JP6424396B2 - Multiple access scheme and signal structure for D2D communication - Google Patents
Multiple access scheme and signal structure for D2D communication Download PDFInfo
- Publication number
- JP6424396B2 JP6424396B2 JP2016153870A JP2016153870A JP6424396B2 JP 6424396 B2 JP6424396 B2 JP 6424396B2 JP 2016153870 A JP2016153870 A JP 2016153870A JP 2016153870 A JP2016153870 A JP 2016153870A JP 6424396 B2 JP6424396 B2 JP 6424396B2
- Authority
- JP
- Japan
- Prior art keywords
- enb
- physical
- transmissions
- communication
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims description 65
- 230000005540 biological transmission Effects 0.000 claims description 83
- 238000012545 processing Methods 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 24
- 125000004122 cyclic group Chemical group 0.000 claims description 17
- 238000005516 engineering process Methods 0.000 claims description 8
- 230000011664 signaling Effects 0.000 claims 4
- 241000760358 Enodes Species 0.000 claims 2
- 238000001514 detection method Methods 0.000 description 14
- 238000012549 training Methods 0.000 description 10
- 230000001413 cellular effect Effects 0.000 description 9
- 238000013459 approach Methods 0.000 description 5
- 230000007958 sleep Effects 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2621—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0064—Rate requirement of the data, e.g. scalable bandwidth, data priority
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0226—Traffic management, e.g. flow control or congestion control based on location or mobility
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/19—Connection re-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/04—Interfaces between hierarchically different network devices
- H04W92/10—Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/189—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0016—Hand-off preparation specially adapted for end-to-end data sessions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/08—Reselecting an access point
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Description
(関連出願)本出願は、2012年4月13日に出願された米国仮出願61/624,185に対する優先権の利益を請求する、2012年12月28に出願された米国特許出願13/729,164に対する優先権の利益を請求する。それらの両方が、それらの全体において参照によってここに組み込まれる。 RELATED APPLICATIONS This application claims the benefit of priority to US Provisional Application 61 / 624,185, filed April 13, 2012, which is filed on Dec. 28, 2012. , 164 claim the benefit of priority. Both of them are incorporated herein by reference in their entirety.
デバイスツーデバイス(D2D)通信は、LTE(Long Term Evolution)及び他のセルラーネットワークの性能を改善するための一つの手段である。D2D通信において、複数の端末(LTEにおけるユーザ機器又はUEと称される)は、基地局(LTEにおいて進化型ノードB又はeNBと称される)を介してリンクされるのではなく直接に互いと通信する。2つ又はより多いD2Dデバイスの間のD2D通信は、典型的にはとてもローカルであり、複数のD2Dデバイスの間の短い距離に起因して、とても低い送信パワーを使用する。D2D通信は、より高いスループットのために、複数のセルラーシステムにおいて空間的再使用を増加するための効果的な方法でもある。 Device-to-device (D2D) communication is one means to improve the performance of Long Term Evolution (LTE) and other cellular networks. In D2D communication, multiple terminals (referred to as user equipment or UEs in LTE) are directly linked with each other rather than being linked via a base station (referred to as evolved Node B or eNB in LTE) connect. D2D communication between two or more D2D devices is typically very local and uses very low transmit power due to the short distance between multiple D2D devices. D2D communication is also an effective way to increase spatial reuse in multiple cellular systems because of higher throughput.
LTEネットワークのインフラストラクチャーの下地としてのD2D通信への一つのアプローチは、帯域外ソリューションである。帯域外ソリューションでは、D2Dトラフィックは、アプリケーション層上の無認可の帯域(例えば、IEEE802.11規格で規定されたWi−Fi(登録商標))に対して無負荷である。他のアプローチは、帯域内ソリューションである。帯域内ソリューションでは、複数のD2D送信は、LTEネットワークによって使用されている同一の認可を受けた帯域で行われる。本開示は、D2D通信への帯域内アプローチの複数の側面を扱う。特に、焦点は、帯域内D2D通信をサポートするための信号構造、複数のD2D送信のスケジューリング、及び干渉管理に対するパワー制御にある。 One approach to D2D communication as a foundation of the LTE network infrastructure is an out-of-band solution. In out-of-band solutions, D2D traffic is unloaded against unlicensed bands on the application layer (eg, Wi-Fi® as defined in the IEEE 802.11 standard). Another approach is an in-band solution. In the in-band solution, multiple D2D transmissions occur in the same licensed band being used by the LTE network. The present disclosure addresses aspects of the in-band approach to D2D communication. In particular, the focus is on signal structures to support in-band D2D communication, scheduling of multiple D2D transmissions, and power control for interference management.
以下の説明及び図面は、当業者がそれらを実施することができるように具体的な実施形態を十分に示す。他の実施形態は、構造上の、論理的な、電気的な、工程、及び他の変更を組み込んでよい。いくつかの実施形態の部分及び特徴は、他の実施形態に含まれてもよいし、他の実施形態のそれらに代えて含まれてよい。実施形態は、請求項のすべての利用可能な均等物を含む請求項を説明する。 The following description and the drawings sufficiently show specific embodiments so that those skilled in the art can carry them out. Other embodiments may incorporate structural, logical, electrical, process, and other variations. Parts and features of some embodiments may be included in other embodiments or may be included in place of those of other embodiments. The embodiments set forth the claims include all available equivalents of the claims.
図1は、1又は複数のアンテナ23に接続された無線周波数(RF)送受信回路22に結合されたプロセッサ21をそれぞれ含むUE10及びUE20の例を示す。基地局又はeNB40は、複数のアンテナ43に接続されたRF送受信回路42に結合されたプロセッサ41とともに示される。図示された複数の構成は、LTE及びD2D通信の両方に対して複数のエアインターフェースを提供するため、及びここで説明される処理機能を実行するための、ハードウェア/ソフトウェア構成の任意のタイプを表すことが意図される。図に示される実施形態において、複数のUE10及び20の両方が、複数のLTEリンクを介してeNB40と、D2Dリンクを介して互いに通信する。
FIG. 1 shows an example of a UE 10 and a
LTEの物理層は、ダウンリンク及び関連技術に対して直交周波数分割多重(OFDM)に基づき、アップリンクに対して単一搬送波周波数分割多重(SC−FDM)に基づく。OFDM/SC−FDMにおいて、複数の複素変調シンボルは、QAM(直交振幅変調)のような変調スキームに従って、それぞれ個別に、リソースエレメント(RE)と称されるOFDM/SC−FDMシンボルの間に送信される特定のOFDM/SC−FDMサブキャリアにマッピングされる。REは、LTEにおいて最も小さい時間周波数リソースである。LTEは、多数のアンテナによってデータの多数のレイヤが送信及び受信され、そして、複数の複素変調シンボルのそれぞれが多数の送信レイヤの1つにマッピングされて特定のアンテナポートにマッピングされるMIMO(多入力多出力)動作も提供する。そして、各REは、アンテナポート、サブキャリアポジション、及び無線フレーム内のOFDM/SC−FDMシンボルインデックスによって一意に特定される。時間領域における複数のLTE送信は、10msの持続時間をそれぞれ有する複数の無線フレームにまとめられる。各無線フレームは、10個のサブフレームでからなり、各サブフレームは、2個の連続する0.5msスロットからなる。各スロットは、拡張サイクリックプレフィックスに対する6個のインデックス付きのOFDMシンボル、及び標準サイクリックプレフィックスに対する7個のインデックス付きのOFDMシンボルを備える。単一のスロット内の12個の連続するサブキャリアに対応する複数のリソースエレメントのグループは、リソースブロック(RB)、又は物理層に関して物理リソースブロック(PRB)と称される。各PRBペアは、時間において連続する2つのスロットからなる。 The physical layer of LTE is based on Orthogonal Frequency Division Multiplexing (OFDM) for downlink and related techniques and based on Single Carrier Frequency Division Multiplexing (SC-FDM) for uplink. In OFDM / SC-FDM, a plurality of complex modulation symbols are individually transmitted between OFDM / SC-FDM symbols, referred to as resource elements (REs), according to a modulation scheme such as QAM (Quadrature Amplitude Modulation) Are mapped to specific OFDM / SC-FDM subcarriers. RE is the smallest time frequency resource in LTE. In LTE, multiple layers of data are transmitted and received by multiple antennas, and each of a plurality of complex modulation symbols is mapped to one of the multiple transmission layers and mapped to a specific antenna port. It also provides input multiple output) operation. Each RE is then uniquely identified by the antenna port, subcarrier position, and OFDM / SC-FDM symbol index in the radio frame. Multiple LTE transmissions in the time domain may be combined into multiple radio frames, each having a duration of 10 ms. Each radio frame consists of 10 subframes, and each subframe consists of 2 consecutive 0.5 ms slots. Each slot comprises 6 indexed OFDM symbols for the extended cyclic prefix and 7 indexed OFDM symbols for the standard cyclic prefix. Groups of resource elements corresponding to 12 consecutive subcarriers in a single slot are referred to as resource blocks (RBs) or physical resource blocks (PRBs) with respect to the physical layer. Each PRB pair consists of two consecutive slots in time.
FDD(周波数分割二重)動作の場合、別個の複数のキャリア周波数がアップリンク及びダウンリンク送信のために提供され、上述のフレーム構造が修正なしでアップリンク及びダウンリンクの両方に適用可能である。TDD(時間分割二重)動作では、(アップリンクからダウンリンク送信への遷移ではなく)ダウンリンクからアップリンク送信への遷移で発生する特別なサブフレームとともに、アップリンク又はダウンリンク送信のいずれに対しても複数のサブフレームが割り当てられる。eNBは、TDD動作の間、各無線フレーム内の複数のアップリンク及びダウンリンクサブフレームの割り当てを管理する。
[D2D信号構造]
For FDD (frequency division duplex) operation, separate carrier frequencies are provided for uplink and downlink transmission, and the above frame structure is applicable to both uplink and downlink without modification. . In TDD (time division duplex) operation, either uplink or downlink transmission, as well as special subframes that occur on the downlink to uplink transmission transition (as opposed to the uplink to downlink transmission transition) Also, a plurality of subframes are allocated. The eNB manages allocation of multiple uplink and downlink subframes in each radio frame during TDD operation.
[D2D signal structure]
帯域内D2D通信で、複数のD2Dデバイスとして作動している複数のUEは、eNBによってD2Dリンクに対して割り当てられた複数の時間周波数リソースを使用して通信してよい。そして、タイミング及び同期は、通常のLTEリンクにおけるものとして行われ、各D2Dデバイスは、通常のUEとして、そのクロック及びシンボル/スロットの境界をeNBと同期させる。D2D通信は、通常、短い距離の範囲内にあるので、同一のeNBから複数の通信しているD2Dデバイスへの伝搬時間は、おおよそ同一のはずである。さらに正確には、通信しているD2Dペアの2つのタイミング(例えば、複数のシンボルの境界)の差は、約0.2−1μsのはずである。それは、OFDM又はSC−FDMのサイクリックプレフィックスの範囲内であり、追加の同期メカニズムの必要性をなくす。タイミング及び周波数の同期は、通常のシステムにおけるものとして達成されることができるが、さらに、D2D通信のための追加の複数の側面がある。複数のD2Dデバイスのエリアの中で使用されるマクロeNB及びピコeNBのような異なる複数のeNBがあってよい。異なる複数のオペレータからの複数のeNBは、互いに同期しなくてよく、又は同一のOFDMシンボル持続時間を有してよい。したがって、複数の通信しているD2Dデバイスに対する時間及び/又は周波数の参照は、特定されなければならない。例えば、複数の通信しているD2Dデバイスは、同一のeNBと関連し、そのeNBは、同期のために、eNB、例えばマクロ又はピコeNBを特定する。タイミング及び周波数の同期に加えて、キャリア周波数、帯域幅、サイクリックプレフィックスの長さ、グループID、及びD2D周波数時間リソースのような他の物理及びMAC層の複数のパラメータが、全て、eNB又はD2Dコーディネータ又はD2Dグループオーナーによって特定されることが必要である。eNBによって割り当てられた複数の時間周波数リソースを使用して、D2Dデータ変調のための2つの変調の選択肢、OFDM及びSC−FDMがある。これらは、それぞれ、通常のLTEデバイスにおけるダウンリンク及びアップリンクに対して使用される。2つのスキームは、FFT(高速フーリエ変換)及びIFFT(逆高速フーリエ変換)を実行するためのもののような複数のハードウェア構成のほとんどを共有する。SC−FDMは、PAPR(ピーク対平均パワー比)が高い点でOFDMに劣らないが、D2DのためにOFDMを使用することがまだ望まれるかもしれない。第1に、D2D通信は短距離用なので、そのピークパワーは、通常のアップリンク送信のそれよりとても小さいはずである。第2に、SC−FDMは、符号間干渉(ISI)に弱いが、OFDMは弱くない。第3に、チャネルトレーニングのオーバーヘッドは、SC−FDMよりOFDMの方が小さい。 For in-band D2D communication, multiple UEs operating as multiple D2D devices may communicate using multiple time frequency resources assigned by the eNB to the D2D link. The timing and synchronization is then performed as in a regular LTE link, and each D2D device synchronizes its clock and symbol / slot boundaries with the eNB as a regular UE. As D2D communication is usually within a short distance, the propagation times from the same eNB to multiple communicating D2D devices should be approximately the same. More precisely, the difference between the two timings (e.g. the boundaries of symbols) of the communicating D2D pair should be about 0.2-1 [mu] s. It is within the cyclic prefix range of OFDM or SC-FDM and eliminates the need for additional synchronization mechanisms. Timing and frequency synchronization can be achieved as in conventional systems, but there are further additional aspects for D2D communication. There may be different eNBs, such as macro eNBs and pico eNBs, used in areas of multiple D2D devices. ENBs from different operators may not be synchronized with one another or may have the same OFDM symbol duration. Thus, time and / or frequency references to multiple communicating D2D devices must be identified. For example, multiple communicating D2D devices are associated with the same eNB, which identifies an eNB, eg, macro or pico eNB, for synchronization. In addition to timing and frequency synchronization, several other physical and MAC layer parameters such as carrier frequency, bandwidth, cyclic prefix length, group ID, and D2D frequency time resources are all eNB or D2D It needs to be identified by the coordinator or D2D group owner. There are two modulation options for D2D data modulation, OFDM and SC-FDM, using multiple time frequency resources allocated by the eNB. These are respectively used for downlink and uplink in a normal LTE device. The two schemes share most of several hardware configurations, such as those for performing FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform). Although SC-FDM is comparable to OFDM in terms of high PAPR (peak-to-average power ratio), it may still be desirable to use OFDM for D2D. First, since D2D communication is for short range, its peak power should be much smaller than that of normal uplink transmission. Second, SC-FDM is vulnerable to inter-symbol interference (ISI) but OFDM is not. Third, channel training overhead is smaller for OFDM than for SC-FDM.
D2D受信機が受信信号を復調するために、チャネルトレーニング信号が必要である。複数のD2D動作のためにも構成されたUEの複雑さを下げるために、UE−RS又はDM−RSのようなLTEにおいて使用されている既存の複数の参照信号(RS)パターンは、同様に、D2Dのために使用されてよい。しかしながら、マルチパス遅延及び時間変化のような複数のチャネル特性は、典型的なLTEリンクと比較して、D2Dリンクの場合は全く異なる。複数のD2Dデバイスは、通常、室内にあり、通常の複数のUEよりモビリティ及び遅延拡散を経験しない。したがって、D2Dリンクに対するRS密度は、通常のセルラーリンクのそれより小さくされてよく、RS密度を減少することがスループットを改善する。OFDMA又はSC−FDMのいずれもが、D2D通信のために使用されることができるので、多少異なる複数のチャネルトレーニングの設計がそれぞれに対して使用されることができる。OFDMに関して、チャネルトレーニング信号は、複数の参照サブキャリアのセットであるべきであり、既存のRSパターンのサブセットであってよい。例えば、通常のLTEのRBに関して、PRBペアの第1スロットの既存の複数のRSだけが、データのために使用される第2スロットにおける複数のRSとともに、チャネルトレーニングのために使用されることができる。加えて、既存の複数のRSからのサブセットを利用しながら、異なるRSパターンが使用されてよい。例えば、RSサブキャリアは、チャネル推定のレイテンシ及びチャネルトレーニングのオーバーヘッドを減少するために、PRBペアの第1OFDMシンボルにだけ位置付けられてよい。SC−FDMに関して、チャネルトレーニング信号は、シンボル持続時間の間のPRBのサブバンド又は周波数帯域を単独で占有する1又は多数の参照シンボルであるべきである。この場合も、通常のLTEアップリンクのRBの中より少ないRSが、D2Dリンクのために使用されてよく、例えば、RBの中の第2RSシンボルが、データシンボルによって置換されてよい。 A channel training signal is required for the D2D receiver to demodulate the received signal. The existing multiple reference signal (RS) patterns used in LTE, such as UE-RS or DM-RS, may also be used to reduce the complexity of UEs configured also for multiple D2D operations. , May be used for D2D. However, multiple channel characteristics, such as multipath delay and time change, are quite different for D2D links compared to typical LTE links. Multiple D2D devices are typically indoors and experience less mobility and delay spread than regular multiple UEs. Thus, the RS density for the D2D link may be smaller than that of a normal cellular link, and reducing RS density improves throughput. Since either OFDMA or SC-FDM can be used for D2D communication, somewhat different channel training designs can be used for each. For OFDM, the channel training signal should be a set of multiple reference subcarriers and may be a subset of the existing RS pattern. For example, for regular LTE RBs, only the existing RSs in the first slot of the PRB pair may be used for channel training, with RSs in the second slot used for data. it can. In addition, different RS patterns may be used while utilizing subsets from existing RSs. For example, RS subcarriers may be located only in the first OFDM symbol of a PRB pair to reduce channel estimation latency and channel training overhead. For SC-FDM, the channel training signal should be one or many reference symbols that exclusively occupy the sub-band or frequency band of the PRB during the symbol duration. Again, fewer RSs in the regular LTE uplink RB may be used for the D2D link, eg, the second RS symbol in the RB may be replaced by a data symbol.
通常のLTE通信において、UEは、ダウンリンク及びアップリンクの両方の上でeNBと通信だけする。これは、タイミング及びパワーレベルの両方が、測距及びパワー制御のフィードバックのようなeNBとUEとの間の様々な制御チャネル信号を介して制御されることを許可する。その状況は、分散型のD2Dの場合において異なる。1つのD2Dデバイスは、異なる複数のD2Dデバイスから複数の信号を受信してよいので、受信パワーは、典型的にはデバイスによって変わる。UEが無線周波数(RF)キャリア上で信号を受信するとき、その信号は、ベースバンドにダウンコンバートされ、増幅され、そして、復調される前にアナログデジタルコンバータ(ADC)でデジタル化される。しかしながら、受信信号の正確なデジタル化は、結果として生じる増幅された信号がADCの適切な範囲内に収まるような増幅の利得を要求する。AGCを設定するために、ショートプリアンブルが送信の始めに配置されてよい。このショートプリアンブルは、後続のデータ信号として、同一の周波数帯域又はサブバンドに位置付けられるべきである。ショートプリアンブルは、時間領域の中に、同一の信号の多数の期間を備えてよく、同一の信号の繰り返しが自己相関を介してプリアンブルの検出を可能にする。ショートプリアンブルの持続時間は、例えば、0.5と20μsとの間であってよい。 In normal LTE communication, the UE only communicates with the eNB on both downlink and uplink. This allows both timing and power levels to be controlled via various control channel signals between the eNB and the UE, such as ranging and power control feedback. The situation is different in the case of distributed D2D. Because one D2D device may receive multiple signals from different D2D devices, the received power typically varies from device to device. When the UE receives a signal on a radio frequency (RF) carrier, the signal is downconverted to baseband, amplified and digitized at an analog to digital converter (ADC) before being demodulated. However, accurate digitization of the received signal requires an amplification gain such that the resulting amplified signal falls within the proper range of the ADC. A short preamble may be placed at the beginning of transmission to set up the AGC. This short preamble should be located in the same frequency band or sub-band as the subsequent data signal. A short preamble may comprise multiple periods of the same signal in the time domain, and repetition of the same signal allows detection of the preamble via autocorrelation. The duration of the short preamble may for example be between 0.5 and 20 μs.
複数のD2Dデバイスの主要部分である複数のセンサの小さいペイロードサイズに起因して、1スロット×1RBが、基本リソース割当単位として規定されることができ、本明細書において、D2Dスロット又はD2Dパケットと称される。大きいペイロードサイズに対して、基本リソース割当単位が、2スロット×1RBであることができる。SC−FDMに対して上で説明された特徴を組み込むD2Dパケット200のための信号構造の例が、図2に示される。以下のショートプリアンブルSP及び参照信号RSは、制御情報又はデータを搬送する複数のSC−FDMシンボルであり、物理D2D制御チャネル(PdCCH)又は物理D2D共有チャネル(PdSCH)にそれぞれマッピングされた複数のリソースエレメントによって搬送される。OFDMのためのD2Dパケットは、複数の参照信号が時間及び周波数において分散された複数の特定のリソースエレメントであることを除いて、同様である。複数のOFDM又はSC−FDMシンボルの複数のサイクリックプレフィックスは、セルラーLTEリンクにおいて使用されるものより短くされてよい。図3は、D2Dパケットのショートプリアンブルを利用するD2D受信機の動作を示す。RF送受信機301によるRFキャリア信号の受け取りの後、結果として生じる信号は、ダウンコンバータ302によってベースバンドにダウンコンバートされ、増幅器303によって増幅され、ADC305によってサンプリングされてデジタル化され、そして、複数の送信シンボルを抽出するためにOFDM/SC−FDM復調器306によって復調される。デジタル化の前に、自動利得制御モジュール304は、信号のパワーに基づいて、D2Dパケットの始めにショートプリアンブルを検出し、増幅器303の利得を調整する。
[分散型のスケジュール制御]
Due to the small payload size of multiple sensors, which are the main part of multiple D2D devices, one slot x one RB can be defined as a basic resource allocation unit, and in this specification D2D slots or D2D packets and It is called. For large payload sizes, the basic resource allocation unit can be 2 slots x 1 RB. An example of a signal structure for a
[Distributed schedule control]
D2D通信への帯域内アプローチにおいて、送信をスケジューリングするために基本的には2つの別の技術がある。一方は、割り当てられた複数の時間周波数リソースを使用して、複数のD2D送信をスケジュール及び調整するために、基地局、eNBに頼る。他方の技術は、割り当てられた複数の時間周波数リソースを使用した複数の送信のために競うだけでなく、任意の干渉を管理するために、D2Dデバイスそれ自体に主に頼る。2番目の技術は、複数のセンサーネットワークに最も適しており、センサーネットワークは、典型的には、大きい制御オーバーヘッドではなく、複数の小さいサイズのパケットを有する。そのような複数の小さいパケットに対して、eNBによるスケジューリングおよび干渉制御は、少なくとも2つの理由により、効率的でないかもしれない。第1に、いずれか2つのD2Dリンクの間の干渉ステータスを全体として知ることができないeNB、並びに多数のD2Dデバイス及びリンクがあり得る。そして、eNBが干渉の複数の測定結果を報告することをD2Dデバイスに要求することができるとしても、システムは、そのような多くのD2D送信をスケジューリングすることにおいて、これらの報告からの大きいフィードバックオーバーヘッド又は大きい制御オーバーヘッドを処理できないかもしれない。 In the in-band approach to D2D communication, there are basically two other techniques for scheduling transmissions. One relies on the base station, eNB, to schedule and coordinate multiple D2D transmissions using multiple assigned time frequency resources. The other technology not only competes for multiple transmissions using multiple allocated time frequency resources, but relies primarily on the D2D device itself to manage any interference. The second technology is most suitable for multiple sensor networks, which typically have multiple small sized packets rather than large control overhead. For such small packets, scheduling and interference control by the eNB may not be efficient for at least two reasons. First, there may be eNBs that can not know the interference status between any two D2D links as a whole, as well as multiple D2D devices and links. And, even though the eNB can request the D2D device to report multiple measurements of interference, the system has large feedback overhead from these reports in scheduling many such D2D transmissions. Or it may not be able to handle large control overhead.
ここで説明された分散型のスケジュール制御のための技術では、キャリア検知多重アクセス(CSMA)が、帯域内D2D通信において使用される。CSMAは、高い空間的再使用を達成するだけでなく、D2DデバイスとeNBとの間の制御オーバーヘッドを減少する。前に説明されたように、D2D通信のための複数のリソースは、eNBによって割り当てられる。eNBは、複数のD2Dデバイスのグループに、リソース割り当てをブロードキャストする。複数のデバイスのグルーピングは、それらの間の複数のチャネルの複数の品質に従ってよい。上に説明されたように、複数のリソースは、複数のD2Dスロット又は複数のPRBペアに分割されてよく、割り当てられた複数のD2Dスロット又は複数のPRBペアのグループは、時間又は/及び周波数において集められてよく、又は、周波数及び時間において分散されてよい。一実施形態において、そのような各D2Dスロットは、衝突頻度を減少させるためにバックオフメカニズムを組み込んでいるスロット化されたalohaタイプのCSMAのための時間スロットとして使用される。図4には、送信を望むD2Dデバイスのためのアルゴリズムの例に含まれる複数のステップが示される。ステップ401で、デバイスは、カウントダウンを始めるために、数Nをランダムに選択する。ステップ402で、デバイスは、次のD2Dスロットの始まりを検知する。スロットがビジー状態の場合、ステップ403で、カウントダウンが一時中断され、ステップ402が繰り返される。スロットがビジー状態でない場合、ステップ404で、Nがデクリメントされる。ステップ405で、Nがゼロまでデクリメントされたと判断された場合、ステップ406で、デバイスは、次のスロットで送信する。そうでなければ、デバイスは、ステップ402に戻る。バックオフウインドウ内の複数のスロットのカウントダウンが実行されるように、複数のD2Dスロットは、図5に示されるように発生順にラベル付けさてよい。図5における複数のスロットの順序は、遅延を減少し、D2Dデバイスの半二重動作を考慮に入れるために、周波数優先である。
In the techniques for distributed schedule control described herein, Carrier Sense Multiple Access (CSMA) is used in in-band D2D communication. CSMA not only achieves high spatial reuse but also reduces control overhead between D2D devices and eNBs. As described previously, multiple resources for D2D communication are allocated by the eNB. The eNB broadcasts resource assignments to groups of multiple D2D devices. The grouping of devices may be according to the quality of the channels between them. As explained above, resources may be divided into D2D slots or PRB pairs, and allocated D2D slots or groups of PRB pairs may be in time or / and in frequency. It may be collected or distributed in frequency and time. In one embodiment, each such D2D slot is used as a time slot for a slotted aloha type CSMA incorporating a backoff mechanism to reduce collision frequency. FIG. 4 illustrates the steps involved in an example algorithm for a D2D device that wants to transmit. At step 401, the device randomly selects a number N to begin the countdown. At
他の実施形態において、送信するD2Dデバイスは、デバイスが送信している時間の長さを示すために、送信されたパケットのPdCCHにおいて予約時間を特定してよい。PdCCHにおいて特定された予約時間を検出することによって、複数のD2Dデバイスは、キャリア検知の動作をスキップし、予約時間が終わるまでスリープ状態に入ることができる。これは、複数のD2Dデバイスの電力消費を減少する。また、alohaタイプのCSMAの遅延が解決されていないので、レイテンシの複数の要求を満たすことが必要である場合、別の実施形態は、eNBを使用することを含む。例えば、D2Dリンクが時間内にデータを外に送信できない場合、D2Dデバイスは、宛先のD2DデバイスにD2Dデータを転送することをeNBに要求できる。これは、バックアップとしてeNBを使用することによって、D2Dトラフィックのレイテンシを改善する。
[干渉管理のためのパワー検出及び制御]
In another embodiment, the transmitting D2D device may specify a reservation time in the PdCCH of the transmitted packet to indicate the length of time the device is transmitting. By detecting the reservation time specified in PdCCH, multiple D2D devices can skip the operation of carrier detection and go to sleep until the reservation time is over. This reduces the power consumption of multiple D2D devices. Also, another embodiment includes using an eNB if it is necessary to meet multiple requirements for latency, as the aloha type CSMA delay is not resolved. For example, if the D2D link can not transmit data out in time, the D2D device can request the eNB to transfer D2D data to the destination D2D device. This improves the latency of D2D traffic by using the eNB as a backup.
Power Detection and Control for Interference Management
上で説明されたD2Dシステムにおいて、多数のD2Dデバイスが、チャネルアクセスに対して競合し、他の複数のD2Dデバイスにデータを送信してよい。D2Dデバイスは、異なる複数の距離にある異なる複数のD2Dデバイスにデータを送信してよいので、送信パワーは、干渉を減少し、空間的再使用を増加し、及びパワー効率を改善することを目的として、送信距離に応じて変更されるべきである。多数のノードを有するD2Dネットワークにおいて、上で説明されたようなキャリア検知多重アクセス(CSMA)は、チャネルアクセス制御のために最も効率的な方法である。しかしながら、CSMA単独では、異なる複数の送信パワーを有する複数のノードの間の公平なアクセスをサポートできない。その理由は、デバイスが、通常のキャリア検知から、受信信号を使用して、別のデバイスでのその干渉レベルを予測できないからである。例えば、図6に示されるように、ノードCは送信したい、また、通信中の既存の複数の送信と干渉したくない。ノードCは、キャリア検知をし、ノードAからノードBへの既存の送信を検出する。通常のCSMAにおいて、キャリア検知から検出された受信信号パワーが特定の閾値より低い場合、ノードCは、そのチャネルをアイドルと見なすはずであり、そのチャネルにアクセスするかもしれない。しかしながら、ここでは前提として、干渉レベルは、任意の送信機及び受信機のペアの間の相互関係にある。受信機が送信機からある干渉レベルを受けている場合、元の送信機が元の受信機の送信機に耳を傾けているとき、その送信機は、同一の干渉レベルを受けるはずである。これは、無線チャネルは相互関係にあり、送信パワーは全てのノードの間で一定であるという事実に頼る。しかしながら、送信パワーが複数のノードにわたって多様であるとき、この前提はもはや真実でない。図6の例では、ノードA及びノードBは、互いに近接し、ノードAは、ノードBと会話するために低いパワーを使用する。ノードAからノードCへの結果としての干渉は、減少された送信パワーのため、小さい。したがって、ノードAがその送信パワーを減少したことをノードCが知らない場合、ノードCは、ノードBと会話するためにフルパワーでの送信を開始するかもしれない。 In the D2D system described above, multiple D2D devices may contend for channel access and transmit data to multiple other D2D devices. Because D2D devices may transmit data to different D2D devices at different distances, transmit power aims to reduce interference, increase spatial reuse, and improve power efficiency As it should be changed according to the transmission distance. In a D2D network with many nodes, Carrier Sense Multiple Access (CSMA) as described above is the most efficient method for channel access control. However, CSMA alone can not support fair access among multiple nodes with different transmit powers. The reason is that the device can not predict its interference level at another device using the received signal from normal carrier sensing. For example, as shown in FIG. 6, node C wants to transmit and does not want to interfere with existing multiple transmissions in communication. Node C performs carrier sensing and detects existing transmissions from node A to node B. In normal CSMA, if the received signal power detected from carrier sensing is below a certain threshold, node C should consider that channel as idle and may access that channel. However, as a premise here, the interference levels are interrelated between any transmitter and receiver pairs. If the receiver is receiving some level of interference from the transmitter, then the transmitter should receive the same level of interference when the original transmitter is listening to the transmitter of the original receiver. This relies on the fact that the radio channels are interrelated and the transmit power is constant among all nodes. However, this assumption is no longer true when the transmit power is diverse across multiple nodes. In the example of FIG. 6, node A and node B are close to each other, and node A uses low power to talk to node B. The resulting interference from node A to node C is small due to the reduced transmit power. Thus, if node C does not know that node A has reduced its transmit power, node C may start transmitting at full power to talk to node B.
この問題の解決策は、他の複数のノードが干渉レベルを予測できるように、送信の前に、送信パワーレベルを特定することを含む。送信パワーレベルは、送信機ノード又はコーディネータノードによって(D2D)制御チャネルの中で送信又はブロードキャストされてよい。制御情報の多数のタイプを含むことができる制御チャネルを使用することに代えて、送信パワーレベルは、複数のD2Dパケットに追加された送信パワー指標によって単に特定されることができる。実際の送信の前の送信パワーの事前の仕様は、CSMA、及び分散型のスケジューリングのようなメディアアクセスの他の複数のタイプに適用されることができる。送信パワーレベルは、それらが複数の干渉問題を引き起こす場合の干渉レベルを他の複数のノードが予測するためのものであるので、この事前の仕様は、確実に送信されることを必要とする。例えば、繰り返し発生するような信頼性のあるエンコーディング又は高いパワー送信、拡散、及びチャネルコードは、送信パワーレベルをブロードキャストことに適用されてよい。そして、メディアアクセスのキャリア検知タイプにおいて、送信を望んでいるD2D受信機は、キャリア検知の間に、送信パワー推定のために送信パワー情報を使用してよい。一実施形態において、送信パワーレベルは、各送信バーストの始まりでシグナリングされる。送信パワーレベルが検出又は推定された後、送信パワーから受信信号パワーを差し引くことによって、パスロスが推定されることができる。推定されたパスロスを使用して、D2D受信機は、送信できるか否か、及びどの送信パワーレベルが使用されるべきであるかを決定できる。送信パワー指標を送信するための技術の例が以下に説明される。 The solution to this problem involves identifying the transmit power level prior to transmission so that other nodes can predict the interference level. The transmit power level may be transmitted or broadcast in the (D2D) control channel by the transmitter or coordinator node. Instead of using a control channel that can include multiple types of control information, the transmit power level can be identified simply by the transmit power indicator added to the plurality of D2D packets. The prior specification of transmit power prior to actual transmission can be applied to CSMA and other types of media access such as distributed scheduling. This prior specification needs to be sent reliably, as the transmit power levels are for other nodes to predict the interference level if they cause multiple interference problems. For example, reliable encoding such as recurring or high power transmission, spreading, and channel code may be applied to broadcast transmit power levels. And, in carrier detection type of media access, a D2D receiver desiring to transmit may use transmission power information for transmission power estimation during carrier detection. In one embodiment, transmit power levels are signaled at the beginning of each transmit burst. The path loss can be estimated by subtracting the received signal power from the transmit power after the transmit power level is detected or estimated. Using the estimated path loss, the D2D receiver can determine whether it can transmit and which transmit power level should be used. Examples of techniques for transmitting transmit power indicators are described below.
一実施形態において、異なる複数の送信パワーを有する複数のD2Dパケットは、異なる複数のプリアンブルシーケンスで送信されてよく、そのシーケンスは、キャリア検知の間又はチャネル推定の間に検出されることができる。上で説明されたように、D2Dパケットプリアンブルは、また、適応利得制御(AGC)を設定するため、又はチャネル推定のために使用されてよい。例えば、異なる複数の期間(例えば、2μs、3μs、又は5μs)を有する複数のショートプリアンブルは、送信パワーレベルをシグナリングし、AGCを設定するために使用されることができる。受信機は、信号の到着及び送信パワーレベルを検出するために、異なる複数の相関期間(例えば、2μs、3μs、又は5μs)を有する複数の自己相関器のバンクを有することができる。図7には、2μs及び3μsの複数のプリアンブル期間を区別するために使用されるD2D受信機の中の自己相関バンクの例が示される。RF送受信機301による受け取り及びダウンコンバータ302によるベースバンドへのダウンコンバートの後、2μs及び3μsで遅延された信号の複数のバージョンが、遅延要素320及び330によってそれぞれ生成される。遅延された信号の複数のバージョンは、それから、複数の相関器310及び311によって、遅延されていない信号と相関させられる。複数の相関器の複数の出力は、それから、プリアンブルの周期性を検出するために、比較器312によって比較される。
In one embodiment, multiple D2D packets with different transmit powers may be sent with different preamble sequences, which may be detected during carrier detection or channel estimation. As described above, D2D packet preambles may also be used to set adaptive gain control (AGC) or for channel estimation. For example, multiple short preambles with different durations (eg, 2 μs, 3 μs, or 5 μs) can be used to signal transmit power levels and to set the AGC. The receiver can have a bank of autocorrelators with different correlation periods (eg, 2 μs, 3 μs, or 5 μs) to detect the arrival of the signal and the transmit power level. FIG. 7 shows an example of an autocorrelation bank in a D2D receiver used to distinguish between 2 μs and 3 μs preamble periods. After receipt by the RF transceiver 301 and downconversion to baseband by the downconverter 302, multiple versions of the 2 μs and 3 μs delayed signals are generated by the
他の実施形態において、複数のデジタルサンプルを使用することが好まれる場合、プリアンブルシーケンスの中に送信パワー指標を置くのではなく、送信パワー指標(TPI)が、チャネルトレーニング信号の中に置かれてよい。例えば、TPIは、SC−FDMでRSとして使用される単一のSC−FDMシンボルのような複数の参照信号の中、又はOFDMで複数の参照信号として使用される異なる複数のリソースエレメントの中に配置されてよい。異なるチャネルトレーニングシーケンスが、異なる各送信パワーレベルに適用されることができる。複数のパワーレベルの数は4と8との間にあってよいので、少数のシーケンスだけが必要とされてよく、シーケンス検出エラーがデータフレームの動作SNRで無視できる程度である。OFDMにおけるような分散型の複数の参照信号に対して、送信パワーは、他の複数の選択肢と比較して、全体のD2Dパケットの間に検出されることができる。チャネルの聞き手がD2Dパケットの始まりを見逃した場合、分散型の複数の参照信号を使用して、後に、送信パワーについてまだ知ることができる。 In another embodiment, when it is preferred to use multiple digital samples, instead of placing a transmit power indicator in the preamble sequence, a transmit power indicator (TPI) is placed in the channel training signal. Good. For example, TPI may be in multiple reference signals such as a single SC-FDM symbol used as RS in SC-FDM, or in different multiple resource elements used as multiple reference signals in OFDM It may be arranged. Different channel training sequences may be applied to each different transmit power level. Since the number of power levels may be between 4 and 8, only a small number of sequences may be required, with sequence detection errors negligible at the operating SNR of the data frame. For distributed multiple reference signals as in OFDM, transmit power can be detected during the entire D2D packet as compared to other alternatives. If the listener of the channel misses the beginning of the D2D packet, distributed reference signals can be used to later know about the transmit power.
複数の送信パワーレベルの数が比較的大きい場合、先の複数のアプローチは、シーケンス検出において高いエラーレートを招くかもしれない。この問題を扱うための他の実施形態において、送信パワーレベルは、物理層ヘッダの中で複数のビットによってシグナリングされることができる。物理層ヘッダは、ショートプリアンブルのようなAGCを設定するためのシーケンスに従ってよい。これは、キャリア検知のレイテンシ及び受信機の電力消費を減少する。受信機は、ヘッダから複数のTPIビットをデコードすべきである。ヘッダは、検出された複数のTPIビットを検証するために、複数のCRCチェックビットを有してよい。上で説明されたように、送信パワーに加えて、受信機は、衝突の回避を可能にするために、送信の持続時間に関与されてもよい。そのような持続時間情報又はチャネル予約時間は、ヘッダの中にあってもよく、システムによって黙示的に特定されてもよい。黙示的な仕様の例において、持続時間は、常に、いくつかのシステムに対する1つのサブフレームであってよい。 If the number of transmit power levels is relatively large, the previous approaches may lead to high error rates in sequence detection. In another embodiment to address this issue, the transmit power level can be signaled by multiple bits in the physical layer header. The physical layer header may follow a sequence for setting up an AGC, such as a short preamble. This reduces the carrier detection latency and the power consumption of the receiver. The receiver should decode multiple TPI bits from the header. The header may have multiple CRC check bits in order to verify multiple detected TPI bits. As explained above, in addition to the transmit power, the receiver may be involved in the duration of transmission to enable collision avoidance. Such duration information or channel reservation time may be in the header and may be implicitly specified by the system. In the example of implicit specification, the duration may always be one subframe for some systems.
他の実施形態において、送信パワーレベルは、データブロック送信の前に、チャネル予約交換によってシグナリングされる。これは、Wi−Fiにおいて使用されるRTS/CTSチャネル予約と同様であるセルラーD2Dにおいて、近くの他の複数のD2Dデバイスが、持続時間内に、予約された持続時間及び送信パワーについて知ることができるように、チャネル予約は、デフォルトの(高い)パワーレベルを有する送信機及び受信機によってなされることができる。代替手段として、基地局は、送信ペアのための近くの複数のD2Dデバイスにチャネル予約及び送信パワーレベルをブロードキャストしてよい。
[実施例]
In another embodiment, the transmit power level is signaled by channel reservation exchange prior to data block transmission. This is similar to the RTS / CTS channel reservation used in Wi-Fi, in cellular D2D, where other nearby D2D devices know about the reserved duration and transmit power within the duration As possible, channel reservations can be made by transmitters and receivers with default (high) power levels. As an alternative, the base station may broadcast channel reservation and transmit power levels to nearby D2D devices for the transmit pair.
[Example]
一実施形態において、UEは、eNBと通信するため及びD2D通信のためのエアインターフェースを提供する無線送信機、及びeNBからのD2D通信のための複数の時間周波数リソースの複数の割り当てを受信し、第2UEとのD2D通信セッションを確立する、無線送信機に接続された処理回路を備える。多数のeNBがある場合、処理回路は、第2UEとして、同一のeNBとのタイミング及び周波数の同期を確立してもよい。第2UEへの又はからの複数のリソース又は複数のD2D送信は、セルラーLTEリンクで使用されるように、同一の複数のリソース構造であってよく、又はプリアンブルで始まり、複数のOFDM/SC−FDMシンボルを含む各D2Dスロットで複数のD2Dスロットにまとめられてよい。複数のOFDM/SC−FDMシンボルのサイクリックプレフィックスの長さは、セルラーLTEリンクにおいて使用されるそれらより短くてよい。処理回路は、アナログデジタル変換の前に受信された複数のD2Dスロットの複数のプリアンブルをダウンコンバートして増幅してよく、受信された複数のD2Dスロットの複数のプリアンブルは、自動利得制御(AGC)のために使用される。第2UEへの最後の送信からの時間が、AGC設定が範囲外になり得るほど長い場合、処理回路は、データバーストの始まりで、AGCのためにプリアンブルを使用してよい。プリアンブルは、時間領域の中の繰り返しの信号シーケンスであってよく、各D2Dスロットは、1つ又は複数の参照シンボルを含んでよい。D2Dスロットの複数のチャネルトレーニング信号又は複数の参照信号は、セルラーLTEリンクで使用されるより低い密度を有してよい。処理回路は、さらに、自己相関を介して、受信された複数のD2Dスロットのプリアンブルを検出してよい。処理回路は、さらに、送信動作が存在するか否かを決定するために現在のD2Dスロットを検知すること、及び現在のD2Dスロットがビジー状態でない場合に、後続のD2Dスロットの開始で第2UEにD2D送信を送信することによって、D2Dスロットに関して、キャリア検知多重アクセス(CSMA)を使用して、第2UEとの通信セッションを開始してよい。処理回路は、さらに、現在のD2Dスロットがビジー状態でない場合に、選択された数でカウントダウンを開始すること、ビジー状態でない各D2Dスロットが検出された後にカウントダウンをデクリメントし、ビジー状態のD2Dスロットが検出されたときにカウントダウンを一時中断すること、及びカウントダウンがゼロに達した後に次のD2Dスロットの開始で第2UEにD2D送信を送信することによって、第2UEとの通信セッションを開始してよい。カウントダウンのための特定の数は、ランダムに又は擬似乱数で選択されてよい。D2Dスロットは、さらに、いくつのD2Dスロットが送信デバイスによって連続的に送信されるかを特定する、制御チャネルの中のエンコードされた予約時間を含んでよい。複数のD2Dスロットは、時間及び/又は周波数の領域において連続的に番号が付けられてよい。処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、予約時間が終了するまで、複数のD2Dスロットの検知を中断してよい。処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、予約時間が終了するまで、スリープ状態に入ってよい。処理回路は、さらに、各D2Dスロットの中で送信パワーレベルの指標を送信してよい。プリアンブルは、送信パワーレベルを示す周期性を有する時間領域の中の繰り返しの信号シーケンスであってよい。処理回路は、さらに、プリアンブル及び送信パワーレベルの到着を検出するための異なる複数の相関期間を有する複数の相関器のバンクを備えてよい。 In one embodiment, the UE receives multiple assignments of multiple time frequency resources for D2D communication from the wireless transmitter to provide an air interface for communicating with the eNB and for D2D communication, and A processing circuit connected to the wireless transmitter for establishing a D2D communication session with the second UE. When there are many eNBs, the processing circuit may establish, as the second UE, synchronization of timing and frequency with the same eNB. The plurality of resources or plurality of D2D transmissions to or from the second UE may be the same plurality of resource structures, as used in a cellular LTE link, or begin with a preamble and a plurality of OFDM / SC-FDM A plurality of D2D slots may be organized at each D2D slot containing a symbol. The cyclic prefix length of multiple OFDM / SC-FDM symbols may be shorter than those used in cellular LTE links. A processing circuit may downconvert and amplify the plurality of preambles of the plurality of D2D slots received prior to analog to digital conversion, and the plurality of preambles of the plurality of D2D slots received may be automatic gain control (AGC) Used for. If the time since the last transmission to the second UE is long enough that the AGC setting can be out of range, the processing circuit may use the preamble for AGC at the beginning of the data burst. The preamble may be a repetitive signal sequence in the time domain, and each D2D slot may include one or more reference symbols. The multiple channel training signals or multiple reference signals of the D2D slot may have a lower density than used in the cellular LTE link. The processing circuit may further detect the preambles of the received plurality of D2D slots via autocorrelation. The processing circuit may further detect the current D2D slot to determine if a transmit operation is present, and, if the current D2D slot is not busy, to the second UE at the start of the subsequent D2D slot. By transmitting D2D transmissions, carrier sense multiple access (CSMA) may be used for D2D slots to initiate a communication session with the second UE. The processing circuit may also start the countdown at the selected number if the current D2D slot is not busy, decrement the countdown after each non-busy D2D slot is detected, and the busy D2D slot A communication session with the second UE may be initiated by suspending the countdown when detected and transmitting a D2D transmission to the second UE at the start of the next D2D slot after the countdown reaches zero. The particular number for the countdown may be chosen randomly or pseudo-randomly. The D2D slot may further include an encoded reservation time in the control channel that specifies how many D2D slots are continuously transmitted by the transmitting device. The plurality of D2D slots may be numbered consecutively in the time and / or frequency domain. The processing circuit may also suspend detection of multiple D2D slots until the reservation time ends, when the reservation time is detected in the D2D slot. The processing circuit may also go to sleep until the reservation time ends, when the reservation time is detected in the D2D slot. The processing circuit may further transmit an indication of transmit power level in each D2D slot. The preamble may be a repetitive signal sequence in the time domain having a periodicity indicative of the transmit power level. The processing circuit may further comprise a bank of correlators having different correlation periods for detecting the arrival of preambles and transmit power levels.
他の実施形態において、UEは、eNBと通信するため及びD2D通信のためのエアインターフェースを提供する無線送信機、及びeNBからのD2D通信のための複数の時間周波数リソースの複数の割り当てを受信し、第2UEとのD2D通信セッションを確立する、無線送信機に接続された処理回路を備える。処理回路は、さらに、1又は複数の参照シンボルの中で送信パワーレベルの指標を送信してよく、特定された参照シンボル又は複数の参照シンボルの特定されたシーケンスは、送信パワーレベルを示す。送信パワーレベルは、多数の送信パワーレベルが共存するときに、干渉予測を可能にするために、実際のデータ送信の前に特定されてよい。処理回路は、さらに、プリアンブルに続く物理層ヘッダの中のエンコードされた複数のビットとして、送信パワーレベルの指標を送信してよい。物理層ヘッダは、さらに、トランスポートブロックを構成し、連続的に送信される複数のD2Dスロットの数の指標を備える。処理回路は、さらに、チャネル予約リクエストに応答して、eNBからのD2D通信のための複数の時間周波数リソースの複数の割り当てを受信してよく、D2D通信のための送信パワーレベルの指標及び予約の持続時間は、チャネル予約リクエストの中に含まれる。チャネル予約リクエストは、デバイスに近接する他の複数のUEがチャネル予約及び送信パワーレベルを知ることができるように十分に高いパワーで送信されてよい。 In another embodiment, the UE receives a plurality of allocations of time-frequency resources for radio communication for communicating with the eNB and providing an air interface for D2D communication, and for D2D communication from the eNB. , Processing circuitry connected to the wireless transmitter, establishing a D2D communication session with the second UE. The processing circuit may further transmit an indication of the transmit power level in the one or more reference symbols, and the identified reference symbol or identified sequence of reference symbols indicates the transmit power level. The transmit power level may be identified prior to actual data transmission to enable interference prediction when multiple transmit power levels co-exist. The processing circuit may further transmit an indication of transmit power level as a plurality of encoded bits in the physical layer header following the preamble. The physical layer header further constitutes a transport block and comprises an indication of the number of D2D slots transmitted continuously. The processing circuit may further receive, in response to the channel reservation request, a plurality of allocations of time frequency resources for D2D communication from the eNB, a transmission power level indicator for the D2D communication and a reservation of The duration is included in the channel reservation request. The channel reservation request may be sent at a power high enough to allow other UEs in proximity to the device to know the channel reservation and transmit power level.
他の実施形態において、UEは、eNBと通信するため及びD2D通信のためのエアインターフェースを提供する無線送信機、及びeNBからのD2D通信のための複数の時間周波数リソースの複数の割り当てを受信し、第2UEとのD2D通信セッションを確立する、無線送信機に接続された処理回路を備え、送信動作が存在するか否かを決定するために現在のD2Dスロットを検知すること、及び現在のD2Dスロットがビジー状態でない場合に、後続のD2Dスロットの開始で第2UEへD2D送信を送信することによって、D2Dスロットに関して、キャリア検知多重アクセス(CSMA)を使用して第2UEとの通信セッションを開始することにより、第2UEへの及びからの複数のD2D送信は、複数のOFDM/SC−FDMシンボルを含む各D2Dスロットで複数のD2Dスロットにまとめられる。処理回路は、さらに、現在のD2Dスロットがビジー状態でない場合に、選択された数でカウントダウンを開始すること、ビジー状態でない各D2Dスロットが検出された後にカウントダウンをデクリメントし、ビジー状態のD2Dスロットが検出されたときにカウントダウンを一時中断すること、及びカウントダウンがゼロに達した後に次のD2Dスロットの開始で第2UEにD2D送信を送信することによって、第2UEとの通信セッションを開始してよい。カウントダウンのための特定の数は、ランダムに又は擬似乱数で選択されてよい。D2Dスロットは、さらに、いくつのD2Dスロットが送信デバイスによって連続的に送信されるかを特定する、制御チャネルの中のエンコードされた予約時間を含んでよい。処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、予約時間が終了するまで、複数のD2Dスロットの検知を中断してよい。処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、予約時間が終了するまで、スリープ状態に入ってよい。 In another embodiment, the UE receives a plurality of allocations of time-frequency resources for radio communication for communicating with the eNB and providing an air interface for D2D communication, and for D2D communication from the eNB. Establishing a D2D communication session with the second UE, processing circuitry connected to the wireless transmitter, sensing a current D2D slot to determine if a transmit operation is present, and a current D2D When the slot is not busy, initiate a communication session with the second UE using Carrier Sense Multiple Access (CSMA) for the D2D slot by transmitting a D2D transmission to the second UE at the beginning of the subsequent D2D slot Thus, multiple D2D transmissions to and from the second UE may be multiple OFDM / SC-FDM They are grouped into a plurality of D2D slots in each D2D slots containing symbols. The processing circuit may also start the countdown at the selected number if the current D2D slot is not busy, decrement the countdown after each non-busy D2D slot is detected, and the busy D2D slot A communication session with the second UE may be initiated by suspending the countdown when detected and transmitting a D2D transmission to the second UE at the start of the next D2D slot after the countdown reaches zero. The particular number for the countdown may be chosen randomly or pseudo-randomly. The D2D slot may further include an encoded reservation time in the control channel that specifies how many D2D slots are continuously transmitted by the transmitting device. The processing circuit may also suspend detection of multiple D2D slots until the reservation time ends, when the reservation time is detected in the D2D slot. The processing circuit may also go to sleep until the reservation time ends, when the reservation time is detected in the D2D slot.
上で説明されたような実施形態は、動作のための方法として、及び/又は、その方法を遂行する命令を実行するためのプロセッサを含む様々なハードウェア構成の中に実装されてよい。そのような命令は、適切な記録媒体に含まれてよく、そこからメモリ又は他のプロセッサ実行可能媒体へ移動されてよい。 Embodiments as described above may be implemented as a method for operation and / or in various hardware configurations including a processor for executing instructions to perform the method. Such instructions may be included on a suitable storage medium, from which it may be moved to memory or other processor executable medium.
主題は、LTEネットワークという背景において説明された。矛盾が生じる場合を除いて、主題は、端末及び基地局を参照することによってそれぞれ置き換えられたUE及びeNBに関して、セルラーネットワークの他のタイプで使用されることができる。 The subject matter was described in the context of LTE networks. The subject matter may be used in other types of cellular networks, with respect to UEs and eNBs replaced by reference to terminals and base stations, respectively, unless inconsistencies arise.
主題は、前述の特定の実施形態に関連して説明された。これらの実施形態がまた有利であると考えられるいかなる方法で組み合わせられてよいことが理解されるべきである。また、多くの代替手段、変化、及び修正が、当業者に明かであろう。他のそのような代替手段、変化、及び修正が、以下の添付の請求項の範囲内に収まることが意図される。 The subject matter has been described in connection with the specific embodiments described above. It should be understood that these embodiments may also be combined in any way which is considered to be advantageous. Also, many alternatives, variations, and modifications will be apparent to those skilled in the art. Other such alternatives, variations, and modifications are intended to fall within the scope of the following appended claims.
要約は、米国特許施行規則に従って提供される。セクション1.72(b)は、技術的な開示の本質及び趣旨を読者に確認させる要約を要求する。それが請求項の範囲又は意味を限定又は解釈するために使用されないという了解のもとで提出される。以下の請求項は、これによって、それ自体に基づく各請求項が別個の実施形態として、発明を実施するための形態に組み込まれる。
[項目1]
ユーザ機器(UE)デバイスであって、
eNB(進化型ノードB)と通信するため、及びD2D(デバイスツーデバイス)通信のためのエアインターフェースを提供する無線送信機と、
前記無線送信機に接続された処理回路と
を備え、
前記処理回路は、
前記eNBからのD2D通信のための複数の時間周波数リソースの複数の割り当てを受信し、
第2UEとのD2D通信セッションを確立し、
受信された複数のD2Dスロットのプリアンブルを使用して、複数の自動利得制御(AGC)を実行し、
前記第2UEへの及びからの複数のD2D送信は、前記プリアンブルで始まり、複数のOFDM又はSC−FDMシンボルを含む各D2Dスロットで複数のD2Dスロットにまとめられる、デバイス。
[項目2]
前記プリアンブルは、時間領域の中の繰り返しの信号シーケンスである、項目1に記載のデバイス。
[項目3]
前記処理回路は、さらに、自己相関を介して、受信された複数のD2Dスロットの前記プリアンブルを検出する、項目2に記載のデバイス。
[項目4]
各D2Dスロットは、1又は複数の参照シンボルを含む、項目2又は3に記載のデバイス。
[項目5]
前記処理回路は、さらに、
送信動作が存在するか否かを決定するために現在のD2Dスロットを検知すること、及び
前記現在のD2Dスロットがビジー状態でない場合に、後続のD2Dスロットの開始で、前記第2UEにD2D送信を送信することによって、
D2Dスロットに関して、キャリア検知多重アクセス(CSMA)を使用して、前記第2UEとの通信セッションを開始する、項目2から4のいずれか一項に記載のデバイス。
[項目6]
前記処理回路は、さらに、
前記現在のD2Dスロットがビジー状態でない場合に、選択された数でカウントダウンを開始すること、
ビジー状態でない各D2Dスロットが検出された後に、前記カウントダウンをデクリメントし、ビジー状態のD2Dスロットが検出されたときに、前記カウントダウンを一時中断すること、及び
前記カウントダウンがゼロに達した後に、次のD2Dスロットの開始で前記第2UEに前記D2D送信を送信することによって、
前記第2UEとの通信セッションを開始する、項目5に記載のデバイス。
[項目7]
前記カウントダウンのための特定の数は、ランダムに又は擬似乱数で選択される、項目6に記載のデバイス。
[項目8]
D2Dスロットは、さらに、いくつのD2Dスロットが送信デバイスによって連続的に送信されるかを特定する、制御チャネルの中のエンコードされた予約時間を含む、項目5から7のいずれか一項に記載のデバイス。
[項目9]
前記処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、前記予約時間が終了するまで、複数のD2Dスロットの検知を中断する、項目8に記載のデバイス。
[項目10]
前記処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、前記予約時間が終了するまで、スリープ状態に入る、項目9に記載のデバイス。
[項目11]
複数のD2Dスロットは、時間及び/又は周波数の領域において連続的に番号が付けられる、項目5から10のいずれか一項に記載のデバイス。
[項目12]
前記処理回路は、さらに、各D2Dスロットの中で送信パワーレベルの指標を送信する、項目1から11のいずれか一項に記載のデバイス。
[項目13]
前記プリアンブルは、前記送信パワーレベルを示す周期性を有する時間領域の中の繰り返しの信号シーケンスである、項目12に記載のデバイス。
[項目14]
前記処理回路は、前記プリアンブル及び送信パワーレベルの到着を検出するための異なる複数の相関期間を有する複数の相関器のバンクをさらに備える、項目13に記載のデバイス。
[項目15]
前記処理回路は、さらに、1又は複数の参照シンボルの中で送信パワーレベルの前記指標を送信し、特定された参照シンボル又は複数の参照シンボルの特定されたシーケンスは、前記送信パワーレベルを示す、項目12から14のいずれか一項に記載のデバイス。
[項目16]
前記処理回路は、さらに、前記プリアンブルに続く物理層ヘッダの中のエンコードされた複数のビットとして、送信パワーレベルの前記指標を送信する、項目12から15のいずれか一項に記載のデバイス。
[項目17]
前記物理層ヘッダは、トランスポートブロックを構成し、連続的に送信される複数のD2Dスロットの数の指標をさらに備える、項目16に記載のデバイス。
[項目18]
前記処理回路は、さらに、チャネル予約リクエストに応答して、前記eNBからのD2D通信のための複数の時間周波数リソースの複数の割り当てを受信し、D2D通信のための送信パワーレベルの指標及び予約の持続時間は、前記チャネル予約リクエストの中に含まれる、項目1から17のいずれか一項に記載のデバイス。
[項目19]
前記チャネル予約リクエストは、前記デバイスに近接する他の複数のUEが前記チャネル予約及び送信パワーレベルを知ることができるように十分に高いパワーで送信される、項目18に記載のデバイス。
[項目20]
ユーザ機器(UE)デバイスであって、
D2D(デバイスツーデバイス)通信のためのエアインターフェースを提供する無線送信機と、
前記無線送信機に接続された処理回路と
を備え、
前記処理回路は、D2Dスロットに関連して、キャリア検知多重アクセス(CSMA)を使用して、第2UEとのD2D通信セッションを開始し、
前記第2UEへの及びからの複数のD2D送信は、複数のOFDM又はSC−FDMシンボルを含む各D2Dスロットで複数のD2Dスロットにまとめられ、
前記処理回路は、さらに、
送信動作が存在するか否かを決定するために現在のD2Dスロットを検知し、
前記現在のD2Dスロットがビジー状態でない場合、後続のD2Dスロットの開始で前記第2UEにD2D送信を送信する、デバイス。
[項目21]
前記処理回路は、さらに、
前記現在のD2Dスロットがビジー状態でない場合に、選択された数でカウントダウンを開始すること、
ビジー状態でない各D2Dスロットが検出された後に前記カウントダウンをデクリメントし、ビジー状態のD2Dスロットが検出されたときに前記カウントダウンを一時中断すること、及び
前記カウントダウンがゼロに達した後に次のD2Dスロットの開始で前記第2UEに前記D2D送信を送信することによって、
前記第2UEとの通信セッションを開始する、項目20に記載のデバイス。
[項目22]
前記カウントダウンのための特定の数は、ランダムに又は擬似乱数で選択される、項目21に記載のデバイス。
[項目23]
D2Dスロットは、いくつのD2Dスロットが送信デバイスによって連続的に送信されるかを特定する、制御チャネルの中のエンコードされた予約時間をさらに含む、項目20から22のいずれか一項に記載のデバイス。
[項目24]
前記処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、前記予約時間が終了するまで、複数のD2Dスロットの検知を中断する、項目23に記載のデバイス。
[項目25]
前記処理回路は、さらに、D2Dスロットの中に予約時間が検出されたときに、前記予約時間が終了するまで、スリープ状態に入る、項目24に記載のデバイス。
[項目26]
ユーザ機器(UE)デバイスを動作させる方法であって、
進化型ノードB(eNB)からのD2D通信のための複数の時間周波数リソースの複数の割り当てを受信する段階と、
送信動作が存在するか否かを決定するために現在のD2Dスロットを検知する段階と、
前記現在のD2Dスロットがビジー状態でない場合、後続のD2Dスロットの開始で第2UEにD2D送信を送信する段階と
を備え、
前記第2UEへの又はからの複数のD2D送信は、複数のOFDM又はSC−FDMシンボルを含む各D2Dスロットで複数のD2Dスロットにまとめられる、方法。
[項目27]
前記現在のD2Dスロットがビジー状態でない場合に、選択された数でカウントダウンを開始する段階と、
ビジー状態でない各D2Dスロットが検出された後に前記カウントダウンをデクリメントし、ビジー状態のD2Dスロットが検出されたときに前記カウントダウンを一時中断する段階と、
前記カウントダウンがゼロに達した後に次のD2Dスロットの開始で前記第2UEに前記D2D送信を送信する段階と
をさらに備える、項目26に記載の方法。
[項目28]
前記D2D送信の中に前記第2UEによる使用のためのプリアンブルを含める段階
をさらに備える項目26又は27に記載の方法。
[項目29]
いくつのD2Dスロットが連続的に送信されるかを特定する、制御チャネルの中のエンコードされた予約時間を含める段階
をさらに備える項目26から28のいずれか一項に記載の方法。
[項目30]
D2Dスロットの中に予約時間が検出されたときに、前記予約時間が終了するまで、複数のD2Dスロットの検知を中断する段階
をさらに備える項目26から29のいずれか一項に記載の方法。
A summary is provided in accordance with the US Patent Enforcement Regulations. Section 1.72 (b) requires an abstract allowing the reader to confirm the nature and spirit of the technical disclosure. It is submitted with the understanding that it is not used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the Detailed Description as individual embodiments of each claim on its own.
[Item 1]
A user equipment (UE) device,
a wireless transmitter providing an air interface for communicating with an eNB (Evolved Node B) and for D2D (Device to Device) communication;
Processing circuitry connected to the wireless transmitter;
The processing circuit
Receive multiple assignments of multiple time frequency resources for D2D communication from the eNB;
Establish a D2D communication session with the second UE,
Perform multiple automatic gain control (AGC) using multiple received D2D slot preambles,
A device wherein multiple D2D transmissions to and from the second UE begin with the preamble and are grouped into multiple D2D slots at each D2D slot that includes multiple OFDM or SC-FDM symbols.
[Item 2]
The device according to item 1, wherein the preamble is a repetitive signal sequence in time domain.
[Item 3]
The device according to claim 2, wherein the processing circuit further detects the preambles of a plurality of received D2D slots via autocorrelation.
[Item 4]
The device according to item 2 or 3, wherein each D2D slot comprises one or more reference symbols.
[Item 5]
The processing circuit further comprises
Detecting the current D2D slot to determine if there is a transmit operation, and, if the current D2D slot is not busy, D2D transmission to the second UE at the start of the subsequent D2D slot By sending
5. The device according to any one of items 2 to 4, which initiates a communication session with the second UE using Carrier Sense Multiple Access (CSMA) for D2D slots.
[Item 6]
The processing circuit further comprises
Starting the countdown with the selected number if the current D2D slot is not busy,
After each D2D slot not busy is detected, the countdown is decremented, and when the busy D2D slot is detected, the countdown is suspended, and the next countdown is reached after the countdown reaches zero. By transmitting the D2D transmission to the second UE at the start of the D2D slot,
The device according to item 5, initiating a communication session with the second UE.
[Item 7]
The device according to claim 6, wherein the specific number for the countdown is selected randomly or with pseudo-random numbers.
[Item 8]
The D2D slot further comprises an encoded reservation time in the control channel, specifying how many D2D slots are transmitted consecutively by the transmitting device, according to any one of items 5 to 7 device.
[Item 9]
9. The device according to item 8, wherein the processing circuit further suspends detection of a plurality of D2D slots until the reservation time ends, when a reservation time is detected in the D2D slot.
[Item 10]
10. The device according to item 9, wherein the processing circuit further sleeps when the reservation time is detected in the D2D slot until the reservation time ends.
[Item 11]
11. A device according to any of the claims 5-10, wherein the plurality of D2D slots are consecutively numbered in the time and / or frequency domain.
[Item 12]
12. The device according to any one of items 1 to 11, wherein the processing circuit further transmits an indication of transmit power level in each D2D slot.
[Item 13]
13. The device according to claim 12, wherein the preamble is a repetitive signal sequence in a time domain having a periodicity indicative of the transmission power level.
[Item 14]
14. The device according to claim 13, wherein the processing circuit further comprises a bank of correlators having different correlation periods for detecting the arrival of the preamble and transmit power level.
[Item 15]
The processing circuit further transmits the indication of transmission power level in one or more reference symbols, and a specified reference symbol or a specified sequence of reference symbols indicates the transmission power level. The device according to any one of items 12 to 14.
[Item 16]
16. The device according to any one of items 12 to 15, wherein the processing circuitry further transmits the indication of transmit power level as a plurality of encoded bits in a physical layer header following the preamble.
[Item 17]
17. The device according to item 16, wherein the physical layer header comprises a transport block and further comprising an indication of the number of D2D slots transmitted continuously.
[Item 18]
The processing circuit further receives, in response to a channel reservation request, a plurality of allocations of time frequency resources for D2D communication from the eNB, a transmission power level indicator and an indication of reservation for D2D communication. 18. A device according to any one of the preceding items, wherein a duration is included in the channel reservation request.
[Item 19]
19. The device according to item 18, wherein the channel reservation request is transmitted at a power high enough to allow other UEs in proximity to the device to know the channel reservation and transmission power level.
[Item 20]
A user equipment (UE) device,
A wireless transmitter providing an air interface for D2D (device-to-device) communication;
Processing circuitry connected to the wireless transmitter;
The processing circuit initiates a D2D communication session with the second UE using Carrier Sense Multiple Access (CSMA) in association with the D2D slot,
The plurality of D2D transmissions to and from the second UE are grouped into a plurality of D2D slots in each D2D slot including a plurality of OFDM or SC-FDM symbols,
The processing circuit further comprises
Detect the current D2D slot to determine if there is a transmit operation,
A device for transmitting D2D transmissions to the second UE at the beginning of a subsequent D2D slot, if the current D2D slot is not busy.
[Item 21]
The processing circuit further comprises
Starting the countdown with the selected number if the current D2D slot is not busy,
Decrementing the countdown after each D2D slot not busy is detected, and suspending the countdown when a busy D2D slot is detected, and of the next D2D slot after the countdown reaches zero. By transmitting the D2D transmission to the second UE at the start:
The device according to
[Item 22]
22. The device according to
[Item 23]
23. The device according to any one of items 20-22, wherein the D2D slot further comprises an encoded reservation time in the control channel, specifying how many D2D slots are transmitted consecutively by the transmitting device. .
[Item 24]
24. The device according to
[Item 25]
25. The device according to item 24, wherein the processing circuit further goes to sleep until the reservation time ends, when the reservation time is detected in the D2D slot.
[Item 26]
A method of operating a user equipment (UE) device, the method comprising:
Receiving multiple assignments of multiple time frequency resources for D2D communication from an evolved Node B (eNB);
Sensing the current D2D slot to determine if there is a transmit operation;
Sending a D2D transmission to the second UE at the beginning of the subsequent D2D slot, if the current D2D slot is not busy.
A method wherein multiple D2D transmissions to or from the second UE are grouped into multiple D2D slots with each D2D slot comprising multiple OFDM or SC-FDM symbols.
[Item 27]
Initiating a countdown with a selected number if the current D2D slot is not busy;
Decrementing the countdown after each non-busy D2D slot is detected, and suspending the countdown when a busy D2D slot is detected;
27. The method of clause 26, further comprising transmitting the D2D transmission to the second UE at the start of the next D2D slot after the countdown reaches zero.
[Item 28]
26. A method according to clause 26 or 27, further comprising the step of including in the D2D transmission a preamble for use by the second UE.
[Item 29]
29. A method according to any one of items 26 to 28, further comprising the step of including an encoded reservation time in the control channel identifying how many D2D slots are transmitted consecutively.
[Item 30]
30. The method according to any one of items 26 to 29, further comprising: interrupting detection of a plurality of D2D slots until the reservation time ends, when a reservation time is detected in the D2D slot.
Claims (21)
前記装置は、
送受信回路と、
処理回路と
を備え、
前記処理回路は、
D2D通信のための複数のリソースの割り当てを、拡張型ノードB(eNB)から受信し、
単一搬送波周波数分割多重(SC−FDM)技術に従って、物理D2D制御チャネルの複数のリソースエレメント(複数のRE)内のD2D送信のための制御情報を変調し、
前記SC−FDM技術に従って、物理D2D共有チャネルの複数のRE内のD2D送信のためのデータを変調し、
シグナリングに基づく複数の前記D2D送信のための同期情報を他の装置に提供し、
D2D通信のために前記eNBにより割り当られる前記複数のリソース内の送信に対して、前記物理D2D制御チャネル及び前記物理D2D共有チャネルの復調のために設定される復調基準信号(DMRS)を生成するように構成され、
前記物理D2D制御チャネルの前記複数のRE及び前記物理D2D共有チャネルの前記複数のREは、D2D通信のために前記eNBにより割り当てられる前記複数のリソース内にある、装置。 An apparatus of a UE configured to perform direct device-to-device (D2D) communication with one or more other user equipments (UEs),
The device
Transmitter and receiver circuits,
And processing circuit,
The processing circuit
Receive allocations of multiple resources for D2D communication from the eNode B (eNB);
Modulate control information for D2D transmission in multiple resource elements (multiple REs) of the physical D2D control channel according to single carrier frequency division multiplexing (SC-FDM) technology,
Modulate data for D2D transmission in multiple REs of physical D2D shared channel according to the SC-FDM technique,
Subjecting Hisage synchronization information for a plurality of the D2D transmission based on signaling on another device,
Generate a demodulation reference signal (DMRS) configured for demodulation of the physical D2D control channel and the physical D2D shared channel for transmissions in the plurality of resources allocated by the eNB for D2D communication Configured as
The apparatus wherein the plurality of REs of the physical D2D control channel and the plurality of REs of the physical D2D shared channel are within the plurality of resources allocated by the eNB for D2D communication.
複数の前記D2D送信のための前記サイクリックプレフィックスの長さは、前記eNBへの複数のアップリンク送信に用いられるサイクリックプレフィックスの長さとは異なる、請求項1又は2に記載の装置。 The UE is configured to include a cyclic prefix for the plurality of D2D transmissions,
The apparatus according to claim 1, wherein a length of the cyclic prefix for a plurality of the D2D transmissions is different from a length of a cyclic prefix used for a plurality of uplink transmissions to the eNB.
前記処理回路は、複数の前記D2D送信のために、単一のキャリア周波数の複数の送信を前記送受信回路に設定し、かつ、前記eNBと通信するために、マルチキャリア送信を前記送受信回路に設定する、請求項1から5のいずれか一項に記載の装置。 The transmission / reception circuit can set transmission on a plurality of carrier frequencies according to orthogonal frequency division multiplexing technology, and can set transmission on a single carrier frequency according to SC-FDM technology,
The processing circuit sets a plurality of transmissions of a single carrier frequency to the transmission / reception circuit for the plurality of D2D transmissions, and sets a multicarrier transmission to the transmission / reception circuit to communicate with the eNB. The device according to any one of the preceding claims.
前記同期情報は、前記eNBから受信した前記D2D通信情報に基づく、請求項5又は6に記載の装置。 The UE is further configured to receive D2D communication information from the eNB,
The apparatus according to claim 5, wherein the synchronization information is based on the D2D communication information received from the eNB.
単一搬送波周波数分割多重(SC−FDM)技術に従って、物理D2D制御チャネルの複数のリソースエレメント(複数のRE)内でD2D送信のための制御情報を変調する手順と、
前記SC−FDM技術に従って、物理D2D共有チャネルの複数のRE内のD2D送信のためのデータを変調する手順と、
周波数ホッピングが有効である場合、予め定められたホッピングパターンに従って、前記物理D2D共有チャネルの前記複数のREを決定する手順と
を実行させ、
前記物理D2D制御チャネルの前記複数のRE及び前記物理D2D共有チャネルの前記複数のREは、D2D通信のための拡張型ノードB(eNB)により割り当てられる複数のリソース内にある、プログラム。 Processing circuitry of the UE for establishing direct device-to-device (D2D) communication with the one or more other user equipments (UEs) to the UE,
Modulating control information for D2D transmission in multiple resource elements (multiple REs) of the physical D2D control channel according to single carrier frequency division multiplexing (SC-FDM) techniques;
Modulating data for D2D transmission in multiple REs of a physical D2D shared channel according to the SC-FDM technique;
And, if frequency hopping is enabled, performing a procedure of determining the plurality of REs of the physical D2D shared channel according to a predetermined hopping pattern;
The program, wherein the plurality of REs of the physical D2D control channel and the plurality of REs of the physical D2D shared channel are in a plurality of resources allocated by an extensible Node B (eNB) for D2D communication.
D2D通信のための複数のリソースの前記割り当てを、前記eNBから受信する手順と、
前記eNBから受信されるシグナリングに基づく複数の前記D2D送信のための同期情報を他の装置に提供する手順と、
前記D2D通信のために前記eNBにより割り当てられる前記複数のリソース内の送信に対して、前記物理D2D制御チャネル及び前記物理D2D共有チャネルの復調のために設定される復調基準信号(DMRS)を生成する手順と
をさらに実行させるための、請求項12に記載のプログラム。 In the processing circuit,
Receiving from the eNB the allocation of resources for D2D communication;
And instructions providing Hisage to other devices synchronization information for a plurality of the D2D transmission based on signaling received from the eNB,
Generating a demodulation reference signal (DMRS) configured for demodulation of the physical D2D control channel and the physical D2D shared channel for transmissions in the plurality of resources allocated by the eNB for the D2D communication The program according to claim 12, for further executing the procedure.
複数の前記D2D送信のための前記サイクリックプレフィックスの長さは、前記eNBへの複数のアップリンク送信に用いられるサイクリックプレフィックスの長さとは異なる、請求項12又は13に記載のプログラム。 The UE is configured to include a cyclic prefix for the plurality of D2D transmissions,
The program according to claim 12 or 13, wherein a length of the cyclic prefix for a plurality of the D2D transmissions is different from a length of a cyclic prefix used for a plurality of uplink transmissions to the eNB.
前記装置は、
送受信回路と、
処理回路と
を備え、
前記処理回路は、
複数のD2D通信のための複数のリソースの割り当てを、拡張型ノードB(eNB)から受信し、
他のUEからの複数のD2D送信をデコードし、
前記eNBからのシグナリングに基づく前記複数のD2D送信のための同期情報を受信し、
前記複数のD2D通信のために前記eNBにより割り当てられる前記複数のリソース内の前記他のUEにより送信された復調基準信号(DMRS)を受信するように構成され、
前記複数のD2D送信は、物理D2D制御チャネル及び物理D2D共有チャネルを含み、
前記物理D2D制御チャネルは、単一搬送波周波数分割多重(SC−FDM)技術に従って変調される制御情報を含み、
前記物理D2D共有チャネルは、前記SC−FDM技術に従って変調されるデータを含み、
前記DMRSは、前記物理D2D制御チャネルの復調及び前記物理D2D共有チャネルの復調のために設定され、
前記物理D2D制御チャネル及び前記物理D2D共有チャネルは、前記複数のD2D通信のために前記eNBにより割り当てられる前記複数のリソース内にある、装置。 An arrangement of user equipment (UE) configured for device-to-device (D2D) communication, comprising
The device
Transmitter and receiver circuits,
And processing circuit,
The processing circuit
Receive allocations of multiple resources for multiple D2D communication from the eNode B (eNB);
Decode multiple D2D transmissions from other UEs,
Receive synchronization information for the plurality of D2D transmissions based on signaling from the eNB;
Configured to receive a demodulation reference signal (DMRS) sent by the other UE in the plurality of resources allocated by the eNB for the plurality of D2D communications,
The plurality of D2D transmissions include a physical D2D control channel and a physical D2D shared channel,
The physical D2D control channel includes control information modulated according to single carrier frequency division multiplexing (SC-FDM) technology,
The physical D2D shared channel includes data modulated according to the SC-FDM technique,
The DMRS is configured for demodulation of the physical D2D control channel and demodulation of the physical D2D shared channel,
The apparatus wherein the physical D2D control channel and the physical D2D shared channel are within the plurality of resources allocated by the eNB for the plurality of D2D communications.
前記サイクリックプレフィックスの長さは、前記eNBへの複数のアップリンク送信に用いられるサイクリックプレフィックスの長さとは異なる、請求項17又は18に記載の装置。 The UE is configured to decode a cyclic prefix that is part of the plurality of D2D transmissions,
The apparatus according to claim 17 or 18, wherein a length of the cyclic prefix is different from a length of a cyclic prefix used for multiple uplink transmissions to the eNB.
前記処理回路は、前記複数のD2D送信のための単一のキャリア周波数の受信を前記送受信回路に設定し、前記eNBとの複数の通信のためのマルチキャリアの受信を前記送受信回路に設定する、請求項17から20のいずれか一項に記載の装置。 The transmission / reception circuit can be configured to receive on a plurality of carrier frequencies according to orthogonal frequency division multiplexing technology, and can be configured to receive on a single carrier according to the SC-FDM technology,
The processing circuit sets the reception of a single carrier frequency for the plurality of D2D transmissions in the transmission / reception circuit, and sets the reception of multicarriers for a plurality of communications with the eNB in the transmission / reception circuit. 21. Apparatus according to any one of claims 17 to 20.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261624185P | 2012-04-13 | 2012-04-13 | |
US61/624,185 | 2012-04-13 | ||
US13/729,164 | 2012-12-28 | ||
US13/729,164 US9661658B2 (en) | 2012-04-13 | 2012-12-28 | Multi-access scheme and signal structure for D2D communications |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015505892A Division JP5986289B2 (en) | 2012-04-13 | 2013-04-11 | Multiple access scheme and signal structure for D2D communication |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017005740A JP2017005740A (en) | 2017-01-05 |
JP6424396B2 true JP6424396B2 (en) | 2018-11-21 |
Family
ID=49324975
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015501958A Active JP6077640B2 (en) | 2012-04-13 | 2013-04-11 | D2D connection recovery scheme |
JP2015505892A Active JP5986289B2 (en) | 2012-04-13 | 2013-04-11 | Multiple access scheme and signal structure for D2D communication |
JP2015503689A Expired - Fee Related JP5886471B2 (en) | 2012-04-13 | 2013-04-12 | Small data communication in wireless communication |
JP2015505952A Active JP5954647B2 (en) | 2012-04-13 | 2013-04-12 | A supported self-optimizing wireless network that is optimized for energy, mobility and capacity |
JP2016111294A Active JP6250736B2 (en) | 2012-04-13 | 2016-06-02 | A supported self-optimizing wireless network that is optimized for energy, mobility and capacity |
JP2016153870A Active JP6424396B2 (en) | 2012-04-13 | 2016-08-04 | Multiple access scheme and signal structure for D2D communication |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015501958A Active JP6077640B2 (en) | 2012-04-13 | 2013-04-11 | D2D connection recovery scheme |
JP2015505892A Active JP5986289B2 (en) | 2012-04-13 | 2013-04-11 | Multiple access scheme and signal structure for D2D communication |
JP2015503689A Expired - Fee Related JP5886471B2 (en) | 2012-04-13 | 2013-04-12 | Small data communication in wireless communication |
JP2015505952A Active JP5954647B2 (en) | 2012-04-13 | 2013-04-12 | A supported self-optimizing wireless network that is optimized for energy, mobility and capacity |
JP2016111294A Active JP6250736B2 (en) | 2012-04-13 | 2016-06-02 | A supported self-optimizing wireless network that is optimized for energy, mobility and capacity |
Country Status (13)
Country | Link |
---|---|
US (14) | US9143984B2 (en) |
EP (11) | EP2837109A4 (en) |
JP (6) | JP6077640B2 (en) |
KR (3) | KR101612358B1 (en) |
CN (9) | CN104205686B (en) |
AU (2) | AU2013245908B2 (en) |
CA (2) | CA2869000C (en) |
ES (3) | ES2684535T3 (en) |
HU (3) | HUE039147T2 (en) |
MX (3) | MX364604B (en) |
MY (1) | MY179770A (en) |
RU (3) | RU2643702C1 (en) |
WO (9) | WO2013155182A1 (en) |
Families Citing this family (525)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11309943B2 (en) | 2004-04-02 | 2022-04-19 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US10985811B2 (en) | 2004-04-02 | 2021-04-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US10749582B2 (en) | 2004-04-02 | 2020-08-18 | Rearden, Llc | Systems and methods to coordinate transmissions in distributed wireless systems via user clustering |
US11451275B2 (en) | 2004-04-02 | 2022-09-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11394436B2 (en) | 2004-04-02 | 2022-07-19 | Rearden, Llc | System and method for distributed antenna wireless communications |
US10425134B2 (en) | 2004-04-02 | 2019-09-24 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US10886979B2 (en) | 2004-04-02 | 2021-01-05 | Rearden, Llc | System and method for link adaptation in DIDO multicarrier systems |
US9685997B2 (en) | 2007-08-20 | 2017-06-20 | Rearden, Llc | Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems |
US20130336193A1 (en) * | 2012-06-19 | 2013-12-19 | Qualcomm Incorporated | Network information for assisting user equipment |
US9055534B2 (en) * | 2011-01-10 | 2015-06-09 | Lg Electronics Inc. | Method for determining transmission power for transmitting uplink signals between terminals in a wireless communication system that supports terminal-to-terminal communication, and apparatus therefor |
US8948293B2 (en) * | 2011-04-20 | 2015-02-03 | Texas Instruments Incorporated | Downlink multiple input multiple output enhancements for single-cell with remote radio heads |
KR20200008016A (en) | 2011-06-29 | 2020-01-22 | 엘지전자 주식회사 | Method and apparatus for transmitting control information in wireless communication system |
JP5772345B2 (en) * | 2011-07-25 | 2015-09-02 | 富士通株式会社 | Parameter setting apparatus, computer program, and parameter setting method |
US8750896B2 (en) | 2011-10-13 | 2014-06-10 | At&T Mobility Ii Llc | Femtocell measurements for macro beam steering |
US8811994B2 (en) | 2011-12-06 | 2014-08-19 | At&T Mobility Ii Llc | Closed loop heterogeneous network for automatic cell planning |
CN103220699B (en) * | 2012-01-19 | 2016-01-27 | 华为技术有限公司 | The method and apparatus of critic network performance |
EP2823683A1 (en) | 2012-02-03 | 2015-01-14 | Interdigital Patent Holdings, Inc. | Method and apparatus for coexistence among wireless transmit/receive units (wtrus) operating in the same spectrum |
EP2639989A1 (en) | 2012-03-16 | 2013-09-18 | Panasonic Corporation | Search space for ePDCCH control information in an OFDM-based mobile communication system |
US9590780B2 (en) * | 2012-04-10 | 2017-03-07 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving downlink signals in wireless communication systems |
US9252908B1 (en) | 2012-04-12 | 2016-02-02 | Tarana Wireless, Inc. | Non-line of sight wireless communication system and method |
US9143984B2 (en) | 2012-04-13 | 2015-09-22 | Intel Corporation | Mapping of enhanced physical downlink control channels in a wireless communication network |
US9585176B2 (en) * | 2012-04-17 | 2017-02-28 | Qualcomm Incorporated | Methods and apparatus for opportunistic scheduling of peer to peer links in wide area network |
WO2013155710A1 (en) * | 2012-04-20 | 2013-10-24 | 华为技术有限公司 | Pilot signal sending method and receiving method, user equipment, and base station |
US9294161B2 (en) * | 2012-04-26 | 2016-03-22 | Huawei Technologies Co., Ltd. | System and method for interference coordination |
EP2842355A2 (en) | 2012-04-27 | 2015-03-04 | Interdigital Patent Holdings, Inc. | Methods and apparatuses for optimizing proximity data path setup |
US9451595B2 (en) * | 2012-04-27 | 2016-09-20 | Qualcomm Incorporated | Methods and apparatus for TDD reconfiguration |
EP3897016A3 (en) | 2012-04-27 | 2021-11-24 | Interdigital Patent Holdings, Inc. | Method and apparatus for provisioning of d2d policies for a wireless transmit receive unit (wtru) |
US9510212B2 (en) * | 2012-04-27 | 2016-11-29 | Qualcomm Incorporated | Signal designs for densely deployed network |
US9635645B2 (en) * | 2012-05-02 | 2017-04-25 | Industrial Technology Research Institute | Method of handling resource allocation in TDD system and related communication device |
US9078144B2 (en) | 2012-05-02 | 2015-07-07 | Nokia Solutions And Networks Oy | Signature enabler for multi-vendor SON coordination |
WO2013165184A1 (en) * | 2012-05-03 | 2013-11-07 | 엘지전자 주식회사 | Method and apparatus for performing harq based on dynamic change of wireless resources in wireless communication system |
CN103384179B (en) * | 2012-05-04 | 2017-08-11 | 电信科学技术研究院 | Use the uplink-downlink configuration method and equipment in the system of time division duplex communication standard |
US9253785B2 (en) * | 2012-05-04 | 2016-02-02 | Broadcom Corporation | Multi-cell incremental redundancy |
US20130301561A1 (en) * | 2012-05-08 | 2013-11-14 | Futurewei Technologies, Inc. | System and Method for Antenna Port Association |
EP2848057B1 (en) * | 2012-05-11 | 2021-06-23 | Nokia Solutions and Networks Oy | Method for uplink-downlink interference mitigation in heterogeneous network |
US20140056244A1 (en) * | 2012-05-11 | 2014-02-27 | Telefonaktiebolaget L M Ericsson (Publ) | A Node and Method for Downlink Communications Scheduling |
US10349385B2 (en) * | 2012-05-16 | 2019-07-09 | Qualcomm Incorporated | Methods and apparatus for subframe configuration for wireless networks |
US9622230B2 (en) * | 2012-05-17 | 2017-04-11 | Qualcomm Incorporated | Narrow band partitioning and efficient resource allocation for low cost user equipments |
US9049632B1 (en) * | 2012-05-22 | 2015-06-02 | Sprint Communications Company L.P. | Idle mode handoff transfer of network access information |
EP2885937B1 (en) * | 2012-05-23 | 2018-11-21 | Telefonaktiebolaget LM Ericsson (publ) | Radio resource adaptation method and associated wireless communication devices |
US9467993B2 (en) * | 2012-05-29 | 2016-10-11 | Lg Electronics Inc. | Method for transmitting and receiving downlink control channels in wireless communication systems, and apparatus for same |
US9185620B2 (en) | 2012-05-30 | 2015-11-10 | Intel Corporation | Adaptive UL-DL configurations in a TDD heterogeneous network |
JP6297542B2 (en) * | 2012-05-31 | 2018-03-20 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Interference mitigation in asymmetric LTE deployment |
JP5781016B2 (en) * | 2012-06-04 | 2015-09-16 | 株式会社Nttドコモ | Wireless base station, wireless communication system, and wireless communication method |
JP2013251860A (en) * | 2012-06-04 | 2013-12-12 | Ntt Docomo Inc | Communication control method, wireless communication system, wireless base station and user terminal |
CN103476055B (en) * | 2012-06-05 | 2017-02-08 | 电信科学技术研究院 | Method for determining uplink transmission interruption time, and equipment |
WO2013191419A1 (en) * | 2012-06-17 | 2013-12-27 | Lg Electronics Inc. | An apparatus for transceiving signals in accordance with a frame structure supportive of a plurlaity of carriers in a wireless communication system and method thereof |
KR20150035500A (en) * | 2012-06-25 | 2015-04-06 | 엘지전자 주식회사 | Method for transmitting enhanced control channel in a wireless communication system, and apparatus therefor |
JP6131458B2 (en) * | 2012-06-27 | 2017-05-24 | シャープ株式会社 | Mobile station apparatus, base station apparatus, and radio communication method |
KR101429339B1 (en) * | 2012-06-29 | 2014-08-12 | 인텔렉추얼디스커버리 주식회사 | Method and apparatus for avoiding macro interference |
EP2870718A1 (en) * | 2012-07-04 | 2015-05-13 | Nokia Solutions and Networks Oy | Method and apparatus for signalling of harq timing at ul/dl subframe reconfiguration |
WO2014006994A1 (en) * | 2012-07-05 | 2014-01-09 | ソニー株式会社 | Communication control device, communication control method, program, terminal device, and communication control system |
CN103580772B (en) * | 2012-07-18 | 2017-06-06 | 华为技术有限公司 | Data transmission method, system and equipment, terminal obtain the method and terminal of data |
JP6317344B2 (en) * | 2012-07-24 | 2018-04-25 | サムスン エレクトロニクス カンパニー リミテッド | Method and apparatus for transmitting HARQ-ACK |
CN110198210B (en) * | 2012-07-27 | 2021-10-26 | 华为技术有限公司 | System and method for multipoint communication |
CN103181230B (en) * | 2012-07-27 | 2014-05-07 | 华为终端有限公司 | Control channel transmission method, apparatus and device |
US9247436B2 (en) * | 2012-07-27 | 2016-01-26 | Nokia Solutions And Networks Oy | Insight based orchestration of network optimization in communication networks |
WO2014019191A1 (en) * | 2012-08-02 | 2014-02-06 | 华为技术有限公司 | Method for configuring reference signal, base station, and user equipment |
WO2014019874A1 (en) | 2012-08-03 | 2014-02-06 | Nokia Siemens Networks Oy | Interference measurement resource (imr) signaling and use to support interference coordination between cells |
US9445410B2 (en) * | 2012-08-03 | 2016-09-13 | Qualcomm Incorporated | Communicating with an enhanced new carrier type |
EP2883416A1 (en) | 2012-08-07 | 2015-06-17 | Corning Optical Communications Wireless Ltd. | Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods |
CN103582000A (en) * | 2012-08-10 | 2014-02-12 | 北京三星通信技术研究有限公司 | Interference coordinating method |
WO2014029435A1 (en) * | 2012-08-23 | 2014-02-27 | Nokia Siemens Networks Oy | Massive discovery of devices |
WO2014034389A1 (en) * | 2012-08-29 | 2014-03-06 | 京セラ株式会社 | Mobile communication system, user terminal and communication control method |
GB2505489A (en) * | 2012-08-31 | 2014-03-05 | Sony Corp | A mobile communications device for use in a virtual narrowband carrier within a wideband carrier of a mobile communications system |
US9191943B2 (en) * | 2012-09-13 | 2015-11-17 | Kt Corporation | Reception and configuration of downlink control channel |
KR101562702B1 (en) | 2012-09-14 | 2015-10-22 | 주식회사 케이티 | Method for transmitting control information, transmission/reception point thereof, method for receiving control information and terminal thereof |
KR101709598B1 (en) * | 2012-09-14 | 2017-02-23 | 후아웨이 디바이스 컴퍼니 리미티드 | Method and apparatus for establishing a mapping between enhanced downlink control channel resource and antenna port |
KR102130353B1 (en) * | 2012-09-18 | 2020-07-06 | 삼성전자주식회사 | Method and apparatus for generating control channel element in communication system |
WO2014046425A2 (en) * | 2012-09-18 | 2014-03-27 | Kt Corporation | Transmission and reception of control information |
WO2014043863A1 (en) * | 2012-09-19 | 2014-03-27 | Qualcomm Incorporated | Method and apparatus for separating a cell cluster for lte eimta interference mitigation |
CN104756544B (en) | 2012-09-27 | 2019-08-16 | Lg电子株式会社 | The method and apparatus of extension access restriction parameter are received in a wireless communication system |
CN103716753B (en) * | 2012-09-29 | 2018-12-25 | 中兴通讯股份有限公司 | A kind of small data sending method, system and user equipment |
US8902907B2 (en) * | 2012-10-05 | 2014-12-02 | Futurewei Technologies, Inc. | Terminal based grouping virtual transmission and reception in wireless networks |
EP2907338B1 (en) * | 2012-10-12 | 2018-05-23 | NEC Corporation | Communications node |
JP5814207B2 (en) * | 2012-10-15 | 2015-11-17 | 株式会社Nttドコモ | Base station apparatus and mobile terminal apparatus |
US9503934B2 (en) * | 2012-10-18 | 2016-11-22 | Huawei Technologies Co., Ltd. | System and method for radio access virtualization |
US9313739B2 (en) | 2012-10-23 | 2016-04-12 | Qualcomm Incorporated | Systems and methods for low power wake up signal and operations for WLAN |
US8958349B2 (en) * | 2012-10-25 | 2015-02-17 | Blackberry Limited | Method and apparatus for dynamic change of the TDD UL/DL configuration in LTE systems |
CN103988568A (en) * | 2012-10-26 | 2014-08-13 | 华为技术有限公司 | Reference signal transmission method and device |
US9603163B2 (en) * | 2012-11-01 | 2017-03-21 | Lg Electronics Inc. | Method and apparatus for supporting scheduling groups of devices characteristics in a wireless communication system |
CN104885514B (en) | 2012-11-01 | 2019-05-21 | 英特尔公司 | The signal of qos requirement and UE power preference is sent in LTE-A network |
US9532224B2 (en) * | 2012-11-05 | 2016-12-27 | Electronics And Telecommunications Research Institute | Method of device-to-device discovery and apparatus thereof |
EP2918100A4 (en) * | 2012-11-12 | 2015-12-09 | Ericsson Telefon Ab L M | Method and network node for cell configuration of low power node |
US10285098B2 (en) * | 2012-11-20 | 2019-05-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and node for reducing handover signaling associated with group handover |
US11050468B2 (en) | 2014-04-16 | 2021-06-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US11190947B2 (en) | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for concurrent spectrum usage within actively used spectrum |
US10194346B2 (en) | 2012-11-26 | 2019-01-29 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US11189917B2 (en) | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for distributing radioheads |
US9769803B2 (en) * | 2012-11-29 | 2017-09-19 | Nokia Technologies Oy | Methods for device-to-device connection re-establishment and related user equipments and radio access node |
US9407302B2 (en) * | 2012-12-03 | 2016-08-02 | Intel Corporation | Communication device, mobile terminal, method for requesting information and method for providing information |
US9025527B2 (en) * | 2012-12-13 | 2015-05-05 | Qualcomm Incorporated | Adaptive channel reuse mechanism in communication networks |
US20140169163A1 (en) * | 2012-12-13 | 2014-06-19 | General Electric Company | Systems and methods for communication channel capacity change detection |
KR101988506B1 (en) * | 2012-12-14 | 2019-09-30 | 삼성전자 주식회사 | Method and apparatus for transmitting/receiving discovery signal in mobile communication system |
CN104885391B (en) | 2012-12-17 | 2018-01-16 | Lg电子株式会社 | Receive method, user equipment, the method for sending down link signal and the base station of down link signal |
US9647818B2 (en) | 2013-01-03 | 2017-05-09 | Intel IP Corporation | Apparatus and method for single-tone device discovery in wireless communication networks |
EP3211955B1 (en) | 2013-01-07 | 2018-11-28 | LG Electronics Inc. | Method for transmitting and receiving signals at a base station and corresponding base station |
EP2978256B1 (en) | 2013-01-08 | 2017-07-05 | NEC Corporation | A wireless communication system, a base station and a corresponding method |
WO2014109302A1 (en) * | 2013-01-09 | 2014-07-17 | シャープ株式会社 | Terminal device and base station device |
WO2014109782A1 (en) * | 2013-01-14 | 2014-07-17 | Andrew Llc | Interceptor system for characterizing digital data in telecommunication system |
GB2509840B (en) * | 2013-01-15 | 2015-03-25 | Zte Wistron Telecom Ab | Operation of a heterogeneous wireless network by determining location of a wireless device |
JP6101082B2 (en) * | 2013-01-15 | 2017-03-22 | 株式会社Nttドコモ | Wireless base station, user terminal, and wireless communication method |
WO2014110728A1 (en) * | 2013-01-16 | 2014-07-24 | Nec(China) Co., Ltd. | Method and apparatus for dl/ul resource configuration in a tdd system |
JP6174714B2 (en) | 2013-01-16 | 2017-08-02 | エルジー エレクトロニクス インコーポレイティド | Inter-terminal communication execution method and apparatus therefor |
US9036580B2 (en) * | 2013-01-17 | 2015-05-19 | Sharp Laboratories Of America, Inc. | Systems and methods for dynamically configuring a flexible subframe |
CN104885501A (en) * | 2013-01-17 | 2015-09-02 | 日电(中国)有限公司 | Method and apparatus for cross-subframe interference coordination |
WO2014110691A1 (en) * | 2013-01-17 | 2014-07-24 | Qualcomm Incorporated | Intra-cluster coordination for cell clustering interference mitigation |
CN111245561B (en) * | 2013-01-18 | 2022-11-22 | 北京三星通信技术研究有限公司 | Method and equipment for processing uplink and downlink transmission of flexible subframe |
CN103944692A (en) * | 2013-01-18 | 2014-07-23 | 中兴通讯股份有限公司 | Transmitting method, transmitting device, receiving method and receiving device for ePHICH (enhanced Physical HybridARQ Indicator Channel) |
US20140204847A1 (en) * | 2013-01-18 | 2014-07-24 | Telefonaktiebolaget L M Ericsson (Publ) | Network-assisted d2d communication using d2d capability information |
GB2510141A (en) * | 2013-01-24 | 2014-07-30 | Sony Corp | Mobile communications network including reduced capability devices |
RU2612658C2 (en) | 2013-01-25 | 2017-03-13 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Method and apparatus for performing initial access process in wireless communication system |
US9351250B2 (en) | 2013-01-31 | 2016-05-24 | Qualcomm Incorporated | Methods and apparatus for low power wake up signal and operations for WLAN |
CN103974422A (en) * | 2013-02-05 | 2014-08-06 | 电信科学技术研究院 | Communication processing method and device |
US9172515B2 (en) * | 2013-02-05 | 2015-10-27 | Wipro Limited | Method and system for inter-cell interference coordination in wireless networks |
US9414399B2 (en) | 2013-02-07 | 2016-08-09 | Commscope Technologies Llc | Radio access networks |
US9936470B2 (en) | 2013-02-07 | 2018-04-03 | Commscope Technologies Llc | Radio access networks |
US9380466B2 (en) | 2013-02-07 | 2016-06-28 | Commscope Technologies Llc | Radio access networks |
EP2947955B1 (en) | 2013-02-08 | 2024-06-19 | Huawei Technologies Co., Ltd. | Device-to-device communication method, terminal, and product |
WO2014126345A1 (en) * | 2013-02-15 | 2014-08-21 | Samsung Electronics Co., Ltd. | Mobile terminal handover in an lte network |
EP2957059A1 (en) * | 2013-02-15 | 2015-12-23 | Telefonaktiebolaget L M Ericsson (publ) | A wireless device, a network node and methods therein for transmitting control information in a d2d communication |
GB2510897B (en) | 2013-02-18 | 2019-06-19 | Cisco Tech Inc | Controlling uplink transmit power in a plurality of basestations |
CN104010382B (en) * | 2013-02-25 | 2019-02-01 | 中兴通讯股份有限公司 | Data transmission method, apparatus and system |
US9967805B2 (en) * | 2013-02-25 | 2018-05-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Extended system information distribution mechanisms |
KR102179533B1 (en) * | 2013-02-28 | 2020-11-17 | 삼성전자주식회사 | Method and appratus of controlling access from wireless local acess network and providing valid neighbor wireless local acess network access point in mobile communication system |
EP2962485B1 (en) | 2013-03-01 | 2019-08-21 | Intel IP Corporation | Wireless local area network (wlan) traffic offloading |
CN104039017A (en) * | 2013-03-06 | 2014-09-10 | 夏普株式会社 | Method for transmitting scheduling information and base station |
JP6153350B2 (en) * | 2013-03-07 | 2017-06-28 | 株式会社Nttドコモ | Wireless base station, user terminal, wireless communication system, and wireless communication method |
US9125101B2 (en) * | 2013-03-08 | 2015-09-01 | Intel Corporation | Distributed power control for D2D communications |
US10164698B2 (en) | 2013-03-12 | 2018-12-25 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US9306725B2 (en) * | 2013-03-13 | 2016-04-05 | Samsung Electronics Co., Ltd. | Channel state information for adaptively configured TDD communication systems |
US9300451B2 (en) * | 2013-03-13 | 2016-03-29 | Samsung Electronics Co., Ltd. | Transmission of sounding reference signals for adaptively configured TDD communication systems |
RU2767777C2 (en) | 2013-03-15 | 2022-03-21 | Риарден, Ллк | Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output |
CN104066093B (en) * | 2013-03-18 | 2018-03-23 | 财团法人工业技术研究院 | Interference management method, anchor point equipment, base station and system of wireless communication system |
JP6161347B2 (en) * | 2013-03-19 | 2017-07-12 | 株式会社Nttドコモ | User terminal, radio base station, and radio communication method |
US9294246B2 (en) * | 2013-03-19 | 2016-03-22 | Electronics And Telecommunications Research Institute | Wireless communication device using common control channel and wireless communication method using the same |
US10200139B2 (en) * | 2013-03-22 | 2019-02-05 | Lg Electronics Inc. | Method and apparatus for performing interference coordination in wireless communication system |
EP2979488B1 (en) * | 2013-03-25 | 2018-07-11 | Telefonaktiebolaget LM Ericsson (publ) | Method for initiating handover, wireless device and base station |
CN104247499B (en) * | 2013-03-26 | 2018-09-21 | 华为技术有限公司 | Data pack transmission method, system and terminal device and the network equipment |
GB2512399A (en) | 2013-03-28 | 2014-10-01 | Nec Corp | Direct communication between mobile radio communication devices |
CN106060912B (en) | 2013-03-29 | 2020-02-07 | 英特尔Ip公司 | Extended paging Discontinuous Reception (DRX) cycle in a wireless communication network |
GB2512611A (en) * | 2013-04-03 | 2014-10-08 | Sharp Kk | Wireless telecommunication cell detection technique |
US9160515B2 (en) | 2013-04-04 | 2015-10-13 | Intel IP Corporation | User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay |
JP6320683B2 (en) * | 2013-04-05 | 2018-05-09 | 株式会社Nttドコモ | Wireless base station, user terminal, and wireless communication method |
US10091766B2 (en) | 2013-04-05 | 2018-10-02 | Qualcomm Incorporated | Interference cancellation/suppression in TDD wireless communications systems |
US9084275B2 (en) * | 2013-04-12 | 2015-07-14 | Blackberry Limited | Selecting an uplink-downlink configuration for a cluster of cells |
CN104113851B (en) * | 2013-04-16 | 2019-04-16 | 中兴通讯股份有限公司 | A kind of D2D discovery method and base station, user equipment |
US9130784B2 (en) * | 2013-04-22 | 2015-09-08 | Google Technology Holdings LLC | Method and apparatus for enhanced modulation in a wirless communication system |
WO2014175638A1 (en) * | 2013-04-23 | 2014-10-30 | Lg Electronics Inc. | Method and apparatus for controlling data transmission in wireless communication system |
KR102061650B1 (en) * | 2013-04-30 | 2020-01-03 | 삼성전자주식회사 | A method and apparatus for synchronizaton of device to device communication in unlicensed bands |
EP2802091A1 (en) * | 2013-05-08 | 2014-11-12 | Panasonic Intellectual Property Corporation of America | Flexible TDD uplink-downlink configuration with flexible subframes |
US9088397B2 (en) * | 2013-05-09 | 2015-07-21 | Nokia Solutions And Networks Oy | Carrier type for time division communication |
US9692582B2 (en) * | 2013-05-09 | 2017-06-27 | Sharp Kabushiki Kaisha | Systems and methods for signaling reference configurations |
US20140335907A1 (en) * | 2013-05-10 | 2014-11-13 | Elwha Llc | Dynamic Point to Point Mobile Network Including Base Station Aspects System and Method |
US9763166B2 (en) | 2013-05-10 | 2017-09-12 | Elwha Llc | Dynamic point to point mobile network including communication path monitoring and analysis aspects system and method |
US10243707B2 (en) | 2013-05-10 | 2019-03-26 | Qualcomm Incorporated | Efficient downlink operation for eIMTA |
US9420605B2 (en) * | 2013-05-10 | 2016-08-16 | Blackberry Limited | Method and apparatus for cell coordination in heterogeneous cellular networks |
US9559766B2 (en) | 2013-05-10 | 2017-01-31 | Elwha Llc | Dynamic point to point mobile network including intermediate device aspects system and method |
US9832728B2 (en) | 2013-05-10 | 2017-11-28 | Elwha Llc | Dynamic point to point mobile network including origination user interface aspects system and method |
US9591692B2 (en) | 2013-05-10 | 2017-03-07 | Elwha Llc | Dynamic point to point mobile network including destination device aspects system and method |
ES2755179T3 (en) * | 2013-05-10 | 2020-04-21 | Ericsson Telefon Ab L M | Methods and devices for signaling in dynamic time division duplex systems |
US9356681B2 (en) | 2013-05-10 | 2016-05-31 | Elwha Llc | Dynamic point to point mobile network including destination device aspects system and method |
US9380467B2 (en) | 2013-05-10 | 2016-06-28 | Elwha Llc | Dynamic point to point mobile network including intermediate device aspects system and method |
KR101664876B1 (en) * | 2013-05-14 | 2016-10-12 | 삼성전자 주식회사 | Method and apparatus of interference measurement for inter-cell interference mitigation in tdd wireless communication system |
KR20140135331A (en) * | 2013-05-15 | 2014-11-26 | 삼성전자주식회사 | Method and apparatus of operation for dynamic time division duplex in wireless communication system |
CN105247801B (en) | 2013-05-16 | 2019-03-29 | Lg电子株式会社 | Send the method and its equipment for improving the signal of coverage area |
US9713026B2 (en) * | 2013-05-17 | 2017-07-18 | Qualcomm Incorporated | Channel state information (CSI) measurement and reporting for enhanced interference management for traffic adaptation (eIMTA) in LTE |
GB2514561B (en) * | 2013-05-28 | 2016-01-13 | Broadcom Corp | Overhearing |
EP3008828B1 (en) * | 2013-06-12 | 2017-08-09 | Corning Optical Communications Wireless Ltd. | Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass) |
CN105324946B (en) * | 2013-06-21 | 2018-09-18 | Lg电子株式会社 | The method of coverage area for enhancing user equipment and the device for utilizing this method |
US20160072572A1 (en) * | 2013-06-25 | 2016-03-10 | Lg Electronics Inc. | Method for performing beamforming based on partial antenna array in wireless communication system and apparatus therefor |
JP2015012404A (en) * | 2013-06-27 | 2015-01-19 | 京セラ株式会社 | Communication control method, base station, and user terminal |
WO2015000112A1 (en) * | 2013-07-01 | 2015-01-08 | 华为技术有限公司 | Method, terminal, and wireless communications node for uplink data transmission |
WO2015005601A1 (en) * | 2013-07-10 | 2015-01-15 | 엘지전자 주식회사 | Power control method for device-to-device (d2d) communication in wireless communication system and apparatus therefor |
CN105453662B (en) * | 2013-07-12 | 2021-06-11 | 康维达无线有限责任公司 | Neighbor discovery for supporting dormant nodes |
JP6199490B2 (en) * | 2013-07-16 | 2017-09-20 | エルジー エレクトロニクス インコーポレイティド | Signal transmission method for MTC and apparatus therefor |
JP6283110B2 (en) * | 2013-07-22 | 2018-02-21 | ゼットティーイー ウィストロン テレコム エービー | Cell synchronization and synchronous cell indication |
EP2829301A1 (en) | 2013-07-25 | 2015-01-28 | Bruno Escarguel | Medical device for radiotherapy treatment |
WO2015013862A1 (en) * | 2013-07-29 | 2015-02-05 | Qualcomm Incorporated | Dynamic indication of time division (tdd) duplex uplink/downlink subframe configurations |
EP3032895B1 (en) * | 2013-08-08 | 2018-03-28 | Sharp Kabushiki Kaisha | Terminal device, base station device, integrated circuit, and wireless communication method |
US9167449B2 (en) * | 2013-08-08 | 2015-10-20 | Blackberry Limited | Dynamic cell clustering |
WO2015020736A1 (en) * | 2013-08-08 | 2015-02-12 | Intel IP Corporation | Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system |
WO2015020108A1 (en) * | 2013-08-09 | 2015-02-12 | シャープ株式会社 | Terminal, base station, integrated circuit, and communications method |
US9705649B2 (en) * | 2013-08-12 | 2017-07-11 | Telefonaktiebolaget L M Ericsson (Publ) | Mobile relay node based CoMP assisted interference mitigation |
CN104378789B (en) * | 2013-08-16 | 2019-06-07 | 索尼公司 | Communication quality determination/acquisition device and method in wireless communication system |
US10091763B2 (en) * | 2013-08-21 | 2018-10-02 | Telefonaktiebolaget L M Ericsson (Publ) | Paging in coverage extension mode |
KR102051831B1 (en) * | 2013-09-13 | 2019-12-04 | 삼성전자주식회사 | Method and apparatus for traffic load balancing in mobile communication system |
EP3036962B1 (en) | 2013-09-25 | 2021-04-07 | Sony Corporation | Telecommunications apparatus and methods |
US20150085686A1 (en) * | 2013-09-26 | 2015-03-26 | Qualcomm Incorporated | Scheduling based on signal quality measurements |
US9419757B2 (en) * | 2013-10-04 | 2016-08-16 | Cellos Software Ltd | Method and apparatus for coordinating one or more downlink transmissions in a wireless communication system |
US9301314B2 (en) * | 2013-10-08 | 2016-03-29 | Broadcom Corporation | WLAN and LTE time division based scheduling devices and methods |
WO2015053382A1 (en) | 2013-10-11 | 2015-04-16 | 京セラ株式会社 | Communication control method, user terminal, and communication device |
US9332465B2 (en) * | 2013-10-15 | 2016-05-03 | Qualcomm Incorporated | Long term evolution interference management in unlicensed bands for wi-fi operation |
GB2519341A (en) * | 2013-10-18 | 2015-04-22 | Nec Corp | Data transmission from mobile radio communications device |
US9888479B2 (en) * | 2013-10-22 | 2018-02-06 | Collision Communications, Inc | Method and system for improving efficiency in a cellular communications network |
WO2015061987A1 (en) | 2013-10-30 | 2015-05-07 | Qualcomm Incorporated | Cross-carrier indication of uplink/downlink subframe configurations |
US20150117295A1 (en) * | 2013-10-30 | 2015-04-30 | Electronics And Telecommunications Research Institute | Method and apparatus for device-to-device communication |
KR102491976B1 (en) | 2013-10-30 | 2023-01-27 | 엘지전자 주식회사 | Method for transmitting and receiving control information for device-to-device (d2d) communication in wireless communication system and apparatus therefor |
WO2015065113A1 (en) * | 2013-10-31 | 2015-05-07 | 엘지전자(주) | Method and apparatus for performing device-to-device communication in wireless communication system |
CN104602349B (en) * | 2013-10-31 | 2020-01-03 | 索尼公司 | Carrier allocation device and method, and terminal |
WO2015065107A1 (en) * | 2013-10-31 | 2015-05-07 | 엘지전자(주) | Method and apparatus for device-to-device communication in wireless communication system |
WO2015065110A1 (en) * | 2013-10-31 | 2015-05-07 | 엘지전자(주) | Method for transmitting discovery message in wireless communication system and apparatus for same |
WO2015062918A1 (en) | 2013-10-31 | 2015-05-07 | Sony Corporation | Network element and method of communicating using a plurality of controls channels modules |
US9930711B2 (en) * | 2013-10-31 | 2018-03-27 | Lg Electronics Inc. | Method for transmitting discovery message in wireless communication system and method for same |
CN110087219A (en) * | 2013-10-31 | 2019-08-02 | 日本电气株式会社 | Mobile communication system, node and its method |
KR102180254B1 (en) * | 2013-11-01 | 2020-11-18 | 주식회사 아이티엘 | Apparatus and method for configuring reference signal in wireless communication system supporting small cells |
US9819471B2 (en) * | 2013-11-04 | 2017-11-14 | Texas Instruments Incorporated | Method and apparatus for configuration, measurement and reporting of channel state information for LTE TDD with dynamic UL/DL configuration |
KR102284363B1 (en) * | 2013-11-07 | 2021-08-02 | 엘지전자 주식회사 | Method for transmitting and receiving downlink signal in wireless communication system and device for same |
CN104640056B (en) * | 2013-11-07 | 2021-08-17 | 中兴通讯股份有限公司 | Method and device for controlling node selection and resource distribution |
US20150131624A1 (en) * | 2013-11-08 | 2015-05-14 | Qualcomm Incorporated | Systems and methods for protecting low-rate communications in high-efficiency wireless networks |
KR20150054055A (en) * | 2013-11-08 | 2015-05-20 | 한국전자통신연구원 | Method and apparatus for allocating resource in cellular communication system |
CN104639486B (en) * | 2013-11-12 | 2018-04-10 | 华为技术有限公司 | Transmission method and device |
WO2015076619A1 (en) * | 2013-11-22 | 2015-05-28 | 엘지전자 주식회사 | Method for receiving bundle of pdcch, and mtc device |
US9173106B2 (en) * | 2013-11-25 | 2015-10-27 | At&T Intellectual Property I, L.P. | Efficient cell site outage mitigation |
US9538483B2 (en) * | 2013-11-26 | 2017-01-03 | The Regents Of The University Of Colorado, A Body Corporate | Maximizing efficiency of multi-user communications networks |
US9661657B2 (en) * | 2013-11-27 | 2017-05-23 | Intel Corporation | TCP traffic adaptation in wireless systems |
US20150146565A1 (en) * | 2013-11-27 | 2015-05-28 | Wei Yu | Method and apparatus for downlink transmission in a cloud radio access network |
EP3079407A4 (en) * | 2013-12-04 | 2017-06-14 | LG Electronics Inc. | Method for transceiving system information in cloud wireless communication system and apparatus therefor |
US10200224B2 (en) * | 2013-12-08 | 2019-02-05 | Lg Electronics Inc. | Method and apparatus for transmitting data in non-licensed band |
AU2013407434B2 (en) * | 2013-12-11 | 2017-09-21 | Sca Hygiene Products Ab | Expanded protocol frames for data transmission |
US10791476B2 (en) * | 2013-12-12 | 2020-09-29 | Lg Electronics Inc. | Method and device for performing measurement in wireless communication system |
KR101870275B1 (en) | 2013-12-13 | 2018-06-22 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Interference coordination method, apparatus, and system |
US20150189574A1 (en) * | 2013-12-26 | 2015-07-02 | Samsung Electronics Co., Ltd. | Methods for dormant cell signaling for advanced cellular network |
JP6312438B2 (en) * | 2014-01-06 | 2018-04-18 | 三菱電機株式会社 | Communication apparatus and communication system |
CN104796931B (en) * | 2014-01-08 | 2018-06-12 | 财团法人资讯工业策进会 | Radio Network System and its base station bus connection method |
US9179355B2 (en) * | 2014-01-09 | 2015-11-03 | Apple Inc. | Cell utilization estimation by a wireless device |
US20150200751A1 (en) * | 2014-01-10 | 2015-07-16 | Sharp Laboratories Of America, Inc. | Enhanced pucch reporting for carrier aggregation |
US9350483B2 (en) | 2014-01-15 | 2016-05-24 | Qualcomm Incorporated | Mitigate adjacent channel interference and non-Wi-Fi interference |
JP2015138996A (en) * | 2014-01-20 | 2015-07-30 | 堅一 前 | Communication device, communication program, communication system, and communication method |
CN105900368B (en) * | 2014-01-22 | 2019-05-31 | 华为终端有限公司 | Device-to-device communication means and user equipment |
KR102206280B1 (en) * | 2014-01-24 | 2021-01-22 | 삼성전자주식회사 | Method and apparatus for setting a handover parameter in mobile communication system |
EP3833141B1 (en) | 2014-01-29 | 2023-08-16 | InterDigital Patent Holdings, Inc. | Resource selection for device to device discovery or communication |
EP3595349A1 (en) * | 2014-01-30 | 2020-01-15 | NEC Corporation | Base station, machine-to-machine (m2m) terminal, method, and computer readable medium |
NO2705215T3 (en) | 2014-01-31 | 2018-02-17 | ||
WO2015115951A1 (en) * | 2014-01-31 | 2015-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | Radio node, communication devices and methods therein |
MA39220B1 (en) * | 2014-01-31 | 2017-08-31 | ERICSSON TELEFON AB L M (publ) | Methods and nodes relating to system information acquisition during a flexible subframe operation |
US9578600B2 (en) | 2014-02-13 | 2017-02-21 | Samsung Electronics Co., Ltd | Method and apparatus for providing advanced indication for ePDCCH |
JP6485361B2 (en) * | 2014-02-14 | 2019-03-20 | 日本電気株式会社 | Network control device, communication device, network control method, communication method, communication system, and program |
EP3110184B1 (en) * | 2014-02-18 | 2019-12-18 | Kyocera Corporation | User terminal and d2d communication control method |
KR101553529B1 (en) * | 2014-02-19 | 2015-09-16 | (주)티엘씨테크놀로지 | A multi-band optical repeater system duplexing optical module and the method thereof |
US9313012B2 (en) * | 2014-02-21 | 2016-04-12 | Qualcomm Incorporated | Apparatus and methods for full duplex communication |
KR102010323B1 (en) * | 2014-02-21 | 2019-08-13 | 콘비다 와이어리스, 엘엘씨 | Handover in integrated small cell and wifi networks |
KR102118402B1 (en) * | 2014-02-25 | 2020-06-03 | 삼성전자 주식회사 | Method and apparatus for saving power of user equipment in wireless communication system supporing device to device communication |
US10034257B2 (en) | 2014-02-25 | 2018-07-24 | Lg Electronics Inc. | Method and apparatus for generating device-to-device terminal signal in wireless communication system |
CN106165323B (en) * | 2014-03-04 | 2018-10-12 | Lg电子株式会社 | Receive the method and its device for receiving the control information for finding reference signal |
US20170111929A1 (en) * | 2014-03-07 | 2017-04-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Handling messages |
US9426715B1 (en) | 2014-03-07 | 2016-08-23 | Sprint Spectrum L.P. | Neighbor access node determination |
KR102079553B1 (en) * | 2014-03-11 | 2020-04-07 | 삼성전자주식회사 | A method and apparatus for controlling interference of device to device communication |
US10348394B1 (en) * | 2014-03-14 | 2019-07-09 | Tarana Wireless, Inc. | System architecture and method for enhancing wireless networks with mini-satellites and pseudollites and adaptive antenna processing |
US9794033B2 (en) * | 2014-03-14 | 2017-10-17 | Intel IP Corporation | Systems, methods and devices for opportunistic networking |
NO2710652T3 (en) * | 2014-03-18 | 2018-03-17 | ||
EP3120641B1 (en) | 2014-03-19 | 2021-01-20 | Interdigital Patent Holdings, Inc. | Device-to-device synchronization |
US9629145B2 (en) * | 2014-03-20 | 2017-04-18 | Intel Corporation | Resource allocation techniques for device-to-device (D2D) communications |
US10499421B2 (en) * | 2014-03-21 | 2019-12-03 | Qualcomm Incorporated | Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band |
US9578484B2 (en) * | 2014-03-24 | 2017-02-21 | Intel IP Corporation | Apparatuses, systems, and methods for differentiation of payload size for D2D discovery |
KR102285139B1 (en) * | 2014-03-31 | 2021-08-04 | 후지츠 코네쿠텟도 테크노로지즈 가부시키가이샤 | Signal retransmission apparatus and method and communication system |
US9877259B2 (en) | 2014-03-31 | 2018-01-23 | Huawei Technologies Co., Ltd. | Dynamic energy-efficient transmit point (TP) muting for virtual radio access network (V-RAN) |
RU2016144338A (en) * | 2014-04-14 | 2018-05-14 | Нек Корпорейшн | COMMUNICATION DEVICE, COMMUNICATION METHOD AND MEDIA |
WO2015160170A1 (en) * | 2014-04-14 | 2015-10-22 | 엘지전자 주식회사 | Method for transmitting signal in multiple-antenna wireless communication system and apparatus for same |
US11290162B2 (en) | 2014-04-16 | 2022-03-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US9635629B2 (en) * | 2014-04-17 | 2017-04-25 | Acer Incorporated | Method of performing device-to-device communication between two user equipments |
US9185238B1 (en) * | 2014-04-23 | 2015-11-10 | Outlook Amusements, Inc. | System and method for scheduling, establishing and maintaining an open communication channel with an advisor |
WO2015163670A1 (en) * | 2014-04-25 | 2015-10-29 | Lg Electronics Inc. | Method for a configuration error management for a sidelink radio bearer and device therefor |
WO2015163642A1 (en) * | 2014-04-25 | 2015-10-29 | 엘지전자 주식회사 | Method and device for channel state reporting |
US9713049B2 (en) | 2014-04-28 | 2017-07-18 | Intel IP Corporation | User equipment and methods for measurement of reference signal received quality |
JP6626005B2 (en) * | 2014-04-30 | 2019-12-25 | エルジー エレクトロニクス インコーポレイティド | Method and apparatus for transmitting end-to-end signals in a wireless communication system |
US9660836B2 (en) | 2014-05-06 | 2017-05-23 | Lattice Semiconductor Corporation | Network topology discovery |
CN105101389B (en) * | 2014-05-08 | 2020-04-03 | 索尼公司 | Method and arrangement in a wireless communication system |
WO2015168945A1 (en) * | 2014-05-09 | 2015-11-12 | 华为技术有限公司 | Method and apparatus for receiving d2d discovery information |
US9686101B2 (en) * | 2014-05-09 | 2017-06-20 | Lattice Semiconductor Corporation | Stream creation with limited topology information |
US20150334743A1 (en) * | 2014-05-15 | 2015-11-19 | Qualcomm Incorporated | Physical cell identifier and physical random access channel offset joint planning |
CN111432492B (en) * | 2014-05-20 | 2023-08-01 | 索尼公司 | Electronic device, method and computer readable storage medium in wireless communication system |
US10159079B2 (en) | 2014-05-21 | 2018-12-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Systems and methods for social-aware cooperative device-to-device communications |
KR102265455B1 (en) * | 2014-06-02 | 2021-06-17 | 삼성전자주식회사 | Apparatus and method for mitigating for interference in wireless communication system |
US9369961B2 (en) * | 2014-06-05 | 2016-06-14 | Sony Corporation | User equipment, cellular communication network node and method of controlling operation of a user equipment |
TWI526106B (en) | 2014-06-06 | 2016-03-11 | 財團法人工業技術研究院 | Base station and scheduling method for wireless network |
CA2951548A1 (en) | 2014-06-09 | 2015-12-17 | Airvana Lp | Radio access networks |
KR102111286B1 (en) * | 2014-06-10 | 2020-06-08 | 에스케이 텔레콤주식회사 | Method and Apparatus for Managing Cell Mode Adaptively |
US10194322B2 (en) | 2014-06-23 | 2019-01-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Coordinated transmission method for unbalanced load |
US10425915B2 (en) | 2014-06-27 | 2019-09-24 | Sharp Kabushiki Kaisha | Resource pool access for device to device communications |
CN106416401B (en) * | 2014-06-27 | 2019-11-12 | 华为技术有限公司 | Transmit the method, apparatus and the network equipment of signal |
KR102268512B1 (en) * | 2014-07-15 | 2021-06-23 | 에스케이텔레콤 주식회사 | Base station and control method thereof, terminal device |
JP6090253B2 (en) * | 2014-07-18 | 2017-03-08 | トヨタ自動車株式会社 | Communication method, wireless communication system, and wireless connection providing apparatus in wireless communication system |
US9602322B2 (en) | 2014-08-01 | 2017-03-21 | Qualcomm Incorporated | Transmission and reception of discovery signals over a radio frequency spectrum band |
JP6420460B2 (en) | 2014-08-07 | 2018-11-07 | エルジー エレクトロニクス インコーポレイティド | D2D operation method executed by terminal in radio communication system and terminal using the method |
US9608794B2 (en) * | 2014-08-08 | 2017-03-28 | Sprint Spectrum L.P. | Systems and methods for scheduling transmissions between an access node and wireless devices |
CN106576259B (en) * | 2014-08-15 | 2020-05-08 | 瑞典爱立信有限公司 | Method, RRM node and computer readable medium for cell selection |
WO2016026068A1 (en) * | 2014-08-18 | 2016-02-25 | Qualcomm Incorporated | Low cost device with broadcast support |
EP3187014B1 (en) | 2014-08-28 | 2019-11-27 | Telefonaktiebolaget LM Ericsson (publ) | Methods for communicating radiation pattern information and related network nodes and base stations |
WO2016032378A1 (en) * | 2014-08-28 | 2016-03-03 | Telefonaktiebolaget L M Ericsson (Publ) | Methods receiving radiation pattern information and related network nodes and base stations |
CN106664289B (en) * | 2014-08-28 | 2020-07-07 | 瑞典爱立信有限公司 | Communication device and method for implementing interference management for data transmission |
US10880883B2 (en) | 2014-09-02 | 2020-12-29 | Qualcomm Incorporated | Low-latency, low-bandwidth and low duty cycle operation in a wireless communication system |
WO2016034106A1 (en) * | 2014-09-04 | 2016-03-10 | Huawei Technologies Co., Ltd. | System and method for communicating resource allocation for d2d |
US10779161B2 (en) | 2014-09-15 | 2020-09-15 | Nokia Solutions And Networks Oy | Delivery of cellular network insights to subscriber devices through SSID via cellular system information block |
WO2016043569A2 (en) * | 2014-09-21 | 2016-03-24 | Lg Electronics Inc. | Method and apparatus for requesting transmission of synchronization signals in wireless communication system |
CN105516966B (en) * | 2014-09-24 | 2020-10-02 | 索尼公司 | Apparatus and method in a wireless communication system |
CN107079434A (en) * | 2014-09-25 | 2017-08-18 | 株式会社Ntt都科摩 | User's set and resource selection method |
CN106575996B (en) | 2014-09-25 | 2019-10-15 | 英特尔Ip公司 | The common control message of machine-type communication (MTC) user equipment is directed to by reduced bandwidth for transmission |
WO2016049897A1 (en) * | 2014-09-30 | 2016-04-07 | 华为技术有限公司 | Terminal, base station, system, and notification method |
US10278081B2 (en) * | 2014-09-30 | 2019-04-30 | Viavi Solutions Inc. | Methods and apparatus for self optimization and/or improvement of a cloud-based wireless network |
US10200872B2 (en) * | 2014-10-08 | 2019-02-05 | Qualcomm Incorporated | DC subcarrier handling in narrowband devices |
WO2016060175A1 (en) * | 2014-10-17 | 2016-04-21 | 株式会社Nttドコモ | User device, base station, and discontinuous reception method |
US10033578B2 (en) | 2014-10-27 | 2018-07-24 | Qualcomm Incorporated | Leveraging synchronization coordination of a mesh network for low-power devices |
US10560864B2 (en) | 2014-10-31 | 2020-02-11 | At&T Intellectual Property I, L.P. | Event-driven network demand finder of a radio access network |
US9572106B2 (en) | 2014-10-31 | 2017-02-14 | Qualcomm Incorporated | Dynamic bandwidth switching for reducing power consumption in wireless communication devices |
US20160127936A1 (en) * | 2014-11-05 | 2016-05-05 | Debdeep CHATTERJEE | User equipment and methods for csi measurements with reduced bandwidth support |
CN104410975B (en) * | 2014-11-06 | 2018-06-15 | 东莞宇龙通信科技有限公司 | Resource allocation method, system, the equipment and terminal with base station functions |
CN105636217A (en) | 2014-11-07 | 2016-06-01 | 北京三星通信技术研究有限公司 | Method and device used for accessing cellular network |
US10462684B2 (en) | 2014-11-13 | 2019-10-29 | Sony Corporation | Telecommunications apparatus and methods |
EP3219135B1 (en) | 2014-11-13 | 2020-06-17 | Sony Corporation | Telecommunications apparatus and methods |
US9906973B2 (en) * | 2014-11-28 | 2018-02-27 | Industrial Technology Research Institute | Evolved NodeB and traffic dispatch method thereof |
EP3228129B1 (en) * | 2014-12-02 | 2020-04-08 | Telefonaktiebolaget LM Ericsson (publ) | Wake-up for d2d communication |
CN105760337B (en) * | 2014-12-17 | 2019-03-12 | 联芯科技有限公司 | Data transmission method and its system, terminal |
WO2016099196A1 (en) * | 2014-12-18 | 2016-06-23 | 엘지전자 주식회사 | Method for allocating transmission resources in wireless communication system supporting device-to-device (d2d) communication |
US10231232B2 (en) * | 2014-12-19 | 2019-03-12 | Intel IP Corporation | Remote radio unit and baseband unit for asymetric radio area network channel processing |
ES2773918T3 (en) | 2014-12-23 | 2020-07-15 | Lg Electronics Inc | Procedure for reporting channel status information on a wireless access system that supports unlicensed bands, and apparatus that supports the same |
CN107113618B (en) * | 2014-12-29 | 2021-04-09 | 华为技术有限公司 | Uplink transmission control method and device |
WO2016108551A1 (en) | 2014-12-30 | 2016-07-07 | Lg Electronics Inc. | Method and apparatus for transmitting buffer status report for bi-directional transmission in wireless communication system |
US9674837B1 (en) | 2015-01-07 | 2017-06-06 | Sprint Spectrum L.P. | Coordinated multipoint based air-interface resource scheduling |
US11006400B2 (en) | 2015-01-16 | 2021-05-11 | Sharp Kabushiki Kaisha | User equipments, base stations and methods |
WO2016122379A1 (en) * | 2015-01-29 | 2016-08-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Pdcch initialization suitable for mtc devices |
EP3253153A4 (en) * | 2015-01-29 | 2018-09-19 | NTT DoCoMo, Inc. | User terminal, radio base station and radio communication method |
US20160233940A1 (en) * | 2015-02-06 | 2016-08-11 | Po-Kai Huang | Wireless device, method, and computer readable media for spatial reuse in a high efficiency wireless local-area network |
US10720968B2 (en) | 2015-02-11 | 2020-07-21 | Ipcom Gmbh & Co. Kg | Method and device for configuring a single frequency network |
RU2660961C1 (en) * | 2015-02-20 | 2018-07-11 | Телефонактиеболагет Лм Эрикссон (Пабл) | Radio unit and used in control method of power levels of transmissions of spatial spread transmitter-receiver in radio network |
US10681676B2 (en) * | 2015-02-25 | 2020-06-09 | Qualcomm Incorporated | Narrowband management for machine type communications |
JP6369756B2 (en) | 2015-02-26 | 2018-08-08 | パナソニックIpマネジメント株式会社 | Base station and transmission control method |
US9980218B2 (en) * | 2015-02-27 | 2018-05-22 | Huawei Technologies Canada Co., Ltd. | System and method for user terminal-aware cell switch-off |
US10148510B2 (en) | 2015-03-02 | 2018-12-04 | Spidercloud Wireless, Inc. | Topology discovery and management and SON orchestration |
US11071032B2 (en) | 2015-03-02 | 2021-07-20 | Corning Optical Communications LLC | Gateway coordinating multiple small cell radio access networks |
US10349313B2 (en) | 2015-03-02 | 2019-07-09 | Corning Optical Communications LLC | Enhanced features for a gateway coordinating multiple small cell radio access networks |
KR102301121B1 (en) * | 2015-03-05 | 2021-09-10 | 한국전자통신연구원 | Method and apparatus for transmitting and receiving discovery information |
US9788273B2 (en) | 2015-03-12 | 2017-10-10 | Samsung Electronics Co., Ltd | Method and system for paging reception optimization in LTE direct devices |
US10129805B2 (en) * | 2015-03-12 | 2018-11-13 | Spidercloud Wireless, Inc. | Hitless software upgrade for a virtualized gateway coordinating multiple small cell radio access networks |
KR20160112143A (en) | 2015-03-18 | 2016-09-28 | 삼성전자주식회사 | Electronic device and method for updating screen of display panel thereof |
WO2016152686A1 (en) | 2015-03-20 | 2016-09-29 | 株式会社 東芝 | Integrated circuit for wireless communication |
WO2016152683A1 (en) * | 2015-03-20 | 2016-09-29 | 株式会社 東芝 | Wireless communication integrated circuit and wireless communication method |
WO2016153130A1 (en) * | 2015-03-23 | 2016-09-29 | 엘지전자(주) | Method and device for transmitting or receiving data by terminal in wireless communication system |
US10111067B2 (en) * | 2015-04-07 | 2018-10-23 | Sierra Wireless, Inc. | Method and apparatus for communicating system information and random access in a wireless system |
CN106162929B (en) * | 2015-04-07 | 2021-08-06 | 中兴通讯股份有限公司 | Communication method and device for user terminal and relay node in equipment direct connection system |
EP3281325A4 (en) * | 2015-04-09 | 2018-12-26 | ZTE (USA) Inc. | Method and system of bi-directional transmission to improve uplink performance |
CN107852727B (en) * | 2015-04-09 | 2022-01-18 | 夏普株式会社 | Method and device for distributing side link direct discovery resource pool for wireless terminal outside coverage area |
US10652768B2 (en) | 2015-04-20 | 2020-05-12 | Qualcomm Incorporated | Control channel based broadcast messaging |
JP6619802B2 (en) * | 2015-04-27 | 2019-12-11 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Transmission method, transmission control method, and communication apparatus |
CN106471852B (en) | 2015-04-27 | 2021-10-22 | 华为技术有限公司 | Data transmission method, device and system |
CN107005997B (en) * | 2015-04-29 | 2019-11-29 | 华为技术有限公司 | A kind of data transmission method, equipment and system |
US9468078B1 (en) | 2015-05-01 | 2016-10-11 | Abl Ip Holding Llc | Lighting system with cellular networking |
US9554375B1 (en) * | 2015-05-01 | 2017-01-24 | Sprint Spectrum L.P. | Sector selection for coordinated multipoint based on application type |
US10326493B2 (en) * | 2015-05-13 | 2019-06-18 | Samsung Electronics Co., Ltd. | Control channel transmission and frequency error correction |
US10085158B2 (en) | 2015-05-14 | 2018-09-25 | Sharp Laboratories Of America, Inc. | User equipments, base stations and methods |
US10506591B2 (en) | 2015-05-15 | 2019-12-10 | Qualcomm Incorporated | Narrowband definition for enhanced machine type communication |
US9681314B2 (en) | 2015-05-21 | 2017-06-13 | At&T Intellectual Property I, L.P. | Self organizing radio access network in a software defined networking environment |
WO2016192764A1 (en) * | 2015-05-29 | 2016-12-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Communication between base stations in a radio access network |
US20170171820A1 (en) * | 2015-06-16 | 2017-06-15 | Telefonaktiebolaget L M Ericsson (Publ) | A high power radio base station, a low power radio base station and respective method performed thereby for communication with a wireless device |
US10470089B2 (en) * | 2015-06-18 | 2019-11-05 | Lg Electronics Inc. | Method for changing coverage enhanced mode with multiple threshold values for cell reselection in wireless communication system and an apparatus therefor |
US10855597B2 (en) * | 2015-06-29 | 2020-12-01 | T-Mobile Usa, Inc. | Channel coding for real time wireless traffic |
WO2017001025A1 (en) * | 2015-07-02 | 2017-01-05 | Huawei Technologies Co., Ltd. | Receiver device and methods thereof |
EP3116256A1 (en) * | 2015-07-07 | 2017-01-11 | Vodafone IP Licensing limited | Device for controlling network resources |
CN107852314B (en) * | 2015-07-27 | 2021-12-10 | 苹果公司 | System and method for system operation of narrowband LTE for cellular IoT |
RU2713851C1 (en) | 2015-08-05 | 2020-02-07 | АйПиКОМ ГМБХ УНД КО. КГ | Method of transmitting messages between nodes of a single-frequency communication network |
US10999886B2 (en) * | 2015-08-10 | 2021-05-04 | Qualcomm Incorporated | Techniques for harmonization between CRS and DM-RS based transmission modes in unlicensed spectrum |
JP6413021B2 (en) * | 2015-08-13 | 2018-10-24 | 株式会社Nttドコモ | User device, signal transmission method and signal reception method |
JPWO2017026463A1 (en) * | 2015-08-13 | 2018-07-05 | 株式会社Nttドコモ | User device and signal transmission method |
US10506466B2 (en) * | 2015-08-17 | 2019-12-10 | Huawei Technologies Co., Ltd. | System and method for coordinating uplink transmissions based on backhaul conditions |
US10091775B2 (en) | 2015-08-18 | 2018-10-02 | Apple Inc. | Non-PDCCH signaling of SIB resource assignment |
US10893520B2 (en) | 2015-08-26 | 2021-01-12 | Qualcomm Incorporated | Downlink and synchronization techniques for narrowband wireless communications |
US9967855B2 (en) * | 2015-08-31 | 2018-05-08 | Verizon Patent And Licensing Inc. | Multicast delivery of network congestion information |
US9775045B2 (en) | 2015-09-11 | 2017-09-26 | Intel IP Corporation | Slicing architecture for wireless communication |
US9942906B1 (en) * | 2015-09-16 | 2018-04-10 | Sprint Spectrum L.P. | Systems and methods for determining a subframe configuration for an access node based on coverage |
KR20180043386A (en) * | 2015-09-17 | 2018-04-27 | 엘지전자 주식회사 | Method and apparatus for transmitting and receiving messages in a V2X terminal in a wireless communication system |
US10560214B2 (en) | 2015-09-28 | 2020-02-11 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
WO2017065557A1 (en) * | 2015-10-14 | 2017-04-20 | Lg Electronics Inc. | Method and apparatus for supporting user equipments capable of uplink transmission only via grouping in wireless communication system |
TWI578825B (en) * | 2015-10-21 | 2017-04-11 | 財團法人工業技術研究院 | Communication system, base station, user equipment and timing synchronization method for base station thereof |
CN106612166B (en) * | 2015-10-26 | 2019-08-09 | 上海朗帛通信技术有限公司 | A kind of method and apparatus of narrow band transmission |
CN110099450B (en) * | 2015-10-30 | 2022-09-27 | 上海朗帛通信技术有限公司 | Method and device in narrow-band communication |
CN106685607A (en) * | 2015-11-05 | 2017-05-17 | 上海朗帛通信技术有限公司 | Method and device for narrowband wireless transmission |
WO2017075828A1 (en) * | 2015-11-06 | 2017-05-11 | 华为技术有限公司 | Method and device for device-to-device inter-cell interference cancellation |
US10097336B2 (en) * | 2015-11-30 | 2018-10-09 | Qualcomm Incorporated | Uplink (UL) frequency-division duplex (FDD) subframe |
US10820162B2 (en) | 2015-12-08 | 2020-10-27 | At&T Intellectual Property I, L.P. | Method and system for mobile user-initiated LTE broadcast |
EP3370351B1 (en) * | 2015-12-17 | 2020-03-25 | Huawei Technologies Co., Ltd. | Sounding reference symbol transmission method and radio remote unit |
CN106922031B (en) * | 2015-12-24 | 2020-04-10 | 上海朗帛通信技术有限公司 | Scheduling method and device in wireless communication |
US10383147B2 (en) * | 2015-12-28 | 2019-08-13 | Samsung Electronics Co., Ltd. | Methods and apparatus for resource collision avoidance in vehicle to vehicle communication |
WO2017120091A2 (en) * | 2016-01-08 | 2017-07-13 | Zte Corporation | Methods of transmitting mission critical small data using random access channel |
US10044559B2 (en) * | 2016-01-22 | 2018-08-07 | Qualcomm Incorporated | Systems and methods for provisioning devices |
CN108370603B (en) * | 2016-01-29 | 2021-07-23 | 诺基亚通信公司 | MME-assisted system information update |
CN108476121B (en) * | 2016-02-03 | 2021-06-29 | 苹果公司 | Apparatus for physical downlink shared channel transmission with short transmission time interval |
WO2017135853A1 (en) * | 2016-02-04 | 2017-08-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Low power node which preferably allocates pcell on carrier in frequency band shared with macro node |
CN107040398B (en) * | 2016-02-04 | 2020-03-27 | 中兴通讯股份有限公司 | Data transmission method, device and system |
CN108432285B (en) * | 2016-02-05 | 2021-08-03 | 华为技术有限公司 | Transmission method, device and system of physical downlink channel |
WO2017142446A1 (en) * | 2016-02-17 | 2017-08-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Triggering/initiating backoff procedure(s) based on congestion indication(s) to defer scheduling request transmission |
WO2017142362A1 (en) * | 2016-02-17 | 2017-08-24 | 엘지전자 주식회사 | Method for transmitting/receiving location registration-related message in wireless communication system and apparatus for same |
EP3417650B1 (en) * | 2016-02-18 | 2021-09-22 | Reliance Jio Infocomm Limited | Systems and methods for performing a handover in heterogeneous networks |
US10608919B2 (en) | 2016-02-19 | 2020-03-31 | Commscope Technologies Llc | Passive intermodulation (PIM) testing in distributed base transceiver station architecture |
WO2017149194A1 (en) * | 2016-03-01 | 2017-09-08 | Nokia Technologies Oy | Pucch resource allocation |
US11039340B2 (en) | 2016-03-04 | 2021-06-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Inter-frequency load balancing |
JP6821930B2 (en) | 2016-03-18 | 2021-01-27 | 富士通株式会社 | Calibration method for base stations, wireless communication systems and wireless communication systems |
CN107241811A (en) * | 2016-03-29 | 2017-10-10 | 富士通株式会社 | For the dispatching device of communication system, method and base station |
CN107294670A (en) * | 2016-03-30 | 2017-10-24 | 联芯科技有限公司 | point-to-point communication method and system |
KR102467752B1 (en) | 2016-04-01 | 2022-11-16 | 주식회사 아이티엘 | Method and apparatus for synchronization for vehicle-to-x communication |
EP3240354A1 (en) | 2016-04-27 | 2017-11-01 | ASUSTek Computer Inc. | Method and apparatus for improving uplink transmission in a wireless communication system |
CN109076496B (en) | 2016-05-03 | 2021-09-03 | 株式会社Kt | Method and apparatus for changing connection state of terminal |
WO2017191926A1 (en) * | 2016-05-03 | 2017-11-09 | 주식회사 케이티 | Method and apparatus for changing connection state of terminal |
JP6325597B2 (en) * | 2016-05-10 | 2018-05-16 | 株式会社Nttドコモ | User terminal, radio base station, and radio communication method |
TWI806453B (en) * | 2016-05-20 | 2023-06-21 | 美商內數位專利控股公司 | Methods, apparatus, systems and procedures for supporting multicast transmission |
CN107454672B (en) * | 2016-05-31 | 2020-04-28 | 华为技术有限公司 | Method and device for configuring subframes |
CN106131967A (en) * | 2016-06-30 | 2016-11-16 | 南京理工大学 | Security coordination dispatching method based on cloud Radio Access Network downlink |
US10306441B2 (en) * | 2016-07-08 | 2019-05-28 | Qualcomm Incorporated | Techniques for supporting a wider band mode for enhanced machine type communication |
CN107666681B (en) * | 2016-07-29 | 2022-08-26 | 北京三星通信技术研究有限公司 | Method and device for transmitting data |
WO2018018612A1 (en) * | 2016-07-29 | 2018-02-01 | 华为技术有限公司 | Method for accessing inter-rat cell and related device |
EP3497898A1 (en) * | 2016-08-12 | 2019-06-19 | Telefonaktiebolaget LM Ericsson (publ) | Reducing overhead in sidelink transmissions |
EP3501112B1 (en) * | 2016-08-16 | 2021-09-22 | IPCom GmbH & Co. KG | Reuse of transmission resources for device to device communication |
US20180063306A1 (en) * | 2016-08-23 | 2018-03-01 | Bruce Allen Scannell, JR. | Cell Phone Case with Reconfigurable Plates |
EP3509261A4 (en) * | 2016-08-31 | 2020-04-08 | NTT DoCoMo, Inc. | User equipment and wireless communication method |
CN107787012B (en) * | 2016-08-31 | 2021-10-29 | 中国移动通信有限公司研究院 | Interference processing method and base station |
US20180069685A1 (en) * | 2016-09-07 | 2018-03-08 | Mediatek Inc. | Dynamic TDD Design, Methods And Apparatus Thereof |
US10609582B2 (en) | 2016-09-08 | 2020-03-31 | Commscope Technologies Llc | Interference detection and identification in wireless network from RF or digitized signal |
US20180077682A1 (en) * | 2016-09-15 | 2018-03-15 | Huawei Technologies Co., Ltd. | Method and apparatus for application aware notifications in a wireless communication network |
US11076261B1 (en) * | 2016-09-16 | 2021-07-27 | Apple Inc. | Location systems for electronic device communications |
WO2018057494A1 (en) | 2016-09-21 | 2018-03-29 | Intel Corporation | Reduced csi (channel state information)-rs (reference signal) density support for fd (full dimensional)-mimo (multiple input multiple output) systems |
CN109644410B (en) * | 2016-09-23 | 2022-04-08 | 富士通株式会社 | Power control method, device and communication system |
US11477783B2 (en) | 2016-09-26 | 2022-10-18 | Qualcomm Incorporated | Uplink based mobility |
WO2018066945A1 (en) * | 2016-10-04 | 2018-04-12 | Samsung Electronics Co., Ltd. | Apparatus and method for interference management in wireless communication system |
GB2554698B (en) * | 2016-10-04 | 2020-12-30 | Samsung Electronics Co Ltd | Improvements in and relating to interference management in a communication network |
US20200059904A1 (en) * | 2016-11-01 | 2020-02-20 | Ntt Docomo, Inc. | User terminal and radio communication method |
CN108184214A (en) * | 2016-12-08 | 2018-06-19 | 中兴通讯股份有限公司 | A kind of method and device of determining data sender's formula |
RU2730591C1 (en) * | 2016-12-22 | 2020-08-24 | Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. | Method and apparatus for transmitting system information |
BR112019013923A2 (en) | 2017-01-06 | 2020-02-04 | Guangdong Oppo Mobile Telecommunications Corp Ltd | method for transmitting a service, base station and terminal |
WO2018126453A1 (en) | 2017-01-06 | 2018-07-12 | 广东欧珀移动通信有限公司 | Handover method, base station, and terminal |
AU2017391826B2 (en) | 2017-01-06 | 2022-03-03 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Measurement method, base station and terminal |
CN108307335B (en) * | 2017-01-13 | 2022-10-28 | 中兴通讯股份有限公司 | Data transmission method, device and system |
WO2018135677A1 (en) * | 2017-01-20 | 2018-07-26 | 엘지전자(주) | Method for recovering link between terminals in wireless communication system, and device therefor |
US10469159B2 (en) | 2017-02-14 | 2019-11-05 | Qualcomm Incorporated | Narrowband time-division duplex frame structure for narrowband communications |
US10420102B2 (en) | 2017-02-15 | 2019-09-17 | Qualcomm Incorporated | Narrowband time-division duplex frame structure for narrowband communications |
US10383101B1 (en) | 2017-03-06 | 2019-08-13 | Sprint Spectrum L.P. | Dynamic link adaptation |
US10834759B2 (en) * | 2017-03-20 | 2020-11-10 | Motorola Mobility Llc | Feedback for a system information request |
SG11201906429TA (en) * | 2017-03-31 | 2019-08-27 | Lg Electronics Inc | Method for transmitting uplink data in wireless communication system and apparatus therefor |
US10547422B2 (en) * | 2017-04-13 | 2020-01-28 | Qualcomm Incorporated | SRS transmission with implied RTS/CTS |
CN110547017B (en) * | 2017-05-04 | 2023-08-01 | 苹果公司 | Interference coordination for a network serving an aircraft |
CN111262680A (en) * | 2017-05-04 | 2020-06-09 | 维沃移动通信有限公司 | System information transmission method, terminal and network side equipment |
US10187752B2 (en) | 2017-05-16 | 2019-01-22 | Apple Inc. | UE motion estimate based on cellular parameters |
CN109152001B (en) * | 2017-06-15 | 2021-02-02 | 大唐移动通信设备有限公司 | Time-frequency resource allocation method and device |
EP3639594A1 (en) * | 2017-06-16 | 2020-04-22 | Telefonaktiebolaget LM Ericsson (publ) | Cross-link interference avoidance methods and signaling in nr dynamic tdd |
CN109120355B (en) * | 2017-06-26 | 2024-01-02 | 华为技术有限公司 | Method and device for determining path loss |
US10680706B2 (en) * | 2017-08-01 | 2020-06-09 | Qualcomm Incorporated | Techniques and apparatuses for time division duplex coexistence configuration |
US10075817B1 (en) | 2017-08-04 | 2018-09-11 | Apple Inc. | UE motion estimate in unconventional cell deployments |
CN109391498B (en) * | 2017-08-10 | 2021-07-16 | 华为技术有限公司 | Management method of network component and network equipment |
CN109391304B (en) * | 2017-08-11 | 2020-11-27 | 电信科学技术研究院 | Data transmission method, base station, terminal and storage medium |
US11363608B2 (en) * | 2017-08-11 | 2022-06-14 | Apple Inc. | Unlicensed narrowband internet of things control channel communication |
WO2019064465A1 (en) * | 2017-09-28 | 2019-04-04 | 株式会社Nttドコモ | User device and resource selection method |
US11647493B2 (en) | 2017-10-06 | 2023-05-09 | Qualcomm Incorporated | Techniques and apparatuses for using a second link for beam failure recovery of a first link |
WO2019075701A1 (en) * | 2017-10-19 | 2019-04-25 | Oppo广东移动通信有限公司 | Wireless communication method and device |
US11212837B2 (en) * | 2017-10-19 | 2021-12-28 | Qualcomm Incorporated | Listen before talk sequence design for wireless communication |
MX2020005015A (en) | 2017-11-16 | 2020-08-27 | Ericsson Telefon Ab L M | User equipment, network nodes and methods in a wireless communications network. |
WO2019095188A1 (en) | 2017-11-16 | 2019-05-23 | Qualcomm Incorporated | Techniques and apparatuses for carrier management |
CN111357355B (en) * | 2017-11-17 | 2023-05-23 | 中兴通讯股份有限公司 | Method and device for configuring interference measurement parameters |
US11044129B2 (en) * | 2017-12-21 | 2021-06-22 | Qualcomm Incorporated | Hierarchical communication for device-to-device communications |
EP3735059B1 (en) * | 2017-12-28 | 2023-04-26 | Beijing Xiaomi Mobile Software Co., Ltd. | Method and device for determining transmission direction information |
WO2019132081A1 (en) * | 2017-12-29 | 2019-07-04 | 엘지전자(주) | V2x communication device, and its message transmission and reception method for v2x communication device |
CN110012504B (en) * | 2018-01-05 | 2022-10-14 | 中国移动通信有限公司研究院 | Information transmission method, base station and network management unit |
CN110011771B (en) | 2018-01-05 | 2020-07-10 | 中国移动通信有限公司研究院 | Information transmission method, base station and network management unit |
US10484892B2 (en) * | 2018-02-20 | 2019-11-19 | Verizon Patent And Licensing Inc. | Contextualized network optimization |
CN110351709B (en) * | 2018-04-04 | 2020-12-04 | 华为技术有限公司 | Communication method and communication device |
WO2019212247A1 (en) * | 2018-05-04 | 2019-11-07 | Lg Electronics Inc. | Method and apparatus for enhancing measurement rule on unlicensed frequency in wireless communication system |
US10700775B2 (en) | 2018-05-11 | 2020-06-30 | At&T Intellectual Property I, L.P. | Resource coordination for integrated access and backhaul |
US10645604B2 (en) * | 2018-06-04 | 2020-05-05 | Verizon Patent And Licensing Inc. | Intelligent optimization of cells in a mobile network |
US11792606B2 (en) * | 2018-06-25 | 2023-10-17 | Nokia Technologies Oy | Position determination |
CN118201110A (en) | 2018-06-28 | 2024-06-14 | 交互数字专利控股公司 | Prioritization process for NR V2X side-chain shared channel data transmission |
US11166184B2 (en) * | 2018-06-29 | 2021-11-02 | Qualcomm Incorporated | Techniques to reduce base station to base station interference in semi-synchronous time division duplex operations |
JP2020010219A (en) * | 2018-07-10 | 2020-01-16 | Hapsモバイル株式会社 | Single frequency network cell configuration using HAPS |
WO2020019219A1 (en) * | 2018-07-25 | 2020-01-30 | 华为技术有限公司 | Energy saving method, device and computer readable storage medium |
CN109565647B (en) * | 2018-07-27 | 2021-10-15 | 北京小米移动软件有限公司 | Information transmission method, device and system between Internet of vehicles equipment |
TWI731383B (en) | 2018-08-07 | 2021-06-21 | 南韓商Lg電子股份有限公司 | Node operation method in wireless communication system and node using the same |
CN118174829A (en) | 2018-08-08 | 2024-06-11 | 交互数字专利控股公司 | Method and apparatus for physical side link control channel (PSCCH) design in New Radio (NR) |
WO2020040530A1 (en) * | 2018-08-21 | 2020-02-27 | Samsung Electronics Co., Ltd. | Method and apparatus for performing communication in wireless communication system |
CN110891313B (en) | 2018-09-10 | 2022-08-02 | 维沃移动通信有限公司 | Information transmission method, network equipment and terminal |
WO2020052982A1 (en) * | 2018-09-12 | 2020-03-19 | Nokia Solutions And Networks Oy | Dynamic cell selection for radio network optimization |
CN110958688B (en) * | 2018-09-26 | 2024-01-09 | 夏普株式会社 | User equipment and execution method thereof, base station and execution method thereof |
EP3860185A1 (en) * | 2018-09-27 | 2021-08-04 | NTT DoCoMo, Inc. | User equipment |
CN112771927A (en) * | 2018-10-05 | 2021-05-07 | 谷歌有限责任公司 | User equipment context transfer via radio access network paging |
CN111107618A (en) * | 2018-10-29 | 2020-05-05 | 华为技术有限公司 | Power control method and terminal equipment |
US20220038974A1 (en) * | 2018-10-31 | 2022-02-03 | Mediatek Singapore Pte. Ltd. | Inter-frequency cell reselection in new radio unlicensed |
AU2019370286A1 (en) * | 2018-10-31 | 2021-05-27 | John Mezzalingua Associates, LLC | Orchestrator and interconnection fabric mapper for a virtual wireless base station |
WO2020091556A1 (en) * | 2018-11-02 | 2020-05-07 | Samsung Electronics Co., Ltd. | Method and apparatus for automatic gain control in vehicle-to-everything system |
KR102662626B1 (en) * | 2018-11-02 | 2024-05-03 | 삼성전자 주식회사 | A method and apparatus for automatic gain control in vehicle-to-everything |
WO2020124381A1 (en) * | 2018-12-18 | 2020-06-25 | Lenovo (Beijing) Limited | METHOD AND APPARATUS FOR QoS MONITORING AND FEEDBACK |
CN113228759B (en) * | 2019-01-07 | 2024-06-04 | 索尼集团公司 | Communication device and communication method |
KR20210100718A (en) | 2019-01-17 | 2021-08-17 | 애플 인크. | Systems and methods for multi-transmit/receive (TRP) transmission |
US10833812B2 (en) * | 2019-02-15 | 2020-11-10 | At&T Intellectual Property I, L.P. | Configurable hybrid automatic repeat request feedback types for sidelink communication for 5G or other next generation network |
US11412549B2 (en) | 2019-03-27 | 2022-08-09 | Mediatek Singapore Pte. Ltd. | Broadcast and group-based handover in NR-based LEO-NTN |
US11018707B2 (en) * | 2019-03-29 | 2021-05-25 | Qualcomm Incorporated | Adaptive gain control for sidelink communications |
CN110012486B (en) * | 2019-04-09 | 2022-04-08 | 中国联合网络通信集团有限公司 | Method and device for judging cross-zone coverage |
CN109996290A (en) * | 2019-04-15 | 2019-07-09 | 深圳森格瑞通信有限公司 | Equipment interference elimination method and device based on intelligent high bandwidth WLAN |
US10757584B1 (en) * | 2019-04-23 | 2020-08-25 | Sprint Spectrum L.P. | Use of different co-existing TDD configurations on a TDD carrier, with uplink beamforming to help minimize interference |
US20220182889A1 (en) * | 2019-04-26 | 2022-06-09 | Sony Group Corporation | Communication in cellular networks comprising dynamic cells |
US11856454B2 (en) | 2019-05-08 | 2023-12-26 | Nokia Solutions And Networks Oy | Inter-radio access technology load balancing under multi-carrier dynamic spectrum sharing |
CN114073129A (en) * | 2019-05-13 | 2022-02-18 | 弗劳恩霍夫应用研究促进协会 | User equipment supporting conditional handover to a cell of a cellular network and cellular network supporting conditional handover |
CN110337113B (en) * | 2019-05-29 | 2022-06-21 | 西北农林科技大学 | Interference control method based on cell dynamic clustering in dense DTDD network |
US11212770B2 (en) * | 2019-06-27 | 2021-12-28 | Qualcomm Incorporated | Techniques for configuring paging cycles |
US11882554B2 (en) | 2019-06-27 | 2024-01-23 | Qualcomm Incorporated | Opportunistic transmission for sidelink communications |
KR20210004535A (en) * | 2019-07-05 | 2021-01-13 | 삼성전자주식회사 | Apparatus and method for controlling gain of receivec signals in wireless communication system |
US10834688B1 (en) * | 2019-08-28 | 2020-11-10 | International Business Machines Corporation | Wireless cross-connect datacenter |
US10939444B1 (en) * | 2019-09-13 | 2021-03-02 | Verizon Patent And Licensing Inc. | Systems and methods for determining a mobility rating of a base station |
KR20210051011A (en) | 2019-10-29 | 2021-05-10 | 삼성전자주식회사 | Method and apparatus for channel estimation for ofdm based single carrier system |
CN112788750B (en) * | 2019-11-06 | 2023-09-29 | 大唐移动通信设备有限公司 | SRS transmission method, SRS transmission device, network equipment, terminal and storage medium |
WO2021087999A1 (en) * | 2019-11-08 | 2021-05-14 | 华为技术有限公司 | Time domain resource format configuration method, communication apparatus and communication system |
US10743358B1 (en) * | 2019-12-11 | 2020-08-11 | Cypress Semiconductor Corporation | Dedicated TDLS link in off-channel 5 GHz band using RSDB |
WO2021146849A1 (en) * | 2020-01-20 | 2021-07-29 | Qualcomm Incorporated | Multiple component carrier scheduling parameter for dci scheduling multiple component carriers |
KR102626617B1 (en) * | 2020-01-21 | 2024-01-18 | 아서스테크 컴퓨터 인코포레이션 | Method and apparatus for monitoring device-to-device sidelink control signal in a wireless communication system |
CN111869274B (en) * | 2020-06-03 | 2023-09-19 | 北京小米移动软件有限公司 | Data transmission processing method, device, user equipment and storage medium |
US11950184B2 (en) * | 2020-06-15 | 2024-04-02 | Qualcomm Incorporated | Zone identification (ID) for wireless sidelink communications |
US11122525B1 (en) * | 2020-06-24 | 2021-09-14 | Charter Communications Operating, Llc | Wireless channel access and power adjust access requests |
CN113873664A (en) * | 2020-06-30 | 2021-12-31 | 华为技术有限公司 | Communication resource scheduling method and device |
US11743951B2 (en) * | 2020-07-28 | 2023-08-29 | Qualcomm Incorporated | Two step RACH based L1/L2 inter-cell mobility |
JP7419562B2 (en) * | 2020-10-01 | 2024-01-22 | 京セラ株式会社 | Communication control method |
US11963248B2 (en) * | 2020-10-21 | 2024-04-16 | Intel Corporation | Small data transmission (SDT) procedures and failure recovery during an inactive state |
US11212710B1 (en) * | 2020-11-13 | 2021-12-28 | At&T Intellectual Property I, L.P. | Zero touch cellular carrier configuration |
US11395307B1 (en) * | 2020-12-30 | 2022-07-19 | Verizon Patent And Licensing Inc. | Systems and methods for interference management in a radio access network |
US11647442B2 (en) * | 2021-01-22 | 2023-05-09 | Verizon Patent And Licensing Inc. | Centralized ran cell sector clustering based on cell sector performance |
EP4238282A4 (en) * | 2021-01-26 | 2024-07-10 | Zte Corp | A method for small data transmission |
US11490329B1 (en) | 2021-04-29 | 2022-11-01 | T-Mobile Usa, Inc. | Determining a cell to which to connect user equipment |
EP4342212A1 (en) * | 2021-05-18 | 2024-03-27 | Microsoft Technology Licensing, LLC | Real-time radio access network analytics |
US11856534B2 (en) * | 2021-06-25 | 2023-12-26 | Qualcomm Incorporated | Transmitting sidelink reference signals for joint channel estimation and automatic gain control |
US11589314B2 (en) * | 2021-07-02 | 2023-02-21 | Qualcomm Incorporated | Wideband micro sleep techniques |
US20230188947A1 (en) * | 2021-12-09 | 2023-06-15 | Acer Incorporated | Device and Method for Handling a Reception of a Multicast Broadcast Service Transmission and a Small Data Transmission |
US12058539B2 (en) * | 2022-01-14 | 2024-08-06 | T-Mobile Usa, Inc. | Dynamic telecommunications network outage recovery based on predictive models |
Family Cites Families (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6002689A (en) * | 1996-11-22 | 1999-12-14 | Sprint Communications Co. L.P. | System and method for interfacing a local communication device |
JP3485860B2 (en) * | 2000-03-27 | 2004-01-13 | 松下電器産業株式会社 | Base station apparatus and wireless communication method |
JP2003224505A (en) * | 2002-01-28 | 2003-08-08 | Telecommunication Advancement Organization Of Japan | Communication system between road and vehicle, base station thereof and method for controlling radio zone |
EP2018008A1 (en) * | 2002-05-06 | 2009-01-21 | InterDigital Technology Corporation | Method and system for reducing message instances |
US7715855B2 (en) * | 2004-01-12 | 2010-05-11 | Qualcomm Incorporated | Method and apparatus optimizing receipt of call/broadcast paging messages by self-powered wireless communications devices |
GB2409952B (en) * | 2004-01-12 | 2008-10-15 | Nec Corp | Mobile telecommunications |
US7047006B2 (en) | 2004-04-28 | 2006-05-16 | Motorola, Inc. | Method and apparatus for transmission and reception of narrowband signals within a wideband communication system |
US7733898B2 (en) | 2004-08-25 | 2010-06-08 | Intel Corporation | Method and apparatus for preventing starvation in a slotted-ring network |
KR100705042B1 (en) * | 2004-12-09 | 2007-04-10 | 엘지전자 주식회사 | Portable communication terminal having that have water vein inquiry function |
CN101496430A (en) * | 2005-01-25 | 2009-07-29 | 美商内数位科技公司 | Peer-to-peer wireless communication system |
CN1852568B (en) * | 2005-08-29 | 2010-05-05 | 华为技术有限公司 | Small-zone switching-over method |
KR100705040B1 (en) | 2005-11-28 | 2007-04-09 | 엘지전자 주식회사 | Data transmission method for mobile communication system and controlling method for mobile communication terminal |
WO2008003815A1 (en) * | 2006-07-07 | 2008-01-10 | Nokia Corporation | Improved radio resource allocation mechanism |
US8335196B2 (en) * | 2006-09-19 | 2012-12-18 | Qualcomm Incorporated | Accommodating wideband and narrowband communication devices |
WO2008054306A2 (en) | 2006-11-01 | 2008-05-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and arrangement for reducing power consumption in user equipments in multi-carrier radio systems. |
US20080108374A1 (en) | 2006-11-02 | 2008-05-08 | Motorola, Inc. | Standalone positioning in 3G UMTS systems |
KR100963513B1 (en) * | 2006-12-04 | 2010-06-15 | 삼성전자주식회사 | Apparatus and method for frame structure in wide-band wireless communication systems |
EP1933507A1 (en) | 2006-12-15 | 2008-06-18 | Ubiwave | Low-power multi-hop networks |
CN101675634B (en) * | 2007-03-28 | 2013-03-13 | Lm爱立信电话有限公司 | Measurement of cell-specific reference symbols in the presence of MBMS single frequency network transmissions |
US8175069B2 (en) * | 2007-04-27 | 2012-05-08 | Interdigital Technology Corporation | Method and apparatus of resource management for multimedia broadcast multicast services |
US8000272B2 (en) * | 2007-08-14 | 2011-08-16 | Nokia Corporation | Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration |
KR101467567B1 (en) * | 2007-08-14 | 2014-12-04 | 엘지전자 주식회사 | Method of Transmitting Scheduling Request Signal |
US8625568B2 (en) * | 2007-09-21 | 2014-01-07 | Lg Electronics Inc. | Method of mapping physical resource to logical resource in wireless communication system |
US7801231B2 (en) * | 2007-09-27 | 2010-09-21 | Intel Corporation | Preamble techniques for communications networks |
EP2206395B1 (en) * | 2007-10-29 | 2011-09-07 | Telefonaktiebolaget LM Ericsson (publ) | Method and arrangement in a telecommunications system |
EP3293998B1 (en) * | 2007-11-02 | 2019-04-10 | Telefonaktiebolaget LM Ericsson (publ) | Speed-dependent adaptation of mobility parameters |
US8326372B2 (en) * | 2007-11-09 | 2012-12-04 | Qualcomm Incorporated | Direct link set-up power save delivery |
US7995508B2 (en) * | 2007-12-11 | 2011-08-09 | Electronics & Telecommunications Research Institute | Energy saving method in wireless network |
EP2229797B1 (en) * | 2008-01-07 | 2014-12-31 | Telefonaktiebolaget L M Ericsson (publ) | Uplink power control for power limited terminals |
US8861502B2 (en) * | 2008-03-03 | 2014-10-14 | Qualcomm Incorporated | Assisted initial network acquisition and system determination |
EP2263411B1 (en) | 2008-03-21 | 2017-01-04 | Telefonaktiebolaget LM Ericsson (publ) | Prohibiting unnecessary scheduling requests for uplink grants |
CN101926214B (en) | 2008-03-24 | 2013-08-21 | 中兴通讯美国公司 | Dynamic adjustment and signaling of downlink/uplink allocation ratio in LTE/TDD systems |
WO2010028311A1 (en) | 2008-09-04 | 2010-03-11 | Powerwave Cognition, Inc. | Enhanced wireless ad hoc communication techniques |
CA2757647A1 (en) * | 2008-04-04 | 2009-12-03 | Powerwave Cognition, Inc. | Methods and systems for a mobile, broadband, routable internet |
JP4901800B2 (en) * | 2008-04-14 | 2012-03-21 | 株式会社日立製作所 | Wireless terminal, base station control station, and handoff control method in wireless communication system |
US8064374B2 (en) * | 2008-05-09 | 2011-11-22 | Nokia Corporation | Power save mechanism for wireless communication devices |
JP2009302964A (en) * | 2008-06-13 | 2009-12-24 | Nec Corp | Wireless system, wireless terminal, power control method and power control program |
US8577363B2 (en) | 2008-07-14 | 2013-11-05 | Nokia Corporation | Setup of device-to-device connection |
CN101686497B (en) * | 2008-09-24 | 2013-04-17 | 华为技术有限公司 | Cell load equalization method, and cell load evaluation method and device |
US9294219B2 (en) * | 2008-09-30 | 2016-03-22 | Qualcomm Incorporated | Techniques for supporting relay operation in wireless communication systems |
US20100105395A1 (en) | 2008-10-28 | 2010-04-29 | Samsung Electronics Co., Ltd. | Method for the cell ID selection for femtocell basestation |
US9420564B2 (en) * | 2008-10-29 | 2016-08-16 | Nokia Technologies Oy | Apparatus and method for dynamic communication resource allocation for device to-device communications in a wireless communication system |
US9584216B2 (en) * | 2008-10-31 | 2017-02-28 | Nokia Technologies Oy | Dynamic allocation of subframe scheduling for time divison duplex operation in a packet-based wireless communication system |
US8654666B2 (en) | 2008-11-03 | 2014-02-18 | Lg Electronics Inc. | Communication method and apparatus in multi-carrier system |
US8948208B2 (en) * | 2008-11-07 | 2015-02-03 | Qualcomm Incorporated | Conveying information through phase offset on PSS relative to DL-RS |
CA2743128C (en) | 2008-11-10 | 2016-04-19 | Research In Motion Limited | Method and apparatus of transition to a battery efficient state or configuration by indicating end of data transmission in long term evolution |
KR101487562B1 (en) * | 2008-11-11 | 2015-01-30 | 엘지전자 주식회사 | Method for relaying data in wireless communication system based on tdd |
KR101179627B1 (en) * | 2008-12-22 | 2012-09-04 | 한국전자통신연구원 | Method And Apparatus For Allocating Demodulation Reference Signal |
US8493887B2 (en) * | 2008-12-30 | 2013-07-23 | Qualcomm Incorporated | Centralized control of peer discovery pilot transmission |
US9900779B2 (en) | 2008-12-30 | 2018-02-20 | Qualcomm Incorporated | Centralized control of peer-to-peer communication |
CN101772093A (en) | 2008-12-31 | 2010-07-07 | 华为技术有限公司 | User uplink and downlink out-of-step switching method and device |
US8203985B2 (en) * | 2008-12-31 | 2012-06-19 | Intel Corporation | Power saving in peer-to-peer communication devices |
US8982759B2 (en) * | 2009-01-15 | 2015-03-17 | Lg Electronics Inc. | System information transmitting and receiving device |
EP2224770B1 (en) | 2009-02-25 | 2012-02-22 | Alcatel Lucent | Method and equipment for dynamically updating neighboring cell lists in heterogenous networks |
KR20100100017A (en) | 2009-03-05 | 2010-09-15 | 엘지에릭슨 주식회사 | Method for gathering idle measurement report message and mobile telecommunication system for the same |
WO2010102450A1 (en) * | 2009-03-11 | 2010-09-16 | 华为技术有限公司 | Method, device and system for identifying different frame structures |
US8401033B2 (en) * | 2009-03-13 | 2013-03-19 | Qualcomm Incorporated | Systems, apparatus and methods to facilitate physical cell identifier collision detection |
US9647810B2 (en) * | 2009-03-17 | 2017-05-09 | Samsung Electronics Co., Ltd. | Method and system for mapping pilot signals in multi-stream transmissions |
WO2010107230A2 (en) * | 2009-03-18 | 2010-09-23 | Lg Electronics Inc. | Method and apparatus for transmitting reference signal in wireless communication system |
US8966090B2 (en) | 2009-04-15 | 2015-02-24 | Nokia Corporation | Method, apparatus and computer program product for providing an indication of device to device communication availability |
US20120119902A1 (en) * | 2009-04-29 | 2012-05-17 | Ranjeet Kumar Patro | Terminal apparatus, coordinator, and method for managing emergency events |
US9055105B2 (en) * | 2009-05-29 | 2015-06-09 | Nokia Technologies Oy | Method and apparatus for engaging in a service or activity using an ad-hoc mesh network |
EP2438788A1 (en) | 2009-06-04 | 2012-04-11 | Nokia Corp. | Effective labeling of subframes based on device-to-device transmission in cellular downlink spectrums |
US20100311407A1 (en) * | 2009-06-08 | 2010-12-09 | Motorola, Inc. | Resolving conflicting physical cell identification in a wireless communication system |
KR20120060940A (en) * | 2009-06-08 | 2012-06-12 | 엘지전자 주식회사 | Method in which a relay allocates carriers on a backhaul link and an access link in a multi-carrier wireless communication system |
CN101931885B (en) * | 2009-06-19 | 2015-06-03 | 中兴通讯股份有限公司 | Method and system for informing updating of multimedia broadcast and mutlicast service control channel |
US8538434B2 (en) * | 2009-06-26 | 2013-09-17 | Intel Corporation | GPS assisted network administration |
US8902858B2 (en) * | 2009-07-15 | 2014-12-02 | Qualcomm Incorporated | Low reuse preamble |
US8644277B2 (en) * | 2009-08-06 | 2014-02-04 | Qualcomm Incorporated | Dynamic selection of random access channel configurations |
US20110038290A1 (en) * | 2009-08-11 | 2011-02-17 | Michelle Xiaohong Gong | Device, system and method of power management in a wireless area network |
WO2011019175A2 (en) * | 2009-08-11 | 2011-02-17 | Lg Electronics Inc. | Apparatus and method for power save mode in wireless local area network |
RU2508614C2 (en) * | 2009-08-14 | 2014-02-27 | Нокиа Корпорейшн | Flexible ways to indicate downlink/uplink backhaul subframe configurations in relay systems |
KR101573001B1 (en) * | 2009-08-24 | 2015-11-30 | 삼성전자주식회사 | Receiver and method for using reference singnal thereof |
JP5414802B2 (en) | 2009-09-15 | 2014-02-12 | 株式会社東芝 | Wireless communication device |
CN102550117A (en) | 2009-09-28 | 2012-07-04 | 诺基亚公司 | Random access process reusing for d2d probing in cellular-aided d2d networks |
US9401784B2 (en) * | 2009-10-21 | 2016-07-26 | Qualcomm Incorporated | Time and frequency acquisition and tracking for OFDMA wireless systems |
US9559829B2 (en) * | 2009-11-04 | 2017-01-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Signaling for flexible carrier aggregation |
US8750145B2 (en) * | 2009-11-23 | 2014-06-10 | Interdigital Patent Holdings, Inc. | Method and apparatus for machine-to-machine communication registration |
US8824384B2 (en) * | 2009-12-14 | 2014-09-02 | Samsung Electronics Co., Ltd. | Systems and methods for transmitting channel quality information in wireless communication systems |
US8762543B2 (en) | 2009-12-15 | 2014-06-24 | Intel Corporation | Method and apparatus for autonomous peer discovery and enhancing link reliability for wireless peer direct links |
US8335937B2 (en) | 2009-12-24 | 2012-12-18 | Intel Corporation | Method and system for discoverability of power saving P2P devices |
WO2011083997A2 (en) * | 2010-01-06 | 2011-07-14 | 한국전자통신연구원 | Mechanical type communication system |
US8804586B2 (en) * | 2010-01-11 | 2014-08-12 | Blackberry Limited | Control channel interference management and extended PDCCH for heterogeneous network |
US8565169B2 (en) * | 2010-01-12 | 2013-10-22 | Qualcomm Incorporated | Timing synchronization methods and apparatus |
US8599708B2 (en) * | 2010-01-14 | 2013-12-03 | Qualcomm Incorporated | Channel feedback based on reference signal |
US8868091B2 (en) * | 2010-01-18 | 2014-10-21 | Qualcomm Incorporated | Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power |
US20120300662A1 (en) * | 2010-01-22 | 2012-11-29 | Nokia Corporation | Cellular Control Sensing for Multicell Device-to-Device Interference Control |
US8996900B2 (en) * | 2010-02-04 | 2015-03-31 | Cisco Technology, Inc. | System and method for managing power consumption in data propagation environments |
JP5482258B2 (en) * | 2010-02-05 | 2014-05-07 | 三菱電機株式会社 | Mobile radio communication system |
WO2011097760A1 (en) | 2010-02-12 | 2011-08-18 | Telefonaktiebolaget L M Ericsson (Publ) | Signal measurements for positioning, signalling means for their support and methods of utilizing the measurements to enhance positioning quality in lte |
CN102742238A (en) * | 2010-02-17 | 2012-10-17 | 中兴通讯(美国)公司 | Methods and systems for CSI-RS transmission in LTE-ADVANCE systems |
US8737998B2 (en) | 2010-02-17 | 2014-05-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and arrangement for processing of neighbor cell information |
JP5340995B2 (en) * | 2010-02-26 | 2013-11-13 | 株式会社日立製作所 | Base station, radio communication system and interference-based handover control method |
KR101829922B1 (en) * | 2010-03-05 | 2018-02-20 | 엘지전자 주식회사 | Method of communication with a network in a wireless communication sysyem and apparatus thereof |
US8553671B2 (en) * | 2010-03-10 | 2013-10-08 | Lg Electronics Inc. | Method and apparatus for transmitting uplink control information in a wireless communication system |
US8811961B2 (en) * | 2010-03-11 | 2014-08-19 | Lg Electronics Inc. | Method and apparatus for MTC in a wireless communication system |
US20110223953A1 (en) | 2010-03-15 | 2011-09-15 | Lg Electronics Inc. | Apparatus for direct communication in a wireless system and method thereof |
CN106028273B (en) | 2010-03-23 | 2020-01-14 | Iot控股公司 | Method for machine type communication and WTRU |
CN105813108B (en) * | 2010-03-29 | 2019-11-01 | Lg电子株式会社 | Method and apparatus for the measurement to the Inter-Cell Interference Coordination in radio communications system |
KR101684867B1 (en) * | 2010-04-07 | 2016-12-09 | 삼성전자주식회사 | Transmission and reception method of control information to exploit the spatial multiplexing gain |
US8712401B2 (en) | 2010-04-16 | 2014-04-29 | Qualcomm Incorporated | Radio link monitoring (RLM) and reference signal received power (RSRP) measurement for heterogeneous networks |
US8867458B2 (en) * | 2010-04-30 | 2014-10-21 | Nokia Corporation | Network controlled device to device / machine to machine cluster operation |
US8780860B2 (en) * | 2010-05-01 | 2014-07-15 | Pantech Co., Ltd. | Apparatus and method for transmitting sounding reference signal in wireless communication system supporting multiple component carriers |
US8504052B2 (en) | 2010-05-06 | 2013-08-06 | Nokia Corporation | Measurements and fast power adjustments in D2D communications |
WO2011147464A1 (en) * | 2010-05-28 | 2011-12-01 | Osram Gesellschaft mit beschränkter Haftung | Method for compensating the burn-back of electrode tips in high-pressure discharge lamps |
WO2011147462A1 (en) | 2010-05-28 | 2011-12-01 | Nokia Siemens Networks Oy | Method and apparatus for device-to-device communications |
US8526347B2 (en) * | 2010-06-10 | 2013-09-03 | Qualcomm Incorporated | Peer-to-peer communication with symmetric waveform for downlink and uplink |
JP5334918B2 (en) * | 2010-06-17 | 2013-11-06 | 三菱電機株式会社 | Wireless communication system, cell optimization method, server device, and base station |
US20110312359A1 (en) * | 2010-06-17 | 2011-12-22 | Nokia Siemens Networks Oy | Energy Savings For Multi-Point Transmission Wireless Network |
US8937937B2 (en) * | 2010-06-22 | 2015-01-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Synchronization in heterogeneous networks |
WO2011163088A1 (en) * | 2010-06-23 | 2011-12-29 | Qualcomm Incorporated | Event-triggered peer discovery |
US8977276B2 (en) * | 2010-07-15 | 2015-03-10 | Nokia Corporation | Method and apparatus for device initiated offloading to unlicensed bands |
JP5306293B2 (en) * | 2010-07-22 | 2013-10-02 | 三菱電機株式会社 | Wireless communication system |
GB2482183B (en) * | 2010-07-23 | 2013-03-27 | Sca Ipla Holdings Inc | Cellular communication system, communication units, and method for broadcast and unicast communication |
CN102347817B (en) * | 2010-08-02 | 2014-01-08 | 华为技术有限公司 | Method for notifying reference signal configuration information and device thereof |
WO2012020485A1 (en) * | 2010-08-11 | 2012-02-16 | 富士通株式会社 | Wireless communication system, control station and control method |
US8830930B2 (en) | 2010-08-16 | 2014-09-09 | Electronics And Telecommunications Research Institute | Device in wireless network, device resource management apparatus, gateway and network server, and control method of the network server |
CN102378116B (en) * | 2010-08-17 | 2016-03-30 | 华为技术有限公司 | The collocation method of energy-saving cell, Apparatus and system |
JP2012054736A (en) * | 2010-09-01 | 2012-03-15 | Hitachi Ltd | Mobile communication system and load distribution method for the same |
US8416741B2 (en) * | 2010-09-07 | 2013-04-09 | Verizon Patent And Licensing Inc. | Machine-to-machine communications over fixed wireless networks |
EP2617145A4 (en) * | 2010-09-14 | 2015-03-11 | Nokia Corp | Interference measurement and reporting for device-to-device communications in communication system |
US9414345B2 (en) * | 2010-09-27 | 2016-08-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and an arrangement for sharing of a first cell radio network temporary identifier |
KR101077778B1 (en) | 2010-09-29 | 2011-10-28 | 주식회사 이노와이어리스 | Automatic detection apparatus for ul/dl configuration in lte-tdd signal and the method thereby |
EP3657870A1 (en) * | 2010-10-01 | 2020-05-27 | Mitsubishi Electric Corporation | Communication system, radio network controller and base station |
EP2625890A1 (en) | 2010-10-04 | 2013-08-14 | Telefonaktiebolaget L M Ericsson (publ) | Acquisition of cell information for enhancing network operation in heterogeneous environment |
US9356725B2 (en) * | 2010-10-08 | 2016-05-31 | Qualcomm Incorporated | Method and apparatus for managing inter-cell interference coordination actions for time-domain partitioned cells |
US20120122472A1 (en) * | 2010-11-12 | 2012-05-17 | Motorola Mobility, Inc. | Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network |
CN102014428B (en) * | 2010-12-02 | 2015-05-20 | 新邮通信设备有限公司 | Method and device for selecting cells to be switched at switching preparatory stage |
US20130315197A1 (en) * | 2010-12-14 | 2013-11-28 | Lg Electronics Inc. | Method for transmitting and method for receiving a channel state information reference signal in a distributed multi-node system |
WO2012079197A1 (en) * | 2010-12-16 | 2012-06-21 | Nokia Siemens Networks Oy | Common control deactivation in carrier aggregation |
US20120163261A1 (en) * | 2010-12-23 | 2012-06-28 | Texas Instruments Incorporated | Timing measurements between wireless stations with reduced power consumption |
WO2012108912A1 (en) * | 2011-02-07 | 2012-08-16 | Intel Corporation | Co-phasing of transmissions from multiple infrastructure nodes |
US10187859B2 (en) * | 2011-02-14 | 2019-01-22 | Qualcomm Incorporated | Power control and user multiplexing for heterogeneous network coordinated multipoint operations |
US20120207071A1 (en) * | 2011-02-16 | 2012-08-16 | Samsung Electronics Co., Ltd. | Enhanced power save multi-poll (psmp) protocol for multi-user mimo based wireless local area networks |
US9930568B2 (en) * | 2011-02-28 | 2018-03-27 | Interdigital Patent Holdings, Inc. | Method and apparatus for coordinating change of operating frequency |
KR101859594B1 (en) * | 2011-03-10 | 2018-06-28 | 삼성전자 주식회사 | Method and Apparatus for Supporting Flexible Time Division Duplex in Communication System |
CN102684855A (en) * | 2011-03-11 | 2012-09-19 | 北京三星通信技术研究有限公司 | Indicating method for HARQ (Hybrid Automatic Repeat reQuest) timing relation |
US20120236805A1 (en) * | 2011-03-14 | 2012-09-20 | Innovative Sonic Corporation | Method and apparatus for providing information to determine a cause of low quality of service in a wireless communication system |
US8891548B2 (en) * | 2011-03-22 | 2014-11-18 | Interdigital Patent Holdings, Inc. | Method and apparatus for data transmissions in a wireless network |
WO2012150815A2 (en) * | 2011-05-02 | 2012-11-08 | 엘지전자 주식회사 | Method for performing device-to-device communication in wireless access system and apparatus therefor |
WO2012155323A1 (en) * | 2011-05-13 | 2012-11-22 | Renesas Mobile Corporation | Methods, devices and computer program products for interference reduction in tdd systems allowing allocation of flexible subframes for uplink or downlink transmission |
WO2012167431A1 (en) * | 2011-06-09 | 2012-12-13 | Renesas Mobile Corporation | Interference control in time division duplex communication |
WO2012171465A1 (en) * | 2011-06-14 | 2012-12-20 | 华为技术有限公司 | Communication method and device in time division duplex system |
CN102395157B (en) * | 2011-06-30 | 2014-02-12 | 西安电子科技大学 | Regional load balancing method in cellular mobile communication system |
CN103782523B (en) * | 2011-07-01 | 2017-08-01 | 英特尔公司 | For Homogeneous Circular array(UCA)Structuring code book |
KR20140098144A (en) * | 2011-08-10 | 2014-08-07 | 인터디지탈 패튼 홀딩스, 인크 | Uplink feedback for multi-site scheduling |
EP2745594B1 (en) * | 2011-08-15 | 2016-03-02 | Telefonaktiebolaget LM Ericsson (publ) | Method and arrangement for handling a scheduling request |
US9100900B2 (en) * | 2011-08-16 | 2015-08-04 | Amazon Technologies, Inc. | Home or higher priority PLMN scan in 4G connected mode |
CN102333293B (en) * | 2011-09-21 | 2014-07-09 | 电信科学技术研究院 | Small data transmission method and equipment |
US9973877B2 (en) * | 2011-09-23 | 2018-05-15 | Htc Corporation | Method of handling small data transmission |
CN103947249B (en) | 2011-09-30 | 2018-04-27 | 英特尔公司 | The method that internet service is simultaneously transmitted by multiple wireless networks |
CN102316595B (en) * | 2011-09-30 | 2017-04-12 | 中兴通讯股份有限公司 | Resource determination method and device for physical uplink control channel (PUCCH) of large-band-width system |
US9232540B2 (en) * | 2011-09-30 | 2016-01-05 | Qualcomm Incorporated | Random access channel design for narrow bandwidth operation in a wide bandwidth system |
US11239971B2 (en) * | 2011-11-03 | 2022-02-01 | Texas Instruments Incorporated | Method and apparatus with enhanced control messages and search space |
EP3319347B1 (en) * | 2011-11-04 | 2023-08-23 | Apple Inc. | Small data techniques and configurations in a wireless communication network |
WO2013090809A1 (en) * | 2011-12-14 | 2013-06-20 | Interdigital Patent Holdings, Inc. | Method and apparatus for triggering machine type communications applications |
US9119120B2 (en) | 2012-01-23 | 2015-08-25 | Intel Corporation | Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks |
GB2498721B (en) * | 2012-01-24 | 2014-10-15 | Broadcom Corp | Apparatus,method and computer program for wireless communication |
US8953478B2 (en) * | 2012-01-27 | 2015-02-10 | Intel Corporation | Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback |
CN107257275B (en) * | 2012-01-27 | 2021-03-16 | 交互数字专利控股公司 | Method for ePDCCH performed by WTRU, search space monitoring method and UE |
US9629050B2 (en) * | 2012-02-03 | 2017-04-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Method, apparatus and computer program for cell identification |
US8744449B2 (en) * | 2012-03-16 | 2014-06-03 | Blackberry Limited | Mobility parameter adjustment and mobility state estimation in heterogeneous networks |
US9526091B2 (en) | 2012-03-16 | 2016-12-20 | Intel Corporation | Method and apparatus for coordination of self-optimization functions in a wireless network |
US9143984B2 (en) | 2012-04-13 | 2015-09-22 | Intel Corporation | Mapping of enhanced physical downlink control channels in a wireless communication network |
US8811258B2 (en) * | 2012-04-13 | 2014-08-19 | Intel Corporation | Enhanced local communications in mobile broadband networks |
US9521669B2 (en) * | 2012-04-16 | 2016-12-13 | Blackberry Limited | HARQ for dynamic change of the TDD UL/DL configuration in LTE TDD systems |
US9451595B2 (en) * | 2012-04-27 | 2016-09-20 | Qualcomm Incorporated | Methods and apparatus for TDD reconfiguration |
US8982741B2 (en) * | 2012-05-11 | 2015-03-17 | Intel Corporation | Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management |
US9014064B2 (en) * | 2012-05-11 | 2015-04-21 | Intel Corporation | Scheduling and hybrid automatic repeat request (HARQ) timing indication for an uplink-downlink (UL-DL) reconfiguration |
US9185620B2 (en) * | 2012-05-30 | 2015-11-10 | Intel Corporation | Adaptive UL-DL configurations in a TDD heterogeneous network |
-
2012
- 2012-11-08 US US13/672,560 patent/US9143984B2/en not_active Expired - Fee Related
- 2012-11-21 US US13/682,950 patent/US9232437B2/en active Active
- 2012-12-05 US US13/705,624 patent/US9055474B2/en active Active
- 2012-12-28 US US13/729,164 patent/US9661658B2/en active Active
-
2013
- 2013-01-04 US US13/734,355 patent/US9119097B2/en active Active
- 2013-01-04 US US13/734,380 patent/US9125091B2/en not_active Expired - Fee Related
- 2013-01-04 US US13/734,371 patent/US9107103B2/en not_active Expired - Fee Related
- 2013-01-28 US US13/751,252 patent/US9066258B2/en active Active
- 2013-01-31 US US13/756,013 patent/US9325485B2/en active Active
- 2013-04-10 CN CN201380017102.8A patent/CN104205686B/en not_active Expired - Fee Related
- 2013-04-10 EP EP13775652.4A patent/EP2837109A4/en not_active Ceased
- 2013-04-10 CN CN201380017158.3A patent/CN104303540B/en active Active
- 2013-04-10 HU HUE13775416A patent/HUE039147T2/en unknown
- 2013-04-10 ES ES13775416.4T patent/ES2684535T3/en active Active
- 2013-04-10 EP EP13775416.4A patent/EP2837119B1/en not_active Not-in-force
- 2013-04-10 WO PCT/US2013/035973 patent/WO2013155182A1/en active Application Filing
- 2013-04-10 WO PCT/US2013/035946 patent/WO2013155167A1/en active Application Filing
- 2013-04-11 EP EP16190527.8A patent/EP3166234B1/en active Active
- 2013-04-11 JP JP2015501958A patent/JP6077640B2/en active Active
- 2013-04-11 WO PCT/US2013/036085 patent/WO2013155253A1/en active Application Filing
- 2013-04-11 WO PCT/US2013/036120 patent/WO2013155265A1/en active Application Filing
- 2013-04-11 RU RU2016125897A patent/RU2643702C1/en active
- 2013-04-11 KR KR1020147027037A patent/KR101612358B1/en active IP Right Grant
- 2013-04-11 CN CN201380017295.7A patent/CN104272850B/en not_active Expired - Fee Related
- 2013-04-11 EP EP13776055.9A patent/EP2837111A4/en not_active Withdrawn
- 2013-04-11 JP JP2015505892A patent/JP5986289B2/en active Active
- 2013-04-11 MX MX2016014219A patent/MX364604B/en unknown
- 2013-04-11 MX MX2014011698A patent/MX347089B/en active IP Right Grant
- 2013-04-11 EP EP13775953.6A patent/EP2837249A4/en not_active Withdrawn
- 2013-04-11 AU AU2013245908A patent/AU2013245908B2/en active Active
- 2013-04-11 KR KR1020147027265A patent/KR101598476B1/en not_active IP Right Cessation
- 2013-04-11 RU RU2014138943/07A patent/RU2593269C2/en active
- 2013-04-11 EP EP19219650.9A patent/EP3696994A1/en active Pending
- 2013-04-11 CA CA2869000A patent/CA2869000C/en active Active
- 2013-04-12 CN CN201380016787.4A patent/CN104170281B/en not_active Expired - Fee Related
- 2013-04-12 MX MX2014011467A patent/MX344027B/en active IP Right Grant
- 2013-04-12 CN CN201380016965.3A patent/CN104205962B/en active Active
- 2013-04-12 ES ES13775019.6T patent/ES2683975T3/en active Active
- 2013-04-12 EP EP13775493.3A patent/EP2837108A4/en not_active Withdrawn
- 2013-04-12 HU HUE13775019A patent/HUE040204T2/en unknown
- 2013-04-12 CN CN201380017296.1A patent/CN104321985B/en not_active Expired - Fee Related
- 2013-04-12 CN CN201380017088.1A patent/CN104205673B/en active Active
- 2013-04-12 EP EP13775301.8A patent/EP2837107A4/en not_active Withdrawn
- 2013-04-12 JP JP2015503689A patent/JP5886471B2/en not_active Expired - Fee Related
- 2013-04-12 ES ES13776010T patent/ES2727123T3/en active Active
- 2013-04-12 WO PCT/US2013/036321 patent/WO2013155382A1/en active Application Filing
- 2013-04-12 MY MYPI2014702727A patent/MY179770A/en unknown
- 2013-04-12 RU RU2014138945/07A patent/RU2582078C2/en not_active IP Right Cessation
- 2013-04-12 EP EP13776010.4A patent/EP2837110B1/en active Active
- 2013-04-12 KR KR1020147026950A patent/KR101596187B1/en not_active IP Right Cessation
- 2013-04-12 CN CN201810923416.9A patent/CN108667591B/en active Active
- 2013-04-12 WO PCT/US2013/036305 patent/WO2013155373A1/en active Application Filing
- 2013-04-12 JP JP2015505952A patent/JP5954647B2/en active Active
- 2013-04-12 CN CN201380017188.4A patent/CN104205915B/en not_active Expired - Fee Related
- 2013-04-12 CA CA2867734A patent/CA2867734A1/en not_active Abandoned
- 2013-04-12 WO PCT/US2013/036364 patent/WO2013155411A1/en active Application Filing
- 2013-04-12 EP EP13775019.6A patent/EP2837228B1/en not_active Not-in-force
- 2013-04-12 WO PCT/US2013/036417 patent/WO2013155443A1/en active Application Filing
- 2013-04-12 WO PCT/US2013/036445 patent/WO2013155459A1/en active Application Filing
- 2013-04-12 AU AU2013245792A patent/AU2013245792B2/en not_active Ceased
- 2013-04-12 EP EP13776103.7A patent/EP2837246A4/en not_active Withdrawn
- 2013-04-12 HU HUE13776010 patent/HUE044206T2/en unknown
-
2015
- 2015-07-08 US US14/794,731 patent/US9814070B2/en active Active
- 2015-08-11 US US14/823,818 patent/US9736861B2/en active Active
-
2016
- 2016-06-02 JP JP2016111294A patent/JP6250736B2/en active Active
- 2016-08-04 JP JP2016153870A patent/JP6424396B2/en active Active
- 2016-09-09 US US15/261,439 patent/US9936521B2/en active Active
-
2017
- 2017-07-06 US US15/643,237 patent/US10231264B2/en active Active
-
2018
- 2018-02-07 US US15/890,680 patent/US10091818B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6424396B2 (en) | Multiple access scheme and signal structure for D2D communication | |
US11516845B2 (en) | Method and equipment for channel sensing and signal transmission | |
US20220407757A1 (en) | Channel access method for data transmission, and wireless communication method and wireless communication terminal using same | |
US11363572B2 (en) | Uplink channel dynamic waveform switching | |
KR102422168B1 (en) | Data transmission method, base station, and terminal | |
JP6779289B2 (en) | Base station equipment, terminal equipment and their communication methods | |
EP3193551B1 (en) | Base station device and terminal device | |
CN113475138B (en) | User equipment, base station device, and communication method | |
CN113875313A (en) | Method and apparatus for frame-based equipment operation for unlicensed NR | |
US9204461B2 (en) | Method for random access to uplink in multi-carrier aggregation environment | |
CN111527716B (en) | Reference signal sequence design for new radio systems | |
KR20170056527A (en) | Cell detection, synchronization and measurement on unlicensed spectrum | |
JP2019504543A (en) | Uplink control channel configuration for unlicensed carriers | |
CN113498630A (en) | Method and apparatus for configuring RACH opportunities in unlicensed NR | |
JP2019500769A (en) | Wireless communication method and user apparatus | |
US20210022210A1 (en) | Base station apparatus, terminal apparatus, communication method, and integrated circuit | |
US11109330B2 (en) | Method for determining correction time in wireless communication system and apparatus therefor | |
CN109716811B (en) | Method and system for orthogonal multiprotocol transmission | |
JP2022061551A (en) | Terminal device, base station device and communication method | |
BR122016024992B1 (en) | USER EQUIPMENT APPARATUS, NON-TRAIFICABLE COMPUTER READABLE STORAGE MEDIA, AND METHOD FOR OPERATING A USER EQUIPMENT | |
KR20200099973A (en) | Measurement method and apparatus for supporting mobility in communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171212 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180309 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6424396 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |