JP3582536B2 - Torque fluctuation absorption damper - Google Patents

Torque fluctuation absorption damper Download PDF

Info

Publication number
JP3582536B2
JP3582536B2 JP16482594A JP16482594A JP3582536B2 JP 3582536 B2 JP3582536 B2 JP 3582536B2 JP 16482594 A JP16482594 A JP 16482594A JP 16482594 A JP16482594 A JP 16482594A JP 3582536 B2 JP3582536 B2 JP 3582536B2
Authority
JP
Japan
Prior art keywords
pulley
damper
torsional
elastomer member
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16482594A
Other languages
Japanese (ja)
Other versions
JPH0814332A (en
Inventor
勝 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP16482594A priority Critical patent/JP3582536B2/en
Publication of JPH0814332A publication Critical patent/JPH0814332A/en
Application granted granted Critical
Publication of JP3582536B2 publication Critical patent/JP3582536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1414Masses driven by elastic elements
    • F16F15/1435Elastomeric springs, i.e. made of plastic or rubber
    • F16F15/1442Elastomeric springs, i.e. made of plastic or rubber with a single mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • F16F15/167Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H2055/366Pulleys with means providing resilience or vibration damping

Description

【0001】
【産業上の利用分野】
本発明は、エンジンのクランクシャフトの動力を各種補器へ伝達する際に、エンジンの各行程による前記クランクシャフトの伝達トルクの変動を吸収絶縁するトルク変動吸収ダンパに関する。
【0002】
【従来の技術】
従来、この種のトルク変動吸収ダンパは、基本的には図2に示すように、エンジンのクランクシャフトの先端に取り付けられるハブ101の外周に、ベアリング102aを介して捩り変位(軸周り方向の変位)自在に同心配置されたプーリ102bを、エラストマ部材102cを介して連結した構造のカップリング部102を有する(例えば実開昭63−68540号公報参照)。すなわちクランクシャフトの動力の一部は、プーリ102bに巻架された図示されていない無端ベルトを介して例えばオルタネータやコンプレッサ等の各種補器に与えられるが、クランクシャフトはエンジンの各行程によるトルク変動を伴って回転されるため、カップリング部102は、このトルク変動をプーリとの間でエラストマ部材102cの捩り変形作用によって吸収絶縁し、プーリ102bからの伝達トルクの平滑化を図るものである。
【0003】
また、前記ハブ101の外周には、別のエラストマ部材103aを介して環状質量体103bを弾性的に連結した構造のトーショナルダンパ部103が並設されている。このトーショナルダンパ部103は、所定の振動数域においてクランクシャフトの捩り振動を打ち消すように共振し、クランクシャフトの捩り振動自体を低減する制振機能を発揮するものである。
【0004】
ところで、カップリング部102における捩り方向固有振動数は、プーリ102bの慣性質量が大きいこと及びエラストマ部材102cがトーショナルダンパ部103のエラストマ部材103aよりばね定数が低いことなどから、トーショナルダンパ部103の捩り方向固有振動数に比較してかなり低いものとなっており、例えばアイドル回転時におけるクランクシャフトのトルク変動の周波数以下の領域にあるため、エンジン始動時に、アイドリングに至る過程で、クランクシャフトのトルク変動の周波数がカップリング部102の捩り方向固有振動数域を通過することになる。そして、このときのカップリング部102の共振によって、ハブ101に対してプーリ102bが捩り方向へ大きく振動変位されると、エラストマ部材102cが過大変形を受けて破損を来す恐れがあることから、通常、ハブ101とプーリ102bの捩り方向相対変位量を制限するストッパ104が設けられている。このストッパ104は、図3にも示すように、ハブ101側に固定されて外周に凹凸を有する金属リング104aと、プーリ102b側に固定されて内周に前記凹凸と遊嵌される凹凸を有する金属リング104bとからなる。
【0005】
【発明が解決しようとする課題】
上記従来のトルク変動吸収ダンパによれば、カップリング部102の共振によるプーリ102bの振動変位量、言い換えればエラストマ部材102cの捩り変形量を、ストッパ104における金属リング104a,104bの凹凸同士の干渉によって所定範囲に制限しているため、共振時に金属による打音を発生する問題が指摘される。
【0006】
本発明は、上記のような事情のもとになされたもので、その主な技術的課題とするところは、カップリング部の共振時に打音を発生することなくエラストマ部材の過大変形を有効に防止することにある。
【0007】
【課題を解決するための手段】
上述した技術的課題は、本発明によって有効に解決することができる。
すなわち本発明に係るトルク変動吸収ダンパは、エンジンのクランクシャフトに取り付けられるハブの外周に第一のエラストマ部材を介してプーリを捩り変位自在に連結したカップリング部と、前記プーリの内周に配置した環状質量体を前記ハブの外周に前記第一のエラストマ部材と軸方向に並んだ第二のエラストマ部材を介して捩り変位自在に連結した構造であって前記カップリング部と異なる固有振動数を有するトーショナルダンパ部と、前記第一のエラストマ部材とトーショナルダンパ部との間であって前記プーリ側とトーショナルダンパ部との間に形成された隙間に封入された粘性流体とを備える。
本発明において一層好ましくは、前記隙間が、プーリの内周面に密接嵌着されトーショナルダンパ部の側面に沿って径方向に延在された仕切板と、この仕切板の内径とハブとの間に摺動自在に介在されたシール部材とによって形成される。また、前記隙間が、プーリの内周面と環状質量体の外周面との間の滑りベアリングの介在部分に連通される。
【0008】
【作用】
カップリング部が捩り方向に共振した時のプーリの振動変位量の増大は、反復的に捩り変位されるプーリ側と、前記カップリング部の共振振動数では共振しないトーショナルダンパ部との間の隙間内で剪断を受ける粘性流体の粘性抵抗によるダンピング作用によって抑えられる。特に、プーリの内周面に密接嵌合されトーショナルダンパ部の側面に沿ってハブ側へ径方向に延在された仕切板と、この仕切板の内径とハブとの間に摺動自在に介在されたシール部材とによって、前記隙間の両側で捩り方向へ相対変位される面間の距離を小さくすると共に、粘性流体との摩擦面積を大きくし、粘性ダンピングによる制動作用を高めることができる。また、プーリをトーショナルダンパ部の環状質量体の外周に同心的に支持する滑りベアリングの介在部分に、前記隙間を連通させることによって、この滑りベアリングが潤滑される。
【0009】
また、トーショナルダンパ部の共振時はカップリング部は共振しないから、トーショナルダンパ部の共振によるクランクシャフトの捩り振動減衰においても、このトーショナルダンパ部における第二のエラストマ部材の内部摩擦によるダンピングに加えて、カップリング部のプーリ側とこれに対して相対的に捩り変位されるトーショナルダンパ部との間で粘性流体が剪断を受けることによって発生する粘性抵抗によるダンピングが得られる。
【0010】
【実施例】
図1は、本発明に係るトルク変動吸収ダンパの一実施例を、その軸心を通る平面で切断して示すもので、参照符号1はエンジンのクランクシャフトの軸端に取り付けられるハブである。このハブ1の外周には、第一のエラストマ部材21を介してプーリ22を捩り変位自在に連結したカップリング部2と、第二のエラストマ部材31を介して環状質量体32を捩り変位自在に連結した構造のトーショナルダンパ部3が設けられている。
【0011】
ハブ1は、クランクシャフトへの取付部である径方向部11及びその外径から延在された外径筒状部12を有する断面略L字形を呈する。プーリ22の外周面には大径のVプーリ溝22a及び小径のVプーリ溝22bが形成されており、プーリ22の内周面もこれに対応して、Vプーリ溝22a側が大径、他方のVプーリ溝22b側が小径となる段差状に形成されている。第一のエラストマ部材21は、ハブ1の外径筒状部12における径方向部11寄りの外周面に嵌着されたスリーブ23と、プーリ22のVプーリ溝22a側の大径内周面に嵌着されたスリーブ24との間に一体に加硫成形されている。環状質量体32は、プーリ22の小径のVプーリ溝22b側の内周に配置されており、第二のエラストマ部材31は、ハブ1の外径筒状部12における径方向部11と反対側の端部寄りの外周面に嵌着されたスリーブ33と、環状質量体32との間に一体に加硫成形されている。また、環状質量体32とプーリ22との対向周面間には、合成樹脂材からなる滑りベアリング4が摺動自在に介在されている。
【0012】
ハブ1とプーリ22の間であって第一のエラストマ部材21とトーショナルダンパ部3の間には、このトーショナルダンパ部3における環状質量体32及び第二のエラストマ部材31の内側面(第一のエラストマ部材21側の面)に近接して径方向に延びる仕切板5が配置され、その外径端部がプーリ22の内周面に密接嵌着されている。この仕切板5の内径端部とハブ1の外径筒状部12との間には円周方向摺動自在なシール部材6が介在されている。前記環状質量体32の外径部には、プーリ22の内周面に形成された径方向段差面22cと前記仕切板5との間を外径側へ延びる鍔部32aが形成されている。
【0013】
プーリ22側とトーショナルダンパ部3との間、更に詳しくはプーリ22の内周面における径方向段差面22c、プーリ22の大径側内周面に密接嵌着された仕切板5及びその内径端とハブ1との間を密封するシール部材6と、鍔部32aを含む環状質量体32及び第二のエラストマ部材31との間には、粘性流体8が封入された狭い隙間7が形成されている。この隙間7の一端は、滑りベアリング4の介在部分に連通しており、この滑りベアリング4の外側は、プーリ22の小径内周面に嵌着されて環状質量体32の外周面に摺動自在に密接したオイルシール9で密封されている。
【0014】
なお、図中参照符号32bは隙間7への粘性流体8の注入孔であり、32cは粘性流体8の注入後に前記注入孔32bを密栓してなる球体である。
【0015】
この実施例によるトルク変動吸収ダンパにおいて、カップリング部2の捩り方向固有振動数は、先に述べたように、エンジンのアイドル回転時におけるクランクシャフトのトルク変動の周波数以下の領域にあるのに対し、トーショナルダンパ部3は、比較的高速回転域でのクランクシャフトの捩り振動を共振吸収するものであるため、その捩り方向固有振動数がカップリング部2に比較して高いものとなっている。したがって、エンジン始動時に、クランキングからアイドリングに至る過程で、カップリング部2がクランクシャフトの低周波数のトルク変動と共振し、ハブ1に対してプーリ22が捩り方向へ大きく振動変位されることによって第一のエラストマ部材21の捩り変位量が増大するが、トーショナルダンパ部3は共振していないから、プーリ22及びこれと一体的に捩り方向へ反復変位される仕切板5との間で、隙間7内の粘性流体8が剪断を受けることになり、この時の粘性抵抗によって、プーリ22の捩り変位の振幅が抑えられ、第一のエラストマ部材21の捩り変位量が制限される。また、トーショナルダンパ部3がクランクシャフトの捩り振動を共振吸収する高速回転域では、カップリング部2は共振しないから、この場合も隙間7内の粘性流体8が剪断を受けることになり、トーショナルダンパ部3の第二のエラストマ部材31の内部摩擦によるダンピングに加えて、前記粘性流体8の粘性抵抗によるダンピングが得られる。
【0016】
粘性流体8が封入された隙間7はその両側の対向面間の幅が狭く、環状質量体32に形成された鍔部32aと、その軸方向両側にある仕切板5及びプーリ22の径方向段差面22cによって、径方向へ大きく折り返された形状であるため、粘性流体8との摩擦面が大きくなっている。したがって、プーリ22の捩り変位の振幅を抑えるのに有効な大きな減衰力が得られる。
【0017】
合成樹脂からなる滑りベアリング4は、プーリ22をトーショナルダンパ部3の環状質量体32の外周に同心的かつ捩り変位自在に支持するものであるが、通常、この種の滑りベアリング4は摺動によって摩耗が大きくなりやすい。しかしこの実施例では、滑りベアリング4が隙間7に封入された粘性流体8によって潤滑されるので、摩耗を受けにくく、その耐久性が向上される。
【0018】
【発明の効果】
本発明によると、次のような効果が実現される。
(1) カップリング部が捩り方向に共振した時に粘性流体の粘性ダンピング作用によってプーリの振動変位量の増大が抑えられるので、ストッパを設けた場合のような干渉音を発生することなくカップリング部の第一のエラストマ部材の大変形が有効に防止される。
(2) プーリをトーショナルダンパ部の環状質量体の外周に同心的に支持する滑りベアリングが粘性流体で潤滑されるので、その耐久性が向上する。
(3) 前記粘性流体の粘性ダンピングによって、トーショナルダンパ部による制振力が向上する。
【図面の簡単な説明】
【図1】本発明に係るトルク変動吸収ダンパの一実施例を、その軸心を通る平面で切断して示す半断面図である。
【図2】従来のトルク変動吸収ダンパの一例を、その軸心を通る平面で切断して示す半断面図である。
【図3】上記従来例を、図2におけるIII −III 線位置で切断して示す部分的な断面図である。
【符号の説明】
1 ハブ
11 径方向部
12 外径筒状部
2 カップリング部
21 第一のエラストマ部材
22 プーリ
22a,22b Vプーリ溝
23,24,33 スリーブ
3 トーショナルダンパ部
31 第二のエラストマ部材
32 環状質量体
4 ベアリング
5 仕切板
6 シール部材
7 隙間
8 粘性流体
9 オイルシール
[0001]
[Industrial applications]
The present invention relates to a torque fluctuation absorbing damper that absorbs and insulates the fluctuation of the transmission torque of the crankshaft due to each stroke of the engine when transmitting the power of the engine crankshaft to various auxiliary devices.
[0002]
[Prior art]
Conventionally, as shown in FIG. 2, this type of torque fluctuation absorbing damper has a torsion displacement (displacement in the direction around the axis) on the outer periphery of a hub 101 attached to the tip of an engine crankshaft via a bearing 102a. A coupling portion 102 having a structure in which pulleys 102b arranged freely and concentrically are connected via an elastomer member 102c is provided (for example, see Japanese Utility Model Application Laid-Open No. 63-68540). That is, a part of the power of the crankshaft is supplied to various auxiliary devices such as an alternator and a compressor through an endless belt (not shown) wound around the pulley 102b. The coupling part 102 absorbs and insulates the torque fluctuation between the pulley 102b and the pulley 102c by the torsional deformation of the elastomer member 102c, thereby smoothing the transmission torque from the pulley 102b.
[0003]
Further, on the outer periphery of the hub 101, a torsion damper portion 103 having a structure in which an annular mass body 103b is elastically connected via another elastomer member 103a is arranged in parallel. The torsion damper section 103 resonates so as to cancel the torsional vibration of the crankshaft in a predetermined frequency range, and exhibits a vibration damping function of reducing the torsional vibration itself of the crankshaft.
[0004]
Incidentally, the natural frequency in the torsional direction of the coupling portion 102 is determined by the fact that the inertial mass of the pulley 102b is large and the spring constant of the elastomer member 102c is lower than that of the elastomer member 103a of the torsional damper portion 103. It is considerably lower than the natural frequency in the torsional direction of the crankshaft.For example, since it is in the region below the frequency of the torque fluctuation of the crankshaft during idling, the crankshaft of The frequency of the torque fluctuation passes through the natural frequency range of the coupling section 102 in the torsional direction. If the pulley 102b is largely displaced in the torsional direction with respect to the hub 101 due to the resonance of the coupling portion 102 at this time, the elastomer member 102c may be damaged due to excessive deformation. Usually, a stopper 104 for limiting the relative displacement of the hub 101 and the pulley 102b in the torsional direction is provided. As shown in FIG. 3, the stopper 104 has a metal ring 104a fixed to the hub 101 and having irregularities on the outer periphery, and has a concave and convex fixed on the pulley 102b side and loosely fitted with the irregularities on the inner periphery. And a metal ring 104b.
[0005]
[Problems to be solved by the invention]
According to the above-described conventional torque fluctuation absorbing damper, the amount of vibration displacement of the pulley 102b due to resonance of the coupling portion 102, in other words, the amount of torsional deformation of the elastomer member 102c is determined by the interference between the irregularities of the metal rings 104a and 104b at the stopper 104. Because of the limitation to the predetermined range, a problem that a metal hitting sound occurs at the time of resonance is pointed out.
[0006]
The present invention has been made under the circumstances described above, and its main technical problem is to effectively prevent excessive deformation of an elastomer member without generating a tapping sound at the time of resonance of a coupling portion. Is to prevent it.
[0007]
[Means for Solving the Problems]
The technical problem described above can be effectively solved by the present invention.
That is, the torque fluctuation absorbing damper according to the present invention includes a coupling portion in which a pulley is connected to an outer periphery of a hub attached to a crankshaft of an engine via a first elastomer member so as to be capable of torsional displacement, and an inner periphery of the pulley. A structure in which the annular mass body is connected to the outer periphery of the hub via a second elastomer member arranged in the axial direction with the first elastomer member so as to be capable of torsional displacement, and has a natural frequency different from that of the coupling portion. And a viscous fluid sealed in a gap formed between the first elastomer member and the torsional damper portion and between the pulley side and the torsional damper portion.
In the present invention, more preferably, the gap is closely fitted to the inner peripheral surface of the pulley and extends radially along the side surface of the torsional damper portion; And a seal member slidably interposed therebetween. Further, the gap communicates with an intervening portion of the sliding bearing between the inner peripheral surface of the pulley and the outer peripheral surface of the annular mass body.
[0008]
[Action]
The increase in the amount of vibration displacement of the pulley when the coupling portion resonates in the torsional direction is caused by the difference between the pulley side that is repeatedly torsional displaced and the torsional damper portion that does not resonate at the resonance frequency of the coupling portion. It is suppressed by the damping action due to the viscous resistance of the viscous fluid subjected to shearing in the gap. In particular, a partition plate closely fitted to the inner peripheral surface of the pulley and extending radially toward the hub along the side surface of the torsion damper portion, and slidably slidably between the inner diameter of the partition plate and the hub. With the interposed seal member, the distance between the surfaces relatively displaced in the torsional direction on both sides of the gap can be reduced, the friction area with the viscous fluid can be increased, and the braking action by viscous damping can be enhanced. In addition, the sliding bearing is lubricated by connecting the gap to an interposed portion of the sliding bearing that supports the pulley concentrically on the outer periphery of the annular mass body of the torsional damper portion.
[0009]
Further, since the coupling portion does not resonate when the torsional damper portion resonates, the damping due to the internal friction of the second elastomer member in the torsional damper portion also occurs in the torsional vibration damping of the crankshaft due to the resonance of the torsional damper portion. In addition, damping due to viscous resistance generated by the shearing of the viscous fluid between the pulley side of the coupling portion and the torsional damper portion torsionally displaced relative thereto is obtained.
[0010]
【Example】
FIG. 1 shows an embodiment of a torque fluctuation absorbing damper according to the present invention, which is cut along a plane passing through its axis. Reference numeral 1 denotes a hub attached to the shaft end of a crankshaft of an engine. On the outer periphery of the hub 1, a coupling portion 2 to which a pulley 22 is connected via a first elastomer member 21 so as to be capable of torsional displacement, and an annular mass body 32 via a second elastomer member 31 to be capable of torsional displacement. A torsional damper section 3 having a connected structure is provided.
[0011]
The hub 1 has a substantially L-shaped cross section having a radial portion 11 that is a portion to be attached to a crankshaft and an outer diameter cylindrical portion 12 extending from the outer diameter. A large-diameter V-pulley groove 22a and a small-diameter V-pulley groove 22b are formed on the outer peripheral surface of the pulley 22, and the inner peripheral surface of the pulley 22 correspondingly has a large-diameter on the V-pulley groove 22a side and the other. The V-pulley groove 22b side is formed in a stepped shape with a small diameter. The first elastomer member 21 has a sleeve 23 fitted on the outer peripheral surface of the outer cylindrical portion 12 of the hub 1 near the radial portion 11 and a large-diameter inner peripheral surface of the pulley 22 on the V-pulley groove 22a side. It is vulcanized and formed integrally with the fitted sleeve 24. The annular mass body 32 is disposed on the inner periphery of the pulley 22 on the side of the small-diameter V-pulley groove 22b, and the second elastomer member 31 is located on the side opposite to the radial portion 11 of the outer diameter cylindrical portion 12 of the hub 1. Is vulcanized and formed integrally between the sleeve 33 fitted on the outer peripheral surface near the end and the annular mass body 32. A sliding bearing 4 made of a synthetic resin material is slidably interposed between the opposed peripheral surfaces of the annular mass body 32 and the pulley 22.
[0012]
Between the hub 1 and the pulley 22 and between the first elastomer member 21 and the torsional damper unit 3, the inner surface of the annular mass body 32 and the second elastomer member 31 of the torsional damper unit 3 (the A partition plate 5 extending in the radial direction is arranged near the one elastomer member 21 side), and the outer diameter end of the partition plate 5 is closely fitted to the inner peripheral surface of the pulley 22. A seal member 6 slidable in the circumferential direction is interposed between the inner diameter end portion of the partition plate 5 and the outer diameter cylindrical portion 12 of the hub 1. An outer diameter portion of the annular mass body 32 is formed with a flange portion 32a extending to an outer diameter side between a radial step surface 22c formed on an inner peripheral surface of the pulley 22 and the partition plate 5.
[0013]
Between the pulley 22 side and the torsion damper portion 3, more specifically, a radial step surface 22c on the inner peripheral surface of the pulley 22, the partition plate 5 closely fitted to the large-diameter inner peripheral surface of the pulley 22, and the inner diameter thereof A narrow gap 7 in which a viscous fluid 8 is sealed is formed between the seal member 6 that seals between the end and the hub 1, and the annular mass body 32 including the flange 32 a and the second elastomer member 31. ing. One end of the gap 7 communicates with an intervening portion of the slide bearing 4, and the outside of the slide bearing 4 is fitted to the small-diameter inner peripheral surface of the pulley 22 and is slidable on the outer peripheral surface of the annular mass body 32. Is sealed by an oil seal 9 which is in close contact.
[0014]
In the figure, reference numeral 32b denotes an injection hole for the viscous fluid 8 into the gap 7, and 32c denotes a sphere formed by sealing the injection hole 32b after the injection of the viscous fluid 8.
[0015]
In the torque fluctuation absorbing damper according to this embodiment, the natural frequency in the torsional direction of the coupling portion 2 is in the region below the frequency of the torque fluctuation of the crankshaft during the idle rotation of the engine, as described above. Since the torsional damper portion 3 is for absorbing torsional vibration of the crankshaft in a relatively high-speed rotation range, its natural frequency in the torsional direction is higher than that of the coupling portion 2. . Therefore, when the engine is started, in the process from cranking to idling, the coupling portion 2 resonates with the low-frequency torque fluctuation of the crankshaft, and the pulley 22 is largely displaced in the torsional direction with respect to the hub 1 by vibrating displacement. Although the amount of torsional displacement of the first elastomer member 21 increases, the torsional damper portion 3 does not resonate. Therefore, between the pulley 22 and the partition plate 5 that is repeatedly displaced in the torsional direction integrally therewith, The viscous fluid 8 in the gap 7 is subjected to shearing. At this time, the amplitude of the torsional displacement of the pulley 22 is suppressed by viscous resistance, and the amount of torsional displacement of the first elastomer member 21 is limited. Also, in a high-speed rotation region where the torsional damper unit 3 resonates and absorbs torsional vibration of the crankshaft, the coupling unit 2 does not resonate. In this case, too, the viscous fluid 8 in the gap 7 is subjected to shearing. Damping by viscous resistance of the viscous fluid 8 is obtained in addition to damping by internal friction of the second elastomer member 31 of the directional damper unit 3.
[0016]
The gap 7 in which the viscous fluid 8 is sealed has a narrow width between opposing surfaces on both sides thereof, and has a flange portion 32a formed on the annular mass body 32 and a radial step between the partition plate 5 and the pulley 22 on both axial sides thereof. Since the shape is largely folded in the radial direction by the surface 22c, the friction surface with the viscous fluid 8 is large. Therefore, a large damping force effective for suppressing the amplitude of the torsional displacement of the pulley 22 is obtained.
[0017]
The sliding bearing 4 made of a synthetic resin supports the pulley 22 on the outer periphery of the annular mass body 32 of the torsion damper unit 3 so as to be concentric and freely torsional displacement. The wear tends to increase. However, in this embodiment, the sliding bearing 4 is lubricated by the viscous fluid 8 sealed in the gap 7, so that it is less susceptible to wear and its durability is improved.
[0018]
【The invention's effect】
According to the present invention, the following effects are realized.
(1) When the coupling portion resonates in the torsional direction, the increase in the amount of vibration displacement of the pulley is suppressed by viscous damping action of the viscous fluid, so that the coupling portion does not generate interference noise as in the case where a stopper is provided. Large deformation of the first elastomer member is effectively prevented.
(2) The sliding bearing that concentrically supports the pulley on the outer periphery of the annular mass body of the torsional damper is lubricated with a viscous fluid, so that its durability is improved.
(3) Due to the viscous damping of the viscous fluid, the vibration damping force of the torsional damper part is improved.
[Brief description of the drawings]
FIG. 1 is a half sectional view showing an embodiment of a torque fluctuation absorbing damper according to the present invention by cutting along a plane passing through an axis thereof.
FIG. 2 is a half sectional view showing an example of a conventional torque fluctuation absorbing damper cut along a plane passing through an axis thereof.
FIG. 3 is a partial cross-sectional view showing the above-described conventional example cut along a line III-III in FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hub 11 Radial direction part 12 Outer diameter cylindrical part 2 Coupling part 21 First elastomer member 22 Pulley 22a, 22b V pulley groove 23, 24, 33 Sleeve 3 Torsional damper part 31 Second elastomer member 32 Ring mass Body 4 Bearing 5 Partition plate 6 Seal member 7 Gap 8 Viscous fluid 9 Oil seal

Claims (3)

エンジンのクランクシャフトに取り付けられるハブ(1)の外周に第一のエラストマ部材(21)を介してプーリ(22)を捩り変位自在に連結したカップリング部(2)と、
前記プーリ(22)の内周に配置した環状質量体(32)を前記ハブ(1)の外周に前記第一のエラストマ部材(21)と軸方向に並んだ第二のエラストマ部材(31)を介して捩り変位自在に連結した構造であって前記カップリング部(2)と異なる固有振動数を有するトーショナルダンパ部(3)と、
前記第一のエラストマ部材(21)とトーショナルダンパ部(3)との間であって前記プーリ(22)側とトーショナルダンパ部(3)との間に形成された隙間(7)に封入された粘性流体(8)と、
を備えることを特徴とするトルク変動吸収ダンパ。
A coupling portion (2) in which a pulley (22) is connected to the outer periphery of a hub (1) attached to the crankshaft of the engine via a first elastomer member (21) so as to be capable of torsional displacement;
An annular mass body (32) arranged on the inner periphery of the pulley (22) is provided on the outer periphery of the hub (1) with a second elastomer member (31) arranged in the axial direction with the first elastomer member (21). A torsional displacement damper section (3) having a natural frequency different from that of the coupling section (2), wherein the torsionally damper section (3) is connected to the coupling section (2) through torsional displacement;
Sealed in a gap (7) formed between the first elastomer member (21) and the torsion damper part (3) and between the pulley (22) side and the torsion damper part (3). Viscous fluid (8),
A torque fluctuation absorbing damper comprising:
粘性流体(8)を封入した隙間(7)が、
プーリ(22)の内周面に密接嵌着されトーショナルダンパ部(3)の側面に沿って径方向に延在された仕切板(5)と、
この仕切板(5)の内径とハブ(1)との間に摺動自在に介在されたシール部材(6)との間に延在されたことを特徴とする請求項1に記載のトルク変動吸収ダンパ。
The gap (7) enclosing the viscous fluid (8)
A partition plate (5) closely fitted to the inner peripheral surface of the pulley (22) and extending radially along the side surface of the torsion damper portion (3);
The torque fluctuation according to claim 1, characterized in that it extends between the inner diameter of the partition (5) and a sealing member (6) slidably interposed between the hub (1). Absorption damper.
プーリ(22)の内周面と環状質量体(32)の外周面との間に滑りベアリング(4)が介在され、
粘性流体(8)を封入した隙間(7)が前記滑りベアリング(4)の介在部分に連通していることを特徴とする請求項1に記載のトルク変動吸収ダンパ。
A sliding bearing (4) is interposed between the inner peripheral surface of the pulley (22) and the outer peripheral surface of the annular mass (32),
The torque fluctuation absorbing damper according to claim 1, characterized in that a gap (7) filled with a viscous fluid (8) communicates with an intervening portion of the sliding bearing (4).
JP16482594A 1994-06-24 1994-06-24 Torque fluctuation absorption damper Expired - Fee Related JP3582536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16482594A JP3582536B2 (en) 1994-06-24 1994-06-24 Torque fluctuation absorption damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16482594A JP3582536B2 (en) 1994-06-24 1994-06-24 Torque fluctuation absorption damper

Publications (2)

Publication Number Publication Date
JPH0814332A JPH0814332A (en) 1996-01-16
JP3582536B2 true JP3582536B2 (en) 2004-10-27

Family

ID=15800640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16482594A Expired - Fee Related JP3582536B2 (en) 1994-06-24 1994-06-24 Torque fluctuation absorption damper

Country Status (1)

Country Link
JP (1) JP3582536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886685A (en) * 2010-07-19 2010-11-17 奇瑞汽车股份有限公司 Vibration damper assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227333A (en) * 1997-02-14 1998-08-25 Nok Megurasutikku Kk Dynamic damper
DE10018744C2 (en) * 2000-04-15 2002-11-28 Freudenberg Carl Kg Torsionally flexible coupling for pulleys
DE102006016202B3 (en) * 2006-04-06 2007-07-05 Carl Freudenberg Kg Belt pulley, has integrated torsional vibration damper, hub ring and flywheel rim surrounding hub ring with first radial distance, whereas first spring body is arranged in first formed crack over first space
IT1393862B1 (en) * 2008-07-29 2012-05-11 Dayco Europe Srl PULLEY PACKAGING MACHINE PREFERIBLY TO DRIVE AN ORGAN ACCESSORY VIA A BELT DRIVE IN AN INTERNAL COMBUSTION ENGINE
IT1393863B1 (en) * 2008-07-29 2012-05-11 Dayco Europe Srl PULLEY PACKAGING MACHINE PREFERIBLY TO DRIVE AN ORGAN ACCESSORY VIA A BELT DRIVE IN AN INTERNAL COMBUSTION ENGINE
CN102364158B (en) * 2011-09-07 2013-05-08 湖北航天化学技术研究所 Vibration absorber
CN104675899A (en) * 2015-02-13 2015-06-03 柳州金鸿橡塑有限公司 Parallel distribution type double-frequency twisting vibration reducer
WO2021094557A1 (en) * 2019-11-15 2021-05-20 Hasse & Wrede Gmbh Crankshaft arrangement comprising a torsional vibration damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886685A (en) * 2010-07-19 2010-11-17 奇瑞汽车股份有限公司 Vibration damper assembly

Also Published As

Publication number Publication date
JPH0814332A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
US5231893A (en) Dual mode damper
US5139120A (en) Torsional damper
KR100266111B1 (en) A torsion damping device for motor vehicle
JP2007107637A (en) Torque variation absorbing damper
JP3582536B2 (en) Torque fluctuation absorption damper
JP2011220389A (en) Damper
US5503595A (en) Torsion damping device for a motor vehicle, being in particular a double damped flywheel or a clutch friction wheel
US5453056A (en) Belt pulley
JP2004278726A (en) Torque fluctuation absorbing damper
JP4232620B2 (en) Isolation pulley
JP3994278B2 (en) Torque fluctuation absorbing damper
JP3531685B2 (en) Torque fluctuation absorption damper
JP4006582B2 (en) Torque fluctuation absorbing damper
JP5831702B2 (en) Rotation fluctuation absorbing damper pulley
JPH0470499B2 (en)
JP2004028177A (en) Torque fluctuation absorbing damper
JP5257617B2 (en) Torque fluctuation absorbing damper
JP3534126B2 (en) Torque fluctuation absorption damper
JP2003343652A (en) Torque variation absorbing damper
JP2002005234A (en) Torque fluctuation absorbing damper
JP2003322212A (en) Torque fluctuation absorbing damper
JPH0118923Y2 (en)
AU4237193A (en) Dual mode damper
JP2004176880A (en) Torque fluctuation absorbing damper and its manufacturing method
JP2003254388A (en) Torque variation absorbing damper

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees