JP6433008B1 - Non-contact near field communication card and data parallel processing system using the same - Google Patents
Non-contact near field communication card and data parallel processing system using the same Download PDFInfo
- Publication number
- JP6433008B1 JP6433008B1 JP2018163319A JP2018163319A JP6433008B1 JP 6433008 B1 JP6433008 B1 JP 6433008B1 JP 2018163319 A JP2018163319 A JP 2018163319A JP 2018163319 A JP2018163319 A JP 2018163319A JP 6433008 B1 JP6433008 B1 JP 6433008B1
- Authority
- JP
- Japan
- Prior art keywords
- communication
- reader
- writer
- facing
- main surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 636
- 238000012545 processing Methods 0.000 title claims abstract description 21
- 238000005192 partition Methods 0.000 claims abstract description 294
- 230000002093 peripheral effect Effects 0.000 claims abstract description 136
- 230000005291 magnetic effect Effects 0.000 claims abstract description 116
- 230000004907 flux Effects 0.000 claims abstract description 53
- 230000005540 biological transmission Effects 0.000 claims description 98
- 230000006870 function Effects 0.000 claims description 64
- 238000013500 data storage Methods 0.000 claims description 46
- 230000004044 response Effects 0.000 claims description 40
- 230000008878 coupling Effects 0.000 claims description 39
- 238000010168 coupling process Methods 0.000 claims description 39
- 238000005859 coupling reaction Methods 0.000 claims description 39
- 238000000576 coating method Methods 0.000 claims description 32
- 239000011248 coating agent Substances 0.000 claims description 29
- 238000007747 plating Methods 0.000 claims description 20
- 230000000903 blocking effect Effects 0.000 claims description 16
- 230000009471 action Effects 0.000 claims description 14
- 239000000696 magnetic material Substances 0.000 claims description 14
- 238000010292 electrical insulation Methods 0.000 claims description 12
- 230000008054 signal transmission Effects 0.000 claims description 12
- 239000012777 electrically insulating material Substances 0.000 claims description 6
- 238000000638 solvent extraction Methods 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims 2
- 239000011247 coating layer Substances 0.000 abstract description 31
- 230000000694 effects Effects 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 54
- 238000000465 moulding Methods 0.000 description 27
- 229910052782 aluminium Inorganic materials 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 14
- 230000001681 protective effect Effects 0.000 description 13
- 239000003302 ferromagnetic material Substances 0.000 description 10
- 230000007257 malfunction Effects 0.000 description 10
- 230000002238 attenuated effect Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000003973 paint Substances 0.000 description 9
- 229920001296 polysiloxane Polymers 0.000 description 9
- 229920005992 thermoplastic resin Polymers 0.000 description 9
- 239000002907 paramagnetic material Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- 239000002889 diamagnetic material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005674 electromagnetic induction Effects 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 125000005395 methacrylic acid group Chemical group 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 230000005292 diamagnetic effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Credit Cards Or The Like (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
【課題】仕切部材の外側を回り込もうとするRFID用電磁波信号への対処を含め一対の通信部材に対し安定した磁束遮断効果を発揮し、信号出力調整の負担を軽減できる非接触式近距離無線通信用カードと、そのカードを用いたデータ並行処理システムを提供する。【解決手段】平面状アンテナ11A,21Aを有する一対の通信モジュール11,21と円形状の貫通孔10Hを有する仕切板10とを設け、仕切板10を挟んで両側に窓枠状の枠板15,25が対称配置され、各枠板15,25の内周壁面は被覆層15Z,25Zで被覆されていることにより、仕切板10の対面側主表面における渦電流の発生及び非対面側主表面における渦電流の伝搬や発生が阻止又は抑制され、例えばマイクロ波帯域のRFID用電磁波信号に適合するICカード100を容易かつ安価に得ることができる。【選択図】図1Non-contact short distance that exhibits a stable magnetic flux shielding effect for a pair of communication members including countermeasures against RFID electromagnetic signals that try to wrap around the outside of a partition member and can reduce the burden of signal output adjustment Provided are a wireless communication card and a data parallel processing system using the card. A pair of communication modules 11 and 21 having planar antennas 11A and 21A and a partition plate 10 having a circular through hole 10H are provided, and a window frame-like frame plate 15 is provided on both sides of the partition plate 10 therebetween. , 25 are symmetrically arranged, and the inner peripheral wall surfaces of the frame plates 15 and 25 are covered with the coating layers 15Z and 25Z, thereby generating eddy currents on the facing main surface of the partition plate 10 and non-facing main surfaces. Propagation and generation of eddy currents are prevented or suppressed, and for example, an IC card 100 compatible with an electromagnetic wave signal for RFID in the microwave band can be obtained easily and inexpensively. [Selection] Figure 1
Description
この発明は、少なくとも一対の通信部材を備え、非接触式の近距離無線通信に用いられるカードに関する。また、そのカードを用いたデータ並行処理システムに関する。 The present invention relates to a card that includes at least a pair of communication members and is used for non-contact near field communication. The present invention also relates to a data parallel processing system using the card.
ICチップを搭載した個体認識用カード(IDカード)は、ISO/IEC7810において、外形寸法が横85.60mm×縦53.98mm×厚さ0.76mmである「ID−1サイズ」に規格化されている(ただし、これより厚いサイズも一般に使用されている)。近年においては、IDカードの中でも特に
(1)電子乗車券カード;
(2)電子マネーカード(キャッシュカード、クレジットカードを含む);
(3)パスポートカード;
(4)運転免許証カード;
(5)個人番号カード;
等で実用化された、非接触式近距離無線通信用カードの普及が著しい。
An individual recognition card (ID card) equipped with an IC chip is standardized to “ID-1 size” in ISO / IEC7810, whose outer dimensions are 85.60 mm wide × 53.98 mm long × 0.76 mm thick. (Though thicker sizes are also commonly used). In recent years, among the ID cards, (1) electronic ticket cards;
(2) Electronic money cards (including cash cards and credit cards);
(3) Passport card;
(4) Driver's license card;
(5) Personal number card;
The spread of non-contact type short-range wireless communication cards that have been put to practical use in the market is remarkable.
これらは、接点の代わりに電磁波を利用した非接触通信(代表例としてRFID:Radio Frequency Identifier方式等)により、例えば
(1)改札口における入退場;
(2)キャッシュレスでの決済(支払い);
(3)旅券の発給及び渡航履歴の照会;
(4)免許証の発給及び運転・事故履歴の照会;
(5)公的個人認証(身分証明)及び電子証明;
等の種々の場面で手続きの簡素化や省人化が図られている。なお、上記したようなICチップ搭載IDカードは日本においては「ICカード」、欧米においては「スマートカード」と通称されているが、以下の記載では非接触式近距離無線通信用カードを「非接触ICカード」等と略称することもある。
These are, for example, (1) entrance / exit at a ticket gate by non-contact communication using an electromagnetic wave instead of a contact (representative example: RFID: Radio Frequency Identifier method);
(2) Cashless settlement (payment);
(3) Passport issuance and travel history inquiry;
(4) Issuing a license and inquiring about driving / accident history;
(5) Public personal identification (identification) and electronic certification;
In various scenes such as these, simplification of procedures and labor saving are attempted. The above-described IC chip-mounted ID card is commonly called “IC card” in Japan and “smart card” in Europe and the United States. However, in the following description, a contactless short-range wireless communication card is referred to as “non-card”. It may be abbreviated as “contact IC card” or the like.
ところで、特許文献1には、リーダライタ(外部)からの電磁波を受信するアンテナと情報処理機能を有するICチップとから構成される一対(2個)のICモジュールと、両アンテナから各々一定の隙間(絶縁用空間)を設けて両ICモジュールの間に配置され、リーダライタからの電磁波を遮蔽するフェライト製(強磁性体)の遮蔽シートとを備える、単一の非接触ICカードが開示されている。 By the way, in Patent Document 1, a pair (two) of IC modules including an antenna that receives an electromagnetic wave from a reader / writer (external) and an IC chip having an information processing function, and a fixed gap from each of the antennas, respectively. There is disclosed a single non-contact IC card provided with a (ferromagnetic) shielding sheet which is disposed between both IC modules with (insulating space) and shields electromagnetic waves from a reader / writer. Yes.
他方、特許文献2では、中央に位置するアルミ製、銅製等(非磁性体)の金属層を挟んでフェライト製(強磁性体)の磁性体層を両側から対面させてシールド体が形成され、さらにそのシールド体の各磁性体層の外側には、単一のICモジュールを有する非接触ICカードがそれぞれ固定されて一体型のカードが形成される。 On the other hand, in Patent Document 2, a shield body is formed by facing a magnetic body layer made of ferrite (ferromagnetic body) from both sides with a metal layer made of aluminum, copper, etc. (non-magnetic body) located in the center, Further, a non-contact IC card having a single IC module is fixed to the outside of each magnetic layer of the shield body to form an integrated card.
また、特許文献3では、中央に位置するアルミ、銅等の電磁波シールド材(非磁性体)からなる金属層を挟んでフェライト製(強磁性体)の非透磁層を両側から対面させ、さらに各非透磁層の外側にプラスチックフィルム製(絶縁体)の絶縁層を介して一対(2個)のICモジュールがそれぞれ設けられて、単一の非接触ICカードが形成される。 Further, in Patent Document 3, a non-magnetic layer made of ferrite (ferromagnetic material) is faced from both sides with a metal layer made of an electromagnetic shielding material (non-magnetic material) such as aluminum or copper located at the center, A pair of (two) IC modules are provided on the outside of each non-magnetic layer via an insulating layer made of a plastic film (insulator) to form a single non-contact IC card.
特許文献1の遮蔽シート、特許文献2の磁性体層及び特許文献3の非透磁層に共通して、これらの遮蔽板に使用されているのはFe(フェライト、フェライト系ステンレス鋼),Ni,Co,フェライト含有シートのように比透磁率が大きい強磁性体であり、磁力線を吸い込む性質により電磁波の遮蔽機能に優れている。よって、一対(2個)のICモジュールが厚さ方向に重なるように配置されていても、リーダライタ側(手前側)のICモジュール(アンテナ)を通過した電磁波は、強磁性体であるフェライト含有シート等の遮蔽板によって吸収されて、非リーダライタ側(奥側)のICモジュール(アンテナ)には到達しにくくなる。したがって、リーダライタからの電磁波信号は手前側のICモジュール(アンテナ)のみで受信され、一対のICモジュールを区別して作動させる(ここでは手前側のICモジュールは作動、奥側のICモジュールは非作動を意味する)ことができるようになる。 In common with the shielding sheet of Patent Document 1, the magnetic layer of Patent Document 2, and the non-permeable layer of Patent Document 3, these shielding plates use Fe (ferrite, ferritic stainless steel), Ni , Co, a ferromagnetic material having a high relative permeability such as a ferrite-containing sheet, and has an excellent electromagnetic wave shielding function due to the property of sucking magnetic lines of force. Therefore, even if a pair (two) of IC modules are arranged so as to overlap in the thickness direction, the electromagnetic wave that has passed through the IC module (antenna) on the reader / writer side (front side) contains a ferrite that is a ferromagnetic substance. Absorbed by a shielding plate such as a sheet, it becomes difficult to reach the IC module (antenna) on the non-reader / writer side (back side). Therefore, the electromagnetic wave signal from the reader / writer is received only by the front IC module (antenna), and the pair of IC modules are operated separately (here, the front IC module is operated, and the back IC module is not operated). Mean).
このように、一対のICモジュールを区別(識別)して個別に送受信(すなわちデータの読み取り又は書き込み)が可能になればICチップに保存できるデータ容量が増大(倍増)するから、保存可能データ数の増加はもちろん、例えば個体識別番号の桁数や種別を増やしたり、画像データでの認証を加えたりすることによって、個体認識の精度や安全性を飛躍的に向上させることができる。 As described above, if a pair of IC modules can be distinguished (identified) and individually transmitted / received (that is, data can be read or written), the data capacity that can be stored in the IC chip increases (doubles). As a matter of course, the accuracy and safety of individual recognition can be dramatically improved by increasing the number and type of individual identification numbers or adding authentication with image data.
しかしながら、リーダライタとICモジュールとの間の送受信(磁束結合)は電磁波信号の出力調整等に左右され、信号出力が大きければフェライト含有シート等の強磁性体製遮蔽板であってもリーダライタからのRFID用電磁波信号の一部が裏側のICモジュール(アンテナ)に到達する現象が生じうる。また、遮蔽板の外側を回り込むRFID用電磁波信号によって奥側のICモジュールが誤作動するおそれもある。 However, the transmission / reception (magnetic flux coupling) between the reader / writer and the IC module depends on the output adjustment of the electromagnetic wave signal, etc., and if the signal output is large, even if it is a shield plate made of a ferromagnetic material such as a ferrite-containing sheet May occur that part of the electromagnetic wave signal for RFID reaches the IC module (antenna) on the back side. Further, there is a possibility that the IC module on the back side malfunctions due to the electromagnetic wave signal for RFID that goes around the outside of the shielding plate.
したがって、遮蔽板の材質(例えば、非磁性体であるか強磁性体であるか)に関わらず、手前側のICモジュールとのみ磁束結合を生じ、奥側のICモジュールとは磁束結合を生じないように、リーダライタの出力調整等を周波数(すなわち波長)の特性に応じて慎重にかつ仕様変更のたびごとに行う必要がある。 Therefore, regardless of the material of the shielding plate (for example, whether it is a non-magnetic material or a ferromagnetic material), magnetic flux coupling occurs only with the front IC module and magnetic flux coupling does not occur with the rear IC module. As described above, it is necessary to carefully adjust the output of the reader / writer according to the characteristics of the frequency (that is, the wavelength) and whenever the specification is changed.
特にフェライト含有シート等の強磁性体によって遮蔽板が構成される場合には、遮蔽板は外部磁界により強い磁性を帯び、外部磁界がなくなっても残留磁気により磁化された状態が継続(ヒステリシス現象の発生)するから、電磁波の出力調整等によって近接する各ICモジュールの情報処理機能(例えば、データの書き込み・読み取り機能、保存機能)に悪影響を及ぼす可能性がある。具体的には、遮蔽板が強い磁性を帯びることにより、一対のICモジュールが応答不良(データ読み取り・書き込み信号に対して同時応答又は双方無反応)に基づく誤作動を発生したり、あるいは遮蔽板が永久磁石化することにより、ICチップの保存データが消去(データ破壊)されるおそれもある。 In particular, when the shielding plate is made of a ferromagnetic material such as a ferrite-containing sheet, the shielding plate is strongly magnetized by an external magnetic field, and continues to be magnetized by residual magnetism even when the external magnetic field disappears (hysteresis phenomenon) Therefore, there is a possibility of adversely affecting the information processing function (for example, data writing / reading function, storage function) of the adjacent IC modules by adjusting the output of electromagnetic waves. Specifically, due to the strong magnetic properties of the shielding plate, a pair of IC modules may malfunction due to poor response (simultaneous response to data reading / writing signals, or no response to both), or the shielding plate. Since the permanent magnet becomes a permanent magnet, there is a possibility that data stored in the IC chip is erased (data destruction).
本発明の課題は、一般的には強磁性体に比して遮蔽効果(すなわち磁力線吸収作用)に劣るとされる非磁性体(例えば常磁性体や反磁性体)を一対の通信部材の間に配置する仕切部材に用いる場合であっても、仕切部材の外側を回り込むRFID用電磁波信号への対処を含め一対の通信部材に対し安定した磁束遮断効果を発揮し、信号出力調整の負担を軽減できる非接触式近距離無線通信用カードと、そのカードを用いたデータ並行処理システムを提供することにある。 An object of the present invention is to provide a non-magnetic material (for example, a paramagnetic material or a diamagnetic material), which is generally inferior in shielding effect (that is, a magnetic field absorption function) as compared with a ferromagnetic material, between a pair of communication members. Even if it is used for a partition member placed on the outside of the partition member, it exerts a stable magnetic flux shielding effect on a pair of communication members, including countermeasures against electromagnetic wave signals for RFID that wrap around the outside of the partition member, and reduces the burden of signal output adjustment An object of the present invention is to provide a contactless near field communication card that can be used and a data parallel processing system using the card.
上記課題を解決するために、本発明に係る非接触式近距離無線通信用カードは、
非接触式の近距離無線通信に用いられる単一のカードであって、
導電性を有するとともに電磁波に対する減衰又は遮蔽(あるいは反射)作用を有し、(例えば平坦な)シート状又はフィルム状に成形された仕切部材(望ましくはアルミ箔、アルミ板等の常磁性体)と、
データ保存機能及び通信制御機能を有するICチップ本体と信号受発信機能を有するアンテナとを含み、前記仕切部材の一方の主表面及び他方の主表面に対向して平面視で各々重なり合うように配置され、前記アンテナが所定の周波数範囲でのRFID用電磁波信号をリーダライタから受信し、かつそれに対する応答信号をリーダライタに向けて発信することにより、リーダライタに対する非接触式近距離無線通信を個々に行うための第一及び第二の通信部材(例えば通信モジュール)と、
前記仕切部材と前記第一の通信部材との間及び前記仕切部材と前記第二の通信部材との間に各々配置されて所定の隙間を形成し、電気的な絶縁状態を付与するためにシート状又はフィルム状に形成された第一及び第二の絶縁部材(例えばシリコーン紙)と、
電気的な絶縁性を有する材質で構成されるとともにカード外形をなす矩形状の各辺に沿って窓枠状に形成された第一及び第二の周壁部が、前記仕切部材の両側の主表面を挟むように接触して各々配置された第一及び第二の枠部材(例えば枠板)とを備え、
前記第一の枠部材には、前記一方の主表面側において前記第一の通信部材と前記第一の絶縁部材とが前記第一の周壁部の内部空間に収容されるとともに、該第一の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第一の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第一の電磁波シールド層(例えばめっき層又は塗膜)で被覆される一方、
前記第二の枠部材には、前記他方の主表面側において前記第二の通信部材と前記第二の絶縁部材とが前記第二の周壁部の内部空間に収容されるとともに、該第二の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第二の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第二の電磁波シールド層(例えばめっき層又は塗膜)で被覆され、
前記第一及び第二の通信部材のうちリーダライタと前記仕切部材との間に位置する対面側通信部材が該仕切部材の対面側主表面に重ねられるとともに、リーダライタと前記仕切部材との間に位置しない非対面側通信部材が非対面側主表面に重ねられ、これらを重ね合わせ方向から透視したとき、前記仕切部材には、前記対面側通信部材のアンテナ及び前記非対面側通信部材のアンテナと各々部分的に重なり合うように貫通除去された開放領域(例えば切欠、スリット又は孔)が形成され、
リーダライタとの通信状態において、前記開放領域は前記対面側通信部材とリーダライタとの間にのみ磁束結合を生じさせて、RFID用電磁波信号の個別送受信を可能にすることを特徴とする。
In order to solve the above problems, a non-contact short-range wireless communication card according to the present invention is:
A single card used for contactless short-range wireless communication,
A partition member (preferably a paramagnetic material such as an aluminum foil or an aluminum plate) which has conductivity and has a function of attenuating or shielding (or reflecting) against electromagnetic waves, and is formed into a sheet or film (for example, flat). ,
It includes an IC chip body having a data storage function and a communication control function and an antenna having a signal transmission / reception function, and is disposed so as to be opposed to one main surface and the other main surface of the partition member in plan view. The antenna receives an electromagnetic wave signal for RFID in a predetermined frequency range from the reader / writer, and transmits a response signal to the reader / writer, thereby enabling non-contact short-range wireless communication to the reader / writer individually. First and second communication members (eg, communication modules) to perform;
A sheet is provided between the partition member and the first communication member and between the partition member and the second communication member to form a predetermined gap and provide an electrical insulation state. First and second insulating members (for example, silicone paper) formed in the shape of a film or a film,
The first and second peripheral walls formed in a window frame shape along each side of the rectangular shape that is made of an electrically insulating material and forms the outer shape of the card are main surfaces on both sides of the partition member. A first and a second frame member (for example, a frame plate) arranged in contact with each other,
In the first frame member, the first communication member and the first insulating member are accommodated in an internal space of the first peripheral wall portion on the one main surface side, and the first frame member An inner peripheral wall surface of the peripheral wall portion is a first electromagnetic wave shielding layer (for example, a plating layer or a coating film) for blocking or suppressing an electromagnetic wave signal for RFID that wraps around the outside of the partition member and reaches the first peripheral wall portion. While coated with
In the second frame member, the second communication member and the second insulating member are accommodated in the internal space of the second peripheral wall portion on the other main surface side, and the second frame member The inner peripheral wall surface of the peripheral wall portion is a second electromagnetic wave shielding layer (for example, a plating layer or a coating film) for blocking or suppressing the electromagnetic wave signal for RFID that wraps around the outside of the partition member and reaches the second peripheral wall portion. )
A facing communication member located between the reader / writer and the partition member of the first and second communication members is superimposed on the facing main surface of the partition member, and between the reader / writer and the partition member. When the non-face-to-face communication member that is not positioned on the non-face-to-face main surface is overlapped and seen through from the overlapping direction, the partition member includes an antenna for the face-to-face communication member and an antenna for the face-to-face communication member And an open area (for example, a notch, a slit or a hole) formed so as to partially overlap each other is formed,
In the state of communication with the reader / writer, the open area generates magnetic flux coupling only between the facing communication member and the reader / writer, thereby enabling individual transmission / reception of RFID electromagnetic wave signals.
このように、一対の通信部材の間に仕切部材が配置され、その仕切部材には対をなす通信部材のアンテナと各々部分的に重なり合うように貫通除去された開放領域が設けられ、仕切部材を挟んで両側に窓枠状の枠部材が対称配置され、各枠部材の内周壁面は電磁波シールド層で被覆されている。これによって、リーダライタの信号出力の調整を厳密に行わなくても、また仕切部材の材質(例えば、非磁性体であるか強磁性体であるか)に関わらず、リーダライタからのRFID用電磁波信号は対面側通信部材のアンテナとのみ磁束結合を生じ、非対面側通信部材のアンテナとは磁束結合を生じないようにすること(つまり、RFID用電磁波信号の個別送受信)が容易に実現できる。したがって、非接触式近距離無線通信用カードの応答不良(すなわち、リーダライタによるデータの書き込み・読み取りミス)に基づく誤作動の発生をより確実に防止できる。なお、このようなカードにおいて、一対の通信部材を複数組(複数対)有していてもよい。 In this way, the partition member is disposed between the pair of communication members, and the partition member is provided with an open area that is penetrated and removed so as to partially overlap the antenna of the communication member that makes a pair, and the partition member is A window frame-shaped frame member is symmetrically disposed on both sides of the frame, and the inner peripheral wall surface of each frame member is covered with an electromagnetic wave shielding layer. As a result, even if the signal output of the reader / writer is not strictly adjusted, and regardless of the material of the partition member (for example, nonmagnetic or ferromagnetic), the RFID electromagnetic wave from the reader / writer It is possible to easily realize that the signal generates magnetic flux coupling only with the antenna of the facing communication member and does not generate magnetic flux coupling with the antenna of the non-facing communication member (that is, individual transmission / reception of the electromagnetic wave signal for RFID). Accordingly, it is possible to more reliably prevent the occurrence of a malfunction due to a poor response of the contactless short-range wireless communication card (that is, a data writing / reading error by the reader / writer). Such a card may have a plurality of pairs (multiple pairs) of communication members.
要するに、上記開放領域は、リーダライタからのRFID用電磁波信号により仕切部材の対面側主表面に渦電流が発生して反磁界を生じるのを阻止又は抑制するとともに、対面側主表面で発生し仕切部材を伝搬して非対面側主表面に至る渦電流や、リーダライタからのRFID用電磁波信号のうち仕切部材の外側を回り込み非対面側主表面で発生する渦電流により非対面側主表面に磁界を生じる現象を阻害することによって、電磁波に対する仕切部材の減衰又は遮蔽作用を補完し、対面側通信部材のみがリーダライタからのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタに向けて発信する機能を付与する。さらに、窓枠状の第一及び第二の枠部材は仕切部材を挟んで対称配置され、両枠部材の周壁部の内周壁面は第一及び第二の電磁波シールド層(例えばめっき層又は塗膜)で各々被覆されているので、これらの電磁波シールド層は仕切部材の外側を回り込むRFID用電磁波信号の非対面側通信部材への到達を阻止又は抑制し得る。 In short, the open area prevents or suppresses the generation of a demagnetizing field due to the generation of eddy currents on the facing main surface of the partition member due to the RFID electromagnetic wave signal from the reader / writer, and also occurs on the facing main surface. A magnetic field is generated on the non-facing side main surface by eddy current propagating through the member to the non-facing side main surface or an eddy current generated on the non-facing side main surface of the RFID electromagnetic wave signal from the reader / writer. By interfering with the attenuation or shielding action of the partition member against electromagnetic waves, only the facing communication member receives the RFID electromagnetic wave signal from the reader / writer and directs the response signal to the reader / writer. Is added. Furthermore, the window frame-shaped first and second frame members are arranged symmetrically with the partition member in between, and the inner peripheral wall surfaces of the peripheral wall portions of both frame members are the first and second electromagnetic shielding layers (for example, plating layers or coatings). These electromagnetic wave shielding layers can prevent or suppress the arrival of the RFID electromagnetic wave signal that wraps around the outside of the partition member to the non-face-to-face communication member.
このように、仕切部材を挟み両側の主表面に対向して第一及び第二の通信部材がそれぞれ配置され、仕切部材の手前側において、対面側通信部材のアンテナがリーダライタからの信号を受信して起電力を発生しそのアンテナからリーダライタへ応答信号を発信することにより、非接触式近距離無線通信(交信磁界)が成立する。 In this way, the first and second communication members are arranged opposite to the main surfaces on both sides across the partition member, and the antenna of the facing communication member receives a signal from the reader / writer on the front side of the partition member. By generating an electromotive force and transmitting a response signal from the antenna to the reader / writer, non-contact short-range wireless communication (communication magnetic field) is established.
一方、仕切部材は非磁性体、強磁性体を問わず、導電性に優れた金属製(金属メッキ、金属混入樹脂等を含む)が通常用いられるため、リーダライタからのRFID用電磁波信号により金属製仕切部材の対面側主表面に渦電流が発生して反磁界を生じやすい。この反磁界は、上記した対面側通信部材とリーダライタとの間の交信磁界を打ち消すように作用する。しかし、本発明では、対をなす通信部材のアンテナと各々部分的に重なり合うように貫通除去された開放領域を仕切部材に設けることによって、仕切部材の対面側主表面における渦電流の発生が阻止又は抑制されるので反磁界を生じにくくなり(あるいは、反磁界が弱められ)、対面側通信部材とリーダライタとの間の交信磁界が良好に維持される。 On the other hand, since the partition member is usually made of a metal having excellent conductivity (including metal plating, metal-mixed resin, etc.) regardless of whether it is a non-magnetic material or a ferromagnetic material, the metal is generated by an RFID electromagnetic wave signal from a reader / writer. An eddy current is generated on the facing main surface of the partition member, which tends to generate a demagnetizing field. This demagnetizing field acts to cancel the communication magnetic field between the facing communication member and the reader / writer. However, in the present invention, by providing the partition member with an open region that is penetrated and removed so as to partially overlap the antennas of the communication members that form a pair, generation of eddy currents on the facing main surface of the partition member is prevented or Since it is suppressed, a demagnetizing field is hardly generated (or the demagnetizing field is weakened), and the communication magnetic field between the facing communication member and the reader / writer is well maintained.
また、リーダライタの信号出力が大きい場合には、仕切部材が非磁性体であるか強磁性体であるかに関わらず、対面側主表面で発生した渦電流が仕切部材を伝搬して非対面側主表面に至る現象や、リーダライタからのRFID用電磁波信号のうち仕切部材の外側を回り込んで非対面側主表面で渦電流を発生する現象が生じ得る。しかし、本発明では、対をなす通信部材のアンテナと各々部分的に重なり合うように貫通除去された開放領域を仕切部材に設けることにより、また仕切部材を挟んで対称配置された窓枠状の第一及び第二の枠部材の周壁部の内周壁面が第一及び第二の電磁波シールド層(例えばめっき層又は塗膜)で各々被覆されることにより、仕切部材の非対面側主表面においてこれらの渦電流の伝搬や発生は対面側主表面におけると同様に阻止又は抑制されて磁界を生じる現象が阻害される。 In addition, when the signal output of the reader / writer is large, eddy current generated on the facing main surface propagates through the partition member regardless of whether the partition member is a non-magnetic material or a ferromagnetic material. There may be a phenomenon that reaches the side main surface, or a phenomenon that an eddy current is generated on the non-facing side main surface of the RFID electromagnetic wave signal from the reader / writer that goes around the outside of the partition member. However, according to the present invention, by providing the partition member with an open region that is penetrated and removed so as to partially overlap the antennas of the communication members that make a pair, the window frame-shaped first arranged symmetrically across the partition member. The inner peripheral wall surfaces of the peripheral wall portions of the first and second frame members are respectively coated with the first and second electromagnetic wave shielding layers (for example, a plating layer or a coating film), so that these on the non-facing side main surface of the partition member Propagation and generation of eddy currents are prevented or suppressed in the same manner as on the facing main surface, and the phenomenon of generating a magnetic field is inhibited.
このようにして、リーダライタからのRFID用電磁波信号は、対面側通信部材のアンテナとのみ磁束結合を生じ、非対面側通信部材のアンテナとは磁束結合を生じないようになるから、開放領域及び電磁波シールド層は、電磁波に対する仕切部材の減衰又は遮蔽作用を補完し、対面側通信部材のみがリーダライタからのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタに向けて発信する機能(換言すれば、RFID用電磁波信号の個別送受信機能)を付与することができる。 In this way, the electromagnetic wave signal for RFID from the reader / writer generates magnetic flux coupling only with the antenna of the facing communication member and does not generate magnetic flux coupling with the antenna of the non-facing communication member. The electromagnetic wave shielding layer supplements the attenuation or shielding action of the partition member against electromagnetic waves, and only the facing communication member receives the electromagnetic wave signal for RFID from the reader / writer and transmits the response signal to the reader / writer (In other words, an individual transmission / reception function of the electromagnetic wave signal for RFID) can be provided.
その際、上記仕切部材や電磁波シールド層は非磁性体により構成されることが望ましい。これによって、比透磁率が大きく磁力線吸収作用に優れ磁束遮蔽効果が大きい反面、外部磁界により強い磁性を帯び(強く磁化され)、永久磁石化するおそれのある強磁性体を仕切部材として使用せずに済む。つまり、非磁性体製仕切部材は比透磁率が1に近く外部磁界がなくなると磁性を帯びなく(磁化されなく)なるので、対をなす通信部材が応答不良(データ読み取り・書き込み信号に対して同時応答又は双方無反応)に基づく誤作動を発生したり、各々の通信部材の保存データが消去(破壊)されたりするおそれもなくなる。そして、単純な比較の上では強磁性体よりも遮蔽効果(すなわち磁力線吸収作用)に劣るとされる非磁性体が仕切部材や電磁波シールド層に用いられる場合であっても、上記した開放領域が仕切部材に形成されることによって、対をなす通信部材に対し安定した磁束遮断効果を発揮しつつ、信号出力調整等の負担は大幅に軽減される。 In that case, it is desirable that the partition member and the electromagnetic wave shielding layer are made of a non-magnetic material. As a result, it has a high relative magnetic permeability and excellent magnetic field line absorption, while it has a high magnetic flux shielding effect. On the other hand, it does not use as a partition member a ferromagnetic material that is strongly magnetized (strongly magnetized) by an external magnetic field and may become permanent magnets. It will end. In other words, the non-magnetic partition member has a relative permeability close to 1 and does not become magnetized (not magnetized) when there is no external magnetic field. Therefore, the paired communication members have poor response (for data read / write signals). There is no possibility of malfunction due to simultaneous response or no response on both sides, or the stored data of each communication member being erased (destroyed). And even if it is a case where a nonmagnetic material, which is considered to be inferior in shielding effect (that is, magnetic field absorption effect) compared to a ferromagnetic material, is used for a partition member or an electromagnetic wave shield layer, the above open region is By being formed on the partition member, the burden of signal output adjustment and the like is greatly reduced while exhibiting a stable magnetic flux shielding effect for the communication members that make a pair.
上記仕切部材や電磁波シールド層に用いられる非磁性体には、例えば、比透磁率が1より大きい常磁性体(Al,Sn,Pt,Pd等)や比透磁率が1より小さい反磁性体(Au,Ag,Cu,Pb等)が含まれ、オーステナイト系ステンレス鋼も非磁性体である。なお、これらのうち望ましくは、仕切部材の薄片化や開放領域の形成(孔あけ加工等)の際の加工性、コストの観点からアルミ箔、アルミ板等のアルミ材が推奨される。 Examples of the non-magnetic material used for the partition member and the electromagnetic wave shielding layer include a paramagnetic material (Al, Sn, Pt, Pd, etc.) having a relative permeability larger than 1, and a diamagnetic material having a relative permeability smaller than 1. Au, Ag, Cu, Pb, etc.) are included, and austenitic stainless steel is also non-magnetic. Of these, aluminum materials such as aluminum foil and aluminum plate are recommended from the viewpoints of workability and cost when thinning the partition member and forming an open region (such as drilling).
さらに、上記対面側通信部材とリーダライタとの間のアンテナ通信距離L及び上記非対面側通信部材とリーダライタとの間のアンテナ通信距離L’は、いずれもリーダライタから発せられるRFID用電磁波の波長λ以下に設定されること(0<L≦λ,0<L’≦λ)が望ましい。 Further, the antenna communication distance L between the facing communication member and the reader / writer and the antenna communication distance L ′ between the non-facing communication member and the reader / writer are both of the electromagnetic waves for RFID emitted from the reader / writer. It is desirable that the wavelength be set to λ or less (0 <L ≦ λ, 0 <L ′ ≦ λ).
RFIDのために使用可能な電磁波の周波数帯域は、ISO/IEC18000等において、LF(中波)帯域(30kHz〜300kHz)からUHF(極超短波)帯域(300MHz〜3GHz)にわたって幅広く規定されている。既に実用化されているRFID信号伝達方式で見ると、相対的に指向性が弱く横への広がりを持つHF(短波)帯域(3MHz〜30MHz)においてループ状アンテナを用いる電磁誘導方式と、相対的に指向性・直進性の強いUHF帯域(マイクロ波帯域とも称する)において平面状アンテナを用いる電波方式とに大別される。例えば日本において、HF帯域では13.56MHz(波長λ≒22m)、マイクロ波帯域では920MHz(波長λ≒33cm)又は2.45GHz(波長λ≒12cm)が多く採用される。このとき、ISO/IEC14443において「近接型非接触通信用カード」のアンテナ通信距離L,L’は、10cm以下(0<L≦10cm,0<L’≦10cm)に規定される。 The frequency band of electromagnetic waves that can be used for RFID is widely defined in ISO / IEC 18000 and the like from the LF (medium wave) band (30 kHz to 300 kHz) to the UHF (ultra high frequency) band (300 MHz to 3 GHz). Looking at the RFID signal transmission system that has already been put into practical use, the electromagnetic induction system that uses a loop antenna in the HF (short wave) band (3 MHz to 30 MHz) having relatively weak directivity and lateral spread is relatively The radio wave system uses a planar antenna in the UHF band (also referred to as a microwave band) having strong directivity and straightness. For example, in Japan, 13.56 MHz (wavelength λ≈22 m) is frequently used in the HF band, and 920 MHz (wavelength λ≈33 cm) or 2.45 GHz (wavelength λ≈12 cm) is often used in the microwave band. At this time, in ISO / IEC14443, the antenna communication distances L and L ′ of the “proximity non-contact communication card” are defined as 10 cm or less (0 <L ≦ 10 cm, 0 <L ′ ≦ 10 cm).
ここで、上記のうちのいずれの周波数帯域を用いる場合であっても、アンテナ通信距離L,L’が波長λ以下に設定される(0<L≦λ,0<L’≦λ)ことによって、最大でも1波長分(単位波)までの電界・磁界の変化がリーダライタのアンテナと通信部材のアンテナとの相互間の信号で直接伝達されるので、周波数(波長)や信号伝達方式の差異に捕らわれることなく、共通した取り扱いが可能となる。このときのアンテナ通信距離L,L’は、一般的には10cm以下(0<L≦10cm,0<L’≦10cm)、望ましくは5cm以下(0<L≦5cm,0<L’≦5cm)、さらに望ましくは3cm以下(0<L≦3cm,0<L’≦3cm)である。アンテナ通信距離L,L’を短縮できれば、リーダライタのアンテナからの送信出力を低減するとともに、読み取りや書き込みのシステム全体を小型化することも可能になる。 Here, the antenna communication distances L and L ′ are set to be equal to or shorter than the wavelength λ (0 <L ≦ λ, 0 <L ′ ≦ λ), regardless of which of the above frequency bands is used. Because the change in electric and magnetic fields up to one wavelength (unit wave) at the maximum is directly transmitted as a signal between the reader / writer antenna and the communication member antenna, there is a difference in frequency (wavelength) and signal transmission method. The common handling becomes possible without being caught by. The antenna communication distances L and L ′ at this time are generally 10 cm or less (0 <L ≦ 10 cm, 0 <L ′ ≦ 10 cm), preferably 5 cm or less (0 <L ≦ 5 cm, 0 <L ′ ≦ 5 cm). More preferably, it is 3 cm or less (0 <L ≦ 3 cm, 0 <L ′ ≦ 3 cm). If the antenna communication distances L and L 'can be shortened, the transmission output from the reader / writer antenna can be reduced, and the entire reading and writing system can be miniaturized.
なお、本発明において「周波数範囲」とは、上記した「周波数帯域」よりも狭い概念であり、リーダライタで受信信号の周波数を合否判定する際に送信信号と同一周波数と見做してよい許容周波数範囲を意味する。この「周波数範囲」は、例えば標準周波数(又は規定周波数)±10%、標準周波数(又は規定周波数)±○○Hzのように定めることができる。後述するように、複数対(複数組)の通信部材を搭載したカードを設計する場合や、一対(一組)又は複数対(複数組)の通信部材を搭載したカードのデータを一対(一組)又は複数対(複数組)のリーダライタで並行処理するシステムを設計する場合等に、「周波数帯域」及び「周波数範囲」は設計基準として重要になる。 In the present invention, the “frequency range” is a concept that is narrower than the above “frequency band”, and may be regarded as the same frequency as the transmission signal when the pass / fail judgment of the frequency of the reception signal is performed by the reader / writer. Means frequency range. This “frequency range” can be defined as, for example, standard frequency (or specified frequency) ± 10%, standard frequency (or specified frequency) ± OOHz. As will be described later, when designing a card equipped with a plurality of pairs (multiple sets) of communication members, a pair of (one set) or a pair of (multiple sets) of communication members mounted data (one set) ) Or multiple pairs (multiple sets) of reader / writers, the “frequency band” and the “frequency range” are important as design criteria.
重ね合わせ方向から透視したとき、上記第一及び第二の通信部材は矩形状のカード外形線の内側(であってその短辺方向又は長辺方向)において互いにオフセット(齟齬)して配置され、
開放領域は、対面側主表面に投影された対面側通信部材のアンテナの一部及び非対面側主表面に投影された非対面側通信部材のアンテナの一部を同時に内包する単一の領域として貫通形成される場合がある。
When seen through from the overlapping direction, the first and second communication members are arranged offset (齟齬) from each other inside the rectangular card outline (and in the short side direction or the long side direction),
The open area is a single area that simultaneously includes a part of the antenna of the facing communication member projected on the facing main surface and a part of the antenna of the non-facing communication member projected on the non-facing main surface. It may be formed through.
このように、第一及び第二の通信部材がオフセット配置されることによって、両アンテナの位置(言い換えれば、対応するICチップ本体との接続位置)が完全に重ならずに上下方向及び左右方向の少なくとも一方に少しずれている。したがって、リーダライタ(のアンテナ)から送信されたRFID用電磁波信号が対面側通信部材(及び対面側絶縁部材)を透過し、仕切部材の開放領域を経て非対面側通信部材(のアンテナ)に達した場合でも、非対面側通信部材と対面側通信部材との受発信タイミングには、リーダライタとのアンテナ通信距離の差以外に上記オフセット配置に基づくずれも生じているので、非対面側通信部材とリーダライタとの間に磁束結合は生じにくい。 As described above, the first and second communication members are offset so that the positions of the two antennas (in other words, the connection positions with the corresponding IC chip bodies) do not completely overlap with each other, and the vertical and horizontal directions. A little off to at least one of the Therefore, the electromagnetic wave signal for RFID transmitted from the reader / writer (antenna) passes through the facing communication member (and the facing insulating member) and reaches the non-facing communication member (antenna) through the open area of the partition member. Even in this case, the non-face-to-face communication member has a deviation based on the above-described offset arrangement in addition to the difference in the antenna communication distance with the reader / writer in the transmission / reception timing between the face-to-face communication member and the face-to-face communication member. Magnetic flux coupling is unlikely to occur between the reader / writer.
また、開放領域が両アンテナの一部を同時に内包する単一の領域として貫通形成されるので、開放領域の加工コストが軽減される。また、開放領域の位置合わせ基準点を1ヶ所に絞ることができるので、仕切部材と通信部材との位置合わせが容易になる。なお、仕切部材を円形、楕円形、多角形等の単一の孔で打ち抜くことにより、又は仕切部材を短辺方向又は長辺方向に向かう一直線状の溝(スリット)で2つの部分に分離することにより、開放領域は単一の領域として仕切部材に貫通形成される。 In addition, since the open area is formed as a single area including a part of both antennas at the same time, the processing cost of the open area is reduced. In addition, since the alignment reference point of the open area can be narrowed down to one place, the alignment between the partition member and the communication member is facilitated. In addition, the partition member is separated into two parts by punching with a single hole such as a circle, an ellipse, or a polygon, or by a straight groove (slit) directed in the short side direction or the long side direction. Thus, the open area is formed through the partition member as a single area.
重ね合わせ方向から透視したとき、上記第一及び第二の通信部材は矩形状のカード外形線の内側(であってその短辺方向又は長辺方向)において互いにオフセット(齟齬)して配置され、
開放領域は、対面側主表面に投影された対面側通信部材のアンテナの一部及び非対面側主表面に投影された非対面側通信部材のアンテナの一部を各別に内包する一対の領域として貫通形成される場合もある。
When seen through from the overlapping direction, the first and second communication members are arranged offset (齟齬) from each other inside the rectangular card outline (and in the short side direction or the long side direction),
The open area is a pair of areas including a part of the antenna of the facing communication member projected on the facing main surface and a part of the antenna of the non-facing communication member projected on the non-facing main surface. In some cases, it is formed through.
この場合の非対面側通信部材と対面側通信部材との受発信タイミングにも、リーダライタとのアンテナ通信距離の差以外に上記オフセット配置に基づくずれが生じているので、非対面側通信部材とリーダライタとの間に磁束結合は生じにくい。そして、この場合には開放領域が両アンテナの一部を各別に内包する一対の領域として貫通形成されるので、対をなす通信部材の各々に適合させた最良の開放領域を仕切部材に形成できる。なお、仕切部材を円形、楕円形、多角形等の一対の孔で打ち抜くことにより、又は仕切部材において対向する一対の短辺又は対向する一対の長辺を各々切り欠くことにより、開放領域は一対の領域として仕切部材に貫通形成される。 In this case, the reception / transmission timing between the non-face-to-face communication member and the face-to-face communication member also includes a deviation based on the offset arrangement other than the difference in the antenna communication distance with the reader / writer. Magnetic flux coupling hardly occurs between the reader / writer. In this case, since the open area is formed as a pair of areas including part of both antennas separately, the best open area adapted to each of the paired communication members can be formed in the partition member. . A pair of open regions is formed by punching the partition member with a pair of holes such as a circle, an ellipse, or a polygon, or by notching a pair of opposing short sides or a pair of opposing long sides in the partition member. As a region, the partition member penetrates.
重ね合わせ方向から透視したとき、上記仕切部材並びに上記第一及び第二の通信部材は、それらの外周縁がいずれもカード外形より内側に退避して配置されるのが好ましい。 When seen through from the overlapping direction, it is preferable that the partition member and the first and second communication members are disposed with their outer peripheral edges retracted from the outer shape of the card.
このように、仕切部材と両通信部材の外周縁をカード外形より内側に退避させることにより、仕切部材の外側を回り込んで非対面側主表面に至る、リーダライタからのRFID用電磁波信号を減衰又は遮蔽することができる。 In this way, by retracting the outer peripheral edges of the partition member and both communication members to the inside of the card outer shape, the electromagnetic wave signal for RFID from the reader / writer that wraps around the outside of the partition member and reaches the non-facing main surface is attenuated. Or it can be shielded.
重ね合わせ方向から透視したとき、上記第一及び第二の絶縁部材は、各々の外周縁が対応する第一及び第二の通信部材より大に形成されるとともに、仕切部材の開放領域を塞ぐ(又は覆う)状態に保持される。 When seen through from the overlapping direction, the first and second insulating members are formed larger than the corresponding first and second communication members, and the open regions of the partition members are closed ( (Or covering).
このように、第一及び第二の絶縁部材(例えばシリコーン紙)がそれぞれ仕切部材の開放領域を塞ぐことにより、仕切部材と各通信部材とを確実に分離して絶縁効果を高めることができる。また、仕切部材の開放領域は両側から絶縁部材で塞がれるので、組立時に第一及び第二の通信部材を対応する成形部材(又は絶縁部材)に位置固定するための接着剤等が両成形部材の加熱融着時に流動化して開放領域内に侵入するのを防止できる。なお、絶縁部材としてシリコーン紙等の絶縁性紙製品の他、ポリ塩化ビニリデン(PVDC)、ポリエチレン(PE)等の絶縁性合成樹脂フィルムを用いることができる。さらに、外部の水分が絶縁部材を介して内部にしみ込むのを防止し、両成形部材の周縁部同士が加熱融着するのを妨げないようにする観点から、両絶縁部材の外周縁はカード外形より内側に退避して配置されることが望ましい。 In this way, the first and second insulating members (for example, silicone paper) each block the open area of the partition member, so that the partition member and each communication member can be reliably separated to enhance the insulation effect. In addition, since the open area of the partition member is closed with an insulating member from both sides, an adhesive for fixing the position of the first and second communication members to the corresponding molding member (or insulating member) at the time of assembly is both molded. It is possible to prevent the member from fluidizing and intruding into the open region when the member is heat-sealed. In addition to insulating paper products such as silicone paper, insulating synthetic resin films such as polyvinylidene chloride (PVDC) and polyethylene (PE) can be used as the insulating member. Furthermore, from the viewpoint of preventing external moisture from penetrating into the inside through the insulating member and preventing the peripheral portions of both molded members from being heat-fused together, the outer peripheral edge of both insulating members is the outer shape of the card. It is desirable to retract and arrange inward.
また、上記課題を解決するために、本発明に係る非接触式近距離無線通信用カードは、特定の周波数帯域(例えばマイクロ波帯域)のRFID用電磁波信号に適合させたとき、
非接触式の近距離無線通信に用いられる単一のカードであって、
導電性を有するとともに電磁波に対する減衰又は遮蔽(あるいは反射)作用を有する非磁性体で構成され、(例えば平坦な)シート状又はフィルム状に成形された仕切部材(望ましくはアルミ箔、アルミ板等の常磁性体)と、
データ保存機能及び通信制御機能を有するICチップ本体と信号受発信機能を有する平面状アンテナとを含み、前記仕切部材の一方の主表面及び他方の主表面に対向して平面視で各々重なり合うように配置され、前記平面状アンテナが(例えばマイクロ波帯域において)所定の周波数範囲でのRFID用電磁波信号をリーダライタから受信し、かつそれに対する応答信号をリーダライタに向けて発信することにより、リーダライタに対する非接触式近距離無線通信を個々に行うための第一及び第二の通信部材(例えば通信モジュール)と、
前記仕切部材と前記第一の通信部材との間及び前記仕切部材と前記第二の通信部材との間に各々配置されて所定の隙間を形成し、電気的な絶縁状態を付与するためにシート状又はフィルム状に形成された第一及び第二の絶縁部材(例えばシリコーン紙)と、
電気的な絶縁性を有する材質で構成されるとともにカード外形をなす矩形状の各辺に沿って窓枠状に形成された第一及び第二の周壁部が、前記仕切部材の両側の主表面を挟むように接触して各々配置された第一及び第二の枠部材(例えば枠板)とを備え、
前記第一の枠部材には、前記一方の主表面側において前記第一の通信部材と前記第一の絶縁部材とが前記第一の周壁部の内部空間に収容されるとともに、該第一の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第一の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第一の電磁波シールド層(例えばめっき層又は塗膜)で被覆される一方、
前記第二の枠部材には、前記他方の主表面側において前記第二の通信部材と前記第二の絶縁部材とが前記第二の周壁部の内部空間に収容されるとともに、該第二の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第二の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第二の電磁波シールド層(例えばめっき層又は塗膜)で被覆され、
前記第一及び第二の通信部材のうちリーダライタと前記仕切部材との間に位置する対面側通信部材が該仕切部材の対面側主表面に重ねられるとともに、リーダライタと前記仕切部材との間に位置しない非対面側通信部材が非対面側主表面に重ねられ、
前記対面側通信部材とリーダライタとの間の通信距離及び前記非対面側通信部材とリーダライタとの間の通信距離は、いずれもリーダライタから発せられるRFID用電磁波の波長以下に設定され、
重ね合わせ方向から透視したとき、前記仕切部材には、前記対面側通信部材のアンテナ及び前記非対面側通信部材のアンテナと各々部分的に重なり合うように孔形状にて貫通除去された開放領域が形成され、
前記開放領域は、リーダライタからのRFID用電磁波信号により前記仕切部材の対面側主表面に渦電流が発生して反磁界を生じるのを阻止又は抑制するとともに、前記対面側主表面で発生し前記仕切部材を伝搬して前記非対面側主表面に至る渦電流や、リーダライタからのRFID用電磁波信号のうち前記仕切部材の外側を回り込み前記非対面側主表面で発生する渦電流により前記非対面側主表面に磁界を生じる現象を阻害することによって、前記仕切部材の電磁波に対する減衰又は遮蔽作用を補完し、前記対面側通信部材とリーダライタとの間にのみ磁束結合を生じさせて、前記対面側通信部材のみがリーダライタからのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタに向けて発信する機能を付与し、RFID用電磁波信号の個別送受信を可能にすることを特徴とする。
In order to solve the above problems, when the non-contact near field communication card according to the present invention is adapted to an electromagnetic wave signal for RFID in a specific frequency band (for example, a microwave band),
A single card used for contactless short-range wireless communication,
Partition members (preferably aluminum foil, aluminum plate, etc.) made of a non-magnetic material that is conductive and has a function of attenuating or shielding (or reflecting) against electromagnetic waves, and formed into a sheet or film (for example, flat) Paramagnetic material)
Including an IC chip body having a data storage function and a communication control function and a planar antenna having a signal transmission / reception function so as to be opposed to one main surface and the other main surface of the partition member in plan view. The reader / writer is arranged so that the planar antenna receives an electromagnetic wave signal for RFID in a predetermined frequency range (for example, in a microwave band) from the reader / writer and transmits a response signal to the reader / writer. First and second communication members (for example, communication modules) for individually performing non-contact short-range wireless communication with respect to,
A sheet is provided between the partition member and the first communication member and between the partition member and the second communication member to form a predetermined gap and provide an electrical insulation state. First and second insulating members (for example, silicone paper) formed in the shape of a film or a film,
The first and second peripheral walls formed in a window frame shape along each side of the rectangular shape that is made of an electrically insulating material and forms the outer shape of the card are main surfaces on both sides of the partition member. A first and a second frame member (for example, a frame plate) arranged in contact with each other,
In the first frame member, the first communication member and the first insulating member are accommodated in an internal space of the first peripheral wall portion on the one main surface side, and the first frame member An inner peripheral wall surface of the peripheral wall portion is a first electromagnetic wave shielding layer (for example, a plating layer or a coating film) for blocking or suppressing an electromagnetic wave signal for RFID that wraps around the outside of the partition member and reaches the first peripheral wall portion. While coated with
In the second frame member, the second communication member and the second insulating member are accommodated in the internal space of the second peripheral wall portion on the other main surface side, and the second frame member The inner peripheral wall surface of the peripheral wall portion is a second electromagnetic wave shielding layer (for example, a plating layer or a coating film) for blocking or suppressing the electromagnetic wave signal for RFID that wraps around the outside of the partition member and reaches the second peripheral wall portion. )
A facing communication member located between the reader / writer and the partition member of the first and second communication members is superimposed on the facing main surface of the partition member, and between the reader / writer and the partition member. The non-face-to-face communication member that is not located on is superimposed on the non-face-to-face main surface,
The communication distance between the facing communication member and the reader / writer and the communication distance between the non-facing communication member and the reader / writer are both set to be equal to or less than the wavelength of the electromagnetic wave for RFID emitted from the reader / writer,
When viewed through from the overlapping direction, the partition member is formed with an open region that is penetrated and removed in a hole shape so as to partially overlap the antenna of the facing communication member and the antenna of the non-facing communication member, respectively. And
The open area prevents or suppresses generation of a demagnetizing field due to generation of an eddy current on the facing main surface of the partition member by an electromagnetic wave signal for RFID from a reader / writer, and is generated on the facing main surface. The non-facing surface is caused by an eddy current that propagates through the partition member and reaches the non-facing side main surface, or an eddy current that circulates outside the partitioning member and is generated on the non-facing side main surface among RFID electromagnetic wave signals from a reader / writer. By obstructing the phenomenon of generating a magnetic field on the side main surface, the attenuation or shielding action against electromagnetic waves of the partition member is complemented, and magnetic flux coupling is generated only between the facing communication member and the reader / writer, and the facing Only the communication member on the side receives the RFID electromagnetic wave signal from the reader / writer, and gives the function of transmitting the response signal to the reader / writer, Characterized in that it enables individual transceiver of use electromagnetic signals.
このように、平面状アンテナを有する一対の通信部材(通信モジュール)と孔形状の開放領域を有する仕切部材とを設け、仕切部材を挟んで両側に窓枠状の枠部材が対称配置され、各枠部材の内周壁面は電磁波シールド層で被覆されていることにより、上記したのと同様に、仕切部材の対面側主表面における渦電流の発生及び非対面側主表面における渦電流の伝搬や発生が阻止又は抑制され、例えばマイクロ波帯域のRFID用電磁波信号に適合するカードを容易かつ安価に得ることができる。その際に、仕切部材に設けられた開放領域は、両通信部材のアンテナとそれぞれ一部分でのみ重なるような孔形状に形成されているので、指向性・直進性の強いマイクロ波であっても、このような開放領域を通るとき非対面側通信部材のアンテナに至る電波は制限され減衰される。よって、非対面側通信部材のアンテナは、リーダライタとの送受信を可能とするほどの起電力を発生しない。つまり、非対面側通信部材のICチップ本体は起動できない。仮に起動したとしてもリーダライタへの発信(返信)ができない。なお、このようなカードにおいて、一対の通信部材を複数組(複数対)有するとともに、各組の周波数帯域又は周波数範囲を互いに異ならせてあってもよい。 Thus, a pair of communication members (communication modules) having a planar antenna and a partition member having a hole-shaped open region are provided, and window frame-like frame members are symmetrically arranged on both sides across the partition member, As described above, the inner peripheral wall surface of the frame member is covered with an electromagnetic wave shielding layer, so that generation of eddy current on the facing main surface of the partition member and propagation and generation of eddy current on the non-facing main surface are the same as described above. Is prevented or suppressed, and for example, a card compatible with an electromagnetic wave signal for RFID in a microwave band can be obtained easily and inexpensively. At that time, since the open area provided in the partition member is formed in a hole shape that overlaps only partly with the antennas of both communication members, even microwaves with strong directivity and straightness, When passing through such an open area, radio waves reaching the antenna of the non-face-to-face communication member are limited and attenuated. Therefore, the antenna of the non-face-to-face communication member does not generate an electromotive force that enables transmission / reception with the reader / writer. That is, the IC chip body of the non-face-to-face communication member cannot be activated. Even if it is activated, it cannot send (reply) to the reader / writer. In such a card, a plurality of pairs (multiple pairs) of communication members may be provided, and the frequency band or frequency range of each pair may be different from each other.
重ね合わせ方向から透視したとき、上記第一及び第二の通信部材は矩形状のカード外形線の内側(であってその短辺方向又は長辺方向)において互いにオフセット(齟齬)して配置され、
開放領域は、対面側主表面に投影された対面側通信部材の平面状アンテナの一部及び非対面側主表面に投影された非対面側通信部材の平面状アンテナの一部を同時に含む単一の貫通孔として形成される場合がある。
When seen through from the overlapping direction, the first and second communication members are arranged offset (齟齬) from each other inside the rectangular card outline (and in the short side direction or the long side direction),
The open area includes a portion of the planar antenna of the facing communication member projected onto the facing main surface and a portion of the planar antenna of the non-facing communication member projected onto the non-facing main surface at the same time. May be formed as a through hole.
既述したように、第一及び第二の通信部材がオフセット配置されることによって、非対面側通信部材とリーダライタとの間に磁束結合は生じにくくなっている。そして、開放領域が両アンテナの一部を同時に含む単一の貫通孔として形成されるので、開放領域の加工コストが軽減される。また、開放領域の位置合わせ基準点を1ヶ所に絞ることができるので、仕切部材と通信部材との位置合わせが容易になる。なお、仕切部材を円形、楕円形、多角形等の単一の孔で打ち抜くことにより、開放領域は単一の貫通孔として仕切部材に形成される。 As described above, the first and second communication members are offset to prevent magnetic flux coupling between the non-facing communication member and the reader / writer. And since an open area | region is formed as a single through-hole including a part of both antennas simultaneously, the processing cost of an open area | region is reduced. In addition, since the alignment reference point of the open area can be narrowed down to one place, the alignment between the partition member and the communication member is facilitated. In addition, an open area | region is formed in a partition member as a single through-hole by punching a partition member with single holes, such as circular, an ellipse, and a polygon.
重ね合わせ方向から透視したとき、上記第一及び第二の通信部材は矩形状のカード外形線の内側(であってその短辺方向又は長辺方向)において互いにオフセット(齟齬)して配置され、
開放領域は、対面側主表面に投影された対面側通信部材の平面状アンテナの一部及び非対面側主表面に投影された非対面側通信部材の平面状アンテナの一部を各別に含む一対の貫通孔として形成される場合もある。
When seen through from the overlapping direction, the first and second communication members are arranged offset (齟齬) from each other inside the rectangular card outline (and in the short side direction or the long side direction),
The open area is a pair including a part of the planar antenna of the facing communication member projected onto the facing main surface and a part of the planar antenna of the non-facing communication member projected onto the non-facing main surface. It may be formed as a through hole.
上記と同様に、第一及び第二の通信部材がオフセット配置されることによって、非対面側通信部材とリーダライタとの間に磁束結合は生じにくくなっている。そして、この場合には開放領域が両アンテナの一部を各別に含む一対の貫通孔として形成されるので、対をなす通信部材の各々に適合させた最良の開放領域を仕切部材に形成できる。なお、仕切部材を円形、楕円形、多角形等の一対の孔で打ち抜くことにより、開放領域は一対の貫通孔として仕切部材に形成される。 Similarly to the above, the first and second communication members are offset so that magnetic flux coupling is less likely to occur between the non-facing communication member and the reader / writer. In this case, since the open area is formed as a pair of through holes each including a part of both antennas, the best open area adapted to each of the paired communication members can be formed in the partition member. In addition, an open area | region is formed in a partition member as a pair of through-hole by punching a partition member with a pair of holes, such as circular, an ellipse, and a polygon.
これらの孔形状をなす開放領域において、孔径の最大値Dはリーダライタから発せられるRFID用電磁波の波長λよりも小に設定されること(D<λ)が好ましい。 In the open region having these hole shapes, the maximum value D of the hole diameter is preferably set to be smaller than the wavelength λ of the RFID electromagnetic wave emitted from the reader / writer (D <λ).
このように、孔径の最大値D(すなわち、孔の差渡し最大寸法)が波長λよりも小に設定(D<λ)されていると、RFID用電磁波はこれらの孔形状をなす開放領域を通りにくくなり減衰される。その結果、非対面側通信部材のアンテナでは起電力が発生しにくくなり、第一及び第二の通信部材のオフセット配置と相まって非対面側通信部材とリーダライタとの間の磁束結合は極めて生じにくくなる。 As described above, when the maximum value D of the hole diameter (that is, the maximum hole passing dimension) is set to be smaller than the wavelength λ (D <λ), the electromagnetic wave for RFID has an open region having these hole shapes. It becomes difficult to pass and is attenuated. As a result, an electromotive force is less likely to be generated in the antenna of the non-face-to-face communication member, and magnetic flux coupling between the non-face-to-face communication member and the reader / writer is extremely unlikely to occur in combination with the offset arrangement of the first and second communication members. Become.
重ね合わせ方向から透視したとき、上記仕切部材の外周縁がカード外形より内側に退避して配置され、かつ対面側通信部材及び非対面側通信部材の外周縁が各々仕切部材の外周縁より内側に退避して配置される。 When seen through from the overlapping direction, the outer peripheral edge of the partition member is retracted to the inside of the card outer shape, and the outer peripheral edges of the facing communication member and the non-facing communication member are respectively inside the outer peripheral edge of the partition member. Evacuated and placed.
仕切部材がカード外形より内側に遠ざけられ、両通信部材の外周縁が仕切部材の外周縁より内側に退避することにより、仕切部材の外側を回り込んで非対面側主表面に至るRFID用電磁波信号を減衰又は遮蔽することができる。 An RFID electromagnetic wave signal that wraps around the outside of the partition member and reaches the non-facing main surface by the partition member being moved away from the outer shape of the card and the outer peripheral edges of both communication members retracting from the outer peripheral edge of the partition member. Can be attenuated or shielded.
さらに、上記課題を解決するために、本発明に係る非接触式近距離無線通信用カードは、別の特定の周波数帯域(例えば短波帯域)のRFID用電磁波信号に適合させたとき、
非接触式の近距離無線通信に用いられる単一のカードであって、
導電性を有するとともに電磁波に対する減衰又は遮蔽(あるいは反射)作用を有する非磁性体で構成され、(例えば平坦な)シート状又はフィルム状に成形された仕切部材(望ましくはアルミ箔、アルミ板等の常磁性体)と、
データ保存機能及び通信制御機能を有するICチップ本体と信号受発信機能を有するループ状(又はコイル状)アンテナとを含み、前記仕切部材の一方の主表面及び他方の主表面に対向して平面視で各々重なり合うように配置され、前記ループ状アンテナが(例えば短波帯域において)所定の周波数範囲でのRFID用電磁波信号をリーダライタから受信し、かつそれに対する応答信号をリーダライタに向けて発信することにより、リーダライタに対する非接触式近距離無線通信を個々に行うための第一及び第二の通信部材(例えば通信モジュール)と、
前記仕切部材と前記第一の通信部材との間及び前記仕切部材と前記第二の通信部材との間に各々配置されて所定の隙間を形成し、電気的な絶縁状態を付与するためにシート状又はフィルム状に形成された第一及び第二の絶縁部材(例えばシリコーン紙)と、
電気的な絶縁性を有する材質で構成されるとともにカード外形をなす矩形状の各辺に沿って窓枠状に形成された第一及び第二の周壁部が、前記仕切部材の両側の主表面を挟むように接触して各々配置された第一及び第二の枠部材(例えば枠板)とを備え、
前記第一の枠部材には、前記一方の主表面側において前記第一の通信部材と前記第一の絶縁部材とが前記第一の周壁部の内部空間に収容されるとともに、該第一の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第一の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第一の電磁波シールド層(例えばめっき層又は塗膜)で被覆される一方、
前記第二の枠部材には、前記他方の主表面側において前記第二の通信部材と前記第二の絶縁部材とが前記第二の周壁部の内部空間に収容されるとともに、該第二の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第二の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第二の電磁波シールド層(例えばめっき層又は塗膜)で被覆され、
前記第一及び第二の通信部材のうちリーダライタと前記仕切部材との間に位置する対面側通信部材が該仕切部材の対面側主表面に重ねられるとともに、リーダライタと前記仕切部材との間に位置しない非対面側通信部材が非対面側主表面に重ねられ、
前記対面側通信部材とリーダライタとの間の通信距離及び前記非対面側通信部材とリーダライタとの間の通信距離は、いずれもリーダライタから発せられるRFID用電磁波の波長以下に設定され、
重ね合わせ方向から透視したとき、前記仕切部材には、前記対面側通信部材のアンテナ及び前記非対面側通信部材のアンテナと各々部分的に重なり合うように切欠形状又はスリット形状にて貫通除去された開放領域が形成され、
前記開放領域は、リーダライタからのRFID用電磁波信号により前記仕切部材の対面側主表面に渦電流が発生して反磁界を生じるのを阻止又は抑制するとともに、前記対面側主表面で発生し前記仕切部材を伝搬して前記非対面側主表面に至る渦電流や、リーダライタからのRFID用電磁波信号のうち前記仕切部材の外側を回り込み前記非対面側主表面で発生する渦電流により前記非対面側主表面に磁界を生じる現象を阻害することによって、前記仕切部材の電磁波に対する減衰又は遮蔽作用を補完し、前記対面側通信部材とリーダライタとの間にのみ磁束結合を生じさせて、前記対面側通信部材のみがリーダライタからのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタに向けて発信する機能を付与し、RFID用電磁波信号の個別送受信を可能にすることを特徴とする。
Furthermore, in order to solve the above-mentioned problem, when the non-contact type short-range wireless communication card according to the present invention is adapted to an electromagnetic wave signal for RFID in another specific frequency band (for example, a short wave band),
A single card used for contactless short-range wireless communication,
Partition members (preferably aluminum foil, aluminum plate, etc.) made of a non-magnetic material that is conductive and has a function of attenuating or shielding (or reflecting) against electromagnetic waves, and formed into a sheet or film (for example, flat) Paramagnetic material)
An IC chip body having a data storage function and a communication control function and a loop-shaped (or coil-shaped) antenna having a signal transmission / reception function, in plan view facing one main surface and the other main surface of the partition member Are arranged so as to overlap each other, and the loop antenna receives an electromagnetic wave signal for RFID in a predetermined frequency range (for example, in a short wave band) from the reader / writer and transmits a response signal to the reader / writer. The first and second communication members (for example, communication module) for individually performing non-contact short-range wireless communication with the reader / writer,
A sheet is provided between the partition member and the first communication member and between the partition member and the second communication member to form a predetermined gap and provide an electrical insulation state. First and second insulating members (for example, silicone paper) formed in the shape of a film or a film,
The first and second peripheral walls formed in a window frame shape along each side of the rectangular shape that is made of an electrically insulating material and forms the outer shape of the card are main surfaces on both sides of the partition member. A first and a second frame member (for example, a frame plate) arranged in contact with each other,
In the first frame member, the first communication member and the first insulating member are accommodated in an internal space of the first peripheral wall portion on the one main surface side, and the first frame member An inner peripheral wall surface of the peripheral wall portion is a first electromagnetic wave shielding layer (for example, a plating layer or a coating film) for blocking or suppressing an electromagnetic wave signal for RFID that wraps around the outside of the partition member and reaches the first peripheral wall portion. While coated with
In the second frame member, the second communication member and the second insulating member are accommodated in the internal space of the second peripheral wall portion on the other main surface side, and the second frame member The inner peripheral wall surface of the peripheral wall portion is a second electromagnetic wave shielding layer (for example, a plating layer or a coating film) for blocking or suppressing the electromagnetic wave signal for RFID that wraps around the outside of the partition member and reaches the second peripheral wall portion. )
A facing communication member located between the reader / writer and the partition member of the first and second communication members is superimposed on the facing main surface of the partition member, and between the reader / writer and the partition member. The non-face-to-face communication member that is not located on is superimposed on the non-face-to-face main surface,
The communication distance between the facing communication member and the reader / writer and the communication distance between the non-facing communication member and the reader / writer are both set to be equal to or less than the wavelength of the electromagnetic wave for RFID emitted from the reader / writer,
When seen through from the overlapping direction, the partition member has an opening that is penetrated and removed in a notch shape or a slit shape so as to partially overlap the antenna of the facing communication member and the antenna of the non-facing communication member, respectively. A region is formed,
The open area prevents or suppresses generation of a demagnetizing field due to generation of an eddy current on the facing main surface of the partition member by an electromagnetic wave signal for RFID from a reader / writer, and is generated on the facing main surface. The non-facing surface is caused by an eddy current that propagates through the partition member and reaches the non-facing side main surface, or an eddy current that circulates outside the partitioning member and is generated on the non-facing side main surface among RFID electromagnetic wave signals from a reader / writer. By obstructing the phenomenon of generating a magnetic field on the side main surface, the attenuation or shielding action against electromagnetic waves of the partition member is complemented, and magnetic flux coupling is generated only between the facing communication member and the reader / writer, and the facing Only the communication member on the side receives the RFID electromagnetic wave signal from the reader / writer, and gives the function of transmitting the response signal to the reader / writer, Characterized in that it enables individual transceiver of use electromagnetic signals.
このように、ループ状アンテナを有する一対の通信部材(通信モジュール)と切欠形状又はスリット形状の開放領域を有する仕切部材とを設け、仕切部材を挟んで両側に窓枠状の枠部材が対称配置され、各枠部材の内周壁面は電磁波シールド層で被覆されていることにより、上記したのと同様に、仕切部材の対面側主表面における渦電流の発生及び非対面側主表面における渦電流の伝搬や発生が阻止又は抑制され、例えば短波帯域のRFID用電磁波信号に適合するカードを容易かつ安価に得ることができる。その際に、仕切部材に設けられた開放領域は、両通信部材のアンテナとそれぞれ一部分でのみ重なるような切欠形状又はスリット形状に形成されているので、指向性が弱く横への広がりを持つ短波の場合、このような開放領域を通るとき非対面側通信部材のアンテナに至る電磁波は制限され減衰される。よって、非対面側通信部材のアンテナは、リーダライタとの送受信を可能とするほどの起電力を発生しない。つまり、非対面側通信部材のICチップ本体は起動できない。仮に起動したとしてもリーダライタへの発信(返信)ができない。なお、このようなカードにおいて、一対の通信部材を複数組(複数対)有するとともに、各組の周波数帯域又は周波数範囲を互いに異ならせてあってもよい。 As described above, a pair of communication members (communication modules) having a loop antenna and a partition member having a notch-shaped or slit-shaped open region are provided, and window frame-shaped frame members are symmetrically arranged on both sides of the partition member. Since the inner peripheral wall surface of each frame member is covered with an electromagnetic wave shielding layer, the generation of eddy currents on the facing main surface of the partition member and the generation of eddy currents on the non-facing side main surface are the same as described above. Propagation and generation are prevented or suppressed, and for example, a card compatible with an electromagnetic wave signal for RFID in a short wave band can be obtained easily and inexpensively. In that case, the open area provided in the partition member is formed in a cutout shape or slit shape that overlaps only partly with the antennas of both communication members, so the short wave with weak directivity and lateral spread In this case, electromagnetic waves reaching the antenna of the non-face-to-face communication member when passing through such an open region are limited and attenuated. Therefore, the antenna of the non-face-to-face communication member does not generate an electromotive force that enables transmission / reception with the reader / writer. That is, the IC chip body of the non-face-to-face communication member cannot be activated. Even if it is activated, it cannot send (reply) to the reader / writer. In such a card, a plurality of pairs (multiple pairs) of communication members may be provided, and the frequency band or frequency range of each pair may be different from each other.
重ね合わせ方向から透視したとき、上記第一及び第二の通信部材は矩形状のカード外形線の内側(であってその短辺方向又は長辺方向)において互いにオフセット(齟齬)して配置され、
開放領域は、対面側主表面に投影された対面側通信部材のループ状アンテナの一部及び非対面側主表面に投影された非対面側通信部材のループ状アンテナの一部を同時に2ヶ所で横断する単一のスリットとして形成される場合がある。
When seen through from the overlapping direction, the first and second communication members are arranged offset (齟齬) from each other inside the rectangular card outline (and in the short side direction or the long side direction),
The open area includes a part of the loop antenna of the facing communication member projected on the facing main surface and a part of the loop antenna of the non-facing communication member projected on the non-facing main surface at two locations simultaneously. It may be formed as a single slit that traverses.
既述したように、第一及び第二の通信部材がオフセット配置されることによって、非対面側通信部材とリーダライタとの間に磁束結合は生じにくくなっている。そして、開放領域が両アンテナの一部を同時に2ヶ所で横断する単一のスリットとして形成されるので、開放領域の加工コストが軽減される。また、開放領域の位置合わせ基準点を1ヶ所に絞ることができるので、仕切部材と通信部材との位置合わせが容易になる。なお、仕切部材を短辺方向又は長辺方向に向かう1本の溝(例えば一直線状のスリット)で2つの部分に分離することにより、開放領域は単一のスリットとして仕切部材に貫通形成される。 As described above, the first and second communication members are offset to prevent magnetic flux coupling between the non-facing communication member and the reader / writer. And since an open area | region is formed as a single slit which crosses a part of both antennas simultaneously at two places, the processing cost of an open area | region is reduced. In addition, since the alignment reference point of the open area can be narrowed down to one place, the alignment between the partition member and the communication member is facilitated. In addition, by separating the partition member into two parts by a single groove (for example, a straight slit) that extends in the short side direction or the long side direction, the open region is formed through the partition member as a single slit. .
具体的には、上記単一のスリットは第一及び第二の通信部材における各々のループ状アンテナの長軸方向の中心から偏った(ずれた)不均等な位置でカード外形線の2つの長辺と各々交差するように形成される。 Specifically, the single slit has two lengths of the card outline at unequal positions that are deviated (shifted) from the center of the long-axis direction of each loop antenna in the first and second communication members. It is formed so as to intersect each side.
例えば短波(HF)帯域で用いられるループ状アンテナの場合、リーダライタからのRFID用電磁波信号の磁界内に置かれた対面側通信部材のループ状アンテナの中を磁束が通過(移動)するとき、対面側通信部材のループ状アンテナには電磁誘導によって起電力が発生する。一方、非対面側通信部材のループ状アンテナは、リーダライタ側から見ると単一のスリット(開放領域)を除いて仕切部材で覆われており、その単一のスリットは非対面側通信部材のループ状アンテナの長軸方向の中心から偏った(ずれた)不均等な位置でカードの長辺と交差状に設けられている。したがって、非対面側通信部材のループ状アンテナは、リーダライタからのRFID用電磁波信号の磁界内にあっても磁束が不均等に通過(移動)することになるので、ICチップ本体を駆動してリーダライタへ発信(返信)するために必要な起電力を発生しない。 For example, in the case of a loop antenna used in the short wave (HF) band, when magnetic flux passes (moves) through the loop antenna of the facing communication member placed in the magnetic field of the RFID electromagnetic wave signal from the reader / writer, An electromotive force is generated by electromagnetic induction in the loop antenna of the facing communication member. On the other hand, when viewed from the reader / writer side, the loop-shaped antenna of the non-facing communication member is covered with a partition member except for a single slit (open region), and the single slit is the non-facing communication member. The loop antenna is provided so as to intersect with the long side of the card at an uneven position that is deviated (shifted) from the center in the long axis direction of the loop antenna. Therefore, since the loop antenna of the non-face-to-face communication member passes (moves) the magnetic flux evenly even within the magnetic field of the RFID electromagnetic wave signal from the reader / writer, the IC chip body is driven. The electromotive force required for sending (replying) to the reader / writer is not generated.
重ね合わせ方向から透視したとき、上記第一及び第二の通信部材は矩形状のカード外形線の内側(であってその短辺方向又は長辺方向)において互いにオフセット(齟齬)して配置され、
開放領域は、対面側主表面に投影された対面側通信部材のループ状アンテナの一部及び非対面側主表面に投影された非対面側通信部材のループ状アンテナの一部を各別に2ヶ所で横断する一対の切欠として形成される場合もある。
When seen through from the overlapping direction, the first and second communication members are arranged offset (齟齬) from each other inside the rectangular card outline (and in the short side direction or the long side direction),
The open area consists of two loop antennas on the facing communication member projected on the facing main surface and two loop antennas on the non-facing communication member projected on the non-facing main surface. In some cases, it is formed as a pair of notches that cross each other.
上記と同様に、第一及び第二の通信部材がオフセット配置されることによって、非対面側通信部材とリーダライタとの間に磁束結合は生じにくくなっている。そして、この場合には開放領域が両アンテナの一部を各別に2ヶ所で横断する一対の切欠として形成されるので、対をなす通信部材の各々に適合させた最良の開放領域を仕切部材に形成できる。なお、仕切部材において対向する一対の短辺又は対向する一対の長辺を各々切り欠くことにより、開放領域は一対の切欠として仕切部材に形成される。 Similarly to the above, the first and second communication members are offset so that magnetic flux coupling is less likely to occur between the non-facing communication member and the reader / writer. In this case, since the open area is formed as a pair of notches that cross part of both antennas at two locations, the best open area suitable for each pair of communication members is used as the partition member. Can be formed. In addition, an open area | region is formed in a partition member as a pair of notch by notching a pair of opposing short side or a pair of opposing long side in a partition member, respectively.
具体的には、上記一対の切欠は、第一及び第二の通信部材における各々のループ状アンテナの長軸方向の中心から偏った(ずれた)不均等な位置でカード外形線の2つの長辺と各別に交差するように形成される。 Specifically, the pair of cutouts are two lengths of the card outline at unequal positions that are biased (displaced) from the center of the major axis direction of each loop antenna in the first and second communication members. It is formed so as to intersect each side separately.
例えば短波(HF)帯域で用いられるループ状アンテナの場合、リーダライタからのRFID用電磁波信号の磁界内に置かれた対面側通信部材のループ状アンテナの中を磁束が通過(移動)するとき、対面側通信部材のループ状アンテナには電磁誘導によって起電力が発生する。一方、非対面側通信部材のループ状アンテナは、リーダライタ側から見ると一対の切欠(開放領域)を除いて仕切部材で覆われており、その一対の切欠は非対面側通信部材のループ状アンテナの長軸方向の中心から偏った(ずれた)不均等な位置でカードの長辺と各別に交差するように設けられている。したがって、非対面側通信部材のループ状アンテナは、リーダライタからのRFID用電磁波信号の磁界内にあっても磁束が不均等に通過(移動)することになるので、ICチップ本体を駆動してリーダライタへ発信(返信)するために必要な起電力を発生しない。 For example, in the case of a loop antenna used in the short wave (HF) band, when magnetic flux passes (moves) through the loop antenna of the facing communication member placed in the magnetic field of the RFID electromagnetic wave signal from the reader / writer, An electromotive force is generated by electromagnetic induction in the loop antenna of the facing communication member. On the other hand, when viewed from the reader / writer side, the loop-shaped antenna of the non-facing communication member is covered with a partition member except for a pair of notches (open region), and the pair of notches is loop-shaped of the non-facing communication member. It is provided so as to cross the long side of the card separately at an unequal position that is deviated (deviated) from the center in the long axis direction of the antenna. Therefore, since the loop antenna of the non-face-to-face communication member passes (moves) the magnetic flux evenly even within the magnetic field of the RFID electromagnetic wave signal from the reader / writer, the IC chip body is driven. The electromotive force required for sending (replying) to the reader / writer is not generated.
これらのスリット形状又は切欠形状をなす開放領域において、横断幅の最大値Wはリーダライタから発せられるRFID用電磁波の波長λよりも小に設定されること(W<λ)が好ましい。 In the open region having the slit shape or the notch shape, the maximum value W of the transverse width is preferably set smaller than the wavelength λ of the RFID electromagnetic wave emitted from the reader / writer (W <λ).
このように、横断幅の最大値W(すなわち、ループ状アンテナを横断する際の最大幅寸法)が波長λよりも小に設定(W<λ)されていると、RFID用電磁波はこれらのスリット形状又は切欠形状をなす開放領域を通りにくくなり減衰される。その結果、非対面側通信部材のアンテナでは起電力が発生しにくくなり、第一及び第二の通信部材のオフセット配置と相まって非対面側通信部材とリーダライタとの間の磁束結合は極めて生じにくくなる。 As described above, when the maximum value W of the transverse width (that is, the maximum width dimension when traversing the loop antenna) is set to be smaller than the wavelength λ (W <λ), the electromagnetic wave for RFID can be separated from these slits. It becomes difficult to pass through an open area having a shape or a notch shape and is attenuated. As a result, an electromotive force is less likely to be generated in the antenna of the non-face-to-face communication member, and magnetic flux coupling between the non-face-to-face communication member and the reader / writer is extremely unlikely to occur in combination with the offset arrangement of the first and second communication members. Become.
ところで、上記第一及び第二の通信部材のICチップ本体は、二次元又は三次元の画像データ、音声データ及び番号コードデータのうち少なくとも1つを個人認証のために保存するデータ保存部をそれぞれ備え、これらの個人認証用データはリーダライタによってデータ保存部から読み取られ又はデータ保存部へ書き込まれることがある。 By the way, the IC chip bodies of the first and second communication members each have a data storage unit for storing at least one of two-dimensional or three-dimensional image data, audio data, and number code data for personal authentication. The personal authentication data may be read from the data storage unit or written to the data storage unit by the reader / writer.
このように、第一及び第二の通信部材(ICチップ本体)に画像データ等の個人認証用データを内蔵することができれば、従来から用いられてきたパスワード、暗証番号等のチェックコードとの併用によりセキュリティ機能を飛躍的に高めることが可能である。なお、データ保存部(メモリ)は、読み出し専用のROM(read
only memory)タイプ(例えばEP-ROM)及び読み出し及び書き込みが可能なRAM(random access memory)タイプ(例えばS-RAM)のいずれであってもよい。また、画像データは静止画、動画のいずれでもよく、さらに音声付き動画のような複合データを含む。
In this way, if personal authentication data such as image data can be built in the first and second communication members (IC chip body), it can be used in combination with conventionally used check codes such as passwords and passwords. It is possible to dramatically improve the security function. The data storage unit (memory) is a read-only ROM (read
(only memory) type (for example, EP-ROM) and random access memory (RAM) type (for example, S-RAM) capable of reading and writing. The image data may be either a still image or a moving image, and further includes composite data such as a moving image with sound.
上記第一及び第二の電磁波シールド層は非磁性体を含有し、めっき層又は塗膜で形成されることが望ましい。 The first and second electromagnetic wave shielding layers preferably contain a nonmagnetic material and are formed of a plating layer or a coating film.
このように、電磁波シールド層がめっき層又は塗膜で形成される場合、電磁波シールド層を枠部材の内周壁面に対して均一の厚さで形成しやすくなり、仕切部材を挟んで対称配置される2枚の窓枠状の枠部材ひいてはカード全体の薄型化も達成しやすくなる。 Thus, when the electromagnetic wave shielding layer is formed of a plating layer or a coating film, the electromagnetic wave shielding layer is easily formed with a uniform thickness with respect to the inner peripheral wall surface of the frame member, and is arranged symmetrically with the partition member interposed therebetween. It is easy to achieve a reduction in the thickness of the two window-frame-shaped frame members and the entire card.
ところで、枠部材の周壁部の内周壁面にめっき処理を施して電磁波シールド層(被覆層)を形成するには、電気めっき、無電解めっき、溶射、真空蒸着、スパッタリング、イオンプレーティング等のめっき技術が採用される。あるいは、枠部材の周壁部の内周壁面に塗装処理を施して電磁波シールド層(被覆層)を形成するには、スプレー塗装、粉体塗装、静電塗装、電着塗装等の塗装技術が採用される。 By the way, in order to form an electromagnetic wave shielding layer (coating layer) by plating the inner peripheral wall surface of the peripheral wall portion of the frame member, plating such as electroplating, electroless plating, thermal spraying, vacuum deposition, sputtering, ion plating, etc. Technology is adopted. Alternatively, coating techniques such as spray coating, powder coating, electrostatic coating, and electrodeposition coating are used to form an electromagnetic shielding layer (coating layer) by coating the inner wall surface of the peripheral wall of the frame member. Is done.
このとき、枠部材の内周壁面を被覆する材料であるめっき材や塗料は非磁性体を含有する。非磁性体には、仕切部材と同様に常磁性体(Al,Sn,Pt,Pd等)や反磁性体(Au,Ag,Cu,Pb等)が含まれる。 At this time, the plating material or paint that is a material covering the inner peripheral wall surface of the frame member contains a non-magnetic material. Non-magnetic materials include paramagnetic materials (Al, Sn, Pt, Pd, etc.) and diamagnetic materials (Au, Ag, Cu, Pb, etc.) as well as the partition member.
その際、例えば多数の枠部材を揃えて積み重ね、周壁部の内周壁面に導電性塗料の一種である電磁波シールド塗料を一斉にスプレー塗装することにより、内周壁面に電磁波シールド層を有する枠部材が一挙に多数製造できる。 At that time, for example, a large number of frame members are aligned and stacked, and an electromagnetic wave shielding paint, which is a kind of conductive paint, is sprayed all at once on the inner peripheral wall surface of the peripheral wall portion, thereby having an electromagnetic wave shielding layer on the inner peripheral wall surface. Many can be manufactured at once.
このように、電磁波シールド層がめっき層又は塗膜で形成されることにより、枠部材の薄型化(例えば、1枚の厚さ0.3mm以下)と大量生産(例えば、100枚以上の一括生産)とが同時に達成できる。 As described above, the electromagnetic wave shielding layer is formed of a plating layer or a coating film, thereby reducing the thickness of the frame member (for example, one sheet having a thickness of 0.3 mm or less) and mass production (for example, batch production of 100 sheets or more). ) Can be achieved at the same time.
そして、上記課題を解決するために、本発明に係るデータ並行処理システムは、
上記したいずれかの非接触式近距離無線通信用カードと、
前記第一の通信部材に対向して配置され、所定の周波数帯域又は周波数範囲で前記第一の通信部材との非接触式近距離無線通信のみが可能な第一のリーダライタと、
前記第二の通信部材に対向して配置され、前記第一の通信部材と同一の周波数帯域又は周波数範囲で前記第二の通信部材との非接触式近距離無線通信のみが可能な第二のリーダライタとを備え、
前記第一の通信部材のICチップ本体に設けられた第一のデータ保存部に対し前記第一のリーダライタにより実行されるデータの読み取り又は書き込み動作と、前記第二の通信部材のICチップ本体に設けられた第二のデータ保存部に対し前記第二のリーダライタにより実行されるデータの読み取り又は書き込み動作とが(例えば同時に)並行して処理可能であることを特徴とする。
And in order to solve the said subject, the data parallel processing system which concerns on this invention is the following.
Any one of the above contactless near field communication cards;
A first reader / writer that is disposed opposite to the first communication member and capable of only non-contact short-range wireless communication with the first communication member in a predetermined frequency band or frequency range;
The second communication member arranged opposite to the second communication member and capable of only non-contact short-range wireless communication with the second communication member in the same frequency band or frequency range as the first communication member. With a reader / writer,
Data reading or writing operation executed by the first reader / writer with respect to a first data storage unit provided in the IC chip body of the first communication member, and the IC chip body of the second communication member The data reading or writing operation executed by the second reader / writer can be processed in parallel (for example, simultaneously) with respect to the second data storage unit provided in the apparatus.
このように、2台を一組とする、1又は複数組のリーダライタを用いて一対又は複数対の通信部材の各データ保存部に対して同時に又は順々にデータアクセス(読み取り又は書き込み)を行えるから、データ処理の迅速化を図ることができる。なお、このとき各組における第一及び第二のリーダライタは、第一及び第二の通信部材に対して同一周波数範囲(同一波長範囲)で同一出力の信号を送信するとともに、対応する通信部材とリーダライタとの間の通信距離は同一でよい。 In this way, data access (reading or writing) is performed simultaneously or sequentially with respect to each data storage unit of a pair or a plurality of pairs of communication members using one or a plurality of reader / writers, one set consisting of two units. Since this can be done, data processing can be speeded up. At this time, the first and second reader / writers in each set transmit signals of the same output in the same frequency range (same wavelength range) to the first and second communication members, and corresponding communication members. And the reader / writer may have the same communication distance.
(第一実施例)
以下、この発明の実施の形態を図面に示す実施例を参照しつつ説明する。本発明に係るICカードの第一実施例が図1〜図5に表されている。図1はICカードを模式的に示す分解斜視説明図、図2は一部破断平面図、図3は一部破断底面図、図4及び図5は図2のIV-IV線及びV-V線での断面図である。
(First Example)
Hereinafter, embodiments of the present invention will be described with reference to the examples shown in the drawings. A first embodiment of an IC card according to the present invention is shown in FIGS. 1 is an exploded perspective view schematically showing an IC card, FIG. 2 is a partially broken plan view, FIG. 3 is a partially broken bottom view, and FIGS. 4 and 5 are IV-IV and VV lines in FIG. FIG.
これらの図に表されたICカード100は、以下に示す各構成材が積層後に加熱加圧成形され、近接型RFID方式での非接触式近距離無線通信に用いられる単一のICカードとして、ID−1サイズ(横85.60mm×縦53.98mm)の1枚の横長矩形状のカードに形成されている。
(1)1枚の平坦なシート状又はフィルム状で横長矩形状に成形された仕切板10(仕切部材);
(2)仕切板10の表側主表面(図1では上面)及び裏側主表面(図1では下面)に対向して平面視で各々重なり合うように配置された、横長矩形状の表側通信モジュール11及び裏側通信モジュール21(第一及び第二の通信部材);
(3)仕切板10と表側通信モジュール11との間及び仕切板10と裏側通信モジュール21との間に各々配置され、これらの間に自身の厚みに相当する電気的な絶縁空間(隙間)を形成する、横長矩形状の表側絶縁シート12及び裏側絶縁シート22(第一及び第二の絶縁部材);
(4)仕切板10の表側主表面及び裏側主表面を挟むように接触して各々配置された表側枠板15及び裏側枠板25(第一及び第二の枠部材);
(5)表側枠板15及び裏側枠板25の外側でありかつ表側通信モジュール11及び裏側通信モジュール21の外側に各々配置され、各モジュール11,21を位置保持する、横長矩形状の表側成形板13及び裏側成形板23(第一及び第二の成形部材)。
The
(1) A partition plate 10 (partition member) formed into a horizontally long rectangular shape in the form of one flat sheet or film;
(2) A horizontally-long rectangular front-
(3) Between the
(4) The front
(5) A horizontally-oriented rectangular front-side molded plate that is arranged outside the front-
なお、表側成形板13及び裏側成形板23のさらに外側には、各成形板13,23の外表面を保護するために、図4及び図5(断面図)に示すような表側保護シート14及び裏側保護シート24(第一及び第二の保護部材)が各々配置される。ただし、ICカード100が少なくとも一方の保護シート14,24を含まないように構成することも可能であるから、保護シート14,24は図1(分解斜視説明図)では横長矩形状の仮想線で表わされ、また図2(平面図)及び図3(底面図)では省略されている。保護シート14,24については、後述する他の実施例においても同様である。
In addition, in order to protect the outer surface of each shaping | molding
ところで、ICカード100の各構成材の厚みは、一例として仕切板10が0.05〜0.1mm、通信モジュール11,21が各々0.1〜0.3mm、絶縁シート12,22が各々0.05〜0.3mm、枠板15,25が各々0.1〜0.3mm、成形板13,23が各々0.2〜0.5mm、保護シート14,24が各々0.03〜0.1mmである。そして、これらの構成材は、以下に述べるように仕切板10及び絶縁シート12,22を除き熱可塑性樹脂製が一般的であり、必要に応じて対向する表面に接着剤が塗布されて積層されるので、加熱加圧成形の後にICカード100の最終的な厚みは例えば1.3〜1.6mmに調整される。
By the way, the thickness of each component of the
仕切板10はICカード100の厚さ方向においてほぼ中央部に位置し、導電性を有するとともに電磁波に対する減衰又は遮蔽作用(あるいは、電磁波を引き込んで放射する機能により、反射作用と言い換えることもできる)を有する非磁性体(つまり、常磁性体又は反磁性体)で構成される。ここでは、常磁性体であって例えば厚さ0.1mm以下の薄いアルミニウム板、すなわち平板状のアルミ箔が用いられている。なお、オーステナイト系ステンレス鋼板や導電性セラミックシート、あるいはフィルム状のポリエチレン(PE)樹脂、ポリ塩化ビニリデン(PVDC)樹脂等によって仕切板10を構成することも可能である。
The
表側通信モジュール11は、データ保存機能及び通信制御機能を有するICチップ本体11Mと、信号受発信機能を有するアンテナ11Aとを含み、ICチップ本体11M及びアンテナ11Aはベースとなる配線基板11Sに載置されている(図2参照)。同様に、裏側通信モジュール21は、データ保存機能及び通信制御機能を有するICチップ本体21Mと、信号受発信機能を有するアンテナ21Aとを含み、ICチップ本体21M及びアンテナ21Aはベースとなる配線基板21Sに載置されている(図3参照)。
The front-
この実施例では、表側通信モジュール11と裏側通信モジュール21とは同一仕様であり、配線基板11Sと配線基板21Sとは同じ外形のものが平面視の同じ位置で背中合わせの状態で重なり合って配置されている(図2,図3参照)。一対の通信モジュール11,21はICカード100の横方向(左右方向)に細長い矩形状であり、各々のアンテナ11A,21Aはつづら折れ(S字状にカーブ)しながら横方向すなわちICカード100の長手方向に翼状に延びる平面状アンテナである。アンテナ11A,21Aの横方向ほぼ中央部にICチップ本体11M,21Mが配置される。アンテナ11A,21AとICチップ本体11M,21Mとは、例えばシルクスクリーン、ペンキスクリーン、ステンシルスクリーン等の網目を用いたスクリーン印刷によって、対応する配線基板11S,21Sの表面に形成される。具体的には、表側配線基板11S及び裏側配線基板21Sは、例えばポリ塩化ビニル(PVC)樹脂,アクリロニトリル・ブタジエン・スチレン(ABS)樹脂,ポリエチレン・テレフタレート(PET)樹脂,ポリイミド(PI)樹脂のように柔軟性のある熱可塑性樹脂製シートで構成され、対応する表側成形板13及び裏側成形板23の内側表面に接着剤等で各々貼り付け固定される(図1参照)。
In this embodiment, the front-
なお、配線基板11S,21S上に印刷形成されたアンテナ11A,21Aの横方向ほぼ中央部にICチップ本体11M,21Mを実装(載置及び固定)してもよい。また、配線基板11S,21S上にディスクリート回路としてアンテナ11A,21AやICチップ本体11M,21Mを実装してもよいし、埋め込み、エッチング、メッキ等によってアンテナ11A,21Aを構成してもよい。
The
表側絶縁シート12及び裏側絶縁シート22は、例えば熱硬化性樹脂の一種であるシリコーン(SI)紙が用いられ、仕切板10と表側通信モジュール11との間及び仕切板10と裏側通信モジュール21との間の隙間(絶縁空間)を埋めることによって各通信モジュール11,21に電気的な絶縁状態を付与する。また、表側通信モジュール11及び裏側通信モジュール21は、仕切板10の表側及び裏側の主表面に対向し、表側絶縁シート12及び裏側絶縁シート22を介して平面視で各々重なり合うように配置される。
For example, silicone (SI) paper, which is a kind of thermosetting resin, is used for the front-
表側成形板13及び裏側成形板23は、例えばアクリル(メタクリル;PMMA)樹脂のように、電気的な絶縁性と機械的な強度を有する熱可塑性樹脂によって構成される。また、表側保護シート14及び裏側保護シート24は、例えばポリエチレンテレフタレート(PET)樹脂等の熱可塑性樹脂製透明シートによって構成される。さらに、成形板13,23及び保護シート14,24は、仕切板10、枠板15,25、通信モジュール11,21及び絶縁シート12,22に対して平面視で各々重なり合うように配置される。
The front
表側枠板15及び裏側枠板25は、表側成形板13及び裏側成形板23と同様に、電気的な絶縁性と機械的な強度を有する熱可塑性樹脂(例えばアクリル(メタクリル;PMMA)樹脂)によって構成される。枠板15,25は、その周壁部15W,25W(第一及び第二の周壁部)がカード外形をなす矩形状の各辺に沿って窓枠状に形成され、仕切板10の両側(表側及び裏側)の主表面を挟むように接触して各々配置される。すなわち、枠板15,25の周壁部15W,25Wの外形線は成形板13,23の外形線と同形(合同図形)である。一方、枠板15,25の周壁部15W,25Wの内形線は絶縁シート12,22の外形線と同形(合同図形)である。なお、仕切板10の外形線は枠板15,25の周壁部15W,25Wの外形線と内形線の中間に位置する(図7(E)参照)。
The front
よって、仕切板10の表側主表面に接触して配置される表側枠板15では、表側通信モジュール11及び表側絶縁シート12が表側周壁部15Wの内部空間に収容され、表側成形板13が蓋をする形態となる。同様に、仕切板10の裏側主表面に接触して配置される裏側枠板25では、裏側通信モジュール21及び裏側絶縁シート22が裏側周壁部25Wの内部空間に収容され、裏側成形板23が蓋をする形態となる。
Therefore, in the front-
そして、表側周壁部15Wの内周壁面は所定厚さ(例えば0.01〜0.5mm)の表側被覆層15Z(第一の電磁波シールド層)で被覆され、表側被覆層15Zは仕切板10の外側を回り込んで表側周壁部15Wに到達するRFID用電磁波信号を阻止又は抑制する機能を有する(図10,図14参照)。同様に、裏側周壁部25Wの内周壁面は所定厚さ(例えば0.01〜0.5mm)の裏側被覆層25Z(第二の電磁波シールド層)で被覆され、裏側被覆層25Zは仕切板10の外側を回り込んで裏側周壁部25Wに到達するRFID用電磁波信号を阻止又は抑制する機能を有する(図8,図14参照)。
The inner peripheral wall surface of the front side
ここで、図6に示す枠板の製造工程の一例及び図7に示す枠板と仕切板との組立工程の一例について概略を説明する。なお、図7では仕切板10の厚みを省略して図示している。
Here, an outline is demonstrated about an example of the manufacturing process of the frame board shown in FIG. 6, and an example of the assembly process of the frame board and partition plate shown in FIG. In FIG. 7, the thickness of the
<切断工程>(図6(A))
所定の厚さ(例えば0.3mm)を有する絶縁性の合成樹脂板(例えば透明アクリル板)がカード外形と同形状に切断され、矩形板P1が作られる。
<Cutting step> (FIG. 6A)
An insulating synthetic resin plate (for example, a transparent acrylic plate) having a predetermined thickness (for example, 0.3 mm) is cut into the same shape as the outer shape of the card to form a rectangular plate P1.
<打抜工程>(図6(B))
矩形板P1の内側が絶縁シート12,22(図1参照)の外形線と同形状に打ち抜かれ、窓枠板P2が作られる。
<Punching process> (FIG. 6B)
The inside of the rectangular plate P1 is punched into the same shape as the outline of the insulating
<内周壁面被覆工程>(図6(C))
多数(例えば100枚以上)の窓枠板P2を積み重ね、内周壁面の全周(4面すべて)にわたりめっき処理又は塗装処理が行われ、被覆層が形成される。この実施例では、積み重ねられた窓枠板P2の内部でノズルNが回転・昇降しながら、導電性塗料の一種であり、かつ反磁性体としての銅を含有する電磁波シールド塗料をスプレー塗装することによって、各窓枠板P2の全内周壁面が所定厚さ(例えば0.1mm)の塗膜PL(被覆層)で一斉に被覆され、多数の塗膜形成板P3が積み重ね状態で形成される。
<Inner wall surface covering step> (FIG. 6C)
A large number (for example, 100 or more) of window frame plates P2 are stacked, and a plating process or a coating process is performed over the entire circumference (all four faces) of the inner peripheral wall surface to form a coating layer. In this embodiment, the nozzle N rotates and moves up and down inside the stacked window frame plate P2, and is spray-coated with an electromagnetic wave shielding paint which is a kind of conductive paint and contains copper as a diamagnetic material. Thus, the entire inner peripheral wall surface of each window frame plate P2 is coated all at once with a coating film PL (coating layer) having a predetermined thickness (for example, 0.1 mm), and a large number of coating film forming plates P3 are formed in a stacked state. .
<重ね合わせ工程>(図7(D))
内周壁面被覆工程で製造された中から取り出された2枚の塗膜形成板P3,P3の間に仕切板10が挟み込まれる。
<Superposition process> (FIG. 7D)
The
<圧着工程>(図7(E))
表側枠板15(塗膜形成板P3)、仕切板10、裏側枠板25(塗膜形成板P3)の各対向面に接着剤が塗布され、又は塗布されずに加熱加圧して圧着される。なお、この実施例では、図7(E)のように枠板15,25と仕切板10とが圧着された後に、又は図7(D)のように仕切板10が塗膜形成板P3,P3の間に挟み込まれる前に、仕切板10には後述するマイクロ波用貫通孔10Hが打ち抜き形成される。
<Crimping process> (FIG. 7E)
Adhesive is applied to each facing surface of the front side frame plate 15 (coating film forming plate P3), the
図9,図11に示すように、通信モジュール11,21(ICカード100)はバッテリを持たず、リーダライタ1000のアンテナ1000Aからの電磁波信号を自身のアンテナ11A,21Aで受信することにより、発電部11M3,21M3で無線通信用の起電力を発生するパッシブタイプ(受動型)が用いられる。また、ICチップ本体11M,21Mは、このような起電力発生機能を有する発電部11M3,21M3の他に、ICカード100の所有者等を特定するための識別データ(個人認証データを含む)を保存する機能を有するデータ保存部11M2,21M2と、アンテナ1000AからのRFID用電磁波信号を受信し、かつそれに対する応答信号をアンテナ1000Aに向けて発信するようにデータ保存部11M2,21M2及びアンテナ11A,21Aに指令を発するような通信制御機能を有する受発信部11M1,21M1と、を備えている。
As shown in FIGS. 9 and 11, the
一方、リーダライタ1000は、上記アンテナ1000Aの他に、アンテナ11A,21AへRFID用電磁波信号を送信し、かつそれに対する応答信号を受信するようにアンテナ1000Aに指令を発するような通信制御機能を有する送受信部1000Sと、ICカード100のデータ保存部11M2,21M2に保存されたデータを読み取りあるいはデータ保存部11M2,21M2にデータを書き込む際のRFID用電磁波信号の送受信タイミング等の制御・調整機能を有するデータ処理部1000Cと、送受信部1000Sやデータ処理部1000Cへ作動用電力を供給するための電源部1000Bと、を備えている。
On the other hand, in addition to the
なお、例えば法令による規制、周囲の環境等によってリーダライタ1000のアンテナ1000Aから発せられるRFID用電磁波信号の出力が制限される状況を考慮して、通信モジュール11,21には補助電源部11B,21Bが付設される場合がある。補助電源部11B,21Bは、発電部11M3,21M3で発生する起電力の一部を予備的に蓄電し、起電力不足等の緊急事態発生時に受発信部11M1,21M1に対して作動用補助電力を供給する機能を有する。
Note that the auxiliary
図8に示すように、固定配置されたリーダライタ1000が主表面に沿って(図では上下方向に)スライド移動するICカード100の表側(図では左側)において表側通信モジュール11と通信するとき、仕切板10の表側(左側)の主表面が対面側主表面10fsとなり、裏側(右側)の主表面が非対面側主表面10nsとなる。リーダライタ1000と仕切板10との間に位置する表側通信モジュール11が対面側通信モジュールとして、仕切板10の対面側主表面10fsに重ねられるとともに、リーダライタ1000と仕切板10との間に位置しない裏側通信モジュール21が非対面側通信モジュールとして、仕切板10の非対面側主表面10nsに重ねられる。なお、図8に矢印符号で表示されたICカード100のスライド移動方向は少し(例えば上下方向±15°の範囲内で)傾斜していてもよい。
As shown in FIG. 8, when the reader /
このとき対面側通信モジュール11(表側通信モジュール)のアンテナ11Aは、リーダライタ1000のアンテナ1000A(アンテナ11Aと同様の平面状アンテナで構成される)とマイクロ波帯域(例えば標準周波数920MHz)において所定の周波数範囲で通信可能である。具体的には、アンテナ11Aは、通信(送受信)可能な周波数範囲として、例えば920MHz±50MHz(あるいは920MHz±5%)において、アンテナ1000AからRFID用電磁波信号を受信するとともに、アンテナ1000Aに向けて応答信号を発信することができる(図9参照)。
At this time, the
対面側通信モジュール11(表側通信モジュール)のアンテナ11Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L及び非対面側通信モジュール21(裏側通信モジュール)のアンテナ21Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L’は、いずれも3cm以下に設定される。このように、アンテナ通信距離L,L’がリーダライタ1000から発せられるRFID用電磁波の波長λ(標準周波数920MHzでは波長λ≒33cm)以下である(0<L≦λ,0<L’≦λ)から、1波長分(単位波)までの電界・磁界の変化(磁束変化)がリーダライタ1000のアンテナ1000Aと通信モジュール11,21のアンテナ11A,21Aとの相互間の信号で直接伝達される。
The antenna communication distance L between the
図10に示すように、固定配置されたリーダライタ1000が主表面に沿って(図では上下方向に)スライド移動するICカード100の裏側(図では右側)において裏側通信モジュール21と通信するとき、仕切板10の裏側(右側)の主表面が対面側主表面10fsとなり、表側(左側)の主表面が非対面側主表面10nsとなる。リーダライタ1000と仕切板10との間に位置する裏側通信モジュール21が対面側通信モジュールとして、仕切板10の対面側主表面10fsに重ねられるとともに、リーダライタ1000と仕切板10との間に位置しない表側通信モジュール11が非対面側通信モジュールとして、仕切板10の非対面側主表面10nsに重ねられる。なお、図10に矢印符号で表示されたICカード100のスライド移動方向は少し(例えば上下方向±15°の範囲内で)傾斜していてもよい。
As shown in FIG. 10, when the reader /
このとき対面側通信モジュール21(裏側通信モジュール)のアンテナ21Aは、リーダライタ1000のアンテナ1000Aとマイクロ波帯域(例えば標準周波数920MHz)において所定の周波数範囲で通信可能である。具体的には、アンテナ21Aは、通信(送受信)可能な周波数範囲として、例えば920MHz±50MHz(あるいは920MHz±5%)において、アンテナ1000AからRFID用電磁波信号を受信するとともに、アンテナ1000Aに向けて応答信号を発信することができる(図11参照)。
At this time, the
対面側通信モジュール21(裏側通信モジュール)のアンテナ21Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L及び非対面側通信モジュール11(表側通信モジュール)のアンテナ11Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L’は、いずれも3cm以下に設定される。このように、アンテナ通信距離L,L’がリーダライタ1000から発せられるRFID用電磁波の波長λ(標準周波数920MHzでは波長λ≒33cm)以下である(0<L≦λ,0<L’≦λ)から、1波長分(単位波)までの電界・磁界の変化(磁束変化)がリーダライタ1000のアンテナ1000Aと通信モジュール11,21のアンテナ11A,21Aとの相互間の信号で直接伝達される。
The antenna communication distance L between the
そして、図8の対面側通信モジュール11のアンテナ11A(又は図10の対面側通信モジュール21のアンテナ21A)とリーダライタ1000のアンテナ1000Aとの間にのみ磁束結合を生じさせて、マイクロ波によるRFID用電磁波信号の個別送受信を可能とするために、ICカード100はさらに次に述べるような構造を備えている。
Then, a magnetic flux coupling is generated only between the
図8(又は図10)においてマイクロ波用のICカード100を重ね合わせ方向から透視したとき、仕切板10には、対面側通信モジュール11(又は21)のアンテナ11A(又は21A)及び非対面側通信モジュール21(又は11)のアンテナ21A(又は11A)と各々部分的に重なり合うように孔形状にて貫通除去された、開放領域としての貫通孔10Hが形成されている(図2,図3参照)。
When the
具体的に述べると、図8(又は図10)に表された貫通孔10Hは、仕切板10の対面側主表面10fsに投影された対面側通信モジュール11(又は21)の平面状アンテナ11A(又は21A)の一部及び非対面側主表面10nsに投影された非対面側通信モジュール21(又は11)の平面状アンテナ21A(又は11A)の一部を同時に含む(すなわち内包する)状態で単一の円形孔に形成される(図2,図3参照)。そして、この貫通孔10Hの最大孔径つまり直径D(この実施例ではD≦10mm)はリーダライタ1000から発せられるRFID用電磁波であるマイクロ波の波長λ(この実施例ではλ≒33cm)よりも小に設定される(D<λ)。
Specifically, the through
図2,図3に示すように、ICカード100を重ね合わせ方向から透視したとき、仕切板10の外周縁がICカード100の外形線より内側に退避して配置される。また、表側通信モジュール11及び裏側通信モジュール21の外周縁が各々仕切板10の外周縁より内側に退避して配置される(図4,図5参照)。
As shown in FIGS. 2 and 3, when the
同じく図2,図3に示すように、ICカード100を重ね合わせ方向から透視したとき、表側絶縁シート12及び裏側絶縁シート22は、各々の外周縁が対応する表側通信モジュール11及び裏側通信モジュール21より大に形成されるとともに、仕切板10の貫通孔10Hを塞ぐ(又は覆う)状態に保持される(図4,図5参照)。なお、この実施例では、表側絶縁シート12と裏側絶縁シート22のいずれも、形状と大きさが枠板15,25の周壁部15W,25Wの内形線と同じである(図1参照)。
Similarly, as shown in FIGS. 2 and 3, when the
図8及び図10に戻り、仕切板10に貫通孔10Hを設けることによって、リーダライタ1000からのマイクロ波によるRFID用電磁波信号により仕切板10の対面側主表面10fsに渦電流が発生して反磁界を生じる現象を阻止又は抑制することが可能になる。また、貫通孔10Hは、対面側主表面10fsで発生し仕切板10を伝搬して非対面側主表面10nsに至る渦電流や、リーダライタ1000からのマイクロ波によるRFID用電磁波信号のうち仕切板10の外側を回り込み非対面側主表面10nsで発生する渦電流を分断する機能により、非対面側主表面10nsに磁界を生じる現象を阻害することもできる。
8 and 10, by providing the through
このようにして、貫通孔10Hは電磁波に対する仕切板10の減衰又は遮蔽作用を補完することとなる。すなわち、貫通孔10Hによって、図8においては対面側通信モジュール11のみ、図10においては対面側通信モジュール21のみがリーダライタ1000からのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタ1000に向けて発信する機能が付与される。よって、貫通孔10Hは図8及び図10に示す、マイクロ波によるRFID用電磁波信号の個別送受信を可能にする。
Thus, the through
ところで、図5においてICカード100を重ね合わせ方向から透視したとき、表側通信モジュール11及び裏側通信モジュール21は横長矩形状のカード外形線の内側であってその短辺方向(すなわち縦方向、図5では左右方向)において互いにオフセット(齟齬)して配置される。具体的には、表側通信モジュール11のアンテナ11Aの形状は対称(線対称)ではなく短辺方向に寸法差が設けられている。裏側通信モジュール21のアンテナ21Aについても同様である。
By the way, when the
より詳細に説明すれば、ICカード100の短辺方向、すなわちアンテナ11Aにおける幅方向でみたとき、アンテナ11AとICチップ本体11Mとの接続位置は幅方向中央にはなく、d2−d1=dの寸法差(この実施例ではd≒0.5mmのずれ)がある(図2,図3参照)。したがって、同一仕様の表側通信モジュール11と裏側通信モジュール21とが背中合わせ状態に配置されることによって、両通信モジュール11,21間にはオフセット量d、言い換えれば両通信モジュール11,21のアンテナ11A,21AとICチップ本体11M,21Mとの接続点間の距離d、さらに言い換えれば両ICチップ本体11M,21Mのカード短辺方向に離間距離dが設けられる。
More specifically, when viewed in the short side direction of the
したがって、図8(又は図10)において、リーダライタ1000のアンテナ1000Aから送信されたRFID用電磁波信号が対面側通信モジュール11(又は21)及び対面側絶縁シート12(又は22)を透過し、仕切板10の貫通孔10Hを通過しようとしても、直径Dが波長λより小さいために通過そのものが阻害され、非対面側通信モジュール21(又は11)での起電力発生に必要な磁界は到達しにくい。仮にRFID用電磁波信号の一部が貫通孔10Hを経て非対面側通信モジュール21(又は11)のアンテナ21A(又は11A)に達した場合であっても、リーダライタ1000とのアンテナ通信距離の差L’−Lや上記したオフセット量dにより、非対面側通信モジュール21(又は11)と対面側通信モジュール11(又は21)とは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
Therefore, in FIG. 8 (or FIG. 10), the electromagnetic wave signal for RFID transmitted from the
以上で説明した貫通孔10H、裏側被覆層25Z及び表側被覆層15Zの存在により、図8においては非対面側通信モジュール21とリーダライタ1000との間、図10においては非対面側通信モジュール11とリーダライタ1000との間に磁束結合は生じにくくなる。よって、貫通孔10H、裏側被覆層25Z及び表側被覆層15Zは図8及び図10に示す、マイクロ波によるRFID用電磁波信号の個別送受信を可能にする。
Due to the presence of the through
ここで、表側通信モジュールのアンテナとリーダライタのアンテナとの間、及び裏側通信モジュールのアンテナとリーダライタのアンテナとの間のRFID用電磁波信号の個別送受信態様について第一実施例を整理すると次のようになる。なお、個別送受信状態の説明図(図8,図10,図14)において実線は磁束結合成立、破線は磁束結合不成立を表わす。 Here, the first embodiment is arranged as follows regarding the individual transmission / reception mode of the electromagnetic wave signal for RFID between the antenna of the front side communication module and the antenna of the reader / writer and between the antenna of the back side communication module and the antenna of the reader / writer. It becomes like this. In the explanatory diagrams of the individual transmission / reception states (FIGS. 8, 10, and 14), the solid line indicates that magnetic flux coupling is established, and the broken line indicates that magnetic flux coupling is not established.
(第一態様)表側通信モジュール11とリーダライタ1000との間の個別送受信<図8,図9>
下記[A]に記載の磁束結合が成立し、かつ[a]〜[d]のうち少なくとも[a],[b]を含む複数の現象が発生することにより、対面側通信モジュールすなわち表側通信モジュール11とリーダライタ1000との間にのみ磁束結合を生じ、マイクロ波によるRFID用電磁波信号の個別送受信が可能になる。
[A]リーダライタ1000のアンテナ1000Aからのマイクロ波による送信信号(例えば読み取り指令信号)がアンテナ11Aで受信されると表側通信モジュール11に起電力が発生し、データ処理部1000Cの制御する送受信タイミングでアンテナ11Aから発信された応答信号(例えば表側通信モジュール11のデータ保存部11M2から読み取られたデータ信号)がアンテナ1000Aで受信される。
(First Mode) Individual Transmission / Reception Between Front-
When the magnetic flux coupling described in [A] below is established and a plurality of phenomena including at least [a] and [b] among [a] to [d] occur, the facing communication module, that is, the
[A] When a transmission signal (for example, a read command signal) by a microwave from the
[a]仕切板10の対面側主表面10fsに到達した送信信号による、渦電流及び反磁界の発生現象が貫通孔10Hによって阻止又は抑制される。
[b]対面側主表面10fsから非対面側主表面10nsへ伝搬する渦電流や、仕切板10の外側を回り込む送信信号によって非対面側主表面10nsで発生する渦電流に基づく磁界発生現象は、貫通孔10H及び裏側被覆層25Zによって阻害される。
[c]直径D<波長λにより送信信号の貫通孔10H通過が阻害され、非対面側通信モジュールすなわち裏側通信モジュール21での起電力発生に必要な磁界は到達しにくい。
[d]アンテナ通信距離の差L’−Lや通信モジュール間のオフセット量dの存在により、非対面側通信モジュール(ここでは裏側通信モジュール21)と対面側通信モジュール(ここでは表側通信モジュール11)とは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
[A] Phenomenon of generation of eddy current and demagnetizing field due to the transmission signal reaching the facing main surface 10fs of the
[B] A magnetic field generation phenomenon based on an eddy current propagating from the facing
[C] The diameter D <wavelength λ prevents the transmission signal from passing through the through-
[D] The non-face-to-face communication module (here, the back-side communication module 21) and the face-to-face communication module (here, the front-side communication module 11) due to the difference in antenna communication distance L′−L and the presence of the offset amount d between the communication modules. Causes a difference in transmission / reception timing, so that malfunction based on poor response is avoided.
(第二態様)裏側通信モジュール21とリーダライタ1000との間の個別送受信<図10,図11>
下記[B]に記載の磁束結合が成立し、かつ[a]〜[d]のうち少なくとも[a],[b]を含む複数の現象が発生することにより、対面側通信モジュールすなわち裏側通信モジュール21とリーダライタ1000との間にのみ磁束結合を生じ、マイクロ波によるRFID用電磁波信号の個別送受信が可能になる。
[B]リーダライタ1000のアンテナ1000Aからのマイクロ波による送信信号(例えば読み取り指令信号)がアンテナ21Aで受信されると裏側通信モジュール21に起電力が発生し、データ処理部1000Cの制御する送受信タイミングでアンテナ21Aから発信された応答信号(例えば裏側通信モジュール21のデータ保存部21M2から読み取られたデータ信号)がアンテナ1000Aで受信される。
(Second Mode) Individual Transmission / Reception Between
When the magnetic flux coupling described in [B] below is established and a plurality of phenomena including at least [a] and [b] among [a] to [d] occur, the facing communication module, that is, the back communication module Magnetic flux coupling is generated only between the
[B] When a transmission signal (for example, a read command signal) by a microwave from the
[a]仕切板10の対面側主表面10fsに到達した送信信号による、渦電流及び反磁界の発生現象が貫通孔10Hによって阻止又は抑制される。
[b]対面側主表面10fsから非対面側主表面10nsへ伝搬する渦電流や、仕切板10の外側を回り込む送信信号によって非対面側主表面10nsで発生する渦電流に基づく磁界発生現象は、貫通孔10H及び表側被覆層15Zによって阻害される。
[c]直径D<波長λにより送信信号の貫通孔10H通過が阻害され、非対面側通信モジュールすなわち表側通信モジュール11での起電力発生に必要な磁界は到達しにくい。
[d]アンテナ通信距離の差L’−Lや通信モジュール間のオフセット量dの存在により、非対面側通信モジュール(ここでは表側通信モジュール11)と対面側通信モジュール(ここでは裏側通信モジュール21)とは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
[A] Phenomenon of generation of eddy current and demagnetizing field due to the transmission signal reaching the facing main surface 10fs of the
[B] A magnetic field generation phenomenon based on an eddy current propagating from the facing
[C] The diameter D <wavelength λ inhibits the transmission signal from passing through the through-
[D] The non-face-to-face communication module (here, the front-side communication module 11) and the face-to-face communication module (here, the back-side communication module 21) due to the difference in antenna communication distance L′−L and the presence of the offset amount d between the communication modules. Causes a difference in transmission / reception timing, so that malfunction based on poor response is avoided.
(第三態様)表側通信モジュール11と第一のリーダライタ1000との間、及び裏側通信モジュール21と第二のリーダライタ2000との間での同時並行式個別送受信<図14>
裏側通信モジュール21に対向して、アンテナ1000Aと同様の周波数範囲(920MHz±50MHzあるいは920MHz±5%)において通信可能な平面状アンテナ2000Aを有する第二のリーダライタ2000を第一のリーダライタ1000とは別に配置する場合である。
この場合においても下記[A],[B]に記載の磁束結合が成立し、かつ[a]〜[d]のうち少なくとも[a],[b]を含む複数の現象が発生することにより、表側通信モジュール11と第一のリーダライタ1000との間、及び裏側通信モジュール21と第二のリーダライタ2000との間にのみ磁束結合を生じ、マイクロ波によるRFID用電磁波信号の同時並行式個別送受信が可能になる。
(Third Aspect) Simultaneous individual transmission / reception between the front
A second reader /
Even in this case, the magnetic flux coupling described in [A] and [B] below is established, and a plurality of phenomena including at least [a] and [b] among [a] to [d] occur. Magnetic flux coupling occurs only between the front-
[A]第一のリーダライタ1000のアンテナ1000Aからのマイクロ波による送信信号(例えば読み取り指令信号)がアンテナ11Aで受信されると対面側通信モジュールすなわち表側通信モジュール11に起電力が発生し、所定の送受信タイミングでアンテナ11Aから発信された応答信号(例えば表側通信モジュール11のデータ保存部11M2から読み取られたデータ信号)がアンテナ1000Aで受信される。
[B]第二のリーダライタ2000のアンテナ2000Aからのマイクロ波による送信信号(例えば読み取り指令信号)がアンテナ21Aで受信されると対面側通信モジュールすなわち裏側通信モジュール21に起電力が発生し、所定の送受信タイミングでアンテナ21Aから発信された応答信号(例えば裏側通信モジュール21のデータ保存部21M2から読み取られたデータ信号)がアンテナ2000Aで受信される。
[A] When a transmission signal (for example, a read command signal) by a microwave from the
[B] When a transmission signal (for example, a read command signal) by the microwave from the
[a]仕切板10の対面側主表面に到達した送信信号による、渦電流及び反磁界の発生現象が貫通孔10Hによって阻止又は抑制される。
[b]対面側主表面から非対面側主表面へ伝搬する渦電流や、仕切板10の外側を回り込む送信信号によって非対面側主表面で発生する渦電流に基づく磁界発生現象は、貫通孔10H、裏側被覆層25Z及び表側被覆層15Zによって阻害される。
[c]直径D<波長λにより送信信号の貫通孔10H通過が阻害され、非対面側通信モジュールでの起電力発生に必要な磁界は到達しにくい。
[d]アンテナ通信距離の差L’−Lや通信モジュール間のオフセット量dの存在により、非対面側通信モジュールと対面側通信モジュールとは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
[A] Phenomenon of generation of eddy current and demagnetizing field due to the transmission signal that has reached the facing main surface of the
[B] A magnetic field generation phenomenon based on an eddy current propagating from the facing main surface to the non-facing side main surface or an eddy current generated on the non-facing side main surface by a transmission signal that goes around the outside of the
[C] The diameter D <wavelength λ prevents the transmission signal from passing through the through-
[D] The non-face-to-face communication module and the face-to-face communication module have a difference in receiving / transmitting timing due to the difference L′−L in the antenna communication distance and the offset amount d between the communication modules. Operation is avoided.
したがって、図14に示す第三態様では、表側通信モジュール11のICチップ本体11Mに設けられた第一のデータ保存部11M2に対し第一のリーダライタ1000により実行されるデータの読み取り又は書き込み動作と、裏側通信モジュール21のICチップ本体21Mに設けられた第二のデータ保存部21M2に対し第二のリーダライタ2000により実行されるデータの読み取り又は書き込み動作とが同時に並行して処理可能である。
Therefore, in the third mode shown in FIG. 14, the data reading or writing operation executed by the first reader /
このように、2台のリーダライタ1000,2000を用いて一対の通信モジュール11,21の各データ保存部11M2,21M2に対して同時にデータアクセス(読み取り又は書き込み)を行えるから、データ処理の迅速化を図ることができる。なお、このとき第一及び第二のリーダライタ1000,2000は、表側通信モジュール11及び裏側通信モジュール21に対して同一周波数範囲(920MHz±50MHzあるいは920MHz±5%)で同一出力の信号を送信するとともに、対応する通信モジュール11,21とリーダライタ1000,2000との間のアンテナ通信距離L,L’は同一でよい。
In this way, data access (reading or writing) can be performed simultaneously on the data storage units 11M2 and 21M2 of the pair of
以上で述べたように、第一実施例では平面状アンテナを有する一対の通信モジュール11,21と円形状の貫通孔10Hを有する仕切板10とを設け、仕切板10を挟んで両側に窓枠状の枠板15,25が対称配置され、各枠板15,25の内周壁面は被覆層15Z,25Zで被覆されていることにより、仕切板10の対面側主表面における渦電流の発生及び非対面側主表面における渦電流の伝搬や発生が阻止又は抑制され、例えばマイクロ波帯域のRFID用電磁波信号に適合するICカード100を容易かつ安価に得ることができる。その際に、アンテナ通信距離L,L’が波長λ以下に設定される(0<L≦λ,0<L’≦λ)ことによって、指向性・直進性の強いマイクロ波であっても、電界・磁界の変化がリーダライタ1000,2000のアンテナ1000A,2000Aと通信モジュール11,21のアンテナ11A,21Aとの相互間の信号で直接伝達されるので、RFID用電磁波信号の個別送受信が容易に実現できる。その上、一対の通信モジュール11,21に対して1個の円形状の貫通孔10Hを位置合わせする際、貫通孔10Hの中心を基準点とすれば仕切板10と通信モジュール11,21とを容易に位置合わせすることができる。
As described above, in the first embodiment, a pair of
また、仕切板10に設けられた貫通孔10Hは、直径Dが波長λよりも小(D<λ)に形成され、両通信モジュール11,21のアンテナ11A,21Aとそれぞれ一部分でのみ重なるように配置されているので、指向性・直進性の強いマイクロ波であっても、このような貫通孔10Hを通るとき非対面側通信モジュールのアンテナに至る電波は制限され減衰される。よって、非対面側通信モジュールのアンテナは、リーダライタ1000,2000との送受信を可能とするほどの起電力を発生しない。つまり、微弱な起電力しか発生しないので、非対面側通信モジュールのICチップ本体は起動できない。仮に起動したとしてもリーダライタ1000,2000への発信(返信)ができない。
In addition, the through
なお、アルミ箔製の仕切板10がカード外形より内側に遠ざけられ、両通信モジュール11,21の外周縁が仕切板10の外周縁より内側に退避している。これによって、仕切板10が外部の金属部材と接触してICカード100内に接地又は短絡による異常電流が流れるのを防止するとともに、仕切板10の外側を回り込んで非対面側主表面に至るRFID用電磁波信号を減衰又は遮蔽することができる。
In addition, the
また、表側絶縁シート12及び裏側絶縁シート22は、各々の外周縁が対応する表側通信モジュール11及び裏側通信モジュール21より大に形成され、仕切板10の貫通孔10Hを塞ぐことにより、仕切板10と各通信モジュール11,21とを確実に分離して絶縁効果を高めることができる。そして、仕切板10の貫通孔10Hは両側から絶縁シート12,22で塞がれるので、組立時に表側通信モジュール11及び裏側通信モジュール21を対応する成形板13,23(又は絶縁シート12,22)に位置固定するために塗布された接着剤等が両成形板13,23の加熱融着時に流動化して貫通孔10H内に侵入するのを防止できる。
Moreover, the front
さらに、両絶縁シート12,22の外周縁はカード外形より内側に退避して、枠板15,25の被覆層15Z,25Zの内側に配置されることにより、ICカード100の外部にある水分(雨水、使用者の汗等)が絶縁シート12,22を介して内部にしみ込むのを防止するとともに、両枠板15,25の周縁部同士が仕切板10の外側で加熱融着するのを妨げない。
Further, the outer peripheral edges of both the insulating
図12はICカード100の表面イメージの一例を示し、表側成形板13の表面に画像表示部130と番号表示部131とが設けられる。この実施例では、画像表示部130にカード所有者の写真が印刷され、番号表示部131にカード所有者の複数(例えば2個)の識別番号(ID No.)が表示される。具体的には、番号表示部131において、表側通信モジュール11のデータ保存部11M2(図9参照)に識別番号コードデータの形で保存された第一の識別番号と、裏側通信モジュール21のデータ保存部21M2(図11参照)に識別番号コードデータの形で保存された第二の識別番号とが並べて打刻表示される。
FIG. 12 shows an example of the surface image of the
一方、図13はICカード100の裏面イメージの一例を示し、裏側成形板23の裏面に署名部230と第一及び第二のバーコード印字部231F,231Rとが設けられる。署名部230はカード所有者のサイン記入欄である。第一のバーコード印字部231Fには、上記した第一の識別番号が一次元及び/又は二次元のバーコードの形態で印刷表示され、第二のバーコード印字部231Rには、上記した第二の識別番号が一次元及び/又は二次元のバーコードの形態で印刷表示される。なお、この実施例では、ICカード100が従来から公知の磁気ストライプカードとしても使用できるようにするために、磁気ストライプ式メモリ部232が設けられ、この中にも上記した第一及び第二の識別番号が磁気記憶の形で保存されている。
On the other hand, FIG. 13 shows an example of the back surface image of the
ところで、ICカード100の表側通信モジュール11及び裏側通信モジュール21のICチップ本体11M,21Mは、二次元又は三次元の画像データ、音声データ及び識別番号コードデータを個人認証のために保存するデータ保存部11M2,21M2をそれぞれ備える(図9,図11参照)。これらの個人認証用データのうち、画像データは画像表示部130に印刷表示された写真がデータ保存される。また、識別番号コードデータは第一及び第二の識別番号がデータ保存され、番号表示部131に打刻表示された符号や、バーコード印字部231F,231Rに印刷表示されたバーコードと対応する。そして、これらの個人認証用データはリーダライタ1000,2000(図8〜図11,図14参照)によってデータ保存部11M2,21M2から読み取られ又はデータ保存部11M2,21M2へ書き込まれる。
By the way, the
このように、表側通信モジュール11及び裏側通信モジュール21(ICチップ本体11M,21M)のそれぞれに画像データ等の個人認証用データを内蔵できるので、従来から用いられてきたユーザID、パスワード、暗証番号等のチェックコードとの併用によりセキュリティ機能を飛躍的に高めることが可能である。なお、音声データに関して、例えば画像データと同時再生することによって認証精度を高めたり、音声付きアニメ動画のような複合データ化を図ることによりプレゼンテーション効果を高めたりすることができる。
As described above, since personal authentication data such as image data can be incorporated in each of the front
(第二実施例)
本発明に係るICカードの第二実施例が図15〜図18に表されている。図15はICカードを模式的に示す分解斜視説明図、図16は一部破断平面図、図17は一部破断底面図、図18は図16のXVIII-XVIII線での断面図である。第二実施例のICカード200では、第一実施例のICカード100に対し主に通信モジュールに備えられるアンテナの形態及び仕切板に貫通除去される開放領域の形態が変更されている。
(Second embodiment)
A second embodiment of the IC card according to the present invention is shown in FIGS. 15 is an exploded perspective view schematically showing the IC card, FIG. 16 is a partially broken plan view, FIG. 17 is a partially broken bottom view, and FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. In the
図15〜図18に表されたICカード200は、以下に示す各構成材が積層後に加熱加圧成形され、近接型RFID方式での非接触式近距離無線通信に用いられる単一のICカードとして、ID−1サイズ(横85.60mm×縦53.98mm)の1枚の横長矩形状のカードに形成されている。
(1)平坦なシート状又はフィルム状で横長矩形状に成形された仕切板310(仕切部材);
(2)仕切板310の表側主表面(図15では上面)及び裏側主表面(図15では下面)に対向して平面視で各々重なり合うように配置された、横長矩形状の表側通信モジュール311及び裏側通信モジュール321(第一及び第二の通信部材);
(3)仕切板310と表側通信モジュール311との間及び仕切板310と裏側通信モジュール321との間に各々配置され、これらの間に自身の厚みに相当する電気的な絶縁空間(隙間)を形成する、横長矩形状の表側絶縁シート12及び裏側絶縁シート22(第一及び第二の絶縁部材);
(4)仕切板310の表側主表面及び裏側主表面を挟むように接触して各々配置された表側枠板115及び裏側枠板125(第一及び第二の枠部材);
(5)表側枠板115及び裏側枠板125の外側でありかつ表側通信モジュール311及び裏側通信モジュール321の外側に各々配置され、各モジュール311,321を位置保持する、横長矩形状の表側成形板13及び裏側成形板23(第一及び第二の成形部材)。
The
(1) A partition plate 310 (partition member) formed into a horizontally long rectangular shape in the form of a flat sheet or film;
(2) A horizontally-long rectangular front-
(3) Between the
(4) The front-
(5) A horizontally-long rectangular front-side molded plate that is disposed outside the front-
なお、表側保護シート14及び裏側保護シート24(第一及び第二の保護部材)については、第一実施例に記載の通りである。また、ICカード200の各構成材の厚みについても第一実施例の記載とほぼ同様である。
The front
仕切板310はICカード200の厚さ方向においてほぼ中央部に位置し、導電性を有するとともに電磁波に対する減衰又は遮蔽作用(あるいは、電磁波を引き込んで放射する機能により、反射作用と言い換えることもできる)を有する非磁性体(つまり、常磁性体又は反磁性体)で構成される。ここでは、常磁性体であって例えば厚さ0.1mm以下の薄いアルミニウム板、すなわち平板状のアルミ箔が用いられている。仕切板310は、短辺方向に向かう直線状の溝(後述するスリット310Sである)によって左側仕切板310L(仕切部材)と右側仕切板310R(仕切部材)とに分離(分割)されている。
The
表側通信モジュール311は、データ保存機能及び通信制御機能を有するICチップ本体311Mと、信号受発信機能を有するアンテナ311Aとを含み、ICチップ本体311M及びアンテナ311Aはベースとなる配線基板311Sに載置されている(図16参照)。同様に、裏側通信モジュール321は、データ保存機能及び通信制御機能を有するICチップ本体321Mと、信号受発信機能を有するアンテナ321Aとを含み、ICチップ本体321M及びアンテナ321Aはベースとなる配線基板321Sに載置されている(図17参照)。
The front-
この実施例では、表側通信モジュール311と裏側通信モジュール321とは同一仕様であり、配線基板311Sと配線基板321Sとはカード外形線と相似する矩形状であって、同じ外形のものが平面視のほぼ同じ位置で背中合わせの状態で重なり合って配置されている(図16,図17参照)。一対の通信モジュール311,321のアンテナ311A,321Aは、対応する配線基板311S,321Sのほぼ全面にわたって矩形の渦巻状に複数回(図では4回)周回するループ状(又はコイル状)アンテナである。一対のICチップ本体311M,321Mは、対応する矩形ループ状アンテナ311A,321Aに対し、平面視において対角位置となる角隅部で各々接続される。
In this embodiment, the front-
アンテナ311A,321AとICチップ本体311M,321Mとは、例えばシルクスクリーン、ペンキスクリーン、ステンシルスクリーン等の網目を用いたスクリーン印刷によって、対応する配線基板311S,321Sの表面に形成される。具体的には、表側配線基板311S及び裏側配線基板321Sは、例えばポリ塩化ビニル(PVC)樹脂,アクリロニトリル・ブタジエン・スチレン(ABS)樹脂,ポリエチレン・テレフタレート(PET)樹脂,ポリイミド(PI)樹脂のように柔軟性のある熱可塑性樹脂製シートで構成され、対応する表側成形板13及び裏側成形板23の内側表面に接着剤等で各々貼り付け固定される(図15参照)。
The
なお、配線基板311S,321S上に印刷形成されたアンテナ311A,321Aの平面視で対角位置となる角隅部にICチップ本体311M,321Mを実装(載置及び固定)してもよい。また、配線基板311S,321S上にディスクリート回路としてアンテナ311A,321AやICチップ本体311M,321Mを実装してもよいし、埋め込み、エッチング、メッキ等によってアンテナ311A,321Aを構成してもよい。
Note that the IC chip
表側絶縁シート12及び裏側絶縁シート22は、例えば熱硬化性樹脂の一種であるシリコーン(SI)紙が用いられ、仕切板310と表側通信モジュール311との間及び仕切板310と裏側通信モジュール321との間の隙間(絶縁空間)を埋めることによって各通信モジュール311,321に電気的な絶縁状態を付与する。また、表側通信モジュール311及び裏側通信モジュール321は、仕切板310の表側及び裏側の主表面に対向し、表側絶縁シート12及び裏側絶縁シート22を介して平面視で各々重なり合うように配置される。
For example, silicone (SI) paper, which is a kind of thermosetting resin, is used for the front-
表側成形板13及び裏側成形板23は、例えばアクリル(メタクリル;PMMA)樹脂のように、電気的な絶縁性と機械的な強度を有する熱可塑性樹脂によって構成される。また、表側保護シート14及び裏側保護シート24は、例えばポリエチレンテレフタレート(PET)樹脂等の熱可塑性樹脂製透明シートによって構成される。さらに、成形板13,23及び保護シート14,24は、仕切板310、枠板115,125、通信モジュール311,321及び絶縁シート12,22に対して平面視で各々重なり合うように配置される。
The front
表側枠板115及び裏側枠板125は、表側成形板13及び裏側成形板23と同様に、電気的な絶縁性と機械的な強度を有する熱可塑性樹脂(例えばアクリル(メタクリル;PMMA)樹脂)によって構成される。枠板115,125は、その周壁部115W,125W(第一及び第二の周壁部)がカード外形をなす矩形状の各辺に沿って窓枠状に形成され、仕切板310の両側(表側及び裏側)の主表面を挟むように接触して各々配置される。すなわち、枠板115,125の周壁部115W,125Wの外形線は成形板13,23の外形線と同形(合同図形)である。一方、枠板15,25の周壁部15W,25Wの内形線は絶縁シート12,22の外形線と同形(合同図形)である。なお、仕切板310の外形線は枠板115,125の周壁部115W,125Wの外形線と内形線の中間に位置する(図19参照)。
The front
よって、仕切板310の表側主表面に接触して配置される表側枠板115では、表側通信モジュール311及び表側絶縁シート12が表側周壁部115Wの内部空間に収容され、表側成形板13が蓋をする形態となる。同様に、仕切板310の裏側主表面に接触して配置される裏側枠板125では、裏側通信モジュール321及び裏側絶縁シート22が裏側周壁部125Wの内部空間に収容され、裏側成形板23が蓋をする形態となる。
Therefore, in the front
そして、表側周壁部115Wの内周壁面は所定厚さ(例えば0.01〜0.5mm)の表側被覆層115Z(第一の電磁波シールド層)で被覆され、表側被覆層115Zは仕切板310の外側を回り込んで表側周壁部115Wに到達するRFID用電磁波信号を阻止又は抑制する機能を有する(図21,図22参照)。同様に、裏側周壁部125Wの内周壁面は所定厚さ(例えば0.01〜0.5mm)の裏側被覆層125Z(第二の電磁波シールド層)で被覆され、裏側被覆層125Zは仕切板310の外側を回り込んで裏側周壁部125Wに到達するRFID用電磁波信号を阻止又は抑制する機能を有する(図20,図22参照)。
The inner peripheral wall surface of the front side
ここで、枠板の製造工程の一例について第一実施例の図6を参照するとともに、枠板と仕切板との組立工程の一例について第一実施例の図7及び本実施例の図19を参照し、これらの概略を説明する。なお、図7,図19では仕切板10,310の厚みを省略して図示している。
Here, referring to FIG. 6 of the first embodiment for an example of the manufacturing process of the frame plate, FIG. 7 of the first embodiment and FIG. 19 of the present embodiment for an example of the assembly process of the frame plate and the partition plate. The outline of these will be described with reference to FIG. 7 and 19, the thickness of the
<切断工程>(図6(A))
所定の厚さ(例えば0.3mm)を有する絶縁性の合成樹脂板(例えば透明アクリル板)がカード外形と同形状に切断され、矩形板P1が作られる。
<Cutting step> (FIG. 6A)
An insulating synthetic resin plate (for example, a transparent acrylic plate) having a predetermined thickness (for example, 0.3 mm) is cut into the same shape as the outer shape of the card to form a rectangular plate P1.
<打抜工程>(図6(B))
矩形板P1の内側が絶縁シート12,22(図15参照)の外形線と同形状に打ち抜かれ、窓枠板P2が作られる。
<Punching process> (FIG. 6B)
The inside of the rectangular plate P1 is punched into the same shape as the outline of the insulating
<内周壁面被覆工程>(図6(C))
多数(例えば100枚以上)の窓枠板P2を積み重ね、内周壁面の全周(4面すべて)にわたりめっき処理又は塗装処理が行われ、被覆層が形成される。この実施例では、積み重ねられた窓枠板P2の内部でノズルNが回転・昇降しながら、導電性塗料の一種であり、かつ反磁性体としての銅を含有する電磁波シールド塗料をスプレー塗装することによって、各窓枠板P2の全内周壁面が所定厚さ(例えば0.1mm)の塗膜PL(被覆層)で一斉に被覆され、多数の塗膜形成板P3が積み重ね状態で形成される。
<Inner wall surface covering step> (FIG. 6C)
A large number (for example, 100 or more) of window frame plates P2 are stacked, and a plating process or a coating process is performed over the entire circumference (all four faces) of the inner peripheral wall surface to form a coating layer. In this embodiment, the nozzle N rotates and moves up and down inside the stacked window frame plate P2, and is spray-coated with an electromagnetic wave shielding paint which is a kind of conductive paint and contains copper as a diamagnetic material. Thus, the entire inner peripheral wall surface of each window frame plate P2 is coated all at once with a coating film PL (coating layer) having a predetermined thickness (for example, 0.1 mm), and a large number of coating film forming plates P3 are formed in a stacked state. .
<重ね合わせ工程>(図7(D))
内周壁面被覆工程で製造された中から取り出された2枚の塗膜形成板P3,P3の間に仕切板10が挟み込まれる。
<Superposition process> (FIG. 7D)
The
<圧着工程>(図19)
表側枠板115(塗膜形成板P3)、仕切板10、裏側枠板125(塗膜形成板P3)の各対向面に接着剤が塗布され、又は塗布されずに加熱加圧して圧着される。なお、枠板115,125と仕切板10とが圧着された後に、後述する短波用スリット310Sが切除形成され、図19のように左側仕切板310Lと右側仕切板310Rとに分離した仕切板310となる。また、このとき表側枠板115にも表側枠板用スリット115Sが同時に切除形成されて左表側枠板115Lと右表側枠板115Rとに分離し、さらに裏側枠板125にも裏側枠板用スリット125Sが同時に切除形成されて左裏側枠板125Lと右裏側枠板125Rとに分離する。
<Crimping process> (FIG. 19)
Adhesive is applied to each facing surface of the front side frame plate 115 (coating film forming plate P3), the
図20に示すように、固定配置されたリーダライタ1000が主表面に沿って(図では左右方向に)スライド移動するICカード200の表側(図では上側)において表側通信モジュール311と通信するとき、仕切板310L,310R(310)の表側(上側)の主表面が対面側主表面310Lfs,310Rfsとなり、裏側(下側)の主表面が非対面側主表面310Lns,310Rnsとなる。リーダライタ1000と仕切板310L,310R(310)との間に位置する表側通信モジュール311が対面側通信モジュールとして、仕切板310L,310Rの対面側主表面310Lfs,310Rfsに重ねられるとともに、リーダライタ1000と仕切板310L,310R(310)との間に位置しない裏側通信モジュール321が非対面側通信モジュールとして、仕切板310L,310R(310)の非対面側主表面310Lns,310Rnsに重ねられる。なお、図20に矢印符号で表示されたICカード200のスライド移動方向は少し(例えば左右方向±15°の範囲内で)傾斜していてもよい。
As shown in FIG. 20, when the reader /
このとき対面側通信モジュール311(表側通信モジュール)のアンテナ311Aは、リーダライタ1000のアンテナ1000A(アンテナ311Aと同様のループ状アンテナで構成される)と短波帯域(例えば標準周波数13.56MHz)において所定の周波数範囲で通信可能である。具体的には、アンテナ311Aは、通信(送受信)可能な周波数範囲として、例えば13.56MHz±0.68MHz(あるいは13.56MHz±5%)において、アンテナ1000AからRFID用電磁波信号を受信するとともに、アンテナ1000Aに向けて応答信号を発信することができる。
At this time, the
対面側通信モジュール311(表側通信モジュール)のアンテナ311Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L及び非対面側通信モジュール321(裏側通信モジュール)のアンテナ321Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L’は、いずれも3cm以下に設定される。このように、アンテナ通信距離L,L’がリーダライタ1000から発せられるRFID用電磁波の波長λ(標準周波数13.56MHzでは波長λ≒22m)以下である(0<L≦λ,0<L’≦λ)から、1波長分(単位波)までの電界・磁界の変化(磁束変化)がリーダライタ1000のアンテナ1000Aと通信モジュール311,321のアンテナ311A,321Aとの相互間の信号で直接伝達される。
The antenna communication distance L between the
図21に示すように、固定配置されたリーダライタ1000が主表面に沿って(図では左右方向に)スライド移動するICカード200の裏側(図では下側)において裏側通信モジュール321と通信するとき、仕切板310の裏側(下側)の主表面が対面側主表面310Lfs,310Rfsとなり、表側(上側)の主表面が非対面側主表面310Lns,310Rnsとなる。リーダライタ1000と仕切板310との間に位置する裏側通信モジュール321が対面側通信モジュールとして、仕切板310の対面側主表面310Lfs,310Rfsに重ねられるとともに、リーダライタ1000と仕切板310との間に位置しない表側通信モジュール311が非対面側通信モジュールとして、仕切板310の非対面側主表面310Lns,310Rnsに重ねられる。なお、図21に矢印符号で表示されたICカード200のスライド移動方向は少し(例えば左右方向±15°の範囲内で)傾斜していてもよい。
As shown in FIG. 21, when the reader /
このとき対面側通信モジュール321(裏側通信モジュール)のアンテナ321Aは、リーダライタ1000のアンテナ1000Aと短波帯域(例えば標準周波数13.56MHz)において所定の周波数範囲で通信可能である。具体的には、アンテナ321Aは、通信(送受信)可能な周波数範囲として、例えば13.56MHz±0.68MHz(あるいは13.56MHz±5%)において、アンテナ1000AからRFID用電磁波信号を受信するとともに、アンテナ1000Aに向けて応答信号を発信することができる。
At this time, the
対面側通信モジュール321(裏側通信モジュール)のアンテナ321Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L及び非対面側通信モジュール311(表側通信モジュール)のアンテナ311Aとリーダライタ1000のアンテナ1000Aとの間のアンテナ通信距離L’は、いずれも3cm以下に設定される。このように、アンテナ通信距離L,L’がリーダライタ1000から発せられるRFID用電磁波の波長λ(標準周波数13.56MHzでは波長λ≒22m)以下である(0<L≦λ,0<L’≦λ)から、1波長分(単位波)までの電界・磁界の変化(磁束変化)がリーダライタ1000のアンテナ1000Aと通信モジュール311,321のアンテナ311A,321Aとの相互間の信号で直接伝達される。
The antenna communication distance L between the
そして、図20の対面側通信モジュール311のアンテナ311A(又は図21の対面側通信モジュール321のアンテナ321A)とリーダライタ1000のアンテナ1000Aとの間にのみ磁束結合を生じさせて、短波によるRFID用電磁波信号の個別送受信を可能とするために、ICカード200はさらに次に述べるような構造を備えている。
Then, the magnetic flux coupling is generated only between the
図20(又は図21)において短波用のICカード200を重ね合わせ方向から透視したとき、仕切板310L,310Rには、対面側通信モジュール311(又は321)のアンテナ311A(又は321A)及び非対面側通信モジュール321(又は311)のアンテナ321A(又は311A)と各々部分的に重なり合うように貫通除去された、開放領域としてのスリット310Sが形成されている(図16,図17参照)。
In FIG. 20 (or FIG. 21), when the
具体的に述べると、図20(又は図21)に表されたスリット310Sは、仕切板310L,310Rの対面側主表面310Lfs,310Rfsに投影された対面側通信モジュール311(又は321)のループ状アンテナ311A(又は321A)の一部及び非対面側主表面310Lns,310Rnsに投影された非対面側通信モジュール321(又は311)のループ状アンテナ321A(又は311A)の一部を同時に2ヶ所で横断する状態で単一のスリット310Sに形成される(図16,図17参照)。そして、このスリット310Sのアンテナ横断幅の最大値つまり最大横断幅W(この実施例ではW≦10mm)はリーダライタ1000から発せられるRFID用電磁波である短波の波長λ(この実施例ではλ≒22m)よりも小に設定される(W<λ)。
Specifically, the
図16,図17に示すように、ICカード200を重ね合わせ方向から透視したとき、仕切板310L,310R(310)の外周縁がICカード200の外形線より内側に退避して配置される。また、表側通信モジュール311及び裏側通信モジュール321の外周縁が各々仕切板310L,310R(310)の外周縁より内側に退避して配置される(図18参照)。
As shown in FIGS. 16 and 17, when the
同じく図16,図17に示すように、ICカード200を重ね合わせ方向から透視したとき、表側絶縁シート12及び裏側絶縁シート22は、各々の外周縁が対応する表側通信モジュール311及び裏側通信モジュール321より大に形成されるとともに、仕切板310L,310R(310)のスリット310Sを塞ぐ(又は覆う)状態に保持される(図18参照)。なお、この実施例では、表側絶縁シート12と裏側絶縁シート22のいずれも、枠板115L,115R,125L,125Rの周壁部115W,125Wとスリット115S,125Sとを合わせたものの内形線と形状及び大きさが同じである(図15参照)。
Similarly, as shown in FIGS. 16 and 17, when the
図20及び図21に戻り、仕切板310にスリット310Sを設けることによって、リーダライタ1000からの短波によるRFID用電磁波信号により仕切板310L,310Rの対面側主表面310Lfs,310Rfsに渦電流が発生して反磁界を生じる現象を阻止又は抑制することが可能になる。また、スリット310Sは、対面側主表面310Lfs,310Rfsで発生し仕切板310L,310Rを伝搬して非対面側主表面310Lns,310Rnsに至る渦電流や、リーダライタ1000からの短波によるRFID用電磁波信号のうち仕切板310L,310Rの外側を回り込み非対面側主表面310Lns,310Rnsで発生する渦電流を分断する機能により、非対面側主表面310Lns,310Rnsに磁界を生じる現象を阻害することもできる。
20 and 21, by providing the
このようにして、スリット310Sは電磁波に対する仕切板310の減衰又は遮蔽作用を補完することとなる。すなわち、スリット310Sによって、図20においては対面側通信モジュール311のみ、図21においては対面側通信モジュール321のみがリーダライタ1000からのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタ1000に向けて発信する機能が付与される。よって、スリット310Sは図20及び図21に示す、短波によるRFID用電磁波信号の個別送受信を可能にする。
In this way, the
ところで、図18においてICカード200を重ね合わせ方向から透視したとき、表側通信モジュール311及び裏側通信モジュール321は横長矩形状のカード外形線の内側であってその長辺方向(すなわち横方向、図18では左右方向)において互いにオフセット(齟齬)して配置される。具体的には、両通信モジュール311,321間にはオフセット量d、言い換えれば両通信モジュール311,321のアンテナ311A,321AとICチップ本体311M,321Mとの接続点間の距離d、さらに言い換えれば両ICチップ本体311M,321Mのカード長辺方向に離間距離dが設けられる。
By the way, when the
したがって、図20(又は図21)において、リーダライタ1000のアンテナ1000Aから送信されたRFID用電磁波信号が対面側通信モジュール311(又は321)及び対面側絶縁シート12(又は22)を透過し、仕切板310のスリット310Sを通過しようとしても、最大横断幅Wが波長λより小さいために通過そのものが阻害され、非対面側通信モジュール321(又は311)での起電力発生に必要な磁界は到達しにくい。仮にRFID用電磁波信号の一部がスリット310Sを経て非対面側通信モジュール321(又は311)のアンテナ321A(又は311A)に達した場合であっても、リーダライタ1000とのアンテナ通信距離の差L’−Lや上記したオフセット量dにより、非対面側通信モジュール321(又は311)と対面側通信モジュール311(又は321)とは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
Accordingly, in FIG. 20 (or FIG. 21), the electromagnetic wave signal for RFID transmitted from the
さらに、図16,図18において、スリット310Sは、表側通信モジュール311及び裏側通信モジュール321における各々のループ状アンテナ311A,321Aの長軸方向の中心から偏った(すなわちずれた)不均等な位置でカード外形線の2つの長辺と各々交差する。具体的には、スリット310Sの幅中心CSは、ループ状アンテナ311A,321Aの長軸方向の中心CAから偏り量LCだけずれて設けられる。
Further, in FIGS. 16 and 18, the
したがって、図20(又は図21)において、リーダライタ1000からのRFID用電磁波信号の磁界内に置かれた対面側通信モジュール311(又は321)のループ状アンテナ311A(又は321A)の中を磁束が通過すなわち移動するとき、対面側通信モジュール311(又は321)のループ状アンテナ311A(又は321A)には電磁誘導によって起電力が発生する。一方、非対面側通信モジュール321(又は311)のループ状アンテナ321A(又は311A)は、リーダライタ1000側から見るとスリット310Sを除いて仕切板310L,310Rで覆われており、スリット310Sは非対面側通信モジュール321(又は311)のループ状アンテナ321A(又は311A)の長軸方向の中心から偏った(ずれた)不均等な位置でカードの長辺と交差状に設けられている。よって、非対面側通信モジュール321(又は311)のループ状アンテナ321A(又は311A)は、リーダライタ1000からのRFID用電磁波信号の磁界内にあっても磁束が不均等に通過(移動)することになるので、ICチップ本体321M(又は311M)を駆動してリーダライタ1000へ発信(返信)するために必要な起電力を発生しない。
Accordingly, in FIG. 20 (or FIG. 21), the magnetic flux passes through the
以上で説明したスリット310S、裏側被覆層125Z及び表側被覆層115Zの存在により、図20においては非対面側通信モジュール321とリーダライタ1000との間、図21においては非対面側通信モジュール311とリーダライタ1000との間に磁束結合は生じにくくなる。よって、スリット310S、裏側被覆層125Z及び表側被覆層115Zは図20及び図21に示す、短波によるRFID用電磁波信号の個別送受信を可能にする。
Due to the presence of the
ここで、表側通信モジュールのアンテナとリーダライタのアンテナとの間、及び裏側通信モジュールのアンテナとリーダライタのアンテナとの間のRFID用電磁波信号の個別送受信態様について第四実施例を整理すると次のようになる。なお、個別送受信状態の説明図(図20〜図22)において実線は磁束結合成立、破線は磁束結合不成立を表わす。 Here, the fourth embodiment is organized as follows regarding the individual transmission / reception mode of the electromagnetic wave signal for RFID between the antenna of the front side communication module and the antenna of the reader / writer and between the antenna of the back side communication module and the antenna of the reader / writer. It becomes like this. In the explanatory diagrams of the individual transmission / reception states (FIGS. 20 to 22), a solid line indicates that magnetic flux coupling is established and a broken line indicates that magnetic flux coupling is not established.
(第一態様)表側通信モジュール311とリーダライタ1000との間の個別送受信<図20>
下記[A]に記載の磁束結合が成立し、かつ[a]〜[e]のうち少なくとも[a],[b]を含む複数の現象が発生することにより、対面側通信モジュールすなわち表側通信モジュール311とリーダライタ1000との間にのみ磁束結合を生じ、短波によるRFID用電磁波信号の個別送受信が可能になる。
[A]リーダライタ1000のアンテナ1000Aからの短波による送信信号(例えば読み取り指令信号)がアンテナ311Aで受信されると表側通信モジュール311に起電力が発生し、データ処理部の制御する送受信タイミングでアンテナ311Aから発信された応答信号(例えば表側通信モジュール311のデータ保存部から読み取られたデータ信号)がアンテナ1000Aで受信される。
(First Mode) Individual Transmission / Reception Between Front-
When the magnetic flux coupling described in [A] below is established and a plurality of phenomena including at least [a] and [b] among [a] to [e] occur, the facing communication module, that is, the front communication module Magnetic flux coupling is generated only between 311 and the reader /
[A] When a transmission signal (for example, a read command signal) by a short wave from the
[a]仕切板310の対面側主表面310Lfs,310Rfsに到達した送信信号による、渦電流及び反磁界の発生現象がスリット310Sによって阻止又は抑制される。
[b]対面側主表面310Lfs,310Rfsから非対面側主表面310Lns,310Rnsへ伝搬する渦電流や、仕切板310の外側を回り込む送信信号によって非対面側主表面310Lns,310Rnsで発生する渦電流に基づく磁界発生現象は、スリット310S及び裏側被覆層125Zによって阻害される。
[c]横断幅W<波長λにより送信信号のスリット310S通過が阻害され、非対面側通信モジュールすなわち裏側通信モジュール321での起電力発生に必要な磁界は到達しにくい。
[d]アンテナ通信距離の差L’−Lや通信モジュール間のオフセット量dの存在により、非対面側通信モジュール(ここでは裏側通信モジュール321)と対面側通信モジュール(ここでは表側通信モジュール311)とは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
[e]スリット310Sに偏り量LCが設けられるので、非対面側通信モジュール321のループ状アンテナ321Aは起電力を発生しない。
[A] Phenomenon of generation of eddy current and demagnetizing field due to the transmission signal reaching the facing main surfaces 310Lfs and 310Rfs of the
[B] An eddy current propagating from the facing main surfaces 310Lfs and 310Rfs to the non-facing main surfaces 310Lns and 310Rns, and an eddy current generated on the non-facing main surfaces 310Lns and 310Rns by a transmission signal that circulates outside the
[C] Crossing width W <wavelength λ prevents transmission signals from passing through
[D] The non-face-to-face communication module (here, the back-side communication module 321) and the face-to-face communication module (here, the front-side communication module 311) due to the difference in antenna communication distance L′−L and the presence of the offset amount d between the communication modules. Causes a difference in transmission / reception timing, so that malfunction based on poor response is avoided.
[E] Since the deviation amount LC is provided in the
(第二態様)裏側通信モジュール321とリーダライタ1000との間の個別送受信<図21>
下記[B]に記載の磁束結合が成立し、かつ[a]〜[e]のうち少なくとも[a],[b]を含む複数の現象が発生することにより、対面側通信モジュールすなわち裏側通信モジュール321とリーダライタ1000との間にのみ磁束結合を生じ、短波によるRFID用電磁波信号の個別送受信が可能になる。
[B]リーダライタ1000のアンテナ1000Aからの短波による送信信号(例えば読み取り指令信号)がアンテナ321Aで受信されると裏側通信モジュール321に起電力が発生し、データ処理部1000C(図12参照)の制御する送受信タイミングでアンテナ321Aから発信された応答信号(例えば裏側通信モジュール321のデータ保存部から読み取られたデータ信号)がアンテナ1000Aで受信される。
(Second Aspect) Individual Transmission / Reception Between
When the magnetic flux coupling described in [B] below is established and a plurality of phenomena including at least [a] and [b] among [a] to [e] occur, the facing communication module, that is, the back communication module Magnetic flux coupling is generated only between 321 and the reader /
[B] When a transmission signal (for example, a read command signal) by a short wave from the
[a]仕切板310の対面側主表面310Lfs,310Rfsに到達した送信信号による、渦電流及び反磁界の発生現象がスリット310Sによって阻止又は抑制される。
[b]対面側主表面310Lfs,310Rfsから非対面側主表面310Lns,310Rnsへ伝搬する渦電流や、仕切板310の外側を回り込む送信信号によって非対面側主表面310Lns,310Rnsで発生する渦電流に基づく磁界発生現象は、スリット310S及び表側被覆層115Zによって阻害される。
[c]横断幅W<波長λにより送信信号のスリット310S通過が阻害され、非対面側通信モジュールすなわち表側通信モジュール311での起電力発生に必要な磁界は到達しにくい。
[d]アンテナ通信距離の差L’−Lや通信モジュール間のオフセット量dの存在により、非対面側通信モジュール(ここでは表側通信モジュール311)と対面側通信モジュール(ここでは裏側通信モジュール321)とは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
[e]スリット310Sに偏り量LCが設けられるので、非対面側通信モジュール311のループ状アンテナ311Aは起電力を発生しない。
[A] Phenomenon of generation of eddy current and demagnetizing field due to the transmission signal reaching the facing main surfaces 310Lfs and 310Rfs of the
[B] An eddy current propagating from the facing main surfaces 310Lfs and 310Rfs to the non-facing main surfaces 310Lns and 310Rns, and an eddy current generated on the non-facing main surfaces 310Lns and 310Rns by a transmission signal that circulates outside the
[C] Crossing width W <wavelength λ prevents transmission signals from passing through
[D] The non-face-to-face communication module (here, the front-side communication module 311) and the face-to-face communication module (here, the back-side communication module 321) due to the difference L′−L in the antenna communication distance and the presence of the offset amount d between the communication modules. Causes a difference in transmission / reception timing, so that malfunction based on poor response is avoided.
[E] Since the deviation amount LC is provided in the
(第三態様)表側通信モジュール311と第一のリーダライタ1000との間、及び裏側通信モジュール321と第二のリーダライタ2000との間での同時並行式個別送受信<図22>
裏側通信モジュール321に対向して、アンテナ1000Aと同様の周波数範囲(13.56MHz±0.68MHzあるいは13.56MHz±5%)において通信可能な平面状アンテナ2000Aを有する第二のリーダライタ2000を第一のリーダライタ1000とは別に配置する場合である。
この場合においても下記[A],[B]に記載の磁束結合が成立し、かつ[a]〜[e]のうち少なくとも[a],[b]を含む複数の現象が発生することにより、表側通信モジュール311と第一のリーダライタ1000との間、及び裏側通信モジュール321と第二のリーダライタ2000との間にのみ磁束結合を生じ、短波によるRFID用電磁波信号の同時並行式個別送受信が可能になる。
(Third Aspect) Simultaneous individual transmission / reception between the front
A second reader /
Even in this case, the magnetic flux coupling described in [A] and [B] below is established, and a plurality of phenomena including at least [a] and [b] among [a] to [e] occur. Magnetic flux coupling occurs only between the front-
[A]第一のリーダライタ1000のアンテナ1000Aからの短波による送信信号(例えば読み取り指令信号)がアンテナ311Aで受信されると対面側通信モジュールすなわち表側通信モジュール311に起電力が発生し、所定の送受信タイミングでアンテナ311Aから発信された応答信号(例えば表側通信モジュール311のデータ保存部から読み取られたデータ信号)がアンテナ1000Aで受信される。
[B]第二のリーダライタ2000のアンテナ2000Aからの短波による送信信号(例えば読み取り指令信号)がアンテナ321Aで受信されると対面側通信モジュールすなわち裏側通信モジュール321に起電力が発生し、所定の送受信タイミングでアンテナ321Aから発信された応答信号(例えば裏側通信モジュール321のデータ保存部から読み取られたデータ信号)がアンテナ2000Aで受信される。
[A] When a short-wave transmission signal (for example, a read command signal) is received by the
[B] When a transmission signal (for example, a read command signal) by a short wave from the
[a]仕切板310の対面側主表面に到達した送信信号による、渦電流及び反磁界の発生現象がスリット310Sによって阻止又は抑制される。
[b]対面側主表面から非対面側主表面へ伝搬する渦電流や、仕切板310の外側を回り込む送信信号によって非対面側主表面で発生する渦電流に基づく磁界発生現象は、スリット310S、裏側被覆層125Z及び表側被覆層115Zによって阻害される。
[c]横断幅W<波長λにより送信信号のスリット310S通過が阻害され、非対面側通信モジュールでの起電力発生に必要な磁界は到達しにくい。
[d]アンテナ通信距離の差L’−Lや通信モジュール間のオフセット量dの存在により、非対面側通信モジュールと対面側通信モジュールとは受発信タイミングに差を生じるので、応答不良に基づく誤作動は回避される。
[e]スリット310Sに偏り量LCが設けられるので、非対面側通信モジュールのループ状アンテナは起電力を発生しない。
[A] Phenomenon of generation of eddy current and demagnetizing field due to the transmission signal reaching the facing main surface of the
[B] A magnetic field generation phenomenon based on an eddy current propagating from the facing main surface to the non-facing side main surface or an eddy current generated on the non-facing side main surface due to a transmission signal that goes around the outside of the
[C] Crossing width W <wavelength λ prevents transmission signals from passing through
[D] The non-face-to-face communication module and the face-to-face communication module have a difference in receiving / transmitting timing due to the difference L′−L in the antenna communication distance and the offset amount d between the communication modules. Operation is avoided.
[E] Since the bias amount LC is provided in the
したがって、図22に示す第三態様では、表側通信モジュール311のICチップ本体311Mに設けられた第一のデータ保存部に対し第一のリーダライタ1000により実行されるデータの読み取り又は書き込み動作と、裏側通信モジュール321のICチップ本体321Mに設けられた第二のデータ保存部に対し第二のリーダライタ2000により実行されるデータの読み取り又は書き込み動作とが同時に並行して処理可能である。
Therefore, in the third mode shown in FIG. 22, the data reading or writing operation executed by the first reader /
このように、2台のリーダライタ1000,2000を用いて一対の通信モジュール311,321の各データ保存部に対して同時にデータアクセス(読み取り又は書き込み)を行えるから、データ処理の迅速化を図ることができる。なお、このとき第一及び第二のリーダライタ1000,2000は、表側通信モジュール311及び裏側通信モジュール321に対して同一周波数範囲(13.56MHz±0.68MHzあるいは13.56MHz±5%)で同一出力の信号を送信するとともに、対応する通信モジュール311,321とリーダライタ1000,2000との間のアンテナ通信距離L,L’は同一でよい。
As described above, since data access (reading or writing) can be performed simultaneously on the data storage units of the pair of
以上で述べたように、第二実施例ではループ状アンテナを有する一対の通信モジュール311,321と直線状のスリット310Sを含む仕切板310とを設け、仕切板310を挟んで両側に窓枠状の枠板115,125が対称配置され、各枠板115,125の内周壁面は被覆層115Z,125Zで被覆されていることにより、仕切板310の対面側主表面における渦電流の発生及び非対面側主表面における渦電流の伝搬や発生が阻止又は抑制され、例えば短波帯域のRFID用電磁波信号に適合するICカード200を容易かつ安価に得ることができる。その際に、アンテナ通信距離L,L’が波長λ以下に設定される(0<L≦λ,0<L’≦λ)ことによって、指向性が弱く横への広がりを持つ短波の場合、電界・磁界の変化がリーダライタ1000,2000のアンテナ1000A,2000Aと通信モジュール311,321のアンテナ311A,321Aとの相互間の信号で直接伝達されるので、RFID用電磁波信号の個別送受信が容易に実現できる。
As described above, in the second embodiment, a pair of
また、仕切板310に含まれるスリット310Sは、横断幅Wが波長λよりも小(W<λ)に形成され、かつループ状アンテナ311A,321Aをその長軸方向中心CAから偏り量LCだけずれた位置で横断するように配置されているので、指向性が弱く横への広がりを持つ短波の場合、このようなスリット310Sを通るとき非対面側通信モジュールのアンテナに至る電波は制限され減衰される。よって、非対面側通信モジュールのアンテナは、リーダライタ1000,2000との送受信を可能とするほどの起電力を発生しない。つまり、微弱な起電力しか発生しないので、非対面側通信モジュールのICチップ本体は起動できない。仮に起動したとしてもリーダライタ1000,2000への発信(返信)ができない。
Further, the
(第三実施例)
本発明に係るICカードの第三実施例が図23〜図26に表されている。図23はICカードを模式的に示す分解斜視説明図、図24は一部破断平面図、図25は一部破断底面図、図26は図24のXXVI-XXVI線での断面図である。第三実施例のICカード300では、第二実施例のICカード200に対し、開放領域の形態が単一のスリットから一対の切欠に変更されている。
(Third embodiment)
A third embodiment of the IC card according to the present invention is shown in FIGS. 23 is an exploded perspective view schematically showing the IC card, FIG. 24 is a partially broken plan view, FIG. 25 is a partially broken bottom view, and FIG. 26 is a sectional view taken along line XXVI-XXVI in FIG. In the
図23に示す短波用のICカード300において、仕切板410(仕切部材)には一対の切欠410N,410Nが形成され、一対の切欠410N,410Nは表側通信モジュール311(第一の通信部材)及び裏側通信モジュール321(第二の通信部材)のループ状アンテナ311A,321Aの一部を各別に2ヶ所で横断する。
In the short
図24,図26において、一対の切欠410N,410Nは、表側通信モジュール311及び裏側通信モジュール321における各々のループ状アンテナ311A,321Aの長軸方向の中心から偏った(すなわちずれた)不均等な位置でカード外形線の2つの長辺と各別に交差する。具体的には、一対の切欠410N,410Nの幅中心CNは、ループ状アンテナ311A,321Aの長軸方向の中心CAから偏り量LCだけずれて設けられる。
24 and 26, the pair of
なお、一対の切欠410N,410Nは第二実施例のICカード200における単一のスリット310Sと同じ機能を有し、同じ作用効果を発揮する。また、第三実施例において、表側通信モジュールのアンテナとリーダライタのアンテナとの間、及び裏側通信モジュールのアンテナとリーダライタのアンテナとの間のRFID用電磁波信号の個別送受信態様(図28〜図30)については、既述の第二実施例(図20〜図22)と同等である。さらに、枠板の製造工程及び枠板と仕切板との組立工程についても、第三実施例のICカード300と第二実施例のICカード200とは同等であるから、本実施例の圧着工程は第二実施例の図19に代わり図27で表わされる。よって、次のように読み替えることにより詳しい説明を省略する。
・仕切板310,310L,310R→仕切板410
・スリット310S→切欠410N
・対面側主表面310Lfs,310Rfs→対面側主表面410fs
・非対面側主表面310Lns,310Rns→非対面側主表面410ns
The pair of
・
・
-Facing main surface 310Lfs, 310Rfs-> facing main surface 410fs
Non-facing side main surface 310Lns, 310Rns → Non-facing side main surface 410ns
以上で説明した実施例に基づき、本発明には種々の展開が可能である。
例えば、ICカードの展開例として、
一方の主表面に配置された前記第一の通信部材及び他方の主表面に配置された前記第二の通信部材を一組として複数組設置され、
各組毎に互いに異なる周波数帯域又は周波数範囲で前記第一及び第二の通信部材とリーダライタとの間で個別送受信可能とすることができる。
Various developments can be made to the present invention based on the embodiments described above.
For example, as an example of IC card development,
A plurality of sets of the first communication member arranged on one main surface and the second communication member arranged on the other main surface are installed as a set,
Individual transmission / reception can be performed between the first and second communication members and the reader / writer in different frequency bands or frequency ranges for each group.
このように、単一のカードの中に一対の通信部材を複数組(複数対)搭載すれば、さらにデータ記憶容量を増大させることが可能になる。よって、1枚のカードが周波数帯域や周波数範囲の異なる複数の管理システムで使用できるようになる。 As described above, if a plurality of pairs (a plurality of pairs) of communication members are mounted in a single card, the data storage capacity can be further increased. Therefore, one card can be used in a plurality of management systems having different frequency bands and frequency ranges.
あるいは、ICカードの他の展開例として、
両主表面の少なくとも一方には、前記第一及び第二の通信部材とリーダライタとの間で個別送受信可能とされた周波数帯域又は周波数範囲とは異なる周波数帯域又は周波数範囲でリーダライタと通信可能な第三の通信部材がさらに1又は複数配置され、
該第三の通信部材は単独の独立した周波数帯域又は周波数範囲でリーダライタと通信可能とすることができる。
Or as another development example of IC card,
At least one of the main surfaces can communicate with the reader / writer in a frequency band or frequency range different from the frequency band or frequency range that can be individually transmitted and received between the first and second communication members and the reader / writer. One or more third communication members are arranged,
The third communication member can communicate with the reader / writer in a single independent frequency band or frequency range.
このように、単一のカードの中に第三の通信部材を搭載することも可能であるから、カードの適用範囲がさらに拡大される。 Thus, since it is possible to mount the third communication member in a single card, the applicable range of the card is further expanded.
また、第三の通信部材を搭載するICカードを用いた、データ並行処理システムへの展開例として、
上記第三の通信部材が搭載された非接触式近距離無線通信用カードと、
前記一方の主表面及び前記他方の主表面に配置された複数の通信部材の各々に対向して配置され、対応するRFID用電磁波信号の周波数帯域又は周波数範囲で対応する通信部材との個別送受信を実行する複数のリーダライタとを備え、
各々のチップ本体に設けられたデータ保存部に対し対応するリーダライタにより実行されるデータの読み取り又は書き込み動作が(例えば同時に)並行して処理可能とすることができる。
In addition, as an example of deployment to a data parallel processing system using an IC card equipped with a third communication member,
A contactless short-range wireless communication card on which the third communication member is mounted;
It is arranged to face each of the plurality of communication members arranged on the one main surface and the other main surface, and performs individual transmission / reception with the corresponding communication member in the frequency band or frequency range of the corresponding RFID electromagnetic wave signal. With multiple readers / writers to execute,
Data reading or writing operations executed by a corresponding reader / writer on a data storage unit provided in each chip body can be processed in parallel (for example, simultaneously).
このように、一対(又は複数対)のリーダライタを用いて一対(又は複数対)の通信部材の各データ保存部に対して同時に又は順々にデータアクセス(読み取り又は書き込み)が行われ、また一方では、他の1又は複数のリーダライタを用いて1又は複数の第三の通信部材のデータ保存部に対して個別にデータアクセスが行われるから、データ処理の迅速化及び多様化を図ることができる。なお、このとき第一及び第二のリーダライタは、第一及び第二の通信部材に対して同一周波数範囲(同一波長範囲)で同一出力の信号を送信するとともに、対応する通信部材とリーダライタとの間の通信距離は同一でよい。 In this way, data access (reading or writing) is performed simultaneously or sequentially on each data storage unit of a pair (or a plurality of pairs) of communication members using a pair (or a plurality of pairs) of reader / writers. On the other hand, since data access is individually performed for the data storage unit of one or more third communication members using another one or more reader / writers, data processing can be speeded up and diversified. Can do. At this time, the first and second reader / writers transmit signals of the same output in the same frequency range (same wavelength range) to the first and second communication members, and corresponding communication members and reader / writers. The communication distance between them may be the same.
なお、実施例をはじめ本発明では、ISO/IEC7810において規格化され広く普及している「ID−1サイズ」のカードを例として説明したが、本発明は過去・現在・将来にわたり各国・各地域に出現するあらゆるカードサイズに適用可能である。同様に、本願出願日(優先日)においてISO/IEC規格、JIS規格等で規定されている国際標準周波数等に準拠して説明したが、本発明はISO/IEC規格、JIS規格等の改正に対応し得るのはもちろん、各国・各地域で独自に制定される新規、現行又は改正規格にも適用可能である。 In the present invention including the examples, the “ID-1 size” card standardized and widely used in ISO / IEC7810 has been described as an example. However, the present invention is not limited to past, present, and future countries / regions. Applicable to any card size appearing in Similarly, on the filing date (priority date) of the present application, the description has been made based on the international standard frequency defined in the ISO / IEC standard, the JIS standard, etc., but the present invention is intended to amend the ISO / IEC standard, the JIS standard, etc. Of course, it can also be applied to new, current or revised standards established independently in each country / region.
以上で述べた各実施例(第一実施例〜第三実施例)において、共通する機能を有する部位には同一符号を付して詳細な説明を省略した。また、これらの実施例は、技術的な矛盾を生じたり、法的又は道義的な規範に反したりしない限り、相互間であるいは従来技術とともに適宜組み合わせて実施することができる。 In each of the embodiments described above (the first embodiment to the third embodiment), portions having common functions are denoted by the same reference numerals and detailed description thereof is omitted. In addition, these embodiments can be implemented in combination with each other or with the prior art as long as no technical contradiction arises or legal or moral norms are violated.
従来技術との組み合わせ例として、第一実施例のカード100には磁気ストライプ式メモリ部232が記載されている(図13参照)。本発明の非接触式ICカード100,200,300には、従来の接触式ICカードに係る磁気接点式ICモジュールが併設されていてもよい。その際、本発明の通信モジュール11,21等(通信用ICモジュール)と従来の磁気接点式ICモジュールとが電気的に接続されたコンビネーションタイプ、電気的に非接続で独立したハイブリッドタイプのいずれであってもよい。
As an example of combination with the prior art, a magnetic
10 仕切板(仕切部材)
10fs 対面側主表面
10ns 非対面側主表面
10H マイクロ波用貫通孔(開放領域)
11 マイクロ波用表側通信モジュール(第一の通信部材)
11A アンテナ
11B 補助電源部
11M ICチップ本体
11M1 受発信部
11M2 データ保存部
11M3 発電部
11S 配線基板
12 表側絶縁シート(第一の絶縁部材)
13 表側成形板(第一の成形部材)
14 表側保護シート(第一の保護部材)
15 表側枠板(第一の枠部材)
15W 表側周壁部(第一の周壁部)
15Z 表側被覆層(第一の電磁波シールド層)
21 マイクロ波用裏側通信モジュール(第二の通信部材)
21A アンテナ
21B 補助電源部
21M ICチップ本体
21M1 受発信部
21M2 データ保存部
21M3 発電部
21S 配線基板
22 裏側絶縁シート(第二の絶縁部材)
23 裏側成形板(第二の成形部材)
24 裏側保護シート(第二の保護部材)
25 裏側枠板(第二の枠部材)
25W 裏側周壁部(第二の周壁部)
25Z 裏側被覆層(第二の電磁波シールド層)
100 マイクロ波用ICカード(非接触式近距離無線通信用カード)
115 表側枠板(第一の枠部材)
115L 左表側枠板(第一の枠部材)
115R 右表側枠板(第一の枠部材)
115S 表側枠板用スリット
115W 表側周壁部(第一の周壁部)
115Z 表側被覆層(第一の電磁波シールド層)
125 裏側枠板(第二の枠部材)
125L 左裏側枠板(第二の枠部材)
125R 右裏側枠板(第二の枠部材)
125S 裏側枠板用スリット
125W 裏側周壁部(第二の周壁部)
125Z 裏側被覆層(第二の電磁波シールド層)
310 仕切板(仕切部材)
310L 左側仕切板(仕切部材)
310Lfs 左対面側主表面
310Lns 左非対面側主表面
310R 右側仕切板(仕切部材)
310Rfs 右対面側主表面
310Rns 右非対面側主表面
310S 短波用スリット(開放領域)
311 短波用表側通信モジュール(第一の通信部材)
321 短波用裏側通信モジュール(第二の通信部材)
200 短波用ICカード(非接触式近距離無線通信用カード)
410 仕切板(仕切部材)
410fs 対面側主表面
410ns 非対面側主表面
410N 短波用切欠(開放領域)
300 短波用ICカード(非接触式近距離無線通信用カード)
1000,2000 リーダライタ
1000A,2000A アンテナ
1000B 電源部
1000C データ処理部
1000S 送受信部
d 表側通信モジュールと裏側通信モジュールとのオフセット量(両ICチップ本体の離間距離)
D マイクロ波用貫通孔の最大孔径
W 短波用スリット又は短波用切欠のアンテナ最大横断幅
L,L’ アンテナ通信距離
CA ループ状アンテナの長軸方向中心
CN 短波用切欠の幅中心
CS 短波用スリットの幅中心
LC 短波用スリット又は短波用切欠の偏り量(ずれ量)
P1 矩形板
P2 窓枠板
P3 塗膜形成板
PL 塗膜
N ノズル
10 Partition plate (partition member)
10 fs facing
11 Front-side communication module for microwave (first communication member)
13 Front-side molded plate (first molded member)
14 Front side protection sheet (first protection member)
15 Front side frame plate (first frame member)
15W Front peripheral wall (first peripheral wall)
15Z Front side coating layer (first electromagnetic shielding layer)
21 Backside communication module for microwaves (second communication member)
23 Back side molding plate (second molding member)
24 Back side protection sheet (second protection member)
25 Back frame plate (second frame member)
25W Back side peripheral wall (second peripheral wall)
25Z Back side coating layer (second electromagnetic shielding layer)
100 IC card for microwave (Non-contact short-range wireless communication card)
115 Front side frame plate (first frame member)
115L left front frame plate (first frame member)
115R Right front frame plate (first frame member)
115S Front-side frame plate slit 115W Front-side peripheral wall (first peripheral wall)
115Z Front side coating layer (first electromagnetic shielding layer)
125 Back frame plate (second frame member)
125L Left back frame plate (second frame member)
125R Right back frame plate (second frame member)
125S Slit for back
125Z Back side coating layer (second electromagnetic shielding layer)
310 Partition plate (partition member)
310L Left partition plate (partition member)
310Lfs Left facing main surface 310Lns Left non-facing
310Rfs Right facing main surface 310Rns Right non-facing
311 Front-side communication module for shortwave (first communication member)
321 Short-wave backside communication module (second communication member)
200 IC card for shortwave (Non-contact short-range wireless communication card)
410 Partition plate (partition member)
410fs facing main surface 410ns non-facing
300 IC card for shortwave (Non-contact short-range wireless communication card)
1000, 2000 Reader /
D Maximum diameter of through hole for microwave W Maximum antenna transverse width L of short wave slit or short wave notch L, L 'Antenna communication distance CA Center of long axis direction of loop antenna CN Short width of CS notch CS Short wave slit Center of width LC Short wave slit or short wave notch deviation (deviation)
P1 Rectangular plate P2 Window frame plate P3 Coating film formation plate PL Coating film N Nozzle
Claims (5)
導電性を有するとともに電磁波に対する減衰又は遮蔽作用を有し、シート状又はフィルム状に成形された仕切部材と、
データ保存機能及び通信制御機能を有するICチップ本体と信号受発信機能を有するアンテナとを含み、前記仕切部材の一方の主表面及び他方の主表面に対向して平面視で各々重なり合うように配置され、前記アンテナが所定の周波数範囲でのRFID用電磁波信号をリーダライタから受信し、かつそれに対する応答信号をリーダライタに向けて発信することにより、リーダライタに対する非接触式近距離無線通信を個々に行うための第一及び第二の通信部材と、
前記仕切部材と前記第一の通信部材との間及び前記仕切部材と前記第二の通信部材との間に各々配置されて所定の隙間を形成し、電気的な絶縁状態を付与するためにシート状又はフィルム状に形成された第一及び第二の絶縁部材と、
電気的な絶縁性を有する材質で構成されるとともにカード外形をなす矩形状の各辺に沿って窓枠状に形成された第一及び第二の周壁部が、前記仕切部材の両側の主表面を挟むように接触して各々配置された第一及び第二の枠部材とを備え、
前記第一の枠部材には、前記一方の主表面側において前記第一の通信部材と前記第一の絶縁部材とが前記第一の周壁部の内部空間に収容されるとともに、該第一の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第一の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第一の電磁波シールド層で被覆される一方、
前記第二の枠部材には、前記他方の主表面側において前記第二の通信部材と前記第二の絶縁部材とが前記第二の周壁部の内部空間に収容されるとともに、該第二の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第二の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第二の電磁波シールド層で被覆され、
前記第一及び第二の通信部材のうちリーダライタと前記仕切部材との間に位置する対面側通信部材が該仕切部材の対面側主表面に重ねられるとともに、リーダライタと前記仕切部材との間に位置しない非対面側通信部材が非対面側主表面に重ねられ、これらを重ね合わせ方向から透視したとき、前記仕切部材には、前記対面側通信部材のアンテナ及び前記非対面側通信部材のアンテナと各々部分的に重なり合うように貫通除去された開放領域が形成され、
リーダライタとの通信状態において、前記開放領域は前記対面側通信部材とリーダライタとの間にのみ磁束結合を生じさせて、RFID用電磁波信号の個別送受信を可能にすることを特徴とする非接触式近距離無線通信用カード。 A single card used for contactless short-range wireless communication,
A partition member that has conductivity and has an attenuation or shielding action against electromagnetic waves, and is molded into a sheet or film,
It includes an IC chip body having a data storage function and a communication control function and an antenna having a signal transmission / reception function, and is disposed so as to be opposed to one main surface and the other main surface of the partition member in plan view. The antenna receives an electromagnetic wave signal for RFID in a predetermined frequency range from the reader / writer, and transmits a response signal to the reader / writer, thereby enabling non-contact short-range wireless communication to the reader / writer individually. First and second communication members for performing;
A sheet is provided between the partition member and the first communication member and between the partition member and the second communication member to form a predetermined gap and provide an electrical insulation state. First and second insulating members formed in the shape of a film or a film,
The first and second peripheral walls formed in a window frame shape along each side of the rectangular shape that is made of an electrically insulating material and forms the outer shape of the card are main surfaces on both sides of the partition member. And first and second frame members arranged in contact with each other,
In the first frame member, the first communication member and the first insulating member are accommodated in an internal space of the first peripheral wall portion on the one main surface side, and the first frame member While the inner peripheral wall surface of the peripheral wall portion is covered with a first electromagnetic wave shielding layer for blocking or suppressing the electromagnetic wave signal for RFID that goes around the outside of the partition member and reaches the first peripheral wall portion,
In the second frame member, the second communication member and the second insulating member are accommodated in the internal space of the second peripheral wall portion on the other main surface side, and the second frame member The inner peripheral wall surface of the peripheral wall portion is covered with a second electromagnetic wave shielding layer for blocking or suppressing the electromagnetic wave signal for RFID that goes around the outside of the partition member and reaches the second peripheral wall portion,
A facing communication member located between the reader / writer and the partition member of the first and second communication members is superimposed on the facing main surface of the partition member, and between the reader / writer and the partition member. When the non-face-to-face communication member that is not positioned on the non-face-to-face main surface is overlapped and seen through from the overlapping direction, the partition member includes an antenna for the face-to-face communication member and an antenna for the face-to-face communication member And an open region is formed through and removed so as to partially overlap each other,
In the state of communication with a reader / writer, the open area causes magnetic flux coupling only between the facing communication member and the reader / writer, thereby enabling individual transmission / reception of RFID electromagnetic wave signals. Card for short-range wireless communication.
導電性を有するとともに電磁波に対する減衰又は遮蔽作用を有する非磁性体で構成され、シート状又はフィルム状に成形された仕切部材と、
データ保存機能及び通信制御機能を有するICチップ本体と信号受発信機能を有する平面状アンテナとを含み、前記仕切部材の一方の主表面及び他方の主表面に対向して平面視で各々重なり合うように配置され、前記平面状アンテナが所定の周波数範囲でのRFID用電磁波信号をリーダライタから受信し、かつそれに対する応答信号をリーダライタに向けて発信することにより、リーダライタに対する非接触式近距離無線通信を個々に行うための第一及び第二の通信部材と、
前記仕切部材と前記第一の通信部材との間及び前記仕切部材と前記第二の通信部材との間に各々配置されて所定の隙間を形成し、電気的な絶縁状態を付与するためにシート状又はフィルム状に形成された第一及び第二の絶縁部材と、
電気的な絶縁性を有する材質で構成されるとともにカード外形をなす矩形状の各辺に沿って窓枠状に形成された第一及び第二の周壁部が、前記仕切部材の両側の主表面を挟むように接触して各々配置された第一及び第二の枠部材とを備え、
前記第一の枠部材には、前記一方の主表面側において前記第一の通信部材と前記第一の絶縁部材とが前記第一の周壁部の内部空間に収容されるとともに、該第一の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第一の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第一の電磁波シールド層で被覆される一方、
前記第二の枠部材には、前記他方の主表面側において前記第二の通信部材と前記第二の絶縁部材とが前記第二の周壁部の内部空間に収容されるとともに、該第二の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第二の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第二の電磁波シールド層で被覆され、
前記第一及び第二の通信部材のうちリーダライタと前記仕切部材との間に位置する対面側通信部材が該仕切部材の対面側主表面に重ねられるとともに、リーダライタと前記仕切部材との間に位置しない非対面側通信部材が非対面側主表面に重ねられ、
前記対面側通信部材とリーダライタとの間の通信距離及び前記非対面側通信部材とリーダライタとの間の通信距離は、いずれもリーダライタから発せられるRFID用電磁波の波長以下に設定され、
重ね合わせ方向から透視したとき、前記仕切部材には、前記対面側通信部材のアンテナ及び前記非対面側通信部材のアンテナと各々部分的に重なり合うように孔形状にて貫通除去された開放領域が形成され、
前記開放領域は、リーダライタからのRFID用電磁波信号により前記仕切部材の対面側主表面に渦電流が発生して反磁界を生じるのを阻止又は抑制するとともに、前記対面側主表面で発生し前記仕切部材を伝搬して前記非対面側主表面に至る渦電流や、リーダライタからのRFID用電磁波信号のうち前記仕切部材の外側を回り込み前記非対面側主表面で発生する渦電流により前記非対面側主表面に磁界を生じる現象を阻害することによって、電磁波に対する前記仕切部材の減衰又は遮蔽作用を補完し、前記対面側通信部材のみがリーダライタからのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタに向けて発信する機能を付与し、RFID用電磁波信号の個別送受信を可能にすることを特徴とする非接触式近距離無線通信用カード。 A single card used for contactless short-range wireless communication,
A partition member made of a non-magnetic material that has conductivity and has an attenuation or shielding action against electromagnetic waves, and is formed into a sheet shape or a film shape;
Including an IC chip body having a data storage function and a communication control function and a planar antenna having a signal transmission / reception function so as to be opposed to one main surface and the other main surface of the partition member in plan view. The non-contact short-range wireless to the reader / writer is arranged, and the planar antenna receives an RFID electromagnetic wave signal in a predetermined frequency range from the reader / writer and transmits a response signal to the reader / writer. First and second communication members for individually communicating;
A sheet is provided between the partition member and the first communication member and between the partition member and the second communication member to form a predetermined gap and provide an electrical insulation state. First and second insulating members formed in the shape of a film or a film,
The first and second peripheral walls formed in a window frame shape along each side of the rectangular shape that is made of an electrically insulating material and forms the outer shape of the card are main surfaces on both sides of the partition member. And first and second frame members arranged in contact with each other,
In the first frame member, the first communication member and the first insulating member are accommodated in an internal space of the first peripheral wall portion on the one main surface side, and the first frame member While the inner peripheral wall surface of the peripheral wall portion is covered with a first electromagnetic wave shielding layer for blocking or suppressing the electromagnetic wave signal for RFID that goes around the outside of the partition member and reaches the first peripheral wall portion,
In the second frame member, the second communication member and the second insulating member are accommodated in the internal space of the second peripheral wall portion on the other main surface side, and the second frame member The inner peripheral wall surface of the peripheral wall portion is covered with a second electromagnetic wave shielding layer for blocking or suppressing the electromagnetic wave signal for RFID that goes around the outside of the partition member and reaches the second peripheral wall portion,
A facing communication member located between the reader / writer and the partition member of the first and second communication members is superimposed on the facing main surface of the partition member, and between the reader / writer and the partition member. The non-face-to-face communication member that is not located on is superimposed on the non-face-to-face main surface,
The communication distance between the facing communication member and the reader / writer and the communication distance between the non-facing communication member and the reader / writer are both set to be equal to or less than the wavelength of the electromagnetic wave for RFID emitted from the reader / writer,
When viewed through from the overlapping direction, the partition member is formed with an open region that is penetrated and removed in a hole shape so as to partially overlap the antenna of the facing communication member and the antenna of the non-facing communication member, respectively. And
The open area prevents or suppresses generation of a demagnetizing field due to generation of an eddy current on the facing main surface of the partition member by an electromagnetic wave signal for RFID from a reader / writer, and is generated on the facing main surface. The non-facing surface is caused by an eddy current that propagates through the partition member and reaches the non-facing side main surface, or an eddy current that circulates outside the partitioning member and is generated on the non-facing side main surface among RFID electromagnetic wave signals from a reader / writer. By inhibiting the phenomenon of generating a magnetic field on the side main surface, the attenuation or shielding action of the partition member against electromagnetic waves is complemented, and only the facing communication member receives the electromagnetic wave signal for RFID from the reader / writer, and Non-contact short distance characterized by providing a function to send a response signal to the reader / writer and enabling individual transmission and reception of RFID electromagnetic wave signals Wireless communication card.
導電性を有するとともに電磁波に対する減衰又は遮蔽作用を有する非磁性体で構成され、シート状又はフィルム状に成形された仕切部材と、
データ保存機能及び通信制御機能を有するICチップ本体と信号受発信機能を有するループ状アンテナとを含み、前記仕切部材の一方の主表面及び他方の主表面に対向して平面視で各々重なり合うように配置され、前記ループ状アンテナが所定の周波数範囲でのRFID用電磁波信号をリーダライタから受信し、かつそれに対する応答信号をリーダライタに向けて発信することにより、リーダライタに対する非接触式近距離無線通信を個々に行うための第一及び第二の通信部材と、
前記仕切部材と前記第一の通信部材との間及び前記仕切部材と前記第二の通信部材との間に各々配置されて所定の隙間を形成し、電気的な絶縁状態を付与するためにシート状又はフィルム状に形成された第一及び第二の絶縁部材と、
電気的な絶縁性を有する材質で構成されるとともにカード外形をなす矩形状の各辺に沿って窓枠状に形成された第一及び第二の周壁部が、前記仕切部材の両側の主表面を挟むように接触して各々配置された第一及び第二の枠部材とを備え、
前記第一の枠部材には、前記一方の主表面側において前記第一の通信部材と前記第一の絶縁部材とが前記第一の周壁部の内部空間に収容されるとともに、該第一の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第一の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第一の電磁波シールド層で被覆される一方、
前記第二の枠部材には、前記他方の主表面側において前記第二の通信部材と前記第二の絶縁部材とが前記第二の周壁部の内部空間に収容されるとともに、該第二の周壁部の内周壁面は、前記仕切部材の外側を回り込んで当該第二の周壁部に到達するRFID用電磁波信号を阻止又は抑制するための第二の電磁波シールド層で被覆され、
前記第一及び第二の通信部材のうちリーダライタと前記仕切部材との間に位置する対面側通信部材が該仕切部材の対面側主表面に重ねられるとともに、リーダライタと前記仕切部材との間に位置しない非対面側通信部材が非対面側主表面に重ねられ、
前記対面側通信部材とリーダライタとの間の通信距離及び前記非対面側通信部材とリーダライタとの間の通信距離は、いずれもリーダライタから発せられるRFID用電磁波の波長以下に設定され、
重ね合わせ方向から透視したとき、前記仕切部材には、前記対面側通信部材のアンテナ及び前記非対面側通信部材のアンテナと各々部分的に重なり合うように切欠形状又はスリット形状にて貫通除去された開放領域が形成され、
前記開放領域は、リーダライタからのRFID用電磁波信号により前記仕切部材の対面側主表面に渦電流が発生して反磁界を生じるのを阻止又は抑制するとともに、前記対面側主表面で発生し前記仕切部材を伝搬して前記非対面側主表面に至る渦電流や、リーダライタからのRFID用電磁波信号のうち前記仕切部材の外側を回り込み前記非対面側主表面で発生する渦電流により前記非対面側主表面に磁界を生じる現象を阻害することによって、電磁波に対する前記仕切部材の減衰又は遮蔽作用を補完し、前記対面側通信部材のみがリーダライタからのRFID用電磁波信号を受信し、かつそれに対する応答信号をリーダライタに向けて発信する機能を付与し、RFID用電磁波信号の個別送受信を可能にすることを特徴とする非接触式近距離無線通信用カード。 A single card used for contactless short-range wireless communication,
A partition member made of a non-magnetic material that has conductivity and has an attenuation or shielding action against electromagnetic waves, and is formed into a sheet shape or a film shape;
Including an IC chip body having a data storage function and a communication control function and a loop antenna having a signal transmission / reception function, so as to be opposed to one main surface and the other main surface of the partition member in plan view. The non-contact short-distance wireless communication with respect to the reader / writer is performed when the loop antenna receives an electromagnetic wave signal for RFID in a predetermined frequency range from the reader / writer and transmits a response signal to the reader / writer. First and second communication members for individually communicating;
A sheet is provided between the partition member and the first communication member and between the partition member and the second communication member to form a predetermined gap and provide an electrical insulation state. First and second insulating members formed in the shape of a film or a film,
The first and second peripheral walls formed in a window frame shape along each side of the rectangular shape that is made of an electrically insulating material and forms the outer shape of the card are main surfaces on both sides of the partition member. And first and second frame members arranged in contact with each other,
In the first frame member, the first communication member and the first insulating member are accommodated in an internal space of the first peripheral wall portion on the one main surface side, and the first frame member While the inner peripheral wall surface of the peripheral wall portion is covered with a first electromagnetic wave shielding layer for blocking or suppressing the electromagnetic wave signal for RFID that goes around the outside of the partition member and reaches the first peripheral wall portion,
In the second frame member, the second communication member and the second insulating member are accommodated in the internal space of the second peripheral wall portion on the other main surface side, and the second frame member The inner peripheral wall surface of the peripheral wall portion is covered with a second electromagnetic wave shielding layer for blocking or suppressing the electromagnetic wave signal for RFID that goes around the outside of the partition member and reaches the second peripheral wall portion,
A facing communication member located between the reader / writer and the partition member of the first and second communication members is superimposed on the facing main surface of the partition member, and between the reader / writer and the partition member. The non-face-to-face communication member that is not located on is superimposed on the non-face-to-face main surface,
The communication distance between the facing communication member and the reader / writer and the communication distance between the non-facing communication member and the reader / writer are both set to be equal to or less than the wavelength of the electromagnetic wave for RFID emitted from the reader / writer,
When seen through from the overlapping direction, the partition member has an opening that is penetrated and removed in a notch shape or a slit shape so as to partially overlap the antenna of the facing communication member and the antenna of the non-facing communication member, respectively. A region is formed,
The open area prevents or suppresses generation of a demagnetizing field due to generation of an eddy current on the facing main surface of the partition member by an electromagnetic wave signal for RFID from a reader / writer, and is generated on the facing main surface. The non-facing surface is caused by an eddy current that propagates through the partition member and reaches the non-facing side main surface, or an eddy current that circulates outside the partitioning member and is generated on the non-facing side main surface among RFID electromagnetic wave signals from a reader / writer. By inhibiting the phenomenon of generating a magnetic field on the side main surface, the attenuation or shielding action of the partition member against electromagnetic waves is complemented, and only the facing communication member receives the electromagnetic wave signal for RFID from the reader / writer, and Non-contact short distance characterized by providing a function to send a response signal to a reader / writer and enabling individual transmission and reception of RFID electromagnetic wave signals Wireless communication card.
前記第一の通信部材に対向して配置され、所定の周波数帯域又は周波数範囲で前記第一の通信部材との非接触式近距離無線通信のみが可能な第一のリーダライタと、
前記第二の通信部材に対向して配置され、前記第一の通信部材と同一の周波数帯域又は周波数範囲で前記第二の通信部材との非接触式近距離無線通信のみが可能な第二のリーダライタとを備え、
前記第一の通信部材のICチップ本体に設けられた第一のデータ保存部に対し前記第一のリーダライタにより実行されるデータの読み取り又は書き込み動作と、前記第二の通信部材のICチップ本体に設けられた第二のデータ保存部に対し前記第二のリーダライタにより実行されるデータの読み取り又は書き込み動作とが並行して処理可能であることを特徴とするデータ並行処理システム。 The contactless near field communication card according to any one of claims 1 to 4,
A first reader / writer that is disposed opposite to the first communication member and capable of only non-contact short-range wireless communication with the first communication member in a predetermined frequency band or frequency range;
The second communication member arranged opposite to the second communication member and capable of only non-contact short-range wireless communication with the second communication member in the same frequency band or frequency range as the first communication member. With a reader / writer,
Data reading or writing operation executed by the first reader / writer with respect to a first data storage unit provided in the IC chip body of the first communication member, and the IC chip body of the second communication member A data parallel processing system characterized in that a data read or write operation executed by the second reader / writer can be processed in parallel with respect to a second data storage unit provided in the system.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018163319A JP6433008B1 (en) | 2018-08-31 | 2018-08-31 | Non-contact near field communication card and data parallel processing system using the same |
PCT/JP2018/043373 WO2019123985A1 (en) | 2017-12-22 | 2018-11-26 | Noncontact near-field communication card and data parallel processing system using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018163319A JP6433008B1 (en) | 2018-08-31 | 2018-08-31 | Non-contact near field communication card and data parallel processing system using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6433008B1 true JP6433008B1 (en) | 2018-12-05 |
JP2020035343A JP2020035343A (en) | 2020-03-05 |
Family
ID=64560691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018163319A Active JP6433008B1 (en) | 2017-12-22 | 2018-08-31 | Non-contact near field communication card and data parallel processing system using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6433008B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099122A (en) * | 2008-06-24 | 2009-05-07 | Taiyo:Kk | Non-contact ic card storage tool |
JP2010123051A (en) * | 2008-11-21 | 2010-06-03 | Hiroshi Saito | Non-contact ic card communication adjustment plate and non-contact ic card storage implement |
JP2012063933A (en) * | 2010-09-15 | 2012-03-29 | Omron Corp | Rfid tag |
-
2018
- 2018-08-31 JP JP2018163319A patent/JP6433008B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099122A (en) * | 2008-06-24 | 2009-05-07 | Taiyo:Kk | Non-contact ic card storage tool |
JP2010123051A (en) * | 2008-11-21 | 2010-06-03 | Hiroshi Saito | Non-contact ic card communication adjustment plate and non-contact ic card storage implement |
JP2012063933A (en) * | 2010-09-15 | 2012-03-29 | Omron Corp | Rfid tag |
Also Published As
Publication number | Publication date |
---|---|
JP2020035343A (en) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10783426B2 (en) | Dual-interface metal hybrid smartcard | |
EP3779795B1 (en) | Metal smart card with dual interface capability | |
US20150206047A1 (en) | Metal card with radio frequency (rf) transmission capability | |
JP4232474B2 (en) | Electronic equipment with communication function | |
US20150269477A1 (en) | Dual-interface hybrid metal smartcard with a booster antenna or coupling frame | |
US9786989B2 (en) | Antenna and portable electronic instrument for use in near field communication | |
US20170077589A1 (en) | Smart card constructions | |
EP2264645A1 (en) | Combi-card and communication system using the same | |
US20090159657A1 (en) | Contactless integrated circuit card system | |
WO2014113765A1 (en) | Metal card with radio frequency (rf) transmission capability | |
TW200905572A (en) | RFID tag mounting package and manufacturing method thereof | |
CN112154457B (en) | Vehicle identification device | |
US20100044442A1 (en) | Proximity identification card with optimally sized antenna and shielded label | |
JP6347437B1 (en) | Non-contact near field communication card and data parallel processing system using the same | |
JP6433008B1 (en) | Non-contact near field communication card and data parallel processing system using the same | |
JP4370841B2 (en) | Card holder | |
KR200434239Y1 (en) | Transportation card with double sided RF antenna | |
WO2019123985A1 (en) | Noncontact near-field communication card and data parallel processing system using same | |
JP5519495B2 (en) | Optimized reading method for visas with high-frequency transponders, adapted set of visas and documents containing them | |
ES2969889T3 (en) | Smart card with docking frame antenna | |
WO2018092897A1 (en) | Electromagnetic-coupling dual ic card and ic module | |
US20240104329A1 (en) | Assembly for shielding at least one radio-frequency chip and method for making the same | |
WO2012009776A1 (en) | Magnetic coupling antenna and system for exchanging data comprising the same | |
KR20240120991A (en) | RF device of metal material with bidirectional non-contact type payment function | |
KR102314729B1 (en) | Multi layer antenna module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180914 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180914 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180914 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20181009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181101 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6433008 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |