerns on this invention. 従来のダブルマス型トーショナルダンパの一例を、軸心Oを通る平面で切断して示す半断面図である。FIG. 6 is a half cross-sectional view showing an example of a conventional double mass type torsional damper cut along a plane passing through an axis O; 従来のダブルマス型トーショナルダンパの特性を示す線図である。It is a diagram which shows the characteristic of the conventional double mass type torsional damper.

以下、本発明に係るトーショナルダンパの好ましい実施の形態を、図1及び図2を参照しながら説明する。   A preferred embodiment of a torsional damper according to the present invention will be described below with reference to FIGS.

図1及び図2に示すトーショナルダンパは、不図示のクランクシャフトの軸端に取り付けられるハブ4と、このハブ4の外周側に同心的に配置された第一の動的吸振部1及び第二の動的吸振部2と、遠心力によって第一の動的吸振部1と第二の動的吸振部2を互いに並列に連結可能な摩擦係合部3を備える。   The torsional damper shown in FIGS. 1 and 2 includes a hub 4 attached to a shaft end of a crankshaft (not shown), a first dynamic vibration absorber 1 and a first dynamic vibration absorber 1 arranged concentrically on the outer peripheral side of the hub 4. The second dynamic vibration absorbing portion 2 and the friction engagement portion 3 capable of connecting the first dynamic vibration absorbing portion 1 and the second dynamic vibration absorbing portion 2 in parallel with each other by centrifugal force.

詳しくは、ハブ4は金属材料の鋳造等により製作された第一ハブ部材41及び第二ハブ部材42からなり、この第一ハブ部材41と第二ハブ部材42を互いに一体的に結合したものである。このうち第一ハブ部材41は、内周にクランクシャフトの軸端への固定部であるボス部41aと、このボス部41aから外径側へ展開した中間部41bと、この中間部41bの外径端から円筒状に延びるリム部41cとからなり、第二ハブ部材42は、内径端が第一ハブ部材41のボス部41aの一端外周面に嵌合等により一体化された円盤部42aと、この円盤部42aの外径端から円筒状に延びるリム部42bとからなる。   Specifically, the hub 4 includes a first hub member 41 and a second hub member 42 manufactured by casting a metal material or the like, and the first hub member 41 and the second hub member 42 are integrally coupled to each other. is there. Of these, the first hub member 41 has a boss portion 41a that is a fixed portion to the shaft end of the crankshaft on the inner periphery, an intermediate portion 41b that extends from the boss portion 41a to the outer diameter side, and an outer portion of the intermediate portion 41b. The second hub member 42 includes a disc portion 42a having a radially inner end integrated with the outer peripheral surface of one end of the boss portion 41a of the first hub member 41 by fitting or the like. The rim portion 42b extends in a cylindrical shape from the outer diameter end of the disk portion 42a.

第一の動的吸振部1は、ハブ4における第一ハブ部材41のリム部41cの外周面に圧入嵌着される金属製のスリーブ11と、その外周側に同心配置された環状質量体12と、この環状質量体12とスリーブ11の間にゴム状弾性材料(ゴム材料又はゴム状弾性を有する合成樹脂材料)で一体的に加硫成形(加硫接着)された第一の弾性体13とで構成される。すなわち、第一の動的吸振部1は、スリーブ11を第一ハブ部材41におけるリム部41cの外周面に圧入嵌着することによって、環状質量体12を、第一の弾性体13及びスリーブ11を介してハブ4に円周方向変位可能に連結した構造となっている。   The first dynamic vibration absorbing portion 1 includes a metal sleeve 11 that is press-fitted to the outer peripheral surface of the rim portion 41 c of the first hub member 41 in the hub 4, and an annular mass body 12 that is concentrically disposed on the outer peripheral side thereof. And a first elastic body 13 which is integrally vulcanized (vulcanized and bonded) between the annular mass body 12 and the sleeve 11 with a rubber-like elastic material (rubber material or synthetic resin material having rubber-like elasticity). It consists of. That is, the first dynamic vibration absorbing portion 1 press-fits the sleeve 11 to the outer peripheral surface of the rim portion 41 c of the first hub member 41, thereby changing the annular mass body 12 into the first elastic body 13 and the sleeve 11. It has the structure connected with the hub 4 via the hub so that a circumferential displacement was possible.

第一の動的吸振部1における環状質量体12は金属材料の鋳造などにより製作されたものであって、ハブ4における第一ハブ部材41のリム部41cの外周側及び第二ハブ部材42のリム部42bの外周側の双方を包囲する軸方向長さを有する。また、環状質量体12の外周面にはポリV溝12aが形成され、不図示の無端ベルトが巻き掛けられるようになっている。   The annular mass body 12 in the first dynamic vibration absorbing portion 1 is manufactured by casting a metal material or the like, and the outer peripheral side of the rim portion 41 c of the first hub member 41 and the second hub member 42 in the hub 4. It has an axial length that surrounds both the outer peripheral sides of the rim portion 42b. Further, a poly V groove 12a is formed on the outer peripheral surface of the annular mass body 12, and an endless belt (not shown) is wound around it.

ここで、図3に示す特性線図において、aはトーショナルダンパを取り付けない場合のクランクシャフトの捩り振動特性を示す特性線であり、bはシングルマス型のトーショナルダンパ、すなわち第一の動的吸振部1のみを有するトーショナルダンパを取り付けた場合の振動特性を示す特性線であり、cは図示の実施の形態のトーショナルダンパを取り付けた場合の振動特性を示す特性線である。そして第一の動的吸振部1の捩り方向共振周波数は、第一の弾性体13の円周方向剪断ばね定数と、環状質量体12の円周方向慣性質量によって、クランクシャフトの捩り方向共振周波数にチューニングされ、すなわち図3に示す振動特性aにおける振幅ピークp1となる周波数f1にチューニングされている。   Here, in the characteristic diagram shown in FIG. 3, a is a characteristic line indicating the torsional vibration characteristics of the crankshaft when no torsional damper is attached, and b is a single mass type torsional damper, that is, the first dynamic damper. 3 is a characteristic line showing the vibration characteristics when the torsional damper having only the dynamic vibration absorber 1 is attached, and c is a characteristic line showing the vibration characteristics when the torsional damper of the illustrated embodiment is attached. The torsional direction resonance frequency of the first dynamic vibration absorber 1 is determined by the torsional direction resonance frequency of the crankshaft by the circumferential shear spring constant of the first elastic body 13 and the circumferential inertial mass of the annular mass body 12. In other words, it is tuned to a frequency f1 that becomes an amplitude peak p1 in the vibration characteristic a shown in FIG.

第二の動的吸振部2は、ハブ4における第二ハブ部材42のリム部42bの外周側かつ第一の動的吸振部1における環状質量体12の一端寄り(図2における左端寄り)の内周側に位置して配置され金属環を円周方向等間隔で切断した同形同大の円弧状をなす円周方向複数(図1に示す例では4個)の断片状質量体21と、各断片状質量体21と第二ハブ部材42のリム部42bの外周面の間にゴム状弾性材料で一体的に加硫成形(加硫接着)された第二の弾性体22とで構成される。すなわち、第二の動的吸振部2は、各断片状質量体21を、第二の弾性体22を介してハブ4に円周方向及び径方向変位可能に連結した構造となっている。   The second dynamic vibration absorbing portion 2 is located on the outer peripheral side of the rim portion 42b of the second hub member 42 in the hub 4 and near one end of the annular mass body 12 in the first dynamic vibration absorbing portion 1 (closer to the left end in FIG. 2). A plurality of pieces (4 in the example shown in FIG. 1) in the form of circular arcs of the same shape and the same size, which are arranged on the inner peripheral side and are formed by cutting the metal ring at equal intervals in the circumferential direction, Each piece-like mass body 21 and the second elastic body 22 integrally vulcanized (vulcanized and bonded) with a rubber-like elastic material between the outer peripheral surfaces of the rim portions 42b of the second hub member 42 are configured. Is done. That is, the second dynamic vibration absorber 2 has a structure in which each piece-like mass body 21 is connected to the hub 4 via the second elastic body 22 so as to be displaceable in the circumferential direction and the radial direction.

第二の弾性体22は、円周方向へ互いに隣接する断片状質量体21,21間の位置でスリット2aを介して円周方向へ分離した形状となっている。このため、各断片状質量体21は、回転時に作用する遠心力によって、第二の弾性体22の引張弾性に抗して径方向へ変位可能となっている。   The second elastic body 22 has a shape separated in the circumferential direction through the slit 2a at a position between the fragmentary mass bodies 21 and 21 adjacent to each other in the circumferential direction. For this reason, each piece-like mass body 21 can be displaced in the radial direction against the tensile elasticity of the second elastic body 22 by a centrifugal force acting during rotation.

第二の動的吸振部2の捩り方向共振周波数は、第二の弾性体22の円周方向剪断ばね定数と断片状質量体21の円周方向慣性質量によって、第一の動的吸振部1の捩り方向共振周波数f1より適宜低周波数域にチューニングされ、詳しくは図3に示すように、第一の動的吸振部1によって、クランクシャフトの捩り振幅のピークp1が分けられた小さい振幅ピークp2,p3のうち低周波数側の振幅ピークp2の周波数f2にチューニングされている。   The torsional direction resonance frequency of the second dynamic vibration absorber 2 is determined by the first dynamic vibration absorber 1 by the circumferential shear spring constant of the second elastic body 22 and the circumferential inertia mass of the fragmented mass body 21. Is tuned to a frequency range lower than the torsional direction resonance frequency f1, and, as shown in detail in FIG. 3, the first dynamic vibration absorber 1 divides the crankshaft torsional amplitude peak p1 into a small amplitude peak p2. , P3 are tuned to the frequency f2 of the amplitude peak p2 on the low frequency side.

第二の弾性体22を形成しているゴム状弾性材料は、各断片状質量体21を包囲するように成形されている。すなわち各断片状質量体21の軸方向両端面は第二の弾性体22から延びる弾性層22aで被覆されており、各断片状質量体21の外周面を覆う弾性層によって摩擦係合部3が形成されている。摩擦係合部3の外周面は、当該トーショナルダンパの非回転状態では、第一の動的吸振部1における環状質量体12の一端寄りの内周面12bとわずかな隙間を介して近接対向しており、所定の回転数以上では、遠心力による断片状質量体21の径方向変位に伴い、環状質量体12の一端寄りの内周面12bと密接して摩擦係合状態となるものである。   The rubber-like elastic material forming the second elastic body 22 is molded so as to surround each piece-like mass body 21. That is, both end surfaces in the axial direction of each piece-like mass body 21 are covered with the elastic layer 22 a extending from the second elastic body 22, and the friction engagement portion 3 is formed by the elastic layer covering the outer peripheral surface of each piece-like mass body 21. Is formed. When the torsional damper is not rotated, the outer peripheral surface of the friction engagement portion 3 is close to and opposed to the inner peripheral surface 12b near the one end of the annular mass body 12 in the first dynamic vibration absorber 1 through a slight gap. When the rotational speed is equal to or higher than a predetermined rotational speed, the frictional engagement is brought into close contact with the inner peripheral surface 12b near one end of the annular mass body 12 in accordance with the radial displacement of the fragment mass body 21 due to centrifugal force. is there.

そして、摩擦係合部3の外周面が環状質量体12の一端寄りの内周面12bと摩擦係合した状態では、遠心力が作用する断片状質量体21によって環状質量体12との間で圧縮力を受ける摩擦係合部3を介して、第一の動的吸振部1と第二の動的吸振部2がトルク伝達方向に対して互いに並列に連結された状態となり、この状態では摩擦係合部3も、外径方向へ変位しようとする断片状質量体21に押圧されて圧縮されることによって、ばね定数の高い弾性体として機能する。したがって、摩擦係合部3を介して連結された第一の動的吸振部1と第二の動的吸振部2による捩り方向共振周波数は、第一の動的吸振部1の捩り方向共振周波数f1より適宜高周波数側にあり、好ましくは図3に示すように、第一の動的吸振部1によって、クランクシャフトの捩り振幅のピークp1が分けられた小さい振幅ピークp2,p3のうち高周波数側の振幅ピークp3の周波数f3にチューニングされている。   And in the state which the outer peripheral surface of the friction engaging part 3 frictionally engaged with the inner peripheral surface 12b near the one end of the annular mass body 12, the fragmentary mass body 21 on which the centrifugal force acts acts between the annular mass body 12. The first dynamic vibration absorbing portion 1 and the second dynamic vibration absorbing portion 2 are connected in parallel to each other in the torque transmission direction via the friction engagement portion 3 that receives the compressive force. The engaging portion 3 also functions as an elastic body having a high spring constant by being pressed and compressed by the fragmentary mass body 21 that is about to be displaced in the outer diameter direction. Therefore, the torsional direction resonance frequency of the first dynamic vibration absorption unit 1 and the second dynamic vibration absorption unit 2 connected via the friction engagement unit 3 is the torsional direction resonance frequency of the first dynamic vibration absorption unit 1. As shown in FIG. 3, the first dynamic vibration absorber 1 preferably has a higher frequency out of the smaller amplitude peaks p2 and p3 divided by the first dynamic vibration absorber 1, as shown in FIG. It is tuned to the frequency f3 of the side amplitude peak p3.

上述の構成を備えるトーショナルダンパは、ハブ4における第一ハブ部材41のボス部41aの軸孔において、不図示のボルト及びキーによってエンジンのクランクシャフトの軸端に固定され、このクランクシャフトと共に回転されるものである。   The torsional damper having the above-described configuration is fixed to the shaft end of the engine crankshaft by a bolt and a key (not shown) in the shaft hole of the boss portion 41a of the first hub member 41 in the hub 4, and rotates together with the crankshaft. It is what is done.

そして、クランクシャフトの回転に伴って、ハブ4を介して入力される捩り振動の周波数が、クランクシャフトの捩り振幅のピークp1となる周波数f1付近にある場合は、このような周波数の捩り振動を生じる回転数域では、第二の動的吸振部2における断片状質量体21の外周に設けられた摩擦係合部3はわずかな隙間を介して第一の動的吸振部1における環状質量体12の内周面12bと非接触状態にある。このため、捩り方向共振周波数がクランクシャフトの捩り振幅のピークp1の周波数f1にチューニングされた第一の動的吸振部1が第二の動的吸振部2と独立して共振し、その共振によるトルクが入力振動のトルクと逆方向へ生じる動的吸振作用によって、クランクシャフトの捩り振幅のピークp1が低減されると共に、それよりも振幅の小さい2つの振幅ピークp2,p3に分けられる。   When the frequency of the torsional vibration input through the hub 4 with the rotation of the crankshaft is in the vicinity of the frequency f1 that becomes the peak p1 of the torsional amplitude of the crankshaft, the torsional vibration with such a frequency is generated. In the generated rotation speed range, the frictional engagement portion 3 provided on the outer periphery of the fragmented mass body 21 in the second dynamic vibration absorption portion 2 has an annular mass body in the first dynamic vibration absorption portion 1 through a slight gap. 12 is not in contact with the inner peripheral surface 12b. For this reason, the first dynamic vibration absorber 1 whose torsion direction resonance frequency is tuned to the frequency f1 of the torsional amplitude peak p1 of the crankshaft resonates independently of the second dynamic vibration absorber 2, and the resonance The dynamic vibration absorbing action in which the torque is generated in the direction opposite to the torque of the input vibration reduces the crankshaft torsional amplitude peak p1 and divides it into two amplitude peaks p2 and p3 having smaller amplitudes.

また、ハブ4を介して入力される捩り振動の周波数が、第一の動的吸振部1によって分けられた振幅ピークp2,p3のうち、クランクシャフトの捩り振幅のピークp1より低周波数側の振幅ピークp2となる周波数f2付近にある場合は、このような周波数と対応する回転数はピークp1の捩り振動を生じる回転数よりさらに低速回転側にあるため、この場合も、摩擦係合部3は環状質量体12の内周面12bと非接触状態にある。したがって捩り方向共振周波数が振幅ピークp2の周波数f2にチューニングされた第二の動的吸振部2が共振し、各断片状質量体21は同形同大で質量が互いに等しいため、互いに連続しているかのように併進的に振動変位し、その共振によるトルクが入力振動のトルクと逆方向へ生じる動的吸振作用によって、振幅ピークp2が低減されると共に、さらにそれよりも振幅の小さい2つの振幅ピークp4,p5に分けられる。   The torsional vibration frequency input via the hub 4 has an amplitude on the lower frequency side than the torsional amplitude peak p1 of the crankshaft among the amplitude peaks p2 and p3 divided by the first dynamic vibration absorber 1. When the frequency is near the frequency f2 at which the peak p2 is reached, the rotational speed corresponding to such a frequency is further on the low speed side than the rotational speed at which the torsional vibration at the peak p1 is generated. It is in a non-contact state with the inner peripheral surface 12 b of the annular mass body 12. Accordingly, the second dynamic vibration absorbing portion 2 whose torsional direction resonance frequency is tuned to the frequency f2 having the amplitude peak p2 resonates, and the fragment mass bodies 21 have the same shape and the same mass, so that they are continuous with each other. The amplitude peak p2 is reduced by the dynamic vibration absorption action in which the vibration is displaced in a translational manner and the torque due to the resonance is generated in the opposite direction to the torque of the input vibration, and two amplitudes with smaller amplitudes are further reduced. Divided into peaks p4 and p5.

さらに、ハブ4を介して入力される捩り振動の周波数が、第一の動的吸振部1によって分けられた振幅ピークp2,p3のうち、クランクシャフトの捩り振幅のピークp1より高周波数側の振幅ピークp3となる周波数f3付近にある場合は、このような周波数f3と対応する高速回転域では、第二の動的吸振部2の断片状質量体21に作用する遠心力の増大によって、摩擦係合部3の外周面が環状質量体12の一端寄りの内周面12bと摩擦係合し、すなわちこの摩擦係合部3を介して、第一の動的吸振部1と第二の動的吸振部2がトルク伝達方向に対して互いに並列に連結された状態となっている。そしてこのようにして連結された第一の動的吸振部1と第二の動的吸振部2は周波数f3付近で共振し、その共振によるトルクが入力振動のトルクと逆方向へ生じる動的吸振作用によって、振幅ピークp3が低減されると共に、さらにそれよりも振幅の小さい2つの振幅ピークp6,p7に分けられる。   Further, the frequency of torsional vibration input via the hub 4 is higher in amplitude than the peak p1 of the crankshaft torsional amplitude among the amplitude peaks p2 and p3 divided by the first dynamic vibration absorber 1. In the vicinity of the frequency f3 at which the peak p3 is obtained, in the high-speed rotation region corresponding to the frequency f3, the frictional force is increased due to an increase in the centrifugal force acting on the fragmentary mass body 21 of the second dynamic vibration absorber 2. The outer peripheral surface of the joint portion 3 is frictionally engaged with the inner peripheral surface 12b near one end of the annular mass body 12, that is, the first dynamic vibration absorbing portion 1 and the second dynamic vibration portion 3 are interposed via the friction engaging portion 3. The vibration absorbers 2 are connected in parallel to each other in the torque transmission direction. Then, the first dynamic vibration absorber 1 and the second dynamic vibration absorber 2 connected in this way resonate near the frequency f3, and the dynamic vibration generated by the resonance in the direction opposite to the torque of the input vibration. By the action, the amplitude peak p3 is reduced and further divided into two amplitude peaks p6 and p7 having smaller amplitudes.

すなわち、図示の実施の形態によれば、クランクシャフトの捩り振幅のピークp1は第一の動的吸振部1によって低減され、それによって分けられた振幅ピークp2,p3のうち低周波側の振幅ピークp2は第二の動的吸振部2によって低減され、高周波側の振幅ピークp3は摩擦係合部3が遠心力で環状質量体12の内周面12bと摩擦係合されることによって互いに並列に連結された第一の動的吸振部1と第二の動的吸振部2によって低減される。したがって、第三の動的吸振部を設けてトリプルマス型とした場合のような重量や取付スペースの増大をきたすことなく、第一の動的吸振部1と第二の動的吸振部2だけでトリプルマス型のトーショナルダンパと同様の広い周波数域(回転数域)で振動を低減することができる。   That is, according to the illustrated embodiment, the peak p1 of the torsional amplitude of the crankshaft is reduced by the first dynamic vibration absorber 1, and the amplitude peak on the low frequency side among the amplitude peaks p2 and p3 divided thereby. p2 is reduced by the second dynamic vibration absorber 2, and the amplitude peak p3 on the high frequency side is parallel to each other as the friction engagement portion 3 is frictionally engaged with the inner peripheral surface 12b of the annular mass body 12 by centrifugal force. It is reduced by the connected first dynamic vibration absorber 1 and second dynamic vibration absorber 2. Therefore, only the first dynamic vibration absorbing portion 1 and the second dynamic vibration absorbing portion 2 are provided without increasing the weight and mounting space as in the case of the triple mass type by providing the third dynamic vibration absorbing portion. The vibration can be reduced in the same wide frequency range (rotational speed range) as the triple mass type torsional damper.

また、第二の動的吸振部2における各断片状質量体21の軸方向両端面は第二の弾性体22から延びる弾性層22aで被覆されているため、第一の動的吸振部1と第二の動的吸振部2が異なる回転数域で軸方向へ共振したような場合でも、断片状質量体21と第一ハブ部材41のリム部41c及びスリーブ11が金属接触するようなことがなく、したがって金属接触による損傷を防止でき、打音を低減することができる。   In addition, since both end surfaces in the axial direction of each piece-like mass body 21 in the second dynamic vibration absorber 2 are covered with the elastic layer 22a extending from the second elastic body 22, the first dynamic vibration absorber 1 and Even when the second dynamic vibration absorbing portion 2 resonates in the axial direction in different rotational speed ranges, the piece-like mass body 21, the rim portion 41c of the first hub member 41, and the sleeve 11 may be in metal contact. Therefore, damage due to metal contact can be prevented and the hitting sound can be reduced.

1 第一の動的吸振部
12 環状質量体
13 第一の弾性体
2 第二の動的吸振部
2a スリット
21 断片状質量体
22 第二の弾性体
22a 弾性層
3 摩擦係合部
4 ハブ
DESCRIPTION OF SYMBOLS 1 1st dynamic vibration absorption part 12 Annular mass 13 First elastic body 2 Second dynamic vibration absorption part 2a Slit 21 Fragment-like mass body 22 Second elastic body 22a Elastic layer 3 Friction engagement part 4 Hub

Claims (3)

クランクシャフトの軸端に取り付けられるハブと、このハブの外周側に同心的に配置された環状質量体を、ゴム状弾性材料からなる第一の弾性体を介して円周方向変位可能に連結した構造の第一の動的吸振部と、前記ハブの外周側に配置された円周方向複数の断片状質量体を、ゴム状弾性材料からなる第二の弾性体を介して前記ハブに径方向及び円周方向変位可能に連結した構造であって捩り方向共振周波数が前記第一の動的吸振部の捩り方向共振周波数より低周波数側にチューニングされた第二の動的吸振部と、前記断片状質量体の外周に設けられて前記環状質量体の内周面と径方向に対向され遠心力によって前記環状質量体の内周面と摩擦係合可能な摩擦係合部を備え、前記第一の動的吸振部と第二の動的吸振部が前記摩擦係合部を介して互いに並列に連結されたときの捩り方向共振周波数が、前記第一の動的吸振部の捩り方向共振周波数より高周波数側にチューニングされたことを特徴とするトーショナルダンパ。   A hub attached to the shaft end of the crankshaft and an annular mass disposed concentrically on the outer peripheral side of the hub are connected via a first elastic body made of rubber-like elastic material so as to be displaceable in the circumferential direction. A first dynamic vibration absorber having a structure and a plurality of circumferential mass pieces arranged on the outer peripheral side of the hub are radially arranged on the hub via a second elastic body made of a rubber-like elastic material. And a second dynamic vibration absorber connected in a circumferentially displaceable manner, wherein the torsional direction resonance frequency is tuned to a lower frequency side than the torsional direction resonance frequency of the first dynamic vibration absorber, and the fragment A friction engagement portion provided on an outer periphery of the annular mass body and radially opposed to an inner circumferential surface of the annular mass body and capable of frictional engagement with an inner circumferential surface of the annular mass body by centrifugal force; The dynamic vibration absorption part and the second dynamic vibration absorption part are interposed through the friction engagement part. Torsional direction resonance frequency when connected in parallel to each other, torsional damper, characterized in that it is tuned from a high frequency side torsional direction resonance frequency of said first dynamic vibration absorbing portion. 第一の動的吸振部の捩り方向共振周波数が、クランクシャフトの捩り方向の振幅ピークとなる周波数域にチューニングされ、第二の動的吸振部の捩り方向共振周波数が、前記第一の動的吸振部によって二つに分けられた振幅ピークのうち低周波側の振幅ピークの周波数域にチューニングされ、第一の動的吸振部と第二の動的吸振部が摩擦係合部を介して互いに連結されたときの捩り方向共振周波数が、前記第一の動的吸振部によって二つに分けられた振幅ピークのうち高周波側の振幅ピークの周波数域にチューニングされたことを特徴とする請求項1に記載のトーショナルダンパ。   The torsional direction resonance frequency of the first dynamic vibration absorber is tuned to a frequency region where the amplitude peak in the torsional direction of the crankshaft is obtained, and the torsional direction resonance frequency of the second dynamic vibration absorber is It is tuned to the frequency range of the amplitude peak on the low frequency side among the amplitude peaks divided into two by the vibration absorbing portion, and the first dynamic vibration absorbing portion and the second dynamic vibration absorbing portion are mutually connected via the friction engagement portion. 2. The torsional direction resonance frequency when coupled is tuned to a frequency region of an amplitude peak on a high frequency side among amplitude peaks divided into two by the first dynamic vibration absorber. The torsional damper described in 1. 摩擦係合部が断片状質量体の外周に一体的に接合されたゴム状弾性材料で形成されたことを特徴とする請求項1又は2に記載のトーショナルダンパ。   The torsional damper according to claim 1 or 2, wherein the friction engagement portion is formed of a rubber-like elastic material integrally joined to the outer periphery of the fragment-like mass body.
JP2015011012A 2015-01-23 2015-01-23 Torsional damper Active JP6438309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015011012A JP6438309B2 (en) 2015-01-23 2015-01-23 Torsional damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015011012A JP6438309B2 (en) 2015-01-23 2015-01-23 Torsional damper

Publications (2)

Publication Number Publication Date
JP2016136030A JP2016136030A (en) 2016-07-28
JP6438309B2 true JP6438309B2 (en) 2018-12-12

Family

ID=56512994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015011012A Active JP6438309B2 (en) 2015-01-23 2015-01-23 Torsional damper

Country Status (1)

Country Link
JP (1) JP6438309B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980274B (en) * 2018-09-25 2020-12-18 义乌吉利发动机有限公司 Decoupler and engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571442B2 (en) * 1989-10-24 1997-01-16 三菱自動車工業株式会社 Variable spring constant type rotary shaft vibration damper
JP2000346136A (en) * 1999-06-04 2000-12-12 Nok Vibracoustic Kk Pulley coupling
JP2004340170A (en) * 2003-05-13 2004-12-02 Nok Corp Damper

Also Published As

Publication number Publication date
JP2016136030A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6147753B2 (en) Pendulum type damper system with improved guide device
CN104956120A (en) Centrifugal force pendulum
US8663021B2 (en) Torque fluctuation absorber
US9683629B2 (en) Centrifugal force pendulum
CN110325766A (en) Filter belt wheel
JP2011220389A (en) Damper
JP6254788B2 (en) Torsional damper
JP6438309B2 (en) Torsional damper
US20070144852A1 (en) Dynamic damper and hollow propeller shaft equipped with same
JP6682261B2 (en) Crank pulley
JP5729560B2 (en) Rotation fluctuation absorbing damper pulley
KR101180577B1 (en) Clutch disk assembly having friction apparutus which forms grade friction surface
JP3582536B2 (en) Torque fluctuation absorption damper
JP2007100852A (en) Torque fluctuation absorption damper
JP6100070B2 (en) Torque fluctuation absorbing damper
JP2006194265A (en) Torque fluctuation absorbing damper
JP6411062B2 (en) Anti-vibration structure of rotating body
JP6605936B2 (en) Pulley noise reduction device
JP2006090528A (en) Vibration control device for rotary shaft
US20190383352A1 (en) Torsion damper and motor vehicle
JP4883284B2 (en) Torsional damper
JP3994278B2 (en) Torque fluctuation absorbing damper
JP5910859B2 (en) Torque fluctuation absorbing damper
JP2020051459A (en) Rotation fluctuation absorption damper
KR102496692B1 (en) Dynamic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181116

R150 Certificate of patent or registration of utility model

Ref document number: 6438309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250