JP6434942B2 - Glass composition, glass frit containing the glass composition, and glass paste containing the glass composition - Google Patents
Glass composition, glass frit containing the glass composition, and glass paste containing the glass composition Download PDFInfo
- Publication number
- JP6434942B2 JP6434942B2 JP2016164280A JP2016164280A JP6434942B2 JP 6434942 B2 JP6434942 B2 JP 6434942B2 JP 2016164280 A JP2016164280 A JP 2016164280A JP 2016164280 A JP2016164280 A JP 2016164280A JP 6434942 B2 JP6434942 B2 JP 6434942B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- glass composition
- paste
- sealing
- glass paste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81192—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Landscapes
- Glass Compositions (AREA)
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
Description
本発明は、ガラス組成物に関し、特に従来よりも低い焼成温度で軟化流動するガラス組成物に関するものである。また、本発明は、該ガラス組成物を含むガラスフリット、および該ガラス組成物を含むガラスペーストに関するものである。 The present invention relates to a glass composition, and more particularly to a glass composition that softens and flows at a lower firing temperature than before. The present invention also relates to a glass frit containing the glass composition and a glass paste containing the glass composition.
水晶振動子、ICパッケージ、および画像表示デバイス(例えば、プラズマディスプレイパネルや液晶ディスプレイパネル)のような電気電子部品は、封着用ガラスフリットや封着用ガラスペーストを塗布し焼成することによって封止や封着(以下、総称して封着とする)がなされている。また、太陽電池パネル、画像表示デバイス、積層コンデンサー、水晶振動子、LED(発光ダイオード)、および多層回路基板などの多くの電気電子部品には、ガラス粉末と金属粒子とが混合された導電性ガラスペーストを基材上に印刷し焼成することによって、パターニングされた電極および/または配線(以下、電極/配線と称す)が形成されている。 Electrical and electronic parts such as crystal resonators, IC packages, and image display devices (for example, plasma display panels and liquid crystal display panels) are sealed or sealed by applying a sealing glass frit or sealing glass paste and baking. (Hereinafter collectively referred to as sealing). In many electrical and electronic parts such as solar cell panels, image display devices, multilayer capacitors, crystal resonators, LEDs (light emitting diodes), and multilayer circuit boards, conductive glass in which glass powder and metal particles are mixed is used. Patterned electrodes and / or wirings (hereinafter referred to as electrodes / wirings) are formed by printing and baking the paste on a substrate.
封着用ガラスフリットは、いわゆる低融点ガラス組成物(例えば、低い屈伏点や低い軟化点を有するガラス組成物)と酸化物充填材との混合物であり、導電性ガラスペーストは、低融点ガラス組成物と金属粒子(例えば、銀粒子、銅粒子、アルミニウム粒子など)と酸化物充填材と樹脂バインダーと溶剤との混合物である。封着用ガラスフリットや導電性ガラスペーストに使用されるガラス組成物は、焼成時に軟化流動することによって、封着する部材同士を密着させたり、電極/配線を基材に密着させたりする役割を担っている。ガラス組成物としては、かつては、低温で軟化流動し熱的・化学的に安定な鉛ガラス(主要成分として酸化鉛を含有するガラス)が使用されていた。 The glass frit for sealing is a mixture of a so-called low melting glass composition (for example, a glass composition having a low yield point or a low softening point) and an oxide filler, and the conductive glass paste is a low melting glass composition. And metal particles (for example, silver particles, copper particles, aluminum particles), an oxide filler, a resin binder, and a solvent. Glass compositions used for sealing glass frits and conductive glass pastes soften and flow during firing, thereby bringing the members to be sealed into close contact with each other and the electrodes / wirings in close contact with the substrate. ing. As glass compositions, lead glass (glass containing lead oxide as a main component) that has been softened and fluidized at a low temperature and thermally and chemically stable has been used.
しかしながら、電気電子機器業界では、近年、世界的にグリーン調達・グリーン設計の流れが強く、より安全な材料が望まれている。例えば、欧州においては、電子・電気機器における特定有害物質の使用制限についての欧州連合(EU)による指令(RoHS指令)が2006年7月1日に施行されている。鉛(Pb)はRoHS指令の禁止物質に指定されており、主要成分としてPbOを含むガラスはRoHS指令に対応できないという問題があった。そこで、鉛成分を含まないガラス組成物(無鉛ガラス)、それを用いた封着用ガラスフリットや導電性ガラスペーストが種々検討されている。 However, in recent years, in the electrical and electronic equipment industry, there is a strong trend of green procurement and green design worldwide, and safer materials are desired. For example, in Europe, the European Union (EU) Directive (RoHS Directive) came into force on 1 July 2006 regarding restrictions on the use of specific hazardous substances in electronic and electrical equipment. Lead (Pb) has been specified as a RoHS directive banned substance, and glass containing PbO as a major component has a problem that it cannot comply with the RoHS directive. Therefore, various glass compositions (lead-free glass) containing no lead component, glass frit for sealing and conductive glass paste using the same have been studied.
例えば、特許文献1(特開2010-184852号公報)には、ガラス組成物における成分の酸化物換算で、V2O5を45〜65重量%、P2O5を10〜20重量%、TeO2を10〜25重量%、Fe2O3を5〜15重量%、MnO2とZnOとWO3とMoO3とBaOとを合計で0〜10重量%を含有し、鉛とビスマスとアンチモンとを実質的に含有しないことを特徴とする低融点ガラス組成物が開示されている。特許文献1によると、380℃以下の軟化点を有する低融点ガラス組成物を提供でき、それを用いた封着用ガラスフリットや導電性ガラスペーストの焼成温度を400℃以下にできるとされている。
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-184852) discloses that V 2 O 5 is 45 to 65% by weight, P 2 O 5 is 10 to 20% by weight in terms of oxides of components in the glass composition,
また、特許文献2(特開2009-209032号公報)には、ガラス組成物における成分の酸化物換算で、V2O5を33〜45重量%、P2O5を22〜30重量%、MnOを5〜15重量%、BaOを10〜20重量%、R2Oを0〜8重量%(Rはアルカリ金属元素)、Sb2O3とTeO2とZnOとSiO2とAl2O3とNb2O5とLa2O3とを合計で0〜10重量%含有し、鉛とビスマスとを実質的に含有しないことを特徴とするガラス組成物が開示されている。特許文献2によると、鉛とビスマスを使用せずとも、実用性の高い低温(500℃以下)で軟化させることが可能なガラス組成物を提供できるとされている。
Patent Document 2 (Japanese Patent Laid-Open No. 2009-209032) discloses that V 2 O 5 is 33 to 45% by weight, P 2 O 5 is 22 to 30% by weight in terms of oxides of components in the glass composition, 5-15% by weight of MnO, 10-20% by weight of BaO, 0-8% by weight of R 2 O (R is an alkali metal element), Sb 2 O 3 , TeO 2 , ZnO, SiO 2 and Al 2 O 3 , Nb 2 O 5 and La 2 O 3 are contained in a total amount of 0 to 10% by weight, and lead and bismuth are substantially not contained. According to
また、特許文献3(特開2006-342044号公報)には、酸化物換算のモル%表示で、ガラス組成として、10〜60%のV2O5、5〜40%のP2O5、1〜30%のBi2O3、0〜40%のZnO、0〜40%のTeO2、0〜20%のR2O(RはLi、Na、K、Cs)、0〜30%のR’O(R’はMg、Ca、Sr、Ba)を含有することを特徴とするバナジウムリン酸系ガラスが開示されている。特許文献3によると、該バナジウムリン酸系ガラスは、500℃以下で良好な流動性を示すとともに、リン酸塩ガラス特有の耐候性に関する問題もないとされている。
Further, Patent Document 3 (Japanese Patent Laid-Open No. 2006-342044) discloses, as a glass composition, 10% to 60% V 2 O 5 , 5 to 40% P 2 O 5 , in terms of mol% in terms of oxide. 1% to 30% of Bi 2 O 3, 0~40% of ZnO, 0 to 40% of the
また、特許文献4(特開2004-250276号公報)には、16〜80重量%のV2O5、0〜40重量%のZnO、4〜50重量%のBaO、0〜60重量%のTeO2の4成分の金属酸化物からなる封着加工用無鉛低融点ガラスが開示されている。特許文献4によると、該無鉛低融点ガラスは、鉛を含有する低融点ガラスに匹敵する熱的特性や優れた封着性能を示すとされている。 Patent Document 4 (Japanese Patent Application Laid-Open No. 2004-250276) includes 16 to 80% by weight of V 2 O 5 , 0 to 40% by weight of ZnO, 4 to 50% by weight of BaO, and 0 to 60% by weight of A lead-free low-melting glass for sealing processing made of a TeO 2 quaternary metal oxide is disclosed. According to Patent Document 4, the lead-free low-melting glass is said to exhibit thermal properties comparable to low-melting glass containing lead and excellent sealing performance.
また、特許文献5(特開2003-192378号公報)には、網目形成酸化物としてのB2O3が20〜80重量%、網目修飾酸化物としてのBaOが0〜60重量%、中間酸化物としてのZnOが0〜60重量%である封着加工用無鉛低融点ガラス、および網目形成酸化物としてのV2O5が30〜70重量%、網目修飾酸化物としてのBaOが50〜80重量%、中間酸化物としてのZnOが0〜50重量%である封着加工用無鉛低融点ガラスが開示されている。特許文献5によると、該無鉛低融点ガラスは、PbO-B2O3系低融点ガラスに匹敵する優れた特性を示すとされている。
Patent Document 5 (Japanese Patent Laid-Open No. 2003-192378) describes that B 2 O 3 as a network-forming oxide is 20 to 80% by weight, BaO as a network-modifying oxide is 0 to 60% by weight, intermediate oxidation Lead-free low-melting glass for sealing processing with 0 to 60% by weight of ZnO as a product, 30 to 70% by weight of V 2 O 5 as a network forming oxide, and 50 to 80 of BaO as a network modifying oxide A lead-free low-melting-point glass for sealing is disclosed, which has a weight percent of ZnO as an intermediate oxide of 0 to 50 weight percent. According to
また、特許文献6(特開2008-251324号公報)には、分散剤を含有する有機媒体と、前記有機媒体中に添加されたバナジウム、リン、アンチモンおよびバリウムを含有するフリットガラスと銀粒子を基本構成とする導電性ペーストであって、前記フリットガラスの組成が酸化物換算でV2O5:50〜65質量%、P2O5:15~27質量%、Sb2O3:5〜25質量%、BaO:1〜15質量%よりなり、前記銀粒子が、フレーク状粒子と粒状粒子を含み、前記フレーク状粒子の平均粒子径が2〜5μm、前記粒状粒子の平均粒子径が0.1〜3μmであり、前記フレーク状粒子と前記粒状粒子の配合割合が質量比で、50:50〜90:10であり、前記フリットガラスを前記銀粒子に対して5〜30質量%含む導電性ペーストが開示されている。特許文献6によると、鉛やビスマスおよびアルカリ金属をフリットガラスとして含まず、導電性に優れた銀系導電性ペーストを提供できるとされている。
Patent Document 6 (Japanese Patent Application Laid-Open No. 2008-251324) discloses an organic medium containing a dispersant, a frit glass containing silver, vanadium, phosphorus, antimony, and barium added to the organic medium. A conductive paste having a basic structure, the composition of the frit glass being V 2 O 5 : 50 to 65% by mass in terms of oxide, P 2 O 5 : 15 to 27% by mass, Sb 2 O 3 : 5 to 25% by mass, BaO: 1 to 15% by mass, the silver particles include flaky particles and granular particles, the average particle size of the flaky particles is 2 to 5 μm, and the average particle size of the granular particles is 0.1 A conductive paste having a mass ratio of 50:50 to 90:10, and containing 5 to 30 mass% of the frit glass with respect to the silver particles. Is disclosed. According to
また、特許文献7(特開2006-332032号公報)では、導電性銀粉末と亜鉛含有添加剤と鉛フリーであるガラスフリットとが有機媒体中に分散されている厚膜導電性組成物が開示されている。特許文献7によると、好ましいガラスフリットは、ガラス組成物中の酸化物成分として、0.1〜8重量%のSiO2と、0〜4重量%のAl2O3と、8〜25重量%のB2O3と、0〜1重量%のCaOと、0〜42重量%のZnOと、0〜4重量%のNa2Oと、0〜3.5重量%のLi2Oと、28〜85重量%のBi2O3と、0〜3重量%のAg2Oと、0〜4.5重量%のCeO2と、0〜3.5重量%のSnO2と、0〜15重量%のBiF3とを含むとされている。 Patent Document 7 (Japanese Patent Laid-Open No. 2006-332032) discloses a thick film conductive composition in which conductive silver powder, a zinc-containing additive, and lead-free glass frit are dispersed in an organic medium. Has been. According to Patent Document 7, preferred glass frit comprises 0.1 to 8 wt% SiO 2 , 0 to 4 wt% Al 2 O 3 , and 8 to 25 wt% B as oxide components in the glass composition. 2 O 3 , 0-1 wt% CaO, 0-42 wt% ZnO, 0-4 wt% Na 2 O, 0-3.5 wt% Li 2 O, 28-85 wt% Bi 2 O 3 , 0-3 wt% Ag 2 O, 0-4.5 wt% CeO 2 , 0-3.5 wt% SnO 2 , and 0-15 wt% BiF 3 Has been.
上述したように、無鉛ガラス組成物およびそれを用いたガラスフリットやガラスペーストが種々提案されているが、軟化流動させるのに好適な焼成温度の観点において、低融点鉛ガラスに比べて依然として高いという問題があった。具体的な焼成温度としては、少なくとも350℃以下で焼成可能なガラス組成物が強く望まれていた。より好ましくは320℃以下、更に好ましくは300℃以下で焼成可能なガラス組成物が望まれていた。 As described above, various lead-free glass compositions and glass frits and glass pastes using the same have been proposed, but they are still higher than low melting point lead glasses in terms of firing temperature suitable for softening and flowing. There was a problem. As a specific firing temperature, a glass composition that can be fired at least at 350 ° C. or less has been strongly desired. A glass composition that can be fired at 320 ° C. or lower, more preferably 300 ° C. or lower is more desirable.
一方、焼成温度を低下させるためにガラスの屈伏点や軟化点を低融点鉛ガラスのそれらと同等以下に低下させた従来の無鉛ガラス組成物では、ガラスの熱的安定性が低下したり、ガラスの耐湿性が低下したりする問題があった。また、導電性ガラスペーストにおいて、従来の無鉛ガラス組成物の一部は、焼成中に金属粒子と化学反応して該金属粒子表面に酸化物被膜を生成してしまう場合があり、結果として形成される電極/配線の電気抵抗率が期待よりも高くなってしまう問題があった。 On the other hand, in the conventional lead-free glass composition in which the yield point and softening point of the glass are lowered to the same or lower level as those of the low melting point lead glass in order to lower the firing temperature, the thermal stability of the glass is reduced. There has been a problem that the moisture resistance of the material is lowered. In addition, in the conductive glass paste, a part of the conventional lead-free glass composition may be chemically reacted with the metal particles during firing to form an oxide film on the surface of the metal particles, resulting in formation. There is a problem that the electrical resistivity of the electrode / wiring becomes higher than expected.
したがって、本発明の目的は、上記課題を解決し、第一義的には低融点鉛ガラスの場合と同等以下の焼成温度で軟化流動可能な無鉛ガラス組成物を提供することにある。次に、その特性に加えて、良好な熱的安定性を有する無鉛ガラス組成物を提供することにある。さらに、それらの特性に加えて、良好な化学的安定性を有する無鉛ガラス組成物を提供することにある。また、本発明の他の目的は、該無鉛ガラス組成物を含むガラスフリット、および該ガラス組成物を含むガラスペーストを提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems and primarily to provide a lead-free glass composition that can be softened and flowed at a firing temperature equal to or lower than that of a low-melting-point lead glass. Next, it is to provide a lead-free glass composition having good thermal stability in addition to its characteristics. Furthermore, it is providing the lead-free glass composition which has favorable chemical stability in addition to those characteristics. Another object of the present invention is to provide a glass frit containing the lead-free glass composition and a glass paste containing the glass composition.
(I)本発明の1つの態様は、無鉛のガラス組成物であって、前記ガラス組成物は、主要成分と追加成分とから構成され、それらの名目成分を酸化物で表したときに、前記主要成分は、25質量%以上60質量%以下のAg2Oと、5質量%以上65質量%以下のV2O5と、15質量%以上50質量%以下のTeO2とからなり、かつ該主要成分の含有率が75質量%以上であり、前記追加成分は、前記主要成分以外の成分であり、BaO、WO3、Fe2O3、MnO2、およびSb2O3の内の1種以上を含み、前記ガラス組成物に対して示差熱分析を行ったときに、該ガラス組成物の結晶化温度が300℃以下に存在しないことを特徴とするガラス組成物を提供する。なお、本発明における「無鉛、鉛成分を含まない」とは、前述のRoHS指令(2006年7月1日施行)における禁止物質を指定値以下の範囲で含有することを容認するものとする。 (I) One aspect of the present invention is a lead-free glass composition, wherein the glass composition is composed of a main component and an additional component, and when the nominal component is represented by an oxide, The main component is composed of 25% by mass to 60% by mass of Ag 2 O, 5% by mass to 65% by mass of V 2 O 5 , and 15% by mass to 50% by mass of TeO 2 , and The main component content is 75% by mass or more, and the additional component is a component other than the main component, and one of BaO, WO 3 , Fe 2 O 3 , MnO 2 , and Sb 2 O 3. Including the above, the glass composition is characterized in that the crystallization temperature of the glass composition does not exist at 300 ° C. or lower when differential thermal analysis is performed on the glass composition. In the present invention, “lead-free and free of lead components” means that the prohibited substances in the above-mentioned RoHS Directive (enforced on July 1, 2006) are contained within a specified value or less.
また、本発明は、上記の本発明に係るガラス組成物において、以下のような改良や変更を加えることができる。
(i)前記追加成分として、前記BaO、WO3、Fe2O3、MnO2、およびSb2O3の内の1種以上に加えて、P2O5、K2O、MoO3、およびZnOの内の1種以上を更に含む。
(ii)Ag2O含有率がV2O5含有率の2.6倍以下である。言い換えると、Ag2O含有率のV2O5含有率に対する比「(Ag2O含有率)/(V2O5含有率)」が2.6以下である。
(iii)Ag2O含有率とV2O5含有率との和が40質量%以上80質量%以下である。
(iv)本発明に係る封着用ガラスフリットは、上記のガラス組成物を50体積%以上100体積%以下で含み、前記ガラス組成物を構成する酸化物以外で熱膨張係数調整用の酸化物充填材を0体積%以上50体積%以下で含む。
(v)本発明に係る封着用ガラスペーストは、上記のガラス組成物と、前記ガラス組成物を構成する酸化物以外で熱膨張係数調整用の酸化物充填材と、溶剤とを含む。
(vi)本発明に係る導電性ガラスペーストは、上記のガラス組成物と、金属粒子と、前記ガラス組成物を構成する酸化物以外で金属粒子の粒成長抑制用の酸化物充填材と、溶剤とを含む。
(vii)前記酸化物充填材は、SiO2,ZrO2,Al2O3、Nb2O5、ZrSiO4、Zr2(WO4)(PO4)2、コージェライト、ムライト、およびユークリプタイトの内の1種以上である。
(viii)前記溶剤は、ブチルカルビトールアセテートまたはα−テルピネオールであり、樹脂バインダーとしてニトロセルロースを更に含む。
(ix)前記金属粒子は、銀、銀合金、アルミニウム、アルミニウム合金、銅、または銅合金である。
(x)前記金属粒子は、平均粒径が0.5μm以上10μm以下であり、球状および/またはフレーク状の形状を有する。
(xi)前記金属粒子は、平均粒径が0.5μm以上3μm以下の粒子群と、平均粒径が5μm以上10μm以下の粒子群との混合物である。
In addition, the present invention can be modified or changed as follows in the glass composition according to the present invention.
(I) As the additional component, in addition to at least one of BaO, WO 3 , Fe 2 O 3 , MnO 2 , and Sb 2 O 3 , P 2 O 5 , K 2 O, MoO 3 , and It further contains one or more of ZnO.
(Ii) The Ag 2 O content is 2.6 times or less of the V 2 O 5 content. In other words, the ratio V 2 O 5 content of Ag 2 O content "(Ag 2 O content) / (V 2 O 5 content)" is 2.6 or less.
(Iii) The sum of the Ag 2 O content and the V 2 O 5 content is 40% by mass or more and 80% by mass or less.
(Iv) A glass frit for sealing according to the present invention contains the above glass composition in an amount of 50% by volume to 100% by volume, and is filled with an oxide for adjusting the thermal expansion coefficient other than the oxide constituting the glass composition. The material is contained in an amount of 0% to 50% by volume.
(V) The sealing glass paste according to the present invention includes the above glass composition, an oxide filler for adjusting the thermal expansion coefficient other than the oxide constituting the glass composition, and a solvent.
(Vi) The conductive glass paste according to the present invention comprises the above glass composition, metal particles, an oxide filler for suppressing grain growth of metal particles other than the oxides constituting the glass composition, and a solvent. Including.
(Vii) The oxide filler includes SiO 2 , ZrO 2 , Al 2 O 3 , Nb 2 O 5 , ZrSiO 4 , Zr 2 (WO 4 ) (PO 4 ) 2 , cordierite, mullite, and eucryptite. One or more of the above.
(Viii) The solvent is butyl carbitol acetate or α-terpineol, and further contains nitrocellulose as a resin binder.
(Ix) The metal particles are silver, a silver alloy, aluminum, an aluminum alloy, copper, or a copper alloy.
(X) The metal particles have an average particle size of 0.5 μm or more and 10 μm or less, and have a spherical and / or flaky shape.
(Xi) The metal particles are a mixture of a particle group having an average particle size of 0.5 μm to 3 μm and a particle group having an average particle size of 5 μm to 10 μm.
本発明によれば、低融点鉛ガラスの場合と同等以下の焼成温度で軟化流動し、かつ良好な熱的安定性と化学的安定性とを併せ持つ無鉛ガラス組成物を提供することができる。また、該無鉛ガラス組成物に対して酸化物充填材や金属粒子などを添加混合することにより、該無鉛ガラス組成物の効果を享受できる封着用ガラスフリットや、封着用ガラスペーストや、導電性ガラスペーストを提供することができる。 According to the present invention, it is possible to provide a lead-free glass composition that softens and flows at a firing temperature equal to or lower than that of a low-melting-point lead glass and has both good thermal stability and chemical stability. Further, by adding and mixing an oxide filler or metal particles to the lead-free glass composition, a sealing glass frit that can enjoy the effect of the lead-free glass composition, a sealing glass paste, or conductive glass A paste can be provided.
以下、本発明の実施形態について、図面を参照しながらより詳細に説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the scope of the invention.
(ガラス組成物)
無鉛ガラス組成物において、一般的に、特性温度(ガラス転移点、屈伏点、軟化点など)を低温化させると、熱的・化学的安定性が劣化する問題が生じる(例えば、ガラスが結晶化しやすくなる、耐湿性が劣化する)。本発明者等は、鉛を実質的に含まないガラス組成物でありながら、低融点鉛ガラスの場合と同等以下の焼成温度で軟化流動させることができ(ガラス軟化点の低温化)、良好な熱的安定性と良好な化学的安定性とを併せ持つガラスの組成について鋭意検討した。その結果、本発明者等は、新規なガラス組成物において、上記の要求を満たせることを見出し、本発明を完成した。
(Glass composition)
In a lead-free glass composition, generally, when the characteristic temperature (glass transition point, yield point, softening point, etc.) is lowered, there arises a problem that the thermal and chemical stability deteriorates (for example, the glass is crystallized). Easier, moisture resistance will deteriorate). The present inventors can soften and flow at a firing temperature equal to or lower than that of low-melting-point lead glass while being a glass composition substantially free of lead (lowering of the glass softening point), which is favorable. The composition of glass having both thermal stability and good chemical stability has been studied earnestly. As a result, the present inventors have found that the above-described requirements can be satisfied with a novel glass composition, and have completed the present invention.
前述したように、本発明に係る無鉛ガラス組成物は、主要成分としてAg2O(酸化銀(I))とV2O5(五酸化二バナジウム)とTeO2(二酸化テルル)とを少なくとも含有する系であり、Ag2OとV2O5とTeO2との合計含有率が75質量%以上であることを特徴とする。これにより、該ガラスの軟化点を320℃以下に低温化することができる。 As described above, the lead-free glass composition according to the present invention contains at least Ag 2 O (silver (I) oxide), V 2 O 5 (vanadium pentoxide) and TeO 2 (tellurium dioxide) as main components. The total content of Ag 2 O, V 2 O 5 and TeO 2 is 75% by mass or more. Thereby, the softening point of the glass can be lowered to 320 ° C. or lower.
Ag2O成分は、無鉛ガラス組成物の軟化点の低温化に寄与する。TeO2成分も、軟化点の低温化に寄与する。本発明に係る無鉛ガラス組成物の軟化点は、Ag2OとTeO2との含有率におおむね対応する。V2O5成分は、ガラス中のAg2O成分からの金属Agの析出を抑制し、ガラスの熱的安定性の向上に寄与する。また、V2O5成分の添加によってAg2O成分からの金属Agの析出が抑制されることから、Ag2O成分の配合量を増大させることが可能となり軟化点の低温化が助長されると共に、ガラスの化学的安定性(例えば、耐湿性)が向上する。 The Ag 2 O component contributes to lowering the softening point of the lead-free glass composition. TeO 2 component also contributes to lowering the softening point. The softening point of the lead-free glass composition according to the present invention generally corresponds to the content ratios of Ag 2 O and TeO 2 . The V 2 O 5 component suppresses the precipitation of metal Ag from the Ag 2 O component in the glass and contributes to the improvement of the thermal stability of the glass. Further, since the deposition of the metal Ag from Ag 2 O component is suppressed by the addition of V 2 O 5 component, lowering the softening point becomes possible to increase the amount of Ag 2 O component is promoted At the same time, the chemical stability (for example, moisture resistance) of the glass is improved.
ここで、本発明におけるガラス転移点、屈伏点、軟化点、結晶化温度の定義について説明する。図1は、本発明における代表的なガラス組成物に対する示差熱分析(DTA)の昇温過程で得られるチャートの1例である。DTA測定は、参照試料としてα−アルミナを用い、大気中5℃/minの昇温速度で行った。参照試料および測定試料の質量は、それぞれ650 mgとした。本発明においては、図1に示したように、第1吸熱ピークの開始温度をガラス転移点Tg(粘度=1013.3 poiseに相当)、該第1吸熱ピークのピーク温度を屈伏点Td(粘度=1011.0 poiseに相当)、第2吸熱ピークのピーク温度を軟化点Ts(粘度=107.65 poiseに相当)、第1発熱ピークの開始温度を結晶化温度Tcと定義する。なお、それぞれの温度は、接線法によって求められる温度とする。本明細書に記載の各特性温度(例えば、軟化点Ts)は上記の定義に基づくものである。 Here, the definitions of the glass transition point, yield point, softening point, and crystallization temperature in the present invention will be described. FIG. 1 is an example of a chart obtained in the temperature rising process of differential thermal analysis (DTA) for a typical glass composition in the present invention. The DTA measurement was performed using α-alumina as a reference sample at a heating rate of 5 ° C./min in the atmosphere. The mass of the reference sample and the measurement sample was 650 mg, respectively. In the present invention, as shown in FIG. 1, the first endothermic peak start temperature is the glass transition point T g (corresponding to viscosity = 10 13.3 poise), and the first endothermic peak peak temperature is the yield point T d ( Viscosity = 10 11.0 poise), the peak temperature of the second endothermic peak is defined as the softening point T s (viscosity = 10 7.65 poise), and the first exothermic peak start temperature is defined as the crystallization temperature T c . In addition, each temperature shall be the temperature calculated | required by the tangent method. Each characteristic temperature (for example, softening point T s ) described herein is based on the above definition.
より具体的なガラス組成としては、成分を酸化物で表したときに10〜60質量%のAg2Oと、5〜65質量%のV2O5と、15〜50質量%のTeO2とを含有し、Ag2OとTeO2とV2O5との合計含有率が75質量%以上であることが好ましい。これにより、該無鉛ガラス組成物の軟化点(DTAにおける昇温過程の第2吸熱ピークのピーク温度)を320℃以下に低温化することができると共に、十分な熱的安定性を確保することができる。 More specific glass compositions include 10 to 60% by mass of Ag 2 O, 5 to 65% by mass of V 2 O 5 , and 15 to 50% by mass of TeO 2 when the components are represented by oxides. The total content of Ag 2 O, TeO 2 and V 2 O 5 is preferably 75% by mass or more. Thereby, the softening point of the lead-free glass composition (the peak temperature of the second endothermic peak in the temperature rising process in DTA) can be lowered to 320 ° C. or lower, and sufficient thermal stability can be secured. it can.
ガラス組成物を利用したガラスフリットやガラスペーストを用いて、無加圧での封着や電極/配線の形成を行うときの焼成温度は、通常、該ガラス組成物の軟化点Tsよりも30〜50℃程度高く設定される。このときの焼成において、ガラス組成物が結晶化しないことが望ましい。言い換えると、封着や電極/配線の形成を健全に行うため、ガラス組成物の熱的安定性の指標としては、軟化点Tsと結晶化温度Tcとの温度差が50℃程度以上あることが望ましいと言える。なお、加圧環境下で封着を行う場合の焼成温度は、軟化点Ts程度でもよい。 Using a glass frit or glass paste using a glass composition, the firing temperature when performing sealing without pressure or forming an electrode / wiring is usually 30 % higher than the softening point T s of the glass composition. It is set to about 50 ° C higher. In firing at this time, it is desirable that the glass composition does not crystallize. In other words, the temperature difference between the softening point T s and the crystallization temperature T c is about 50 ° C. or more as an indicator of the thermal stability of the glass composition in order to perform sealing and electrode / wiring formation soundly. Is desirable. Note that the firing temperature when sealing in a pressurized environment may be about the softening point T s .
Ag2Oの含有率は、V2O5の含有率の2.6倍以下であることがより好ましい。これにより、従来の低融点無鉛ガラスよりも良好な耐湿性(実用上十分な耐湿性)を確保することができる。Ag2O含有率がV2O5含有率の2.6倍よりも大きくなると、Ag2O成分によるガラスの軟化点Tsの低温化効果が小さくなると共に、ガラスが結晶化し易くなる。 The content ratio of Ag 2 O is more preferably 2.6 times or less of the content ratio of V 2 O 5 . Thereby, it is possible to ensure better moisture resistance (practically sufficient moisture resistance) than conventional low melting point lead-free glass. When the Ag 2 O content is larger than 2.6 times the V 2 O 5 content, the effect of lowering the softening point T s of the glass by the Ag 2 O component is reduced, and the glass is easily crystallized.
加えて、Ag2O含有率とV2O5含有率との和が40質量%以上80質量%以下であることは更に好ましい。このようにすることで、更に高い耐湿性を得ることができる。詳細は後述する。 In addition, the sum of the Ag 2 O content and the V 2 O 5 content is more preferably 40% by mass or more and 80% by mass or less. By doing in this way, still higher moisture resistance can be obtained. Details will be described later.
また、本発明に係るガラス組成物は、上記の組成に加えて、P2O5(五酸化二燐)、BaO(酸化バリウム)、K2O(酸化カリウム)、WO3(三酸化タングステン)、MoO3(三酸化モリブデン)、Fe2O3(酸化鉄(III))、MnO2(二酸化マンガン)、Sb2O3(三酸化アンチモン)、およびZnO(酸化亜鉛)の内の1種以上を25質量%以下で更に含有していてもよい。これら追加的な酸化物は、本発明のガラスの耐湿性向上や結晶化の抑制に寄与する。 In addition to the above composition, the glass composition according to the present invention includes P 2 O 5 (phosphorus pentoxide), BaO (barium oxide), K 2 O (potassium oxide), WO 3 (tungsten trioxide). , MoO 3 (molybdenum trioxide), Fe 2 O 3 (iron (III) oxide), MnO 2 (manganese dioxide), Sb 2 O 3 (antimony trioxide), and ZnO (zinc oxide) May be further contained in an amount of 25% by mass or less. These additional oxides contribute to improving the moisture resistance of the glass of the present invention and suppressing crystallization.
(封着用ガラスフリットおよび封着用ガラスペースト)
本発明に係る封着用ガラスフリットは、上記の本発明に係るガラス組成物と、該ガラス組成物を構成する酸化物以外の酸化物充填材とを含むものである。本発明に係る封着用ガラスペーストは、上記の本発明に係るガラス組成物と、該ガラス組成物を構成する酸化物以外の酸化物充填材と、溶剤とを含むものである。封着用ガラスペーストは、樹脂バインダーを更に含んでいてもよい。また、封着用ガラスフリット中および封着用ガラスペースト中でのガラス組成物と酸化物充填材との配合割合は、ガラス組成物が50〜100体積%、酸化物充填材が0〜50体積%であることが好ましい。
(Sealing glass frit and sealing glass paste)
The glass frit for sealing according to the present invention includes the glass composition according to the present invention described above and an oxide filler other than the oxide constituting the glass composition. The glass paste for sealing according to the present invention includes the glass composition according to the present invention, an oxide filler other than the oxide constituting the glass composition, and a solvent. The glass paste for sealing may further contain a resin binder. Moreover, the compounding ratio of the glass composition and the oxide filler in the glass frit for sealing and the glass paste for sealing is 50 to 100% by volume for the glass composition and 0 to 50% by volume for the oxide filler. Preferably there is.
酸化物充填材としては、SiO2(シリカ)、ZrO2(ジルコニア)、Al2O3(α−アルミナ)、Nb2O5(五酸化ニオブ)、ZrSiO4(ジルコン)、Zr2(WO4)(PO4)2(リン酸タングステン酸ジルコニウム、ZWP)、コージェライト(2MgO・2Al2O3・5SiO2)、ムライト(3Al2O3・2SiO2)、およびユークリプタイト(LiAlSiO4)の内の1種以上が好ましく用いられる。溶剤としては、ブチルカルビトールアセテートまたはα−テルピネオールが好ましく用いられる。樹脂バインダーとしては、ニトロセルロースが好ましく用いられる。一方、溶剤としてα−テルピネオールを用い、セルロース系の樹脂バインダーを用いない封着用ガラスペーストも好ましい。 Examples of the oxide filler include SiO 2 (silica), ZrO 2 (zirconia), Al 2 O 3 (α-alumina), Nb 2 O 5 (niobium pentoxide), ZrSiO 4 (zircon), Zr 2 (WO 4 ) (PO 4) 2 (phosphoric acid zirconium tungstate, ZWP), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2), mullite (3Al 2 O 3 · 2SiO 2 ), and eucryptite (LiAlSiO 4) One or more of these are preferably used. As the solvent, butyl carbitol acetate or α-terpineol is preferably used. Nitrocellulose is preferably used as the resin binder. On the other hand, a glass paste for sealing which uses α-terpineol as a solvent and does not use a cellulose resin binder is also preferable.
本発明の封着用ガラスフリットや封着用ガラスペーストを用いて封着を行う場合、被封着物である電気電子部品の封着する箇所に対して該ガラスフリットや該ガラスペーストを肉盛りや塗布し、含有されるガラス組成物の軟化点Tsよりも30〜50℃程度高い温度で焼成する(無加圧の場合)。本発明の封着用ガラスフリットおよび封着用ガラスペーストは、含有されるガラス組成物の軟化点の低温化によって焼成温度を低温化することが可能となり、それに伴って、被封着物との望まない化学反応を防止することができる。また、被封着物である電気電子部品への余分な熱負荷も低減されるため、該電気電子部品の品質維持に貢献できる。 When sealing is performed using the sealing glass frit or sealing glass paste of the present invention, the glass frit or the glass paste is overlaid or applied to a portion to be sealed of an electrical / electronic component that is an object to be sealed. And firing at a temperature about 30 to 50 ° C. higher than the softening point T s of the contained glass composition (when no pressure is applied). The glass frit for sealing and the glass paste for sealing of the present invention can lower the firing temperature by lowering the softening point of the contained glass composition, and accordingly, undesired chemistry with the object to be sealed. Reaction can be prevented. Moreover, since the excessive heat load to the electrical / electronic component which is a to-be-sealed thing is also reduced, it can contribute to the quality maintenance of this electrical / electronic component.
(導電性ガラスペースト)
本発明に係る導電性ガラスペーストは、前述の本発明に係るガラス組成物と、金属粒子と、該ガラス組成物を構成する酸化物以外の酸化物充填材と、溶剤とを含むものである。導電性ガラスペーストは、樹脂バインダーを更に含んでいてもよい。また、導電性ガラスペースト中の固形分(ガラス組成物、金属粒子、酸化物充填材)の配合割合は、ガラス組成物が5〜30体積%、金属粒子が70〜95体積%、酸化物充填材が0〜20体積%であることが好ましい。
(Conductive glass paste)
The conductive glass paste according to the present invention includes the glass composition according to the present invention, metal particles, an oxide filler other than an oxide constituting the glass composition, and a solvent. The conductive glass paste may further contain a resin binder. In addition, the blending ratio of the solid content (glass composition, metal particles, oxide filler) in the conductive glass paste is 5 to 30% by volume for the glass composition, 70 to 95% by volume for the metal particles, and the oxide filling. The material is preferably 0 to 20% by volume.
酸化物充填材としては、SiO2、ZrO2、Al2O3、Nb2O5、ZrSiO4、Zr2(WO4)(PO4)2、コージェライト、ムライト、およびユークリプタイトの内の1種以上が好ましく用いられる。溶剤としては、ブチルカルビトールアセテートまたはα−テルピネオールが好ましく用いられる。樹脂バインダーとしては、ニトロセルロースが好ましく用いられる。一方、溶剤としてα−テルピネオールを用い、セルロース系の樹脂バインダーを用いない導電性ガラスペーストも好ましい。 Among oxide fillers, SiO 2 , ZrO 2 , Al 2 O 3 , Nb 2 O 5 , ZrSiO 4 , Zr 2 (WO 4 ) (PO 4 ) 2 , cordierite, mullite, and eucryptite One or more are preferably used. As the solvent, butyl carbitol acetate or α-terpineol is preferably used. Nitrocellulose is preferably used as the resin binder. On the other hand, a conductive glass paste using α-terpineol as a solvent and not using a cellulose resin binder is also preferable.
金属粒子としては、銀、銀合金(例えばAg-Cu合金)、アルミニウム、アルミニウム合金(例えばAl-Cu合金、Al-Si合金)、銅、または銅合金(例えばCu-Ag合金、Cu-Al合金)が好ましく用いられる。金属粒子は、平均粒径が0.5〜10μmであり、球状および/またはフレーク状の形状を有することが好ましい。また、金属粒子は、平均粒径が0.5〜3μmの粒子群と、平均粒径が5〜10μmの粒子群との混合物であることが好ましい。なお、本発明における球状とは、真球体に限られるものではなく、楕円球体や雨滴体などの部分的に球形曲面を有するものを含む。本発明における平均粒径は、レーザー回折/散乱式粒度分布計での測定によるメジアン径(D50)とする。 As metal particles, silver, silver alloy (for example, Ag-Cu alloy), aluminum, aluminum alloy (for example, Al-Cu alloy, Al-Si alloy), copper, or copper alloy (for example, Cu-Ag alloy, Cu-Al alloy) ) Is preferably used. The metal particles preferably have an average particle size of 0.5 to 10 μm and have a spherical and / or flaky shape. The metal particles are preferably a mixture of a particle group having an average particle diameter of 0.5 to 3 μm and a particle group having an average particle diameter of 5 to 10 μm. In addition, the spherical shape in the present invention is not limited to a true sphere, but includes those having a partially curved surface such as an elliptical sphere or a raindrop. The average particle diameter in the present invention is the median diameter (D50) measured by a laser diffraction / scattering particle size distribution meter.
本発明の導電性ガラスペーストを用いて電気電子部品の電極/配線を形成する場合、電気電子部品の基材に対して該ガラスペーストを所定のパターンに印刷し、含有されるガラス組成物の軟化点Tsよりも30〜50℃程度高い温度で焼成する(無加圧の場合)。なお、使用する金属粒子が酸化しやすい金属の場合は、金属粒子の酸化を防止するため、焼成雰囲気を不活性ガスにすることが望ましい。 When forming an electrode / wiring of an electric / electronic component using the conductive glass paste of the present invention, the glass paste is printed in a predetermined pattern on the base material of the electric / electronic component, and the contained glass composition is softened. Firing is performed at a temperature about 30 to 50 ° C. higher than the point T s (when no pressure is applied). In addition, when the metal particle to be used is a metal which is easily oxidized, in order to prevent the metal particle from being oxidized, it is desirable that the firing atmosphere is an inert gas.
本発明の導電性ガラスペーストは、含有されるガラス組成物の軟化点の低温化によって焼成温度を低温化することが可能となり、それに伴って、含有される金属粒子との望まない化学反応(金属粒子の酸化も含む)や基材との望まない化学反応を防止することができる。その結果、本発明の導電性ガラスペーストを用いて形成した電極/配線は、10-5Ωcm未満(10-6Ωcmオーダー)という非常に低い電気抵抗率を達成できる。また、電気電子部品への余分な熱負荷も低減されるため、該電気電子部品の品質維持に貢献できる。 The conductive glass paste of the present invention can lower the firing temperature by lowering the softening point of the contained glass composition, and accordingly, an undesirable chemical reaction (metal) with the contained metal particles. Including the oxidation of the particles) and unwanted chemical reactions with the substrate. As a result, the electrode / wiring formed using the conductive glass paste of the present invention can achieve a very low electrical resistivity of less than 10 −5 Ωcm (on the order of 10 −6 Ωcm). In addition, since an excessive heat load on the electric / electronic parts is also reduced, the quality of the electric / electronic parts can be maintained.
(電気電子部品)
本発明に係る電気電子部品は、前述の本発明に係るガラスフリットやガラスペーストで封着された封着部および/または形成された電極/配線を有する限り特段の限定はない。好適な事例としては、太陽電池パネル、画像表示デバイス(例えば、プラズマディスプレイパネル、液晶ディスプレイパネル、有機ELディスプレイパネル)、携帯情報端末(例えば、携帯電話、スマートフォン、タブレットPC)、積層コンデンサー、水晶振動子、LED、ICパッケージ、および多層回路基板が挙げられる。なお、本発明における電極/配線は、ダイボンド(Au-Sn合金はんだ等の代替)としての利用を含むものとする。
(Electrical and electronic parts)
The electrical / electronic component according to the present invention is not particularly limited as long as it has the sealing portion sealed with the glass frit or glass paste according to the present invention and / or the formed electrode / wiring. Suitable examples include solar cell panels, image display devices (eg, plasma display panels, liquid crystal display panels, organic EL display panels), personal digital assistants (eg, mobile phones, smartphones, tablet PCs), multilayer capacitors, and crystal vibrations. Examples include children, LEDs, IC packages, and multilayer circuit boards. In addition, the electrode / wiring in the present invention includes use as a die bond (alternative to Au—Sn alloy solder or the like).
以下、本発明を具体的な実施例に基づいてより詳細に説明する。ただし、本発明は、ここで取り上げた実施例に限定されることはなく、そのバリエーションを含む。 Hereinafter, the present invention will be described in more detail based on specific examples. However, the present invention is not limited to the embodiments taken up herein, and includes variations thereof.
[実施例1]
本実施例においては、種々の組成を有するガラス組成物を作製し、該ガラス組成物の軟化点と耐湿性とを調査した。
[Example 1]
In this example, glass compositions having various compositions were prepared, and the softening point and moisture resistance of the glass composition were investigated.
(ガラス組成物の作製)
後述する表1〜表4に示す組成を有するガラス組成物(AVT-01〜83、PBS-01〜04、BBZ-01、VBZ-01)を作製した。表中の組成は、各成分の酸化物換算における質量比率で表示してある。出発原料としては、(株)高純度化学研究所製の酸化物粉末(純度99.9%)を用いた。一部の試料においては、Ba源およびP源としてBa(PO3)2(リン酸バリウム、ラサ工業(株)製)を用いた。
(Preparation of glass composition)
Glass compositions (AVT-01 to 83, PBS-01 to 04, BBZ-01, VBZ-01) having the compositions shown in Tables 1 to 4 described later were prepared. The composition in the table is indicated by the mass ratio in terms of oxide of each component. As a starting material, oxide powder (purity 99.9%) manufactured by Kojundo Chemical Laboratory Co., Ltd. was used. In some samples, Ba (PO 3 ) 2 (barium phosphate, manufactured by Rasa Industry Co., Ltd.) was used as the Ba source and P source.
表に示した質量比で各出発原料粉末を混合し、白金るつぼに入れた。原料中のAg2Oの比率が40質量%以上の場合にはアルミナるつぼを用いた。混合にあたっては、原料粉末への余分な吸湿を避けることを考慮して、金属製スプーンを用いて、るつぼ内で混合した。 Each starting material powder was mixed at a mass ratio shown in the table and placed in a platinum crucible. An alumina crucible was used when the proportion of Ag 2 O in the raw material was 40% by mass or more. In mixing, in consideration of avoiding excessive moisture absorption to the raw material powder, mixing was performed in a crucible using a metal spoon.
原料混合粉末が入ったるつぼをガラス溶融炉内に設置し、加熱・融解した。10℃/minの昇温速度で昇温し、設定温度(700〜900℃)で融解しているガラスを撹拌しながら1時間保持した。その後、るつぼをガラス溶融炉から取り出し、あらかじめ150℃に加熱しておいた黒鉛鋳型にガラスを鋳込んだ。次に、鋳込まれたガラスを、あらかじめ歪取り温度に加熱しておいた歪取り炉に移動し、1時間保持により歪を除去した後、1℃/minの速度で室温まで冷却した。室温まで冷却したガラスを粉砕し、表に示した組成を有するガラス組成物の粉末を作製した。 The crucible containing the raw material mixed powder was placed in a glass melting furnace and heated and melted. The temperature was raised at a rate of 10 ° C./min, and the glass melted at the set temperature (700 to 900 ° C.) was held for 1 hour while stirring. Thereafter, the crucible was taken out from the glass melting furnace, and the glass was cast into a graphite mold heated to 150 ° C. in advance. Next, the cast glass was moved to a strain relief furnace that had been heated to a strain relief temperature in advance, strain was removed by holding for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min. The glass cooled to room temperature was pulverized to prepare a glass composition powder having the composition shown in the table.
(ガラスペーストの作製)
上述のようにして作製したガラス組成物粉末(平均粒径3.0μm以下)と樹脂バインダーと溶剤とを混合してガラスペーストを作製した。樹脂バインダーとしてはニトロセルロースを用い、溶剤としてはブチルカルビトールアセテートを用いた。なお、本実施例でのガラスペーストは、耐湿性の評価を目的とすることから、ガラス組成物を構成する酸化物以外の酸化物充填材を混合させなかった。
(Production of glass paste)
A glass paste was prepared by mixing the glass composition powder (average particle size of 3.0 μm or less) prepared as described above, a resin binder, and a solvent. Nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. In addition, since the glass paste in a present Example aims at evaluation of moisture resistance, oxide fillers other than the oxide which comprises a glass composition were not mixed.
(軟化点の評価)
上記で得られた各ガラス組成物粉末に対して、示差熱分析(DTA)により軟化点Tsを測定した。DTA測定は、参照試料(α−アルミナ)および測定試料の質量をそれぞれ650 mgとし、大気中5℃/minの昇温速度で行い、第2吸熱ピークのピーク温度を軟化点Tsとして求めた(図1参照)。結果を表5〜表8に併記する。
(Evaluation of softening point)
The softening point T s was measured by differential thermal analysis (DTA) for each glass composition powder obtained above. The DTA measurement was performed with the reference sample (α-alumina) and the measurement sample each having a mass of 650 mg and a temperature increase rate of 5 ° C./min in the atmosphere, and the peak temperature of the second endothermic peak was determined as the softening point T s . (See FIG. 1). The results are shown in Tables 5 to 8.
(耐湿性の評価)
上記で作製したガラスペーストを用いて、シリコン(Si)基板上に印刷法により20 mm角形状で塗布した。150℃で乾燥させた後の塗布厚は、約20μmであった。乾燥させた塗布試料を電気炉内に設置し、含まれるガラス組成物の軟化点よりも約50℃高い温度で5分間保持する大気中熱処理を行った。
(Evaluation of moisture resistance)
Using the glass paste prepared above, a 20 mm square shape was applied on a silicon (Si) substrate by a printing method. The coating thickness after drying at 150 ° C. was about 20 μm. The dried coated sample was placed in an electric furnace and subjected to an atmospheric heat treatment in which it was held at a temperature about 50 ° C. higher than the softening point of the glass composition contained for 5 minutes.
次に、各試料に対して、以下の2種類の耐湿性試験を行った。(A)温度85℃、相対湿度85%の環境で1000時間保持する試験(高温高湿保存試験)を実施した。(B)温度120℃、相対湿度100%、圧力202 kPaの環境で50時間保持する試験(飽和型プレッシャークッカー試験:PCT)を実施した。各耐湿性試験後の試料外観を目視で観察して、耐湿性を評価した。軟化流動したガラス試料の外観に変化が見られなかったものを「合格」とし、失透・腐食・基板からの剥離などの変化が認められたものを「不合格」と評価した。結果を表5〜表8に併記する。 Next, the following two types of moisture resistance tests were performed on each sample. (A) A test (high temperature and high humidity storage test) was conducted for 1000 hours in an environment of a temperature of 85 ° C. and a relative humidity of 85%. (B) A test (saturated pressure cooker test: PCT) was performed for 50 hours in an environment of a temperature of 120 ° C., a relative humidity of 100%, and a pressure of 202 kPa. The sample appearance after each moisture resistance test was visually observed to evaluate the moisture resistance. A glass sample that did not show any change in the appearance of the softened and fluidized glass was evaluated as “acceptable”, and a sample in which changes such as devitrification, corrosion, and peeling from the substrate were observed was evaluated as “failed”. The results are shown in Tables 5 to 8.
表1〜表8に示したように、本発明に係るAVT-01〜75(成分を酸化物で表したときにAg2OとV2O5とTeO2とを少なくとも含有し、Ag2OとV2O5とTeO2との合計含有率が75質量%以上である無鉛ガラス組成物)は、DTA評価の結果、軟化点が320℃以下であることが確認された。なお、AVT-68〜75は、DTA測定において第2吸熱ピークが終了した直後に結晶化に伴う発熱ピークが観察されたが、加圧環境下での封着に利用するならば十分可能と考えられた。 As shown in Tables 1 to 8, AVT-01 to 75 according to the present invention (containing at least Ag 2 O, V 2 O 5 and TeO 2 when the component is represented by an oxide, Ag 2 O As a result of DTA evaluation, it was confirmed that the softening point of the lead-free glass composition having a total content of 75% by mass of V 2 O 5 and TeO 2 was 320 ° C. or less. AVT-68 to 75 showed an exothermic peak accompanying crystallization immediately after the end of the second endothermic peak in DTA measurement, but it is considered possible if used for sealing in a pressurized environment. It was.
AVT-01〜67(成分を酸化物で表したときに10〜60質量%のAg2Oと5〜65質量%のV2O5と15〜50質量%のTeO2とを含有し、Ag2OとV2O5とTeO2との合計含有率が75質量%以上である無鉛ガラス組成物)は、320℃以下の軟化点を有すると共に、十分な熱的安定性を有することが確認された。 AVT-01 to 67 (containing 10 to 60% by mass of Ag 2 O, 5 to 65% by mass of V 2 O 5 and 15 to 50% by mass of TeO 2 when the components are expressed in oxides) ( Lead-free glass composition with a total content of 2 O, V 2 O 5 and TeO 2 of 75% by mass or more) has a softening point of 320 ° C. or less and sufficient thermal stability. It was done.
上記組成範囲の中で、AVT-01〜44(Ag2O含有率がV2O5含有率の2.6倍以下である無鉛ガラス組成物)は、上記の特性に加えて良好な耐湿性を示し、高温高湿保存試験(温度85℃、相対湿度85%、1000時間保持)を実施しても、表面状態に変化はなかった。 In the above composition range, AVT-01 to 44 (Ag 2 O content is 2.6 times less than V 2 O 5 content) lead-free glass composition shows good moisture resistance in addition to the above properties Even when a high temperature and high humidity storage test (temperature: 85 ° C., relative humidity: 85%, maintained for 1000 hours), the surface condition did not change.
さらに、上記組成範囲の中でも特に、AVT-01〜29(Ag2O含有率とV2O5含有率との和が40質量%以上80質量%以下である無鉛ガラス組成物)は、上記の特性に加えて耐湿性が更に良好であり、飽和型プレッシャークッカー試験(温度120℃、相対湿度100%、圧力202 kPa、50時間保持)を実施しても、表面状態に変化はなかった。
Furthermore, among the above composition ranges, AVT-01 to 29 (lead-free glass composition in which the sum of the Ag 2 O content and the V 2 O 5 content is 40% by mass or more and 80% by mass or less) In addition to the characteristics, the moisture resistance was even better, and even when a saturated pressure cooker test (temperature 120 ° C.,
一方、本発明の規定を外れるガラス組成物であるAVT-76〜83は、「軟化点が320℃超」であった。従来の低融点鉛ガラス組成物であるPBS-01〜PBS-04は、本発明の定義による軟化点が370℃超と高く、耐湿性も不合格であった。また、従来の無鉛ガラス組成物であるBBZ-01およびVBZ-01は、本発明の定義による軟化点が390℃超であり、耐湿性も不合格であった。 On the other hand, AVT-76 to 83, which are glass compositions outside the scope of the present invention, had a “softening point of over 320 ° C.”. PBS-01 to PBS-04, which are conventional low-melting-point lead glass compositions, had a high softening point of over 370 ° C. according to the definition of the present invention, and also failed in moisture resistance. Further, BBZ-01 and VBZ-01, which are conventional lead-free glass compositions, had a softening point of more than 390 ° C. according to the definition of the present invention, and also failed in moisture resistance.
[実施例2]
本実施例においては、実施例1で用意したガラス組成物を用いて導電性ガラスペーストを作製し、該導電性ガラスペーストを用いて形成した電極/配線の電気抵抗率および各種基板との密着性を調査した。
[Example 2]
In this example, a conductive glass paste was prepared using the glass composition prepared in Example 1, and the electrical resistivity of electrodes / wiring formed using the conductive glass paste and the adhesion to various substrates. investigated.
(導電性ガラスペーストの作製)
実施例1で用意したガラス組成物粉末(試料名ATV-01〜83、PBS-01〜04、BBZ-01、VBZ-01、平均粒径3.0μm以下)と、銀粒子と、樹脂バインダーと、溶剤とを混合して導電性ガラスペーストを作製した。銀粒子としては福田金属箔粉工業(株)製のAGC-103(球状粒子、平均粒径1.4μm)を用い、樹脂バインダーとしてはニトロセルロースを用い、溶剤としてはブチルカルビトールアセテートを用いた。導電性ガラスペースト中のガラス組成物粉末の含有率は、銀粒子に対して10体積%とした。また、ペースト中の固形分(銀粒子、ガラス組成物粉末)の含有率は80〜85質量%とした。なお、本実施例での導電性ガラスペーストは、基板との密着性(ガラス組成物の軟化流動性)を観察するため、ガラス組成物を構成する酸化物以外の酸化物充填材を混合させなかった。
(Preparation of conductive glass paste)
A glass composition powder (sample names ATV-01 to 83, PBS-01 to 04, BBZ-01, VBZ-01, average particle size of 3.0 μm or less) prepared in Example 1, silver particles, a resin binder, A conductive glass paste was prepared by mixing with a solvent. As the silver particles, AGC-103 (spherical particles, average particle size 1.4 μm) manufactured by Fukuda Metal Foil Industry Co., Ltd. was used, nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. The content of the glass composition powder in the conductive glass paste was 10% by volume with respect to the silver particles. Moreover, the solid content (silver particle, glass composition powder) content in the paste was 80 to 85% by mass. In addition, in order to observe the adhesiveness (softening fluidity | liquidity of a glass composition) with a board | substrate, the conductive glass paste in a present Example does not mix oxide fillers other than the oxide which comprises a glass composition. It was.
(電極/配線の形成)
上述で用意した導電性ガラスペーストを用いて、シリコン基板(Si基板)上へ印刷法により1 mm×20 mmのパターン10本を塗布した。150℃で乾燥した後の塗布厚は約20μmであった。乾燥したサンプルを電気炉に設置し、大気中300℃、320℃および350℃でそれぞれ5分間保持する熱処理を施し、電極/配線を形成した。また、上記と同様の方法により、アルミニウム基板(Al基板、A1050)、ステンレス基板(SUS基板、SUS304)、アルミナ基板(Al2O3基板)、およびポリイミド基板(PI基板、80 mm×300 mm×0.085 mm、連続使用可能温度420℃)上にそれぞれ電極/配線を形成した。
(Formation of electrodes / wiring)
Ten patterns of 1 mm × 20 mm were applied on a silicon substrate (Si substrate) by the printing method using the conductive glass paste prepared above. The coating thickness after drying at 150 ° C. was about 20 μm. The dried sample was placed in an electric furnace and subjected to heat treatment for 5 minutes at 300 ° C., 320 ° C., and 350 ° C. in the atmosphere to form electrodes / wirings. In the same way as above, aluminum substrate (Al substrate, A1050), stainless steel substrate (SUS substrate, SUS304), alumina substrate (Al 2 O 3 substrate), and polyimide substrate (PI substrate, 80 mm × 300 mm × Each electrode / wiring was formed on 0.085 mm, continuous usable temperature 420 ° C.).
(電気抵抗率の評価)
Si基板上に形成した電極/配線に対して、四端子法により電気抵抗率を測定した。測定された電気抵抗率(平均)が1〜5×10-6 Ωcmであったものを「優秀」とし、5〜10×10-6 Ωcmであったものを「合格」とし、10-5 Ωcmオーダーであったものを「通常」(従来技術と同等の意)とし、10-4 Ωcmオーダー以上であったものを「不合格」と評価した。結果を表9〜表12に示す。
(Evaluation of electrical resistivity)
The electrical resistivity of the electrode / wiring formed on the Si substrate was measured by a four-terminal method. The measured electrical resistivity (average) was 1-5 × 10 -6 Ωcm as “excellent”, 5-10 × 10 -6 Ωcm as “pass”, 10 -5 Ωcm What was the order was regarded as “normal” (meaning equivalent to the prior art), and those that were on the order of 10 −4 Ωcm or higher were evaluated as “failed”. The results are shown in Tables 9-12.
(密着性の評価)
密着性の評価は、ピーリングテストにより行った。各基板上に形成した電極/配線にピーリングテープを貼り付け、該テープを剥がした時に電極/配線が基板から剥離せず断線しなかったものを「合格」とし、電極/配線に剥離および/または断線が生じたものを「不合格」と評価した。結果を表9〜表12に併記する。なお、表中において、合格した試料に対しては、3種類の焼成温度(300℃、320℃、350℃)の内、合格した最も低い温度を表記し、350℃焼成においても不合格の試料に対しては「不合格」と表記した。
(Evaluation of adhesion)
The evaluation of adhesion was performed by a peeling test. A peeling tape is applied to the electrode / wiring formed on each substrate, and when the tape is peeled off, the electrode / wiring does not peel off from the substrate and does not break is regarded as “pass”, and the electrode / wiring is peeled off and / or Those in which disconnection occurred were evaluated as “fail”. The results are also shown in Tables 9-12. In the table, for the sample that passed, the lowest temperature that passed among the three types of firing temperatures (300 ° C, 320 ° C, 350 ° C) is indicated. Is marked as “Fail”.
表9〜表12に示したように、本発明に係るガラス組成物を用いた導電性ガラスペーストは、ガラス組成物の軟化点が従来よりも低い(従来よりも低温で軟化流動する)ことから従来よりも低温焼成で電極/配線の形成が可能であった。また、低温焼成が可能であることから、ガラス組成物と金属粒子との望まない化学反応をより一層抑制することができるため、液相を介した金属粒子同士の焼結が促進されて10-5Ωcm未満(10-6Ωcmオーダー)という非常に低い電気抵抗率を有する電極/配線が実現された。言い換えると、本発明に係るガラス組成物およびそれを用いたガラスペーストは、使用における化学的安定性が高いと言える。
As shown in Table 9 to Table 12, in the conductive glass paste using the glass composition according to the present invention, the glass composition has a lower softening point than before (softening and flowing at a lower temperature than before). The electrodes / wirings could be formed by firing at a lower temperature than before. Further, since it is possible to low-temperature firing, it is possible to further suppress the unwanted chemical reaction between the glass composition and the metal particles, which promotes sintering of the metal particles with each other via the
本発明に係る導電性ガラスペーストは、電極/配線を形成する基材としてシリコンの他に、金属(例えば、アルミニウムやステンレス鋼)、酸化物(例えば、アルミナ)、耐熱性樹脂(例えば、ポリイミド)に対して良好な密着性を示し、幅広い種類の基材が適応可能であることを実証した。詳細に見ていくと、含有されるガラス組成物の軟化点よりも十数℃高い焼成温度で十分な密着性を示すことが判った。 The conductive glass paste according to the present invention is a metal (for example, aluminum or stainless steel), an oxide (for example, alumina), a heat resistant resin (for example, polyimide) in addition to silicon as a base material for forming electrodes / wirings. It showed good adhesion to the material and demonstrated that a wide variety of substrates can be applied. If it looked at in detail, it turned out that sufficient adhesiveness is shown by the calcination temperature which is 10 degreeC higher than the softening point of the glass composition contained.
軟化点が低い(280℃未満)ガラス組成物を用いた導電性ガラスペーストの一部では、該ガラス組成物の結晶化温度が350℃以下である場合、350℃の焼成で電極/配線中のガラス相が結晶化し始めるため、密着性と電気抵抗率が劣化する傾向が見られた。ただし、その場合においても、300〜320℃の焼成においては良好な密着性と低い電気抵抗率が得られた。 In a part of the conductive glass paste using the glass composition having a low softening point (less than 280 ° C.), when the crystallization temperature of the glass composition is 350 ° C. or lower, the electrode / wiring is baked at 350 ° C. As the glass phase began to crystallize, there was a tendency for adhesion and electrical resistivity to deteriorate. However, even in that case, good adhesion and low electrical resistivity were obtained in the baking at 300 to 320 ° C.
一方、本発明の規定を外れるガラス組成物(AVT-76〜83)、従来の低融点鉛ガラス組成物(PBS-01〜PBS-04)、および従来の無鉛ガラス組成物(BBZ-01、VBZ-01)を用いた導電性ガラスペーストは、350℃までの焼成温度の条件下では、電極/配線の電気抵抗率および/または各種基板との密着性において不合格であった。これは、ガラス組成物の軟化点が高かったり流動性が劣っていたりしたためと考えられる。 On the other hand, a glass composition (AVT-76 to 83) outside the scope of the present invention, a conventional low melting point lead glass composition (PBS-01 to PBS-04), and a conventional lead-free glass composition (BBZ-01, VBZ) The conductive glass paste using -01) failed in the electrical resistivity of the electrode / wiring and / or the adhesion to various substrates under the condition of the firing temperature up to 350 ° C. This is considered to be because the softening point of the glass composition was high or the fluidity was inferior.
なお、上記では、金属粒子として純銀粒子を用いて実験を行ったが、それ以外にも銀合金粒子、アルミニウム粒子、アルミニウム合金粒子、銅粒子、および銅合金粒子を用いた場合にも(一部はアルゴンガス雰囲気中で焼成)、同様の結果が得られることを別途確認した。 In the above, the experiment was performed using pure silver particles as the metal particles. However, in the case of using silver alloy particles, aluminum particles, aluminum alloy particles, copper particles, and copper alloy particles (partially) Was fired in an argon gas atmosphere), and it was confirmed separately that similar results were obtained.
[実施例3]
本実施例においては、本発明に係るガラスペーストに用いるのに好適な樹脂バインダーについて検討した。具体的には、ガラス組成物および樹脂バインダーの異なる導電性ガラスペーストを作製し、焼成後の電極/配線の電気抵抗率に与える影響を調査した。
[Example 3]
In this example, resin binders suitable for use in the glass paste according to the present invention were examined. Specifically, conductive glass pastes having different glass compositions and resin binders were prepared, and the influence on the electrical resistivity of the electrode / wiring after firing was investigated.
(導電性ガラスペーストの作製)
実施例2と同様の手順により導電性ガラスペーストを作製した。ガラス組成物粉末(平均粒径3.0μm以下)としてはAVT-17(Ts=315℃)とAVT-18(Ts=286℃)を用い、銀粒子としては福田金属箔粉工業(株)製のAGC-103(球状粒子、平均粒径1.4μm)を用い、溶剤としてはブチルカルビトールアセテートを用いた。樹脂バインダーとしてはエチルセルロース(EC)とニトロセルロース(NC)を用いた。導電性ガラスペースト中のガラス組成物粉末の含有率は、銀粒子に対して10体積%とした。また、ペースト中の固形分(銀粒子、ガラス組成物粉末)の含有率は80〜85質量%とした。なお、本実施例で用いる導電性ガラスペーストも、ガラス組成物を構成する酸化物以外の酸化物充填材を混合させなかった。
(Preparation of conductive glass paste)
A conductive glass paste was prepared in the same procedure as in Example 2. AVT-17 (T s = 315 ° C) and AVT-18 (T s = 286 ° C) are used as the glass composition powder (average particle size of 3.0 µm or less), and Fukuda Metal Foil Powder Industry Co., Ltd. is used as the silver particles. AGC-103 (spherical particles, average particle size of 1.4 μm) manufactured by the manufacturer was used, and butyl carbitol acetate was used as a solvent. Ethyl cellulose (EC) and nitrocellulose (NC) were used as the resin binder. The content of the glass composition powder in the conductive glass paste was 10% by volume with respect to the silver particles. Moreover, the solid content (silver particle, glass composition powder) content in the paste was 80 to 85% by mass. In addition, the conductive glass paste used in the present example was not mixed with an oxide filler other than the oxide constituting the glass composition.
(電極/配線の形成)
上述で用意した導電性ガラスペーストを用いて、実施例2と同様に、Si基板上へ印刷法により1 mm×20 mmのパターン10本を塗布した。150℃で乾燥した後の塗布厚は約20μmであった。乾燥したサンプルを電気炉に設置し、大気中300℃または350℃の熱処理を施し、電極/配線を形成した。このとき、焼成保持時間を種々変更した。
(Formation of electrodes / wiring)
Using the conductive glass paste prepared above, 10 patterns of 1 mm × 20 mm were applied on the Si substrate by the printing method in the same manner as in Example 2. The coating thickness after drying at 150 ° C. was about 20 μm. The dried sample was placed in an electric furnace and subjected to heat treatment at 300 ° C. or 350 ° C. in the atmosphere to form electrodes / wirings. At this time, various firing holding times were changed.
(電気抵抗率の評価)
Si基板上に形成した電極/配線に対して、四端子法により平均電気抵抗率を測定した。図2は、形成した電極/配線の電気抵抗率と焼成保持時間との関係を示すグラフである。図2に示したように、樹脂バインダーとしてエチルセルロース(EC)を用いた導電性ガラスペースト(AVT-17)で形成した電極/配線は、焼成保持時間の増大に伴って電気抵抗率が低下していった。言い換えると、焼成時間が短いと電気抵抗率が高い。これは、本実施例の焼成温度(350℃)では、エチルセルロースを速やかに燃焼分解させることができず、一部が残留したためと考えられた。
(Evaluation of electrical resistivity)
For the electrodes / wirings formed on the Si substrate, the average electrical resistivity was measured by the four-terminal method. FIG. 2 is a graph showing the relationship between the electrical resistivity of the formed electrode / wiring and the firing holding time. As shown in FIG. 2, the electrical resistivity of the electrode / wiring formed with the conductive glass paste (AVT-17) using ethyl cellulose (EC) as the resin binder decreases as the firing holding time increases. It was. In other words, the electrical resistivity is high when the firing time is short. This was thought to be because ethylcellulose could not be rapidly burned and decomposed at the calcination temperature (350 ° C.) of this example, and a part of it remained.
一方、樹脂バインダーとしてニトロセルロース(NC)を用いた導電性ガラスペースト(AVT-17、AVT-18)で形成した電極/配線は、いずれの焼成温度(350℃、300℃)においても焼成保持時間に対して電気抵抗率の変動がほとんどなかった。これは、ニトロセルロース(NC)の樹脂バインダーが本実施例の焼成温度で速やかに燃焼分解したためと考えられた。 On the other hand, electrodes / wiring made of conductive glass paste (AVT-17, AVT-18) using nitrocellulose (NC) as the resin binder is fired at any firing temperature (350 ° C, 300 ° C). In contrast, there was almost no change in electrical resistivity. This was thought to be because the resin binder of nitrocellulose (NC) rapidly burned and decomposed at the firing temperature of this example.
前述したように、本発明に係るガラス組成物およびそれを用いたガラスペーストは、従来よりも低い温度での焼成が可能である。そのため、ガラスペーストに用いる樹脂バインダーや溶媒においても、従来よりも低い温度で燃焼分解するものを選択することが肝要である。本発明において、ガラスペーストに用いる樹脂バインダーや溶媒は特に限定されるものではないが、300℃程度以下の温度で消失するセルロース系バインダー(例えば、ニトロセルロース)やテルペン系の高粘度溶媒(例えば、α−テルピネオール)などを好適に用いることができる。 As described above, the glass composition according to the present invention and the glass paste using the glass composition can be fired at a temperature lower than the conventional one. Therefore, it is important to select a resin binder or solvent used for the glass paste that can be decomposed at a lower temperature than in the past. In the present invention, the resin binder and solvent used for the glass paste are not particularly limited, but a cellulose-based binder (for example, nitrocellulose) or a terpene-based high-viscosity solvent that disappears at a temperature of about 300 ° C. or less (for example, α-terpineol) and the like can be preferably used.
[実施例4]
本実施例においては、導電性ガラスペーストにおける金属粒子のサイズ(平均粒径)や形状、および金属粒子とガラス組成物粉末との配合比率について検討した。
[Example 4]
In this example, the size (average particle diameter) and shape of the metal particles in the conductive glass paste and the blending ratio of the metal particles and the glass composition powder were examined.
図3は、導電性ガラスペーストの焼成過程における構造変化を示した模式図である。図3(a)は、導電性ガラスペーストを塗布後、乾燥させた状態を示している。図3(a)に示したように、ガラス組成物粉末31と金属粒子32とが樹脂バインダー33を介して均等に分散している。
FIG. 3 is a schematic view showing a structural change in the baking process of the conductive glass paste. FIG. 3A shows a state where the conductive glass paste is applied and then dried. As shown in FIG. 3A, the
図3(b)は、昇温過程においてガラス組成物粉末が軟化流動(融解)した直後の状態を示している。図3(b)に示したように、樹脂バインダーが燃焼分解した空隙34に融解したガラス(液相)35が浸入して金属粒子32を濡らす。
FIG. 3B shows a state immediately after the glass composition powder softens and flows (melts) in the temperature rising process. As shown in FIG. 3B, the molten glass (liquid phase) 35 enters the
図3(c)は、融解したガラス(液相)の毛管力により金属粒子同士の緻密化(粒子の再配列)が起こった状態を示している。このとき、金属粒子32間に存在した空隙34が消滅していくが、これは系の表面エネルギーを最小にする方向に現象が進むためである。再配列によって達成される緻密化の程度は、液相35の量(すなわちガラス組成物粉末31の量)や金属粒子32の粒径・形状などにより変化する。
FIG. 3C shows a state in which the metal particles are densified (particle rearrangement) due to the capillary force of the molten glass (liquid phase). At this time, the
図3(d)は、金属粒子同士の焼結が進行した状態を示している。このときの温度は、金属粒子32同士が固相焼結する温度よりも通常低いが、液相35が介在することにより金属粒子32の金属イオンの拡散が容易となりネック36を形成しながら焼結が進行する(液相焼結)。
FIG. 3D shows a state where the sintering of the metal particles has progressed. The temperature at this time is usually lower than the temperature at which the
(金属粒子のサイズおよび形状)
ガラス組成物粉末としてAVT-02(Ts=313℃)とAVT-18(Ts=286℃)を用い、実施例2と同様の手順により導電性ガラスペーストを作製した。このとき、銀粒子に対するガラス組成物粉末の配合比率を10体積%と固定した条件で、銀粒子のサイズおよび形状を種々変化させた。用意した導電性ガラスペーストを用いて、実施例2と同様に電極/配線を形成し該電極/配線の電気抵抗率を測定した。
(Size and shape of metal particles)
Using AVT-02 (T s = 313 ° C.) and AVT-18 (T s = 286 ° C.) as the glass composition powder, a conductive glass paste was prepared by the same procedure as in Example 2. At this time, the size and shape of the silver particles were variously changed under the condition that the mixing ratio of the glass composition powder to the silver particles was fixed at 10% by volume. Using the prepared conductive glass paste, an electrode / wiring was formed in the same manner as in Example 2, and the electrical resistivity of the electrode / wiring was measured.
その結果、銀粒子の平均粒子径が0.5〜10μmであり球形状を有する場合に、電気抵抗率の低い(10-6Ωcmオーダーの)電極/配線が得られた。また、銀粒子の平均粒子径が0.5〜10μmでありフレーク形状を有する場合でも、電気抵抗率の低い(10-6Ωcmオーダーの)電極/配線が得られた。さらに、銀粒子が平均粒子径0.5〜3μmの粒子と平均粒子径5〜10μmの粒子との混合物の場合でも、同様に電気抵抗率の低い(10-6Ωcmオーダーの)電極/配線が得られた。 As a result, an electrode / wiring having a low electrical resistivity (on the order of 10 −6 Ωcm) was obtained when the average particle diameter of the silver particles was 0.5 to 10 μm and had a spherical shape. Moreover, even when the average particle diameter of the silver particles was 0.5 to 10 μm and it had a flake shape, an electrode / wiring having a low electrical resistivity (on the order of 10 −6 Ωcm) was obtained. Furthermore, even when the silver particles are a mixture of particles having an average particle size of 0.5 to 3 μm and particles having an average particle size of 5 to 10 μm, an electrode / wiring having a low electrical resistivity (on the order of 10 −6 Ωcm) is obtained. It was.
(金属粒子とガラス組成物粉末との配合比率)
ガラス組成物粉末としてAVT-02(Ts=313℃)とAVT-18(Ts=286℃)を用い、実施例2と同様の手順により導電性ガラスペーストを作製した。このとき、銀粒子に対するガラス組成物粉末の配合比率を5〜40体積%で変化させた。ペースト中の固形分(銀粒子、ガラス組成物粉末)の配合比率は80〜85質量%とした。
(Blend ratio of metal particles and glass composition powder)
Using AVT-02 (T s = 313 ° C.) and AVT-18 (T s = 286 ° C.) as the glass composition powder, a conductive glass paste was prepared by the same procedure as in Example 2. At this time, the blending ratio of the glass composition powder to the silver particles was changed from 5 to 40% by volume. The blending ratio of the solid content (silver particles, glass composition powder) in the paste was 80 to 85% by mass.
用意した導電性ガラスペーストを用いて、実施例2と同様に電極/配線を形成し該電極/配線の電気抵抗率を測定した。電極/配線を形成するための焼成は、大気中350℃で5分間保持する条件により行った。 Using the prepared conductive glass paste, an electrode / wiring was formed in the same manner as in Example 2, and the electrical resistivity of the electrode / wiring was measured. Firing for forming the electrode / wiring was performed under the condition of holding at 350 ° C. for 5 minutes in the air.
図4は、形成した電極/配線の電気抵抗率とガラス組成物粉末の配合比率との関係を示すグラフである。図4に示したように、ガラス組成物粉末の配合比率が5〜30体積%の範囲では、電極/配線の電気抵抗率が10-6Ω・cmオーダーのものが得られた。一方、ガラス組成物粉末の配合比率を30体積%超にすると、電極/配線の電気抵抗率が10-5Ω・cmオーダーになった。この結果から、本発明に係る導電性ガラスペーストにおけるガラス組成物粉末の配合比率は、金属粒子に対して5〜30体積%の範囲が好ましいと言える。 FIG. 4 is a graph showing the relationship between the electrical resistivity of the formed electrode / wiring and the blending ratio of the glass composition powder. As shown in FIG. 4, when the blending ratio of the glass composition powder was 5 to 30% by volume, an electrode / wiring electrical resistivity of the order of 10 −6 Ω · cm was obtained. On the other hand, when the blending ratio of the glass composition powder was more than 30% by volume, the electrical resistivity of the electrode / wiring became on the order of 10 −5 Ω · cm. From this result, it can be said that the blending ratio of the glass composition powder in the conductive glass paste according to the present invention is preferably in the range of 5 to 30% by volume with respect to the metal particles.
導電性ガラスペーストを用いて形成した電極/配線では、金属粒子の焼結助剤として機能するガラス組成物の配合比率を増やすと液相の量が増えて金属粒子を一様に濡らすため、金属イオンの拡散を容易にして金属粒子の焼結を助長する効果がある。一方、液相量の増大は、金属粒子同士の接触点の数を減少させるため、導電パスの実効断面積が減少して電気抵抗率を増大させる欠点がある。図4の結果において、ガラス組成物の配合比率が10体積%を下回ると電極/配線の電気抵抗率が増大する傾向が見られたが、これは、液相量が少な過ぎて金属粒子の焼結が一部で十分進行しなかったためと思われた。 In an electrode / wiring formed using a conductive glass paste, increasing the compounding ratio of the glass composition that functions as a sintering aid for metal particles increases the amount of liquid phase and uniformly wets the metal particles. This has the effect of facilitating the sintering of metal particles by facilitating ion diffusion. On the other hand, an increase in the liquid phase amount has a drawback in that since the number of contact points between the metal particles is decreased, the effective cross-sectional area of the conductive path is decreased and the electrical resistivity is increased. In the result of FIG. 4, when the blending ratio of the glass composition is less than 10% by volume, the electrical resistivity of the electrode / wiring tends to increase. This is because the liquid phase amount is too small and the metal particles are sintered. It was thought that the result was not fully progressed in part.
[実施例5]
本実施例においては、本発明に係る電子部品として水晶振動子のパッケージに適用する場合について検討した。
[Example 5]
In this embodiment, the case where the electronic component according to the present invention is applied to a crystal resonator package was examined.
図5は、水晶振動子のパッケージを作製する工程例を示す断面模式図である。まず、図5(a)に示したように、基板51に形成された配線52上に導電性ガラスペースト53を塗布(印刷)し、乾燥させる(例えば、150℃程度)。次に、図5(b)に示したように、導電性ガラスペースト53を印刷した位置に合わせて水晶振動子54を配置し、電気炉などで焼成して接続する(例えば、軟化点+30〜50℃程度)。次に、図5(c)に示したように、基板51周囲に封着用ガラスペースト55を印刷し、乾燥させる(例えば、150℃程度)。次に、図5(d)に示したように、封着用ガラスペースト55を印刷した位置に合わせてキャップ56を配置し、電気炉などで焼成して封着する(例えば、軟化点+30〜50℃程度)。このとき、キャップ56と基板51とが位置ずれしないようにクリップ(図示せず)で挟んでもよい。また、必要に応じて、焼成中に真空ポンプ(図示せず)を用いて、キャップ56内部の空気を排気してもよい。
FIG. 5 is a schematic cross-sectional view showing an example of a process for manufacturing a crystal resonator package. First, as shown in FIG. 5A, a
図5に示した製造方法においては、ガラスを軟化流動させる焼成工程が2回行われることから、先の焼成工程で形成した電極/配線が、後の焼成工程時に再度軟化流動しないように、封着用ガラスペースト55に用いるガラス組成物は、導電性ガラスペースト53に用いるガラス組成物よりも低い軟化点を有していることが好ましい。より具体的には、導電性ガラスペースト53に用いるガラス組成物の軟化点以下の温度で焼成可能(封着可能)なガラス組成物を封着用ガラスペースト55に用いることが好ましい。
In the manufacturing method shown in FIG. 5, since the baking process for softening and flowing the glass is performed twice, the electrode / wiring formed in the previous baking process is sealed so that it does not soften and flow again in the subsequent baking process. The glass composition used for the wearing
(ガラス組成物の特性温度の評価)
本実施例では、前述した実施例1に加えて、より望ましい特性(低い特性温度、高い熱的安定性、高い化学的安定性)を有するガラス組成物を模索すべく、ガラス組成物(AVT-84〜107)を更に作製し調査した。作製した各ガラス組成物粉末に対して、実施例1と同様の方法(DTA)によりガラス転移点Tg、屈伏点Td、および軟化点Tsを測定した。ガラス組成物(AVT-84〜107)の組成を表13に示し、ガラス組成物(AVT-84〜107)の特性温度(Tg、Td、Ts)を14に示す。
(Evaluation of characteristic temperature of glass composition)
In this example, in addition to Example 1 described above, in order to search for a glass composition having more desirable characteristics (low characteristic temperature, high thermal stability, high chemical stability), a glass composition (AVT- 84-107) were further prepared and investigated. The glass transition point T g , yield point T d , and softening point T s were measured for each glass composition powder produced by the same method (DTA) as in Example 1. The composition of the glass composition (AVT-84-107) shown in Table 13, the glass composition (AVT-84-107) of the characteristic temperature (T g, T d, T s) are shown in 14.
表14に示したように、本実施例では、実施例1のガラス組成物よりも更に低い特性温度を有するガラス組成物の作製に成功した。特に、AVT-96〜99,101,103,104では260℃以下の軟化点Tsが得られ、その中でもAVT-98はTs=208℃という驚異的な結果を得た。なお、表14に併記した封着実験結果については後述する。 As shown in Table 14, in this example, a glass composition having a lower characteristic temperature than that of the glass composition of Example 1 was successfully produced. In particular, AVT-96 to 99, 101, 103, 104 gave a softening point T s of 260 ° C. or less, and among them, AVT-98 obtained a surprising result that T s = 208 ° C. In addition, the sealing experiment result written together in Table 14 is mentioned later.
(導電性ガラスペーストの作製)
上記のガラス特性温度の測定結果を受けて、水晶振動子54を配線52に接続するための導電性ガラスペースト53を作製した。導電性ガラスペーストに用いるガラス組成物としては、本発明の規定からは外れるが従来の低融点鉛ガラス組成物と同等の軟化点を有するAVT-76(Ts=335℃)を選定した。
(Preparation of conductive glass paste)
In response to the measurement result of the glass characteristic temperature, a
AVT-76のガラス組成物粉末(平均粒径3.0μm以下)に、実施例2と同様の手順で、銀粒子(福田金属箔粉工業(株)、AGC-103)と、樹脂バインダー(ニトロセルロース)と、溶剤(ブチルカルビトールアセテート)とを混合しペースト化した。導電性ガラスペースト中のガラス組成物粉末の配合比率は銀粒子に対して10体積%とし、固形分(銀粒子、ガラス組成物粉末)の配合比率は80質量%とした。 To AVT-76 glass composition powder (average particle size of 3.0 μm or less), silver particles (Fukuda Metal Foil Powder Co., Ltd., AGC-103) and resin binder (nitrocellulose) were prepared in the same procedure as in Example 2. ) And a solvent (butyl carbitol acetate) were mixed to form a paste. The compounding ratio of the glass composition powder in the conductive glass paste was 10% by volume with respect to the silver particles, and the compounding ratio of the solid content (silver particles, glass composition powder) was 80% by mass.
(封着用ガラスペーストの作製)
次に、キャップ56と基板51とを封着するための封着用ガラスペースト55を作製した。封着用ガラスペーストに用いるガラス組成物としては、AVT-84〜107を用いた。それぞれのガラス組成物粉末(平均粒径3.0μm以下)に、樹脂バインダー(ニトロセルロース)と、溶剤(ブチルカルビトールアセテート)と、熱膨張係数調整用の酸化物充填材とを混合しペースト化した。酸化物充填材としては、五酸化ニオブ(Nb2O5)およびリン酸ジルコニウムタングステン(ZWP)を30〜50体積%混合した。
(Preparation of sealing glass paste)
Next, a sealing
(水晶振動子パッケージの作製)
図5に示した工程に沿って水晶振動子パッケージを作製した。まず、導電性ガラスペースト53を用いて、基板51に形成された配線52と水晶振動子54とを接続した。乾燥条件は大気中150℃とし、焼成条件は大気中360℃で5分間保持とした。
(Production of crystal unit package)
A crystal resonator package was manufactured along the steps shown in FIG. First, the
次に、封着用ガラスペースト55を用いて、水晶振動子54が接続された基板51とキャップ56とを封着した。大気中150℃で乾燥した後、真空中あるいは大気中で15分間の焼成を行った。焼成温度は、各ガラス組成物の軟化点TSを参照し、真空中で焼成する場合は「TS+約30℃」を目安とし、大気中で焼成する場合は「TS+約50℃」を目安とした。
Next, the
(封着部の健全性評価)
上述で作製した水晶振動子パッケージの封着部の健全性を目視により評価した。表14に示したように、本実施例のガラス組成物を用いた封着用ガラスペーストは、低い軟化点に起因して従来よりも低温焼成での封着が可能であった。また、いずれの焼成条件においても、焼成後の封着部に失透や結晶化が発生することもなく良好に気密封止できることが確認された。これは、良好な熱的安定性を有していることを意味する。さらに、本実施例のガラス組成物は、良好な耐湿性(すなわち、化学的安定性)を有していることも別途確認した。
(Evaluation of soundness of sealing part)
The soundness of the sealing part of the crystal resonator package produced as described above was visually evaluated. As shown in Table 14, the sealing glass paste using the glass composition of the present example was able to be sealed at a lower temperature than before due to the low softening point. Moreover, it was confirmed that, under any firing condition, the sealed portion after firing can be hermetically sealed without devitrification or crystallization. This means that it has good thermal stability. Furthermore, it was confirmed separately that the glass composition of this example had good moisture resistance (that is, chemical stability).
なお、上記の実施例では、電気炉を用いて封着するための焼成を行ったが、本発明はそれに限定されるものではなく、YAGレーザーやサファイヤレーザー等の電磁波を照射して封着部を局所的に加熱する方法も好ましい。これは、本発明に係るガラス組成物に含まれるVイオンが波長1200 nm以下の電磁波を良く吸収する性質を利用したものである。封着箇所を局所的に加熱することにより、熱に弱い素子に対してもガラス封着が可能となる。例えば、有機ELダイオードディスプレイ(OLED Display)や有機太陽電池のように、電気炉による全体加熱が好ましくない電気電子部品に関しては、封着する箇所に塗布した封着用ガラスフリットや封着用ガラスペーストに対して、サファイアレーザー(波長800 nm程度)を照射して封着することができる。また、電磁波照射による局所加熱は、焼成に要する消費エネルギー量を低く抑えることができる利点もある。 In the above embodiment, firing was performed for sealing using an electric furnace, but the present invention is not limited thereto, and the sealing portion is irradiated with electromagnetic waves such as a YAG laser or a sapphire laser. A method of locally heating is also preferable. This utilizes the property that V ions contained in the glass composition according to the present invention absorb electromagnetic waves having a wavelength of 1200 nm or less well. By locally heating the sealing portion, glass sealing is possible even for elements that are sensitive to heat. For example, for electrical and electronic components that are not preferred to be heated by an electric furnace, such as an organic EL diode display (OLED Display) or an organic solar cell, the sealing glass frit or sealing glass paste applied to the place to be sealed Then, it can be sealed by irradiating a sapphire laser (wavelength of about 800 nm). Moreover, the local heating by electromagnetic wave irradiation has the advantage that the amount of energy consumption required for baking can be suppressed low.
加えて、実施例1に記載したAVT-26,29,32,43,46および上記実施例5のAVT-90〜92は、その成分にFe2O3を含んでおり、該成分のFeイオンもマイクロ波のエネルギーを好適に吸収する。そのため、それら本発明に係るガラス組成物は、マイクロ波によっても加熱することができる。マイクロ波加熱により、ガラス組成物全体を短時間で溶融させ封着することが可能であり、温度に対してデリケートな電気電子部品(例えば、OLEDや有機太陽電池)の封着に好適に適用できる。なお、マイクロ波の出力を調整することにより、ガラス相の中に導電性の結晶相を析出させることも可能である。 In addition, AVT-26, 29, 32, 43, 46 described in Example 1 and AVT-90 to 92 of Example 5 described above contain Fe 2 O 3 in their components, and Fe ions of the components Also absorbs microwave energy suitably. Therefore, these glass compositions according to the present invention can be heated by microwaves. By microwave heating, the entire glass composition can be melted and sealed in a short time, and can be suitably applied to the sealing of electrical and electronic parts (for example, OLEDs and organic solar cells) that are sensitive to temperature. . Note that a conductive crystal phase can be precipitated in the glass phase by adjusting the output of the microwave.
[実施例6]
本実施例においては、本発明に係る電子部品として太陽電池パネルに適用する場合について検討した。
[Example 6]
In this example, the case of applying to a solar cell panel as an electronic component according to the present invention was examined.
図6は、太陽電池パネルの1例を示す模式図であり、(a)は受光面の平面模式図、(b)は裏面の平面模式図、(c)は(a)中のA−A線における断面模式図である。以下、図6を参照しながら説明する。 FIG. 6 is a schematic diagram showing an example of a solar cell panel, where (a) is a schematic plan view of a light receiving surface, (b) is a schematic plan view of a back surface, and (c) is an AA in (a). It is a cross-sectional schematic diagram in a line. Hereinafter, a description will be given with reference to FIG.
太陽電池パネル60の半導体基板61としては、現在、単結晶シリコン基板または多結晶シリコン基板が最も多く使用されている。シリコンの半導体基板61は、通常、ホウ素等を含有したp型半導体である。受光面側は、太陽光の反射を抑制するためにエッチング等により凹凸が形成される。また、受光面には、リン等のドーピングによりサブミクロンオーダーの厚みでn型半導体の拡散層62が生成されるとともに、拡散層62とp型バルク部分との境界にpn接合部が形成される。さらに、受光面上には、窒化シリコン等の反射防止層63が蒸着法などによって厚さ100 nm程度で形成される。
As the
通常、受光面に形成される受光面電極/配線64および裏面に形成される出力電極/配線66の形成には、ガラス組成物粉末と銀粒子とを含む導電性ガラスペーストが使用され、裏面に形成される集電電極/配線65の形成には、ガラス組成物粉末とアルミニウム粒子とを含む導電性ガラスペーストが使用されている。それぞれの導電性ガラスペーストは、スクリーン印刷法などにて塗布法(例えば、スクリーン印刷、ロールコーター方式、ディスペンサー方式など)によって半導体基板61の表面上に塗布される。
Usually, a conductive glass paste containing glass composition powder and silver particles is used to form the light receiving surface electrode /
導電性ガラスペーストを乾燥させた後、大気中で焼成され(従来は500〜800℃程度)、それぞれの電極/配線が形成される。このとき、従来の太陽電池パネル60では、焼成温度が高いことから、裏面に形成される集電電極/配線65と出力電極/配線66との重なり部分で合金相が形成され、それに起因した応力集中により半導体基板61にクラックが発生するという問題が起きることがあった。
After the conductive glass paste is dried, it is fired in the atmosphere (conventionally about 500 to 800 ° C.) to form each electrode / wiring. At this time, in the conventional
(太陽電池パネルの作製)
電極/配線の形成に用いる銀含有ガラスペーストは、ガラス組成物粉末としてAVT-01(平均粒径3.0μm以下)を用いて、実施例2と同様に作製した。一方、アルミニウム含有ガラスペーストは、ガラス組成物粉末としてAVT-01(平均粒径3.0μm以下)を用い、アルミニウム粒子として(株)高純度化学研究所製(球状粒子、平均粒径3μm)を用い、樹脂バインダーとしてポリエチレングリコールを用い、溶剤としてα−テルピネオールを用いた。アルミニウム含有ガラスペースト中のガラス組成物粉末の配合比率は、アルミニウム粒子に対して10体積%とした。また、ペースト中の固形分(アルミニウム粒子、ガラス組成物粉末)の配合比率は70質量%とした。
(Production of solar cell panel)
The silver-containing glass paste used for forming the electrode / wiring was prepared in the same manner as in Example 2 using AVT-01 (average particle size of 3.0 μm or less) as the glass composition powder. On the other hand, the aluminum-containing glass paste uses AVT-01 (average particle size of 3.0 μm or less) as the glass composition powder, and uses aluminum particles (spherical particles, average particle size of 3 μm) manufactured by Kojundo Chemical Laboratory Co., Ltd. Polyethylene glycol was used as the resin binder, and α-terpineol was used as the solvent. The compounding ratio of the glass composition powder in the aluminum-containing glass paste was 10% by volume with respect to the aluminum particles. Further, the blending ratio of the solid content (aluminum particles, glass composition powder) in the paste was 70% by mass.
受光面に拡散層62と反射防止層63を形成した半導体基板61を用意した。次に、上記で作製したアルミニウム含有ガラスペーストを用い、図6(b)および図6(c)に示したように半導体基板61の裏面にスクリーン印刷で塗布し、大気中150℃で乾燥させた。次に、上記で作製した銀含有ガラスペーストを用い、図6(a)〜図6(c)に示したように半導体基板61の受光面と上記で集電電極/配線65を形成した裏面に対して、スクリーン印刷で塗布し、大気中150℃で乾燥させた。その後、印刷した半導体基板61に対し大気中350℃で10分間保持する焼成を行った。これにより、受光面電極/配線64と集電電極/配線65と出力電極/配線66とを形成し、本発明に係る太陽電池パネル60を作製した。
A
また、前記受光面電極/配線64を裏面に配置した裏面電極型(バックコンタクトタイプ)太陽電池パネルも別途作製した。図7は、裏面電極型太陽電池パネルの断面の1例を示す模式図である。裏面電極型太陽電池パネル70の作製は、まず、半導体基板の裏面に拡散層62とパッシベーション膜71を形成し、受光面に反射防止膜63を形成した半導体基板61を用意した。その後、上記と同様の方法で裏面に導電性ガラスペーストを塗布・焼成することで電極/配線72(受光面電極/配線64に相当する電極/配線)と出力電極/配線66とを形成し、裏面電極型太陽電池パネル70を作製した。
In addition, a back electrode type (back contact type) solar cell panel in which the light receiving surface electrode /
上記で作製した太陽電池パネル60に対し、各種の試験評価を行った。受光面では、受光面電極/配線64と半導体基板61とが電気的に接続されていることを確認した。裏面では、半導体基板61と集電電極/配線65および出力電極/配線66との間にオーミックコンタクトが得られていることを確認した。裏面電極型太陽電池パネル70においても、同様に確認した。また、作製した太陽電池パネル60,70における発電効率を試験評価したところ、従来の導電性ガラスペーストを使用した従来の太陽電池パネルと同等以上の発電効率(18.0%)が得られた。
Various test evaluations were performed on the
さらに、裏面に形成される集電電極/配線65と出力電極/配線66との重なり部分について調査したところ、合金相は形成されていなかった。これは、本発明に係る太陽電池パネルの焼成温度(350℃)が、従来のそれ(500〜800℃)に対して大幅に低いことから、合金相の形成に至らなかったと考えられた。その結果、合金相の形成により半導体基板61にクラックが発生するという問題が解決される。
Further, when an overlapping portion between the collecting electrode /
上述の実施例では、本発明に係る電気電子部品として水晶振動子と太陽電池パネルを代表として説明したが、本発明はそれらに限定されるものではなく、画像表示デバイス、携帯情報端末、ICパッケージ、積層コンデンサー、LED、多層回路基板などの多くの電気電子部品に適用可能であることは自明である。 In the above-described embodiments, the crystal resonator and the solar battery panel are representatively described as the electric and electronic parts according to the present invention. However, the present invention is not limited to them, and the image display device, the portable information terminal, and the IC package. It is obvious that it can be applied to many electrical and electronic parts such as multilayer capacitors, LEDs, and multilayer circuit boards.
31…ガラス組成物粉末、32…金属粒子、33…樹脂バインダー、
34…空隙、35…融解したガラス(液相)、36…ネック、
51…基板、52…配線、53…導電性ガラスペースト、54…水晶振動子、
55…封着用ガラスペースト、56…キャップ、
60…太陽電池パネル、61…半導体基板、62…拡散層、63…反射防止層、
64…受光面電極/配線、65…集電電極/配線、66…出力電極/配線、
70…裏面電極型太陽電池パネル、71…パッシベーション膜、72…電極/配線。
31 ... Glass composition powder, 32 ... Metal particles, 33 ... Resin binder,
34 ... void, 35 ... melted glass (liquid phase), 36 ... neck,
51 ... Substrate, 52 ... Wiring, 53 ... Conductive glass paste, 54 ... Quartz crystal,
55 ... Glass paste for sealing, 56 ... Cap,
60 ... solar cell panel, 61 ... semiconductor substrate, 62 ... diffusion layer, 63 ... antireflection layer,
64 ... Light receiving surface electrode / wiring, 65 ... Current collecting electrode / wiring, 66 ... Output electrode / wiring,
70 ... Back electrode type solar cell panel, 71 ... Passivation film, 72 ... Electrode / wiring.
Claims (11)
前記ガラス組成物は、主要成分と必須の追加成分とから構成され、それらの名目成分を酸化物で表したときに、
前記主要成分は、25〜60質量%のAg2Oと、5〜30質量%のV2O5と、15〜50質量%のTeO2とからなり、かつ該主要成分の含有率が75質量%以上であり、
前記必須の追加成分は、前記主要成分以外の成分であり、BaO、WO3、Fe2O3、およびMnO2の内の1種以上を含み、
前記ガラス組成物に対して示差熱分析を行ったときに、該ガラス組成物の結晶化温度が300℃以下に存在しないことを特徴とするガラス組成物。 A lead-free glass composition,
The glass composition is composed of a main component and an essential additional component, and when those nominal components are represented by oxides,
The main component is composed of 25 to 60% by mass of Ag 2 O, 5 to 30% by mass of V 2 O 5 , and 15 to 50% by mass of TeO 2 , and the content of the main component is 75% by mass. % Or more,
The essential additional component is a component other than the main component, and includes one or more of BaO, WO 3 , Fe 2 O 3 , and MnO 2 ,
A glass composition characterized in that, when a differential thermal analysis is performed on the glass composition, a crystallization temperature of the glass composition does not exist at 300 ° C. or lower.
Ag2O含有率がV2O5含有率の2.6倍以下であることを特徴とするガラス組成物。 The glass composition according to claim 1,
A glass composition having an Ag 2 O content of 2.6 times or less of a V 2 O 5 content.
Ag2O含有率とV2O5含有率との和が40〜80質量%であることを特徴とするガラス組成物。 The glass composition according to claim 2,
Glass compositions the sum of the Ag 2 O content and V 2 O 5 content, characterized in that 40 to 80 wt%.
前記ガラス組成物を構成する酸化物以外の酸化物充填材を0〜50体積%含むことを特徴とする封着用ガラスフリット。 The glass composition according to any one of claims 1 to 3, comprising 50 to 100% by volume,
A glass frit for sealing, comprising 0 to 50% by volume of an oxide filler other than the oxide constituting the glass composition.
前記酸化物充填材が、SiO2、ZrO2、Al2O3、Nb2O5、ZrSiO4、Zr2(WO4)(PO4)2、コージェライト、ムライト、およびユークリプタイトの内の1種以上であることを特徴とする封着用ガラスフリット。 In the glass frit for sealing of Claim 4,
The oxide filler is selected from the group consisting of SiO 2 , ZrO 2 , Al 2 O 3 , Nb 2 O 5 , ZrSiO 4 , Zr 2 (WO 4 ) (PO 4 ) 2 , cordierite, mullite, and eucryptite. A glass frit for sealing, which is one or more kinds.
前記酸化物充填材が、SiO2、ZrO2、Al2O3、Nb2O5、ZrSiO4、Zr2(WO4)(PO4)2、コージェライト、ムライト、およびユークリプタイトの内の1種以上であり、
前記溶剤が、ブチルカルビトールアセテートまたはα−テルピネオールであり、
樹脂バインダーとしてニトロセルロースを更に含むことを特徴とする封着用ガラスペースト。 In the glass paste for sealing according to claim 6,
The oxide filler is selected from the group consisting of SiO 2 , ZrO 2 , Al 2 O 3 , Nb 2 O 5 , ZrSiO 4 , Zr 2 (WO 4 ) (PO 4 ) 2 , cordierite, mullite, and eucryptite. One or more,
The solvent is butyl carbitol acetate or α-terpineol;
A glass paste for sealing, further comprising nitrocellulose as a resin binder.
前記金属粒子が、銀、銀合金、アルミニウム、アルミニウム合金、銅、または銅合金であり、
前記酸化物充填材が、SiO2、ZrO2、Al2O3、Nb2O5、ZrSiO4、Zr2(WO4)(PO4)2、コージェライト、ムライト、およびユークリプタイトの内の1種以上であり、
前記溶剤が、ブチルカルビトールアセテートまたはα−テルピネオールであり、
樹脂バインダーとしてニトロセルロースを更に含むことを特徴とする導電性ガラスペースト。 In the conductive glass paste according to claim 8,
The metal particles are silver, silver alloy, aluminum, aluminum alloy, copper, or copper alloy;
The oxide filler is selected from the group consisting of SiO 2 , ZrO 2 , Al 2 O 3 , Nb 2 O 5 , ZrSiO 4 , Zr 2 (WO 4 ) (PO 4 ) 2 , cordierite, mullite, and eucryptite. One or more,
The solvent is butyl carbitol acetate or α-terpineol;
A conductive glass paste further comprising nitrocellulose as a resin binder.
前記金属粒子は、平均粒径が0.5〜10μmであり、球状および/またはフレーク状の形状を有することを特徴とする導電性ガラスペースト。 In the conductive glass paste according to claim 8 or 9,
The conductive glass paste, wherein the metal particles have an average particle size of 0.5 to 10 μm and have a spherical and / or flake shape.
前記金属粒子は、平均粒径が0.5〜3μmの粒子群と、平均粒径が5〜10μmの粒子群との混合物であることを特徴とする導電性ガラスペースト。 In the conductive glass paste according to claim 8 or 9,
The conductive glass paste, wherein the metal particles are a mixture of a particle group having an average particle diameter of 0.5 to 3 μm and a particle group having an average particle diameter of 5 to 10 μm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011147950 | 2011-07-04 | ||
JP2011147950 | 2011-07-04 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015074701A Division JP6027171B2 (en) | 2011-07-04 | 2015-04-01 | Glass frit for sealing, glass paste for sealing, conductive glass paste, and electric and electronic parts using them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016210681A JP2016210681A (en) | 2016-12-15 |
JP6434942B2 true JP6434942B2 (en) | 2018-12-05 |
Family
ID=54259577
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015074701A Active JP6027171B2 (en) | 2011-07-04 | 2015-04-01 | Glass frit for sealing, glass paste for sealing, conductive glass paste, and electric and electronic parts using them |
JP2016164280A Active JP6434942B2 (en) | 2011-07-04 | 2016-08-25 | Glass composition, glass frit containing the glass composition, and glass paste containing the glass composition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015074701A Active JP6027171B2 (en) | 2011-07-04 | 2015-04-01 | Glass frit for sealing, glass paste for sealing, conductive glass paste, and electric and electronic parts using them |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6027171B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016109414A1 (en) * | 2016-05-23 | 2017-11-23 | Ferro Gmbh | Low-temperature tellurite glass mixtures for vacuum compression at temperatures ≤450 ° C |
KR101943711B1 (en) * | 2016-10-10 | 2019-01-29 | 삼성에스디아이 주식회사 | Composition for forming solar cell electrode and electrode prepared using the same |
WO2018109849A1 (en) * | 2016-12-13 | 2018-06-21 | 信越化学工業株式会社 | Highly efficient rear-surface electrode type solar cell, solar cell module, and solar power generation system |
CN110663119B (en) * | 2017-05-31 | 2023-08-29 | 东洋铝株式会社 | Paste composition for solar cell |
JP6371894B2 (en) * | 2017-09-13 | 2018-08-08 | 信越化学工業株式会社 | High efficiency back electrode type solar cell, solar cell module, and solar power generation system |
KR102091839B1 (en) * | 2018-02-23 | 2020-03-20 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
KR102379839B1 (en) * | 2018-02-23 | 2022-03-28 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
KR102092295B1 (en) * | 2018-02-23 | 2020-03-23 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit, paste and vacuum glass assembly using the same |
US11958772B2 (en) | 2018-02-23 | 2024-04-16 | Lg Electronics Inc. | Low-temperature fired, lead-free glass frit, paste, and vacuum glass assembly using same |
KR102137875B1 (en) * | 2018-08-27 | 2020-07-27 | 한국세라믹기술원 | LAS crystallized glass and manufacturing method of the same |
KR102217221B1 (en) | 2018-11-09 | 2021-02-18 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit, paste and vacuum glass assembly using the same |
JP6885433B2 (en) * | 2019-08-30 | 2021-06-16 | 昭和電工マテリアルズ株式会社 | Lead-free low melting point glass composition, low melting point glass composite material and low melting point glass paste containing the same, and sealing structures, electrical and electronic parts and painted parts using these. |
WO2022176519A1 (en) * | 2021-02-16 | 2022-08-25 | 昭和電工マテリアルズ株式会社 | Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS571499B1 (en) * | 1971-05-11 | 1982-01-11 | ||
JPS61242927A (en) * | 1985-04-20 | 1986-10-29 | Agency Of Ind Science & Technol | Production of moisture responsive sintered material of glass powder |
US4945071A (en) * | 1989-04-19 | 1990-07-31 | National Starch And Chemical Investment Holding Company | Low softening point metallic oxide glasses suitable for use in electronic applications |
US5334558A (en) * | 1992-10-19 | 1994-08-02 | Diemat, Inc. | Low temperature glass with improved thermal stress properties and method of use |
JPH0859295A (en) * | 1994-08-22 | 1996-03-05 | Nippon Electric Glass Co Ltd | Low melting point composition for sealing |
JP4697652B2 (en) * | 2003-08-29 | 2011-06-08 | 日本電気硝子株式会社 | Glass paste |
JP2007153734A (en) * | 2005-12-07 | 2007-06-21 | Schott Ag | Optical glass |
JP5257827B2 (en) * | 2006-09-14 | 2013-08-07 | 日本電気硝子株式会社 | Sealing material |
JPWO2008078374A1 (en) * | 2006-12-25 | 2010-04-15 | ナミックス株式会社 | Conductive paste for solar cell |
JP5414409B2 (en) * | 2009-01-16 | 2014-02-12 | 日立粉末冶金株式会社 | Low melting glass composition, low-temperature sealing material and electronic component using the same |
KR101322072B1 (en) * | 2009-05-20 | 2013-10-28 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process of forming a grid electrode on the front-side of a silicon wafer |
-
2015
- 2015-04-01 JP JP2015074701A patent/JP6027171B2/en active Active
-
2016
- 2016-08-25 JP JP2016164280A patent/JP6434942B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6027171B2 (en) | 2016-11-16 |
JP2015171993A (en) | 2015-10-01 |
JP2016210681A (en) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5726698B2 (en) | Glass composition, glass frit containing the same, glass paste containing the same, and electric and electronic parts using the same | |
JP6434942B2 (en) | Glass composition, glass frit containing the glass composition, and glass paste containing the glass composition | |
JP6350127B2 (en) | Lead-free low-melting glass composition, glass frit for low-temperature sealing containing the same, glass paste for low-temperature sealing, conductive material and conductive glass paste, and glass sealing parts and electric / electronic parts using the same | |
JP2013103840A (en) | Conductive glass paste, and electric/electronic component using the same | |
KR101269710B1 (en) | Conductive paste and electronic part equipped with electrode wiring formed from same | |
JP5699933B2 (en) | Glass composition and conductive paste composition, electrode wiring member and electronic component using the same | |
JP5673316B2 (en) | Electronic component, conductive paste for aluminum electrode applied thereto, and glass composition for aluminum electrode | |
JP5497504B2 (en) | Electronic components | |
WO2013024829A1 (en) | Solder adhesive body, production method for solder adhesive body, element, solar cell, production method for element, and production method for solar cell | |
CN105384338A (en) | Lead-free low-melting glass composition, glass material using composition and element | |
KR20120032568A (en) | Paste composition and solar cell element using same | |
WO2017126378A1 (en) | Lead-free glass composition, glass composite material, glass paste, sealing structure, electrical/electronic component and coated component | |
JP2017505977A (en) | Conductive paste and method of manufacturing semiconductor device using the same | |
JP5494619B2 (en) | Electronic component, conductive paste for aluminum electrode applied thereto, and glass composition for aluminum electrode | |
JP6155965B2 (en) | Electrode forming glass powder and electrode forming conductive paste | |
JP5747096B2 (en) | Conductive paste | |
JP2021147263A (en) | Paste of glass composition, and sealing structure and electric/electronic component including the glass composition | |
JP6351332B2 (en) | Conductor-forming composition comprising a low-melting glass composition | |
JP5546074B2 (en) | ELECTRONIC COMPONENT HAVING CONDUCTIVE PASTE AND ELECTRODE WIRING USING THE SAME | |
CN103648999B (en) | Glass composition, the frit comprising it, the glass cream comprising it and utilize its electrical/electronic part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180313 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6434942 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |