JP6432244B2 - Electrophotographic photosensitive member, process cartridge, and image forming apparatus - Google Patents

Electrophotographic photosensitive member, process cartridge, and image forming apparatus Download PDF

Info

Publication number
JP6432244B2
JP6432244B2 JP2014194186A JP2014194186A JP6432244B2 JP 6432244 B2 JP6432244 B2 JP 6432244B2 JP 2014194186 A JP2014194186 A JP 2014194186A JP 2014194186 A JP2014194186 A JP 2014194186A JP 6432244 B2 JP6432244 B2 JP 6432244B2
Authority
JP
Japan
Prior art keywords
group
general formula
integer
layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014194186A
Other languages
Japanese (ja)
Other versions
JP2016065956A (en
Inventor
佐々木 知也
知也 佐々木
額田 克己
克己 額田
廣瀬 英一
英一 廣瀬
侑子 岩舘
侑子 岩舘
賢志 梶原
賢志 梶原
竜輝 佐野
竜輝 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2014194186A priority Critical patent/JP6432244B2/en
Publication of JP2016065956A publication Critical patent/JP2016065956A/en
Application granted granted Critical
Publication of JP6432244B2 publication Critical patent/JP6432244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は、電子写真感光体、プロセスカートリッジ、及び画像形成装置に関するものである。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus.

電子写真感光体としては、強度を向上させる観点から、表面に保護層を設けることが提案されている。保護層を形成する材料系としては、例えば、有機−無機ハイブリッド材料によるもの(例えば特許文献1参照)、光硬化型アクリル系モノマーを含有する液を塗布し硬化した膜(例えば特許文献2参照)、炭素−炭素二重結合を有するモノマー、炭素−炭素二重結合を有する電荷輸送材料及び結着樹脂の混合物を熱又は光のエネルギーによってモノマーの炭素−炭素二重結合と前記電荷輸送材料の炭素−炭素二重結合とを反応させることにより形成した膜(例えば特許文献3参照)が開示されている。
また、同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を重合した化合物からなる膜が開示されている(例えば特許文献4参照)。また、連鎖重合性官能基を有する電荷輸送材料の重合物を保護層に使用する技術が開示されている(例えば特許文献5参照)。
As an electrophotographic photoreceptor, it has been proposed to provide a protective layer on the surface from the viewpoint of improving strength. As a material system for forming the protective layer, for example, an organic-inorganic hybrid material (see, for example, Patent Document 1) or a film obtained by applying and curing a liquid containing a photocurable acrylic monomer (see, for example, Patent Document 2) A mixture of a monomer having a carbon-carbon double bond, a charge transport material having a carbon-carbon double bond, and a binder resin by heat or light energy, and carbon of the charge transport material. A film formed by reacting with a carbon double bond (for example, see Patent Document 3) is disclosed.
Further, a film made of a compound obtained by polymerizing a hole transporting compound having two or more chain polymerizable functional groups in the same molecule is disclosed (for example, see Patent Document 4). In addition, a technique of using a polymer of a charge transport material having a chain polymerizable functional group for a protective layer is disclosed (for example, see Patent Document 5).

一方、保護層の形成に使用されるアクリル系材料は、硬化条件、硬化雰囲気等の影響を強く受けることから、例えば真空中又は不活性ガス中で放射線照射後に加熱されることによって形成された膜(例えば特許文献6参照)、不活性ガス中で加熱硬化された膜(例えば特許文献7参照)を保護層又は感光層に使用する技術が開示されている。
また、連鎖重合性基としてスチレン骨格が連結されている電荷輸送性化合物の架橋体が開示されている(例えば特許文献8〜12参照)。感光体表面が摩耗してもクリーニング性などを維持するために、感光体表面に環状ポリシランや環状ポリシロキサンを添加することが開示されている(例えば特許文献13、特許文献14参照)
On the other hand, since the acrylic material used for forming the protective layer is strongly affected by the curing conditions, curing atmosphere, etc., for example, a film formed by heating after irradiation with radiation in a vacuum or an inert gas. (For example, refer patent document 6), the technique which uses the film | membrane (for example refer patent document 7) heat-hardened in inert gas for a protective layer or a photosensitive layer is disclosed.
Moreover, the crosslinked body of the charge transportable compound by which the styrene skeleton was connected as a chain polymerizable group is disclosed (for example, refer patent documents 8-12). It is disclosed that cyclic polysilane or cyclic polysiloxane is added to the surface of the photoconductor in order to maintain cleaning properties even if the surface of the photoconductor is worn (see, for example, Patent Document 13 and Patent Document 14).

また、2官能以上の光イオン重合性化合物を重合、硬化させて得られる樹脂を表面層に含有させた電子写真感光体(例えば特許文献15参照)、少なくとも分子量1,000以上の環状ポリシロキサンを感光層に含有させた電子写真感光体(例えば特許文献16参照)が開示されている。   In addition, an electrophotographic photosensitive member containing a resin obtained by polymerizing and curing a bifunctional or higher functional photoionic polymerizable compound in the surface layer (see, for example, Patent Document 15), a cyclic polysiloxane having a molecular weight of 1,000 or more. An electrophotographic photoreceptor (for example, see Patent Document 16) contained in the photosensitive layer is disclosed.

特開2000−019749号公報JP 2000-019749 A 特開平5−40360号公報JP-A-5-40360 特開平5−216249号公報JP-A-5-216249 特開2000−206715号公報JP 2000-206715 A 特開2001−175016号公報JP 2001-175016 A 特開2004−12986号公報Japanese Patent Laid-Open No. 2004-12986 特開平7−72640号公報Japanese Patent Laid-Open No. 7-72640 特許第2546739号公報Japanese Patent No. 2546739 特許第2852464号公報Japanese Patent No. 2852464 特開2013−044818号公報JP 2013-044818 A 特開2013−060572号公報JP 2013-060572 A 特開2013−061640号公報JP 2013-061640 A 特許第4214113号公報Japanese Patent No. 4214113 特許第4322468号公報Japanese Patent No. 4322468 特許第2790382号公報Japanese Patent No. 2790382 特開2010−185955号公報JP 2010-185955 A

本発明の課題は、最表面層が、環状のケイ素含有化合物と、アルコキシシリル基を有する電荷輸送材料と、を含有する組成物の硬化膜で構成された場合に比べ、長期にわたり繰り返し画像形成しても、電子写真感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じることに起因して発生する画質差を抑制する電子写真感光体を提供することである。   The object of the present invention is to repeatedly form an image over a long period of time compared to the case where the outermost surface layer is composed of a cured film of a composition containing a cyclic silicon-containing compound and a charge transport material having an alkoxysilyl group. However, it is an object of the present invention to provide an electrophotographic photosensitive member that suppresses a difference in image quality caused by a difference between the worn state of the electrophotographic photosensitive member and the worn state of the cleaning blade.

上記課題は、以下の手段により解決される。即ち、
に係る発明は、
導電性基体と、前記導電性基体上に設けられた感光層と、を有し、
最表面層が、下記一般式(X)及び下記一般式(Y)で示される環状のケイ素含有化合物から選択される少なくとも1種と、1分子内に少なくとも1つの連鎖重合性官能基を有する電荷輸送材料と、を含有する組成物の硬化膜で構成された電子写真感光体である。
The above problem is solved by the following means. That is,
The invention according to < 1 >
A conductive substrate, and a photosensitive layer provided on the conductive substrate,
The outermost surface layer has at least one selected from cyclic silicon-containing compounds represented by the following general formula (X) and the following general formula (Y), and a charge having at least one chain polymerizable functional group in one molecule An electrophotographic photosensitive member comprising a cured film of a composition containing a transport material.

(一般式(X)中、A及びAは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、xは4以上12以下の整数を示す。複数あるA及びAはそれぞれ同一でも異なっていてもよい。) (In General Formula (X), A 1 and A 2 may be the same or different and each independently represents a hydrogen atom or a monovalent organic group, and x represents an integer of 4 or more and 12 or less. A certain A 1 and A 2 may be the same or different.

(一般式(Y)中、B及びBは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、yは2以上6以下の整数を示す。複数あるB及びBはそれぞれ同一でも異なっていてもよい。) (In General Formula (Y), B 1 and B 2 may be the same or different, and each independently represents a hydrogen atom or a monovalent organic group, and y represents an integer of 2 or more and 6 or less. B 1 and B 2 may be the same or different.)

に係る発明は、
前記一般式(X)中のA及びA、及び前記一般式(Y)中のB及びBが、それぞれ独立に、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のアラルキル基を示すに記載の電子写真感光体である。
The invention according to < 2 >
A 1 and A 2 in the general formula (X) and B 1 and B 2 in the general formula (Y) are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, Or it is an electrophotographic photoreceptor as described in < 1 > which shows a substituted or unsubstituted aralkyl group.

に係る発明は、
前記一般式(X)中のxが4以上10以下の整数を示す又はに記載の電子写真感光体である。
The invention according to < 3 >
The electrophotographic photosensitive member according to < 1 > or < 2 > , wherein x in the general formula (X) represents an integer of 4 or more and 10 or less.

に係る発明は、
前記一般式(Y)中のyが3以上6以下の整数を示すのいずれか1項に記載の電子写真感光体である。
The invention according to < 4 >
The electrophotographic photosensitive member according to any one of < 1 > to < 3 > , wherein y in the general formula (Y) represents an integer of 3 to 6.

に係る発明は、
前記連鎖重合性官能基の少なくとも1つが、アクリロイル基、メタクリロイル基、又はビニルフェニル基であるのいずれか1項に記載の電子写真感光体である。
The invention according to < 5 >
The electrophotographic photosensitive member according to any one of < 1 > to < 4 > , wherein at least one of the chain polymerizable functional groups is an acryloyl group, a methacryloyl group, or a vinylphenyl group.

に係る発明は、
前記電荷輸送材料が、下記一般式(I)及び下記一般式(II)で示される化合物から選択される少なくとも1種であるのいずれか1項に記載の電子写真感光体である。
The invention according to < 6 >
The electrophotographic photosensitive material according to any one of < 1 > to < 5 > , wherein the charge transport material is at least one selected from compounds represented by the following general formula (I) and the following general formula (II). Is the body.


(一般式(I)中、Fは、電荷輸送性骨格を示す。Lは、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む2価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。mは1以上8以下の整数を示す。)

(In general formula (I), F represents a charge transporting skeleton. L represents an alkylene group, an alkenylene group, —C (═O) —, —N (R) —, —S—, and —O—). And R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, and m represents an integer of 1 or more and 8 or less.)


(一般式(II)中、Fは、電荷輸送性骨格を示す。L’は、アルカン若しくはアルケンから誘導される3価又は4価の基、並びに、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。)

(In general formula (II), F represents a charge transporting skeleton. L ′ represents a trivalent or tetravalent group derived from an alkane or alkene, an alkylene group, an alkenylene group, —C (═O )-, -N (R)-, -S-, and -O-, and represents an (n + 1) -valent linking group containing two or more selected from the group consisting of -O-, where R represents a hydrogen atom, an alkyl group, an aryl A group or an aralkyl group, m ′ represents an integer of 1 to 6, and n represents an integer of 2 to 3.

に係る発明は、
導電性基体と、前記導電性基体上に設けられた感光層と、を有し、
最表面層が、下記一般式(X)で示される環状のケイ素含有化合物と、下記一般式(I)及び下記一般式(II)で示される電荷輸送材料から選択される少なくとも1種と、を含有する組成物の硬化膜で構成された電子写真感光体である。
The invention according to < 7 >
A conductive substrate, and a photosensitive layer provided on the conductive substrate,
The outermost surface layer is a cyclic silicon-containing compound represented by the following general formula (X), and at least one selected from charge transport materials represented by the following general formula (I) and the following general formula (II): It is an electrophotographic photosensitive member composed of a cured film of the contained composition.


(一般式(X)中、A及びAは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、xは4以上12以下の整数を示す。複数あるA及びAはそれぞれ同一でも異なっていてもよい。)

(In General Formula (X), A 1 and A 2 may be the same or different and each independently represents a hydrogen atom or a monovalent organic group, and x represents an integer of 4 or more and 12 or less. A certain A 1 and A 2 may be the same or different.


(一般式(I)中、Fは、電荷輸送性骨格を示す。Lは、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む2価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。mは1以上8以下の整数を示す。)

(In general formula (I), F represents a charge transporting skeleton. L represents an alkylene group, an alkenylene group, —C (═O) —, —N (R) —, —S—, and —O—). And R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, and m represents an integer of 1 or more and 8 or less.)


(一般式(II)中、Fは、電荷輸送性骨格を示す。L’は、アルカン若しくはアルケンから誘導される3価又は4価の基、並びに、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。)

(In general formula (II), F represents a charge transporting skeleton. L ′ represents a trivalent or tetravalent group derived from an alkane or alkene, an alkylene group, an alkenylene group, —C (═O )-, -N (R)-, -S-, and -O-, and represents an (n + 1) -valent linking group containing two or more selected from the group consisting of -O-, where R represents a hydrogen atom, an alkyl group, an aryl A group or an aralkyl group, m ′ represents an integer of 1 to 6, and n represents an integer of 2 to 3.

に係る発明は、
1〜のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に着脱するプロセスカートリッジである。
The invention according to < 8 >
< 1 > The electrophotographic photoreceptor according to any one of < 7 > ,
It is a process cartridge that can be attached to and detached from the image forming apparatus.

に係る発明は、
1〜のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備える画像形成装置である。
The invention according to < 9 >
< 1 >- < 7 > electrophotographic photoreceptor according to any one of the above,
Charging means for charging the surface of the electrophotographic photosensitive member;
An electrostatic latent image forming means for forming an electrostatic latent image on the surface of the charged electrophotographic photosensitive member;
Developing means for developing the electrostatic latent image formed on the surface of the electrophotographic photosensitive member with a developer containing toner to form a toner image;
Transfer means for transferring the toner image to the surface of the recording medium;
An image forming apparatus.

、又は>に係る発明によれば、最表面層が、環状のケイ素含有化合物と、アルコキシシリル基を有する電荷輸送材料と、を含有する組成物の硬化膜で構成された場合に比べ、長期にわたり繰り返し画像形成しても、電子写真感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じることに起因して発生する画質差を抑制する電子写真感光体が提供される。 According to the invention according to < 1 > , < 2 > , < 3 > , < 4 > , or < 5 > , the outermost surface layer comprises a cyclic silicon-containing compound and a charge transport material having an alkoxysilyl group. Compared to the case where it is composed of a cured film of the composition that contains it, even when images are formed repeatedly over a long period of time, the difference in image quality that occurs due to the difference in the wear state of the electrophotographic photoreceptor and the wear state of the cleaning blade An electrophotographic photoreceptor that suppresses the above is provided.

>に係る発明によれば、アクリロイル基、又はメタクリロイル基を有する電荷輸送材料を適用した場合に比べ、長期にわたり繰り返し画像形成しても、電子写真感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じることに起因して発生する画質差を抑制する電子写真感光体が提供される。 According to the invention according to < 6 >, the wear state of the electrophotographic photosensitive member and the wear state of the cleaning blade even when repeated image formation is performed over a long period of time as compared with the case where a charge transport material having an acryloyl group or a methacryloyl group is applied. There is provided an electrophotographic photosensitive member that suppresses the difference in image quality caused by the difference between the two.

>に係る発明によれば、環状のケイ素含有化合物として、一般式(Y)で示される環状のケイ素含有化合物を適用した場合に比べ、長期にわたり繰り返し画像形成しても、電子写真感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じることに起因して発生する画質差を抑制する電子写真感光体が提供される。 According to the invention according to < 7 > , an electrophotographic photoreceptor can be used even when repeated image formation is performed over a long period of time as compared with the case where the cyclic silicon-containing compound represented by the general formula (Y) is applied as the cyclic silicon-containing compound. There is provided an electrophotographic photosensitive member that suppresses a difference in image quality caused by a difference between the wear state of the toner and the wear state of the cleaning blade.

、又はに係る発明によれば、最表面層が、環状のケイ素含有化合物と、アルコキシシリル基を有する電荷輸送材料と、を含有する組成物の硬化膜で構成された電子写真感光体を適用した場合に比べ、長期にわたり繰り返し画像形成しても、電子写真感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じることに起因して発生する画質差を抑制するプロセスカートリッジ、又は画像形成装置が提供される。
According to the invention according to < 8 > or < 9 > , an electron whose outermost surface layer is composed of a cured film of a composition containing a cyclic silicon-containing compound and a charge transport material having an alkoxysilyl group. Process cartridge that suppresses the difference in image quality caused by the difference between the wear state of the electrophotographic photoreceptor and the wear state of the cleaning blade even when image formation is repeated over a long period of time compared to the case where a photographic photoreceptor is applied Alternatively, an image forming apparatus is provided.

本実施形態に係る電子写真感光体の層構成の一例を示す概略部分断面図である。1 is a schematic partial cross-sectional view illustrating an example of a layer configuration of an electrophotographic photoreceptor according to an exemplary embodiment. 本実施形態に係る電子写真感光体の層構成の他の一例を示す概略部分断面図である。FIG. 6 is a schematic partial cross-sectional view illustrating another example of the layer configuration of the electrophotographic photosensitive member according to the exemplary embodiment. 本実施形態に係る電子写真感光体の層構成の他の一例を示す概略部分断面図である。FIG. 6 is a schematic partial cross-sectional view illustrating another example of the layer configuration of the electrophotographic photosensitive member according to the exemplary embodiment. 本実施形態に係る画像形成装置の一例を示す概略構成図である。1 is a schematic configuration diagram illustrating an example of an image forming apparatus according to an exemplary embodiment. 本実施形態に係る画像形成装置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the image forming apparatus which concerns on this embodiment. 画質評価に用いた画像パターンを示す図である。It is a figure which shows the image pattern used for image quality evaluation.

以下、本発明の一例である本実施形態について説明する。   Hereinafter, the present embodiment which is an example of the present invention will be described.

(電子写真感光体)
本実施形態に係る電子写真感光体(以下、単に「感光体」と称することがある)は、導電性基体と、導電性基体上に設けられた感光層と、を有し、最表面層が、一般式(X)及び一般式(Y)で示される環状のケイ素含有化合物から選択される少なくとも1種(以下、「特定の環状ケイ素含有化合物」と称することがある)と、1分子内に少なくとも1つの連鎖重合性官能基を有する電荷輸送材料(以下、「特定の連鎖重合性電荷輸送材料」と称することがある)と、を含有する組成物の硬化膜で構成されている。
(Electrophotographic photoreceptor)
The electrophotographic photoreceptor according to the exemplary embodiment (hereinafter sometimes simply referred to as “photoreceptor”) includes a conductive substrate and a photosensitive layer provided on the conductive substrate, and the outermost surface layer is a surface layer. , At least one selected from cyclic silicon-containing compounds represented by the general formula (X) and the general formula (Y) (hereinafter sometimes referred to as “specific cyclic silicon-containing compound”), and within one molecule It comprises a cured film of a composition containing a charge transport material having at least one chain-polymerizable functional group (hereinafter sometimes referred to as “specific chain-polymerizable charge transport material”).

ここで、従来の感光体では、耐摩耗性、クリーニング性を向上させることを目的として、非硬化膜、又は硬化膜で構成される最表面層に環状のケイ素含有化合物を含有させることが知られている。しかしながら、最表面層に環状のケイ素含有化合物を含有させても、長期にわたり繰り返し使用(画像形成)すると、感光体の耐摩耗性は低下する傾向がある。具体的には、最表面層が非硬化膜で構成される場合、基質強度がそもそも不足するため、感光体の耐摩耗性は低下しやすい。一方、最表面層が、環状のケイ素含有化合物と共にシロキサン化合物を縮合させた硬化膜で構成される場合、最表面層に未反応のシラノールが残留する、又は縮合に必要な酸触媒により環状のケイ素含有化合物が分解することに起因して基質の化学的安定性が不十分になりやすい。これにより、長期にわたり繰り返し画像形成すると、感光体の耐摩耗性は低下しやすくなる。   Here, in the conventional photoreceptor, it is known that a cyclic silicon-containing compound is contained in the outermost surface layer composed of a non-cured film or a cured film for the purpose of improving wear resistance and cleaning properties. ing. However, even if the outermost surface layer contains a cyclic silicon-containing compound, if it is repeatedly used (image formation) for a long period of time, the wear resistance of the photoreceptor tends to decrease. Specifically, when the outermost surface layer is composed of a non-cured film, the substrate strength is insufficient in the first place, so that the wear resistance of the photoreceptor is likely to be lowered. On the other hand, when the outermost surface layer is composed of a cured film obtained by condensing a siloxane compound together with a cyclic silicon-containing compound, unreacted silanol remains on the outermost surface layer, or cyclic silicon is formed by an acid catalyst necessary for condensation. The chemical stability of the substrate tends to be insufficient due to decomposition of the contained compound. As a result, when images are formed repeatedly over a long period of time, the wear resistance of the photoreceptor tends to decrease.

一方、より長期にわたり感光体の耐摩耗性を向上させることを目的として、最表面層を、連鎖重合で硬化させた硬化膜で構成する感光体が知られている。この感光体を用いれば、長期にわたり感光体の耐摩耗性は向上する。しかしながら、感光体の耐摩耗性が向上する一方で、感光体を清掃するためのクリーニングブレードの耐摩耗性が低下しやすくなることがわかってきた。つまり、同じ画像を繰り返し形成すると、感光体の画像形成領域に相当する部分と、感光体の非画像形成領域に相当する部分との間で、感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じ、画質差が発生しやすくなることがわかってきた。   On the other hand, for the purpose of improving the wear resistance of the photoreceptor for a longer period, a photoreceptor having an outermost surface layer formed of a cured film cured by chain polymerization is known. When this photoreceptor is used, the wear resistance of the photoreceptor is improved over a long period of time. However, it has been found that the wear resistance of the cleaning blade for cleaning the photoconductor tends to be lowered while the wear resistance of the photoconductor is improved. That is, when the same image is repeatedly formed, there is a difference in the wear state of the photoconductor and the wear state of the cleaning blade between the portion corresponding to the image forming area of the photoconductor and the portion corresponding to the non-image forming area of the photoconductor. It has been found that image quality differences are likely to occur.

そこで、本実施形態では、最表面層を、特定の環状ケイ素含有化合物と、特定の連鎖重合性電荷輸送材料と、を含有する組成物の硬化膜で構成する。これにより、長期にわたり繰り返し画像形成しても、感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じることに起因して発生する画質差が抑制される。
この理由は、定かではないが、以下に示す理由によるものと考えられる。
本実施形態の最表面層は、上記特定の連鎖重合性電荷輸送材料を含有する組成物を連鎖重合させた硬化膜で構成されるため、最表面層は強固で化学的に安定な基質となりやすい。一方、特定の環状ケイ素含有化合物は、この強固で化学的に安定な基質中に分散されるため、硬化するときに分解されにくくなり、最表面層において環状のケイ素含有化合物が持つ潤滑性、撥水性及び離型性の本来の機能が発現されやすくなる。これにより、単に感光体の耐摩耗性が向上するだけでなく、クリーニングブレードの耐摩耗性も向上し、感光体の耐摩耗性及びクリーニングブレードの耐摩耗性の両立が図れることとなる。この結果、長期にわたり繰り返し画像形成しても、感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じにくくなり、画質差が抑制されることとなる。
Therefore, in the present embodiment, the outermost surface layer is composed of a cured film of a composition containing a specific cyclic silicon-containing compound and a specific chain polymerizable charge transport material. As a result, even when images are repeatedly formed over a long period of time, the difference in image quality caused by the difference between the worn state of the photoreceptor and the worn state of the cleaning blade is suppressed.
Although this reason is not certain, it is thought to be due to the following reasons.
Since the outermost surface layer of the present embodiment is composed of a cured film obtained by chain polymerization of the composition containing the specific chain polymerizable charge transport material, the outermost surface layer is likely to be a strong and chemically stable substrate. . On the other hand, the specific cyclic silicon-containing compound is dispersed in this strong and chemically stable substrate, so that it is difficult to be decomposed when cured, and the lubricity and repellency of the cyclic silicon-containing compound in the outermost surface layer. The original functions of aqueous and releasability are likely to be expressed. As a result, not only the wear resistance of the photoconductor is improved, but also the wear resistance of the cleaning blade is improved, so that both the wear resistance of the photoconductor and the wear resistance of the cleaning blade can be achieved. As a result, even if image formation is repeated over a long period of time, a difference between the wear state of the photoconductor and the wear state of the cleaning blade hardly occurs, and the difference in image quality is suppressed.

以下、本実施形態に係る電子写真感光体について図面を参照しつつ詳細に説明する。
図1は、本実施形態に係る電子写真感光体の一例を示す概略断面図である。図2、図3はそれぞれ本実施形態に係る電子写真感光体の他の一例を示す概略断面図である。
Hereinafter, the electrophotographic photoreceptor according to the exemplary embodiment will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of the electrophotographic photosensitive member according to the present embodiment. 2 and 3 are schematic cross-sectional views showing other examples of the electrophotographic photosensitive member according to this embodiment.

図1に示す電子写真感光体7Aは、いわゆる機能分離型感光体(又は積層型感光体)であり、導電性基体4上に下引層1が設けられ、その上に電荷発生層2、電荷輸送層3、及び保護層5が順次形成された構造を有するものである。電子写真感光体7Aにおいては、電荷発生層2及び電荷輸送層3により感光層が構成される。   An electrophotographic photoreceptor 7A shown in FIG. 1 is a so-called function-separated photoreceptor (or laminated photoreceptor), and an undercoat layer 1 is provided on a conductive substrate 4, on which a charge generation layer 2 and a charge are formed. The transport layer 3 and the protective layer 5 have a structure formed sequentially. In the electrophotographic photoreceptor 7A, the charge generation layer 2 and the charge transport layer 3 constitute a photosensitive layer.

図2に示す電子写真感光体7Bは、図1に示す電子写真感光体7Aのごとく、電荷発生層2と電荷輸送層3とに機能が分離された機能分離型感光体である。
図2に示す電子写真感光体7Bにおいては、導電性基体4上に下引層1が設けられ、その上に、電荷輸送層3、電荷発生層2、及び保護層5が順次形成された構造を有するものである。電子写真感光体7Bにおいては、電荷輸送層3及び電荷発生層2により感光層が構成される。
An electrophotographic photoreceptor 7B shown in FIG. 2 is a function-separated type photoreceptor in which the functions are separated into the charge generation layer 2 and the charge transport layer 3 like the electrophotographic photoreceptor 7A shown in FIG.
In the electrophotographic photoreceptor 7B shown in FIG. 2, a structure in which an undercoat layer 1 is provided on a conductive substrate 4, and a charge transport layer 3, a charge generation layer 2, and a protective layer 5 are sequentially formed thereon. It is what has. In the electrophotographic photoreceptor 7B, the charge transport layer 3 and the charge generation layer 2 constitute a photosensitive layer.

図3に示す電子写真感光体7Cは、電荷発生材料と電荷輸送材料とを同一の層(単層型感光層6)に含有するものである。図3に示す電子写真感光体7Cにおいては、導電性基体4上に下引層1が設けられ、その上に単層型感光層6、保護層5が順次形成された構造を有するものである。   The electrophotographic photoreceptor 7C shown in FIG. 3 contains a charge generation material and a charge transport material in the same layer (single layer type photosensitive layer 6). The electrophotographic photoreceptor 7C shown in FIG. 3 has a structure in which an undercoat layer 1 is provided on a conductive substrate 4, and a single-layer type photosensitive layer 6 and a protective layer 5 are sequentially formed thereon. .

そして、図1、図2及び図3に示す電子写真感光体7A、7B及び7Cにおいて、保護層5が、導電性基体4から最も遠い側に配置される最表面層となっている。本実施形態では、最表面層(保護層5)が、特定の環状ケイ素含有化合物と、特定の連鎖重合性電荷輸送材料と、を含有する組成物の硬化膜で構成される。
なお、図1、図2及び図3に示す電子写真感光体において、下引層1は設けてもよいし、設けなくてもよい。
In the electrophotographic photoreceptors 7A, 7B and 7C shown in FIGS. 1, 2 and 3, the protective layer 5 is the outermost surface layer disposed on the side farthest from the conductive substrate 4. In this embodiment, the outermost surface layer (protective layer 5) is composed of a cured film of a composition containing a specific cyclic silicon-containing compound and a specific chain polymerizable charge transport material.
In the electrophotographic photosensitive member shown in FIGS. 1, 2, and 3, the undercoat layer 1 may or may not be provided.

以下、代表例として図1に示す電子写真感光体7Aの各要素について説明する。なお。符号は省略して説明する。   Hereinafter, each element of the electrophotographic photoreceptor 7A shown in FIG. 1 will be described as a representative example. Note that. Reference numerals will be omitted.

(導電性基体)
導電性基体としては、例えば、金属(アルミニウム、銅、亜鉛、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等)又は合金(ステンレス鋼等)を含む金属板、金属ドラム、及び金属ベルト等が挙げられる。また、導電性基体としては、例えば、導電性化合物(例えば導電性ポリマー、酸化インジウム等)、金属(例えばアルミニウム、パラジウム、金等)又は合金を塗布、蒸着又はラミネートした紙、樹脂フィルム、ベルト等も挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
(Conductive substrate)
Examples of the conductive substrate include metal plates (eg, aluminum, copper, zinc, chromium, nickel, molybdenum, vanadium, indium, gold, platinum, etc.) or alloys (stainless steel, etc.), metal drums, metal belts, etc. Is mentioned. In addition, as the conductive substrate, for example, paper, resin film, belt, etc. coated, vapor-deposited or laminated with a conductive compound (for example, conductive polymer, indium oxide, etc.), metal (for example, aluminum, palladium, gold, etc.) or an alloy, etc. Also mentioned. Here, “conductive” means that the volume resistivity is less than 10 13 Ωcm.

導電性基体の表面は、電子写真感光体がレーザプリンタに使用される場合、レーザ光を照射する際に生じる干渉縞を抑制する目的で、中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化されていることが好ましい。なお、非干渉光を光源に用いる場合、干渉縞防止の粗面化は、特に必要ないが、導電性基体の表面の凹凸による欠陥の発生を抑制するため、より長寿命化に適する。   When the electrophotographic photosensitive member is used in a laser printer, the surface of the conductive substrate has a center line average roughness Ra of 0.04 μm or more and 0.5 μm for the purpose of suppressing interference fringes generated when laser light is irradiated. The surface is preferably roughened below. When non-interfering light is used as a light source, roughening for preventing interference fringes is not particularly required, but it is suitable for extending the life because it suppresses generation of defects due to irregularities on the surface of the conductive substrate.

粗面化の方法としては、例えば、研磨剤を水に懸濁させて導電性基体に吹き付けることによって行う湿式ホーニング、回転する砥石に導電性基体を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が挙げられる。   Examples of roughening methods include wet honing by suspending an abrasive in water and spraying the conductive substrate, centerless grinding in which the conductive substrate is pressed against a rotating grindstone, and grinding is performed continuously. And anodizing treatment.

粗面化の方法としては、導電性基体の表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、導電性基体の表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も挙げられる。   As a roughening method, without roughening the surface of the conductive substrate, conductive or semiconductive powder is dispersed in the resin to form a layer on the surface of the conductive substrate. The method of roughening by the particle | grains disperse | distributed in a layer is also mentioned.

陽極酸化による粗面化処理は、金属製(例えばアルミニウム製)の導電性基体を陽極とし電解質溶液中で陽極酸化することにより導電性基体の表面に酸化膜を形成するものである。電解質溶液としては、例えば、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、多孔質陽極酸化膜に対して、酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが好ましい。   In the roughening treatment by anodic oxidation, a metal (for example, aluminum) conductive substrate is used as an anode, and an oxide film is formed on the surface of the conductive substrate by anodizing in an electrolyte solution. Examples of the electrolyte solution include a sulfuric acid solution and an oxalic acid solution. However, the porous anodic oxide film formed by anodic oxidation is chemically active as it is, easily contaminated, and has a large resistance fluctuation due to the environment. Therefore, the pores of the oxide film are blocked by the volume expansion due to the hydration reaction in pressurized water vapor or boiling water (a metal salt such as nickel may be added) against the porous anodic oxide film, and more stable hydration oxidation It is preferable to perform a sealing treatment for changing to a product.

陽極酸化膜の膜厚は、例えば、0.3μm以上15μm以下が好ましい。この膜厚が上記範囲内にあると、注入に対するバリア性が発揮される傾向があり、また繰り返し使用による残留電位の上昇が抑えられる傾向にある。   The thickness of the anodized film is preferably, for example, 0.3 μm or more and 15 μm or less. When this film thickness is within the above range, the barrier property against implantation tends to be exhibited, and the increase in residual potential due to repeated use tends to be suppressed.

導電性基体には、酸性処理液による処理又はベーマイト処理を施してもよい。
酸性処理液による処理は、例えば、以下のようにして実施される。先ず、リン酸、クロム酸及びフッ酸を含む酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、例えば、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲がよい。処理温度は例えば42℃以上48℃以下が好ましい。被膜の膜厚は、0.3μm以上15μm以下が好ましい。
The conductive substrate may be treated with an acidic treatment liquid or boehmite treatment.
The treatment with the acidic treatment liquid is performed as follows, for example. First, an acidic treatment liquid containing phosphoric acid, chromic acid and hydrofluoric acid is prepared. The mixing ratio of phosphoric acid, chromic acid and hydrofluoric acid in the acidic treatment liquid is, for example, in the range of 10% by mass to 11% by mass of phosphoric acid, in the range of 3% by mass to 5% by mass of chromic acid, The concentration of these acids is preferably in the range of 13.5% by mass or more and 18% by mass or less. The treatment temperature is preferably 42 ° C. or higher and 48 ° C. or lower, for example. The film thickness is preferably from 0.3 μm to 15 μm.

ベーマイト処理は、例えば90℃以上100℃以下の純水中に5分から60分間浸漬すること、又は90℃以上120℃以下の加熱水蒸気に5分から60分間接触させて行う。被膜の膜厚は、0.1μm以上5μm以下が好ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。   The boehmite treatment is performed, for example, by immersing in pure water of 90 ° C. or higher and 100 ° C. or lower for 5 minutes to 60 minutes, or by contacting with heated steam of 90 ° C. or higher and 120 ° C. or lower for 5 minutes to 60 minutes. The film thickness is preferably 0.1 μm or more and 5 μm or less. This may be further anodized using an electrolyte solution with low film solubility such as adipic acid, boric acid, borate, phosphate, phthalate, maleate, benzoate, tartrate, citrate, etc. Good.

(下引層)
下引層は、例えば、無機粒子と結着樹脂とを含む層である。
(Undercoat layer)
The undercoat layer is, for example, a layer containing inorganic particles and a binder resin.

無機粒子としては、例えば、粉体抵抗(体積抵抗率)10Ωcm以上1011Ωcm以下の無機粒子が挙げられる。
これらの中でも、上記抵抗値を有する無機粒子としては、例えば、酸化錫粒子、酸化チタン粒子、酸化亜鉛粒子、酸化ジルコニウム粒子等の金属酸化物粒子がよく、特に、酸化亜鉛粒子が好ましい。
Examples of the inorganic particles include inorganic particles having a powder resistance (volume resistivity) of 10 2 Ωcm or more and 10 11 Ωcm or less.
Among these, as the inorganic particles having the resistance value, for example, metal oxide particles such as tin oxide particles, titanium oxide particles, zinc oxide particles, and zirconium oxide particles are preferable, and zinc oxide particles are particularly preferable.

無機粒子のBET法による比表面積は、例えば、10m/g以上がよい。
無機粒子の体積平均粒径は、例えば、50nm以上2000nm以下(好ましくは60nm以上1000nm以下)がよい。
The specific surface area of the inorganic particles by the BET method is preferably 10 m 2 / g or more, for example.
The volume average particle diameter of the inorganic particles is, for example, preferably from 50 nm to 2000 nm (preferably from 60 nm to 1000 nm).

無機粒子の含有量は、例えば、結着樹脂に対して、10質量%以上80質量%以下であることが好ましく、より好ましくは40質量%以上80質量%以下である。   For example, the content of the inorganic particles is preferably 10% by mass or more and 80% by mass or less, and more preferably 40% by mass or more and 80% by mass or less with respect to the binder resin.

無機粒子は、表面処理が施されていてもよい。無機粒子は、表面処理の異なるもの、又は、粒子径の異なるものを2種以上混合して用いてもよい。   The inorganic particles may be subjected to a surface treatment. Two or more inorganic particles having different surface treatments or particles having different particle diameters may be mixed and used.

表面処理剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、界面活性剤等が挙げられる。特に、シランカップリング剤が好ましく、アミノ基を有するシランカップリング剤がより好ましい。   Examples of the surface treatment agent include a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, and a surfactant. In particular, a silane coupling agent is preferable, and an amino group-containing silane coupling agent is more preferable.

アミノ基を有するシランカップリング剤としては、例えば、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン等が挙げられるが、これらに限定されるものではない。   Examples of the silane coupling agent having an amino group include 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (aminoethyl) -3-amino. Examples include, but are not limited to, propylmethyldimethoxysilane, N, N-bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, and the like.

シランカップリング剤は、2種以上混合して使用してもよい。例えば、アミノ基を有するシランカップリング剤と他のシランカップリング剤とを併用してもよい。この他のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられるが、これらに限定されるものではない。   Two or more silane coupling agents may be used in combination. For example, a silane coupling agent having an amino group and another silane coupling agent may be used in combination. Other silane coupling agents include, for example, vinyltrimethoxysilane, 3-methacryloxypropyl-tris (2-methoxyethoxy) silane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycol. Sidoxypropyltrimethoxysilane, vinyltriacetoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- ( Aminoethyl) -3-aminopropylmethyldimethoxysilane, N, N-bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, and the like, but are not limited thereto. It is not a thing.

表面処理剤による表面処理方法は、公知の方法であればいかなる方法でもよく、乾式法又は湿式法のいずれでもよい。   The surface treatment method using the surface treatment agent may be any method as long as it is a known method, and may be either a dry method or a wet method.

表面処理剤の処理量は、例えば、無機粒子に対して0.5質量%以上10質量%以下が好ましい。   The treatment amount of the surface treatment agent is preferably 0.5% by mass or more and 10% by mass or less with respect to the inorganic particles, for example.

ここで、下引層は、無機粒子と共に電子受容性化合物(アクセプター化合物)を含有することが、電気特性の長期安定性、キャリアブロック性が高まる観点からよい。   Here, the undercoat layer may contain an electron-accepting compound (acceptor compound) together with the inorganic particles from the viewpoint of enhancing the long-term stability of the electric characteristics and the carrier blocking property.

電子受容性化合物としては、例えば、クロラニル、ブロモアニル等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物;2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)−1,3,4オキサジアゾール等のオキサジアゾール系化合物;キサントン系化合物;チオフェン化合物;3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物;等の電子輸送性物質等が挙げられる。
特に、電子受容性化合物としては、アントラキノン構造を有する化合物が好ましい。アントラキノン構造を有する化合物としては、例えば、ヒドロキシアントラキノン化合物、アミノアントラキノン化合物、アミノヒドロキシアントラキノン化合物等が好ましく、具体的には、例えば、アントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が好ましい。
Examples of the electron accepting compound include quinone compounds such as chloranil and bromoanil; tetracyanoquinodimethane compounds; 2,4,7-trinitrofluorenone, 2,4,5,7-tetranitro-9-fluorenone, and the like. 2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, 2,5-bis (4-naphthyl) -1,3,4- Oxadiazole compounds such as oxadiazole and 2,5-bis (4-diethylaminophenyl) -1,3,4 oxadiazole; xanthone compounds; thiophene compounds; 3,3 ′, 5,5 ′ tetra- electron transporting substances such as diphenoquinone compounds such as t-butyldiphenoquinone;
In particular, the electron-accepting compound is preferably a compound having an anthraquinone structure. As the compound having an anthraquinone structure, for example, a hydroxyanthraquinone compound, an aminoanthraquinone compound, an aminohydroxyanthraquinone compound, and the like are preferable, and specifically, for example, anthraquinone, alizarin, quinizarin, anthralfin, and purpurin are preferable.

電子受容性化合物は、下引層中に無機粒子と共に分散して含まれていてもよいし、無機粒子の表面に付着した状態で含まれていてもよい。   The electron-accepting compound may be dispersed and included in the undercoat layer together with the inorganic particles, or may be included in a state of being attached to the surface of the inorganic particles.

電子受容性化合物を無機粒子の表面に付着させる方法としては、例えば、乾式法、又は、湿式法が挙げられる。   Examples of the method for attaching the electron accepting compound to the surface of the inorganic particles include a dry method and a wet method.

乾式法は、例えば、無機粒子をせん断力の大きなミキサ等で攪拌しながら、直接又は有機溶媒に溶解させた電子受容性化合物を滴下、乾燥空気や窒素ガスとともに噴霧させて、電子受容性化合物を無機粒子の表面に付着する方法である。電子受容性化合物の滴下又は噴霧するときは、溶剤の沸点以下の温度で行うことがよい。電子受容性化合物を滴下又は噴霧した後、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に制限されない。   In the dry method, for example, while stirring inorganic particles with a mixer having a large shearing force or the like, an electron-accepting compound dissolved directly or in an organic solvent is dropped and sprayed with dry air or nitrogen gas. It is a method of adhering to the surface of inorganic particles. When the electron-accepting compound is dropped or sprayed, it is preferably performed at a temperature not higher than the boiling point of the solvent. After dropping or spraying the electron-accepting compound, baking may be performed at 100 ° C. or higher. The baking is not particularly limited as long as it is a temperature and time for obtaining electrophotographic characteristics.

湿式法は、例えば、攪拌、超音波、サンドミル、アトライター、ボールミル等により、無機粒子を溶剤中に分散しつつ、電子受容性化合物を添加し、攪拌又は分散した後、溶剤除去して、電子受容性化合物を無機粒子の表面に付着する方法である。溶剤除去方法は、例えば、ろ過又は蒸留により留去される。溶剤除去後には、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に限定されない。湿式法においては、電子受容性化合物を添加する前に無機粒子の含有水分を除去してもよく、その例として溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法が挙げられる。   In the wet method, for example, an electron-accepting compound is added while dispersing inorganic particles in a solvent by stirring, ultrasonic waves, a sand mill, an attritor, a ball mill, etc., and after stirring or dispersing, the solvent is removed to remove electrons. This is a method of attaching a receptive compound to the surface of inorganic particles. The solvent removal method is distilled off by filtration or distillation, for example. After removing the solvent, baking may be performed at 100 ° C. or higher. The baking is not particularly limited as long as it is a temperature and time for obtaining electrophotographic characteristics. In the wet method, the water content of the inorganic particles may be removed before adding the electron-accepting compound. Examples thereof include a method of removing while stirring and heating in a solvent, and a method of removing by azeotropic distillation with a solvent. Can be mentioned.

なお、電子受容性化合物の付着は、表面処理剤による表面処理を無機粒子に施す前又は後に行ってよく、電子受容性化合物の付着と表面処理剤による表面処理と同時に行ってもよい。   The attachment of the electron-accepting compound may be performed before or after the surface treatment with the surface treatment agent is performed on the inorganic particles, or may be performed simultaneously with the attachment of the electron-accepting compound and the surface treatment with the surface treatment agent.

電子受容性化合物の含有量は、例えば、無機粒子に対して0.01質量%以上20質量%以下がよく、好ましくは0.01質量%以上10質量%以下である。   The content of the electron-accepting compound is, for example, from 0.01% by mass to 20% by mass with respect to the inorganic particles, and preferably from 0.01% by mass to 10% by mass.

下引層に用いる結着樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂、エポキシ樹脂等の公知の高分子化合物;ジルコニウムキレート化合物;チタニウムキレート化合物;アルミニウムキレート化合物;チタニウムアルコキシド化合物;有機チタニウム化合物;シランカップリング剤等の公知の材料が挙げられる。
下引層に用いる結着樹脂としては、例えば、電荷輸送性基を有する電荷輸送性樹脂、導電性樹脂(例えばポリアニリン等)等も挙げられる。
Examples of the binder resin used for the undercoat layer include acetal resins (eg, polyvinyl butyral), polyvinyl alcohol resins, polyvinyl acetal resins, casein resins, polyamide resins, cellulose resins, gelatin, polyurethane resins, polyester resins, and unsaturated polyesters. Resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate-maleic anhydride resin, silicone resin, silicone-alkyd resin, urea resin, phenol resin, phenol-formaldehyde resin, melamine resin, Known polymer compounds such as urethane resin, alkyd resin, epoxy resin; zirconium chelate compound; titanium chelate compound; aluminum chelate compound; titanium alkoxide compound ; Organic titanium compounds; known materials silane coupling agent, and the like.
Examples of the binder resin used for the undercoat layer include a charge transport resin having a charge transport group, a conductive resin (for example, polyaniline) and the like.

これらの中でも、下引層に用いる結着樹脂としては、上層の塗布溶剤に不溶な樹脂が好適であり、特に、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂等の熱硬化性樹脂;ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、メタクリル樹脂、アクリル樹脂、ポリビニルアルコール樹脂及びポリビニルアセタール樹脂からなる群から選択される少なくとも1種の樹脂と硬化剤との反応により得られる樹脂が好適である。
これら結着樹脂を2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。
Among these, as the binder resin used for the undercoat layer, a resin insoluble in the upper coating solvent is preferable, and in particular, a urea resin, a phenol resin, a phenol-formaldehyde resin, a melamine resin, a urethane resin, and an unsaturated polyester. Thermosetting resins such as resins, alkyd resins, and epoxy resins; at least one resin selected from the group consisting of polyamide resins, polyester resins, polyether resins, methacrylic resins, acrylic resins, polyvinyl alcohol resins, and polyvinyl acetal resins; Resins obtained by reaction with curing agents are preferred.
When these binder resins are used in combination of two or more, the mixing ratio is set as necessary.

下引層には、電気特性向上、環境安定性向上、画質向上のために種々の添加剤を含んでいてもよい。
添加剤としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が挙げられる。シランカップリング剤は前述のように無機粒子の表面処理に用いられるが、添加剤として更に下引層に添加してもよい。
The undercoat layer may contain various additives for improving electrical characteristics, improving environmental stability, and improving image quality.
Additives include known materials such as electron transport pigments such as polycyclic condensation systems and azo systems, zirconium chelate compounds, titanium chelate compounds, aluminum chelate compounds, titanium alkoxide compounds, organic titanium compounds, and silane coupling agents. It is done. The silane coupling agent is used for the surface treatment of the inorganic particles as described above, but may be further added to the undercoat layer as an additive.

添加剤としてのシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。   Examples of the silane coupling agent as the additive include vinyltrimethoxysilane, 3-methacryloxypropyl-tris (2-methoxyethoxy) silane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3- Glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropylmethylmethoxysilane, N, N-bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-chloropropyltrimethoxysilane and the like can be mentioned.

ジルコニウムキレート化合物としては、例えば、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。   Examples of the zirconium chelate compound include zirconium butoxide, zirconium zirconium acetoacetate, zirconium triethanolamine, acetylacetonate zirconium butoxide, ethyl acetoacetate butoxide, zirconium acetate, zirconium oxalate, zirconium lactate, zirconium phosphonate, zirconium octoate, Zirconium naphthenate, zirconium laurate, zirconium stearate, zirconium isostearate, methacrylate zirconium butoxide, stearate zirconium butoxide, isostearate zirconium butoxide and the like.

チタニウムキレート化合物としては、例えば、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。   Examples of the titanium chelate compound include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, titanium acetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, and titanium lactate ammonium salt. , Titanium lactate, titanium lactate ethyl ester, titanium triethanolamate, polyhydroxy titanium stearate and the like.

アルミニウムキレート化合物としては、例えば、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、ジエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。   Examples of the aluminum chelate compound include aluminum isopropylate, monobutoxy aluminum diisopropylate, aluminum butyrate, diethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate) and the like.

これらの添加剤は、単独で、又は複数の化合物の混合物若しくは重縮合物として用いてもよい。   These additives may be used alone or as a mixture or polycondensate of a plurality of compounds.

下引層は、ビッカース硬度が35以上であることがよい。
下引層の表面粗さ(十点平均粗さ)は、モアレ像抑制のために、使用される露光用レーザ波長λの1/4n(nは上層の屈折率)から1/2λまでに調整されていることがよい。
表面粗さ調整のために下引層中に樹脂粒子等を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が挙げられる。また、表面粗さ調整のために下引層の表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が挙げられる。
The undercoat layer preferably has a Vickers hardness of 35 or more.
The surface roughness (ten-point average roughness) of the undercoat layer is adjusted from 1 / 4n (n is the refractive index of the upper layer) to 1 / 2λ of the exposure laser wavelength λ used to suppress moire images. It should be done.
Resin particles or the like may be added to the undercoat layer for adjusting the surface roughness. Examples of the resin particles include silicone resin particles and cross-linked polymethyl methacrylate resin particles. Further, the surface of the undercoat layer may be polished for adjusting the surface roughness. Examples of the polishing method include buffing, sandblasting, wet honing, and grinding.

下引層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた下引層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。   There is no particular limitation on the formation of the undercoat layer, and a well-known formation method is used. For example, a coating film for forming an undercoat layer in which the above components are added to a solvent is formed, and the coating film is dried. And heating as necessary.

下引層形成用塗布液を調製するための溶剤としては、公知の有機溶剤、例えば、アルコール系溶剤、芳香族炭化水素溶剤、ハロゲン化炭化水素溶剤、ケトン系溶剤、ケトンアルコール系溶剤、エーテル系溶剤、エステル系溶剤等が挙げられる。
これらの溶剤として具体的には、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等の通常の有機溶剤が挙げられる。
Solvents for preparing the coating solution for forming the undercoat layer include known organic solvents such as alcohol solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ketone solvents, ketone alcohol solvents, ether solvents. Examples include solvents and ester solvents.
Specific examples of these solvents include methanol, ethanol, n-propanol, iso-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, Examples include ordinary organic solvents such as n-butyl acetate, dioxane, tetrahydrofuran, methylene chloride, chloroform, chlorobenzene, and toluene.

下引層形成用塗布液を調製するときの無機粒子の分散方法としては、例えば、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカー等の公知の方法が挙げられる。   Examples of the dispersion method of the inorganic particles when preparing the coating liquid for forming the undercoat layer include known methods such as a roll mill, a ball mill, a vibration ball mill, an attritor, a sand mill, a colloid mill, and a paint shaker.

下引層形成用塗布液を導電性基体上に塗布する方法としては、例えば、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。   Examples of the method for applying the coating liquid for forming the undercoat layer onto the conductive substrate include, for example, a blade coating method, a wire bar coating method, a spray coating method, a dip coating method, a bead coating method, an air knife coating method, and a curtain coating method. The usual methods, such as these, are mentioned.

下引層の膜厚は、例えば、好ましくは15μm以上、より好ましくは20μm以上50μm以下の範囲内に設定される。   The thickness of the undercoat layer is, for example, preferably set in the range of 15 μm or more, more preferably 20 μm or more and 50 μm or less.

(中間層)
図示は省略するが、下引層と感光層との間に中間層をさらに設けてもよい。
中間層は、例えば、樹脂を含む層である。中間層に用いる樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂等の高分子化合物が挙げられる。
中間層は、有機金属化合物を含む層であってもよい。中間層に用いる有機金属化合物としては、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素等の金属原子を含有する有機金属化合物等が挙げられる。
これらの中間層に用いる化合物は、単独で又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
(Middle layer)
Although illustration is omitted, an intermediate layer may be further provided between the undercoat layer and the photosensitive layer.
An intermediate | middle layer is a layer containing resin, for example. Examples of the resin used for the intermediate layer include an acetal resin (for example, polyvinyl butyral), polyvinyl alcohol resin, polyvinyl acetal resin, casein resin, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, Polymer compounds such as polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate-maleic anhydride resin, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, melamine resin, and the like can be given.
The intermediate layer may be a layer containing an organometallic compound. Examples of the organometallic compound used for the intermediate layer include organometallic compounds containing metal atoms such as zirconium, titanium, aluminum, manganese, and silicon.
The compounds used for these intermediate layers may be used alone or as a mixture or polycondensate of a plurality of compounds.

これらの中でも、中間層は、ジルコニウム原子又はケイ素原子を含有する有機金属化合物を含む層であることが好ましい。   Among these, the intermediate layer is preferably a layer containing an organometallic compound containing a zirconium atom or a silicon atom.

中間層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた中間層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
The formation of the intermediate layer is not particularly limited, and a well-known formation method is used. For example, a coating film of an intermediate layer forming coating solution in which the above components are added to a solvent is formed, and the coating film is dried and necessary. It is performed by heating according to.
As the coating method for forming the intermediate layer, usual methods such as a dip coating method, a push-up coating method, a wire bar coating method, a spray coating method, a blade coating method, a knife coating method, and a curtain coating method are used.

中間層の膜厚は、例えば、好ましくは0.1μm以上3μm以下の範囲に設定される。なお、中間層を下引層として使用してもよい。   For example, the thickness of the intermediate layer is preferably set in a range of 0.1 μm to 3 μm. An intermediate layer may be used as the undercoat layer.

(電荷発生層)
電荷発生層は、例えば、電荷発生材料と結着樹脂とを含む層である。また、電荷発生層は、電荷発生材料の蒸着層であってもよい。電荷発生材料の蒸着層は、LED(Light Emitting Diode)、有機EL(Electro−Luminescence)イメージアレー等の非干渉性光源を用いる場合に好適である。
(Charge generation layer)
The charge generation layer is, for example, a layer containing a charge generation material and a binder resin. The charge generation layer may be a vapor deposition layer of a charge generation material. The vapor-deposited layer of the charge generation material is suitable when an incoherent light source such as an LED (Light Emitting Diode) or an organic EL (Electro-Luminescence) image array is used.

電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料;ジブロモアントアントロン等の縮環芳香族顔料;ペリレン顔料;ピロロピロール顔料;フタロシアニン顔料;酸化亜鉛;三方晶系セレン等が挙げられる。   Examples of the charge generating material include azo pigments such as bisazo and trisazo; fused aromatic pigments such as dibromoanthanthrone; perylene pigments; pyrrolopyrrole pigments; phthalocyanine pigments; zinc oxide;

これらの中でも、近赤外域のレーザ露光に対応させるためには、電荷発生材料としては、金属フタロシアニン顔料、又は無金属フタロシアニン顔料を用いることが好ましい。具体的には、例えば、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン;特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン;特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン;特開平4−189873号公報等に開示されたチタニルフタロシアニンがより好ましい。   Among these, in order to cope with near-infrared laser exposure, it is preferable to use a metal phthalocyanine pigment or a metal-free phthalocyanine pigment as the charge generation material. Specifically, for example, hydroxygallium phthalocyanine disclosed in JP-A-5-263007, JP-A-5-279591, etc .; chlorogallium phthalocyanine disclosed in JP-A-5-98181; More preferred are dichlorotin phthalocyanines disclosed in JP-A No. 140472, JP-A No. 5-140473 and the like; and titanyl phthalocyanine disclosed in JP-A No. 4-189873.

一方、近紫外域のレーザ露光に対応させるためには、電荷発生材料としては、ジブロモアントアントロン等の縮環芳香族顔料;チオインジゴ系顔料;ポルフィラジン化合物;酸化亜鉛;三方晶系セレン;特開2004−78147号公報、特開2005−181992号公報に開示されたビスアゾ顔料等が好ましい。   On the other hand, in order to cope with laser exposure in the near-ultraviolet region, as the charge generation material, condensed aromatic pigments such as dibromoanthanthrone; thioindigo pigments; porphyrazine compounds; zinc oxide; trigonal selenium; Bisazo pigments and the like disclosed in 2004-78147 and JP-A-2005-181992 are preferred.

450nm以上780nm以下に発光の中心波長があるLED,有機ELイメージアレー等の非干渉性光源を用いる場合にも、上記電荷発生材料を用いてもよいが、解像度の観点より、感光層を20μm以下の薄膜で用いるときには、感光層中の電界強度が高くなり、基材からの電荷注入による帯電低下、いわゆる黒点と呼ばれる画像欠陥を生じやすくなる。これは、三方晶系セレン、フタロシアニン顔料等のp−型半導体で暗電流を生じやすい電荷発生材料を用いたときに顕著となる。   The above-described charge generation material may also be used in the case of using an incoherent light source such as an LED having a central wavelength of light emission of 450 nm to 780 nm and an organic EL image array, but from the viewpoint of resolution, the photosensitive layer is 20 μm or less. When the thin film is used, the electric field strength in the photosensitive layer is increased, and a charge reduction due to charge injection from the base material, so-called image defects called black spots are likely to occur. This becomes conspicuous when a charge generating material that easily generates a dark current is used in a p-type semiconductor such as trigonal selenium or a phthalocyanine pigment.

これに対し、電荷発生材料として、縮環芳香族顔料、ペリレン顔料、アゾ顔料等のn−型半導体を用いた場合、暗電流を生じ難く、薄膜にしても黒点と呼ばれる画像欠陥を抑制し得る。n−型の電荷発生材料としては、例えば、特開2012−155282号公報の段落[0288]〜[0291]に記載された化合物(CG−1)〜(CG−27)が挙げられるがこれに限られるものではない。
なお、n−型の判定は、通常使用されるタイムオブフライト法を用い、流れる光電流の極性によって判定され、正孔よりも電子をキャリアとして流しやすいものをn−型とする。
On the other hand, when an n-type semiconductor such as a condensed ring aromatic pigment, perylene pigment, azo pigment or the like is used as the charge generation material, dark current hardly occurs and even a thin film can suppress image defects called black spots. . Examples of the n-type charge generation material include compounds (CG-1) to (CG-27) described in paragraphs [0288] to [0291] of JP2012-155282A. It is not limited.
The n-type determination is performed by using a time-of-flight method that is usually used, and is determined by the polarity of the flowing photocurrent, and an n-type is more likely to flow electrons as carriers than holes.

電荷発生層に用いる結着樹脂としては、広範な絶縁性樹脂から選択され、また、結着樹脂としては、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。
結着樹脂としては、例えば、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。ここで、「絶縁性」とは、体積抵抗率が1013Ωcm以上であることをいう。
これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。
The binder resin used for the charge generation layer is selected from a wide range of insulating resins, and the binder resin is selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinyl anthracene, polyvinyl pyrene, and polysilane. You may choose.
As the binder resin, for example, polyvinyl butyral resin, polyarylate resin (polycondensate of bisphenol and aromatic divalent carboxylic acid, etc.), polycarbonate resin, polyester resin, phenoxy resin, vinyl chloride-vinyl acetate copolymer, Examples thereof include polyamide resin, acrylic resin, polyacrylamide resin, polyvinyl pyridine resin, cellulose resin, urethane resin, epoxy resin, casein, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, and the like. Here, “insulating” means that the volume resistivity is 10 13 Ωcm or more.
These binder resins are used singly or in combination of two or more.

なお、電荷発生材料と結着樹脂の配合比は、質量比で10:1から1:10までの範囲内であることが好ましい。   The mixing ratio of the charge generation material and the binder resin is preferably in the range of 10: 1 to 1:10 by mass ratio.

電荷発生層には、その他、周知の添加剤が含まれていてもよい。   In addition, the charge generation layer may contain a known additive.

電荷発生層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷発生層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。なお、電荷発生層の形成は、電荷発生材料の蒸着により行ってもよい。電荷発生層の蒸着による形成は、特に、電荷発生材料として縮環芳香族顔料、ペリレン顔料を利用する場合に好適である。   The formation of the charge generation layer is not particularly limited, and a known formation method is used. For example, a coating film of a charge generation layer forming coating solution in which the above components are added to a solvent is formed, and the coating film is dried. And heating as necessary. The charge generation layer may be formed by vapor deposition of a charge generation material. Formation of the charge generation layer by vapor deposition is particularly suitable when a condensed ring aromatic pigment or perylene pigment is used as the charge generation material.

電荷発生層形成用塗布液を調製するための溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等が挙げられる。これら溶剤は、1種を単独で又は2種以上を混合して用いる。   Solvents for preparing the charge generation layer forming coating solution include methanol, ethanol, n-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, n-acetate. -Butyl, dioxane, tetrahydrofuran, methylene chloride, chloroform, chlorobenzene, toluene and the like. These solvents are used alone or in combination of two or more.

電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式等が挙げられる。
なお、この分散の際、電荷発生層形成用塗布液中の電荷発生材料の平均粒径を0.5μm以下、好ましくは0.3μm以下、更に好ましくは0.15μm以下にすることが有効である。
Examples of a method for dispersing particles (for example, a charge generation material) in a coating solution for forming a charge generation layer include, for example, a media disperser such as a ball mill, a vibrating ball mill, an attritor, a sand mill, a horizontal sand mill, a stirring, an ultrasonic disperser, etc. Medialess dispersers such as roll mills and high-pressure homogenizers are used. Examples of the high-pressure homogenizer include a collision method in which a dispersion liquid is dispersed by liquid-liquid collision or liquid-wall collision in a high pressure state, and a penetration method in which a fine flow path is dispersed in a high pressure state.
In this dispersion, it is effective that the average particle size of the charge generation material in the coating solution for forming the charge generation layer is 0.5 μm or less, preferably 0.3 μm or less, more preferably 0.15 μm or less. .

電荷発生層形成用塗布液を下引層上(又は中間層上)に塗布する方法としては、例えばブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。   Examples of methods for applying the charge generation layer forming coating solution on the undercoat layer (or on the intermediate layer) include blade coating, wire bar coating, spray coating, dip coating, bead coating, and air knife coating. And usual methods such as a curtain coating method.

電荷発生層の膜厚は、例えば、好ましくは0.1μm以上5.0μm以下、より好ましくは0.2μm以上2.0μm以下の範囲内に設定される。   The film thickness of the charge generation layer is, for example, preferably set in the range of 0.1 μm to 5.0 μm, more preferably 0.2 μm to 2.0 μm.

(電荷輸送層)
電荷輸送層は、例えば、電荷輸送材料と結着樹脂とを含む層である。電荷輸送層は、高分子電荷輸送材料を含む層であってもよい。
(Charge transport layer)
The charge transport layer is, for example, a layer containing a charge transport material and a binder resin. The charge transport layer may be a layer containing a polymer charge transport material.

電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン等のフルオレノン化合物;キサントン系化合物;ベンゾフェノン系化合物;シアノビニル系化合物;エチレン系化合物等の電子輸送性化合物が挙げられる。電荷輸送材料としては、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等の正孔輸送性化合物も挙げられる。これらの電荷輸送材料は1種を単独で又は2種以上で用いられるが、これらに限定されるものではない。   Examples of charge transport materials include quinone compounds such as p-benzoquinone, chloranil, bromanyl and anthraquinone; tetracyanoquinodimethane compounds; fluorenone compounds such as 2,4,7-trinitrofluorenone; xanthone compounds; benzophenone compounds A cyanovinyl compound; an electron transporting compound such as an ethylene compound; Examples of the charge transporting material include hole transporting compounds such as triarylamine compounds, benzidine compounds, arylalkane compounds, aryl-substituted ethylene compounds, stilbene compounds, anthracene compounds, and hydrazone compounds. These charge transport materials may be used alone or in combination of two or more, but are not limited thereto.

電荷輸送材料としては、電荷移動度の観点から、下記構造式(a−1)で示されるトリアリールアミン誘導体、及び下記構造式(a−2)で示されるベンジジン誘導体が好ましい。   As the charge transport material, from the viewpoint of charge mobility, a triarylamine derivative represented by the following structural formula (a-1) and a benzidine derivative represented by the following structural formula (a-2) are preferable.

構造式(a−1)中、ArT1、ArT2、及びArT3は、各々独立に置換若しくは無置換のアリール基、−C−C(RT4)=C(RT5)(RT6)、又は−C−CH=CH−CH=C(RT7)(RT8)を示す。RT4、RT5、RT6、RT7、及びRT8は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
In Structural Formula (a-1), Ar T1 , Ar T2 , and Ar T3 are each independently a substituted or unsubstituted aryl group, —C 6 H 4 —C (R T4 ) ═C (R T5 ) (R T6), or -C 6 H 4 -CH = CH- CH = C (R T7) shows the (R T8). R T4 , R T5 , R T6 , R T7 , and R T8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
Examples of the substituent for each group include a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. Examples of the substituent of each group also include a substituted amino group substituted with an alkyl group having 1 to 3 carbon atoms.

構造式(a−2)中、RT91及びRT92は各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、又は炭素数1以上5以下のアルコキシ基を示す。RT101、RT102、RT111及びRT112は各々独立に、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、炭素数1以上2以下のアルキル基で置換されたアミノ基、置換若しくは無置換のアリール基、−C(RT12)=C(RT13)(RT14)、又は−CH=CH−CH=C(RT15)(RT16)を示し、RT12、RT13、RT14、RT15及びRT16は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を表す。Tm1、Tm2、Tn1及びTn2は各々独立に0以上2以下の整数を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
In Structural Formula (a-2), R T91 and R T92 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. R T101 , R T102 , R T111 and R T112 are each independently substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkyl group having 1 to 2 carbon atoms. A substituted amino group, a substituted or unsubstituted aryl group, —C (R T12 ) ═C (R T13 ) (R T14 ), or —CH═CH— CH═C (R T15 ) (R T16 ), R T12 , R T13 , R T14 , R T15 and R T16 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group. Tm1, Tm2, Tn1, and Tn2 each independently represent an integer of 0 or more and 2 or less.
Examples of the substituent for each group include a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. Examples of the substituent of each group also include a substituted amino group substituted with an alkyl group having 1 to 3 carbon atoms.

ここで、構造式(a−1)で示されるトリアリールアミン誘導体、及び前記構造式(a−2)で示されるベンジジン誘導体のうち、特に、「−C−CH=CH−CH=C(RT7)(RT8)」を有するトリアリールアミン誘導体、及び「−CH=CH−CH=C(RT15)(RT16)」を有するベンジジン誘導体が、電荷移動度の観点で好ましい。 Here, among the triarylamine derivative represented by the structural formula (a-1) and the benzidine derivative represented by the structural formula (a-2), in particular, “—C 6 H 4 —CH═CH—CH═ Triarylamine derivatives having “C (R T7 ) (R T8 )” and benzidine derivatives having “—CH═CH— CH═C (R T15 ) (R T16 )” are preferable from the viewpoint of charge mobility.

高分子電荷輸送材料としては、ポリ−N−ビニルカルバゾール、ポリシラン等の電荷輸送性を有する公知のものが用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系の高分子電荷輸送材は特に好ましい。なお、高分子電荷輸送材料は、単独で使用してよいが、結着樹脂と併用してもよい。   As the polymer charge transporting material, known materials having charge transporting properties such as poly-N-vinylcarbazole and polysilane are used. In particular, polyester-based polymer charge transport materials disclosed in JP-A-8-176293, JP-A-8-208820 and the like are particularly preferable. The polymer charge transport material may be used alone or in combination with a binder resin.

電荷輸送層に用いる結着樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーンアルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等が挙げられる。これらの中でも、結着樹脂としては、ポリカーボネート樹脂又はポリアリレート樹脂が好適である。特に、結着樹脂としては、ポリカーボネート樹脂がよく、具体的にはFeders法で算出した溶解度パラメーターが11.40以上11.75以下であるポリカーボネート共重合体であることがよい。これらの結着樹脂は1種を単独で又は2種以上で用いる。
なお、電荷輸送材料と結着樹脂との配合比は、質量比で10:1から1:5までが好ましい。
The binder resin used for the charge transport layer is polycarbonate resin, polyester resin, polyarylate resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, styrene-butadiene copolymer, Vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly-N -Vinylcarbazole, polysilane, etc. are mentioned. Among these, as the binder resin, a polycarbonate resin or a polyarylate resin is preferable. In particular, the binder resin is preferably a polycarbonate resin, and specifically, a polycarbonate copolymer having a solubility parameter calculated by the Feders method of 11.40 or more and 11.75 or less. These binder resins are used alone or in combination of two or more.
The mixing ratio of the charge transport material and the binder resin is preferably 10: 1 to 1: 5 by mass ratio.

電荷輸送層には、その他、周知の添加剤が含まれていてもよい。   In addition, the charge transport layer may contain a known additive.

電荷輸送層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷輸送層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。   The formation of the charge transport layer is not particularly limited, and a known formation method is used. For example, a coating film of a charge transport layer forming coating solution in which the above components are added to a solvent is formed, and the coating film is dried. This is done by heating as necessary.

電荷輸送層形成用塗布液を調製するための溶剤としては、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類;アセトン、2−ブタノン等のケトン類;塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素類;テトラヒドロフラン、エチルエーテル等の環状又は直鎖状のエーテル類等の通常の有機溶剤が挙げられる。これら溶剤は、単独で又は2種以上混合して用いる。   Solvents for preparing the coating solution for forming the charge transport layer include aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; ketones such as acetone and 2-butanone; methylene chloride, chloroform and ethylene chloride. Halogenated aliphatic hydrocarbons: Usual organic solvents such as cyclic or linear ethers such as tetrahydrofuran and ethyl ether. These solvents are used alone or in combination of two or more.

電荷輸送層形成用塗布液を電荷発生層の上に塗布する際の塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。   Coating methods for applying the charge transport layer forming coating solution on the charge generation layer include blade coating method, wire bar coating method, spray coating method, dip coating method, bead coating method, air knife coating method, curtain A usual method such as a coating method may be mentioned.

電荷輸送層の膜厚は、例えば、好ましくは5μm以上50μm以下、より好ましくは10μm以上30μm以下の範囲内に設定される。   The thickness of the charge transport layer is, for example, preferably set in the range of 5 μm to 50 μm, more preferably 10 μm to 30 μm.

(保護層)
保護層は、感光体における最表面層であり、特定の環状ケイ素含有化合物と、特定の連鎖重合性電荷輸送材料と、を含有する組成物の硬化膜で構成されている。つまり、保護層(最表面層)は、特定の環状ケイ素含有化合物と、特定の連鎖重合性電荷輸送材料の重合体又は架橋体と、を含む。
(Protective layer)
The protective layer is the outermost surface layer of the photoreceptor, and is composed of a cured film of a composition containing a specific cyclic silicon-containing compound and a specific chain polymerizable charge transport material. That is, the protective layer (outermost surface layer) includes a specific cyclic silicon-containing compound and a polymer or a crosslinked product of a specific chain-polymerizable charge transport material.

―特定の環状ケイ素含有化合物―
保護層(最表面層)は、特定の環状ケイ素含有化合物を含む。具体的に、保護層は、下記一般式(X)で示される環状のポリシラン化合物(以下、「特定の環状ポリシラン化合物」と称することもある)、及び下記一般式(Y)で示される環状のシロキサン化合物(以下、「特定の環状シロキサン化合物」と称することもある)から選択される少なくとも1種を含む。
―Specific cyclic silicon-containing compounds―
The protective layer (outermost surface layer) contains a specific cyclic silicon-containing compound. Specifically, the protective layer includes a cyclic polysilane compound represented by the following general formula (X) (hereinafter also referred to as “specific cyclic polysilane compound”) and a cyclic polysilane compound represented by the following general formula (Y). It contains at least one selected from siloxane compounds (hereinafter sometimes referred to as “specific cyclic siloxane compounds”).

一般式(X)中、A及びAは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、xは4以上12以下の整数を示す。複数あるA及びAはそれぞれ異なっていてもよい。 In general formula (X), A 1 and A 2 may be the same or different and each independently represents a hydrogen atom or a monovalent organic group, and x represents an integer of 4 or more and 12 or less. A plurality of A 1 and A 2 may be different from each other.

一般式(Y)中、B及びBは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、yは2以上6以下の整数を示す。複数あるB及びBはそれぞれ異なっていてもよい。 In general formula (Y), B 1 and B 2 may be the same or different, and each independently represents a hydrogen atom or a monovalent organic group, and y represents an integer of 2 or more and 6 or less. A plurality of B 1 and B 2 may be different from each other.

ここで、一般式(X)で示される特定の環状ポリシラン化合物について説明する。
一般式(X)中のA及びAは、水素原子、又は1価の有機基である。一般式(X)中のA及びAが示す1価の有機基の炭素数は、電子写真特性が損なわなければ特に制限されないが、各々1以上20以下が好ましく、1以上10以下がより好ましい。A及びAの炭素数を各々1以上20以下とすることにより、保護層形成用塗布液中、及び保護層中での他の成分との相溶性が向上しやすくなる。
Here, the specific cyclic polysilane compound represented by the general formula (X) will be described.
A 1 and A 2 in the general formula (X) are a hydrogen atom or a monovalent organic group. The number of carbon atoms of the monovalent organic group represented by A 1 and A 2 in the general formula (X) is not particularly limited as long as the electrophotographic characteristics are not impaired, but is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less. preferable. By setting the number of carbon atoms of A 1 and A 2 to 1 or more and 20 or less, compatibility with other components in the coating liquid for forming the protective layer and in the protective layer is easily improved.

1価の有機基としては、例えば、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基が挙げられる。
アルキル基としては、炭素数1以上20以下(好ましくは炭素数1以上10以下)のアルキル基が挙げられる。アルキル基は、直鎖状、分岐状又は環状のいずれでもよいが、直鎖状又は分岐状が好ましい。アルキル基に置換する置換基としては、ハロゲン原子(例えば、フッ素原子)、アルコキシ基等が挙げられる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、フルオロアルキル基、2−メトキシエチル基、2−フェノキシエチル基等が挙げられる。
アリール基としては、炭素数5以上12以下(好ましくは炭素数6以上10以下)のアリール基が挙げられる。アリール基に置換する置換基としては、ハロゲン原子(例えば、フッ素原子)、直鎖状若しくは分岐状のアルキル基、アルコキシ基等が挙げられる。アリール基の具体例としては、フェニル基、メチルフェニル基(トリル基)、ジメチルフェニル基、ナフチル基、ビフェニル基、メトキシフェニル基、ペンタフルオロフェニル基、(トリフルオロメチル)フェニル基等が挙げられる。
アラルキル基としては、炭素数6以上20以下(好ましくは炭素数7以上14以下)のアラルキル基が挙げられる。アラルキル基に置換する置換基としては、ハロゲン原子(例えば、フッ素原子)、直鎖状若しくは分岐状のアルキル基、アルコキシ基等が挙げられる。アラルキル基の具体例としては、ベンジル基、メチルベンジル基、ジメチルベンジル基、フェニルエチル基、メチルフェニルエチル基、フェニルプロピル基、フェニルブチル基等が挙げられる。
Examples of the monovalent organic group include a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted aralkyl group.
Examples of the alkyl group include alkyl groups having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms). The alkyl group may be linear, branched or cyclic, but is preferably linear or branched. Examples of the substituent substituted on the alkyl group include a halogen atom (for example, a fluorine atom), an alkoxy group and the like. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, fluoroalkyl group, 2-methoxyethyl group, 2-phenoxyethyl group and the like.
Examples of the aryl group include aryl groups having 5 to 12 carbon atoms (preferably 6 to 10 carbon atoms). Examples of the substituent substituted on the aryl group include a halogen atom (for example, a fluorine atom), a linear or branched alkyl group, and an alkoxy group. Specific examples of the aryl group include phenyl group, methylphenyl group (tolyl group), dimethylphenyl group, naphthyl group, biphenyl group, methoxyphenyl group, pentafluorophenyl group, (trifluoromethyl) phenyl group and the like.
Examples of the aralkyl group include aralkyl groups having 6 to 20 carbon atoms (preferably 7 to 14 carbon atoms). Examples of the substituent substituted on the aralkyl group include a halogen atom (for example, a fluorine atom), a linear or branched alkyl group, and an alkoxy group. Specific examples of the aralkyl group include benzyl group, methylbenzyl group, dimethylbenzyl group, phenylethyl group, methylphenylethyl group, phenylpropyl group, phenylbutyl group and the like.

また、保護層形成のための組成物(以下、「保護層形成用塗布液」と称することがある)中、及び保護層中での他の成分との相溶性、安定性、及び潤滑性を高める観点から、一般式(X)中のA及びAは、それぞれ独立に、置換若しくは無置換のアルキル基(具体的には、例えば、直鎖状若しくは分岐状の無置換のアルキル基、直鎖状若しくは分岐状のフルオロアルキル基)、置換若しくは無置換のアリール基、又は置換若しくは無置換のアラルキル基であることが好ましい。さらに、直鎖状の無置換のアルキル基、直鎖状のフルオロアルキル基、置換若しくは無置換のアリール基であることがより好ましい。特に、化合物安定性の観点から、A及びAの少なくとも一方は、置換若しくは無置換のアリール基であることが好ましい。なお、アルキル基としては、メチル基、フルオロメチル基が好ましく、アリール基として、フェニル基、トリル基が好ましい。 Also, compatibility with the other components in the composition for forming the protective layer (hereinafter sometimes referred to as “coating liquid for forming the protective layer”) and other components in the protective layer, stability, and lubricity. From the viewpoint of enhancing, A 1 and A 2 in the general formula (X) are each independently a substituted or unsubstituted alkyl group (specifically, for example, a linear or branched unsubstituted alkyl group, A linear or branched fluoroalkyl group), a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group. Furthermore, it is more preferably a linear unsubstituted alkyl group, a linear fluoroalkyl group, or a substituted or unsubstituted aryl group. In particular, from the viewpoint of compound stability, at least one of A 1 and A 2 is preferably a substituted or unsubstituted aryl group. The alkyl group is preferably a methyl group or a fluoromethyl group, and the aryl group is preferably a phenyl group or a tolyl group.

また、一般式(X)中のxは、4以上12以下の整数であり、上記特定の環状ポリシラン化合物を保護層形成用塗布液中、保護層中に安定に保持しやすくする観点から、4以上10以下が好ましく、5以上8以下がより好ましい。
一般式(X)中のx個の繰り返し単位は必ずしも同一である必要はなく、A及びAが異なる2種以上の繰り返し単位により特定の環状ポリシラン化合物が構成されていてもよい。また、繰り返し単位が2種以上である場合、特定の環状ポリシラン化合物はブロック共重合体、ランダム共重合体のいずれであってもよい。
Further, x in the general formula (X) is an integer of 4 or more and 12 or less, and from the viewpoint of easily holding the specific cyclic polysilane compound in the protective layer in the protective layer forming coating solution, 4 It is preferably 10 or less and more preferably 5 or more and 8 or less.
The x repeating units in the general formula (X) are not necessarily the same, and a specific cyclic polysilane compound may be constituted by two or more repeating units in which A 1 and A 2 are different. Moreover, when there are two or more repeating units, the specific cyclic polysilane compound may be either a block copolymer or a random copolymer.

特定の環状ポリシラン化合物の製造方法としては、種々の公知な方法を用いて調製できる。これらの特定の環状ポリシラン化合物を製造するには、例えば、特定の構造単位を有するケイ素含有モノマーを原料として、マグネシウムを還元剤としてハロシラン類を脱ハロゲン縮重合させる方法(「マグネシウム還元法」、WO98/29476号公報など);アルカリ金属の存在下でハロシラン類を脱ハロゲン縮重合させる方法(「キッピング法」、J.Am.Chem.Soc.,110,124(1988)、Macromolecules,23,3423(1990)など);電極還元によりハロシラン類を脱ハロゲン縮重合させる方法(J.Chem.Soc.,Chem.Commun.,1161(1990)、J.Chem.Soc.,Chem.Commun.897(1992)など);金属触媒の存在下にヒドラジン類を脱水素縮重合させる方法( 特開平4−334551 号公報など);ビフェニルなどで架橋されたジシレンのアニオン重合による方法(Macromolecules,23,4494(1990)など);環状シラン類の開環重合による方法などの方法;が挙げられる。さらに詳細には、特許第4214113号公報の段落[0116]〜段落[0117]に記載されている。   As a method for producing a specific cyclic polysilane compound, various known methods can be used. In order to produce these specific cyclic polysilane compounds, for example, a method of dehalogenating polycondensation of halosilanes using magnesium as a reducing agent from a silicon-containing monomer having a specific structural unit (“magnesium reduction method”, WO 98 No. 29,476, etc.); a method of dehalogenating polycondensation of halosilanes in the presence of an alkali metal (“Kipping method”, J. Am. Chem. Soc., 110, 124 (1988), Macromolecules, 23, 3423 ( 1990) and the like; a method of dehalogenating polycondensation of halosilanes by electrode reduction (J. Chem. Soc., Chem. Commun., 1161 (1990), J. Chem. Soc., Chem. Commun. 897 (1992)). In the presence of a metal catalyst A method of dehydrogenating polycondensation of gins (JP-A-4-334551 etc.); a method by anionic polymerization of disilene crosslinked with biphenyl (Macromolecules, 23, 4494 (1990), etc.); ring opening of cyclic silanes And a method such as a method by polymerization. Further details are described in paragraphs [0116] to [0117] of Japanese Patent No. 4214113.

上記特定の環状ポリシラン化合物としては、具体的には、オクタメチルシクロテトラシラン、オクタ(トリフルオロメチル)シクロテトラシラン、オクタフェニルシクロテトラシラン、1,2,3,4−テトラメチルー1,2,3,4−テトラフェニルシクロテトラシラン、デカメチルシクロペンタシラン、デカ(トリフルオロメチル)シクロペンタシラン、デカフェニルシクロペンタシラン、デカ(p−トリル)シクロペンタシラン、1,2,3,4、5−ペンタメチルー1,2,3,4、5−ペンタフェニルシクロペンタシラン((メチル,フェニル)シクロペンタシラン)、ドデカメチルシクロヘキサシラン、ドデカ(トリフルオロメチル)シクロヘキサシラン、ドデカフェニルシクロヘキサシラン、1,2,3,4、5、6−ヘキサメチルー1,2,3,4、5、6−ヘキサフェニルシクロヘキサシラン、トリデカメチルシクロヘプタシラン、トリデカ(トリフルオロメチル)シクロヘプタシラン、トリデカフェニルシクロヘプタシラン、1,2,3,4、5、6、7−ヘプタメチルー1,2,3,4、5、6,7−ヘプタフェニルシクロヘプタシラン、ヘキサデカフェニルシクロオクタシラン等が挙げられる。これらの特定の環状ポリシラン化合物は1種を単独で又は2種以上を混合して用いてもよい。   Specific examples of the specific cyclic polysilane compound include octamethylcyclotetrasilane, octa (trifluoromethyl) cyclotetrasilane, octaphenylcyclotetrasilane, 1,2,3,4-tetramethyl-1,2,3. , 4-tetraphenylcyclotetrasilane, decamethylcyclopentasilane, deca (trifluoromethyl) cyclopentasilane, decaphenylcyclopentasilane, deca (p-tolyl) cyclopentasilane, 1,2,3,4,5 -Pentamethyl-1,2,3,4,5-pentaphenylcyclopentasilane ((methyl, phenyl) cyclopentasilane), dodecamethylcyclohexasilane, dodeca (trifluoromethyl) cyclohexasilane, dodecaphenylcyclohexasilane, 1,2,3,4,5,6-hexa Tyl-1,2,3,4,5,6-hexaphenylcyclohexasilane, tridecamethylcycloheptasilane, trideca (trifluoromethyl) cycloheptasilane, tridecaphenylcycloheptasilane, 1,2,3,4 Examples include 5,6,7-heptamethyl-1,2,3,4,5,6,7-heptaphenylcycloheptasilane, hexadecaphenylcyclooctasilane, and the like. These specific cyclic polysilane compounds may be used alone or in combination of two or more.

次に、一般式(Y)で示される特定の環状シロキサン化合物について説明する。
一般式(Y)中のB及びBは、水素原子、又は1価の有機基である。一般式(Y)中のB及びBが示す1価の有機基の炭素数は、電子写真特性が損なわれなければ特に制限されないが、各々1以上20以下が好ましく、1以上10以下がより好ましい。B及びBの炭素数を各々1以上20以下とすることにより、保護層形成用塗布液中、及び保護層中での他の成分との相溶性が向上しやすくなる。
Next, the specific cyclic siloxane compound represented by the general formula (Y) will be described.
B 1 and B 2 in the general formula (Y) are a hydrogen atom or a monovalent organic group. The number of carbon atoms of the monovalent organic group represented by B 1 and B 2 in the general formula (Y) is not particularly limited as long as the electrophotographic characteristics are not impaired, but is preferably 1 or more and 20 or less, and preferably 1 or more and 10 or less. More preferred. By setting the number of carbon atoms of B 1 and B 2 to 1 or more and 20 or less, compatibility with other components in the coating liquid for forming the protective layer and in the protective layer is easily improved.

1価の有機基としては、例えば、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基が挙げられる。
なお、アルキル基、アリール基、アラルキル基の好ましい例、具体例としては、上記一般式(X)中のA及びAで例示されたものと同様である。
Examples of the monovalent organic group include a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted aralkyl group.
Preferred examples and specific examples of the alkyl group, aryl group and aralkyl group are the same as those exemplified for A 1 and A 2 in the general formula (X).

また、保護層形成用塗布液中、及び保護層中での他の成分との相溶性、安定性、及び潤滑性を高める観点から、一般式(Y)中のB及びBは、それぞれ独立に、置換若しくは無置換のアルキル基(具体的には、例えば、直鎖状若しくは分岐状の無置換のアルキル基)、直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のアラルキル基であることが好ましい。さらに、直鎖状の無置換のアルキル基、直鎖状のフルオロアルキル基であることがより好ましい。なお、アルキル基としては、メチル基、フルオロメチル基が好ましく、アリール基として、フェニル基、トリル基が好ましい。 In addition, from the viewpoint of enhancing the compatibility with the other components in the protective layer-forming coating solution and the protective layer, stability, and lubricity, B 1 and B 2 in the general formula (Y) are respectively Independently, a substituted or unsubstituted alkyl group (specifically, for example, a linear or branched unsubstituted alkyl group), a linear or branched fluoroalkyl group, a substituted or unsubstituted aryl group Or a substituted or unsubstituted aralkyl group. Furthermore, a linear unsubstituted alkyl group and a linear fluoroalkyl group are more preferable. The alkyl group is preferably a methyl group or a fluoromethyl group, and the aryl group is preferably a phenyl group or a tolyl group.

一般式(Y)中のyは、2以上6以下の整数であり、上記特定の環状シロキサン化合物を保護層形成用塗布液中、保護層中に安定に保持しやすくする観点から、3以上5以下が好ましい。
一般式(Y)中のy個の繰り返し単位は必ずしも同一である必要はなく、B及びBが異なる2種以上の繰り返し単位により特定の環状シロキサン化合物が構成されていてもよい。また、繰り返し単位が2種以上である場合、特定の環状シロキサン化合物はブロック共重合体、ランダム共重合体のいずれであってもよい。
Y in the general formula (Y) is an integer of 2 or more and 6 or less, and 3 or more and 5 from the viewpoint of easily maintaining the specific cyclic siloxane compound in the protective layer forming coating solution and in the protective layer. The following is preferred.
The y repeating units in the general formula (Y) are not necessarily the same, and a specific cyclic siloxane compound may be composed of two or more repeating units different in B 1 and B 2 . When the number of repeating units is 2 or more, the specific cyclic siloxane compound may be either a block copolymer or a random copolymer.

特定の環状シロキサン化合物の製造方法としては、種々の公知な方法を用いて調製できる。これらの特定の環状シロキサン化合物を製造する方法としては、対応するジハロシラン化合物、アルコキシシラン、または環状シラザン化合物を加水分解重縮合する方法;ジハロシラン化合物をスルホキシド化合物により直接酸化することにより環状シロキサン化合物を製造する方法;シラノール基を含有する鎖状シロキサンと環状シロキサンをアルカリ触媒により反応させて新たな環状シロキサンを得る方法;などが挙げられる。   As a method for producing a specific cyclic siloxane compound, various known methods can be used. These specific cyclic siloxane compounds are produced by hydrolytic polycondensation of the corresponding dihalosilane compound, alkoxysilane, or cyclic silazane compound; the cyclic siloxane compound is produced by directly oxidizing the dihalosilane compound with a sulfoxide compound. And a method of obtaining a new cyclic siloxane by reacting a chain siloxane containing a silanol group with a cyclic siloxane using an alkali catalyst.

上記特定の環状シロキサン化合物としては、具体的には、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等のシクロ(ジメチルシロキサン)類;1,3,5−トリメチル−1,3,5−トリフェニルシクロトリシロキサン((メチル,フェニル)シクロトリシロキサン)、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等のシクロ(メチルフェニルシロキサン)類;ヘキサフェニルシクロトリシロキサン、ドデカフェニルシクロヘキサシロキサン等のシクロ(ジフェニルシロキサン)類;3−(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン(ヘキサ(トリフルオロメチル)シクロトリシロキサン)等のフッ素含有シクロシロキサン類;等が挙げられる。また、上記化合物の他にも、常法(例えば実験化学鋼材第4版第27巻第373に記載の方法)に従って、特定の環状シロキサン化合物を合成して用いることができる。これらの特定の環状シロキサン化合物は1種を単独で又は2種以上を混合して用いてもよい。   Specific examples of the specific cyclic siloxane compound include cyclo (dimethylsiloxane) s such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane; 5-trimethyl-1,3,5-triphenylcyclotrisiloxane ((methyl, phenyl) cyclotrisiloxane), 1,3,5,7-tetramethyl-1,3,5,7-tetraphenylcyclotetrasiloxane , 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentaphenylcyclopentasiloxane and other cyclo (methylphenylsiloxane) s; hexaphenylcyclotrisiloxane, dodecaphenylcyclohexasiloxane, etc. Of cyclo (diphenylsiloxane) s; - (3,3,3-trifluoropropyl) fluorine-containing cyclosiloxane such as octamethylcyclotetrasiloxane (hexa (trifluoromethyl) cyclotrisiloxane); and the like. In addition to the above compounds, a specific cyclic siloxane compound can be synthesized and used according to a conventional method (for example, the method described in Experimental Chemical Steels 4th Edition, Volume 27, 373). These specific cyclic siloxane compounds may be used alone or in combination of two or more.

特定の環状のケイ素含有化合物の中でも、感光体の摩耗状態及びクリーニングブレードの摩耗状態に差を生じにくくする観点、及び画質差を抑制する観点から、特定の環状ポリシラン化合物を用いることが好ましい。   Among the specific cyclic silicon-containing compounds, it is preferable to use a specific cyclic polysilane compound from the viewpoint of making it difficult to cause a difference between the wear state of the photoreceptor and the wear state of the cleaning blade and suppressing the difference in image quality.

また、特定の環状のケイ素含有化合物の分子量の上限は、1500未満が好ましい。分子量を1500未満とすることにより、潤滑剤としての機能が低下しにくくなる。分子量の上限は、1200未満がより好ましく、1000未満がさらに好ましい。分子量の下限は、150以上が好ましく、180以上がより好ましく、200以上がさらに好ましい。分子量を150以上とすることにより、保護層形成用塗布液を塗布した後の乾燥時に揮発や昇華が起こりにくく、実質の保護層中の添加量が低下しにくくなる。これにより、環状のケイ素含有化合物が持つ潤滑性、撥水性及び離型性の本来の機能が発現されやすくなる。   Moreover, the upper limit of the molecular weight of the specific cyclic silicon-containing compound is preferably less than 1500. By setting the molecular weight to less than 1500, the function as a lubricant is hardly lowered. The upper limit of the molecular weight is more preferably less than 1200, and even more preferably less than 1000. The lower limit of the molecular weight is preferably 150 or more, more preferably 180 or more, and even more preferably 200 or more. By setting the molecular weight to 150 or more, volatilization and sublimation hardly occur at the time of drying after the coating liquid for forming the protective layer is applied, and the amount added in the substantial protective layer is hardly lowered. As a result, the original functions of lubricity, water repellency and releasability possessed by the cyclic silicon-containing compound are easily exhibited.

特定の環状ケイ素含有化合物の含有量は、例えば、保護層形成用塗布液(組成物)中の全固形分に対して1質量%以上40質量%以下が好ましく、2質量%以上30質量%以下がより好ましい。含有量を1質量%以上とすることにより、環状のケイ素含有化合物が持つ潤滑性、撥水性及び離型性の本来の機能が発現されやすくなる。また、含有量を40質量%以下とすることにより、硬化成分の含有量が低下しにくく、十分な膜強度が得られやすくなる。   The content of the specific cyclic silicon-containing compound is preferably 1% by mass or more and 40% by mass or less, and preferably 2% by mass or more and 30% by mass or less, based on the total solid content in the protective layer forming coating solution (composition). Is more preferable. By setting the content to 1% by mass or more, the original functions of lubricity, water repellency and releasability possessed by the cyclic silicon-containing compound are easily expressed. Moreover, by setting the content to 40% by mass or less, the content of the curing component is hardly lowered, and sufficient film strength is easily obtained.

−特定の連鎖重合性電荷輸送材料−
特定の連鎖重合性電荷輸送材料は、1分子内に電荷輸送性骨格と、少なくとも1つの連鎖重合性官能基を有する化合物であれば、周知の材料から選択される。ここで、連鎖重合性官能基としては、例えば、ラジカル重合し得る官能基であることよく、例えば、少なくとも炭素二重結合を含有する基を有する官能基が挙げられる。連鎖重合性官能基としては、具体的に、アクリロイル基、メタクリロイル基、ビニルフェニル基(スチリル基)、アリル基、ビニル基、ビニルエーテル基、アリル基、及びそれらの誘導体から選択される少なくも一つを有する基(特に、これら基が末端に有する基)が挙げられる。これらのうち、連鎖重合反応性、得られた硬化膜の機械強度の観点で、アクリロイル基、メタクリロイル基、ビニルフェニル基(スチリル基)が好ましく、さらに電気特性との両立の観点でビニルフェニル基(スチリル基)が最も好ましい。
ビニルフェニル基(スチリル基)が最も好ましい理由としては、電荷輸送性能に優れる上、−OH、−NH−などのキャリア輸送を妨げる極性基が少なく、また、キャリア輸送に有効なπ電子を有し、アクリロイル基、メタクリロイル基よりも疏水的で水分が付着しにくい性質があることから、長期にわたって電気特性が維持されると考えられる。
-Specific chain polymerizable charge transport material-
The specific chain polymerizable charge transport material is selected from known materials as long as it is a compound having a charge transport skeleton and at least one chain polymerizable functional group in one molecule. Here, the chain-polymerizable functional group may be a functional group capable of radical polymerization, for example, a functional group having a group containing at least a carbon double bond. Specifically, the chain polymerizable functional group is at least one selected from acryloyl group, methacryloyl group, vinylphenyl group (styryl group), allyl group, vinyl group, vinyl ether group, allyl group, and derivatives thereof. (Especially, a group which these groups have at the terminal). Among these, acryloyl group, methacryloyl group, and vinylphenyl group (styryl group) are preferable from the viewpoint of chain polymerization reactivity and mechanical strength of the obtained cured film, and further, vinylphenyl group ( Most preferred is a styryl group.
The vinyl phenyl group (styryl group) is most preferable because it has excellent charge transport performance, has few polar groups that hinder carrier transport such as -OH and -NH-, and has π electrons effective for carrier transport. It is considered that the electrical characteristics can be maintained over a long period of time because it has the property of being submerged and less likely to adhere moisture than the acryloyl group and methacryloyl group.

また、電荷輸送性骨格としては電子写真感光体における公知の構造であれば特に限定されるものではなく、例えば、トリアリールアミン系化合物、ベンジジン系化合物、ヒドラゾン系化合物などの含窒素の正孔輸送性化合物に由来する骨格であって、窒素原子と共役している構造が挙げられる。これらの中でも、トリアリールアミン骨格が好ましい。   The charge transporting skeleton is not particularly limited as long as it is a known structure in an electrophotographic photosensitive member. For example, nitrogen-containing hole transport such as triarylamine compounds, benzidine compounds, and hydrazone compounds is possible. And a structure that is conjugated to a nitrogen atom. Among these, a triarylamine skeleton is preferable.

特定の連鎖重合性電荷輸送材料は、保護層(硬化膜)中における特定のケイ素含有化合物の分散性の観点、及び画質差を抑制する観点から、一般式(I)及び一般式(II)で示される連鎖重合性化合物から選択される少なくとも1種であることが好ましい。   The specific chain polymerizable charge transport material is represented by the general formula (I) and the general formula (II) from the viewpoint of dispersibility of the specific silicon-containing compound in the protective layer (cured film) and the suppression of image quality difference. It is preferably at least one selected from the chain polymerizable compounds shown.

特に、一般式(I)及び一般式(II)で示される連鎖重合性化合物は、電気特性と機械的強度が高まりやすい。この理由は定かではないが、以下に示す理由によると考えられる。   In particular, the chain polymerizable compounds represented by the general formula (I) and the general formula (II) tend to have improved electrical characteristics and mechanical strength. The reason for this is not clear, but is thought to be as follows.

特定の連鎖重合性電荷輸送材料から選択される少なくとも1種を含む組成物の硬化膜(特定の連鎖重合性電荷輸送材料の重合体又は架橋体を含む膜)を保護層(最表面層)として有すると、保護層が優れた電気特性と機械的強度を兼ね備えると考えられる。また、保護層の厚膜化(例えば10μm以上)も実現されると考えられる。
これは、特定の連鎖重合性電荷輸送材料自身が電荷輸送性能に優れる上、上述したように、−OH、−NH−などのキャリア輸送を妨げる極性基が少なく、また、キャリア輸送に有効なπ電子を有するビニルフェニル基で、重合により当該材料が連結されることから、残留歪が抑制され、電荷を捕獲する構造的なトラップの形成が抑制されるため考えられる。
また、特定の連鎖重合性電荷輸送材料は、アクリル系材料よりも疎水的で水分がつきにくい性質があることから、長期にわたって電気特性が維持されると考えられる。
A cured film of a composition containing at least one selected from a specific chain polymerizable charge transport material (a film containing a polymer or a crosslinked product of a specific chain polymerizable charge transport material) as a protective layer (outermost surface layer) When it has, it is thought that a protective layer has the outstanding electrical property and mechanical strength. Further, it is considered that the protective layer is made thicker (for example, 10 μm or more).
This is because the specific chain polymerizable charge transport material itself is excellent in charge transport performance, and as described above, there are few polar groups that hinder carrier transport such as —OH and —NH—, and π which is effective for carrier transport. This is presumably because the vinyl phenyl group having electrons is connected to the material by polymerization, so that residual strain is suppressed and formation of a structural trap for trapping charges is suppressed.
In addition, since a specific chain polymerizable charge transport material has a property of being more hydrophobic and less likely to get moisture than an acrylic material, it is considered that electric characteristics are maintained over a long period of time.

一般式(I)中、Fは、電荷輸送性骨格を示す。
Lは、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む2価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。
mは1以上8以下の整数を示す。
In general formula (I), F represents a charge transporting skeleton.
L represents a divalent linking group containing two or more selected from the group consisting of an alkylene group, an alkenylene group, -C (= O)-, -N (R)-, -S-, and -O-. Show. R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group.
m represents an integer of 1 or more and 8 or less.

一般式(II)中、Fは、電荷輸送性骨格を示す。
L’は、アルカン若しくはアルケンから誘導される3価又は4価の基、並びに、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−の基からなる群より選択される2種以上を含む(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。なお、アルカン若しくはアルケンから誘導される3価又は4価の基とは、アルカン又はアルケンから水素原子を3つ又は4つ取り除いた基を意味する。以下、同様である。
m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。
In general formula (II), F represents a charge transporting skeleton.
L ′ represents a trivalent or tetravalent group derived from an alkane or alkene, and an alkylene group, alkenylene group, —C (═O) —, —N (R) —, —S—, and —O—. And an (n + 1) -valent linking group containing two or more selected from the group consisting of: R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. The trivalent or tetravalent group derived from alkane or alkene means a group obtained by removing three or four hydrogen atoms from alkane or alkene. The same applies hereinafter.
m ′ represents an integer of 1 to 6. n represents an integer of 2 or more and 3 or less.

一般式(I)及び(II)中、Fは、電荷輸送性骨格、つまり電荷輸送性を有する構造を示し、具体的には、フタロシアニン系化合物、ポルフィリン系化合物、アゾベンゼン系化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物、キノン系化合物、フルオレノン系化合物、などの電荷輸送性を有する構造が挙げられる。   In general formulas (I) and (II), F represents a charge transporting skeleton, that is, a structure having charge transporting properties. Specifically, phthalocyanine compounds, porphyrin compounds, azobenzene compounds, triarylamine compounds Examples thereof include structures having charge transporting properties such as compounds, benzidine compounds, arylalkane compounds, aryl-substituted ethylene compounds, stilbene compounds, anthracene compounds, hydrazone compounds, quinone compounds, and fluorenone compounds.

一般式(I)中、Lで示される連結基としては、例えば、
アルキレン基中に−C(=O)−O−が介在した2価の連結基、
アルキレン基中に−C(=O)−N(R)−が介在した2価の連結基、
アルキレン基中に−C(=O)−S−が介在した2価の連結基、
アルキレン基中に−O−が介在した2価の連結基、
アルキレン基中に−N(R)−が介在した2価の連結基、
アルキレン基中に−S−が介在した2価の連結基、
が挙げられる。
なお、Lで示される連結基は、アルキレン基中に、−C(=O)−O−、−C(=O)−N(R)−、−C(=O)−S−、−O−、又は−S−の基が2つ介在してもよい。
In general formula (I), examples of the linking group represented by L include:
A divalent linking group in which —C (═O) —O— is interposed in the alkylene group,
A divalent linking group in which —C (═O) —N (R) — is interposed in an alkylene group,
A divalent linking group in which —C (═O) —S— is interposed in the alkylene group,
A divalent linking group in which -O- is interposed in the alkylene group,
A divalent linking group in which -N (R)-is interposed in the alkylene group,
A divalent linking group in which -S- is interposed in the alkylene group,
Is mentioned.
The linking group represented by L is an alkylene group, -C (= O) -O-, -C (= O) -N (R)-, -C (= O) -S-, -O. Two groups of-or -S- may be present.

一般式(I)中、Lで示される連結基として具体的には、例えば、
*−(CH−C(=O)−O−(CH−、
*−(CH−O−C(=O)−(CH−C(=O)−O−(CH−、
*−(CH−C(=O)−N(R)−(CH−、
*−(CH−C(=O)−S−(CH−、
*−(CH−O−(CH−、
*−(CH−N(R)−(CH−、
*−(CH−S−(CH−、
*−(CH−O−(CH−O−(CH
等が挙げられる。
ここで、Lで示される連結基中、pは、0、又は1以上6以下(好ましくは1以上5以下)の整数を示す。qは、1以上6以下(好ましくは1以上5以下)の整数を示す。rは、1以上6以下(好ましくは1以上5以下)の整数を示す。
なお、Lで示される連結基中、「*」は、Fと連結する部位を示している。
Specific examples of the linking group represented by L in the general formula (I) include:
* — (CH 2 ) p —C (═O) —O— (CH 2 ) q —,
* - (CH 2) p -O -C (= O) - (CH 2) r -C (= O) -O- (CH 2) q -,
* — (CH 2 ) p —C (═O) —N (R) — (CH 2 ) q —,
* - (CH 2) p -C (= O) -S- (CH 2) q -,
* - (CH 2) p -O- (CH 2) q -,
* - (CH 2) p -N (R) - (CH 2) q -,
* - (CH 2) p -S- (CH 2) q -,
* - (CH 2) p -O- (CH 2) r -O- (CH 2) q -
Etc.
Here, in the linking group represented by L, p represents 0 or an integer of 1 to 6 (preferably 1 to 5). q represents an integer of 1 to 6 (preferably 1 to 5). r represents an integer of 1 to 6 (preferably 1 to 5).
In the linking group represented by L, “*” represents a site linked to F.

一方、一般式(II)中、L’で示される連結基としては、例えば、
分岐状に連結したアルキレン基中に−C(=O)−O−が介在した(n+1)価の連結基、
分岐状に連結したアルキレン基中に−C(=O)−N(R)−が介在した(n+1)価の連結基、
分岐状に連結したアルキレン基中に−C(=O)−S−が介在した(n+1)価の連結基、
分岐状に連結したアルキレン基中に−O−が介在した(n+1)価の連結基、
分岐状に連結したアルキレン基中に−N(R)−が介在した(n+1)価の連結基、
分岐状に連結したアルキレン基中に−S−が介在した(n+1)価の連結基、
が挙げられる。
なお、L’で示される連結は、分岐状に連結したアルキレン基中に、−C(=O)−O−、−C(=O)−N(R)−、−C(=O)−S−、−O−、又は−S−の基が2つ介在してもよい。
On the other hand, in the general formula (II), as the linking group represented by L ′, for example,
A (n + 1) -valent linking group in which —C (═O) —O— is interposed in a branched alkylene group,
A (n + 1) -valent linking group in which -C (= O) -N (R)-is interposed in a branched alkylene group;
A (n + 1) -valent linking group in which —C (═O) —S— is interposed in a branched alkylene group;
(N + 1) -valent linking group in which —O— is interposed in a branched alkylene group,
A (n + 1) -valent linking group in which -N (R)-is interposed in a branched alkylene group;
A (n + 1) -valent linking group in which -S- is interposed in a branched alkylene group;
Is mentioned.
The linkage represented by L ′ is —C (═O) —O—, —C (═O) —N (R) —, —C (═O) — in the branched alkylene group. Two groups of S-, -O-, or -S- may intervene.

一般式(II)中、L’で示される連結基として具体的には、例えば、
*−(CH−CH[C(=O)−O−(CH−]
*−(CH−CH=C[C(=O)−O−(CH−]
*−(CH−CH[C(=O)−N(R)−(CH−]
*−(CH−CH[C(=O)−S−(CH−]
*−(CH−CH[(CH−O−(CH−]
*−(CH−CH=C[(CH−O−(CH−]
*−(CH−CH[(CH−N(R)−(CH−]
*−(CH−CH[(CH−S−(CH−]

*−(CH−O−C[(CH−O−(CH−]
*−(CH−C(=O)−O−C[(CH−O−(CH−]
等が挙げられる。
ここで、L’で示される連結基中、pは、0、又は1以上6以下(好ましくは1以上5以下)の整数を示す。qは、1以上6以下(好ましくは1以上5以下)の整数を示す。rは、1以上6以下(好ましくは1以上5以下)の整数を示す。sは、1以上6以下(好ましくは1以上5以下)の整数を示す。
なお、L’で示される連結基中、「*」は、Fと連結する部位を示している。
In the general formula (II), as the linking group represented by L ′, for example,
* — (CH 2 ) p —CH [C (═O) —O— (CH 2 ) q —] 2 ,
* — (CH 2 ) p —CH═C [C (═O) —O— (CH 2 ) q —] 2 ,
* - (CH 2) p -CH [C (= O) -N (R) - (CH 2) q -] 2,
* - (CH 2) p -CH [C (= O) -S- (CH 2) q -] 2,
* — (CH 2 ) p —CH [(CH 2 ) r —O— (CH 2 ) q —] 2 ,
* - (CH 2) p -CH = C [(CH 2) r -O- (CH 2) q -] 2,
* - (CH 2) p -CH [(CH 2) r -N (R) - (CH 2) q -] 2,
* - (CH 2) p -CH [(CH 2) r -S- (CH 2) q -] 2,

* — (CH 2 ) p —O—C [(CH 2 ) r —O— (CH 2 ) q —] 3
* — (CH 2 ) p —C (═O) —O—C [(CH 2 ) r —O— (CH 2 ) q —] 3
Etc.
Here, in the linking group represented by L ′, p represents 0 or an integer of 1 to 6 (preferably 1 to 5). q represents an integer of 1 to 6 (preferably 1 to 5). r represents an integer of 1 to 6 (preferably 1 to 5). s represents an integer of 1 to 6 (preferably 1 to 5).
In the linking group represented by L ′, “*” represents a site linked to F.

これらの中でも、一般式(II)中、L’で示される連結基としては、
*−(CH−CH[C(=O)−O−(CH−]
*−(CH−CH=C[C(=O)−O−(CH−]
*−(CH−CH[(CH−O−(CH−]
*−(CH−CH=C[(CH−O−(CH−]
がよい。
具体的には、一般式(II)で示される連鎖重合性化合物のFで示される電荷輸送性骨格に連結する基(一般式(IIA−a)で示される基が該当)は、下記一般式(IIA−a1)、下記一般式(IIA−a2)、下記一般式(IIA−a3)、又は下記一般式(IIA−a4)で示される基であることがよい。
Among these, in the general formula (II), as the linking group represented by L ′,
* — (CH 2 ) p —CH [C (═O) —O— (CH 2 ) q —] 2 ,
* — (CH 2 ) p —CH═C [C (═O) —O— (CH 2 ) q —] 2 ,
* — (CH 2 ) p —CH [(CH 2 ) r —O— (CH 2 ) q —] 2 ,
* - (CH 2) p -CH = C [(CH 2) r -O- (CH 2) q -] 2,
Is good.
Specifically, the group connected to the charge transporting skeleton represented by F of the chain polymerizable compound represented by the general formula (II) (corresponding to the group represented by the general formula (IIA-a)) is represented by the following general formula: It may be a group represented by (IIA-a1), the following general formula (IIA-a2), the following general formula (IIA-a3), or the following general formula (IIA-a4).

一般式(IIA−a1)又は(IIA−a2)中、Xk1は2価の連結基を示す。kq1は0又は1の整数を示す。Xk2は2価の連結基を示す。kq2は0又は1の整数を示す。
ここで、Xk1及びXk2で示される2価の連結基は、例えば、−(CH−(但しpは1以上6以下(好ましくは1以上5以下)の整数を示す))が挙げられる。当該2価の連結基としては、アルキレンオキシ基も挙げられる。
In general formula (IIA-a1) or (IIA-a2), Xk1 represents a divalent linking group. kq1 represents an integer of 0 or 1. X k2 represents a divalent linking group. kq2 represents an integer of 0 or 1.
Here, the divalent linking group represented by X k1 and X k2 is, for example, — (CH 2 ) p — (wherein p represents an integer of 1 to 6 (preferably 1 to 5))). Can be mentioned. Examples of the divalent linking group also include an alkyleneoxy group.

一般式(IIA−a3)又は(IIA−a4)中、Xk3は2価の連結基を示す。kq3は0又は1の整数を示す。Xk4は3価の連結基を示す。kq4は0又は1の整数を示す。
ここで、Xk3及びXk4で示される2価の連結基は、例えば、−(CH−(但しpは1以上6以下(好ましくは1以上5以下)の整数を示す))が挙げられる。当該2価の連結基としては、アルキレンオキシ基も挙げられる。
In general formula (IIA-a3) or (IIA-a4), Xk3 represents a divalent linking group. kq3 represents an integer of 0 or 1. X k4 represents a trivalent linking group. kq4 represents an integer of 0 or 1.
Here, the divalent linking group represented by X k3 and X k4 is, for example, — (CH 2 ) p — (wherein p represents an integer of 1 to 6 (preferably 1 to 5))). Can be mentioned. Examples of the divalent linking group also include an alkyleneoxy group.

一般式(I)及び(II)中、L、L’で示される連結基において、「−N(R)−」のRで示されるアルキル基としては、炭素数1以上5以下(好ましくは1以上4以下)の直鎖状、分岐状のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。
「−N(R)−」のRで示されるアリール基としては、炭素数6以上15以下(好ましくは6以上12以下)のアリール基が挙げられ、具体的には、例えば、フェニル基、トルイル基、キシリジル基、ナフチル基等が挙げられる。
アラルキル基としては、炭素数7以上15以下(好ましくは7以上14以下)のアラルキル基が挙げられ、具体的には、例えば、ベンジル基、フェネチル基、ビフェニルメチレン基等が挙げられる。
In general formulas (I) and (II), in the linking group represented by L or L ′, the alkyl group represented by R of “—N (R) —” has 1 to 5 carbon atoms (preferably 1 4 or less) linear and branched alkyl groups, and specific examples include a methyl group, an ethyl group, a propyl group, and a butyl group.
Examples of the aryl group represented by R in “—N (R) —” include aryl groups having 6 to 15 carbon atoms (preferably 6 to 12 carbon atoms). Specific examples include phenyl groups and toluyl groups. Group, xylidyl group, naphthyl group and the like.
Examples of the aralkyl group include aralkyl groups having 7 to 15 carbon atoms (preferably 7 to 14 carbon atoms). Specific examples include a benzyl group, a phenethyl group, and a biphenylmethylene group.

一般式(I)及び(II)中、mは、1以上6以下の整数を示すことが好ましい。
m’は、1以上6以下の整数を示すことが好ましい。
nは、2以上3以下の整数を示すことが好ましい。
In general formulas (I) and (II), m preferably represents an integer of 1 to 6.
m ′ preferably represents an integer of 1 to 6.
n preferably represents an integer of 2 or more and 3 or less.

次に、一般式(I)及び(II)で示される連鎖重合性化合物の好適な化合物について説明する。
一般式(I)及び(II)で示される連鎖重合性化合物としては、Fとしてトリアリールアミン系化合物に由来する電荷輸送性骨格(電荷輸送性を有する構造)を有する連鎖重合性化合物がよい。
具体的には、一般式(I)で示される連鎖重合性化合物としては、一般式(I−a)、一般式(I−b)、一般式(I−c)、及び一般式(I−d)で示される連鎖重合性化合物からなる群より選択される少なくとも1種の化合物が好適である。
一方、一般式(II)で示される連鎖重合性化合物としては、一般式(II−a)で示される連鎖重合性化合物が好適である。
Next, suitable compounds of the chain polymerizable compounds represented by the general formulas (I) and (II) will be described.
As the chain polymerizable compound represented by the general formulas (I) and (II), a chain polymerizable compound having a charge transporting skeleton (structure having a charge transporting property) derived from a triarylamine compound as F is preferable.
Specifically, as the chain polymerizable compound represented by the general formula (I), the general formula (Ia), the general formula (Ib), the general formula (Ic), and the general formula (I- Preference is given to at least one compound selected from the group consisting of chain-polymerizable compounds represented by d).
On the other hand, as the chain polymerizable compound represented by the general formula (II), the chain polymerizable compound represented by the general formula (II-a) is preferable.

・一般式(I−a)で示される連鎖重合性化合物
一般式(I−a)で示される連鎖重合性化合物について説明する。
特定の連鎖重合性電荷輸送材料として一般式(I−a)で示される連鎖重合性化合物を適用すると、環境変化に起因する電気特性の劣化が抑制され易くなる。その理由は定かではないが、以下の通りと考えられる。
まず、従来用いられていた、(メタ)アクリル基を有する連鎖重合性化合物は、重合の際に電荷輸送性能を発現する骨格の部位に対して、(メタ)アクリル基の親水性が強いことから、ある種の層分離状態を形成してしまい、ホッピング伝導の妨げとなっていることが考えられる。このため、(メタ)アクリル基を有する連鎖重合性化合物の重合体又は架橋体を含む電荷輸送性膜は、電荷輸送の効率が落ち、更に、部分的な水分の吸着などにより環境安定性が低下するものと考えられる。
これ対して、一般式(I−a)で示される連鎖重合性化合物は、親水性の強くないビニル系の連鎖重合性基を有しており、更に、電荷輸送性能を発現する骨格を一分子内に複数有し、その骨格同士を芳香環や共役二重結合などの共役結合を有しない、柔軟性のある連結基で連結している。このような構造を有することから、効率的な電荷輸送性能と高強度化が図れると共に、重合の際の層分離状態の形成が抑制されるものと考えられる。その結果として、一般式(I−a)で示される連鎖重合性化合物の重合体又は架橋体を含む保護層(最表面層)は、電荷輸送性能と機械的強度との両方に優れ、更に、電荷輸送性能の環境依存(温湿度依存)を低減しうるものと考えられる。
以上から、一般式(I−a)で示される連鎖重合性化合物を適用すると、環境変化に起因する電気特性の劣化が抑制され易くなると考えられる。
-Chain polymerizable compound represented by general formula (Ia) The chain polymerizable compound represented by general formula (Ia) will be described.
When the chain polymerizable compound represented by the general formula (Ia) is applied as the specific chain polymerizable charge transport material, it is easy to suppress deterioration of electrical characteristics due to environmental changes. The reason is not clear, but is thought to be as follows.
First, since the chain-polymerizable compound having a (meth) acryl group that has been used conventionally has a strong hydrophilicity of a (meth) acryl group with respect to a skeleton portion that expresses charge transport performance during polymerization. It is considered that a certain kind of layer separation state is formed, which hinders hopping conduction. For this reason, a charge transporting film containing a polymer of a chain polymerizable compound having a (meth) acrylic group or a crosslinked product has a reduced efficiency of charge transport, and further has a reduced environmental stability due to partial adsorption of moisture, etc. It is thought to do.
In contrast, the chain-polymerizable compound represented by the general formula (Ia) has a vinyl-based chain-polymerizable group that is not strongly hydrophilic, and further has a single skeleton that exhibits charge transport performance. The skeletons are connected by a flexible linking group that does not have a conjugated bond such as an aromatic ring or a conjugated double bond. Since it has such a structure, it is considered that efficient charge transport performance and high strength can be achieved, and formation of a layer separation state during polymerization is suppressed. As a result, the protective layer (outermost surface layer) containing the polymer or crosslinked product of the chain polymerizable compound represented by the general formula (Ia) is excellent in both charge transport performance and mechanical strength, It is thought that the environment dependence (temperature and humidity dependence) of the charge transport performance can be reduced.
From the above, it is considered that when the chain polymerizable compound represented by the general formula (Ia) is applied, deterioration of electrical characteristics due to environmental changes is easily suppressed.

一般式(I−a)中、Ara1〜Ara4は、それぞれ独立に置換若しくは未置換のアリール基を示す。Ara5及びAra6は、それぞれ独立に置換若しくは未置換のアリーレン基を示す。Xaは、アルキレン基、−O−、−S−、及びエステルから選ばれる基を組み合わせてなる2価の連結基を示す。Daは、下記一般式(IA−a)で示される基を示す。ac1〜ac4は、それぞれ独立に0以上2以下の整数を示す。但し、Daの総数は1又は2である。 In the general formula (Ia), Ar a1 to Ar a4 each independently represent a substituted or unsubstituted aryl group. Ar a5 and Ar a6 each independently represent a substituted or unsubstituted arylene group. Xa represents a divalent linking group formed by combining groups selected from an alkylene group, -O-, -S-, and an ester. Da represents a group represented by the following general formula (IA-a). ac1 to ac4 each independently represents an integer of 0 or more and 2 or less. However, the total number of Da is 1 or 2.

一般式(IA−a)中、Lは、*−(CHan−O−CH−で示され、*にてAra1〜Ara4で示される基に連結する2価の連結基を示す。anは、1又は2の整数を示す。 In the general formula (IA-a), L a is, * - (CH 2) an -O-CH 2 - is represented by the divalent linking group linked to the group represented by Ar a1 to Ar a4 at * Indicates. an represents an integer of 1 or 2.

以下、一般式(I−a)の詳細を説明する。
一般式(I−a)中、Ara1〜Ara4で示される置換若しくは未置換のアリール基は、それぞれ、同一でもあってもよいし、異なっていてもよい。
ここで、置換アリール基における置換基としては、「Da」以外のものとして、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子等が挙げられる。
Details of the general formula (Ia) will be described below.
In general formula (Ia), the substituted or unsubstituted aryl groups represented by Ar a1 to Ar a4 may be the same or different.
Here, as a substituent in the substituted aryl group, other than “Da”, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms. Examples thereof include a substituted phenyl group, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom.

一般式(I−a)中、Ara1〜Ara4としては、下記構造式(1)〜(7)のうちのいずれかであることが好ましい。
なお、下記構造式(1)〜(7)は、Ara1〜Ara4の各々に連結され得る「−(Da)ac1」〜「−(Da)ac4」を総括的に示した「−(D)」と共に示す。
In general formula (Ia), Ar a1 to Ar a4 are preferably any one of the following structural formulas (1) to (7).
Incidentally, the following structural formula (1) to (7) can be coupled to each of Ar a1 to Ar a4 were generically indicates - - "(Da) ac4" "-" (Da) ac1 "- (D ) C ”.

構造式(1)〜(7)中、R11は、水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルキル基若しくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、及び炭素数7以上10以下のアラルキル基からなる群より選ばれる1種を示す。R12、及びR13は、それぞれ独立に、水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子からなる群より選ばれる1種を示す。R14は、それぞれ独立に、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子からなる群より選ばれる1種を示す。Arは、置換又は未置換のアリーレン基を示す。sは、0又は1を示す。tは、0以上3以下の整数を示す。Z’は、2価の有機連結基を示す。 In the structural formulas (1) to (7), R 11 is substituted with a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. And a phenyl group, an unsubstituted phenyl group, and an aralkyl group having 7 to 10 carbon atoms. R 12 and R 13 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group substituted with an alkoxy group having 1 to 4 carbon atoms. 1 group selected from the group consisting of an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom. R 14 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group substituted with an alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenyl group, 1 type chosen from the group which consists of a C7-C10 aralkyl group and a halogen atom is shown. Ar represents a substituted or unsubstituted arylene group. s represents 0 or 1. t represents an integer of 0 or more and 3 or less. Z ′ represents a divalent organic linking group.

ここで、式(7)中、Arとしては、下記構造式(8)又は(9)で示されるものが好ましい。   Here, in the formula (7), Ar is preferably one represented by the following structural formula (8) or (9).

構造式(8)及び(9)中、R15及びR16は、それぞれ独立に、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子からなる群より選ばれる1種を表し、t1及びt2はそれぞれ0以上3以下の整数を示す。 In structural formulas (8) and (9), R 15 and R 16 are each independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Represents one selected from the group consisting of a phenyl group substituted with a group, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom, and t1 and t2 each represent an integer of 0 to 3 Show.

また、式(7)中、Z’は、下記構造式(10)〜(17)のうちのいずれかで示されるものが好ましい。   In the formula (7), Z ′ is preferably one represented by any of the following structural formulas (10) to (17).

構造式(10)〜(17)中、R17及びR18は、それぞれ独立に、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基若しくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子からなる群より選ばれる1種を示す。Wは、2価の基を示す。q1及びr1は、それぞれ独立に1以上10以下の整数を示す。t3及びt4は、それぞれ0以上3以下の整数を示す。 In Structural Formulas (10) to (17), R 17 and R 18 are each independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. 1 type selected from the group consisting of a phenyl group substituted with a group, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom. W represents a divalent group. q1 and r1 each independently represents an integer of 1 or more and 10 or less. t3 and t4 each represent an integer of 0 or more and 3 or less.

構造式(16)〜(17)中、Wとしては、下記構造式(18)〜(26)で示される2価の基のうちのいずれかであることが好ましい。但し、式(25)中、uは、0以上3以下の整数を示す。   In the structural formulas (16) to (17), W is preferably any one of divalent groups represented by the following structural formulas (18) to (26). However, in Formula (25), u shows the integer of 0-3.

一般式(I−a)中、Ara5及びAra6で示される置換若しくは未置換のアリーレン基において、このアリーレン基としては、Ara1〜Ara4の説明で例示されたアリール基から目的とする位置の水素原子を1つ除いたアリーレン基が挙げられる。
また、置換アリーレン基における置換基としては、Ara1〜Ara4の説明で、置換アリール基における「Da」以外の置換基として挙げられているものと同様である。
In the general formula (Ia), in the substituted or unsubstituted arylene group represented by Ar a5 and Ar a6 , the arylene group is a target position from the aryl group exemplified in the description of Ar a1 to Ar a4. And an arylene group in which one hydrogen atom is removed.
Moreover, as a substituent in a substituted arylene group, it is the same as that of what is mentioned as substituents other than "Da" in a substituted aryl group by description of Ar < a1 > -Ar < a4 >.

一般式(I−a)中、Xaで示される2価の連結基は、アルキレン基、又はアルキレン基、−O−、−S−、及びエステルから選ばれる基を組み合わせてなる2価の基であって、芳香環や共役二重結合などの共役結合を含まない連結基である。
具体的には、Xaで示す2価の連結基として、炭素数1以上10以下のアルキレン基が挙げられ、その他、炭素数1以上10以下のアルキレン基と−O−、−S−、−O−C(=O)−、及び−C(=O)−O−から選ばれる基とを組み合わせてなる2価の基も挙げられる。
なお、Xaで示される2価の連結基がアルキレン基である場合、このアルキレン基はアルキル、アルコキシ、ハロゲン等の置換基を有していてもよく、この置換基の2つが互いに結合して、構造式(16)〜(17)中のWの具体例として記載した構造式(26)で示される2価の連結基のような構造となってもよい。
In general formula (Ia), the divalent linking group represented by Xa is an alkylene group or a divalent group formed by combining alkylene groups, —O—, —S—, and groups selected from esters. Thus, the linking group does not contain a conjugated bond such as an aromatic ring or a conjugated double bond.
Specifically, examples of the divalent linking group represented by Xa include an alkylene group having 1 to 10 carbon atoms, and an alkylene group having 1 to 10 carbon atoms and —O—, —S—, and —O. A divalent group formed by combining a group selected from —C (═O) — and —C (═O) —O— is also included.
When the divalent linking group represented by Xa is an alkylene group, the alkylene group may have a substituent such as alkyl, alkoxy, halogen, etc., and two of these substituents are bonded to each other, A structure such as a divalent linking group represented by Structural Formula (26) described as a specific example of W in Structural Formulas (16) to (17) may be used.

・一般式(I−b)で示される連鎖重合性化合物
一般式(I−b)で示される連鎖重合性化合物について説明する。
特定の連鎖重合性電荷輸送材料として一般式(I−b)で示される連鎖重合性化合物を適用すると、保護層(最表面層)の摩耗が抑制される共に、画像の濃度ムラの発生が抑制され易くなる。その理由は定かではないが、以下の通りと考えられる。
まず、かさ高い電荷輸送骨格と重合部位(スチリル基)が構造的に近く、剛直(リジッド)であると重合部位同士が動きずらくなり、硬化反応による残留歪が残りやすく、電荷輸送骨格が歪むことによりキャリア輸送をになうHOMO(最高被占軌道)のレベルの変化が起こり、結果としてエネルギー分布が広がった状態(エネルギー的ディスオーダー:σが大きい)となりやすいと考えられる。
これに対し、メチレン基、エーテル基を介すると、分子構造に柔軟性が得られ、σが小さいものが得られやすく、さらに、メチレン基、エーテル基は、エステル基、アミド基などに比較し、双極子モーメント(ダイポールモーメント)が小さく、この効果もσを小さくすることに寄与し、電気特性が向上すると考えられる。また、分子構造に柔軟性が加わることで、反応部位(反応サイト)の動きの自由度が増し、反応率も向上することで強度の高い膜となると考えられる
これらのことから、電荷輸送骨格と重合部位との間に柔軟性に富む連結鎖を介在させる構造がよい。
このため、一般式(I−b)で示される連鎖重合性化合物は、硬化反応により分子自身の分子量が増大し、重心は移動し難くなると共に、スチリル基の自由度が高いと考えられる。の結果、一般式(I−b)で示される連鎖重合性化合物の重合体又は架橋体を含む保護層(最表面層)は、電気特性に優れ、且つ、高い強度を有すると考えられる。
以上から、一般式(I−b)で示される連鎖重合性化合物を適用すると、保護層(最表面層)の摩耗が抑制される共に、画像の濃度ムラの発生が抑制され易くなると考えられる。
-Chain-polymerizable compound represented by general formula (Ib) The chain-polymerizable compound represented by general formula (Ib) will be described.
When the chain polymerizable compound represented by the general formula (Ib) is applied as a specific chain polymerizable charge transport material, wear of the protective layer (outermost surface layer) is suppressed and generation of density unevenness of the image is suppressed. It becomes easy to be done. The reason is not clear, but is thought to be as follows.
First, the bulky charge transport skeleton and the polymerization site (styryl group) are structurally close, and if it is rigid, the polymerization sites will not move easily, and residual strain due to the curing reaction tends to remain, and the charge transport skeleton is distorted. As a result, a change in the level of HOMO (the highest occupied orbit) that leads to carrier transport occurs, and as a result, the energy distribution is likely to be widened (energy disorder: σ is large).
On the other hand, through a methylene group and an ether group, flexibility is obtained in the molecular structure, and a small σ is easily obtained. Further, the methylene group and the ether group are compared with an ester group, an amide group, etc. The dipole moment (dipole moment) is small, and this effect also contributes to the reduction of σ and is considered to improve the electrical characteristics. In addition, it is considered that the flexibility of the molecular structure increases the degree of freedom of movement of the reaction site (reaction site), and the reaction rate also improves, resulting in a strong film. A structure in which a flexible connecting chain is interposed between the polymerization sites is preferable.
For this reason, it is considered that the chain polymerizable compound represented by the general formula (Ib) increases the molecular weight of the molecule itself due to the curing reaction, makes the center of gravity difficult to move, and has a high degree of freedom of the styryl group. As a result, the protective layer (outermost surface layer) containing a polymer or a crosslinked product of the chain polymerizable compound represented by the general formula (Ib) is considered to have excellent electrical properties and high strength.
From the above, it is considered that when the chain-polymerizable compound represented by the general formula (Ib) is applied, wear of the protective layer (outermost surface layer) is suppressed and occurrence of density unevenness of the image is easily suppressed.

一般式(I−b)中、Arb1〜Arb4は、それぞれ独立に置換若しくは未置換のアリール基を示す。Arb5は、置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示す。Dbは、下記一般式(IA−b)で示される基を示す。bc1〜bc5は、それぞれ独立に0以上2以下の整数を示す。bkは、0又は1を示す。但し、Dbの総数は、1又は2である。 In the general formula (Ib), Ar b1 to Ar b4 each independently represent a substituted or unsubstituted aryl group. Ar b5 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted arylene group. Db represents a group represented by the following general formula (IA-b). bc1 to bc5 each independently represent an integer of 0 or more and 2 or less. bk represents 0 or 1. However, the total number of Db is 1 or 2.

一般式(IA−b)中、Lは、*−(CHbn−O−で示される基を含み、*にてArb1〜Arb5で示される基に連結する2価の連結基を示す。bnは、3以上6以下の整数を示す。 In General Formula (IA-b), L b includes a group represented by * — (CH 2 ) bn —O—, and is a divalent linking group linked to a group represented by Ar b1 to Ar b5 at *. Indicates. bn represents an integer of 3 to 6.

以下、一般式(I−b)の詳細を説明する。
一般式(I−b)中、Arb1〜Arb4で示される置換若しくは未置換のアリール基は、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Arb5は、bkが0のとき、置換若しくは未置換のアリール基を示し、この置換若しくは未置換のアリール基としては、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Arb5は、bkが1のとき、置換若しくは未置換のアリーレン基を示し、この置換若しくは未置換のアリーレン基としては、一般式(I−a)中のAra5及びAra6で示される置換若しくは未置換のアリーレン基と同様である。
Hereinafter, the details of the general formula (Ib) will be described.
In general formula (Ib), the substituted or unsubstituted aryl group represented by Ar b1 to Ar b4 is the substituted or unsubstituted aryl group represented by Ar a1 to Ar a4 in general formula (Ia). It is the same.
Ar b5 represents a substituted or unsubstituted aryl group when bk is 0, and examples of the substituted or unsubstituted aryl group include substituted or unsubstituted Ar a1 to Ar a4 in the general formula (Ia) Same as unsubstituted aryl group.
Ar b5 represents a substituted or unsubstituted arylene group when bk is 1, and the substituted or unsubstituted arylene group includes a substituent represented by Ar a5 and Ar a6 in the general formula (Ia) or The same as the unsubstituted arylene group.

次に、一般式(IA−b)の詳細を説明する。
一般式(IA−b)中、Lで示される2価の連結基としては、例えば、
*−(CHbp−O−、
*−(CHbp−O−(CHbq−O−
等が挙げられる。
ここで、Lで示される連結基中、bpは、3以上6以下(好ましくは3以上5以下)の整数を示す。bqは、1以上6以下(好ましくは1以上5以下)の整数を示す。
なお、Lで示される連結基中、「*」は、Arb1〜Arb5で示される基と連結する部位を示している。
Next, the details of the general formula (IA-b) will be described.
In the general formula (IA-b), examples of the divalent linking group represented by L b, for example,
* — (CH 2 ) bp —O—,
* — (CH 2 ) bp —O— (CH 2 ) bq —O—
Etc.
Here, in the linking group represented by L b, bp represents an integer of 3 to 6 (preferably 3 to 5). bq represents an integer of 1 to 6 (preferably 1 to 5).
Incidentally, in the linking group represented by L b, "*" represents a site connecting to a group represented by Ar b1 to Ar b5.

・一般式(I−c)で示される連鎖重合性化合物
一般式(I−c)で示される連鎖重合性化合物について説明する。
特定の連鎖重合性電荷輸送材料として一般式(I−c)で示される連鎖重合性化合物を適用すると、繰り返し使用しても表面にキズが発生しにくく、かつ画質劣化が抑制され易くなる。その理由は定かではないが、以下の通りと考えられる。
まず、特定の連鎖重合性電荷輸送材料の重合体又は架橋体を含む最表面層を形成する際には、その重合反応又は架橋反応に伴う膜収縮や、電荷輸送構造と連鎖重合性基周辺の構造の凝集が起きると考えられる。よって、繰り返し使用で電子写真感光体表面が機械的負荷を受けると、膜自体が摩耗したり、分子中の化学構造が切断されたりして、膜収縮や凝集状態が変化し、電子写真感光体としての電気特性が変化し、画質劣化を引き起こしてしまうと考えられる。
一方、一般式(I−c)で示される連鎖重合性化合物は、連鎖重合性基としてスチレン骨格を有していることから、電荷輸送材料の主骨格であるアリール基と相溶性が良く、膜収縮や重合反応又は架橋反応による電荷輸送構造、連鎖重合性基周辺構造の凝集が抑制されると考えられる。その結果、一般式(I−c)で示される連鎖重合性化合物の重合体又は架橋体を含む保護層(最表面層)を持つ電子写真感光体は、繰り返し使用による画質劣化が抑制されると考えられる。
加えて、一般式(I−c)で示される連鎖重合性化合物は、電荷輸送性骨格とスチレン骨格を、−C(=O)−、−N(R)−、−S−など特定の基を含む連結基を介して連結することにより、特定の基と電荷輸送性骨格中の窒素原子との間や、特定の基同士の相互作用等が生じると考えられる、その結果、一般式(I−c)で示される連鎖重合性化合物の重合体又は架橋体を含む保護層(最表面層)は、強度がさらに向上すると考えられる。
以上から、一般式(I−c)で示される連鎖重合性化合物を適用すると、繰り返し使用しても表面にキズが発生しにくく、かつ画質劣化が抑制され易くなると考えられる。
なお、−C(=O)−、−N(R)−、−S−など特定の基は、その極性や親水性に起因し、電荷輸送性や高湿条件下における画質劣化を引き起こす要因となるが、一般式(I−c)で示される連鎖重合性化合物は、連鎖重合性基として(メタ)アクリルなどよりも疎水性の高いスチレン骨格を有してるため、電荷輸送性悪化や前サイクルの履歴による残像現象(ゴースト)等の画質劣化が生じ難いと考えられる。
-Chain-polymerizable compound represented by general formula (Ic) The chain-polymerizable compound represented by general formula (Ic) will be described.
When the chain polymerizable compound represented by the general formula (Ic) is applied as a specific chain polymerizable charge transporting material, scratches are hardly generated on the surface even when used repeatedly, and image quality deterioration is easily suppressed. The reason is not clear, but is thought to be as follows.
First, when forming the outermost surface layer containing a polymer or cross-linked polymer of a specific chain polymerizable charge transport material, film shrinkage accompanying the polymerization reaction or cross-linking reaction, and around the charge transport structure and the chain polymerizable group. Aggregation of structures is thought to occur. Therefore, when the surface of the electrophotographic photosensitive member is subjected to a mechanical load by repeated use, the film itself is worn or the chemical structure in the molecule is cut, so that the film contraction and aggregation state change, and the electrophotographic photosensitive member changes. It is considered that the electrical characteristics of the image change and cause image quality degradation.
On the other hand, since the chain polymerizable compound represented by the general formula (Ic) has a styrene skeleton as the chain polymerizable group, it has good compatibility with the aryl group which is the main skeleton of the charge transport material, and the film It is thought that aggregation of charge transport structures and chain polymerizable group peripheral structures due to shrinkage, polymerization reaction or crosslinking reaction is suppressed. As a result, in the electrophotographic photosensitive member having a protective layer (outermost surface layer) containing a polymer or a crosslinked product of the chain polymerizable compound represented by the general formula (Ic), image quality deterioration due to repeated use is suppressed. Conceivable.
In addition, the chain polymerizable compound represented by the general formula (Ic) includes a charge transporting skeleton and a styrene skeleton, a specific group such as —C (═O) —, —N (R) —, and —S—. It is thought that the interaction between the specific group and the nitrogen atom in the charge transporting skeleton, the interaction between the specific groups, and the like occur by linking via a linking group containing The strength of the protective layer (outermost surface layer) containing a polymer or a crosslinked product of the chain polymerizable compound represented by -c) is considered to be further improved.
From the above, it is considered that when the chain polymerizable compound represented by the general formula (Ic) is applied, scratches are hardly generated on the surface even when used repeatedly, and image quality deterioration is easily suppressed.
Note that specific groups such as -C (= O)-, -N (R)-, and -S- are attributed to the polarity and hydrophilicity, causing the charge transportability and image quality deterioration under high humidity conditions. However, since the chain-polymerizable compound represented by the general formula (Ic) has a styrene skeleton having higher hydrophobicity than (meth) acryl as a chain-polymerizable group, the charge transportability is deteriorated and the previous cycle is reduced. It is considered that image quality deterioration such as an afterimage phenomenon (ghost) due to the history of the image hardly occurs.

一般式(I−c)中、Arc1〜Arc4は、それぞれ独立に置換若しくは未置換のアリール基を示す。Arc5は、置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示す。Dcは、下記一般式(IA−c)で示される基を示す。cc1〜cc5は、それぞれ独立に0以上2以下の整数を示す。ckは、0又は1を示す。但し、Dcの総数は、1以上8以下である。 In the general formula (Ic), Ar c1 to Ar c4 each independently represent a substituted or unsubstituted aryl group. Ar c5 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted arylene group. Dc represents a group represented by the following general formula (IA-c). cc1 to cc5 each independently represents an integer of 0 or more and 2 or less. ck represents 0 or 1. However, the total number of Dc is 1 or more and 8 or less.

一般式(IA−c)中、Lは、−C(=O)−、−N(R)−、−S−、及び、−C(=O)−と−O−、−N(R)−又は−S−とを組み合わせた基からなる群より選択される1つ以上の基を含む2価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。 In the general formula (IA-c), L C is, -C (= O) -, - N (R) -, - S-, and, -C (= O) - and -O -, - N (R )-Or -S- represents a divalent linking group containing one or more groups selected from the group consisting of groups. R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group.

以下、一般式(I−c)の詳細を説明する。
一般式(I−c)中、Arc1〜Arc4で示される置換若しくは未置換のアリール基は、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Arc5は、ckが0のとき、置換若しくは未置換のアリール基を示し、この置換若しくは未置換のアリール基としては、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Arc5は、ckが1のとき、置換若しくは未置換のアリーレン基を示し、この置換若しくは未置換のアリーレン基としては、一般式(I−a)中のAra5及びAra6で示される置換若しくは未置換のアリーレン基と同様である。
Dcの総数は、より強度の高い保護層(最表面層)を得る観点から、好ましくは2以上であり、更に好ましくは4以上である。一般に、一分子中の連鎖重合性基の数が多すぎると、重合(架橋)反応が進むにつれ、分子が動きにくくなり連鎖重合反応性が低下し、未反応の連鎖重合性基の割合が増えてしまうことから、Dcの総数は、好ましくは7以下、さらに好ましくは6以下である。
Details of the general formula (Ic) will be described below.
In general formula (Ic), the substituted or unsubstituted aryl group represented by Ar c1 to Ar c4 is a substituted or unsubstituted aryl group represented by Ar a1 to Ar a4 in general formula (Ia). It is the same.
Ar c5 represents a substituted or unsubstituted aryl group when ck is 0, and examples of the substituted or unsubstituted aryl group include a substituted group represented by Ar a1 to Ar a4 in formula (Ia) or Same as unsubstituted aryl group.
Ar c5 represents a substituted or unsubstituted arylene group when ck is 1, and the substituted or unsubstituted arylene group includes a substituent represented by Ar a5 and Ar a6 in formula (Ia) or The same as the unsubstituted arylene group.
The total number of Dc is preferably 2 or more, more preferably 4 or more, from the viewpoint of obtaining a protective layer (outermost surface layer) with higher strength. In general, if the number of chain polymerizable groups in one molecule is too large, as the polymerization (crosslinking) reaction proceeds, the molecules become difficult to move and the chain polymerization reactivity decreases, and the proportion of unreacted chain polymerizable groups increases. Therefore, the total number of Dc is preferably 7 or less, more preferably 6 or less.

次に、一般式(IA−c)の詳細を説明する。
一般式(IA−c)中、Lで示される2価の連結基としては、−C(=O)−、−N(R)−、−S−、及び、−C(=O)−と−O−、−N(R)−又は−S−とを組み合わせた基(以下、「特定連結基」と称する)を含む2価の連結基である。
ここで、特定連結基としては、保護層(最表面層)の強度と極性(親疎水性)のバランスの観点から、例えば、−C(=O)−、−N(R)−、−S−、−C(=O)−O−、−C(=O)−N(R)−、−C(=O)−S−、−O−C(=O)−O−、−O−C(=O)−N(R)−がよく、好ましくは−N(R)−、−S−、−C(=O)−O−、−C(=O)−N(H)−、−C(=O)−O−、より好ましくは−C(=O)−O−である。
そして、Lで示される2価の連結基としては、例えば、特定連結基と、飽和炭化水素(直鎖状、分岐状、環状いずれも含む)または芳香族炭化水素の残基と、酸素原子と、を組み合わせて形成される2価の連結基が挙げられ、これらの中でも、特定連結基と、直鎖状の飽和炭化水素の残基と、酸素原子と、を組み合わせて形成される2価の連結基がよい。
で示される2価の連結基に含まれる炭素原子の総数としては、分子中のスチレン骨格の密度と連鎖重合反応性の観点から、例えば、1以上20以下がよく、好ましくは2以上10以下である。
Next, the details of the general formula (IA-c) will be described.
In the general formula (IA-c), examples of the divalent linking group represented by L c include —C (═O) —, —N (R) —, —S—, and —C (═O) —. And a divalent linking group containing a group in which —O—, —N (R) —, or —S— is combined (hereinafter referred to as “specific linking group”).
Here, the specific linking group includes, for example, —C (═O) —, —N (R) —, and —S— from the viewpoint of the balance between the strength and polarity (hydrophobicity) of the protective layer (outermost surface layer). , -C (= O) -O-, -C (= O) -N (R)-, -C (= O) -S-, -O-C (= O) -O-, -O-C (═O) —N (R) — is preferred, preferably —N (R) —, —S—, —C (═O) —O—, —C (═O) —N (H) —, — C (= O) -O-, more preferably -C (= O) -O-.
The divalent linking group represented by L c includes, for example, a specific linking group, a saturated hydrocarbon (including any of linear, branched, and cyclic) or aromatic hydrocarbon residues, and an oxygen atom. And a divalent linking group formed by combining a specific linking group, a linear saturated hydrocarbon residue, and an oxygen atom. The linking group is preferable.
The total number of carbon atoms contained in the divalent linking group represented by L c is, for example, from 1 to 20 in terms of the density of the styrene skeleton in the molecule and chain polymerization reactivity, and preferably from 2 to 10 It is as follows.

一般式(IA−c)中、Lで示される2価の連結基として具体的には、例えば、
*−(CHcp−C(=O)−O−(CHcq−、
*−(CHcp−O−C(=O)−(CHcr−C(=O)−O−(CHcq−、
*−(CHcp−C(=O)−N(R)−(CHcq−、
*−(CHcp−C(=O)−S−(CHcq−、
*−(CHcp−N(R)−(CHcq−、
*−(CHcp−S−(CHcq−、
等が挙げられる。
ここで、Lで示される連結基中、cpは、0、又は1以上6以下(好ましくは1以上5以下)の整数を示す。cqは、1以上6以下(好ましくは1以上5以下)の整数を示す。crは、1以上6以下(好ましくは1以上5以下)の整数を示す。
なお、Lで示される連結基中、「*」は、Arc1〜Arc5で示される基と連結する部位を示している。
Specific examples of the divalent linking group represented by L c in the general formula (IA-c) include, for example,
* - (CH 2) cp -C (= O) -O- (CH 2) cq -,
* — (CH 2 ) cp —O—C (═O) — (CH 2 ) cr —C (═O) —O— (CH 2 ) cq —,
* — (CH 2 ) cp —C (═O) —N (R) — (CH 2 ) cq —,
* - (CH 2) cp -C (= O) -S- (CH 2) cq -,
* - (CH 2) cp -N (R) - (CH 2) cq -,
* - (CH 2) cp -S- (CH 2) cq -,
Etc.
Here, in the linking group represented by L c, cp is 0, or 1 to 6 (preferably 1 to 5) represents an integer of. cq represents an integer of 1 to 6 (preferably 1 to 5). cr represents an integer of 1 to 6 (preferably 1 to 5).
In the linking group represented by L c , “*” represents a site linked to the group represented by Ar c1 to Ar c5 .

これらの中でも、一般式(IA−c)中、Lで示される2価の連結基としては、*−(CHcp−C(=O)−O−CH−が好ましい。つまり、一般式(IA−c)で示される基は、下記一般式(IA−c1)で示される基であることが好ましい。但し、一般式(IA−c1)中、cp1は0以上4以下の整数を示す。 Among these, in the general formula (IA-c), the divalent linking group represented by L c, * - (CH 2 ) cp -C (= O) -O-CH 2 - is preferred. That is, the group represented by the general formula (IA-c) is preferably a group represented by the following general formula (IA-c1). However, in general formula (IA-c1), cp1 shows the integer of 0-4.

・一般式(I−d)で示される連鎖重合性化合物
一般式(I−d)で示される連鎖重合性化合物について説明する。
特定の連鎖重合性電荷輸送材料として一般式(I−d)で示される連鎖重合性化合物を適用すると、保護層(最表面層)の摩耗が抑制される共に、画像の濃度ムラの発生が抑制され易くなる。その理由は定かではないが、一般式(I−b)で示される連鎖重合性化合物と同様の理由によるものと考えられる。
特に、一般式(I−d)で示される連鎖重合性化合物は、一般式(I−b)に比べ、Ddの総数が3以上8以下と多いため、形成される架橋体がより高い架橋構造(架橋ネットワーク)が形成され易く、より保護層(最表面層)の摩耗が抑制され易くなると考えられる。
-Chain-polymerizable compound represented by the general formula (Id) The chain-polymerizable compound represented by the general formula (Id) will be described.
When the chain polymerizable compound represented by the general formula (Id) is applied as a specific chain polymerizable charge transport material, wear of the protective layer (outermost surface layer) is suppressed and generation of density unevenness of the image is suppressed. It becomes easy to be done. Although the reason is not certain, it is thought that it is due to the same reason as the chain polymerizable compound represented by the general formula (Ib).
In particular, the chain polymerizable compound represented by the general formula (Id) has a higher total number of Dd of 3 or more and 8 or less than the general formula (Ib). It is considered that (crosslinked network) is easily formed and wear of the protective layer (outermost surface layer) is more easily suppressed.

一般式(I−d)中、Ard1〜Ard4は、それぞれ独立に置換若しくは未置換のアリール基を示す。Ard5は、置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示す。Ddは、下記一般式(IA−d)で示される基を示す。dc1〜dc5は,それぞれ独立に0以上2以下の整数を示す。dkは、0又は1を示す。但し、Ddの総数は、3以上8以下である。 In the general formula (Id), Ar d1 to Ar d4 each independently represent a substituted or unsubstituted aryl group. Ar d5 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted arylene group. Dd represents a group represented by the following general formula (IA-d). dc1 to dc5 each independently represents an integer of 0 or more and 2 or less. dk represents 0 or 1. However, the total number of Dd is 3 or more and 8 or less.

一般式(IA−d)中、Lは、*−(CHdn−O−で示される基を含み、*にてArd1〜Ard5で示されるに連結する2価の連結基を示す。dnは、1以上6以下の整数を示す。 In General Formula (IA-d), L d includes a group represented by * — (CH 2 ) dn —O—, and represents a divalent linking group that is coupled to Ar d1 to Ar d5 by *. Show. dn represents an integer of 1 to 6.

以下、一般式(I−d)の詳細を説明する。
一般式(I−d)中、Ard1〜Ard4で示される置換若しくは未置換のアリール基は、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Ard5は、dkが0のとき、置換若しくは未置換のアリール基を示し、この置換若しくは未置換のアリール基としては、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Ard5は、dkが1のとき、置換若しくは未置換のアリーレン基を示し、この置換若しくは未置換のアリーレン基としては、一般式(I−a)中のAra5及びAra6で示される置換若しくは未置換のアリーレン基と同様である。
Ddの総数は、より強度の高い保護層(最表面層)を得る観点から、好ましくは4以上である。
Details of the general formula (Id) will be described below.
In general formula (Id), the substituted or unsubstituted aryl group represented by Ar d1 to Ar d4 is the substituted or unsubstituted aryl group represented by Ar a1 to Ar a4 in general formula (Ia). It is the same.
Ar d5 represents a substituted or unsubstituted aryl group when dk is 0, and examples of the substituted or unsubstituted aryl group include substituted or unsubstituted Ar a1 to Ar a4 in the general formula (Ia) Same as unsubstituted aryl group.
Ar d5 represents a substituted or unsubstituted arylene group when dk is 1, and the substituted or unsubstituted arylene group includes a substituent represented by Ar a5 and Ar a6 in the general formula (Ia) or The same as the unsubstituted arylene group.
The total number of Dd is preferably 4 or more from the viewpoint of obtaining a protective layer (outermost surface layer) with higher strength.

次に、一般式(IA−d)の詳細を説明する。
一般式(IA−d)中、Lで示される2価の連結基としては、例えば、
*−(CHdp−O−、
*−(CHdp−O−(CHdq−O−
等が挙げられる。
ここで、Lで示される連結基中、dpは、1以上6以下(好ましくは1以上5以下)の整数を示す。dqは、1以上6以下(好ましくは1以上5以下)の整数を示す。
なお、Lで示される連結基中、「*」は、Ard1〜Ard5で示される基と連結する部位を示している。
Next, the details of the general formula (IA-d) will be described.
In the general formula (IA-d), examples of the divalent linking group represented by L d include:
* — (CH 2 ) dp —O—,
* - (CH 2) dp -O- (CH 2) dq -O-
Etc.
Here, in the linking group represented by L d , dp represents an integer of 1 to 6 (preferably 1 to 5). dq represents an integer of 1 to 6 (preferably 1 to 5).
In the linking group represented by L d , “*” represents a site linked to the group represented by Ar d1 to Ar d5 .

・一般式(II−a)で示される連鎖重合性化合物
一般式(II−a)で示される連鎖重合性化合物について説明する。
特定の連鎖重合性電荷輸送材料として、一般式(II)(特に一般式(II−a))で示される連鎖重合性化合物を適用すると、長期に亘り繰り返し使用しても電気特性の劣化が抑制され易くなる。その理由は定かではないが、以下の通りと考えられる。
まず、一般式(II)(特に一般式(II−a))で示される連鎖重合性化合物は、電荷輸送性骨格から、1つの連結基を介して2つ又は3つの連鎖重合性の反応性基(スチレン基)を有する化合物である。
このため、一般式(II)(特に一般式(II−a))で示される連鎖重合性化合物は、高い硬化度、架橋部位数を保ちつつも、この連結基の存在により、重合又は架橋させた際に電荷輸送性骨格に歪みを発生させ難く、高い硬化度と優れた電荷輸送性能との両立が実現され易くなると考えられる。
また、従来用いられていた、(メタ)アクリル基を有する電荷輸送性化合物は、上記のようにひずみを生じやすい上に、反応性部位は親水性が高く、電荷輸送性部位は疎水性が高いため、微視的な相分離(ミクロ相分離)しやすいのに対し、一般式(II)(特に一般式(II−a))で示される連鎖重合性化合物は、スチレン基を反応性基として有しており、更に、硬化(架橋)させた際に電荷輸送性骨格に歪みを生じさせ難い連結基を有している構造であること、反応性部位、電荷輸送性部位ともに疎水性のため相分離が起きに難くなるため、効率的な電荷輸送性能と高強度化が図れると考えられる。その結果として、一般式(II)(特に一般式(II−a))で示される連鎖重合性化合物の重合体又は架橋体を含む保護層(最表面層)は、機械的強度に優れると共に、電荷輸送性能(電気特性)がより優れるものと考えられる。
以上から、一般式(II)(特に一般式(II−a))で示される連鎖重合性化合物を適用すると、長期に亘り繰り返し使用しても電気特性の劣化が抑制され易くなると考えられる。
-Chain-polymerizable compound represented by general formula (II-a) The chain-polymerizable compound represented by general formula (II-a) will be described.
When a chain-polymerizable compound represented by the general formula (II) (particularly the general formula (II-a)) is applied as a specific chain-polymerizable charge transport material, deterioration of electrical characteristics is suppressed even when used repeatedly over a long period of time. It becomes easy to be done. The reason is not clear, but is thought to be as follows.
First, the chain-polymerizable compound represented by the general formula (II) (particularly the general formula (II-a)) has two or three chain-polymerizable reactivities from a charge transporting skeleton through one linking group. It is a compound having a group (styrene group).
For this reason, the chain polymerizable compound represented by the general formula (II) (particularly the general formula (II-a)) is polymerized or crosslinked due to the presence of this linking group while maintaining a high degree of curing and the number of crosslinking sites. In this case, it is difficult to generate distortion in the charge transporting skeleton, and it is considered that it is easy to realize both a high degree of curing and excellent charge transport performance.
In addition, conventionally used charge transporting compounds having a (meth) acryl group are likely to be distorted as described above, and the reactive sites are highly hydrophilic and the charge transporting sites are highly hydrophobic. Therefore, while it is easy to perform microscopic phase separation (microphase separation), the chain polymerizable compound represented by the general formula (II) (particularly the general formula (II-a)) has a styrene group as a reactive group. In addition, the structure has a linking group that hardly causes distortion in the charge transporting skeleton when cured (crosslinked), and both the reactive site and the charge transporting site are hydrophobic. Since phase separation is difficult to occur, it is considered that efficient charge transport performance and high strength can be achieved. As a result, the protective layer (outermost surface layer) containing a polymer or a crosslinked product of the chain polymerizable compound represented by the general formula (II) (particularly the general formula (II-a)) is excellent in mechanical strength, It is considered that the charge transport performance (electrical characteristics) is more excellent.
From the above, it is considered that when the chain polymerizable compound represented by the general formula (II) (particularly, the general formula (II-a)) is applied, the deterioration of the electrical characteristics is easily suppressed even when used repeatedly over a long period of time.

一般式(II−a)中、Ark1〜Ark4は、それぞれ独立に置換若しくは未置換のアリール基を示す。Ark5は、置換若しくは未置換のアリール基、又は置換若しくは未置換のアリーレン基を示す。Dkは、下記一般式(IIA−a)で示される基を示す。kc1〜kc5は,それぞれ独立に0以上2以下の整数を示す。kkは、0又は1を示す。但し、Dkの総数は、1以上8以下である。 In the general formula (II-a), Ar k1 to Ar k4 each independently represents a substituted or unsubstituted aryl group. Ar k5 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylene group. Dk represents a group represented by the following general formula (IIA-a). kc1 to kc5 each independently represents an integer of 0 or more and 2 or less. kk represents 0 or 1. However, the total number of Dk is 1 or more and 8 or less.

一般式(IIA−a)中、Lは、アルカン若しくはアルケンから誘導される3価又は4価の基、並びに、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む(kn+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。knは、2以上3以下の整数を示す。 In the general formula (IIA-a), L k represents a trivalent or tetravalent group derived from an alkane or alkene, an alkylene group, an alkenylene group, -C (= O)-, -N (R)- A (kn + 1) -valent linking group containing two or more selected from the group consisting of, -S-, and -O-. R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group. kn represents an integer of 2 or more and 3 or less.

以下、一般式(II−a)の詳細を説明する。
一般式(II−a)中、Ark1〜Ark4で示される置換若しくは未置換のアリール基は、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Ark5は、kkが0のとき、置換若しくは未置換のアリール基を示し、この置換若しくは未置換のアリール基としては、一般式(I−a)中のAra1〜Ara4で示される置換若しくは未置換のアリール基と同様である。
Ark5は、kkが1のとき、置換若しくは未置換のアリーレン基を示し、この置換若しくは未置換のアリーレン基としては、一般式(I−a)中のAra5及びAra6で示される置換若しくは未置換のアリーレン基と同様である。
Dkの総数は、より強度の高い保護層(最表面層)を得る観点から、好ましくは2以上であり、更に好ましくは4以上である。一般に、一分子中の連鎖重合性官能基の数が多すぎると、重合(架橋)反応が進むにつれ、分子が動きにくくなり連鎖重合反応性が低下し、未反応の連鎖重合性基の割合が増えてしまうことから、Dcの総数は、好ましくは7以下、さらに好ましくは6以下である。
Hereinafter, the details of the general formula (II-a) will be described.
In general formula (II-a), the substituted or unsubstituted aryl group represented by Ar k1 to Ar k4 is the substituted or unsubstituted aryl group represented by Ar a1 to Ar a4 in general formula (Ia). It is the same.
Ar k5 represents a substituted or unsubstituted aryl group when kk is 0. Examples of the substituted or unsubstituted aryl group include substituted or unsubstituted Ar a1 to Ar a4 in the general formula (Ia) Same as unsubstituted aryl group.
Ar k5 represents a substituted or unsubstituted arylene group when kk is 1, and the substituted or unsubstituted arylene group includes a substituent represented by Ar a5 and Ar a6 in the general formula (Ia) or The same as the unsubstituted arylene group.
The total number of Dk is preferably 2 or more, more preferably 4 or more, from the viewpoint of obtaining a protective layer (outermost surface layer) with higher strength. In general, if the number of chain polymerizable functional groups in one molecule is too large, as the polymerization (crosslinking) reaction proceeds, the molecule becomes difficult to move and the chain polymerization reactivity decreases, and the ratio of unreacted chain polymerizable groups decreases. Since it increases, the total number of Dc is preferably 7 or less, and more preferably 6 or less.

次に、一般式(IIA−a)の詳細を説明する。
一般式(IIA−a)中、Lで示される(kn+1)価の連結基としては、例えば、一般式(II)中、L’で示される(n+1)価の連結基と同様である。
Next, the detail of general formula (IIA-a) is demonstrated.
In the general formula (IIA-a), the (kn + 1) -valent linking group represented by L k is, for example, the same as the (n + 1) -valent linking group represented by L ′ in the general formula (II).

以下に、特定の連鎖重合性電荷輸送材料の具体例を示す。
具体的には、一般式(I)及び(II)の電荷輸送性骨格F(例えば一般式(I−a)中のDaや一般式(II−a)のDkを除く骨格に相当する部位)の具体例、電荷輸送性骨格Fに連結する官能基(例えば一般式(I−a)中のDaや一般式(II−a)のDkに相当する部位)の具体例と共に、一般式(I)及び(II)で示される連鎖重合性化合物の具体例を示すが、これらに限定されるわけではない。
なお、一般式(I)及び(II)の電荷輸送性骨格Fの具体例の「*」部分は、電荷輸送性骨格Fに連結する官能基の「*」部分が連結していることを意味する。
つまり、例えば、例示化合物(I−b)−1は、電荷輸送性骨格Fの具体例:(M1)−1、官能基の具体例:(R2)−1と示されているが、その具体的な構造は以下の構造を示す。
Specific examples of specific chain polymerizable charge transport materials are shown below.
Specifically, the charge transporting skeleton F of the general formulas (I) and (II) (for example, a portion corresponding to the skeleton excluding Da in the general formula (Ia) and Dk of the general formula (II-a)). Together with specific examples of functional groups linked to the charge transporting skeleton F (for example, a site corresponding to Da in the general formula (Ia) or Dk in the general formula (II-a)). Specific examples of the chain polymerizable compound represented by (II) and (II) are shown below, but are not limited thereto.
In the specific examples of the charge transporting skeleton F in the general formulas (I) and (II), the “*” part means that the “*” part of the functional group linked to the charge transporting skeleton F is linked. To do.
That is, for example, the exemplary compound (Ib) -1 is shown as a specific example of the charge transporting skeleton F: (M1) -1, and a specific example of the functional group: (R2) -1. The typical structure shows the following structure.

まず、電荷輸送性骨格Fの具体例を以下示す。   First, specific examples of the charge transporting skeleton F are shown below.

次に、電荷輸送性骨格Fに連結する官能基の具体例を示す。   Next, specific examples of the functional group linked to the charge transporting skeleton F are shown.

次に、一般式(I)、具体的には一般式(I−a)で示される化合物の具体例を示す。   Next, specific examples of the compound represented by the general formula (I), specifically, the general formula (Ia) are shown.

次に、一般式(I)、具体的には一般式(I−b)で示される化合物の具体例を示す。

Next, specific examples of the compound represented by the general formula (I), specifically, the general formula (Ib) are shown.

次に、一般式(I)、具体的には一般式(I−c)で示される化合物の具体例を示す。   Next, specific examples of the compound represented by the general formula (I), specifically, the general formula (Ic) are shown.

次に、一般式(I)、具体的には一般式(I−d)で示される化合物の具体例を示す。   Next, specific examples of the compound represented by the general formula (I), specifically, the general formula (Id) will be shown.

次に、一般式(II)、具体的には一般式(II−a)で示される化合物の具体例を示す。   Next, specific examples of the compound represented by the general formula (II), specifically, the general formula (II-a) are shown.

特定の連鎖重合性電荷輸送材料(特に一般式(I)で示される連鎖重合性化合物)は、例えば、以下のようにして合成される。
即ち、特定の連鎖重合性電荷輸送材料は、前駆体であるカルボン酸、又は、アルコールと、対応するクロロメチルスチレンなどでのエーテル化などにより合成される。
A specific chain polymerizable charge transport material (particularly, a chain polymerizable compound represented by the general formula (I)) is synthesized, for example, as follows.
That is, a specific chain polymerizable charge transport material is synthesized by etherification with a carboxylic acid or alcohol as a precursor and a corresponding chloromethylstyrene or the like.

特定の連鎖重合性電荷輸送材料の例示化合物(I−d)−22の合成経路を一例として以下に示す。   An example of the synthesis route of the exemplary compound (Id) -22 of a specific chain polymerizable charge transport material is shown below.

アリールアミン化合物カルボン酸は、アリールアミン化合物のエステル基を、例えば、実験化学講座、第4版、20巻、P.51などに記載されたように、塩基性触媒(NaOH、KCO等)、酸性触媒(例えばリン酸、硫酸等)を用いる加水分解により得られる。
この際、溶媒としては、種々のものが挙げられるが、メタノール、エタノール、エチレングリコールなどのアルコール系を用いるか、これに水を混合して用いることがよい。
さらに、アリールアミン化合物の溶解性が低い場合には、塩化メチレン、クロロホルム、トルエン、ジメチルスルホキシド、エーテル、テトラヒドロフランなどを加えてもよい。
溶媒の量は、特に制限はないが、例えば、エステル基を含有するアリールアミン化合物1質量部に対して1質量部以上100質量部以下、好ましくは2質量部以上50質量部以下で用いることがよい。
反応温度は、例えば、室温(例えば25℃)以上溶媒の沸点以下の範囲で設定され、反応速度の問題上、50度以上が好ましい。
触媒の量については、特に制限はないが、例えば、エステル基を含有するアリールアミン化合物1質量部に対して0.001質量部以上1質量部以下、好ましくは0.01質量部以上0.5質量部以下で用いることがよい。
加水分解反応後、塩基性触媒で加水分解を行った場合には、生成した塩を酸(例えば塩酸等)で中和し、遊離させる。さらに、十分に水洗した後、乾燥して使用するか、必要によっては、メタノール、エタノール、トルエン、酢酸エチル、アセトンなど、適当な溶媒により、再結晶精製を行った後、乾燥して使用してもよい。
The arylamine compound carboxylic acid is an ester group of an arylamine compound, for example, as described in Experimental Chemistry Course, 4th edition, volume 20, p. As described in No. 51 and the like, it can be obtained by hydrolysis using a basic catalyst (NaOH, K 2 CO 3 etc.) and an acidic catalyst (eg phosphoric acid, sulfuric acid etc.).
In this case, various solvents can be used, and it is preferable to use alcohols such as methanol, ethanol, ethylene glycol, or a mixture of water.
Furthermore, when the solubility of the arylamine compound is low, methylene chloride, chloroform, toluene, dimethyl sulfoxide, ether, tetrahydrofuran or the like may be added.
Although there is no restriction | limiting in particular in the quantity of a solvent, For example, it is 1 mass part or more and 100 mass parts or less with respect to 1 mass part of arylamine compounds containing an ester group, Preferably it is used by 2 mass parts or more and 50 mass parts or less. Good.
The reaction temperature is set, for example, in the range from room temperature (for example, 25 ° C.) to the boiling point of the solvent, and is preferably 50 ° C. or higher in view of the reaction rate.
Although there is no restriction | limiting in particular about the quantity of a catalyst, For example, 0.001 mass part or more and 1 mass part or less with respect to 1 mass part of arylamine compounds containing an ester group, Preferably it is 0.01 mass part or more and 0.5 It is good to use below mass parts.
When hydrolysis is performed with a basic catalyst after the hydrolysis reaction, the generated salt is neutralized with an acid (for example, hydrochloric acid or the like) and released. Furthermore, after washing thoroughly with water, use after drying, or if necessary, recrystallize and purify with an appropriate solvent such as methanol, ethanol, toluene, ethyl acetate, acetone, etc. Also good.

アリールアミン化合物のアルコール体は、アリールアミン化合物のエステル基を、例えば、実験化学講座、第4版、20巻、P.10などに記載されたように、水素化リチウムアルミニウム、水素化ホウ素ナトリウムなどを用いて対応するアルコールに還元して合成する。   The alcohol form of the arylamine compound may be prepared by reacting the ester group of the arylamine compound with, for example, Experimental Chemistry Course, 4th edition, volume 20, p. As described in No. 10 and the like, it is synthesized by reducing to the corresponding alcohol using lithium aluminum hydride, sodium borohydride or the like.

例えば、エステル結合にて連鎖重合性官能基を導入する場合、アリールアミン化合物カルボン酸と、ヒドロキシメチルスチレンを酸触媒にて脱水縮合させる通常のエステル化や、アリールアミン化合物カルボン酸と、ハロゲン化メチルスチレンを、ピリジン、ピペリジン、トリエチルアミン、ジメチルアミノピリジン、トリメチルアミン、DBU、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム等の塩基を用いて縮合させる方法が使用し得るが、ハロゲン化メチルスチレンを用いる方法が副生成物が抑制されることから好適である。   For example, when a chain polymerizable functional group is introduced by an ester bond, normal esterification in which an arylamine compound carboxylic acid and hydroxymethylstyrene are subjected to dehydration condensation with an acid catalyst, an arylamine compound carboxylic acid, and a methyl halide are used. A method of condensing styrene with a base such as pyridine, piperidine, triethylamine, dimethylaminopyridine, trimethylamine, DBU, sodium hydride, sodium hydroxide, potassium hydroxide can be used, but a method using halogenated methylstyrene Is preferable because by-products are suppressed.

アリールアミン化合物カルボン酸の酸に対し、ハロゲン化メチルスチレンを1当量以上、好ましくは、1.2当量以上、より好ましくは1.5当量以上加えることがよく、塩基はハロゲン化メチルスチレンに対し0.8当量以上2.0当量以下、好ましくは1.0当量以上1.5当量以下で用いることがよい。
溶媒としては、N−メチルピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミド等の非プロトン性極性溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;ジエチルエーテル、テトラヒドロフランなどのエーテル系溶媒;トルエン、クロロベンゼン、1ークロロナフタレンなどの芳香族系溶媒;などが有効であり、アリールアミン化合物カルボン酸の1質量部に対して、1質量部以上100質量部以下、好ましくは2質量部以上50質量部以下の範囲で用いられることがよい。
反応温度は特に制限はない。反応終了後、反応液を水にあけ、トルエン、ヘキサン、酢酸エチルなどの溶媒で抽出、水洗し、さらに、必要により活性炭、シリカゲル、多孔質アルミナ、活性白土などの吸着剤を用いて精製を行ってもよい。
The halogenated methylstyrene is preferably added in an amount of 1 equivalent or more, preferably 1.2 equivalents or more, more preferably 1.5 equivalents or more with respect to the acid of the arylamine compound carboxylic acid. It is preferably used in an amount of from 8 equivalents to 2.0 equivalents, preferably from 1.0 equivalents to 1.5 equivalents.
Solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as diethyl ether and tetrahydrofuran; toluene, chlorobenzene, 1 -Aromatic solvents such as chloronaphthalene; and the like are effective, and ranges from 1 part by weight to 100 parts by weight, preferably from 2 parts by weight to 50 parts by weight with respect to 1 part by weight of the arylamine compound carboxylic acid. It is good to be used in.
The reaction temperature is not particularly limited. After completion of the reaction, the reaction solution is poured into water, extracted with a solvent such as toluene, hexane, or ethyl acetate, washed with water, and further purified using an adsorbent such as activated carbon, silica gel, porous alumina, or activated clay if necessary. May be.

また、エーテル結合にて導入する場合、アリールアミン化合物アルコールと、ハロゲン化メチルスチレンを、ピリジン、ピペリジン、トリエチルアミン、ジメチルアミノピリジン、トリメチルアミン、DBU、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム等の塩基を用いて縮合させる方法が使用することがよい。
アリールアミン化合物アルコールのアルコールに対し、ハロゲン化メチルスチレンを1当量以上、好ましくは、1.2当量以上、より好ましくは1.5当量以上加えることがよく、塩基はハロゲン化メチルスチレンに対し0.8当量以上2.0当量以下、好ましくは、1.0当量以上1.5当量以下で用いることがよい。
溶媒としては、N−メチルピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミド等の非プロトン性極性溶媒アセトン、メチルエチルケトンなどのケトン系溶媒ジエチルエーテル、テトラヒドロフランなどのエーテル系溶媒トルエン、クロロベンゼン、1ークロロナフタレンなどの芳香族系溶媒などが有効であり、アリールアミン化合物アルコールの1質量部に対して、1質量部以上100質量部以下、好ましくは2質量部以上50質量部以下の範囲で用いることがよい。
反応温度は特に制限はない。反応終了後、反応液を水にあけ、トルエン、ヘキサン、酢酸エチルなどの溶媒で抽出、水洗し、さらに、必要により活性炭、シリカゲル、多孔質アルミナ、活性白土などの吸着剤を用いて精製を行ってもよい。
In addition, when introduced by an ether bond, arylamine compound alcohol and halogenated methylstyrene are converted into bases such as pyridine, piperidine, triethylamine, dimethylaminopyridine, trimethylamine, DBU, sodium hydride, sodium hydroxide, potassium hydroxide, etc. It is preferable to use a method of condensing with.
The halogenated methylstyrene is preferably added in an amount of 1 equivalent or more, preferably 1.2 equivalents or more, more preferably 1.5 equivalents or more with respect to the alcohol of the arylamine compound alcohol. It is 8 to 2.0 equivalents, preferably 1.0 to 1.5 equivalents.
Solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide ; ketone solvents such as acetone and methyl ethyl ketone ; ether solvents such as diethyl ether and tetrahydrofuran ; toluene, chlorobenzene, 1 -Aromatic solvents such as chloronaphthalene ; etc. are effective, and in the range of 1 to 100 parts by weight, preferably 2 to 50 parts by weight with respect to 1 part by weight of the arylamine compound alcohol. It is good to use.
The reaction temperature is not particularly limited. After completion of the reaction, the reaction solution is poured into water, extracted with a solvent such as toluene, hexane, or ethyl acetate, washed with water, and further purified using an adsorbent such as activated carbon, silica gel, porous alumina, or activated clay if necessary. May be.

特定の連鎖重合性電荷輸送材料(特に一般式(II)で示される連鎖重合性化合物)は、例えば、以下に示す一般の電荷輸送材料の合成方法(ホルミル化、エステル化、エーテル化、水素添加)を利用して、合成される。
・ホルミル化:電子供与性基を持つ芳香族化合物・複素環化合物・アルケンにホルミル基を導入するのに適した反応。DMFとオキシ三塩化リンを用いるのが一般的であり、反応温度は室温(例えば25℃)から100℃程度で行われることが多い。
・エステル化:有機酸とアルコールまたはフェノールのようなヒドロキシル基を含む化合物との縮合反応。脱水剤を共存させたり、水を系外へ除去することで平衡をエステル側へ偏らせる手法を用いることが好ましい。
・エーテル化:アルコキシドと有機ハロゲン化合物を縮合させるウィリアムソン合成法が一般的である。
・水素添加:種々の触媒を用いて不飽和結合に水素を反応させる方法。
Specific chain-polymerizable charge transport materials (especially chain-polymerizable compounds represented by the general formula (II)) include, for example, the following general charge transport material synthesis methods (formylation, esterification, etherification, hydrogenation) ) And synthesized.
-Formylation: Aromatic compounds with electron donating groups-Heterocyclic compounds-Reactions suitable for introducing formyl groups into alkenes. In general, DMF and phosphorus oxytrichloride are used, and the reaction temperature is often from room temperature (for example, 25 ° C.) to about 100 ° C.
Esterification: A condensation reaction between an organic acid and a compound containing a hydroxyl group such as alcohol or phenol. It is preferable to use a method of biasing the equilibrium toward the ester side by coexisting a dehydrating agent or removing water out of the system.
Etherification: A Williamson synthesis method in which an alkoxide and an organic halogen compound are condensed is common.
-Hydrogenation: A method in which hydrogen is reacted with an unsaturated bond using various catalysts.

なお、特定の連鎖重合性電荷輸送材料としては、一般式(I)及び一般式(II)で示される連鎖重合性化合物以外にも、特開2012−163693号公報の段落[0110]〜[0153]に記載の化合物、特許第4365960号公報の段落[0055]〜[0082]に記載の化合物、特許第4429340号公報の段落[0040]〜[0043]に記載の化合物、特開2013−195762号公報の段落[0161]〜[0166]に記載の化合物、などが挙げられる。   As specific chain polymerizable charge transport materials, in addition to the chain polymerizable compounds represented by the general formula (I) and the general formula (II), paragraphs [0110] to [0153] of JP2012-163893A. , Compounds described in paragraphs [0055] to [0082] of Japanese Patent No. 4365960, compounds described in paragraphs [0040] to [0043] of Japanese Patent No. 4429340, and JP2013-195762A And compounds described in paragraphs [0161] to [0166] of the publication.

特定の連鎖重合性電荷輸送材料の含有量は、例えば、保護層形成用塗布液中の全固形分に対して40質量%以上95質量%以下がよく、好ましくは50質量%以上95質量%以下である。   The content of the specific chain polymerizable charge transport material is, for example, preferably 40% by mass or more and 95% by mass or less, and preferably 50% by mass or more and 95% by mass or less, based on the total solid content in the coating liquid for forming the protective layer. It is.

−樹脂粒子−
保護層(最表面層)を構成する膜は、樹脂粒子を含有してもよい。
樹脂粒子としては、例えば、ビスフェノールAタイプ又はビスフェノールZタイプ等のポリカーボネート樹脂の粒子;アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン共重合体樹脂、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン-アクリル共重合体、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、フェノール−ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、塩素ゴム等の絶縁性樹脂の粒子;ポリビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン等の有機光導電性ポリマーの粒子;等が挙げられる。
これらの樹脂粒子は、中空粒子であってもよい。また、樹脂粒子は、これらの樹脂を単独又は2種以上混合して用いてもよい。
-Resin particles-
The film constituting the protective layer (outermost surface layer) may contain resin particles.
Examples of the resin particles include polycarbonate resin particles such as bisphenol A type or bisphenol Z type; acrylic resin, methacrylic resin, polyarylate resin, polyester resin, polyvinyl chloride resin, polystyrene resin, acrylonitrile-styrene copolymer resin, Acrylonitrile-butadiene copolymer resin, polyvinyl acetate resin, polyvinyl formal resin, polysulfone resin, styrene-acrylic copolymer, styrene-butadiene copolymer resin, vinylidene chloride-acrylonitrile copolymer resin, vinyl chloride-vinyl acetate- Insulating resin particles such as maleic anhydride resin, silicone resin, phenol-formaldehyde resin, polyacrylamide resin, polyamide resin, chlorine rubber; polyvinylcarbazole, polyvinylidene And particles of organic photoconductive polymers such as luanthracene and polyvinylpyrene.
These resin particles may be hollow particles. The resin particles may be used alone or in combination of two or more.

また、保護層(最表面層)を構成する膜は、樹脂粒子として、フッ素含有樹脂粒子を含有してもよい。
フッ素含有樹脂粒子としては、フルオロオレフィンのホモポリマー、2種以上の共重合体であって、フルオロオレフィンの1種又は2種以上と非フッ素系のモノマーとの共重合体の粒子が挙げられる。
Moreover, the film | membrane which comprises a protective layer (outermost surface layer) may contain a fluorine-containing resin particle as a resin particle.
Examples of the fluorine-containing resin particles include fluoroolefin homopolymers, two or more types of copolymers, and copolymer particles of one or more types of fluoroolefins and non-fluorinated monomers.

フルオロオレフィンとしては、例えばテトラフルオロエチレン(TFE)、パーフルオロビニルエーテル、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)などのパーハロオレフィン;フッ化ビニリデン(VdF)、トリフルオロエチレン、フッ化ビニルなどの非パーフルオロオレフィン;等が挙げられる。   Examples of the fluoroolefin include perhaloolefins such as tetrafluoroethylene (TFE), perfluorovinyl ether, hexafluoropropylene (HFP), and chlorotrifluoroethylene (CTFE); vinylidene fluoride (VdF), trifluoroethylene, and fluoride. Non-perfluoroolefins such as vinyl; and the like.

一方、非フッ素系のモノマーとしては、例えばエチレン、プロピレン、ブテンなどのハイドロカーボン系オレフィン;シクロヘキシルビニルエーテル(CHVE)、エチルビニルエーテル(EVE)、ブチルビニルエーテル、メチルビニルエーテルなどのアルキルビニルエーテル;ポリオキシエチレンアリルエーテル(POEAE)、エチルアリルエーテルなどのアルケニルビニルエーテル;ビニルトリメトキシシラン(VSi)、ビニルトリエトキシシラン、ビニルトリス(メトキシエトキシ)シランなどの反応性α,β−不飽和基を有する有機ケイ素化合物;アクリル酸メチル、アクリル酸エチルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチルなどのメタクリル酸エステル;酢酸ビニル、安息香酸ビニル、「ベオバ」(商品名、シェル社製のビニルエステル)などのビニルエステル;などが挙げられる。   On the other hand, non-fluorine monomers include, for example, hydrocarbon olefins such as ethylene, propylene, and butene; alkyl vinyl ethers such as cyclohexyl vinyl ether (CHVE), ethyl vinyl ether (EVE), butyl vinyl ether, and methyl vinyl ether; polyoxyethylene allyl ether (POEAE), alkenyl vinyl ethers such as ethyl allyl ether; organosilicon compounds having reactive α, β-unsaturated groups such as vinyltrimethoxysilane (VSi), vinyltriethoxysilane, vinyltris (methoxyethoxy) silane; acrylic acid Acrylic esters such as methyl and ethyl acrylate; methacrylates such as methyl methacrylate and ethyl methacrylate; vinyl acetate, vinyl benzoate, (Trade name, vinyl ester manufactured by Shell) and the like.

これらのうち、フッ素化率の高いものが好ましく、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)などが好ましい。これらのうちでも、PTFE、FEP、PFAが特に好ましい。   Among these, those having a high fluorination rate are preferable, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA). ), Ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and the like are preferable. Among these, PTFE, FEP, and PFA are particularly preferable.

フッ素含有樹脂粒子は、例えばフッ素系単量体を乳化重合などの方法で製造した粒子(フッ素樹脂水性分散液)をそのまま使用してもよく、十分に水洗した後に乾燥したものを使用してもよい。
フッ素含有樹脂粒子の平均粒子径としては0.01μm以上100μm以下が好ましく、特に0.03μm以上5μm以下であることが好ましい。
尚、上記フッ素含有樹脂粒子の平均粒子径は、レーザー回折式粒度分布測定装置LA−700(堀場製作所製)を用いて測定した値をいう。
As the fluorine-containing resin particles, for example, particles (fluorine resin aqueous dispersion) produced by a method such as emulsion polymerization of a fluorine-based monomer may be used as they are, or may be used after thoroughly washing with water and drying. Good.
The average particle size of the fluorine-containing resin particles is preferably 0.01 μm or more and 100 μm or less, and particularly preferably 0.03 μm or more and 5 μm or less.
In addition, the average particle diameter of the said fluorine-containing resin particle means the value measured using laser diffraction type particle size distribution measuring device LA-700 (made by Horiba Seisakusho).

フッ素含有樹脂粒子は、市販で入手したものを用いてもよく、例えばPTFE粒子としては、フルオンL173JE(旭ガラス社製)、ダニイオンTHV−221AZ、ダニイオン9205(住友3M社製)、ルブロンL2、ルブロンL5(ダイキン社製)などが挙げられる。   As the fluorine-containing resin particles, commercially available ones may be used. For example, as PTFE particles, Fullon L173JE (Asahi Glass Co., Ltd.), Taniion THV-221AZ, Taniion 9205 (Sumitomo 3M), Lubron L2, Lubron And L5 (manufactured by Daikin).

フッ素含有樹脂粒子は、紫外領域の発振波長を有するレーザー光を照射されたものであってもよい。フッ素含有樹脂粒子に照射されるレーザー光については特に限定されるものではなく、例えば、エキシマレーザー等が挙げられる。エキシマレーザー光としては、波長が400nm以下、特に193nm以上308nm以下の紫外レーザー光が好適である。特に、KrFエキシマレーザー光(波長:248nm)およびArFエキシマレーザー光(波長:193nm)等が好ましい。エキシマレーザー光照射は、通常、室温(25℃)大気中で行うが、酸素雰囲気中で行ってもよい。   The fluorine-containing resin particles may be irradiated with laser light having an oscillation wavelength in the ultraviolet region. The laser beam irradiated to the fluorine-containing resin particles is not particularly limited, and examples thereof include an excimer laser. As the excimer laser light, an ultraviolet laser light having a wavelength of 400 nm or less, particularly 193 nm or more and 308 nm or less is suitable. In particular, KrF excimer laser light (wavelength: 248 nm) and ArF excimer laser light (wavelength: 193 nm) are preferred. Excimer laser light irradiation is usually performed in the air at room temperature (25 ° C.), but may be performed in an oxygen atmosphere.

また、エキシマレーザー光の照射条件は、フッ素樹脂の種類および求められる表面改質の程度によって左右されるが、一般的な照射条件は次の通りである。
フルエンス:50mJ/cm/パルス以上
入射エネルギー:0.1J/cm以上
ショット数:100以下
The irradiation conditions of excimer laser light depend on the type of fluororesin and the required degree of surface modification, but general irradiation conditions are as follows.
Fluence: 50 mJ / cm 2 / pulse or more Incident energy: 0.1 J / cm 2 or more Shot number: 100 or less

特に好適なKrFエキシマレーザー光およびArFエキシマレーザー光の常用される照射条件は次の通りである。
KrF
フルエンス:100mJ/cm/パルス以上500mJ/cm/パルス以下
入射エネルギー:0.2J/cm以上2.0J/cm以下
ショット数:1以上20以下
Particularly suitable irradiation conditions for particularly suitable KrF excimer laser light and ArF excimer laser light are as follows.
KrF
Fluence: 100 mJ / cm 2 / pulse or more 500 mJ / cm 2 / pulse or less incident energy: 0.2 J / cm 2 or more 2.0 J / cm 2 or less number of shots: 1 to 20

ArF
フルエンス:50mJ/cm/パルス以上150mJ/cm/パルス以下
入射エネルギー:0.1J/cm以上1.0J/cm以下
ショット数:1以上20以下
ArF
Fluence: 50 mJ / cm 2 / pulse or more 150 mJ / cm 2 / pulse or less incident energy: 0.1 J / cm 2 or more 1.0 J / cm 2 or less number of shots: 1 to 20

フッ素含有樹脂粒子の含有量は、保護層(最表面層)の固形分全量に対して1質量%以上20質量%以下が好ましく、1質量%以上12質量%以下がさらに好ましい。   The content of the fluorine-containing resin particles is preferably 1% by mass or more and 20% by mass or less, and more preferably 1% by mass or more and 12% by mass or less with respect to the total solid content of the protective layer (outermost surface layer).

−フッ素含有分散剤−
保護層(最表面層)を構成する膜は、フッ素含有樹脂粒子と共に、フッ素含有分散剤を含有してもよい。
フッ素含有分散剤は、フッ素含有樹脂粒子を保護層(最表面層)中に分散させるために用いられるものであるため、界面活性作用を有していることが好ましく、つまり分子内に親水基と疎水基とを持つ物質であることがよい。
-Fluorine-containing dispersant-
The film constituting the protective layer (outermost surface layer) may contain a fluorine-containing dispersant together with the fluorine-containing resin particles.
Since the fluorine-containing dispersant is used to disperse the fluorine-containing resin particles in the protective layer (outermost surface layer), it preferably has a surface active action, that is, has a hydrophilic group in the molecule. A substance having a hydrophobic group is preferable.

フッ素含有分散剤としては、以下の反応性の単量体を重合した樹脂(以下「特定樹脂」と称する。)が挙げられる。具体的には、パーフルオロアルキル基を有するアクリレートと、フッ素を有さないモノマーと、のランダム又はブロック共重合体、メタクリレートホモポリマーおよび前記パーフルオロアルキル基を有するアクリレートと、前記フッ素を有さないモノマーと、のランダム又はブロック共重合体、メタクリレートと、前記フッ素を有さないモノマーと、のランダム又はブロック共重合体が挙げられる。尚、パーフルオロアルキル基を有するアクリレートとしては、例えば2,2,2−トリフルオロエチルメタクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレートが挙げられる。
また、フッ素を有さないモノマーとしては、例えば、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、2−ヒドロキシアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールメタクリレート、フェノキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールメタクリレート、ヒドロキシエチルo−フェニルフェノールアクリレート、o−フェニルフェノールグリシジルエーテルアクリレートが挙げられる。また、米国特許5637142号明細書、特許第4251662号公報などに開示されたブロック又はブランチポリマーなどが挙げられる。またその他に、フッ素系界面活性剤が挙げられる。フッ素系界面活性剤の具体例としては、サーフロンS−611、サーフロンS−385(AGCセイミケミカル社製)、フタージェント730FL、フタージェント750FL(ネオス社製)、PF−636、PF−6520(北村化学社製)、メガファックEXP,TF−1507、メガファックEXP、TF−1535(DIC社製)、FC−4430、FC−4432(3M社製)などが挙げられる。
なお、特定樹脂の重量平均分子量は100以上50000以下が好ましい。
Examples of the fluorine-containing dispersant include resins obtained by polymerizing the following reactive monomers (hereinafter referred to as “specific resins”). Specifically, a random or block copolymer of an acrylate having a perfluoroalkyl group and a monomer having no fluorine, a methacrylate homopolymer, and an acrylate having the perfluoroalkyl group, and not having the fluorine Examples thereof include random or block copolymers of monomers and random or block copolymers of methacrylate and monomers not containing fluorine. Examples of the acrylate having a perfluoroalkyl group include 2,2,2-trifluoroethyl methacrylate and 2,2,3,3,3-pentafluoropropyl methacrylate.
Moreover, as a monomer which does not have fluorine, for example, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, lauryl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, 2-hydroxy acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, methoxypolyethylene glycol acrylate, methoxypolyethylene glycol methacrylate Phenoxypolyethyleneglycol Le acrylate, phenoxy polyethylene glycol methacrylate, hydroxyethyl o- phenylphenol acrylate, o- phenylphenol glycidyl ether acrylate. Also, block or branch polymers disclosed in US Pat. No. 5,637,142 and Patent No. 4,251,662 can be used. In addition, a fluorine-type surfactant is mentioned. Specific examples of the fluorosurfactant include Surflon S-611, Surflon S-385 (manufactured by AGC Seimi Chemical Co., Ltd.), Aftergent 730FL, Aftergent 750FL (manufactured by Neos), PF-636, and PF-6520 (Kitamura). Chemical Co., Ltd.), Megafac EXP, TF-1507, Megafac EXP, TF-1535 (manufactured by DIC), FC-4430, FC-4432 (manufactured by 3M), and the like.
The weight average molecular weight of the specific resin is preferably 100 or more and 50000 or less.

フッ素含有分散剤の含有量は、保護層(最表面層)の固形分全量に対して0.1質量%以上1質量%以下が好ましく、0.2質量%以上0.5質量%以下がさらに好ましい。   The content of the fluorine-containing dispersant is preferably 0.1% by mass or more and 1% by mass or less, and more preferably 0.2% by mass or more and 0.5% by mass or less with respect to the total solid content of the protective layer (outermost surface layer). preferable.

フッ素含有分散剤をフッ素含有樹脂粒子の表面に付着させる方法としては、フッ素含有分散剤を直接フッ素含有樹脂粒子の表面に付着させてもよいし、まず上記の単量体をフッ素含有樹脂粒子の表面に吸着させた後に重合を行なって、フッ素含有樹脂粒子の表面に前記特定樹脂を形成させてもよい。   As a method of attaching the fluorine-containing dispersant to the surface of the fluorine-containing resin particles, the fluorine-containing dispersant may be attached directly to the surface of the fluorine-containing resin particles, or first, the above monomer is added to the fluorine-containing resin particles. The specific resin may be formed on the surface of the fluorine-containing resin particles by polymerizing after adsorbing on the surface.

フッ素含有分散剤は、他の界面活性剤と併用してもよい。但し、その量としては極力少ないことがよく、他の界面活性剤の含有量は、フッ素含有樹脂粒子1質量部に対し、0質量部以上0.1質量部以下がよく、好ましくは0質量部以上0.05質量部以下、より好ましくは0質量部以上0.03質量部以下である。   The fluorine-containing dispersant may be used in combination with other surfactants. However, the amount is preferably as small as possible, and the content of the other surfactant is preferably 0 part by mass or more and 0.1 part by mass or less, preferably 0 part by mass with respect to 1 part by mass of the fluorine-containing resin particles. It is 0.05 parts by mass or less, more preferably 0 parts by mass or more and 0.03 parts by mass or less.

他の界面活性剤としては、非イオン性界面活性剤がよく、例えばポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、ポリオキシエチレンソルビタンアルキルエステル類、グリセリンエステル類、フッ素系界面活性剤およびその誘導体などが挙げられる。
ポリオキシエチレン類の具体例としては、例えばエマルゲン707(花王社製)、ナロアクティーCL−70、ナロアクティーCL−85(三洋化成工業社製)、レオコールTD−120(ライオン社製)などが挙げられる。
Other surfactants are preferably nonionic surfactants, such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyls. Examples thereof include esters, glycerin esters, fluorosurfactants and derivatives thereof.
Specific examples of polyoxyethylenes include, for example, Emulgen 707 (manufactured by Kao Corporation), NAROACTY CL-70, NAROACTY CL-85 (manufactured by Sanyo Chemical Industries), Leocor TD-120 (manufactured by Lion Corporation), and the like. It is done.

−不飽和結合を有する化合物−
保護層(最表面層)を構成する膜は、本実施形態に係る特定の連鎖重合性電荷輸送材料以外に、不飽和結合を有する化合物を併用してもよい。この場合、保護層は、特定の連鎖重合性電荷輸送材料と不飽和結合を有する化合物との重合体又は架橋体を含む。
不飽和結合を有する化合物としては、モノマー、オリゴマー、ポリマーのいずれであってもよい。また、不飽和結合を有する化合物としては、電荷輸送性骨格を有さないものが挙げられる。
-Compound having an unsaturated bond-
The film constituting the protective layer (outermost surface layer) may be used in combination with a compound having an unsaturated bond in addition to the specific chain polymerizable charge transport material according to the present embodiment. In this case, the protective layer includes a polymer or a crosslinked product of a specific chain polymerizable charge transport material and a compound having an unsaturated bond.
As a compound which has an unsaturated bond, any of a monomer, an oligomer, and a polymer may be sufficient. Examples of the compound having an unsaturated bond include those having no charge transporting skeleton.

不飽和結合を有する化合物として、電荷輸送性骨格を有さないものとしては以下のようなものが挙げられる。
1官能のモノマーは、例えば、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、2−ヒドロキシアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールメタクリレート、フェノキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールメタクリレート、ヒドロキシエチルo−フェニルフェノールアクリレート、o−フェニルフェノールグリシジルエーテルアクリレート、スチレン、などが挙げられる。
Examples of the compound having an unsaturated bond include those having no charge transporting skeleton as follows.
Monofunctional monomers include, for example, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, lauryl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl Acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, 2-hydroxy acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, methoxy polyethylene glycol acrylate, methoxy polyethylene glycol methacrylate, phenoxy polyethylene glycol acrylate The Roh carboxymethyl polyethylene glycol methacrylate, hydroxyethyl o- phenylphenol acrylate, o- phenylphenol glycidyl ether acrylate, styrene, and the like.

2官能のモノマーは、例えば、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート等が挙げられる。
3官能のモノマーは、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、脂肪族トリ(メタ)アクリレート、トリビニルシクロヘキサン等が挙げられる。
4官能のモノマーは、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、脂肪族テトラ(メタ)アクリレート等が挙げられる。
5官能以上のモノマーは、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の他、ポリエステル骨格、ウレタン骨格、フォスファゼン骨格を有する(メタ)アクリレート等が挙げられる。
Examples of the bifunctional monomer include diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6-hexanediol di (meth). Examples thereof include acrylate, divinylbenzene, diallyl phthalate and the like.
Examples of the trifunctional monomer include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, aliphatic tri (meth) acrylate, trivinylcyclohexane, and the like.
Examples of the tetrafunctional monomer include pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and aliphatic tetra (meth) acrylate.
Examples of the pentafunctional or higher monomer include dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and the like, as well as (meth) acrylate having a polyester skeleton, a urethane skeleton, and a phosphazene skeleton.

また、不飽和結合を有する化合物のうち、反応性のポリマーとしては、例えば、特開平5−216249号公報、特開平5−323630号公報、特開平11―52603号公報、特開2000−264961号公報、特開2005−2291号公報などに開示されたものが挙げられる。   Among the compounds having an unsaturated bond, examples of reactive polymers include, for example, JP-A-5-216249, JP-A-5-323630, JP-A-11-52603, and JP-A-2000-264961. And those disclosed in Japanese Patent Laid-Open No. 2005-2291.

電荷輸送性骨格を有さない不飽和結合を有する化合物を用いる場合には、単独又は2種以上の混合物として使用される。
電荷輸送性骨格を有さない不飽和結合を有する化合物の含有量は、保護層形成用塗布液中の全固形分に対して、例えば、好ましくは60質量%以下がよく、好ましくは55質量%以下、より好ましくは50質量%以下である。
When using a compound having an unsaturated bond that does not have a charge transporting skeleton, it is used alone or as a mixture of two or more.
The content of the compound having an unsaturated bond having no charge transporting skeleton is preferably 60% by mass or less, and preferably 55% by mass, based on the total solid content in the coating liquid for forming the protective layer. Hereinafter, it is more preferably 50% by mass or less.

−非反応性の電荷輸送材料−
保護層(最表面層)を構成する膜は、非反応性の電荷輸送材料を併用してもよい。ここで、非反応性の電荷輸送材料とは、電荷輸送性骨格を有し、反応性基を有さない電荷輸送材料をいう。非反応性の電荷輸送材料を保護層(最表面層)に用いた場合には電荷輸送成分の濃度が高まり、電気特性を更に改善するのに有効である。また、非反応性の電荷輸送材料を添加して架橋密度を減じ、強度を調整してもよい。
-Non-reactive charge transport material-
The film constituting the protective layer (outermost surface layer) may be used in combination with a non-reactive charge transport material. Here, the non-reactive charge transport material refers to a charge transport material having a charge transport skeleton and no reactive group. When a non-reactive charge transport material is used for the protective layer (outermost surface layer), the concentration of the charge transport component is increased, which is effective for further improving the electrical characteristics. Further, a non-reactive charge transport material may be added to reduce the crosslink density and adjust the strength.

非反応性の電荷輸送材料としては、公知の電荷輸送材料を用いてもよく、具体的には、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等が用いられる。
中でも、電荷移動度、相溶性など点から、トリフェニルアミン骨格を有するものが好ましい。
As the non-reactive charge transport material, a known charge transport material may be used. Specifically, triarylamine compounds, benzidine compounds, arylalkane compounds, aryl-substituted ethylene compounds, stilbene compounds. Anthracene compounds, hydrazone compounds and the like are used.
Among these, those having a triphenylamine skeleton are preferable from the viewpoint of charge mobility and compatibility.

非反応性の電荷輸送材料は、保護層形成用塗布液中の全固形分に対して0質量%以上30質量%以下で用いられることが好ましく、より好ましくは1質量%以上25質量%以下であり、更に好ましくは5質量%以上25質量%以下である。   The non-reactive charge transport material is preferably used in an amount of 0% by mass to 30% by mass, more preferably 1% by mass to 25% by mass, based on the total solid content in the protective layer forming coating solution. More preferably, it is 5 mass% or more and 25 mass% or less.

−その他の添加剤−
保護層(最表面層)を構成する膜は、更に成膜性、可とう性、潤滑性、接着性を調整するなどの目的から、他のカップリング剤、特にフッ素含有のカップリング剤と混合して用いてもよい。この化合物として、各種シランカップリング剤、及び市販のシリコーン系ハードコート剤が用いられる。また、ラジカル重合性基を有するシリコン化合物、フッ素含有化合物を用いてもよい。
-Other additives-
The film constituting the protective layer (outermost surface layer) is further mixed with other coupling agents, especially fluorine-containing coupling agents, for the purpose of adjusting the film formability, flexibility, lubricity, and adhesion. May be used. As this compound, various silane coupling agents and commercially available silicone hard coat agents are used. Moreover, you may use the silicon compound and fluorine-containing compound which have a radically polymerizable group.

シランカップリング剤としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)−3−アミノプロピルトリエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、等が挙げられる。
市販のハードコート剤としては、KP−85、X−40−9740、X−8239(以上、信越化学工業社製)、AY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等が挙げられる。
As silane coupling agents, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxy Silane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) -3-aminopropyltriethoxysilane, tetramethoxysilane, methyltrimethoxysilane , Dimethyldimethoxysilane, and the like.
As commercially available hard coat agents, KP-85, X-40-9740, X-8239 (above, manufactured by Shin-Etsu Chemical Co., Ltd.), AY42-440, AY42-441, AY49-208 (above, made by Toray Dow Corning) ) And the like.

また、撥水性等の付与のために、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、1H,1H,2H,2H−パーフルオロアルキルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリエトシキシラン、等の含フッ素化合物を加えてもよい。   In order to impart water repellency and the like, (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, 3- (hepta) Fluoroisopropoxy) propyltriethoxysilane, 1H, 1H, 2H, 2H-perfluoroalkyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorooctyl Fluorine-containing compounds such as triethoxysilane may be added.

シランカップリング剤は目的に応じた量で使用されるが、含フッ素化合物の量は、保護層の成膜性の観点から、フッ素を含まない化合物に対して質量で0.25倍以下とすることが好ましい。更に、特開2001−166510号公報などに開示されている反応性のフッ素化合物などを混合してもよい。
ラジカル重合性基を有するシリコン化合物、フッ素含有化合物としては、特開2007−11005号公報に記載の化合物などが挙げられる。
Although the silane coupling agent is used in an amount according to the purpose, the amount of the fluorine-containing compound is 0.25 times or less by mass with respect to the compound containing no fluorine from the viewpoint of the film forming property of the protective layer. It is preferable. Furthermore, you may mix the reactive fluorine compound etc. which are disclosed by Unexamined-Japanese-Patent No. 2001-166510 etc.
Examples of the silicon compound and the fluorine-containing compound having a radical polymerizable group include compounds described in JP-A No. 2007-11005.

保護層(最表面層)を構成する膜には、劣化防止剤を添加することが好ましい。劣化防止剤としては、ヒンダードフェノール系、又はヒンダードアミン系が好ましく、有機イオウ系酸化防止剤、フォスファイト系酸化防止剤、ジチオカルバミン酸塩系酸化防止剤、チオウレア系酸化防止剤、ベンズイミダゾール系酸化防止剤、などの公知の酸化防止剤を用いてもよい。
劣化防止剤の添加量としては、保護層の全固形分全量を基準として20質量%以下が好ましく、10質量%以下がより好ましい。
It is preferable to add a deterioration inhibitor to the film constituting the protective layer (outermost surface layer). As the deterioration inhibitor, hindered phenols or hindered amines are preferable, organic sulfur antioxidants, phosphite antioxidants, dithiocarbamate antioxidants, thiourea antioxidants, benzimidazole antioxidants. You may use well-known antioxidants, such as an agent.
The amount of the deterioration inhibitor added is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total amount of the total solid content of the protective layer.

ヒンダードフェノール系酸化防止剤としては、イルガノックス1076、イルガノックス1010、イルガノックス1098、イルガノックス245、イルガノックス1330、イルガノックス3114、イルガノックス1076(以上、チバ・ジャパン社製)、3,5−ジ−t−ブチル−4−ヒドロキシビフェニル等が挙げられる。
ヒンダードアミン系酸化防止剤としては、サノールLS2626、サノールLS765、サノールLS770、サノールLS744(以上、三共ライフテック社製)、チヌビン144、チヌビン622LD(以上、チバ・ジャパン社製)、マークLA57、マークLA67、マークLA62、マークLA68、マークLA63(以上、アデカ社製)が挙げられ、チオエーテル系として、スミライザーTPS、スミライザーTP−D(以上、住友化学社製)が挙げられ、ホスファイト系として、マーク2112、マークPEP−8、マークPEP−24G、マークPEP−36、マーク329K、マークHP−10(以上、アデカ社製)等が挙げられる。
Examples of the hindered phenol antioxidant include Irganox 1076, Irganox 1010, Irganox 1098, Irganox 245, Irganox 1330, Irganox 3114, Irganox 1076 (manufactured by Ciba Japan), 3, 5 -Di-t-butyl-4-hydroxybiphenyl and the like.
Examples of the hindered amine antioxidant include Sanol LS2626, Sanol LS765, Sanol LS770, Sanol LS744 (Sanyo Lifetech Co., Ltd.), Tinuvin 144, Tinuvin 622LD (above, manufactured by Ciba Japan), Mark LA57, Mark LA67, Mark LA62, Mark LA68, Mark LA63 (manufactured by Adeka Co., Ltd.), and thioethers include Sumilizer TPS and Sumitizer TP-D (manufactured by Sumitomo Chemical Co., Ltd.), and phosphites include Mark 2112, Mark PEP-8, Mark PEP-24G, Mark PEP-36, Mark 329K, Mark HP-10 (manufactured by Adeka) and the like.

保護層(最表面層)を構成する膜には、導電性粒子や、有機、無機粒子を添加してもよい。
この粒子の一例として、ケイ素含有粒子が挙げられる。ケイ素含有粒子とは、構成元素にケイ素を含む粒子であり、具体的には、コロイダルシリカ及びシリコーン粒子等が挙げられる。ケイ素含有粒子として用いられるコロイダルシリカは、好ましくは平均粒径1nm以上100nm以下、より好ましくは10nm以上30nm以下のシリカを、酸性若しくはアルカリ性の水分散液、又はアルコール、ケトン、エステル等の有機溶媒中に分散させたものから選ばれる。該粒子としては一般に市販されているものを使用してもよい。
Conductive particles, organic or inorganic particles may be added to the film constituting the protective layer (outermost surface layer).
An example of such particles is silicon-containing particles. The silicon-containing particles are particles containing silicon as a constituent element, and specific examples include colloidal silica and silicone particles. The colloidal silica used as the silicon-containing particles is preferably silica having an average particle diameter of 1 nm to 100 nm, more preferably 10 nm to 30 nm, in an acidic or alkaline aqueous dispersion, or an organic solvent such as alcohol, ketone, or ester. It is selected from those dispersed in. As the particles, commercially available particles may be used.

保護層中のコロイダルシリカの固形分含有量は、特に限定されるものではないが、保護層の全固形分全量を基準として、0.1質量%以上20質量%以下、好ましくは0.1質量%以上15質量%以下の範囲で用いられる。   The solid content of the colloidal silica in the protective layer is not particularly limited, but is 0.1% by mass or more and 20% by mass or less, preferably 0.1% by mass based on the total solid content of the protective layer. % Or more and 15% by mass or less.

ケイ素含有粒子として用いられるシリコーン粒子は、シリコーン樹脂粒子、シリコーンゴム粒子、シリコーン表面処理シリカ粒子から選ばれ、一般に市販されているものを使用してもよい。
これらのシリコーン粒子は球状で、その平均粒径は好ましくは1nm以上500nm以下、より好ましくは10nm以上100nm以下である。
保護層中のシリコーン粒子の含有量は、保護層の全固形分全量を基準として、好ましくは0.1質量%以上30質量%以下、より好ましくは0.5質量%以上10質量%以下である。
The silicone particles used as the silicon-containing particles may be selected from silicone resin particles, silicone rubber particles, and silicone surface-treated silica particles, and commercially available particles may be used.
These silicone particles are spherical, and the average particle diameter is preferably 1 nm to 500 nm, more preferably 10 nm to 100 nm.
The content of the silicone particles in the protective layer is preferably 0.1% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, based on the total solid content of the protective layer. .

また、その他の粒子としては、ZnO−Al、SnO−Sb、In−SnO、ZnO−TiO、ZnO−TiO、MgO−Al、FeO−TiO、TiO、SnO、In、ZnO、MgO等の半導電性金属酸化物が挙げられる。さらに、粒子を分散させるために公知の種々の分散材を用いてもよい。 Other particles include ZnO—Al 2 O 3 , SnO 2 —Sb 2 O 3 , In 2 O 3 —SnO 2 , ZnO 2 —TiO 2 , ZnO—TiO 2 , MgO—Al 2 O 3 , FeO. Examples thereof include semiconductive metal oxides such as —TiO 2 , TiO 2 , SnO 2 , In 2 O 3 , ZnO, and MgO. Furthermore, various known dispersing materials may be used to disperse the particles.

保護層(最表面層)を構成する膜には、シリコーンオイル等のオイルを添加してもよい。
シリコーンオイルとしては、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル;アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル;等が挙げられる。
Oil such as silicone oil may be added to the film constituting the protective layer (outermost surface layer).
Silicone oils include silicone oils such as dimethylpolysiloxane, diphenylpolysiloxane, and phenylmethylsiloxane; amino-modified polysiloxane, epoxy-modified polysiloxane, carboxyl-modified polysiloxane, carbinol-modified polysiloxane, methacryl-modified polysiloxane, mercapto-modified poly And reactive silicone oils such as siloxane and phenol-modified polysiloxane.

保護層(最表面層)を構成する膜には、金属、金属酸化物及びカーボンブラック等を添加してもよい。金属としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀及びステンレス等、又はこれらの金属を樹脂の粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ及びアンチモンをドープした酸化ジルコニウム等が挙げられる。
これらは単独で、又は2種以上を組み合わせて用いる。2種以上を組み合わせて用いる場合は、単に混合しても、固溶体や融着での混合でもよい。導電性粒子の平均粒径は0.3μm以下、特に0.1μm以下が好ましい。
Metal, metal oxide, carbon black, or the like may be added to the film constituting the protective layer (outermost surface layer). Examples of the metal include aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, or those obtained by depositing these metals on the surface of resin particles. Examples of the metal oxide include zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony and tantalum-doped tin oxide, and antimony-doped zirconium oxide. .
These are used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed or mixed by solid solution or fusion. The average particle size of the conductive particles is preferably 0.3 μm or less, particularly preferably 0.1 μm or less.

保護層(最表面層)を構成する膜には、塗膜の濡れ性改善のため、シリコーン含有オリゴマー、フッ素含有アクリルポリマー、シリコーン含有ポリマー等を添加してもよい。   In order to improve the wettability of the coating film, a silicone-containing oligomer, a fluorine-containing acrylic polymer, a silicone-containing polymer, or the like may be added to the film constituting the protective layer (outermost surface layer).

−組成物−
保護層を形成するために用いる組成物は、各成分を溶媒中に溶解又は分散してなる保護層形成用塗布液として調製されることが好ましい。
保護層形成用塗布液の溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、エチルnブチルケトン、ジnプロピルケトン、メチルnアミルケトン、メチルnブチルケトン、ジエチルケトン、メチルnプロピルケトン等のケトン類; 酢酸イソプロピル、酢酸イソブチル、酢酸エチル、酢酸nプロピル、酢酸nブチル、イソ吉草酸エチル、酢酸イソアミル、酪酸イソプロピル、プロピオン酸イソアミル、酪酸ブチル、酢酸アミル、プロピオン酸ブチル、プロピオン酸エチル、酢酸メチル、プロピオン酸メチル、酢酸アリル等のエステル類等の単独溶媒又は混合溶媒が挙げられる。また、0質量%以上50質量%以下のエーテル系溶剤(例えばジエチルエーテル、ジオキサン、ジイソプロピルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン等)、アルキレングリコール系溶剤(例えば1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、エチレングリコールモノイソプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート等)を混合して用いてもよい。
-Composition-
The composition used to form the protective layer is preferably prepared as a protective layer-forming coating solution obtained by dissolving or dispersing each component in a solvent.
Examples of the solvent for the protective layer-forming coating solution include methyl ethyl ketone, methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone, ethyl n butyl ketone, di n propyl ketone, methyl n amyl ketone, methyl n butyl ketone, diethyl ketone, methyl n propyl ketone, and the like. Ketones of: isopropyl acetate, isobutyl acetate, ethyl acetate, npropyl acetate, nbutyl acetate, ethyl isovalerate, isoamyl acetate, isopropyl butyrate, isoamyl propionate, butyl butyrate, amyl acetate, butyl propionate, ethyl propionate, Examples thereof include single solvents or mixed solvents such as esters such as methyl acetate, methyl propionate, and allyl acetate. Also, 0% by mass or more and 50% by mass or less of an ether solvent (for example, diethyl ether, dioxane, diisopropyl ether, cyclopentyl methyl ether, tetrahydrofuran, etc.), an alkylene glycol solvent (for example, 1-methoxy-2-propanol, 1-ethoxy- 2-propanol, ethylene glycol monoisopropyl ether, propylene glycol monomethyl ether acetate, etc.) may be mixed and used.

また、前述の成分を反応させて保護層形成用塗布液を得るときには、各成分を単純に混合、溶解させるだけでもよいが、好ましくは室温(20℃)以上100℃以下、より好ましくは30℃以上80℃以下で、好ましくは10分以上100時間以下、より好ましくは1時間以上50時間以下の条件で加温する。また、この際に超音波を照射することも好ましい。   In addition, when a coating liquid for forming a protective layer is obtained by reacting the above-mentioned components, each component may be simply mixed and dissolved, but is preferably room temperature (20 ° C.) or higher and 100 ° C. or lower, more preferably 30 ° C. Heating is performed at 80 ° C. or lower, preferably 10 minutes or longer and 100 hours or shorter, more preferably 1 hour or longer and 50 hours or shorter. In this case, it is also preferable to irradiate ultrasonic waves.

−保護層の形成−
保護層形成用塗布液は、被塗布面(電荷輸送層)の上に、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法、インクジェット塗布法、突上げ塗布法等の通常の方法により塗布される。
その後、得られた塗膜に対して、光、電子線又は熱を付与してラジカル重合を生起させて、該塗膜を硬化させる。
-Formation of protective layer-
The coating solution for forming the protective layer is formed on the surface to be coated (charge transport layer) by a blade coating method, a wire bar coating method, a spray coating method, a dip coating method, a bead coating method, an air knife coating method, a curtain coating method, It is applied by a normal method such as an ink jet coating method or a push-up coating method.
Thereafter, light, electron beam or heat is applied to the obtained coating film to cause radical polymerization, thereby curing the coating film.

硬化方法は、熱、光、放射線などが用いられる。熱、光で硬化を行う場合、重合開始剤は必ずしも必要ではないが、光硬化触媒又は熱重合開始剤を用いてもよい。この光硬化触媒及び熱重合開始剤としては、公知の光硬化触媒や熱重合開始剤が用いられる。放射線としては電子線が好ましい。
硬化方法としては、反応が早く進行しすぎないように調整することで、保護層(最表面層)の機械的強度及び電気特性が向上し、また膜のムラやシワの発生も抑制されるため、ラジカルの発生が比較的ゆっくりと起こる条件下で重合させることが好ましい。この点からは、重合速度を調整しやすい熱重合が好適である。つまり、保護層(最表面層)を構成する硬化膜を形成するための組成物には、熱ラジカル発生剤又はその誘導体を含むことがよい。
As the curing method, heat, light, radiation or the like is used. When curing with heat and light, a polymerization initiator is not necessarily required, but a photocuring catalyst or a thermal polymerization initiator may be used. Known photocuring catalysts and thermal polymerization initiators are used as the photocuring catalyst and the thermal polymerization initiator. The radiation is preferably an electron beam.
By adjusting the curing method so that the reaction does not proceed too quickly, the mechanical strength and electrical properties of the protective layer (outermost surface layer) are improved, and the occurrence of film unevenness and wrinkles is also suppressed. The polymerization is preferably performed under conditions where radical generation occurs relatively slowly. From this point, thermal polymerization that allows easy adjustment of the polymerization rate is preferred. That is, the composition for forming the cured film constituting the protective layer (outermost surface layer) preferably contains a thermal radical generator or a derivative thereof.

以下、電子線硬化、光硬化、及び熱硬化について説明する。
・電子線硬化
電子線を用いる場合、加速電圧は300KV以下が好ましく、最適には150KV以下である。また、線量は好ましくは1Mrad以上100Mrad以下の範囲、より好ましくは3Mrad以上50Mrad以下の範囲である。加速電圧が300KV以下であることにより感光体特性に対する電子線照射のダメージが抑制される。また、線量が1Mrad以上であることにより架橋が十分に行なわれ、100Mrad以下であることにより感光体の劣化が抑制される。
Hereinafter, electron beam curing, photocuring, and thermal curing will be described.
-Electron beam curing When an electron beam is used, the acceleration voltage is preferably 300 KV or less, and optimally 150 KV or less. The dose is preferably in the range of 1 Mrad to 100 Mrad, more preferably in the range of 3 Mrad to 50 Mrad. When the acceleration voltage is 300 KV or less, damage caused by electron beam irradiation on the characteristics of the photoreceptor is suppressed. Further, when the dose is 1 Mrad or more, crosslinking is sufficiently performed, and when the dose is 100 Mrad or less, deterioration of the photoreceptor is suppressed.

照射は、窒素、アルゴンなどの不活性ガス雰囲気下、酸素濃度が1000ppm、好ましくは500ppm以下で行い、さらに照射中、又は照射後に50℃以上150℃以下に加熱してもよい。   Irradiation is performed in an inert gas atmosphere such as nitrogen or argon at an oxygen concentration of 1000 ppm, preferably 500 ppm or less, and may be further heated to 50 ° C. or higher and 150 ° C. or lower during or after irradiation.

・光硬化
光源としては、高圧水銀灯、低圧水銀灯、メタルハライドランプなどが用いられ、バンドパスフィルター等のフィルターを用いて好適な波長を選択してもよい。照射時間、光強度は自由に選択されるが、例えば照度(365nm)は300mW/cm以上、1000mW/cm以下が好ましく、例えば600mW/cmのUV光を照射する場合、5秒以上360秒以下照射すればよい。
-Photocuring As a light source, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, etc. are used, A suitable wavelength may be selected using filters, such as a band pass filter. Irradiation time, the light intensity is selected freely, for example, the illuminance (365 nm) is 300 mW / cm 2 or more, preferably 1000 mW / cm 2 or less, for example, the case of irradiation with UV light of 600 mW / cm 2, 5 seconds or more 360 What is necessary is just to irradiate for less than a second.

照射は、窒素、アルゴンなどの不活性ガス雰囲気下、酸素濃度が好ましくは1000ppm以下、より好ましくは500ppm以下で行い、さらに照射中、又は照射後に50℃以上150℃以下に加熱してもよい。   Irradiation is performed under an inert gas atmosphere such as nitrogen or argon, preferably at an oxygen concentration of 1000 ppm or less, more preferably 500 ppm or less, and may be further heated to 50 ° C. or more and 150 ° C. or less during or after the irradiation.

光硬化触媒として、分子内開裂型としては、ベンジルケタール系、アルキルフェノン系、アミノアルキルフェノン系、ホスフィンオキサイド系、チタノセン系、オキシム系などが挙げられる。
より具体的には、ベンジルケタール系として、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オンが挙げられる。
Examples of the photocuring catalyst include intramolecular cleavage types such as benzyl ketal, alkylphenone, aminoalkylphenone, phosphine oxide, titanocene, and oxime.
More specifically, examples of the benzyl ketal system include 2,2-dimethoxy-1,2-diphenylethane-1-one.

また、アルキルフェノン系としては、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]フェニル}−2−メチル−プロパン−1−オン、アセトフェノン、2−フェニル−2−(p−トルエンスルフォニルオキシ)アセトフェノンが挙げられる。
アミノアルキルフェノン系としては、p−ジメチルアミノアセトフェノン、p−ジメチルアミノプロピオフェノン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1,2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モリホニル)フェニル]−1−ブタノンなどが挙げられる。
ホスフィノキサイド系としては、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンキサイドなどが挙げられる。
チタノセン系としては、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムなどが挙げられる。
オキシム系としては、1,2−オクタンジオン,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)などが挙げられる。
Examples of the alkylphenone series include 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl]. 2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl- Examples include propan-1-one, acetophenone, and 2-phenyl-2- (p-toluenesulfonyloxy) acetophenone.
Examples of aminoalkylphenones include p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1 -Butanone and the like.
Examples of the phosphinoxide include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
Examples of the titanocene include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium.
Examples of oxime compounds include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl)- 9H-carbazol-3-yl]-, 1- (O-acetyloxime) and the like.

水素引抜型としては、ベンゾフェノン系、チオキサントン系、ベンジル系、ミヒラーケトン系などが挙げられる。
より具体的には、ベンゾフェノン系として、2−ベンゾイル安息香酸、2−クロロベンゾフェノン、4,4’−ジクロロベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルスルフィド、p,p’−ビスジエチルアミノベンゾフェノンなどが挙げられる。
チオキサントン系としては、2,4−ジエチルチオキサンテン−9−オン、2−クロロチオキサントン、2−イソプロピルチオキサントンなどが挙げられる。
ベンジル系としては、ベンジル、(±)−カンファーキノン、p−アニシルなどが挙げられる。
Examples of the hydrogen abstraction type include benzophenone series, thioxanthone series, benzyl series, and Michler ketone series.
More specifically, examples of the benzophenone series include 2-benzoylbenzoic acid, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, p, p′-bisdiethylaminobenzophenone, and the like. Can be mentioned.
Examples of the thioxanthone series include 2,4-diethylthioxanthen-9-one, 2-chlorothioxanthone, and 2-isopropylthioxanthone.
Examples of the benzyl type include benzyl, (±) -camphorquinone, p-anisyl and the like.

これらの光重合開始剤は、単独で又は2種類以上を組み合わせて用いられる。   These photopolymerization initiators are used alone or in combination of two or more.

・熱硬化
熱重合開始剤としては、熱ラジカル発生剤又はその誘導体が挙げられ、具体的には、例えば、V−30、V−40、V−59、V601、V65、V−70、VF−096、VE−073、Vam−110、Vam−111(和光純薬工業製)、OTazo−15、OTazo−30、AIBN、AMBN、ADVN、ACVA(大塚化学)等のアゾ系開始剤;パーテトラA、パーヘキサHC、パーヘキサC、パーヘキサV、パーヘキサ22、パーヘキサMC、パーブチルH、パークミルH、パークミルP、パーメンタH、パーオクタH、パーブチルC、パーブチルD、パーヘキシルD、パーロイルIB、パーロイル355、パーロイルL、パーロイルSA、ナイパーBW、ナイパーBMT−K40/M、パーロイルIPP、パーロイルNPP、パーロイルTCP、パーロイルOPP、パーロイルSBP、パークミルND、パーオクタND、パーヘキシルND、パーブチルND、パーブチルNHP、パーヘキシルPV、パーブチルPV、パーヘキサ250、パーオクタO、パーヘキシルO、パーブチルO、パーブチルL、パーブチル355、パーヘキシルI、パーブチルI、パーブチルE、パーヘキサ25Z、パーブチルA、パーヘキシルZ、パーブチルZT、パーブチルZ(日油化学社製)、カヤケタールAM−C55、トリゴノックス36−C75、ラウロックス、パーカドックスL−W75、パーカドックスCH−50L、トリゴノックスTMBH、カヤクメンH、カヤブチルH−70、ペルカドックスBC−FF、カヤヘキサAD、パーカドックス14、カヤブチルC、カヤブチルD、カヤヘキサYD−E85、パーカドックス12−XL25、パーカドックス12−EB20、トリゴノックス22−N70、トリゴノックス22−70E、トリゴノックスD−T50、トリゴノックス423−C70、カヤエステルCND−C70、カヤエステルCND−W50、トリゴノックス23−C70、トリゴノックス23−W50N、トリゴノックス257−C70、カヤエステルP−70、カヤエステルTMPO−70、トリゴノックス121、カヤエステルO、カヤエステルHTP−65W、カヤエステルAN、トリゴノックス42、トリゴノックスF−C50、カヤブチルB、カヤカルボンEH−C70、カヤカルボンEH−W60、カヤカルボンI−20、カヤカルボンBIC−75、トリゴノックス117、カヤレン6−70(化薬アクゾ社製)、ルペロックス610、ルペロックス188、ルペロックス844、ルペロックス259、ルペロックス10、ルペロックス701、ルペロックス11、ルペロックス26、ルペロックス80、ルペロックス7、ルペロックス270、ルペロックスP、ルペロックス546、ルペロックス554、ルペロックス575、ルペロックスTANPO、ルペロックス555、ルペロックス570、ルペロックスTAP、ルペロックスTBIC、ルペロックスTBEC、ルペロックスJW、ルペロックスTAIC、ルペロックスTAEC、ルペロックスDC、ルペロックス101、ルペロックスF、ルペロックスDI、ルペロックス130、ルペロックス220、ルペロックス230、ルペロックス233、ルペロックス531(アルケマ吉富社製)などが挙げられる。
-Thermosetting Thermal polymerization initiators include thermal radical generators or derivatives thereof. Specifically, for example, V-30, V-40, V-59, V601, V65, V-70, VF- Azo initiators such as 096, VE-073, Vam-110, Vam-111 (manufactured by Wako Pure Chemical Industries, Ltd.), OTazo-15, OTazo-30, AIBN, AMBN, ADVN, ACVA (Otsuka Chemical); Perhexa HC, Perhexa C, Perhexa V, Perhexa 22, Perhexa MC, Perbutyl H, Parkmill H, Parkmill P, Permenta H, Perocta H, Perbutyl C, Perbutyl D, Perhexyl D, Parroyl IB, Parroyl 355, Parroyl L, Parroyl SA , Nyper BW, Nyper BMT-K40 / M, Parroyl IPP, Parro Il NPP, Parroyl TCP, Parroyl OPP, Parroyl SBP, Park Mill ND, Perocta ND, Perhexyl ND, Perbutyl ND, Perbutyl NHP, Perhexyl PV, Perbutyl PV, Perhexa 250, Perocta O, Perhexyl O, Perbutyl O, Perbutyl L, Perbutyl 355 Perhexyl I, perbutyl I, perbutyl E, perhexa 25Z, perbutyl A, perhexyl Z, perbutyl ZT, perbutyl Z (manufactured by NOF Chemical), Kayaketal AM-C55, Trigonox 36-C75, Laurox, Perkadox L-W75, Parkadox CH-50L, Trigonox TMBH, Kayacumen H, Kayabutyl H-70, Percadox BC-FF, Kaya Hexa AD, Parkadox 14, Kayabuchi C, Kayabutyl D, Kayahexa YD-E85, Parkadox 12-XL25, Parkadox 12-EB20, Trigonox 22-N70, Trigonox 22-70E, Trigonox D-T50, Trigonox 423-C70, Kayaester CND-C70, Kayaester CND-W50, Trigonox 23-C70, Trigonox 23-W50N, Trigonox 257-C70, Kaya ester P-70, Kaya ester TMPO-70, Trigonox 121, Kaya ester O, Kaya ester HTP-65W, Kaya ester AN, Trigonox 42 , Trigonox F-C50, Kaya Butyl B, Kaya Carbon EH-C70, Kaya Carbon EH-W60, Kaya Carbon I-20, Kaya Carbon BIC-75, Trigonok 117, Kayalen 6-70 (manufactured by Kayaku Akzo), Lupelox 610, Lupelox 188, Lupelox 844, Lupelox 259, Lupelox 10, Lupelox 701, Lupelox 11, Lupelox 26, Lupelox 80, Lupelox 7, Lupelox P, Lupelox P, Lupelox 546, Lupelox 554, Lupelox 575, Lupelox TANPO, Lupelox 555, Lupelox 570, Lupelox TAP, Lupelox TBIC, Lupelox TBEC, Lupelox JW, Lupelox TAIC, Lupelox DC, Lupelox DC, Lupelox DC , Lupelox 220, Lupelox 230, Lupelox 23 3, Lupelox 531 (manufactured by Arkema Yoshitomi) and the like.

これらのうち、分子量250以上のアゾ系重合開始剤を用いると、低い温度でムラなく反応が進行することから、ムラが抑制された高強度の膜の形成が図られる。より好適には、アゾ系重合開始剤の分子量は、250以上であり、300以上が更に好適である。   Among these, when an azo polymerization initiator having a molecular weight of 250 or more is used, the reaction proceeds without unevenness at a low temperature, so that a high-strength film with suppressed unevenness can be formed. More preferably, the molecular weight of the azo polymerization initiator is 250 or more, and more preferably 300 or more.

加熱は、窒素、アルゴンなどの不活性ガス雰囲気下、酸素濃度が好ましくは1000ppm以下、より好ましくは500ppm以下で行い、好ましくは50℃以上170℃以下、より好ましくは70℃以上150℃以下で、好ましくは10分以上120分以下、より好ましくは15分以上100分以下加熱する。   The heating is performed under an inert gas atmosphere such as nitrogen or argon, and the oxygen concentration is preferably 1000 ppm or less, more preferably 500 ppm or less, preferably 50 ° C. or more and 170 ° C. or less, more preferably 70 ° C. or more and 150 ° C. or less. Preferably it is 10 minutes or more and 120 minutes or less, More preferably, 15 minutes or more and 100 minutes or less are heated.

光硬化触媒又は熱重合開始剤の総含有量は、保護層形成のための溶解液中の全固形分に対して0.1質量%以上10質量%以下が好ましく、更には0.1質量%以上8質量%以下がより好ましく、0.1質量%以上5質量%以下の範囲が特に好ましい。
なお、本実施態様では、反応が早く進行しすぎると架橋により塗膜の構造緩和ができ難くなり、膜のムラやシワを発生しやすくなるといった理由から、ラジカルの発生が比較的ゆっくりと起こる熱による硬化方法が採用される。
特に、特定の連鎖重合性電荷輸送材料と熱による硬化とを組み合わせることで、塗膜の構造緩和の促進が図られ、表面性状に優れた高い保護層(最表面層)が得られ易くなる。
The total content of the photocuring catalyst or the thermal polymerization initiator is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.1% by mass with respect to the total solid content in the solution for forming the protective layer. The range of 8% by mass or less is more preferable, and the range of 0.1% by mass or more and 5% by mass or less is particularly preferable.
In this embodiment, if the reaction proceeds too quickly, the structure of the coating film is difficult to be relaxed by crosslinking, and the generation of radicals is relatively slow because it tends to cause film unevenness and wrinkles. The curing method is adopted.
In particular, by combining a specific chain polymerizable charge transport material and curing by heat, the structure relaxation of the coating film is promoted, and a high protective layer (outermost surface layer) excellent in surface properties is easily obtained.

保護層の膜厚は、例えば、好ましくは3μm以上40μm以下、より好ましくは5μm以上35μm以下の範囲内に設定される。   The thickness of the protective layer is, for example, preferably set in the range of 3 μm to 40 μm, more preferably 5 μm to 35 μm.

以上、図1に示される電子写真感光体を参照し、機能分離型の感光層における各層の構成を説明したが、図2に示される機能分離型の電子写真感光体における各層においてもこの構成が採用しうる。また、図3に示される電子写真感光体の単層型感光層の場合、以下の態様であることが好ましい。   The structure of each layer in the function-separated type photosensitive layer has been described with reference to the electrophotographic photoreceptor shown in FIG. 1, but this structure is also applied to each layer in the function-separated type electrophotographic photoreceptor shown in FIG. Can be adopted. Further, in the case of the single-layer type photosensitive layer of the electrophotographic photosensitive member shown in FIG.

即ち、単層型感光層(電荷発生/電荷輸送層)は、電荷発生材料と電荷輸送材料と、必要に応じて、結着樹脂、及びその他周知の添加剤と、を含んで構成されることがよい。なお、これら材料は、電荷発生材料及び電荷輸送層で説明した材料と同様である。
そして、単層型感光層中、電荷発生材料の含有量は、全固形分に対して10質量%以上85質量%以下がよく、好ましくは20質量%以上50質量%以下である。また、単層型感光層中、電荷輸送材料の含有量は、全固形分に対して5質量%以上50質量%以下がよい。
単層型感光層の形成方法は、電荷発生層や電荷輸送層の形成方法と同様である。
単層型感光層の膜厚は、例えば、5μm以上50μm以下がよく、好ましくは10μm以上40μm以下である。
That is, the single-layer type photosensitive layer (charge generation / charge transport layer) includes a charge generation material, a charge transport material, and, if necessary, a binder resin and other known additives. Is good. These materials are the same as those described in the charge generation material and the charge transport layer.
In the single-layer type photosensitive layer, the content of the charge generating material is preferably 10% by mass or more and 85% by mass or less, and preferably 20% by mass or more and 50% by mass or less with respect to the total solid content. In the single-layer type photosensitive layer, the content of the charge transport material is preferably 5% by mass or more and 50% by mass or less based on the total solid content.
The method for forming the single-layer type photosensitive layer is the same as the method for forming the charge generation layer and the charge transport layer.
The film thickness of the single-layer type photosensitive layer is, for example, from 5 μm to 50 μm, and preferably from 10 μm to 40 μm.

なお、本実施形態に係る電子写真感光体では、最表面層が保護層である形態を説明したが、保護層がない層構成であってもよい。
保護層がない層構成の場合、図1に示される電子写真感光体では、その層構成において最表面に位置する電荷輸送層が最表面層となる。そして、当該最表面層となる電荷輸送層が、上記特定の組成物の硬化膜で構成される。
また、保護層がない層構成の場合、図3に示される電子写真感光体では、その層構成において最表面に位置する単層型感光層が最表面層となる。そして、当該最表面層となる単層型感光層が、上記特定の組成物の硬化膜で構成される。但し、上記組成物には、電荷発生材料が配合される。
これら最表面層となる電荷輸送層及び単層型感光層の膜厚は、例えば、7μm以上70μm以下がよく、好ましくは10μm以上60μm以下である。
In the electrophotographic photosensitive member according to the present embodiment, the mode in which the outermost surface layer is the protective layer has been described, but a layer configuration without the protective layer may be employed.
In the case of a layer structure without a protective layer, in the electrophotographic photoreceptor shown in FIG. 1, the charge transport layer located on the outermost surface in the layer structure becomes the outermost surface layer. And the electric charge transport layer used as the said outermost surface layer is comprised with the cured film of the said specific composition.
In the case of a layer structure without a protective layer, in the electrophotographic photoreceptor shown in FIG. 3, the single-layer type photosensitive layer located on the outermost surface in the layer structure is the outermost surface layer. And the single layer type photosensitive layer used as the said outermost surface layer is comprised with the cured film of the said specific composition. However, a charge generating material is blended in the composition.
The film thickness of the charge transport layer and single-layer type photosensitive layer that are the outermost surface layers is, for example, preferably from 7 μm to 70 μm, and preferably from 10 μm to 60 μm.

[画像形成装置(及びプロセスカートリッジ)]
本実施形態に係る画像形成装置は、電子写真感光体と、電子写真感光体の表面を帯電する帯電手段と、帯電した電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、トナーを含む現像剤により電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、トナー像を記録媒体の表面に転写する転写手段と、を備える。そして、電子写真感光体として、上記本実施形態に係る電子写真感光体が適用される。
[Image forming apparatus (and process cartridge)]
The image forming apparatus according to the present embodiment includes an electrophotographic photosensitive member, a charging unit that charges the surface of the electrophotographic photosensitive member, and an electrostatic latent image formation that forms an electrostatic latent image on the surface of the charged electrophotographic photosensitive member. Means, developing means for developing the electrostatic latent image formed on the surface of the electrophotographic photosensitive member with a developer containing toner to form a toner image, and transfer means for transferring the toner image to the surface of the recording medium; Is provided. The electrophotographic photosensitive member according to the present embodiment is applied as the electrophotographic photosensitive member.

本実施形態に係る画像形成装置は、記録媒体の表面に転写されたトナー像を定着する定着手段を備える装置;電子写真感光体の表面に形成されたトナー像を直接記録媒体に転写する直接転写方式の装置;電子写真感光体の表面に形成されたトナー像を中間転写体の表面に一次転写し、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する中間転写方式の装置;トナー像の転写後、帯電前の電子写真感光体の表面をクリーニングするクリーニング手段を備えた装置;トナー像の転写後、帯電前に像保持体の表面に除電光を照射して除電する除電手段を備える装置;電子写真感光体の温度を上昇させ、相対温度を低減させるための電子写真感光体加熱部材を備える装置等の周知の画像形成装置が適用される。   The image forming apparatus according to the present embodiment includes an apparatus having fixing means for fixing a toner image transferred to the surface of a recording medium; direct transfer for directly transferring the toner image formed on the surface of the electrophotographic photosensitive member to the recording medium Type apparatus; intermediate transfer in which the toner image formed on the surface of the electrophotographic photosensitive member is primarily transferred onto the surface of the intermediate transfer member, and the toner image transferred onto the surface of the intermediate transfer member is secondarily transferred onto the surface of the recording medium. Type apparatus; apparatus provided with cleaning means for cleaning the surface of the electrophotographic photosensitive member after the toner image is transferred and before charging; after the toner image is transferred, the surface of the image carrier is irradiated with a charge-removing light before charging. A known image forming apparatus, such as an apparatus provided with a static elimination means for removing electricity; an apparatus provided with an electrophotographic photosensitive member heating member for increasing the temperature of the electrophotographic photosensitive member and reducing the relative temperature is applied.

中間転写方式の装置の場合、転写手段は、例えば、表面にトナー像が転写される中間転写体と、像保持体の表面に形成されたトナー像を中間転写体の表面に一次転写する一次転写手段と、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する二次転写手段と、を有する構成が適用される。   In the case of an intermediate transfer type apparatus, the transfer means includes, for example, an intermediate transfer body on which a toner image is transferred onto the surface, and a primary transfer that primarily transfers the toner image formed on the surface of the image holding body onto the surface of the intermediate transfer body. And a secondary transfer unit that secondarily transfers the toner image transferred onto the surface of the intermediate transfer member onto the surface of the recording medium.

本実施形態に係る画像形成装置は、乾式現像方式の画像形成装置、湿式現像方式(液体現像剤を利用した現像方式)の画像形成装置のいずれであってもよい。   The image forming apparatus according to the present embodiment may be either a dry developing type image forming apparatus or a wet developing type (developing type using a liquid developer).

なお、本実施形態に係る画像形成装置において、例えば、電子写真感光体を備える部分が、画像形成装置に対して脱着されるカートリッジ構造(プロセスカートリッジ)であってもよい。プロセスカートリッジとしては、例えば、本実施形態に係る電子写真感光体を備えるプロセスカートリッジが好適に用いられる。なお、プロセスカートリッジには、電子写真感光体以外に、例えば、帯電手段、静電潜像形成手段、現像手段、転写手段からなる群から選択される少なくとも一つを備えてもよい。   Note that in the image forming apparatus according to the present embodiment, for example, the portion including the electrophotographic photosensitive member may have a cartridge structure (process cartridge) that is detachable from the image forming apparatus. As the process cartridge, for example, a process cartridge including the electrophotographic photosensitive member according to this embodiment is preferably used. In addition to the electrophotographic photosensitive member, the process cartridge may include at least one selected from the group consisting of a charging unit, an electrostatic latent image forming unit, a developing unit, and a transfer unit.

以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。なお、図に示す主要部を説明し、その他はその説明を省略する。   Hereinafter, an example of the image forming apparatus according to the present embodiment will be described, but the present invention is not limited thereto. In addition, the main part shown to a figure is demonstrated and the description is abbreviate | omitted about others.

図4は、本実施形態に係る画像形成装置の一例を示す概略構成図である。
本実施形態に係る画像形成装置100は、図4に示すように、電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9(静電潜像形成手段の一例)と、転写装置40(一次転写装置)と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光し得る位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。図示しないが、中間転写体50に転写されたトナー像を記録媒体(例えば用紙)に転写する二次転写装置も有している。なお、中間転写体50、転写装置40(一次転写装置)、及び二次転写装置(不図示)が転写手段の一例に相当する。
FIG. 4 is a schematic configuration diagram illustrating an example of an image forming apparatus according to the present embodiment.
As shown in FIG. 4, the image forming apparatus 100 according to the present embodiment includes a process cartridge 300 including an electrophotographic photosensitive member 7, an exposure device 9 (an example of an electrostatic latent image forming unit), and a transfer device 40 (primary. Transfer device) and an intermediate transfer member 50. In the image forming apparatus 100, the exposure device 9 is disposed at a position where the electrophotographic photosensitive member 7 can be exposed from the opening of the process cartridge 300, and the transfer device 40 is interposed between the electrophotographic photosensitive member via the intermediate transfer member 50. 7, and a part of the intermediate transfer member 50 is disposed in contact with the electrophotographic photosensitive member 7. Although not shown, it also has a secondary transfer device that transfers the toner image transferred to the intermediate transfer member 50 to a recording medium (for example, paper). The intermediate transfer member 50, the transfer device 40 (primary transfer device), and the secondary transfer device (not shown) correspond to an example of a transfer unit.

図4におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置8(帯電手段の一例)、現像装置11(現像手段の一例)、及びクリーニング装置13(クリーニング手段の一例)を一体に支持している。クリーニング装置13は、クリーニングブレード(クリーニング部材の一例)131を有しており、クリーニングブレード131は、電子写真感光体7の表面に接触するように配置されている。なお、クリーニング部材は、クリーニングブレード131の態様ではなく、導電性又は絶縁性の繊維状部材であってもよく、これを単独で、又はクリーニングブレード131と併用してもよい。   In the process cartridge 300 in FIG. 4, an electrophotographic photosensitive member 7, a charging device 8 (an example of a charging unit), a developing device 11 (an example of a developing unit), and a cleaning device 13 (an example of a cleaning unit) are integrated in a housing. I support it. The cleaning device 13 includes a cleaning blade (an example of a cleaning member) 131, and the cleaning blade 131 is disposed so as to contact the surface of the electrophotographic photosensitive member 7. The cleaning member may be a conductive or insulating fibrous member instead of the cleaning blade 131, and may be used alone or in combination with the cleaning blade 131.

なお、図4には、画像形成装置として、潤滑材14を電子写真感光体7の表面に供給する繊維状部材132(ロール状)、及び、クリーニングを補助する繊維状部材133(平ブラシ状)を備えた例を示してあるが、これらは必要に応じて配置される。   In FIG. 4, as an image forming apparatus, a fibrous member 132 (roll shape) for supplying the lubricant 14 to the surface of the electrophotographic photosensitive member 7 and a fibrous member 133 (flat brush shape) for assisting cleaning are shown. Examples are provided, but these are arranged as necessary.

以下、本実施形態に係る画像形成装置の各構成について説明する。   Hereinafter, each configuration of the image forming apparatus according to the present embodiment will be described.

−帯電装置−
帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。
-Charging device-
As the charging device 8, for example, a contact type charger using a conductive or semiconductive charging roller, a charging brush, a charging film, a charging rubber blade, a charging tube or the like is used. Further, a non-contact type roller charger, a known charger such as a scorotron charger using a corona discharge or a corotron charger may be used.

−露光装置−
露光装置9としては、例えば、電子写真感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、定められた像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体の分光感度領域内とする。半導体レーザの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザや青色レーザとして400nm以上450nm以下に発振波長を有するレーザも利用してもよい。また、カラー画像形成のためにはマルチビームを出力し得るタイプの面発光型のレーザ光源も有効である。
-Exposure device-
Examples of the exposure device 9 include optical system devices that expose the surface of the electrophotographic photoreceptor 7 with light such as semiconductor laser light, LED light, and liquid crystal shutter light in a predetermined image-like manner. The wavelength of the light source is set within the spectral sensitivity region of the electrophotographic photosensitive member. As the wavelength of the semiconductor laser, near infrared having an oscillation wavelength near 780 nm is the mainstream. However, the present invention is not limited to this wavelength, and an oscillation wavelength laser in the 600 nm range or a laser having an oscillation wavelength of 400 nm to 450 nm as a blue laser may be used. In addition, a surface-emitting type laser light source that can output a multi-beam is also effective for color image formation.

−現像装置−
現像装置11としては、例えば、現像剤を接触又は非接触させて現像する一般的な現像装置が挙げられる。現像装置11としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて電子写真感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが好ましい。
-Developer-
Examples of the developing device 11 include a general developing device that performs development by bringing a developer into contact or non-contact with the developer. The developing device 11 is not particularly limited as long as it has the functions described above, and is selected according to the purpose. For example, a known developing device having a function of attaching a one-component developer or a two-component developer to the electrophotographic photosensitive member 7 using a brush, a roller, or the like can be used. Among these, those using a developing roller holding the developer on the surface are preferable.

現像装置11に使用される現像剤は、トナー単独の一成分系現像剤であってもよいし、トナーとキャリアとを含む二成分系現像剤であってもよい。また、現像剤は、磁性であってもよいし、非磁性であってもよい。これら現像剤は、周知のものが適用される。   The developer used in the developing device 11 may be a one-component developer including a toner alone or a two-component developer including a toner and a carrier. Further, the developer may be magnetic or non-magnetic. A well-known thing is applied for these developers.

−クリーニング装置−
クリーニング装置13は、クリーニングブレード131を備えるクリーニングブレード方式の装置が用いられる。
なお、クリーニングブレード方式以外にも、ファーブラシクリーニング方式、現像同時クリーニング方式を採用してもよい。
-Cleaning device-
As the cleaning device 13, a cleaning blade type device including a cleaning blade 131 is used.
In addition to the cleaning blade method, a fur brush cleaning method and a simultaneous development cleaning method may be employed.

−転写装置−
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
-Transfer device-
As the transfer device 40, for example, a contact transfer charger using a belt, a roller, a film, a rubber blade, etc., or a known transfer charger such as a scorotron transfer charger using a corona discharge or a corotron transfer charger. Can be mentioned.

−中間転写体−
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等を含むベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外にドラム状のものを用いてもよい。
-Intermediate transfer member-
As the intermediate transfer member 50, a belt-like member (intermediate transfer belt) containing polyimide, polyamideimide, polycarbonate, polyarylate, polyester, rubber or the like having semiconductivity is used. Further, as the form of the intermediate transfer member, a drum-like member may be used in addition to the belt-like member.

図5は、本実施形態に係る画像形成装置の他の一例を示す概略構成図である。
図5に示す画像形成装置120は、プロセスカートリッジ300を4つ搭載したタンデム方式の多色画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
FIG. 5 is a schematic configuration diagram illustrating another example of the image forming apparatus according to the present embodiment.
An image forming apparatus 120 shown in FIG. 5 is a tandem multicolor image forming apparatus equipped with four process cartridges 300. In the image forming apparatus 120, four process cartridges 300 are arranged in parallel on the intermediate transfer member 50, and one electrophotographic photosensitive member is used for one color. The image forming apparatus 120 has the same configuration as that of the image forming apparatus 100 except that it is a tandem system.

以下、実施例及び比較例を挙げ、本実施形態をより具体的に詳細に説明するが、本実施形態は以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は「質量部」及び「質量%」を表す。
<実施例1>
−下引層の作製−
酸化亜鉛(平均粒子径70nm:テイカ社製:比表面積値15m2/g)100質量部をトルエン500質量部と攪拌混合し、シランカップリング剤(KBM503:信越化学工業社製)1.3質量部を添加し、2時間攪拌した。その後トルエンを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤で表面処理を施した酸化亜鉛を得た。表面処理を施した酸化亜鉛110質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン0.6質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、更に60℃で減圧乾燥を行い、アリザリンを付与させた酸化亜鉛を得た。
Hereinafter, although an Example and a comparative example are given and this embodiment is described in detail in detail, this embodiment is not limited to the following examples. Unless otherwise specified, “parts” and “%” represent “parts by mass” and “mass%”.
<Example 1>
-Production of undercoat layer-
100 parts by mass of zinc oxide (average particle size 70 nm: manufactured by Teica: specific surface area value 15 m 2 / g) is stirred and mixed with 500 parts by mass of toluene, and 1.3 parts by mass of a silane coupling agent (KBM503: manufactured by Shin-Etsu Chemical Co., Ltd.) And stirred for 2 hours. Thereafter, toluene was distilled off under reduced pressure and baked at 120 ° C. for 3 hours to obtain zinc oxide surface-treated with a silane coupling agent. 110 parts by mass of surface-treated zinc oxide was stirred and mixed with 500 parts by mass of tetrahydrofuran, a solution prepared by dissolving 0.6 parts by mass of alizarin in 50 parts by mass of tetrahydrofuran was added, and the mixture was stirred at 50 ° C. for 5 hours. . Then, the zinc oxide to which alizarin was imparted by filtration under reduced pressure was filtered off, and further dried at 60 ° C. under reduced pressure to obtain zinc oxide to which alizarin was imparted.

このアリザリンを付与させた酸化亜鉛:60質量部と、硬化剤(ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製):13.5質量部と、ブチラール樹脂(エスレックBM−1、積水化学工業社製):15質量部と、をメチルエチルケトン85質量部に混合した液38質量部とメチルエチルケトン:25質量部とを混合し、直径1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い、分散液を得た。 得られた分散液に触媒としてジオクチルスズジラウレート:0.005質量部、及びシリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製):40質量部を添加し、下引層形成用塗布液を得た。この下引層形成用塗布液を浸漬塗布法にてアルミニウム基材上に塗布し、170℃、40分の乾燥硬化を行い、厚さ20μmの下引層を得た。   Zinc oxide provided with this alizarin: 60 parts by mass, curing agent (blocked isocyanate Sumijoule 3175, manufactured by Sumitomo Bayern Urethane Co., Ltd.): 13.5 parts by mass, butyral resin (ESREC BM-1, Sekisui Chemical Co., Ltd.) Manufactured): 15 parts by mass and 38 parts by mass of methyl ethyl ketone mixed with 85 parts by mass of methyl ethyl ketone: 25 parts by mass of methyl ethyl ketone are mixed, and dispersion is performed for 2 hours with a sand mill using glass beads having a diameter of 1 mmφ. A liquid was obtained. Dioctyltin dilaurate: 0.005 parts by mass and silicone resin particles (Tospearl 145, manufactured by GE Toshiba Silicone): 40 parts by mass were added as catalysts to the obtained dispersion to obtain a coating liquid for forming an undercoat layer. . This undercoat layer forming coating solution was applied onto an aluminum substrate by a dip coating method, followed by drying and curing at 170 ° C. for 40 minutes to obtain an undercoat layer having a thickness of 20 μm.

−電荷発生層の作製−
電荷発生材料としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3゜,16.0゜,24.9゜,28.0゜の位置に回折ピークを有するヒドロキシガリウムフタロシアニン(CGM−1)15質量部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)10質量部、及びn−酢酸ブチル200質量部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn−酢酸ブチル175質量部、及びメチルエチルケトン180質量部を添加し、攪拌して電荷発生層形成用塗布液を得た。この電荷発生層形成用塗布液を下引層上に浸漬塗布し、常温(25℃)で乾燥して、厚さが0.2μmの電荷発生層を形成した。
-Fabrication of charge generation layer-
Bragg angles (2θ ± 0.2 °) of X-ray diffraction spectrum using Cukα characteristic X-ray as a charge generation material are at least 7.3 °, 16.0 °, 24.9 °, 28.0 ° 15 parts by mass of hydroxygallium phthalocyanine (CGM-1) having a diffraction peak at 10 parts by mass, vinyl chloride / vinyl acetate copolymer resin (VMCH, manufactured by Nihon Unicar) as binder resin, and 200 parts by mass of n-butyl acetate The mixture of parts was dispersed for 4 hours in a sand mill using glass beads having a diameter of 1 mmφ. To the obtained dispersion, 175 parts by mass of n-butyl acetate and 180 parts by mass of methyl ethyl ketone were added and stirred to obtain a coating solution for forming a charge generation layer. This charge generation layer forming coating solution was dip coated on the undercoat layer and dried at room temperature (25 ° C.) to form a charge generation layer having a thickness of 0.2 μm.

−電荷輸送層の作製−
次に、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミン(TPD)45質量部、及び結着樹脂としてビスフェノールZポリカーボネート樹脂(以下、「PCZ500」と標記、粘度平均分子量:5万):55質量部をテトラヒドロフラン(THF)/トルエン混合溶剤(質量比70/30):800質量部、に加えて溶解し、電荷輸送層用塗布液を得た。この電荷輸送層用塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って膜厚が20μmの電荷輸送層を形成した。
-Preparation of charge transport layer-
Next, 45 parts by mass of N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1 ′] biphenyl-4,4′-diamine (TPD) and bisphenol as a binder resin Z polycarbonate resin (hereinafter referred to as “PCZ500”, viscosity average molecular weight: 50,000): 55 parts by mass was added to tetrahydrofuran (THF) / toluene mixed solvent (mass ratio 70/30): 800 parts by mass, and dissolved. A coating solution for a charge transport layer was obtained. This charge transport layer coating solution was applied onto the charge generation layer and dried at 130 ° C. for 45 minutes to form a charge transport layer having a thickness of 20 μm.

−保護層(最表面層)の形成−
特定の連鎖重合性電荷輸送材料として例示化合物(A−1):95質量部をテトラヒドロフラン(THF)/トルエン混合溶剤(質量比60/40):150質量部に溶解し、更に、開始剤として、OTazo15(大塚化学社製)2質量部を溶解させた後、特定の環状シリカ含有化合物として例示化合物(X−1):3質量部(固形分のみで換算した部数)を分散させて、保護層形成用塗布液を得た。この保護層形成用塗布液を電荷輸送層上に塗布し、酸素濃度100ppmの雰囲気下で150℃、40分加熱し、厚さ7μmの保護層を形成した。
以上の工程を経て、電子写真感光体を得た。
-Formation of protective layer (outermost surface layer)-
As a specific chain polymerizable charge transport material, exemplary compound (A-1): 95 parts by mass is dissolved in tetrahydrofuran (THF) / toluene mixed solvent (mass ratio 60/40): 150 parts by mass, and as an initiator, After dissolving 2 parts by mass of OTazo15 (manufactured by Otsuka Chemical Co., Ltd.), the specific compound (X-1): 3 parts by mass (parts converted in terms of solid content) is dispersed as the specific cyclic silica-containing compound, and the protective layer A forming coating solution was obtained. This coating solution for forming a protective layer was applied onto the charge transport layer and heated at 150 ° C. for 40 minutes in an atmosphere having an oxygen concentration of 100 ppm to form a protective layer having a thickness of 7 μm.
Through the above steps, an electrophotographic photosensitive member was obtained.

<実施例2〜26、比較例1、2、4>
表1、表2に従って、電荷輸送材料(A、又はAC)、ケイ素含有化合物(X、Y、又はYC)の種類及び添加量を変更した以外は、実施例1と同様にして、各電子写真感光体を得た。
<Examples 2 to 26, Comparative Examples 1, 2, and 4>
According to Table 1 and Table 2, each electrophotography was performed in the same manner as in Example 1 except that the type and amount of the charge transport material (A or AC) and the silicon-containing compound (X, Y, or YC) were changed. A photoreceptor was obtained.

<比較例3>
保護層および電荷輸送層の作製以外は、実施例1と同様にして、電子写真感光体を得た。電荷輸送層の作製は、以下の手順で行った。なお、電荷輸送層が最表面層となる。
ベンジジン化合物(AC−2):45質量部、及び結着樹脂としてPCZ500:52質量部を、テトラヒドロフラン(THF)/トルエン混合溶剤(質量比70/30):800質量部に加えて溶解した後、特定の環状シリカ含有化合物として例示化合物(X−1):3質量部(固形分のみで換算した部数)を分散させて、電荷輸送層形成用塗布液を得た。この電荷輸送層形成用塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って、厚さ23μmの電荷輸送層を形成した。
<Comparative Example 3>
An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the protective layer and the charge transport layer were prepared. The charge transport layer was produced according to the following procedure. The charge transport layer is the outermost surface layer.
Benzidine compound (AC-2): 45 parts by mass and, as a binder resin, PCZ500: 52 parts by mass were added to tetrahydrofuran (THF) / toluene mixed solvent (mass ratio 70/30): 800 parts by mass, and then dissolved. As a specific cyclic silica-containing compound, exemplary compound (X-1): 3 parts by mass (parts converted in terms of solid content only) was dispersed to obtain a coating solution for forming a charge transport layer. This charge transport layer forming coating solution was applied onto the charge generation layer and dried at 130 ° C. for 45 minutes to form a charge transport layer having a thickness of 23 μm.

<長期出力評価>
各例で得られた電子写真感光体を、富士ゼロックス社製 Docucentre−IV C2260に装着し、常温常湿(20℃、50%RH)の環境下において、A4紙に、画像濃度100%のベタ塗り画像部分と、画像濃度0%の非画像部分とを有する画像を連続して300000枚出力した。その後、下記に示す評価を行った。なお、画像形成には、富士ゼロックス製P紙(A4サイズ、横送り)を用いた。各評価結果を表1、2に示す。
<Long-term output evaluation>
The electrophotographic photosensitive member obtained in each example is mounted on Doccentre-IV C2260 manufactured by Fuji Xerox Co., Ltd., and is printed on A4 paper with a solid image density of 100% under an environment of normal temperature and humidity (20 ° C., 50% RH). 300,000 images having a painted image portion and a non-image portion having an image density of 0% were continuously output. Then, the evaluation shown below was performed. For image formation, Fuji Xerox P paper (A4 size, landscape feed) was used. The evaluation results are shown in Tables 1 and 2.

−感光体の摩耗状態評価−
300000枚出力した後、感光体の画像形成領域(画像濃度100%のベタ塗り画像部分)に相当する部分(以下、「画像部」と称する)、及び感光体の非画像形成領域(画像濃度0%の非画像部分)に相当する部分(以下、「非画像部」と称する)における感光体表面を目視にて観察し、以下の評価基準で評価した。A+が最も良好な特性であることを示す。
A+:顕微鏡観察でもキズが確認されない。
A :目視でキズが確認されないが、顕微鏡観察で小さなキズが確認される。
B :部分的にキズが発生。
C :全面にキズ発生。
-Evaluation of wear condition of photoconductor-
After outputting 300,000 sheets, a portion (hereinafter referred to as “image portion”) corresponding to an image forming region (solid image portion having an image density of 100%) of the photosensitive member, and a non-image forming region (image density 0) of the photosensitive member. % Of the non-image portion) (hereinafter referred to as “non-image portion”) was visually observed on the surface of the photoreceptor and evaluated according to the following evaluation criteria. A + indicates the best characteristics.
A +: Scratches are not confirmed even by microscopic observation.
A: Although scratches are not visually confirmed, small scratches are confirmed by microscopic observation.
B: Scratches are partially generated.
C: Scratches are generated on the entire surface.

−クリーニングブレードの摩耗状態(欠け)評価−
300000枚画像形成した後、画像濃度30%のベタ画像をA4紙に1枚出力した。この出力された画像濃度30%のベタ画像について、画像部及び非画像部におけるスジの発生の有無を目視にて観察し、以下の評価基準で評価した。A+が最も良好な特性であることを示す。
A+: クリーニングブレードの欠けに起因するスジの発生なし
A : クリーニングブレードの欠けに起因する3本以下の軽微なスジが発生
B : クリーニングブレードの欠けに起因する3本以上10本以下のスジが発生
C : クリーニングブレードの欠けに起因する10本以上の明瞭なスジが発生
−Evaluation of wear state (chip) of cleaning blade−
After forming 300,000 images, one solid image with an image density of 30% was output on A4 paper. The output solid image having an image density of 30% was visually observed for the presence or absence of streaks in the image area and the non-image area, and evaluated according to the following evaluation criteria. A + indicates the best characteristics.
A +: No streaks due to chipping of cleaning blade A: Three or less minor streaks due to chipping of cleaning blade B: Three or more streaks due to chipping of cleaning blade are generated C: 10 or more clear streaks are generated due to chipping of the cleaning blade

−画質評価−
300000枚出力した後、図6に示す画像パターンをA4紙に出力した。この出力された画像パターンについて、画像部及び非画像部における画質の劣化度合いを目視にて観察し、以下の評価基準で評価した。A++が最も良好な特性であることを示す。
A++:最も良好(出力した画像パターン全てにおいて劣化がほとんど見られない)
A+ :出力した複数の画像パターンのうち一部において、拡大画像で変化を確認
A :良好(目視では変化は確認できないが、拡大画像では変化を確認)
B :画質劣化は確認し得るが、許容レベル
C :画質劣化が生じており、問題となるレベル
-Image quality evaluation-
After outputting 300,000 sheets, the image pattern shown in FIG. 6 was output on A4 paper. About the output image pattern, the deterioration degree of the image quality in an image part and a non-image part was observed visually, and the following evaluation criteria evaluated. A ++ indicates the best characteristics.
A ++: Best (deterioration is hardly seen in all output image patterns)
A +: Change is confirmed in the enlarged image in some of the plurality of output image patterns. A: Good (change is not visually confirmed, but change is confirmed in the enlarged image)
B: Image quality degradation can be confirmed, but acceptable level C: Image quality degradation has occurred, causing a problem

表1、表2の結果から、画質評価において、本実施例は、比較例に比べ、感光体の画像形成領域に相当する部分(画像部)と、非画像領域に相当する部分(非画像部)の双方で良好な画質が得られ、且つ画質の劣化度合いの差が小さくなった。また、本実施例は、比較例に比べ、連続出力後における感光体の摩耗状態評価、及びクリーニングブレードの摩耗状態評価においても良好な結果が得られた。
これにより、本実施例の感光体を適用した場合、長期にわたり繰り返し画像形成しても、感光体の摩耗状態及びクリーニングブレードの摩耗状態に差が生じることに起因して発生する画質差が抑制されることがわかった。
具体的には、最表面層がビニルフェニル基を有する特定の連鎖重合性電荷輸送材料を含有する実施例3、4は、アルコキシシリル基を有する電荷輸送材料を含有する比較例1に比べ、画像部と非画像部の双方で良好な画質が得られ、且つ画質の劣化度合いの差が小さくなった。
また、最表面層が特定の連鎖重合性電荷輸送材料、及び特定の環状ケイ素含有化合物を含有する実施例7は、特定の環状ケイ素含有化合物を含有しない比較例2に比べ、画像部と非画像部の双方で良好な画質が得られ、且つ画質の劣化度合いの差が小さくなった。
また、最表面層が特定の連鎖重合性電荷輸送材料を含有する組成物の硬化膜で構成される実施例7は、非反応性の電荷輸送材料を含有する組成物の非硬化膜で構成される比較例3に比べ、画像部と非画像部の双方で良好な画質が得られ、且つ画質の劣化度合いの差が小さくなった。
また、最表面層が特定の環状シロキサン化合物(オクタメチルシクロテトラシロキサン)を含有する実施例21は、非環状のデカメチルテトラシロキサンを含有する比較例4に比べ、画像部で良好な画質が得られ、画像部及び非画像部における画質の劣化度合いの差が小さくなった。
さらに、最表面層が特定の環状ケイ素含有化合物を含有する実施例の中でも、特定の環状ポリシラン化合物を含有する実施例12〜16は、特定の環状シロキサン化合物を含有する実施例17〜23に比べ、画像部と非画像部の双方でより良好な画質が得られ、且つ画質の劣化度合いの差がより小さくなった。
また、最表面層中における特定の環状ポリシラン化合物の添加量が5部である実施例24及び3部である実施例25は、当該添加量が1.5部である実施例26に比べ、連続出力後における感光体の摩耗状態評価、及びクリーニングブレードの摩耗状態評価において、画像部で良好な結果が得られた。
From the results shown in Tables 1 and 2, in the image quality evaluation, in this example, compared with the comparative example, the part corresponding to the image forming area (image part) and the part corresponding to the non-image area (non-image part) of the photoconductor. ), Good image quality was obtained, and the difference in the degree of image quality degradation was small. Further, in this example, better results were obtained in the evaluation of the wear state of the photoconductor after continuous output and the wear state of the cleaning blade than in the comparative example.
As a result, when the photoconductor of this embodiment is applied, even when images are repeatedly formed over a long period of time, a difference in image quality caused by a difference between the wear state of the photoconductor and the wear state of the cleaning blade is suppressed. I found out.
Specifically, Examples 3 and 4 in which the outermost surface layer contains a specific chain-polymerizable charge transport material having a vinylphenyl group are compared with Comparative Example 1 in which the charge transport material having an alkoxysilyl group is contained. Good image quality was obtained in both the image area and the non-image area, and the difference in the degree of image quality deterioration was reduced.
In addition, Example 7 in which the outermost surface layer contains a specific chain-polymerizable charge transport material and a specific cyclic silicon-containing compound is compared with Comparative Example 2 that does not contain a specific cyclic silicon-containing compound. Good image quality was obtained in both areas, and the difference in the degree of image quality degradation was small.
In addition, Example 7 in which the outermost surface layer is composed of a cured film of a composition containing a specific chain-polymerizable charge transport material is composed of a non-cured film of a composition containing a non-reactive charge transport material. Compared to Comparative Example 3, good image quality was obtained in both the image area and the non-image area, and the difference in the degree of image quality degradation was small.
Further, in Example 21, in which the outermost surface layer contains a specific cyclic siloxane compound (octamethylcyclotetrasiloxane), a better image quality was obtained in the image portion than in Comparative Example 4 containing acyclic decamethyltetrasiloxane. As a result, the difference in image quality degradation between the image portion and the non-image portion is reduced.
Further, among Examples in which the outermost surface layer contains a specific cyclic silicon-containing compound, Examples 12 to 16 containing a specific cyclic polysilane compound are compared with Examples 17 to 23 containing a specific cyclic siloxane compound. As a result, better image quality was obtained in both the image area and the non-image area, and the difference in the degree of deterioration of the image quality became smaller.
Further, Example 24 in which the addition amount of the specific cyclic polysilane compound in the outermost surface layer is 5 parts and Example 25 which is 3 parts are more continuous than Example 26 in which the addition amount is 1.5 parts. In the evaluation of the wear state of the photoreceptor after the output and the wear state of the cleaning blade, good results were obtained in the image area.

以下、表中の略称の詳細について示す。
[特定の連鎖重合性電荷輸送材料(A)]
・A−1:下記構造式で示される電荷輸送材料

・A−2:例示化合物(I−c)−15
・A−3:例示化合物(I−b)−32
・A−4:例示化合物(II)−8
・A−5:下記構造式で示される特定の連鎖重合性電荷輸送材料

・A−6 :例示化合物(I−c)−43
・A−7 :例示化合物(I−d)−20
・A−8 :例示化合物(II)−58
・A−9 :例示化合物(I−d)−22
・A−10:例示化合物(I−d)−28
・A−11:例示化合物(II)−56
・A−12:例示化合物(II)−50
The details of the abbreviations in the table are shown below.
[Specific Chain Polymerizable Charge Transport Material (A)]
A-1: Charge transport material represented by the following structural formula

A-2: Exemplary compound (Ic) -15
A-3: Exemplary compound (Ib) -32
A-4: Exemplary compound (II) -8
A-5: Specific chain polymerizable charge transport material represented by the following structural formula

A-6: Exemplary compound (Ic) -43
A-7: Exemplified compound (Id) -20
A-8: exemplary compound (II) -58
A-9: Exemplified compound (Id) -22
A-10: Exemplified compound (Id) -28
A-11: exemplary compound (II) -56
A-12: exemplary compound (II) -50

(比較例用の電荷輸送材料)
・AC−1:下記構造式で示される電荷輸送材料

・AC−2:下記構造式で示される電荷輸送材料(ベンジジン化合物)
(Charge transport material for comparative example)
AC-1: charge transport material represented by the following structural formula

AC-2: Charge transport material (benzidine compound) represented by the following structural formula

[特定の環状のケイ素含有化合物]
(特定の環状のポリシラン化合物(X))
・(X−1):デカフェニルシクロペンタシラン
・(X−2):(メチル、フェニル)シクロペンタシラン
・(X−3):デカメチルシクロペンタシラン
・(X−4):デカ(p-トリル)シクロペンタシラン
・(X−5):ドデカフェニルシクロヘキサシラン
・(X−6):ヘキサデカフェニルシクロオクタシラン
[Specific cyclic silicon-containing compound]
(Specific cyclic polysilane compound (X))
(X-1): Decaphenylcyclopentasilane (X-2): (Methyl, phenyl) cyclopentasilane (X-3): Decamethylcyclopentasilane (X-4): Deca (p- (Tolyl) cyclopentasilane. (X-5): dodecaphenylcyclohexasilane. (X-6): hexadecaphenylcyclooctasilane.

(特定の環状のシロキサン化合物(Y))
・(Y−1):ヘキサメチルシクロトリシロキサン
・(Y−2):(メチル、フェニル)シクロトリシロキサン
・(Y−3):ヘキサフェニルシクロトリシロキサン
・(Y−4):ヘキサ(トリフルオロメチル)シクロトリシロキサン
・(Y−5):オクタメチルシクロテトラシロキサン
・(Y−6):(メチル、フェニル)シクロテトラシロキサン
・(Y−7):ドデカフェニルシクロヘキサシロキサン
(Specific cyclic siloxane compound (Y))
(Y-1): hexamethylcyclotrisiloxane (Y-2): (methyl, phenyl) cyclotrisiloxane (Y-3): hexaphenylcyclotrisiloxane (Y-4): hexa (trifluoro (Methyl) cyclotrisiloxane (Y-5): octamethylcyclotetrasiloxane (Y-6): (methyl, phenyl) cyclotetrasiloxane (Y-7): dodecaphenylcyclohexasiloxane

(比較例用のシロキサン化合物(YC))
・(YC−1):デカメチルテトラシロキサン
(Siloxane compound for comparative example (YC))
(YC-1): Decamethyltetrasiloxane

−例示化合物(I−c)−15の合成−
500ml三口フラスコに4,4’−ビス(2−メトキシカルボニルエチル)ジフェニルアミン68.3g、4−ヨードキシレン46.4g、炭酸カリウム30.4g、硫酸銅5水和物1.5g、n−トリデカン50mlを添加し、系中を窒素フローしながら220℃で加熱しながら20時間撹拌した。その後温度を室温まで下げ、トルエン200ml、水150mlを加えて分液操作を行った。トルエン層を採取し、硫酸ナトリウム20g加えて10分撹拌した後、硫酸ナトリウムをろ過した。トルエンを減圧留去した粗生成物を、トルエン/酢酸エチルを溶離液としてシリカゲルカラムクロマトグラフィーによる精製を行い、(I−c)−15aを65.1g得た(収率73%)。
3L三口フラスコに(I−c)−15aを59.4g、テトラヒドロフラン450mlを添加し、そこに水酸化ナトリウム11.7gを水450mlに溶解した水溶液を添加し、60℃で3時間撹拌した。その後、反応液を水1L/濃塩酸60ml水溶液に滴下し、析出した固体を吸引ろ過により採取した。さらにこの固体にアセトン/水混合溶剤(体積比40/60)50mlを加えて懸濁状態で撹拌した後、吸引ろ過により採取し、10時間真空乾燥した後、(I−c)−15bを46.2g得た(収率83%)。
500ml三口フラスコに(I−c)−15bを29.2g、4−クロロメチルスチレン23.5g、炭酸カリウム21.3g、ニトロベンゼン0.17g、DMF(N,N−ジメチルホルムアミド)175mlを添加し、系中を窒素フローして75℃に加熱しながら3時間撹拌した。その後、温度を室温まで下げ、反応溶液に酢酸エチル200ml/水200mlを加えて分液操作を行った。酢酸エチル層を採取し、硫酸ナトリウム10g加えて10分撹拌した後、硫酸ナトリウムをろ過した。酢酸エチルを減圧留去した粗生成物を、トルエン/酢酸エチルを溶離液としてシリカゲルカラムクロマトグラフィーによる精製を行い、例示化合物(I−c)−15を36.4g得た(収率80%)。
—Synthesis of Exemplary Compound (Ic) -15—
In a 500 ml three-necked flask, 68.3 g of 4,4′-bis (2-methoxycarbonylethyl) diphenylamine, 46.4 g of 4-iodoxylene, 30.4 g of potassium carbonate, 1.5 g of copper sulfate pentahydrate, 50 ml of n-tridecane Was added, and the system was stirred for 20 hours while heating at 220 ° C. while flowing nitrogen. Thereafter, the temperature was lowered to room temperature, and 200 ml of toluene and 150 ml of water were added to carry out a liquid separation operation. The toluene layer was collected, 20 g of sodium sulfate was added and stirred for 10 minutes, and then sodium sulfate was filtered. The crude product obtained by evaporating toluene under reduced pressure was purified by silica gel column chromatography using toluene / ethyl acetate as an eluent to obtain 65.1 g of (Ic) -15a (yield 73%).
59.4 g of (Ic) -15a and 450 ml of tetrahydrofuran were added to a 3 L three-necked flask, and an aqueous solution in which 11.7 g of sodium hydroxide was dissolved in 450 ml of water was added thereto, followed by stirring at 60 ° C. for 3 hours. Thereafter, the reaction solution was added dropwise to 1 L of water / 60 ml of concentrated hydrochloric acid, and the precipitated solid was collected by suction filtration. Further, 50 ml of an acetone / water mixed solvent (volume ratio 40/60) was added to this solid and stirred in a suspended state, then collected by suction filtration, dried in vacuo for 10 hours, and 46 of (Ic) -15b was obtained. 0.2 g was obtained (yield 83%).
To a 500 ml three-necked flask, 29.2 g of (Ic) -15b, 23.5 g of 4-chloromethylstyrene, 21.3 g of potassium carbonate, 0.17 g of nitrobenzene, 175 ml of DMF (N, N-dimethylformamide) were added, The system was stirred for 3 hours with nitrogen flowing and heated to 75 ° C. Thereafter, the temperature was lowered to room temperature, and 200 ml of ethyl acetate / 200 ml of water was added to the reaction solution to carry out a liquid separation operation. The ethyl acetate layer was collected, 10 g of sodium sulfate was added and stirred for 10 minutes, and then the sodium sulfate was filtered. The crude product obtained by distilling off ethyl acetate under reduced pressure was purified by silica gel column chromatography using toluene / ethyl acetate as an eluent to obtain 36.4 g of Exemplified Compound (Ic) -15 (yield 80%). .

−例示化合物(I−c)−43の合成−
500ml三口フラスコに4,4’−ビス(2−メトキシカルボニルエチル)ジフェニルアミン68.3g、4,4’−ジヨードー3,3’−ジメチルー1,1’−ビフェニル43.4g、炭酸カリウム30.4g、硫酸銅5水和物1.5g、n−トリデカン50mlを添加し、系中を窒素フローしながら220℃で加熱しながら20時間撹拌した。その後温度を室温まで下げ、トルエン200ml、水150mlを加えて分液操作を行った。トルエン層を採取し、硫酸ナトリウム10g加えて10分撹拌した後、硫酸ナトリウムをろ過した。トルエンを減圧留去した粗生成物を、トルエン/酢酸エチルを溶離液としてシリカゲルカラムクロマトグラフィーによる精製を行い、(I−c)−43aを56.0g得た(収率65%)。
3L三口フラスコに(I−c)−43aを43.1g、テトラヒドロフラン350mlを添加し、そこに水酸化ナトリウム8.8gを水350mlに溶解した水溶液を添加し、60℃に加熱しながら5時間撹拌した。その後、反応液を水1L/濃塩酸40ml水溶液に滴下し、析出した固体を吸引ろ過により採取した。この固体をさらにアセトン/水混合溶剤(体積比40/60)50mlを加えて懸濁状態で撹拌した後、吸引ろ過により採取し、10時間真空乾燥した後、(I−c)−43bを36.6g得た(収率91%)。
500ml三口フラスコに(I−c)−43bを28.2g、4−クロロメチルスチレン23.5g、炭酸カリウム21.3g、ニトロベンゼン0.09g、DMF(N,N−ジメチルホルムアミド)175mlを添加し、系中を窒素フローして75℃に加熱しながら5時間撹拌した。その後、温度を室温まで下げ、反応溶液に酢酸エチル200ml/水200mlを加えて分液操作を行った。酢酸エチル層を採取し、硫酸ナトリウム10g加えて10分撹拌した後、硫酸ナトリウムをろ過した。酢酸エチルを減圧留去した粗生成物を、トルエン/酢酸エチルを溶離液としてシリカゲルカラムクロマトグラフィーによる精製を行い、例示化合物(I−c)−43を37.8g得た(収率85%)。
—Synthesis of Exemplary Compound (Ic) -43—
In a 500 ml three-necked flask, 68.3 g of 4,4′-bis (2-methoxycarbonylethyl) diphenylamine, 43.4 g of 4,4′-diiodo 3,3′-dimethyl-1,1′-biphenyl, 30.4 g of potassium carbonate, Copper sulfate pentahydrate (1.5 g) and n-tridecane (50 ml) were added, and the system was stirred for 20 hours while heating at 220 ° C. with nitrogen flow. Thereafter, the temperature was lowered to room temperature, and 200 ml of toluene and 150 ml of water were added to carry out a liquid separation operation. The toluene layer was collected, 10 g of sodium sulfate was added and stirred for 10 minutes, and then the sodium sulfate was filtered. The crude product obtained by evaporating toluene under reduced pressure was purified by silica gel column chromatography using toluene / ethyl acetate as an eluent to obtain 56.0 g of (Ic) -43a (yield 65%).
To a 3 L three-necked flask, 43.1 g of (Ic) -43a and 350 ml of tetrahydrofuran were added, an aqueous solution in which 8.8 g of sodium hydroxide was dissolved in 350 ml of water was added, and the mixture was stirred for 5 hours while heating to 60 ° C. did. Thereafter, the reaction solution was added dropwise to 1 L of water / 40 ml of concentrated hydrochloric acid, and the precipitated solid was collected by suction filtration. The solid was further added with 50 ml of an acetone / water mixed solvent (volume ratio 40/60), stirred in a suspended state, collected by suction filtration, dried in vacuo for 10 hours, and (Ic) -43b was replaced with 36. 0.6 g was obtained (yield 91%).
To a 500 ml three-necked flask, 28.2 g of (Ic) -43b, 23.5 g of 4-chloromethylstyrene, 21.3 g of potassium carbonate, 0.09 g of nitrobenzene, 175 ml of DMF (N, N-dimethylformamide) were added, The system was stirred for 5 hours while flowing nitrogen and heating to 75 ° C. Thereafter, the temperature was lowered to room temperature, and 200 ml of ethyl acetate / 200 ml of water was added to the reaction solution to carry out a liquid separation operation. The ethyl acetate layer was collected, 10 g of sodium sulfate was added and stirred for 10 minutes, and then the sodium sulfate was filtered. The crude product obtained by distilling off ethyl acetate under reduced pressure was purified by silica gel column chromatography using toluene / ethyl acetate as an eluent to obtain 37.8 g of Exemplified Compound (Ic) -43 (yield 85%). .

なお、他の例示化合物も、上記合成に準じて合成した。   Other exemplary compounds were also synthesized according to the above synthesis.

1 下引層、2 電荷発生層、3 電荷輸送層、4 導電性支持体、5 保護層、6 単層型感光層(電荷発生/電荷輸送層)、7A、7B、7C、7 電子写真感光体、8 帯電装置、9 露光装置、11 現像装置、13 クリーニング装置、14 潤滑材、40 転写装置、50 中間転写体、100、120 画像形成装置、300 プロセスカートリッジ 1 subbing layer, 2 charge generation layer, 3 charge transport layer, 4 conductive support, 5 protective layer, 6 single-layer type photosensitive layer (charge generation / charge transport layer), 7A, 7B, 7C, 7 electrophotographic photosensitive layer Body, 8 charging device, 9 exposure device, 11 developing device, 13 cleaning device, 14 lubricant, 40 transfer device, 50 intermediate transfer body, 100, 120 image forming device, 300 process cartridge

Claims (14)

導電性基体と、前記導電性基体上に設けられた感光層と、を有し、
最表面層が、下記一般式(X)及び下記一般式(Y)で示される環状のケイ素含有化合物から選択される少なくとも1種と、1分子内に少なくとも1つの連鎖重合性官能基を有する電荷輸送材料と、を含有する組成物の硬化膜で構成された電子写真感光体。


(一般式(X)中、A及びAは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、xは4以上12以下の整数を示す。複数あるA及びAはそれぞれ同一でも異なっていてもよい。)


(一般式(Y)中、B及びBは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、yは2以上以下の整数を示す。複数あるB及びBはそれぞれ同一でも異なっていてもよい。)
A conductive substrate, and a photosensitive layer provided on the conductive substrate,
The outermost surface layer has at least one selected from cyclic silicon-containing compounds represented by the following general formula (X) and the following general formula (Y), and a charge having at least one chain polymerizable functional group in one molecule An electrophotographic photoreceptor comprising a cured film of a composition containing a transport material.


(In General Formula (X), A 1 and A 2 may be the same or different and each independently represents a hydrogen atom or a monovalent organic group, and x represents an integer of 4 or more and 12 or less. A certain A 1 and A 2 may be the same or different.


(In General Formula (Y), B 1 and B 2 may be the same or different, and each independently represents a hydrogen atom or a monovalent organic group, and y represents an integer of 2 or more and 4 or less. B 1 and B 2 may be the same or different.)
前記一般式(X)中のA及びA、及び前記一般式(Y)中のB及びBが、それぞれ独立に、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のアラルキル基を示す請求項1に記載の電子写真感光体。 A 1 and A 2 in the general formula (X) and B 1 and B 2 in the general formula (Y) are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, The electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member represents a substituted or unsubstituted aralkyl group. 前記一般式(X)中のxが4以上10以下の整数を示す請求項1又は請求項2に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein x in the general formula (X) represents an integer of 4 or more and 10 or less. 前記一般式(Y)中のyが3以上以下の整数を示す請求項1〜請求項3のいずれか1項に記載の電子写真感光体。 The electrophotographic photoreceptor according to claim 1, wherein y in the general formula (Y) represents an integer of 3 or more and 4 or less. 前記連鎖重合性官能基の少なくとも1つが、アクリロイル基、メタクリロイル基、又はビニルフェニル基である請求項1〜請求項4のいずれか1項に記載の電子写真感光体。   The electrophotographic photoreceptor according to claim 1, wherein at least one of the chain polymerizable functional groups is an acryloyl group, a methacryloyl group, or a vinylphenyl group. 前記電荷輸送材料が、下記一般式(I)及び下記一般式(II)で示される化合物から選択される少なくとも1種である請求項1〜請求項5のいずれか1項に記載の電子写真感光体。


(一般式(I)中、Fは、電荷輸送性骨格を示す。Lは、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む2価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。mは1以上8以下の整数を示す。)


(一般式(II)中、Fは、電荷輸送性骨格を示す。L’は、アルカン若しくはアルケンから誘導される3価又は4価の基、並びに、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。 m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。)
The electrophotographic photosensitive material according to any one of claims 1 to 5, wherein the charge transport material is at least one selected from the compounds represented by the following general formula (I) and the following general formula (II). body.


(In general formula (I), F represents a charge transporting skeleton. L represents an alkylene group, an alkenylene group, —C (═O) —, —N (R) —, —S—, and —O—). And R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, and m represents an integer of 1 or more and 8 or less.)


(In general formula (II), F represents a charge transporting skeleton. L ′ represents a trivalent or tetravalent group derived from an alkane or alkene, an alkylene group, an alkenylene group, —C (═O )-, -N (R)-, -S-, and -O-, and represents an (n + 1) -valent linking group containing two or more selected from the group consisting of -O-, where R represents a hydrogen atom, an alkyl group, an aryl A group or an aralkyl group, m ′ represents an integer of 1 to 6, and n represents an integer of 2 to 3.
導電性基体と、前記導電性基体上に設けられた感光層と、を有し、A conductive substrate, and a photosensitive layer provided on the conductive substrate,
最表面層が、下記一般式(X)及び下記一般式(Y)で示される環状のケイ素含有化合物から選択される少なくとも1種と、1分子内に少なくとも1つの連鎖重合性官能基を有する電荷輸送材料と、を含有し、前記電荷輸送材料が、下記一般式(I)及び下記一般式(II)で示される電荷輸送材料から選択される少なくとも1種である組成物の硬化膜で構成された電子写真感光体。The outermost surface layer has at least one selected from cyclic silicon-containing compounds represented by the following general formula (X) and the following general formula (Y), and a charge having at least one chain polymerizable functional group in one molecule A charge transport material, wherein the charge transport material is a cured film of a composition that is at least one selected from the charge transport materials represented by the following general formula (I) and the following general formula (II): Electrophotographic photoreceptor.


(一般式(X)中、A(In general formula (X), A 1 及びAAnd A 2 は同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、xは4以上12以下の整数を示す。複数あるAMay be the same or different and each independently represents a hydrogen atom or a monovalent organic group, and x represents an integer of 4 or more and 12 or less. Multiple A 1 及びAAnd A 2 はそれぞれ同一でも異なっていてもよい。)May be the same or different. )


(一般式(Y)中、B(In general formula (Y), B 1 及びBAnd B 2 は同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、yは2以上6以下の整数を示す。複数あるBMay be the same or different and each independently represents a hydrogen atom or a monovalent organic group, and y represents an integer of 2 or more and 6 or less. Multiple B 1 及びBAnd B 2 はそれぞれ同一でも異なっていてもよい。)May be the same or different. )


(一般式(I)中、Fは、電荷輸送性骨格を示す。Lは、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む2価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。mは1以上8以下の整数を示す。)(In general formula (I), F represents a charge transporting skeleton. L represents an alkylene group, an alkenylene group, —C (═O) —, —N (R) —, —S—, and —O—). And R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, and m represents an integer of 1 or more and 8 or less.)


(一般式(II)中、Fは、電荷輸送性骨格を示す。L’は、アルカン若しくはアルケンから誘導される3価又は4価の基、並びに、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。 m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。)(In general formula (II), F represents a charge transporting skeleton. L ′ represents a trivalent or tetravalent group derived from an alkane or alkene, an alkylene group, an alkenylene group, —C (═O )-, -N (R)-, -S-, and -O-, and represents an (n + 1) -valent linking group containing two or more selected from the group consisting of -O-, where R represents a hydrogen atom, an alkyl group, an aryl A group or an aralkyl group, m ′ represents an integer of 1 to 6, and n represents an integer of 2 to 3.
前記一般式(X)中のAA in the general formula (X) 1 及びAAnd A 2 、及び前記一般式(Y)中のBAnd B in the general formula (Y) 1 及びBAnd B 2 が、それぞれ独立に、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のアラルキル基を示す請求項7に記載の電子写真感光体。The electrophotographic photoreceptor according to claim 7, wherein each independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group. 前記一般式(X)中のxが4以上10以下の整数を示す請求項7又は請求項8に記載の電子写真感光体。The electrophotographic photosensitive member according to claim 7 or 8, wherein x in the general formula (X) represents an integer of 4 or more and 10 or less. 前記一般式(Y)中のyが3以上6以下の整数を示す請求項7〜請求項9のいずれか1項に記載の電子写真感光体。The electrophotographic photoreceptor according to any one of claims 7 to 9, wherein y in the general formula (Y) represents an integer of 3 to 6. 前記連鎖重合性官能基の少なくとも1つが、アクリロイル基、メタクリロイル基、又はビニルフェニル基である請求項7〜請求項10のいずれか1項に記載の電子写真感光体。The electrophotographic photosensitive member according to claim 7, wherein at least one of the chain polymerizable functional groups is an acryloyl group, a methacryloyl group, or a vinylphenyl group. 導電性基体と、前記導電性基体上に設けられた感光層と、を有し、
最表面層が、下記一般式(X)で示される環状のケイ素含有化合物と、下記一般式(I)及び下記一般式(II)で示される電荷輸送材料から選択される少なくとも1種と、を含有する組成物の硬化膜で構成された電子写真感光体。


(一般式(X)中、A及びAは同一でも異なっていてもよく、それぞれ独立に、水素原子、又は1価の有機基を示し、xは4以上12以下の整数を示す。複数あるA及びAはそれぞれ同一でも異なっていてもよい。)


(一般式(I)中、Fは、電荷輸送性骨格を示す。Lは、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む2価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。mは1以上8以下の整数を示す。)


(一般式(II)中、Fは、電荷輸送性骨格を示す。L’は、アルカン若しくはアルケンから誘導される3価又は4価の基、並びに、アルキレン基、アルケニレン基、−C(=O)−、−N(R)−、−S−、及び−O−からなる群より選択される2種以上を含む(n+1)価の連結基を示す。Rは、水素原子、アルキル基、アリール基、又はアラルキル基を示す。 m’は、1以上6以下の整数を示す。nは、2以上3以下の整数を示す。)
A conductive substrate, and a photosensitive layer provided on the conductive substrate,
The outermost surface layer is a cyclic silicon-containing compound represented by the following general formula (X), and at least one selected from charge transport materials represented by the following general formula (I) and the following general formula (II): An electrophotographic photosensitive member comprising a cured film of a composition containing the same.


(In General Formula (X), A 1 and A 2 may be the same or different and each independently represents a hydrogen atom or a monovalent organic group, and x represents an integer of 4 or more and 12 or less. A certain A 1 and A 2 may be the same or different.


(In general formula (I), F represents a charge transporting skeleton. L represents an alkylene group, an alkenylene group, —C (═O) —, —N (R) —, —S—, and —O—). And R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, and m represents an integer of 1 or more and 8 or less.)


(In general formula (II), F represents a charge transporting skeleton. L ′ represents a trivalent or tetravalent group derived from an alkane or alkene, an alkylene group, an alkenylene group, —C (═O )-, -N (R)-, -S-, and -O-, and represents an (n + 1) -valent linking group containing two or more selected from the group consisting of -O-, where R represents a hydrogen atom, an alkyl group, an aryl A group or an aralkyl group, m ′ represents an integer of 1 to 6, and n represents an integer of 2 to 3.
請求項1〜請求項12のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に着脱するプロセスカートリッジ。
The electrophotographic photosensitive member according to any one of claims 1 to 12 ,
A process cartridge that can be attached to and detached from an image forming apparatus.
請求項1〜請求項12のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備える画像形成装置。
The electrophotographic photosensitive member according to any one of claims 1 to 12 ,
Charging means for charging the surface of the electrophotographic photosensitive member;
An electrostatic latent image forming means for forming an electrostatic latent image on the surface of the charged electrophotographic photosensitive member;
Developing means for developing the electrostatic latent image formed on the surface of the electrophotographic photosensitive member with a developer containing toner to form a toner image;
Transfer means for transferring the toner image to the surface of the recording medium;
An image forming apparatus comprising:
JP2014194186A 2014-09-24 2014-09-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus Expired - Fee Related JP6432244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194186A JP6432244B2 (en) 2014-09-24 2014-09-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194186A JP6432244B2 (en) 2014-09-24 2014-09-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2016065956A JP2016065956A (en) 2016-04-28
JP6432244B2 true JP6432244B2 (en) 2018-12-05

Family

ID=55805443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194186A Expired - Fee Related JP6432244B2 (en) 2014-09-24 2014-09-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6432244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102218558B1 (en) 2018-11-13 2021-02-19 주식회사 엘지화학 Novel polymer and organic light emitting device comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143971A (en) * 1985-12-17 1987-06-27 Shin Etsu Chem Co Ltd Gelatinous composition
JP4322468B2 (en) * 2002-04-23 2009-09-02 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
KR100979868B1 (en) * 2002-07-23 2010-09-02 오사까 가스 가부시키가이샤 Electrophotographic Photosensitive Element and Electrophotographic Apparatus Using the Same
JP4216228B2 (en) * 2003-09-09 2009-01-28 株式会社リコー Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus
US7338739B2 (en) * 2005-01-14 2008-03-04 Xerox Corporation Crosslinked siloxane composite overcoat for photoreceptors
JP4715259B2 (en) * 2005-03-22 2011-07-06 富士ゼロックス株式会社 Image forming apparatus, process cartridge, and image forming method
JP6036058B2 (en) * 2012-09-12 2016-11-30 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6403477B2 (en) * 2014-07-29 2018-10-10 キヤノン株式会社 Method for producing electrophotographic photosensitive member

Also Published As

Publication number Publication date
JP2016065956A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6015264B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5994707B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6003669B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6007691B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5929785B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6413549B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6582475B2 (en) Charge transport film, photoelectric conversion device, electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5888271B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6167964B2 (en) Image forming apparatus and process cartridge
JP6217348B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6476688B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6432244B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6036058B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6592908B2 (en) Image forming apparatus and process cartridge
JP6024555B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6565197B2 (en) Image forming apparatus and process cartridge
JP6024554B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2018028603A (en) Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6241322B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2016186547A (en) Image forming apparatus and process cartridge
JP6354249B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6171901B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6241293B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2019023705A (en) Image forming apparatus and process cartridge
JP6036057B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6432244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees