JP6425133B2 - Relative position control method and relative position control system of underwater vehicle - Google Patents

Relative position control method and relative position control system of underwater vehicle Download PDF

Info

Publication number
JP6425133B2
JP6425133B2 JP2015021812A JP2015021812A JP6425133B2 JP 6425133 B2 JP6425133 B2 JP 6425133B2 JP 2015021812 A JP2015021812 A JP 2015021812A JP 2015021812 A JP2015021812 A JP 2015021812A JP 6425133 B2 JP6425133 B2 JP 6425133B2
Authority
JP
Japan
Prior art keywords
underwater vehicle
vehicle
position control
underwater
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021812A
Other languages
Japanese (ja)
Other versions
JP2016144956A (en
Inventor
浩一郎 田中
浩一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015021812A priority Critical patent/JP6425133B2/en
Publication of JP2016144956A publication Critical patent/JP2016144956A/en
Application granted granted Critical
Publication of JP6425133B2 publication Critical patent/JP6425133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、水中航走体の相対位置制御方法及び相対位置制御システムに関し、特に、水中における良好な音響通信状態を保持可能な水中航走体の相対位置制御方法及び相対位置制御システムに関する。   The present invention relates to a relative position control method and relative position control system of an underwater vehicle, and more particularly to a relative position control method and relative position control system of an underwater vehicle capable of maintaining a good acoustic communication state in water.

海洋、河川、ダム、貯水層等の水中や水底における探査、調査、測量、撮影等を行うために曳航式や自走式の水中航走体が用いられることが多い。水中航走体により得られた情報は、一般に水中音響通信により水面航走体に伝達される。したがって、水中航走体と水面航走体とは、その位置関係を一定の状態に保持したまま並走されることが多い。   A towing or self-propelled underwater vehicle is often used to conduct surveys, surveys, surveys, imaging, etc. in the water or bottom of the ocean, rivers, dams, reservoirs, etc. The information obtained by the underwater vehicle is generally transmitted to the surface vehicle by underwater acoustic communication. Therefore, the underwater vehicle and the surface vehicle are often run in parallel while maintaining their positional relationship constant.

例えば、特許文献1には、母船、中継器、水中航走体を有する通信システムにおいて、中継器と水中航走体とが相互に音響通信可能な範囲内に存在しない場合には、中継器を水平移動させることが開示されている。また、特許文献2には、水上移動体が、水中航走体を検出しながら、自身の位置と水中航走体の位置とが、音響通信装置を用いて通信できる範囲内にある状態を保持することが開示されている。   For example, in Patent Document 1, in a communication system having a mother ship, a repeater, and an underwater vehicle, when the repeater and the underwater vehicle do not exist within the range in which mutual acoustic communication is possible, the repeater is used. It is disclosed to move horizontally. Further, according to Patent Document 2, while the underwater vehicle detects the underwater vehicle, a state in which the position of the vehicle and the position of the underwater vehicle can be communicated using the acoustic communication device is maintained. It is disclosed that.

特開2001−308766号公報JP 2001-308766 A 特開2010−139270号公報JP, 2010-139270, A

ところで、水中を伝播する音波は、水面や水底で反射波を生じることから、音源から出力された直接波と反射波とが干渉し合い、音圧の高い部分と低い部分とを有する音圧分布が生じることとなる。そして、音圧の高い部分では音響通信状態は良好であるものの、音圧の低い部分では音響通信状態は不良となってしまう。なお、「音響通信状態が良好である」とは、音源から発信された音波に対して受信した音波の減衰量が少ない状態を意味し、「音響通信状態が不良である」とは、音源から発信された音波に対して受信した音波の減衰量が多い状態を意味している。   By the way, since the sound wave which propagates in water produces a reflected wave on the water surface and the bottom of the water, the direct wave and the reflected wave outputted from the sound source interfere with each other, and the sound pressure distribution has a high sound pressure part Will occur. Then, although the acoustic communication state is good in the portion where the sound pressure is high, the acoustic communication state is poor in the portion where the sound pressure is low. Note that "the sound communication state is good" means a state in which the attenuation amount of the sound wave received from the sound wave transmitted from the sound source is small, and "the sound communication state is poor" means from the sound source This means that the amount of attenuation of the received sound wave is large relative to the transmitted sound wave.

したがって、上述した特許文献1及び特許文献2に記載されたように、水中航走体及び水面航走体を音響通信可能範囲内に存在させるようにした場合であっても、音響通信状態が不良となってしまう場合がある。特に、水中航走体と水面航走体との位置関係を一定に保持したまま並走させる場合には、これらの移動とともに音圧分布も移動することとなり、最初に設定した位置関係における音響通信状態が不良である場合、その後も音響通信状態が不良のままとなってしまうおそれがある。   Therefore, as described in Patent Document 1 and Patent Document 2 described above, the acoustic communication state is poor even when the underwater vehicle and the surface vehicle are made to be within the acoustic communicable range. It may be In particular, when traveling in parallel while maintaining the positional relationship between the underwater vehicle and the surface vehicle constant, the sound pressure distribution also moves with these movements, and acoustic communication in the initially set positional relationship is made. If the state is bad, the acoustic communication state may remain bad thereafter.

本発明は、上述した問題点に鑑みて創案されたものであり、水中航走体と水面航走体との音響通信状態を良好な状態に保持することができる、水中航走体の相対位置制御方法及び相対位置制御システムを提供することを目的とする。   The present invention has been made in view of the problems described above, and it is possible to maintain the acoustic communication state between the underwater vehicle and the surface vehicle in a good state, and the relative position of the underwater vehicle It is an object of the present invention to provide a control method and a relative position control system.

本発明によれば、水面航走体との間で音響通信しながら水中を移動する水中航走体の相対位置制御方法において、前記水中航走体と前記水面航走体との音響通信状態を計測することにより前記水中航走体が水中における音圧分布のうち音圧の高い場所に存在しているか否かを確認し、前記水中航走体が前記音圧分布のうち音圧の低い場所に存在している場合に前記水中航走体と前記水面航走体との相対位置を調整し、前記水中航走体を前記音圧分布のうち音圧の高い場所に存在させる、ことを特徴とする水中航走体の相対位置制御方法が提供される。   According to the present invention, in the relative position control method of an underwater vehicle moving in the water while acoustic communication with the water surface, the acoustic communication state between the underwater vehicle and the water surface is obtained. It is confirmed by measuring whether or not the underwater vehicle is present at a high sound pressure location in the sound pressure distribution in water, and the underwater vehicle is at a low sound pressure location in the sound pressure distribution. Adjusting the relative position between the underwater vehicle and the surface vehicle, and causing the underwater vehicle to be present at a high sound pressure in the sound pressure distribution. A relative position control method of an underwater vehicle is provided.

前記相対位置制御方法において、前記水中航走体又は前記水面航走体を進行方向の前後に移動させることにより、前記水中航走体と前記水面航走体との相対位置を調整するようにしてもよい。また、少なくとも、通信エラー率、信号相関又は信号レベルのいずれか一つを含む指標を用いて音響通信状態の計測を行ってもよい。   In the relative position control method, the relative position between the underwater vehicle and the watercraft is adjusted by moving the underwater vehicle or the watercraft forward and backward in the traveling direction. It is also good. Also, the measurement of the acoustic communication state may be performed using an index including at least one of a communication error rate, a signal correlation, and a signal level.

また、本発明によれば、水面航走体との間で音響通信しながら水中を移動する水中航走体の相対位置制御システムにおいて、前記水面航走体及び前記水中航走体のそれぞれに配置され音響通信状態を計測する通信状態計測装置と、前記水中航走体又は前記水面航走体を移動させる位置制御装置と、を備え、前記位置制御装置は、前記通信状態計測装置の出力に基づいて、前記水中航走体が水中における音圧分布のうち相対的に音圧の高い場所に存在するように、前記水中航走体又は前記水面航走体を移動させる、ことを特徴とする水中航走体の相対位置制御システムが提供される。   Further, according to the present invention, in a relative position control system of an underwater vehicle moving in water with acoustic communication with a surface vehicle, the system is provided for each of the surface vehicle and the underwater vehicle. A communication state measurement device for measuring an acoustic communication state, and a position control device for moving the underwater vehicle or the water surface vehicle, the position control device based on an output of the communication state measurement device Moving the underwater vehicle or the surface vehicle so that the underwater vehicle is present at a relatively high sound pressure in the sound pressure distribution in the water. A relative position control system for a mid-passage body is provided.

前記位置制御装置は、前記水中航走体又は前記水面航走体を進行方向の前後に移動させるようにしてもよい。また、前記通信状態計測装置は、少なくとも、通信エラー率、信号相関又は信号レベルのいずれか一つを含む指標を用いて音響通信状態の計測を行ってもよい。また、前記通信状態計測装置及び前記位置制御装置は、前記水中航走体及び前記水面航走体のいずれか一方に搭載されていてもよいし、前記水中航走体及び前記水面航走体の両方に搭載されていてもよい。   The position control device may move the underwater vehicle or the surface vehicle forward and backward in the traveling direction. Further, the communication state measurement device may measure the acoustic communication state using an index including at least one of a communication error rate, a signal correlation, and a signal level. Further, the communication state measurement device and the position control device may be mounted on any one of the underwater vehicle and the water surface vehicle, or the water vehicle and the water surface vehicle. It may be mounted on both.

本発明に係る水中航走体の相対位置制御方法及び相対位置制御システムによれば、水中航走体と水面航走体との音響通信状態を計測することにより、水中航走体が水中における音圧分布のうち音圧の高い部分に存在しているか否かを把握することができる。そして、水中航走体が音圧の低い部分に存在している場合、すなわち、音響通信状態が不良である場合に、水中航走体又は水面航走体を移動させて相対位置を調整することにより、水中航走体を音圧の高い部分に存在させることができ、音響通信状態を良好な状態に保持することができる。   According to the relative position control method and relative position control system of an underwater vehicle according to the present invention, the sound of the underwater vehicle can be detected by measuring the acoustic communication state between the underwater vehicle and the surface vehicle. It can be grasped whether it exists in a high sound pressure part of the pressure distribution. Then, if the underwater vehicle is present at a low sound pressure, that is, if the acoustic communication condition is poor, move the underwater vehicle or the surface vehicle to adjust the relative position. Thus, the underwater vehicle can be present at a high sound pressure portion, and the acoustic communication state can be maintained in a good state.

本発明の実施形態に係る水中航走体の相対位置制御システムを示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows the relative position control system of the underwater vehicle based on embodiment of this invention. 直接波及び反射波の干渉状態を示す説明図であり、(a)は概念図、(b)は水中における音圧分布の一例、を示している。It is explanatory drawing which shows the interference state of a direct wave and a reflected wave, (a) is a conceptual diagram, (b) has shown an example of the sound pressure distribution in water. 音圧分布の模式図であり、(a)は水面航走体の上面から見た音圧分布、(b)は水中航走体の側面から見た音圧分布、を示している。It is a schematic diagram of sound pressure distribution, (a) shows the sound pressure distribution seen from the upper surface of the surface vehicle, and (b) shows the sound pressure distribution seen from the side surface of the underwater vehicle. 本発明の実施形態に係る水中航走体の相対位置制御方法を示す一例であり、(a)は水中航走体を移動させた場合、(b)は水面航走体を移動させた場合、を示している。It is an example which shows the relative position control method of the underwater vehicle according to the embodiment of the present invention, where (a) is a case where the underwater vehicle is moved, and (b) is a case where the water vehicle is moved, Is shown.

以下、本発明の実施形態について図1〜図4を用いて説明する。ここで、図1は、本発明の実施形態に係る水中航走体の相対位置制御システムを示す全体構成図である。図2は、直接波及び反射波の干渉状態を示す説明図であり、(a)は概念図、(b)は水中における音圧分布の一例、を示している。図3は、音圧分布の模式図であり、(a)は水面航走体の上面から見た音圧分布、(b)は水中航走体の側面から見た音圧分布、を示している。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a whole block diagram which shows the relative-position control system of the underwater vehicle according to the embodiment of the present invention. FIG. 2 is an explanatory view showing an interference state of the direct wave and the reflected wave, in which (a) is a conceptual view and (b) shows an example of sound pressure distribution in water. Fig. 3 is a schematic view of sound pressure distribution, where (a) shows the sound pressure distribution seen from the top of the surface vehicle, and (b) shows the sound pressure distribution seen from the side surface of the underwater vehicle. There is.

本発明の実施形態に係る水中航走体1の相対位置制御システムは、図1に示したように、水面航走体2との間で音響通信しながら水中を移動する水中航走体1の相対位置制御システムであって、水面航走体2及び水中航走体1のそれぞれに配置され音響通信状態を計測する通信状態計測装置3と、水中航走体1又は水面航走体2を移動させる位置制御装置4と、を備え、位置制御装置4は、通信状態計測装置3の出力に基づいて、水中航走体1が水中における音圧分布のうち相対的に音圧の高い場所に存在するように、水中航走体1又は水面航走体2を移動させるように構成されている。   In the relative position control system of the underwater vehicle 1 according to the embodiment of the present invention, as shown in FIG. 1, the system of the underwater vehicle 1 moving in water with acoustic communication with the surface vehicle 2. A relative position control system, which is disposed in each of the surface moving body 2 and the underwater moving body 1, and measures the communication state of the communication state measuring device 3, and moves the underwater moving body 1 or the surface moving body 2 The position control device 4 includes the underwater vehicle 1 at a location where the sound pressure is relatively high among the sound pressure distributions in the water based on the output of the communication state measuring device 3. Thus, the underwater vehicle 1 or the surface vehicle 2 is configured to be moved.

水中航走体1は、例えば、水中航走体1に推力を付加する推進器11と、水中航走体1の航走を制御する航走制御装置12と、水中航走体1の位置を計測する水中測位装置13と、水中航走体1の速度を計測するドップラー流速計14(DVL:Doppler Velocity Log)と、水中航走体1の姿勢を計測する慣性航法装置15(INS:Inertial Navigation System)と、水面航走体2との間で音波を送受信する水中音響通信器16と、を有している。   The underwater vehicle 1 includes, for example, a propulsion unit 11 for applying a thrust to the underwater vehicle 1, a cruise control device 12 for controlling the cruise of the underwater vehicle 1, and the position of the underwater vehicle 1 Underwater positioning device 13 to measure, Doppler velocimeter 14 (DVL: Doppler Velocity Log) to measure the velocity of underwater vehicle 1, inertial navigation device 15 to measure the posture of underwater vehicle 1 (INS: Inertial Navigation) System) and an underwater acoustic communicator 16 that transmits and receives sound waves to and from the surface vehicle 2.

また、図示しないが、水中航走体1は、水中航走体1の進行方向を変更する舵、水中航走体1の浮力を調整する浮力調整装置、水中航走体1の重心を制御する重心制御装置等の機器を有していてもよい。また、図示しないが、水中航走体1は、水中や水底を探査、調査、測量、撮影等を行うための機器を有していてもよい。   Although not shown, the underwater vehicle 1 controls the rudder for changing the traveling direction of the underwater vehicle 1, the buoyancy adjustment device for adjusting the buoyancy of the underwater vehicle 1, and the center of gravity of the underwater vehicle 1. You may have apparatuses, such as a gravity center control apparatus. Although not shown, the underwater vehicle 1 may have an apparatus for searching, surveying, surveying, photographing, etc. in the water or the water bottom.

水面航走体2は、例えば、水面航走体2に推力を付加する推進器21と、水面航走体2の航走を制御する航走制御装置22と、水中航走体1の位置を計測する水中測位装置23と、水面航走体2の進行方向を変更する舵24と、水面航走体2の姿勢、速度、加速度等を計測する慣性航法装置25(INS:Inertial Navigation System)と、水面航走体2との間で音波を送受信する水中音響通信器26と、水面航走体2の地球座標系における位置を計測するGPS航法装置27(GPS: Global Positioning System)と、を有している。   For example, the surface controller 2 has a propulsion unit 21 for applying a thrust to the surface controller 2, a cruise control device 22 for controlling the navigation of the surface boat 2, and the position of the underwater vehicle 1. An underwater positioning device 23 for measuring, a rudder 24 for changing the traveling direction of the surface vehicle 2, and an inertial navigation device 25 (INS: Inertial Navigation System) for measuring the attitude, velocity, acceleration, etc. of the surface vehicle 2 And an underwater acoustic communication device 26 for transmitting and receiving sound waves with the surface 2 and a GPS navigation device 27 (GPS: Global Positioning System) for measuring the position of the surface 2 in the global coordinate system. doing.

水面航走体2に搭載された水中測位装置23は、例えば、応答信号を送受信するトランシーバであり、水中航走体1に搭載された水中測位装置13は、例えば、トランシーバからの受信信号に対して応答信号を返信するトランスポンダである。かかる水中測位装置13,23によれば、音波の往復時間と水中音速とを用いてトランシーバからトランスポンダまでの距離を決定し、受信音波の位相差から角度を算出し、トランシーバに対する三次元空間内でのトランスポンダの相対位置を求めることができる。   The underwater positioning device 23 mounted on the surface 2 is, for example, a transceiver that transmits and receives a response signal, and the underwater positioning device 13 mounted on the underwater vehicle 1 is, for example, a received signal from the transceiver It is a transponder that sends back a response signal. According to the underwater positioning devices 13 and 23, the distance from the transceiver to the transponder is determined using the round trip time of the sound wave and the speed of sound in water, and the angle is calculated from the phase difference of the received sound wave. The relative position of the transponders can be determined.

水中航走体1は、ドップラー流速計14及び慣性航法装置15により水中航走体1の姿勢、速度、加速度等を計測し、その計測データに基づいて航走制御装置12により自己位置の計測精度を補正する。水面航走体2は、慣性航法装置25により水面航走体2の姿勢、速度、加速度等を計測し、その計測データに基づいて航走制御装置22により自己位置の計測精度を補正する。   The underwater vehicle 1 measures the attitude, velocity, acceleration, etc. of the underwater vehicle 1 by the Doppler current meter 14 and the inertial navigation device 15, and the measurement accuracy of the self position by the cruise controller 12 based on the measurement data. Correct the The surface navigation body 2 measures the attitude, velocity, acceleration, and the like of the surface navigation body 2 by the inertial navigation device 25 and corrects the measurement accuracy of the self position by the navigation control device 22 based on the measurement data.

水面航走体2に搭載された水中音響通信器26は、水中航走体1及び水面航走体2の位置情報を水中航走体1に送信する。水中航走体1に搭載された水中音響通信器16は、水中音響通信器26から送信された水中航走体1及び水面航走体2の位置情報を受信する。水中音響通信器16,26は、音波(例えば、超音波)を送受信可能な機器であり、水中航走体1に搭載された各種機器のデータを水面航走体2に伝送する機能も有している。   The underwater acoustic communicator 26 mounted on the watercraft 2 transmits the position information of the underwater vehicle 1 and the watercraft 2 to the underwater vehicle 1. The underwater acoustic communicator 16 mounted on the underwater vehicle 1 receives the position information of the underwater vehicle 1 and the surface vehicle 2 transmitted from the underwater acoustic communication device 26. The underwater acoustic communication devices 16 and 26 are devices capable of transmitting and receiving sound waves (for example, ultrasonic waves), and also have a function of transmitting data of various devices mounted on the underwater vehicle 1 to the surface vehicle 2 ing.

なお、上述した水中航走体1及び水面航走体2の構成は、従来から使用されている水中航走体及び水面航走体と基本的に同じ構成を有しており、上述した構成に限定されるものではない。   The configurations of the underwater vehicle 1 and the surface vehicle 2 described above have basically the same configuration as the conventionally used underwater vehicle and the surface vehicle, and It is not limited.

加えて、本実施形態に係る相対位置制御システムは、水中航走体1に配置されたハイドロホン31と、水面航走体2に配置されたハイドロホン32と、水中航走体1に配置された水中航走体用位置制御装置41と、水面航走体2に配置された水面航走体用位置制御装置42と、を有している。ここで、ハイドロホン31,32は、通信状態計測装置3を構成する機器の一例である。また、水中航走体用位置制御装置41及び水面航走体用位置制御装置42は、位置制御装置4を構成している。   In addition, the relative position control system according to the present embodiment includes the hydrophone 31 disposed in the underwater vehicle 1, the hydrophone 32 disposed in the waterborne vehicle 2, and the underwater vehicle 1. The underwater vehicle body position control device 41 and the water surface vehicle body position control device 42 disposed in the water surface vehicle 2 are provided. Here, the hydrophones 31 and 32 are an example of devices that constitute the communication state measuring device 3. The underwater vehicle body position control device 41 and the water surface vehicle body position control device 42 constitute a position control device 4.

ハイドロホン31,32は、水中における音波(例えば、超音波)の音場を測定する受信専用の機器である。水中航走体1のハイドロホン31は、水面航走体2の水中音響通信器26から送信される音波を受信し、水面航走体2のハイドロホン32は、水中航走体1の水中音響通信器16から送信される音波を受信する。音響通信状態の計測に用いられる音波のデータ(周波数、送信時間等)は、水中航走体用位置制御装置41及び水面航走体用位置制御装置42に予め記憶されている。   The hydrophones 31 and 32 are devices dedicated to reception that measure the sound field of sound waves (for example, ultrasonic waves) in water. The hydrophone 31 of the underwater vehicle 1 receives the sound wave transmitted from the underwater acoustic communicator 26 of the underwater vehicle 2, and the hydrophone 32 of the underwater vehicle 2 receives the underwater acoustics of the underwater vehicle 1. The sound wave transmitted from the communication device 16 is received. The data (frequency, transmission time, etc.) of the sound wave used to measure the acoustic communication state is stored in advance in the underwater vehicle position control device 41 and the surface control device 42.

音響通信状態の計測には、例えば、少なくとも、通信エラー率、信号相関又は信号レベルのいずれか一つを含む指標が用いられる。具体的には、水中航走体1の水中音響通信器16から送信される音波を水面航走体2のハイドロホン32で受信し、所定の条件(例えば、通信エラー率が閾値以下であるか否か、信号相関が閾値以上であるか否か、信号レベルが閾値以上であるか否か、のいずれか又はこれらの組み合わせ)を満たしているか否かを確認することにより、音響通信状態が良好であるか否かが判断される。   For the measurement of the acoustic communication state, for example, an index including at least one of communication error rate, signal correlation, and signal level is used. Specifically, the sound wave transmitted from the underwater acoustic communicator 16 of the underwater vehicle 1 is received by the hydrophone 32 of the surface vehicle 2, and a predetermined condition (for example, whether the communication error rate is equal to or less than a threshold value The acoustic communication status is good by checking whether the signal correlation is equal to or higher than the threshold value, whether the signal level is equal to or higher than the threshold value, or any combination thereof). It is determined whether or not

また、水面航走体2の水中音響通信器26から送信される音波を水中航走体1のハイドロホン31で受信し、所定の条件(例えば、通信エラー率が閾値以下であるか否か、信号相関が閾値以上であるか否か、信号レベルが閾値以上であるか否か、のいずれか又はこれらの組み合わせ)を満たしているか否かを確認することにより、音響通信状態が良好であるか否かを判断することもできる。   Further, the hydrophone 31 of the underwater vehicle 1 receives the sound wave transmitted from the underwater acoustic communication device 26 of the surface vehicle 2 and the predetermined condition (for example, whether the communication error rate is equal to or less than a threshold value; Is the acoustic communication condition good by checking whether the signal correlation is above the threshold value, or whether or not the signal level is above the threshold value, or any combination thereof? It can also be judged whether or not.

本実施形態のように、通信状態計測装置3及び位置制御装置4が、水中航走体1及び水面航走体2の両方に搭載されている場合には、水中航走体1側のみで音響通信状態を計測することもできるし、水面航走体2側のみで音響通信状態を計測することもできるし、水中航走体1及び水面航走体2の両方で音響通信状態を計測することもできる。水中航走体1及び水面航走体2の両方で音響通信状態を計測した場合には、音響通信状態の計測精度を向上させることができる。   As in the present embodiment, when the communication state measuring device 3 and the position control device 4 are mounted on both the underwater vehicle 1 and the waterborne vehicle 2, sound is generated only on the underwater vehicle 1 side. The communication state can be measured, or the acoustic communication state can be measured only on the surface 2 side, or the acoustic communication state can be measured on both the underwater body 1 and the surface 2 You can also. When the acoustic communication state is measured in both the underwater vehicle 1 and the water surface vehicle 2, the measurement accuracy of the acoustic communication state can be improved.

また、水中航走体1及び水面航走体2のいずれか一方でのみ音響通信状態を計測する場合には、他方の通信状態計測装置3及び位置制御装置4を省略し、通信状態計測装置3及び位置制御装置4を水中航走体1及び水面航走体2のいずれか一方にのみ搭載するようにしてもよい。例えば、水中航走体1の通信状態計測装置3(ハイドロホン31)及び位置制御装置4(水中航走体用位置制御装置41)を省略した場合には、水中航走体1を簡略化及び軽量化することができる。   Further, when measuring the acoustic communication state only with either the underwater vehicle 1 or the surface vehicle 2, the other communication state measuring device 3 and the position control device 4 are omitted, and the communication state measuring device 3 The position control device 4 may be mounted on only one of the underwater vehicle 1 and the surface vehicle 2. For example, when the communication state measurement device 3 (hydrophone 31) and the position control device 4 (position control device 41 for the underwater vehicle) of the underwater vehicle 1 are omitted, the underwater vehicle 1 can be simplified and It is possible to reduce the weight.

なお、上述したハイドロホン31は、水中音響通信器16と一体に構成されていてもよいし、ハイドロホン32は、水中音響通信器26と一体に構成されていてもよい。また、水中航走体用位置制御装置41は、航走制御装置21と一体に構成されていてもよいし、水面航走体用位置制御装置42は、航走制御装置22と一体に構成されていてもよい。   The hydrophone 31 described above may be configured integrally with the underwater acoustic communication device 16, and the hydrophone 32 may be configured integrally with the underwater acoustic communication device 26. In addition, the underwater vehicle position control device 41 may be configured integrally with the cruise control device 21, and the water surface flying vehicle position control device 42 is configured integrally with the cruise control device 22. It may be

ここで、水中における音波の伝播について、図2(a)〜図3(b)を参照しつつ説明する。例えば、水面航走体2から音波を送信して水中航走体1で受信する場合、図2(a)に示したように、水面航走体2から水中航走体1に直接的に伝播する直接波W1、水底で反射して伝播する反射波W2、水面に反射して伝播する反射波W3、水底及び水面に反射して伝播する反射波W4が存在する。これらの直接波W1及び反射波W1〜W4は、水中で干渉し合い、例えば、図2(b)に示したような干渉縞が形成される。なお、図示しないが、水中又は水底に構造物や障害物が存在する場合には、それらによる反射波の影響も受けることとなる。   Here, propagation of sound waves in water will be described with reference to FIGS. 2 (a) to 3 (b). For example, when an acoustic wave is transmitted from the surface vehicle 2 and received by the underwater vehicle 1, as shown in FIG. 2 (a), the surface 2 directly propagates from the surface 2 to the underwater vehicle 1. There are a direct wave W1, a reflected wave W2 reflected and propagated on the water bottom, a reflected wave W3 reflected and propagated on the water surface, and a reflected wave W4 reflected and propagated on the water bottom and the water surface. The direct wave W1 and the reflected waves W1 to W4 interfere with each other in water to form an interference fringe as shown in FIG. 2 (b), for example. Although not shown, when a structure or an obstacle exists in the water or in the bottom of the water, it also receives the influence of the reflected wave.

ここで、図2(b)に示した図は、水中における音圧分布の一例を示したものであり、横軸Xが水平距離、縦軸Zが水深を示している。また、音圧分布の下端が水底に相当し、上端が水面に相当し、水面付近の黒丸は音源(水面航走体2)を示している。また、色の濃い部分が音圧の低い部分を示しており、色の薄い部分が音圧の高い部分を示している。   Here, the diagram shown in FIG. 2 (b) shows an example of the sound pressure distribution in water, and the horizontal axis X shows the horizontal distance, and the vertical axis Z shows the water depth. Further, the lower end of the sound pressure distribution corresponds to the water bottom, the upper end corresponds to the water surface, and the black circles near the water surface indicate the sound source (water surface traveling body 2). Also, darker portions indicate lower sound pressure, and lighter portions indicate higher sound pressure.

この音圧分布に示したように、水中における音波は、水平方向及び鉛直方向に音圧の高い部分と音圧の低い部分とが交互に現れることとなる。この音圧分布を水面航走体2の上面から見た場合、図3(a)に示したように、音源(水面航走体2)を中心にして、略同心円状に音圧の高い部分と音圧の低い部分とが交互に現れることとなる。なお、図3(a)において、実線は音圧の高い部分、点線は音圧の低い部分を示している。   As shown in the sound pressure distribution, in the sound wave in water, a portion with high sound pressure and a portion with low sound pressure appear alternately in the horizontal direction and the vertical direction. When this sound pressure distribution is viewed from the upper surface of the water surface vehicle 2, as shown in FIG. 3A, a portion having a high sound pressure substantially concentrically around the sound source (water surface vehicle 2). And the low sound pressure part appear alternately. In FIG. 3A, a solid line indicates a portion with high sound pressure, and a dotted line indicates a portion with low sound pressure.

また、音圧分布を水中航走体1の側面から見た場合、図3(b)に示したように、音圧の高い部分と音圧の低い部分とが交互に繰り返した振幅波Pとして模式的に表示することができる。ここで、図3(b)に示した振幅波Pは音圧を示しており、山の部分が音圧の高い部分、谷の部分が音圧の低い部分を示している。   Also, when the sound pressure distribution is viewed from the side of the underwater vehicle 1, as shown in FIG. 3 (b), an amplitude wave P in which a portion with high sound pressure and a portion with low sound pressure are alternately repeated It can be displayed schematically. Here, the amplitude wave P shown in FIG. 3B indicates the sound pressure, and the mountain portion indicates the high sound pressure portion, and the valley portion indicates the low sound pressure portion.

一般に、音圧の高い部分は音響通信状態が良好となり、音圧の低い部分は音響通信状態が不良となる。したがって、図3(b)に示したように、水中航走体1が振幅波Pの谷の部分、すなわち、音圧の低い部分に存在している場合には、通信状態が不良となりやすい。また、水中航走体1が振幅波Pの山の部分、すなわち、音圧の高い部分に存在している場合には、通信状態が良好となりやすい。   In general, the portion with high sound pressure has good acoustic communication, and the portion with low sound pressure has poor acoustic communication. Therefore, as shown in FIG. 3B, when the underwater vehicle 1 is present in the valley portion of the amplitude wave P, that is, in the portion where the sound pressure is low, the communication state tends to be poor. Further, when the underwater vehicle 1 is present in the mountain portion of the amplitude wave P, that is, in the portion where the sound pressure is high, the communication state tends to be good.

上述したように、水中航走体1と水面航走体2とが音響通信可能な範囲内に存在している場合であっても、音響通信状態が良好となる場合と不良となる場合がある。したがって、例えば、水中航走体1と水面航走体2との位置関係を一定の状態に保持したまま並走させる場合には、初期設定された位置関係において音響通信状態が不良となった場合には、その後も常に音響通信状態が不良となってしまうことから、水中の探査や調査に不具合を生じる可能性がある。   As described above, even when the underwater vehicle 1 and the surface vehicle 2 are in the range in which acoustic communication can be performed, there may be cases where the acoustic communication state is good and cases where the acoustic communication state is good. . Therefore, for example, in the case where the positional relationship between the underwater vehicle 1 and the surface vehicle 2 is made to run in parallel while holding in a constant state, the acoustic communication state becomes poor in the initially set positional relationship. After that, the sound communication status always becomes poor after that, which may cause problems in underwater exploration and survey.

そこで、本実施形態に係る水中航走体1の相対位置制御システムでは、水中航走体1と水面航走体2との音響通信状態を計測することにより水中航走体1が水中における音圧分布のうち音圧の高い場所に存在しているか否かを確認し、水中航走体1が音圧分布のうち音圧の低い場所に存在している場合に水中航走体1と水面航走体2との相対位置を調整し、水中航走体1を音圧分布のうち音圧の高い場所に存在させる、という水中航走体1の相対位置制御方法を採用している。   Therefore, in the relative position control system of the underwater vehicle 1 according to the present embodiment, the sound pressure of the underwater vehicle 1 in the water is measured by measuring the acoustic communication state between the underwater vehicle 1 and the surface vehicle 2. Whether the underwater vehicle 1 is present at a low sound pressure location in the sound pressure distribution is checked if it is present at a high sound pressure location in the distribution. A method of controlling the relative position of the underwater vehicle 1 is adopted, in which the relative position to the moving body 2 is adjusted, and the underwater vehicle 1 is made to exist at a place with high sound pressure in the sound pressure distribution.

水中航走体1と水面航走体2との相対位置を調整する場合には、水中航走体1のみを移動させてもよいし、水面航走体2のみを移動させてもよいし、水中航走体1及び水面航走体2の両方を移動させてもよい。また、図2(b)や図3(a)に示したような音圧分布を有する場合には、例えば、水中航走体1を進行方向の前後に移動させてもよいし、進行方向に対して左右方向に移動させてもよいし、上下方向に移動させてもよいし、斜め方向に移動させてもよい。   When adjusting the relative position of the underwater vehicle 1 and the surface vehicle 2, only the underwater vehicle 1 may be moved, or only the surface 2 may be moved. Both the underwater vehicle 1 and the surface vehicle 2 may be moved. Also, in the case of having a sound pressure distribution as shown in FIG. 2 (b) and FIG. 3 (a), for example, the underwater vehicle 1 may be moved back and forth in the traveling direction, or in the traveling direction It may be moved in the lateral direction, may be moved in the vertical direction, or may be moved in the diagonal direction.

上述した本実施形態に係る水中航走体1の相対位置制御方法及び相対位置制御システムによれば、水中航走体1と水面航走体2との音響通信状態を計測することにより、水中航走体1が水中における音圧分布のうち音圧の高い部分に存在しているか否かを把握することができる。そして、水中航走体1が音圧の低い部分に存在している場合、すなわち、音響通信状態が不良である場合に、水中航走体1又は水面航走体2を移動させて相対位置を調整することにより、水中航走体1を音圧の高い部分に存在させることができ、音響通信状態を良好な状態に保持することができる。   According to the relative position control method and relative position control system of the underwater vehicle 1 according to the present embodiment described above, the underwater communication is performed by measuring the acoustic communication state between the underwater vehicle 1 and the surface vehicle 2. It can be grasped whether or not the running body 1 is present in the high sound pressure portion of the sound pressure distribution in water. Then, when the underwater vehicle 1 is present at a low sound pressure portion, that is, when the acoustic communication state is poor, the underwater vehicle 1 or the surface vehicle 2 is moved to a relative position. By adjusting, the underwater vehicle 1 can be present at a high sound pressure portion, and the acoustic communication state can be maintained in a good state.

ここで、図4は、本発明の実施形態に係る水中航走体の相対位置制御方法を示す一例であり、(a)は水中航走体を移動させた場合、(b)は水面航走体を移動させた場合、を示している。各図において、一点鎖線は音圧を示す振幅波Pを示している。   Here, FIG. 4 is an example showing the relative position control method of the underwater vehicle according to the embodiment of the present invention, where (a) is a case where the underwater vehicle is moved, and (b) is a sea surface running. If you move the body, it shows. In each of the drawings, a dashed-dotted line indicates an amplitude wave P indicating sound pressure.

図4(a)に示したように、水中航走体1と水面航走体2との位置関係により、水中航走体1が振幅波Pの谷の部分、すなわち、音圧の低い部分に存在している場合、水中航走体1を進行方向の前後に移動させることにより、水中航走体1と水面航走体2との相対位置を調整することが好ましい。具体的には、振幅波Pの谷の部分(音圧の低い部分)に存在する水中航走体1を振幅波Pの山の部分(音圧の高い部分)に存在する水中航走体1′の位置まで移動させるようにすればよい。   As shown in FIG. 4 (a), due to the positional relationship between the underwater vehicle 1 and the surface vehicle 2, the underwater vehicle 1 is in the valley portion of the amplitude wave P, that is, in the portion where the sound pressure is low. When it exists, it is preferable to adjust the relative position of the underwater vehicle 1 and the surface vehicle 2 by moving the underwater vehicle 1 forward and backward in the traveling direction. Specifically, the underwater vehicle 1 existing in the valley portion (low sound pressure) of the amplitude wave P is present in the mountain region (high sound pressure) of the amplitude wave P It may be moved to the position of '.

ここでは、振幅波Pの谷の部分(音圧の低い部分)に存在する水中航走体1を進行方向前方に移動させているが、進行方向後方に移動させるようにしてもよい。また、図4(a)では、水中航走体1を存在している谷の直前の山の部分に移動させているが、二つ以上前の山の部分に移動させるようにしてもよい。   Here, the underwater vehicle 1 present in the valley portion (low sound pressure) of the amplitude wave P is moved forward in the traveling direction, but may be moved backward in the traveling direction. Further, in FIG. 4A, the underwater vehicle 1 is moved to the mountain portion immediately before the existing valley, but may be moved to the mountain portion two or more agos.

このように、水中航走体1を進行方向の前後に移動させることにより、水中航走体1の水深を維持したまま、移動距離を最小限に抑制しつつ音響通信状態を良好にすることができる。一般に、水中航走体1は、略同じ水深を維持しながら航走されることが多いことから、音響通信状態を良好にさせるためであっても鉛直方向に移動させることは、好ましくない場合がある。   As described above, by moving the underwater vehicle 1 forward and backward in the traveling direction, the acoustic communication state can be improved while minimizing the moving distance while maintaining the water depth of the underwater vehicle 1. it can. Generally, since the underwater vehicle 1 is often navigated while maintaining substantially the same water depth, it may not be preferable to move the underwater vehicle 1 in the vertical direction even if the acoustic communication state is improved. is there.

また、図3(a)に示したように、音響通信状態が不良な部分(音圧の低い部分)は、水中航走体1の左右方向に円弧状に広がっていることから、水中航走体1を進行方向に対して左右方向の音響通信状態が良好な部分(音圧の高い部分)に移動させるには、比較的長い距離を移動させなければならない。なお、本実施形態は、水中航走体1を左右方向、上下方向又は斜め方向に移動させることを排除するものではない。   Further, as shown in FIG. 3A, the portion with a poor acoustic communication state (the portion with low sound pressure) spreads in an arc shape in the lateral direction of the underwater vehicle 1, In order to move the body 1 to a part where the acoustic communication state in the left and right direction is good with respect to the traveling direction (a part where the sound pressure is high), a relatively long distance must be moved. In addition, this embodiment does not exclude moving the underwater vehicle 1 in the left-right direction, the up-down direction, or the diagonal direction.

また、図4(b)に示したように、水中航走体1と水面航走体2との位置関係により、水中航走体1が振幅波Pの谷の部分、すなわち、音圧の低い部分に存在している場合、水面航走体2を進行方向の前後に移動させることにより、水中航走体1と水面航走体2との相対位置を調整するようにしてもよい。具体的には、水面航走体2を水面航走体2′の位置まで移動させることにより、一点鎖線で示した振幅波Pを二点鎖線で示した振幅波P′まで移動させ、振幅波Pの谷の部分(音圧の低い部分)に存在していた水中航走体1を振幅波P′の山の部分(音圧の高い部分)に存在させるようにすればよい。   Further, as shown in FIG. 4 (b), due to the positional relationship between the underwater vehicle 1 and the surface vehicle 2, the underwater vehicle 1 has a valley portion of the amplitude wave P, that is, the sound pressure is low. When it exists in a portion, the relative position between the underwater vehicle 1 and the watercraft 2 may be adjusted by moving the watercraft 2 forward and backward in the traveling direction. Specifically, by moving the surface moving body 2 to the position of the surface moving body 2 ', the amplitude wave P indicated by the alternate long and short dash line is moved to the amplitude wave P' indicated by the alternate long and two short dashes line. The underwater vehicle 1 existing in the valley portion of P (low sound pressure) may be present in the mountain portion (high sound pressure) of the amplitude wave P '.

ここでは、水面航走体2を進行方向前方に移動させているが、進行方向後方に移動させるようにしてもよい。また、図4(b)では、振幅波Pを約半周期分だけずらした振幅波P′となるように、水面航走体2を移動させているが、振幅波Pを1.5周期分以上ずらすように水面航走体2を移動させるようにしてもよい。   Here, the watercraft 2 is moved forward in the traveling direction, but may be moved backward in the traveling direction. Further, in FIG. 4B, the surface moving body 2 is moved so that the amplitude wave P is shifted by about a half cycle to become an amplitude wave P ′. The surface vehicle 2 may be moved so as to shift as described above.

このように、水面航走体2を進行方向の前後に移動させることにより、振幅波Pの山谷の部分を移動させることができ、水中航走体1を移動させることなく、すなわち、水中航走体1の水深を維持したまま、音響通信状態を良好にすることができる。   Thus, by moving the watercraft 2 forward and backward in the traveling direction, it is possible to move the mountain and valley portion of the amplitude wave P, and without moving the underwater vehicle 1, that is, The acoustic communication state can be improved while maintaining the depth of the body 1.

本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。   The present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

1 水中航走体
2 水面航走体
3 通信状態計測装置
4 位置制御装置
11,21 推進器
12,22 航走制御装置
13,23 水中測位装置
14 ドップラー流速計
15,25 慣性航法装置
16,26 水中音響通信器
24 舵
27 GPS航法装置
31,32 ハイドロホン
41 水中航走体用位置制御装置
42 水面航走体用位置制御装置

REFERENCE SIGNS LIST 1 underwater vehicle 2 water vehicle 3 communication state measurement device 4 position control device 11, 21 propulsion device 12, 22 navigation control device 13, 23 underwater positioning device 14 Doppler current meter 15, 25 inertial navigation device 16, 26 Underwater acoustic communication device 24 Rudder 27 GPS navigation device 31, 32 hydrophone 41 position control device for underwater vehicle 42 position control device for water surface vehicle

Claims (7)

水面航走体との間で音響通信しながら水中を移動する水中航走体の相対位置制御方法において、
前記水中航走体と前記水面航走体との音響通信状態を計測することにより前記水中航走体が水中における音圧分布のうち音圧の高い場所に存在しているか否かを確認し、
前記水中航走体が前記音圧分布のうち音圧の低い場所に存在している場合に前記水中航走体と前記水面航走体との相対位置を調整し、
前記水中航走体を前記音圧分布のうち音圧の高い場所に存在させる、
ことを特徴とする水中航走体の相対位置制御方法。
In the relative position control method of an underwater vehicle moving in water with acoustic communication with a surface vehicle,
By measuring the acoustic communication state between the underwater vehicle and the surface vehicle, it is confirmed whether the underwater vehicle is present at a location with high sound pressure in the sound pressure distribution in water,
Adjusting the relative position of the underwater vehicle and the surface vehicle when the underwater vehicle is present at a location with low sound pressure in the sound pressure distribution;
Causing the underwater vehicle to be present at a location with high sound pressure in the sound pressure distribution,
A relative position control method of an underwater vehicle characterized by the above.
前記水中航走体又は前記水面航走体を進行方向の前後に移動させることにより、前記水中航走体と前記水面航走体との相対位置を調整する、ことを特徴とする請求項1に記載の水中航走体の相対位置制御方法。   The relative position between the underwater vehicle and the waterborne vehicle is adjusted by moving the underwater vehicle or the waterborne vehicle back and forth in the traveling direction. The relative position control method of the underwater vehicle as described. 少なくとも、通信エラー率、信号相関又は信号レベルのいずれか一つを含む指標を用いて音響通信状態の計測を行う、ことを特徴とする請求項1に記載の水中航走体の相対位置制御方法。   The relative position control method of an underwater vehicle according to claim 1, wherein the measurement of the acoustic communication state is performed using at least an index including at least one of a communication error rate, a signal correlation, and a signal level. . 水面航走体との間で音響通信しながら水中を移動する水中航走体の相対位置制御システムにおいて、
前記水面航走体及び前記水中航走体のそれぞれに配置され音響通信状態を計測する通信状態計測装置と、
前記水中航走体又は前記水面航走体を移動させる位置制御装置と、を備え、
前記位置制御装置は、前記通信状態計測装置の出力に基づいて、前記水中航走体が水中における音圧分布のうち相対的に音圧の高い場所に存在するように、前記水中航走体又は前記水面航走体を移動させる、
ことを特徴とする水中航走体の相対位置制御システム。
In the relative position control system of an underwater vehicle moving in water with acoustic communication with the surface vehicle,
A communication state measuring device disposed in each of the surface moving body and the underwater moving body and measuring an acoustic communication state;
A position control device for moving the underwater vehicle or the surface vehicle;
The position control device is configured such that, based on the output of the communication state measurement device, the underwater vehicle or the underwater vehicle is located at a location where the sound pressure is relatively high among sound pressure distributions in water. Moving the surface vehicle;
A relative position control system of an underwater vehicle characterized by the above.
前記位置制御装置は、前記水中航走体又は前記水面航走体を進行方向の前後に移動させる、ことを特徴とする請求項4に記載の水中航走体の相対位置制御システム。   The said position control apparatus moves the said underwater vehicle or the said water surface vehicle back and forth in the advancing direction, The relative position control system of the underwater vehicle of Claim 4 characterized by the above-mentioned. 前記通信状態計測装置は、少なくとも、通信エラー率、信号相関又は信号レベルのいずれか一つを含む指標を用いて音響通信状態の計測を行う、ことを特徴とする請求項4に記載の水中航走体の相対位置制御システム。   The underwater navigation system according to claim 4, wherein the communication state measurement device measures an acoustic communication state using an index including at least one of a communication error rate, a signal correlation, and a signal level. Runner relative position control system. 前記通信状態計測装置及び前記位置制御装置は、前記水中航走体及び前記水面航走体のいずれか一方又は両方に搭載されている、ことを特徴とする請求項4に記載の水中航走体の相対位置制御システム。

The underwater vehicle according to claim 4, characterized in that the communication state measuring device and the position control device are mounted on either or both of the underwater vehicle and the surface vehicle. Relative position control system.

JP2015021812A 2015-02-06 2015-02-06 Relative position control method and relative position control system of underwater vehicle Active JP6425133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021812A JP6425133B2 (en) 2015-02-06 2015-02-06 Relative position control method and relative position control system of underwater vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021812A JP6425133B2 (en) 2015-02-06 2015-02-06 Relative position control method and relative position control system of underwater vehicle

Publications (2)

Publication Number Publication Date
JP2016144956A JP2016144956A (en) 2016-08-12
JP6425133B2 true JP6425133B2 (en) 2018-11-21

Family

ID=56685944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021812A Active JP6425133B2 (en) 2015-02-06 2015-02-06 Relative position control method and relative position control system of underwater vehicle

Country Status (1)

Country Link
JP (1) JP6425133B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991544B2 (en) * 2017-03-31 2022-01-12 国立研究開発法人 海上・港湾・航空技術研究所 Underwater vehicle control method and underwater vehicle control system
WO2018181958A1 (en) * 2017-03-31 2018-10-04 国立研究開発法人 海上・港湾・航空技術研究所 Traffic control method for underwater craft, launching method for underwater craft, retrieval method for underwater craft, traffic control system for underwater craft, and launching/retrieval equipment for traffic control system for underwater craft
JP7248343B2 (en) * 2017-03-31 2023-03-29 国立研究開発法人 海上・港湾・航空技術研究所 A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them
JP6956364B2 (en) * 2017-06-21 2021-11-02 パナソニックIpマネジメント株式会社 Underwater positioning systems, surface boats, underwater vehicles, and underwater positioning methods
US11012762B2 (en) 2017-07-11 2021-05-18 Onesubsea Ip Uk Limited Subsea oilfield communications system
JP7003830B2 (en) * 2018-05-08 2022-01-21 株式会社Ihi Communication status control system
JP7099883B2 (en) * 2018-06-18 2022-07-12 株式会社Ihi Communication failure suppression system
JP7173797B2 (en) * 2018-08-31 2022-11-16 三菱重工業株式会社 Target position determination device for watercraft, target position determination method, target position determination program, and watercraft monitoring system
JP7300151B2 (en) * 2019-03-28 2023-06-29 国立研究開発法人 海上・港湾・航空技術研究所 Acoustic communication method and acoustic communication system by attitude control of floating body
JP7222292B2 (en) * 2019-04-01 2023-02-15 株式会社Ihi Cruise control device, underwater vehicle, and cruise control method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151128A (en) * 1986-12-15 1988-06-23 Nec Corp Submarinr communication equipment for submerged body
JPH03245625A (en) * 1990-02-23 1991-11-01 Nec Corp Underwater communication equipment
JPH0743444A (en) * 1993-07-30 1995-02-14 Oki Electric Ind Co Ltd Searching and tracking method for aerial moving target from under water
JP4264787B2 (en) * 1999-12-28 2009-05-20 株式会社Ihi Underwater vehicle protection device
JP5150125B2 (en) * 2007-03-30 2013-02-20 日本電気株式会社 Detection apparatus, detection program, and detection method
JP2009227086A (en) * 2008-03-21 2009-10-08 Mitsubishi Heavy Ind Ltd Control type underwater information collecting system and underwater cruising vessel control system
US20100067331A1 (en) * 2008-09-12 2010-03-18 Yang Tsih C Iterative correlation-based equalizer for underwater acoustic communications over time-varying channels

Also Published As

Publication number Publication date
JP2016144956A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP6425133B2 (en) Relative position control method and relative position control system of underwater vehicle
JP6761216B2 (en) Route setting method for underwater vehicle, optimum control method for underwater vehicle using it, and route setting method for underwater vehicle and moving object
US9223002B2 (en) System and method for determining the position of an underwater vehicle
JP5581718B2 (en) Position calibration method for underwater vehicle
KR100906362B1 (en) Underwater Navigation System for a Platoon of Multiple Unmanned Underwater Vehicles Using Range Measurements on Two Reference Stations and Inertial Sensors
JP6821510B2 (en) Underwater Acoustic Positioning System and Method
JP2014502344A (en) Underwater vehicle position and orientation estimation based on correlated sensor data
JP2006313087A (en) Method and system for correcting position of detection of underwater vehicle
CA3061547A1 (en) Navigation system for underwater vehicles
KR102063255B1 (en) System and method for underwater localization
RU2629916C1 (en) Method and device for determining initial coordinates of independent unmanned underwater apparatus
JP6821929B2 (en) Navigation management device and navigation management method
JP2012108122A (en) Submarine audio/video system
JP5381773B2 (en) Position calibration method and apparatus for underwater vehicle
JP2012202941A (en) Horizontal distance calculation system and horizontal distance calculation method for calculating horizontal distance up to underwater object
KR102123232B1 (en) Apparatus for detecting depth of water using samll SONAR
JP5381772B2 (en) Position calibration method for underwater vehicle
JP4830269B2 (en) Mooring sensor positioning method and apparatus
JP7275472B2 (en) Velocity measurement system
JP6977440B2 (en) Underwater mobile control system
JP2015010862A (en) Device for calculating speed of underwater sailing body, method for calculating speed of underwater sailing body, program, and recording medium
JP5381771B2 (en) Position calibration method for underwater vehicle
JP5521618B2 (en) Navigation control method and apparatus for underwater vehicle
JP2019197969A (en) Communication status control system
JP5621270B2 (en) Position calibration method for underwater vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181011

R151 Written notification of patent or utility model registration

Ref document number: 6425133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151