JP6424112B2 - Cylindrical vibration isolator - Google Patents

Cylindrical vibration isolator Download PDF

Info

Publication number
JP6424112B2
JP6424112B2 JP2015038756A JP2015038756A JP6424112B2 JP 6424112 B2 JP6424112 B2 JP 6424112B2 JP 2015038756 A JP2015038756 A JP 2015038756A JP 2015038756 A JP2015038756 A JP 2015038756A JP 6424112 B2 JP6424112 B2 JP 6424112B2
Authority
JP
Japan
Prior art keywords
axial direction
cylindrical
flange portion
cylindrical portion
vibration isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015038756A
Other languages
Japanese (ja)
Other versions
JP2016161003A (en
Inventor
宏渉 松居
宏渉 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2015038756A priority Critical patent/JP6424112B2/en
Publication of JP2016161003A publication Critical patent/JP2016161003A/en
Application granted granted Critical
Publication of JP6424112B2 publication Critical patent/JP6424112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、自動車のエンジンマウントやサスペンションマウントなどに用いられる筒形防振装置に関するものである。   The present invention relates to a cylindrical vibration isolator used for an engine mount or a suspension mount of an automobile.

従来から、振動伝達系を構成する部材間に配設されて、それら部材を相互に防振連結する防振装置の一種として、筒形防振装置が知られている。筒形防振装置は、インナ軸部材がアウタ筒部材の筒状部に挿入されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって径方向で相互に弾性連結された構造とされている。   2. Description of the Related Art Conventionally, a cylindrical vibration isolator is known as a type of a vibration isolator that is disposed between members constituting a vibration transmission system and that mutually antivibrates and connects these members. The cylindrical vibration isolator has a structure in which an inner shaft member is inserted into a cylindrical portion of an outer cylindrical member, and the inner shaft member and the outer cylindrical member are elastically connected to each other in the radial direction by a main rubber elastic body. Yes.

また、軽量化や製造の容易化などを目的として、昨今では、金属製であったアウタ筒部材を合成樹脂で形成することも提案されており、例えば、特開2001−74080号公報(特許文献1)などがある。   In addition, for the purpose of reducing the weight and facilitating production, it has recently been proposed to form a metal outer cylinder member with a synthetic resin. For example, JP 2001-74080 A (Patent Document) 1) etc.

ところで、特許文献1の筒形防振装置のように、アウタ筒部材の軸方向一方の端部に外周へ広がるフランジ部が形成されて、フランジ部がインナ軸部材に取り付けられる車両ボデー等の部材と緩衝ゴムを介して軸方向に当接することで、インナ軸部材とアウタ筒部材の軸方向の相対変位量を制限するストッパ手段が構成される場合もある。   By the way, like the cylindrical vibration isolator of Patent Document 1, a member such as a vehicle body in which a flange portion extending to the outer periphery is formed at one axial end portion of the outer cylindrical member and the flange portion is attached to the inner shaft member. In some cases, stopper means for limiting the amount of relative displacement in the axial direction between the inner shaft member and the outer cylinder member may be configured.

しかし、このようなストッパ手段では、特性のチューニング自由度を十分に確保し難いという問題があった。即ち、ストッパ手段の特性を調節するためには、フランジ部を大きくして実質的なストッパ当接面積を大きく確保することにより、緩衝ゴムの大きさや形状、配置などを調節することが有効であるが、フランジ部の外周への突出量は筒形防振装置の配設スペースによっては制限される場合もある。しかも、仮にフランジ部を外周へ大きく突出させ得たとしても、合成樹脂で形成されたアウタ筒部材では、ストッパ荷重によるフランジ部の亀裂などが生じ易くなって、結果的にストッパ手段の特性チューニングの自由度を大きく得ることができないおそれもあった。   However, such a stopper means has a problem that it is difficult to ensure a sufficient degree of freedom in tuning characteristics. That is, in order to adjust the characteristics of the stopper means, it is effective to adjust the size, shape, arrangement, etc. of the buffer rubber by enlarging the flange portion to ensure a substantial stopper contact area. However, the protrusion amount to the outer periphery of a flange part may be restrict | limited depending on the arrangement | positioning space of a cylindrical vibration isolator. Moreover, even if the flange portion can be protruded greatly to the outer periphery, the outer cylindrical member made of synthetic resin is likely to crack the flange portion due to the stopper load, resulting in the characteristic tuning of the stopper means. There is also a possibility that a large degree of freedom cannot be obtained.

特開2001−74080号公報JP 2001-74080 A

本発明は、上述の事情を背景に為されたものであって、その解決課題は、フランジ部を外周へ大きく突出させることなく、インナ軸部材とアウタ筒部材の軸方向での相対変位量を制限するストッパ手段の特性を、大きな自由度でチューニングすることができる、新規な構造の筒形防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and the problem to be solved is to determine the relative displacement amount in the axial direction of the inner shaft member and the outer cylindrical member without causing the flange portion to protrude greatly to the outer periphery. An object of the present invention is to provide a cylindrical vibration isolator having a novel structure that can tune the characteristics of the limiting stopper means with a large degree of freedom.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

すなわち、本発明の第一の態様は、インナ軸部材が合成樹脂で形成されたアウタ筒部材の筒状部に挿入されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって相互に弾性連結されていると共に、該筒状部の軸方向一方の端部には外周へ広がるフランジ部が一体形成されて、該フランジ部の軸方向外面に緩衝ゴムが固着されており、該インナ軸部材と該アウタ筒部材の軸方向での相対変位量を制限するストッパ手段が該インナ軸部材と該フランジ部の該緩衝ゴムを介した軸方向の当接によって構成される筒形防振装置において、前記フランジ部を形成された前記筒状部の軸方向一方の端部の内径寸法が該筒状部の軸方向他方の端部の内径寸法よりも小さくされていると共に、該筒状部の軸方向一方の端部が該筒状部の軸方向他方の端部よりも厚肉とされていることを、特徴とする。   That is, according to the first aspect of the present invention, the inner shaft member is inserted into the cylindrical portion of the outer cylinder member formed of synthetic resin, and the inner shaft member and the outer cylinder member are mutually elastic by the main rubber elastic body. A flange portion that extends to the outer periphery is integrally formed at one end portion in the axial direction of the cylindrical portion, and a buffer rubber is fixed to an outer surface in the axial direction of the flange portion, and the inner shaft member. And a stopper means for limiting the relative displacement in the axial direction of the outer cylindrical member is constituted by axial contact between the inner shaft member and the flange portion through the shock absorbing rubber. The inner diameter dimension of one end portion in the axial direction of the cylindrical portion on which the flange portion is formed is smaller than the inner diameter dimension of the other end portion in the axial direction of the cylindrical portion, and the axis of the cylindrical portion One end of the direction is the other axial direction of the cylindrical part That it is thicker than the end portion, and wherein.

このような本発明の第一の態様に従う構造とされた筒形防振装置によれば、筒状部の軸方向一方の端部が厚肉とされていることにより、緩衝ゴムをフランジ部から筒状部の軸方向端面にかけて固着して設けることにより、緩衝ゴムの大きさや形状、配置などの調節自由度を大きくすることができる。これにより、インナ軸部材とフランジ部の軸方向外面を含むアウタ筒部材の軸方向端面とが緩衝ゴムを介して軸方向で当接した状態において、筒形防振装置の軸方向のばね特性を大きな自由度で設定することができて、目的とする防振性能を有利に実現することができる。   According to the cylindrical vibration isolator having the structure according to the first aspect of the present invention, the shock absorbing rubber is separated from the flange portion by making one end portion in the axial direction of the cylindrical portion thick. By fixing and providing over the axial direction end surface of a cylindrical part, the freedom degree of adjustments, such as a magnitude | size, a shape, and arrangement | positioning of a buffer rubber, can be enlarged. Thus, in the state where the inner shaft member and the axial end surface of the outer cylindrical member including the axial outer surface of the flange portion are in axial contact with each other via the buffer rubber, the axial spring characteristics of the cylindrical vibration damping device are reduced. It can be set with a large degree of freedom, and the desired anti-vibration performance can be realized advantageously.

しかも、筒状部の軸方向一方の端部が軸方向他方の端部よりも内径寸法を小さくされることで厚肉とされて、アウタ筒部材の軸方向端面が径方向に大きく確保されることから、フランジ部の外周側への突出量を大きくすることなく、緩衝ゴムの固着面を大きく得ることができる。従って、緩衝ゴムの固着面を大きく得るために筒形防振装置の外径寸法を大きくする必要はなく、筒形防振装置の配設領域が特に外周側で制限されている場合にも、軸方向ばね特性のチューニング自由度を大きく確保することができる。   In addition, one axial end of the cylindrical portion is made thicker by making the inner diameter dimension smaller than the other axial end, and the axial end surface of the outer cylindrical member is secured large in the radial direction. Therefore, it is possible to obtain a large fixing surface of the buffer rubber without increasing the amount of protrusion of the flange portion toward the outer peripheral side. Therefore, it is not necessary to increase the outer diameter of the cylindrical vibration isolator in order to obtain a large fixing surface of the buffer rubber, and even when the arrangement area of the cylindrical vibration isolator is limited particularly on the outer peripheral side, A large degree of freedom in tuning the axial spring characteristics can be secured.

また、筒状部の軸方向他方の端部が一方の端部よりも内径寸法を大きくされていることから、緩衝ゴムの固着面積に影響しない軸方向他方の端部では、本体ゴム弾性体のゴムボリュームが大きく確保されて、軸直角方向やこじり方向での防振性能が有利に発揮されると共に、本体ゴム弾性体の耐久性の低下が防止される。加えて、筒状部の軸方向他方の端部が一方の端部よりも薄肉とされていることにより、本体ゴム弾性体の径方向でのゴムボリュームを大きく確保しても、筒状部の軸方向他方の端部が一方の端部に比して著しく大径となることもない。   Further, since the other end in the axial direction of the cylindrical portion has a larger inner diameter than the one end, the other end in the axial direction that does not affect the fixed area of the buffer rubber is A large rubber volume is ensured, and the anti-vibration performance in the direction perpendicular to the axis and the direction of twisting is advantageously exhibited, and the durability of the main rubber elastic body is prevented from being lowered. In addition, since the other end portion in the axial direction of the cylindrical portion is thinner than the one end portion, even if a large rubber volume in the radial direction of the main rubber elastic body is secured, the cylindrical portion The other end in the axial direction does not have a remarkably larger diameter than the one end.

本発明の第二の態様は、第一の態様に記載された筒形防振装置において、前記フランジ部を形成された前記筒状部の軸方向一方の端部と他方の端部との厚さの差が5mm以下とされているものである。   According to a second aspect of the present invention, in the cylindrical vibration damping device described in the first aspect, the thickness of one end portion in the axial direction and the other end portion of the cylindrical portion in which the flange portion is formed. The difference in thickness is 5 mm or less.

第二の態様によれば、筒状部の厚さ寸法が軸方向で著しく変化するのを防ぐことができて、厚さの変化部分での応力集中による割れや、本体ゴム弾性体の形状が制限されることによる防振特性への悪影響などが回避されると共に、筒状部を容易に且つ安定した品質で製造することができる。   According to the second aspect, it is possible to prevent the thickness dimension of the cylindrical portion from changing significantly in the axial direction, and the crack due to stress concentration at the thickness changing portion and the shape of the main rubber elastic body can be prevented. The adverse effect on the vibration isolation characteristics due to the restriction is avoided, and the cylindrical portion can be manufactured easily and with stable quality.

本発明の第三の態様は、第一又は第二の態様に記載された筒形防振装置において、前記フランジ部を形成された前記筒状部の軸方向一方の端部が該フランジ部よりも厚肉とされていると共に、該筒状部の軸方向一方の端部の厚さが該フランジ部の3倍以下とされているものである。   According to a third aspect of the present invention, in the cylindrical vibration isolator described in the first or second aspect, one end portion in the axial direction of the cylindrical portion on which the flange portion is formed is less than the flange portion. Is thick, and the thickness of one end in the axial direction of the cylindrical portion is three times or less that of the flange portion.

第三の態様によれば、フランジ部が比較的に薄肉とされることで、ストッパ手段の軸方向でのストッパクリアランスの調節幅を大きく確保し易くなると共に、緩衝ゴムの軸方向寸法も大きな自由度で調節することができる。   According to the third aspect, since the flange portion is made relatively thin, it is easy to secure a large adjustment width of the stopper clearance in the axial direction of the stopper means, and the axial dimension of the buffer rubber is also large and free. Can be adjusted in degrees.

また、互いに繋がって一体形成される筒状部の軸方向一方の端部とフランジ部の厚さの差がある程度に抑えられることにより、筒状部と繋がるフランジ部の基端などにおいて、筒状部とフランジ部の変形剛性の差や成形後の収縮などに起因する割れが生じ難くなる。   In addition, the difference between the thickness of one end in the axial direction of the cylindrical portion integrally connected to each other and the thickness of the flange portion is suppressed to some extent, so that the cylindrical end of the flange portion connected to the cylindrical portion is cylindrical. Cracks due to differences in deformation rigidity between the flange portion and the flange portion, shrinkage after molding, and the like are less likely to occur.

本発明の第四の態様は、第一〜第三の何れか一つの態様に記載された筒形防振装置において、前記フランジ部を形成された前記筒状部の軸方向一方の端部と該筒状部の軸方向他方の端部の内径寸法の差が、該筒状部の軸方向一方の端部の内径寸法の0.2倍よりも小さくされているものである。   According to a fourth aspect of the present invention, in the cylindrical vibration isolator described in any one of the first to third aspects, one end portion in the axial direction of the cylindrical portion in which the flange portion is formed; The difference in the inner diameter of the other end in the axial direction of the cylindrical portion is made smaller than 0.2 times the inner diameter of the one end in the axial direction of the cylindrical portion.

第四の態様によれば、筒状部の軸方向一方の端部と他方の端部の内径寸法の差が、アウタ筒部材のサイズに対して十分に小さくされていることにより、筒状部の内径寸法を軸方向で異ならせることによる防振特性への影響が抑えられて、優れた防振性能を得ることができる。   According to the fourth aspect, the difference in inner diameter between one end portion in the axial direction of the tubular portion and the other end portion is made sufficiently small with respect to the size of the outer tubular member. The influence on the vibration isolation characteristics due to the difference in the inner diameter of the shaft in the axial direction is suppressed, and excellent vibration isolation performance can be obtained.

本発明の第五の態様は、第一〜第四の何れか一つの態様に記載された筒形防振装置において、前記筒状部の内周面の少なくとも一部が、前記フランジ部を形成された該筒状部の軸方向一方から該筒状部の軸方向他方に向かって次第に大径となるテーパ面とされているものである。   According to a fifth aspect of the present invention, in the cylindrical vibration isolator described in any one of the first to fourth aspects, at least a part of the inner peripheral surface of the cylindrical portion forms the flange portion. The tapered surface is a tapered surface that gradually increases in diameter from one axial direction of the cylindrical portion toward the other axial direction of the cylindrical portion.

第五の態様によれば、筒状部の厚さおよび内径寸法がテーパ面によって軸方向で次第に変化することにより、振動荷重や車両への装着による径方向の入力に対して、筒状部の内周面における応力の集中が低減乃至は回避されて、筒状部の耐久性の向上が図られる。なお、筒状部の内周面を成形する金型を成形後に筒状部の軸方向他方へ抜くようにすれば、テーパ面によって優れた離型性も実現され得る。   According to the fifth aspect, the thickness and the inner diameter of the cylindrical portion gradually change in the axial direction due to the tapered surface, so that the cylindrical portion can be prevented from receiving vibration load or radial input due to mounting on the vehicle. The concentration of stress on the inner peripheral surface is reduced or avoided, and the durability of the cylindrical portion is improved. In addition, if the metal mold | die which shape | molds the internal peripheral surface of a cylindrical part is extracted to the other axial direction of a cylindrical part after shaping | molding, the outstanding mold release property can also be implement | achieved by a taper surface.

本発明の第六の態様は、第一〜第五の何れか一つの態様に記載された筒形防振装置において、前記フランジ部を形成された前記筒状部の軸方向一方の端部は、内径寸法が軸方向で一定のストレート部とされているものである。   According to a sixth aspect of the present invention, in the cylindrical vibration isolator described in any one of the first to fifth aspects, one end portion in the axial direction of the cylindrical portion on which the flange portion is formed is The inner diameter is a straight portion having a constant axial direction.

第六の態様によれば、アウタ筒部材の内周面と軸方向一方の端面のなす角部が鋭角になるのを防ぐことができて、応力集中が緩和されることで耐久性の向上が図られる。なお、本体ゴム弾性体が筒状部の軸方向一方の端部の内周面を覆うように形成されて、緩衝ゴムが本体ゴム弾性体と一体形成されている場合には、本体ゴム弾性体がアウタ筒部材の内周面と軸方向一方の端面とのなす角部に触れることで裂けるのも防ぐことができて、本体ゴム弾性体の耐久性も向上し得る。   According to the sixth aspect, it is possible to prevent the corner formed by the inner peripheral surface of the outer cylindrical member and one end surface in the axial direction from becoming an acute angle, and the durability can be improved by relaxing the stress concentration. Figured. In the case where the main rubber elastic body is formed so as to cover the inner peripheral surface of one end in the axial direction of the cylindrical portion, and the buffer rubber is integrally formed with the main rubber elastic body, the main rubber elastic body Can be prevented from tearing by touching the corner formed by the inner peripheral surface of the outer cylinder member and one end surface in the axial direction, and the durability of the main rubber elastic body can be improved.

本発明によれば、アウタ筒部材の筒状部において軸方向一方の端部が他方の端部よりも厚肉とされていると共に、筒状部の内径寸法が軸方向一方の端部で他方の端部よりも小さくされている。これにより、アウタ筒部材の軸方向一方の端面が大きな面積で形成されて、アウタ筒部材の軸方向一方の端面に固着される緩衝ゴムが大きさや形状、配置などを大きな自由度で設定可能とされる。それ故、緩衝ゴムによって影響されるストッパ手段が当接した状態の軸方向ばね特性を、より大きな自由度で調節することができて、目的とする防振性能を有利に実現することができる。しかも、フランジ部を外周へより大きく突出させる必要はなく、筒形防振装置の大径化も回避される。   According to the present invention, one end portion in the axial direction of the cylindrical portion of the outer cylindrical member is thicker than the other end portion, and the inner diameter dimension of the cylindrical portion is the other end portion in the axial direction. It is made smaller than the end. As a result, one end surface in the axial direction of the outer cylinder member is formed with a large area, and the cushion rubber fixed to one end surface in the axial direction of the outer cylinder member can be set with a large degree of freedom in size, shape, arrangement, etc. Is done. Therefore, the axial direction spring characteristic in a state where the stopper means affected by the buffer rubber is in contact can be adjusted with a greater degree of freedom, and the desired anti-vibration performance can be advantageously realized. In addition, it is not necessary to project the flange portion more greatly to the outer periphery, and an increase in the diameter of the cylindrical vibration isolator can be avoided.

本発明の第一の実施形態としてのサスペンションブッシュを示す正面図。The front view which shows the suspension bush as 1st embodiment of this invention. 図1のII−II断面図。II-II sectional drawing of FIG. 図2のIII−III断面図。III-III sectional drawing of FIG. 図1に示すサスペンションブッシュを構成するアウタ筒部材の縦断面図。The longitudinal cross-sectional view of the outer cylinder member which comprises the suspension bush shown in FIG. 図1に示すサスペンションブッシュを車両への装着状態で示す縦断面図。The longitudinal cross-sectional view which shows the suspension bush shown in FIG. 1 in the mounting state to a vehicle.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜3には、本発明に従う構造とされた筒形防振装置の第一の実施形態として、自動車用のサスペンションブッシュ10が示されている。サスペンションブッシュ10は、インナ軸部材12とアウタ筒部材14が本体ゴム弾性体16によって弾性連結された構造を有している。   1 to 3 show a suspension bush 10 for an automobile as a first embodiment of a cylindrical vibration isolator having a structure according to the present invention. The suspension bush 10 has a structure in which an inner shaft member 12 and an outer cylinder member 14 are elastically connected by a main rubber elastic body 16.

より詳細には、インナ軸部材12は、小径の筒状の部材であって、鉄やアルミニウム合金などの金属や、繊維補強された合成樹脂などで形成された高剛性の部材とされている。なお、インナ軸部材12は、後述する本体ゴム弾性体16の径方向寸法を大きく得るために、変形剛性や車両への取付強度が十分に確保される範囲で細くされていることが望ましい。また、インナ軸部材12の外周面は、略一定の外径寸法で軸方向に延びる円筒面とされているが、外周面に一体又は別体で凹凸を設けても良く、例えば、外周面に開口する凹所を設けることにより、本体ゴム弾性体16のゴムボリュームをより大きく確保できる一方、外周面に突出する凸部を設けることにより、軸直角方向のストッパを構成することができる。   More specifically, the inner shaft member 12 is a small-diameter cylindrical member, and is a high-rigidity member formed of metal such as iron or aluminum alloy, fiber-reinforced synthetic resin, or the like. The inner shaft member 12 is desirably thinned within a range in which deformation rigidity and mounting strength to the vehicle are sufficiently secured in order to obtain a large radial dimension of the main rubber elastic body 16 described later. In addition, the outer peripheral surface of the inner shaft member 12 is a cylindrical surface extending in the axial direction with a substantially constant outer diameter. However, the outer peripheral surface may be provided with unevenness separately or separately. By providing the recess that opens, a larger rubber volume of the main rubber elastic body 16 can be secured, while by providing the protruding portion that protrudes on the outer peripheral surface, a stopper in the direction perpendicular to the axis can be configured.

アウタ筒部材14は、大径の円筒形状を有する筒状部18を備えていると共に、筒状部18の軸方向一方の端部には、外周側へ軸直角方向で突出するフランジ部20が、全周に亘って連続して一体形成されている。また、アウタ筒部材14は、高剛性の部材であって、例えば、ポリアミドやポリアセタール、ポリブチレンテレフタレート、ポリカーボネートなどの合成樹脂で形成されており、好適には、ガラス繊維やカーボン繊維などで補強された繊維補強合成樹脂が採用される。なお、アウタ筒部材14の筒状部18は、円筒形状が望ましいが、例えば楕円筒形状なども採用され得る。   The outer cylindrical member 14 includes a cylindrical portion 18 having a large-diameter cylindrical shape, and a flange portion 20 that protrudes in the direction perpendicular to the outer peripheral side is formed at one axial end of the cylindrical portion 18. These are integrally formed continuously over the entire circumference. The outer cylinder member 14 is a high-rigidity member, and is formed of a synthetic resin such as polyamide, polyacetal, polybutylene terephthalate, or polycarbonate, and is preferably reinforced with glass fiber or carbon fiber. Fiber reinforced synthetic resin is used. In addition, although the cylindrical part 18 of the outer cylinder member 14 has desirable cylindrical shape, an elliptical cylinder shape etc. can be employ | adopted, for example.

そして、インナ軸部材12がアウタ筒部材14の筒状部18に略同一中心軸上で挿入されて、インナ軸部材12とアウタ筒部材14が本体ゴム弾性体16によって弾性連結されている。本体ゴム弾性体16は、厚肉の略円筒形状を有するゴム弾性体であって、内周面がインナ軸部材12の外周面に加硫接着されていると共に、外周面がアウタ筒部材14の内周面に加硫接着されており、インナ軸部材12とアウタ筒部材14を備えた一体加硫成形品として形成されている。なお、インナ軸部材12は、アウタ筒部材14と本体ゴム弾性体16で弾性連結された状態において、軸方向両端部がアウタ筒部材14よりも軸方向外方へ突出していると共に、軸方向一方(図2中、右方)への突出量が他方(図2中、左方)への突出量よりも小さくされている。   The inner shaft member 12 is inserted into the cylindrical portion 18 of the outer cylinder member 14 on substantially the same central axis, and the inner shaft member 12 and the outer cylinder member 14 are elastically connected by the main rubber elastic body 16. The main rubber elastic body 16 is a rubber elastic body having a thick, substantially cylindrical shape, and its inner peripheral surface is vulcanized and bonded to the outer peripheral surface of the inner shaft member 12, and the outer peripheral surface is the outer cylindrical member 14. It is vulcanized and bonded to the inner peripheral surface, and is formed as an integrally vulcanized molded product including the inner shaft member 12 and the outer cylindrical member 14. In the state where the inner shaft member 12 is elastically connected by the outer cylindrical member 14 and the main rubber elastic body 16, both end portions in the axial direction protrude outward in the axial direction from the outer cylindrical member 14. The amount of protrusion to the right (in FIG. 2, right) is smaller than the amount of protrusion to the other (left in FIG. 2).

さらに、本体ゴム弾性体16には、軸方向端面に開口するすぐり部22が、軸方向両側にそれぞれ形成されている。すぐり部22は、本体ゴム弾性体16の径方向中央部分を略一定の半円形断面で周方向に延びており、本実施形態では全周に亘って連続する環状の凹所とされている。   Further, the main rubber elastic body 16 is formed with a straight portion 22 opened on the axial end face on both sides in the axial direction. The straight portion 22 extends in the circumferential direction at a central portion in the radial direction of the main rubber elastic body 16 with a substantially constant semicircular cross section. In the present embodiment, the curly portion 22 is an annular recess that is continuous over the entire circumference.

更にまた、アウタ筒部材14の軸方向外面には、緩衝ゴム24が固着されている。この緩衝ゴム24は、略一定断面で周方向に延びる環状とされており、アウタ筒部材14の軸方向外面を構成する筒状部18の軸方向一方の端面およびフランジ部20の軸方向外面に固着されている。本実施形態の緩衝ゴム24は、筒状部18よりも内周側で本体ゴム弾性体16と繋がっており、本体ゴム弾性体16と一体形成されている。   Furthermore, a buffer rubber 24 is fixed to the outer surface of the outer cylinder member 14 in the axial direction. The shock absorbing rubber 24 has an annular shape extending in the circumferential direction with a substantially constant cross section, and is provided on one end surface in the axial direction of the cylindrical portion 18 constituting the axial outer surface of the outer cylindrical member 14 and the axial outer surface of the flange portion 20. It is fixed. The buffer rubber 24 of the present embodiment is connected to the main rubber elastic body 16 on the inner peripheral side of the cylindrical portion 18 and is integrally formed with the main rubber elastic body 16.

ここにおいて、アウタ筒部材14の筒状部18の内周面には、テーパ面26が設けられている。即ち、筒状部18の軸方向中央部分の内周面が、フランジ部20を設けられた軸方向一方へ向かって次第に小径となるテーパ面26とされており、これによって、筒状部18の軸方向中央部分は、軸方向他方から一方へ向かって次第に厚肉となるテーパ部28とされている。本実施形態では、筒状部18の外周面は、軸方向にストレートな筒状面とされており、略一定の外径寸法を有している。尤も、筒状部18の軸方向他方の端部は、後述するホルダ40への圧入を容易にするために、外周面が軸方向他方に向かって次第に小径となる案内面29とされている。   Here, a tapered surface 26 is provided on the inner peripheral surface of the cylindrical portion 18 of the outer cylindrical member 14. That is, the inner peripheral surface of the central portion in the axial direction of the cylindrical portion 18 is a tapered surface 26 that gradually decreases in diameter toward one side in the axial direction where the flange portion 20 is provided. The central portion in the axial direction is a tapered portion 28 that gradually increases in thickness from the other axial direction to the other. In the present embodiment, the outer peripheral surface of the cylindrical portion 18 is a cylindrical surface that is straight in the axial direction, and has a substantially constant outer diameter. However, the other end portion in the axial direction of the cylindrical portion 18 is a guide surface 29 whose outer peripheral surface gradually becomes smaller in diameter toward the other axial direction in order to facilitate press-fitting into a holder 40 described later.

また、テーパ部28を挟んだ軸方向両側では、筒状部18の内径寸法が軸方向で略一定とされており、筒状部18におけるテーパ部28よりも軸方向一方側がストレート部としての厚肉部30とされていると共に、軸方向他方側が薄肉部32とされている。このように、フランジ部20を設けられる筒状部18の軸方向一方の端部が、内径寸法と外径寸法の両方が軸方向で略一定のストレート構造を有する厚肉部30とされていることで、厚肉部30の軸方向一方の端部の内周角部は、縦断面において鋭角になることなく略直角とされている。なお、本実施形態では、テーパ面26と厚肉部30および薄肉部32の内周面とが、縦断面において曲率半径の大きな円弧をなす湾曲面で滑らかに連続して繋がっている。   In addition, on both sides in the axial direction across the taper portion 28, the inner diameter dimension of the cylindrical portion 18 is substantially constant in the axial direction, and one axial side of the cylindrical portion 18 is thicker as a straight portion than the taper portion 28. While being the meat part 30, the other axial side is the thin part 32. As described above, one end portion in the axial direction of the cylindrical portion 18 provided with the flange portion 20 is a thick portion 30 having a straight structure in which both the inner diameter dimension and the outer diameter dimension are substantially constant in the axial direction. Thus, the inner peripheral corner portion at one end portion in the axial direction of the thick portion 30 is substantially perpendicular to the longitudinal section without being an acute angle. In the present embodiment, the tapered surface 26 and the inner peripheral surfaces of the thick portion 30 and the thin portion 32 are smoothly and continuously connected by a curved surface forming an arc having a large curvature radius in the longitudinal section.

また、厚肉部30の厚さ寸法t1が薄肉部32の厚さ寸法t2よりも大きく(t1>t2)されている。更に、好適には、厚肉部30の厚さ寸法t1と薄肉部32の厚さ寸法t2の差t1−t2が5mm以下とされており、厚肉部30が薄肉部32に対して極端に厚肉とならないように設定されている。   Further, the thickness dimension t1 of the thick part 30 is larger than the thickness dimension t2 of the thin part 32 (t1> t2). Further, preferably, the difference t1-t2 between the thickness dimension t1 of the thick part 30 and the thickness dimension t2 of the thin part 32 is 5 mm or less, and the thick part 30 is extremely smaller than the thin part 32. It is set not to be thick.

さらに、本実施形態では、厚肉部30の厚さ寸法t1がフランジ部20の厚さ寸法t3よりも大きく(t1>t3)されている。より好適には、厚肉部30の厚さ寸法t1がフランジ部20の厚さ寸法t3の3倍以下(t1≦3*t3)とされており、厚肉部30がフランジ部20に対して極端に厚肉とならないように設定されている。なお、本実施形態では、薄肉部32の厚さ寸法t2が、フランジ部20の厚さ寸法t3よりも大きく(t2>t3)されており、厚肉部30と薄肉部32の厚さの差が、厚肉部30とフランジ部20の厚さの差よりも小さくされている。   Furthermore, in this embodiment, the thickness dimension t1 of the thick part 30 is larger than the thickness dimension t3 of the flange part 20 (t1> t3). More preferably, the thickness dimension t1 of the thick part 30 is set to be not more than three times the thickness dimension t3 of the flange part 20 (t1 ≦ 3 * t3). It is set not to become extremely thick. In the present embodiment, the thickness dimension t2 of the thin portion 32 is larger than the thickness dimension t3 of the flange portion 20 (t2> t3), and the difference in thickness between the thick portion 30 and the thin portion 32 is determined. However, it is made smaller than the difference of the thickness of the thick part 30 and the flange part 20. FIG.

更にまた、筒状部18の外径寸法が軸方向全長に亘って略一定とされて、厚肉部30と薄肉部32の外径寸法が互いに略同じとされていると共に、厚肉部30の内径寸法R1が、薄肉部32の内径寸法R2よりも小さく(R1<R2)されている。好適には、厚肉部30と薄肉部32の内径寸法の差R2−R1が、厚肉部30の内径寸法R1の0.2倍よりも小さく(R2−R1<0.2*R1)されており、アウタ筒部材14のサイズに対して厚肉部30と薄肉部32の内径寸法の差が制限されている。   Furthermore, the outer diameter dimension of the cylindrical portion 18 is made substantially constant over the entire length in the axial direction, and the outer diameter dimensions of the thick portion 30 and the thin portion 32 are substantially the same, and the thick portion 30. Is smaller than the inner diameter R2 of the thin portion 32 (R1 <R2). Preferably, the inner diameter difference R2-R1 between the thick portion 30 and the thin portion 32 is smaller than 0.2 times the inner diameter R1 of the thick portion 30 (R2-R1 <0.2 * R1). Therefore, the difference in inner diameter between the thick portion 30 and the thin portion 32 is limited with respect to the size of the outer cylinder member 14.

また、本実施形態では、本体ゴム弾性体16の軸方向端面であるすぐり部22の内面が、内径寸法を軸方向で一定とされた厚肉部30又は薄肉部32の内周側に位置するように、テーパ部28の軸方向長さと軸方向の位置が設定されている。これにより、後述するサスペンションブッシュ10の車両装着状態において、例えば軸直角方向やこじり方向の荷重入力時に、本体ゴム弾性体16の軸方向端部に及ぼされる荷重の方向などがテーパ面26の傾斜角に応じて変化するのを防止できる。それ故、変形量が大きくなり易い本体ゴム弾性体16の軸方向端部において、耐久性などの特性に対するテーパ面26の影響を抑えることができる。   In the present embodiment, the inner surface of the straight portion 22 that is the axial end surface of the main rubber elastic body 16 is positioned on the inner peripheral side of the thick portion 30 or the thin portion 32 whose inner diameter is constant in the axial direction. As described above, the axial length and the axial position of the tapered portion 28 are set. Thereby, in the vehicle mounting state of the suspension bush 10 described later, for example, the direction of the load exerted on the axial end portion of the main rubber elastic body 16 when the load is applied in the direction perpendicular to the axis or the direction of the twist is the inclination angle of the tapered surface 26. It can be prevented from changing according to. Therefore, the influence of the tapered surface 26 on the characteristics such as durability can be suppressed at the axial end of the main rubber elastic body 16 where the deformation amount tends to increase.

そして、アウタ筒部材14の軸方向一方の端面には緩衝ゴム24が固着されており、アウタ筒部材14における緩衝ゴム24の固着面が、フランジ部20の軸方向外面と、厚肉部30の軸方向外面とによって、構成されている。本実施形態では、緩衝ゴム24の外周端が、フランジ部20の外周端よりも内周側に位置している。   A shock absorbing rubber 24 is fixed to one end surface in the axial direction of the outer cylindrical member 14, and the fixing surface of the shock absorbing rubber 24 in the outer cylindrical member 14 is between the axial outer surface of the flange portion 20 and the thick portion 30. It is comprised by the axial direction outer surface. In the present embodiment, the outer peripheral end of the buffer rubber 24 is located on the inner peripheral side with respect to the outer peripheral end of the flange portion 20.

このような構造とされたサスペンションブッシュ10は、図5に示すように車両に装着される。即ち、インナ軸部材12の軸方向一方の端面が車両ボデー34に重ね合わされて、インナ軸部材12および車両ボデー34に挿通されるボルト36とそれに螺着されるナット38とによって、インナ軸部材12と車両ボデー34が相互に固定される。一方、アウタ筒部材14は、筒状部18がトレーリングアームなどに設けられた筒状のホルダ40に軸方向他方の端部から圧入されることにより、ホルダ40に固定される。本実施形態では、フランジ部20がホルダ40の軸方向一方の端部に軸方向で当接するまで圧入されることで、アウタ筒部材14とホルダ40が軸方向で位置決めされるようになっている。以上により、本実施形態に係るサスペンションブッシュ10が車両に装着されて、トレーリングアームなどのサスペンション側部材が車両ボデー34に防振連結される。なお、本実施形態の筒状部18は、厚肉部30によって径方向の変形剛性が高められていることから、筒状部18の外径寸法とホルダ40の内径寸法との差(圧入代)が比較的に小さくされていても、ホルダ40からの抜けに対する十分な抗力を得ることができる。   The suspension bush 10 having such a structure is mounted on a vehicle as shown in FIG. That is, one end surface in the axial direction of the inner shaft member 12 is overlapped with the vehicle body 34, and the inner shaft member 12 is constituted by the inner shaft member 12 and the bolt 36 inserted into the vehicle body 34 and the nut 38 screwed thereto. And the vehicle body 34 are fixed to each other. On the other hand, the outer cylindrical member 14 is fixed to the holder 40 by press-fitting the cylindrical portion 18 into the cylindrical holder 40 provided on the trailing arm or the like from the other end in the axial direction. In the present embodiment, the outer cylinder member 14 and the holder 40 are positioned in the axial direction by press-fitting until the flange portion 20 abuts on one end of the holder 40 in the axial direction in the axial direction. . As described above, the suspension bush 10 according to the present embodiment is mounted on the vehicle, and the suspension side member such as the trailing arm is connected to the vehicle body 34 in a vibration-proof manner. In addition, since the cylindrical portion 18 of the present embodiment has increased deformation rigidity in the radial direction by the thick portion 30, the difference between the outer diameter size of the cylindrical portion 18 and the inner diameter size of the holder 40 (press fitting allowance). ) Is relatively small, a sufficient resistance against the removal from the holder 40 can be obtained.

また、図5に示されているように、サスペンションブッシュ10の車両装着状態において、アウタ筒部材14のフランジ部20がインナ軸部材12に固定された車両ボデー34と軸方向に対向して配置されており、フランジ部20と車両ボデー34の軸方向対向面間に緩衝ゴム24が配されている。本実施形態では、振動荷重などの外力が作用しない静置状態において、緩衝ゴム24の軸方向外面が車両ボデー34に当接しており、緩衝ゴム24がフランジ部20と車両ボデー34の間で軸方向に予圧縮されている。   Further, as shown in FIG. 5, when the suspension bush 10 is mounted on the vehicle, the flange portion 20 of the outer cylinder member 14 is disposed so as to face the vehicle body 34 fixed to the inner shaft member 12 in the axial direction. A cushioning rubber 24 is disposed between the axially facing surfaces of the flange portion 20 and the vehicle body 34. In the present embodiment, in a stationary state where an external force such as a vibration load does not act, the outer surface in the axial direction of the cushioning rubber 24 is in contact with the vehicle body 34, and the cushioning rubber 24 is a shaft between the flange portion 20 and the vehicle body 34. Pre-compressed in the direction.

このようなサスペンションブッシュ10の車両装着状態では、車両ボデー34とサスペンションの間に入力される振動が、本体ゴム弾性体16の弾性変形によるエネルギー減衰作用や振動絶縁作用などに基づいて低減されて、路面側から入力された振動の車両ボデー34への伝達が低減される。   In such a state in which the suspension bush 10 is mounted on the vehicle, vibration input between the vehicle body 34 and the suspension is reduced based on an energy damping action or a vibration insulation action due to elastic deformation of the main rubber elastic body 16. Transmission of vibrations input from the road surface side to the vehicle body 34 is reduced.

また、インナ軸部材12に固定された車両ボデー34と、アウタ筒部材14の厚肉部30およびフランジ部20とが、軸方向で対向して配置されており、緩衝ゴム24を介して相互に当接している。これにより、軸方向の入力によるインナ軸部材12のアウタ筒部材14に対する軸方向他方側への相対変位量が、それらインナ軸部材12に固定された車両ボデー34とアウタ筒部材14の緩衝ゴム24を介した軸方向での当接によって制限されるようになっており、もって本実施形態のストッパ手段42が構成されている。このようなストッパ手段42が設けられていることにより、軸方向入力に対する本体ゴム弾性体16の過大な剪断変形が防止されて、本体ゴム弾性体16の耐久性の向上が図られる。   In addition, the vehicle body 34 fixed to the inner shaft member 12, the thick portion 30 and the flange portion 20 of the outer cylinder member 14 are disposed to face each other in the axial direction, and are mutually connected via the buffer rubber 24. It is in contact. Thereby, the relative displacement amount of the inner shaft member 12 to the other side in the axial direction with respect to the outer cylindrical member 14 due to the input in the axial direction is the vehicle body 34 fixed to the inner shaft member 12 and the buffer rubber 24 of the outer cylindrical member 14. Therefore, the stopper means 42 of this embodiment is configured. By providing such a stopper means 42, excessive shear deformation of the main rubber elastic body 16 with respect to the axial input is prevented, and durability of the main rubber elastic body 16 is improved.

ところで、サスペンションブッシュ10の軸方向のばね特性には、インナ軸部材12とアウタ筒部材14の径方向間に配された本体ゴム弾性体16のばね成分だけでなく、フランジ部20と車両ボデー34の軸方向間に配された緩衝ゴム24のばね成分も影響する。特に、軸方向では、本体ゴム弾性体16のばねが主として剪断ばね成分によるのに対して、緩衝ゴム24のばねは主として圧縮ばね成分によるものであり、サスペンションブッシュ10の軸方向ばね特性に対する緩衝ゴム24の影響が大きい。しかも、本実施形態において、図5に示す車両装着状態のサスペンションブッシュ10は、振動が入力されていない静置状態であっても緩衝ゴム24が車両ボデー34に軸方向で当接しており、緩衝ゴム24のばねがサスペンションブッシュ10のばね特性に影響するようになっている。   Incidentally, the axial spring characteristics of the suspension bush 10 include not only the spring component of the main rubber elastic body 16 disposed between the inner shaft member 12 and the outer cylinder member 14 in the radial direction, but also the flange portion 20 and the vehicle body 34. The spring component of the shock absorbing rubber 24 disposed between the two axial directions also affects. In particular, in the axial direction, the spring of the main rubber elastic body 16 is mainly due to the shear spring component, whereas the spring of the shock absorbing rubber 24 is mainly due to the compression spring component, and the shock absorbing rubber against the axial spring characteristics of the suspension bushing 10. The influence of 24 is great. In addition, in the present embodiment, the suspension bush 10 in the vehicle mounting state shown in FIG. 5 has the cushion rubber 24 in contact with the vehicle body 34 in the axial direction even in a stationary state where no vibration is input. The spring of the rubber 24 affects the spring characteristics of the suspension bush 10.

そして、サスペンションブッシュ10では、緩衝ゴム24のばねを調節し易くなっており、サスペンションブッシュ10の軸方向でのばね特性が大きな自由度でチューニング可能とされている。   In the suspension bush 10, the spring of the buffer rubber 24 is easily adjusted, and the spring characteristic in the axial direction of the suspension bush 10 can be tuned with a large degree of freedom.

すなわち、サスペンションブッシュ10では、アウタ筒部材14の筒状部18の軸方向一端(厚肉部30)が、他端(薄肉部32)よりも径方向で厚肉(t1>t2)とされている。特に、アウタ筒部材14の厚肉部30は、薄肉部32よりも内径寸法が小さく(R1<R2)されて、厚肉部30が薄肉部32に対して内周側へ突出して厚肉となっていることから、フランジ部20の筒状部18から外周への突出量は従来と同等に確保されている。なお、本実施形態では、筒状部18の外径寸法が軸方向の全体に亘って略一定とされており、厚肉部30と薄肉部32の外径寸法が互いに略同じとされている。   That is, in the suspension bush 10, one end (thick part 30) in the axial direction of the cylindrical part 18 of the outer cylinder member 14 is thicker (t1> t2) in the radial direction than the other end (thin part 32). Yes. In particular, the thick portion 30 of the outer cylindrical member 14 has an inner diameter smaller than that of the thin portion 32 (R1 <R2), and the thick portion 30 protrudes toward the inner peripheral side with respect to the thin portion 32 to be thick. Therefore, the protrusion amount from the cylindrical part 18 of the flange part 20 to the outer periphery is ensured to be equal to the conventional one. In this embodiment, the outer diameter dimension of the cylindrical portion 18 is substantially constant over the entire axial direction, and the outer diameter dimensions of the thick portion 30 and the thin portion 32 are substantially the same. .

これらにより、緩衝ゴム24を支持するアウタ筒部材14の軸方向一方の端面の面積が大きくされて、緩衝ゴム24の形状や大きさ、配置などの自由度が大きく確保される。従って、緩衝ゴム24のばね特性のチューニング自由度が大きくなって、緩衝ゴム24の圧縮ばねが影響するサスペンションブッシュ10の軸方向ばね特性を、調節し易くなる。   As a result, the area of one end surface in the axial direction of the outer cylinder member 14 that supports the shock-absorbing rubber 24 is increased, and the degree of freedom of the shape, size, arrangement, etc. of the shock-absorbing rubber 24 is ensured. Therefore, the degree of freedom in tuning the spring characteristics of the shock absorbing rubber 24 is increased, and the axial spring characteristics of the suspension bushing 10 affected by the compression spring of the shock absorbing rubber 24 are easily adjusted.

さらに、厚肉部30が薄肉部32に対して内周側へ厚肉とされて、アウタ筒部材14の軸方向一方の端面の面積が、フランジ部20の外径寸法を大きくすることなく、大きく確保されることから、サスペンションブッシュ10の配設領域が制限されて外周側にスペースがない場合にも、軸方向ばねのチューニング自由度を大きく確保できる。しかも、フランジ部20の外周への突出寸法を大きくする必要がないことから、フランジ部20の耐荷重性の低下も防止される。   Furthermore, the thick portion 30 is thickened toward the inner peripheral side with respect to the thin portion 32, and the area of one end surface in the axial direction of the outer cylindrical member 14 does not increase the outer diameter of the flange portion 20, Since a large area is secured, the degree of freedom of tuning of the axial spring can be ensured even when the arrangement area of the suspension bush 10 is limited and there is no space on the outer peripheral side. And since it is not necessary to enlarge the protrusion dimension to the outer periphery of the flange part 20, the fall of the load resistance of the flange part 20 is also prevented.

また、筒状部18の軸方向他端部を構成する薄肉部32が厚肉部30に比して薄肉とされて、内径寸法を大きくされていることから、本体ゴム弾性体16のゴムボリュームが小さくなるのを抑えることができて、径方向やこじり方向での防振性能が十分に確保される。   Further, since the thin portion 32 constituting the other axial end of the cylindrical portion 18 is made thinner than the thick portion 30 and the inner diameter is increased, the rubber volume of the main rubber elastic body 16 is increased. Can be suppressed, and the vibration-proof performance in the radial direction and the twisting direction can be sufficiently ensured.

また、厚肉部30の厚さ寸法t1と薄肉部32の厚さ寸法t2の差t1−t2が5mm以下とされていることにより、厚肉部30と薄肉部32の極端な寸法差に起因する応力の集中などが回避されて、アウタ筒部材14の製造の容易化や耐久性の向上などが図られる。加えて、成形後の冷却時に厚肉部30と薄肉部32の厚さの差による変形量の違いが低減されることから、筒状部18の厚さが軸方向で異なっていることによる樹脂成形性への悪影響が回避されて、厚肉部30と薄肉部32をそれぞれ所定の円筒形状に成形することができる。   Further, since the difference t1-t2 between the thickness dimension t1 of the thick part 30 and the thickness dimension t2 of the thin part 32 is 5 mm or less, it is caused by an extreme dimensional difference between the thick part 30 and the thin part 32. Concentration of stress to be avoided is avoided, and the outer cylinder member 14 is easily manufactured and improved in durability. In addition, since the difference in deformation due to the difference in thickness between the thick portion 30 and the thin portion 32 is reduced during cooling after molding, the resin due to the difference in the thickness of the cylindrical portion 18 in the axial direction. The adverse effect on the moldability is avoided, and the thick portion 30 and the thin portion 32 can each be formed into a predetermined cylindrical shape.

さらに、厚肉部30の厚さ寸法t1がフランジ部20の厚さ寸法t3よりも大きく(t1>t3)されていることから、アウタ筒部材14の軸方向端面における緩衝ゴム24の固着面積を大きく確保できると共に、緩衝ゴム24の軸方向寸法やストッパ手段42のストッパクリアランスなどをより大きく調節することが可能となる。それ故、軸方向のばね特性に対する緩衝ゴム24の影響をより大きな自由度で調節可能となって、目的とする防振特性や耐久性を有利に実現できる。   Furthermore, since the thickness dimension t1 of the thick wall portion 30 is larger than the thickness dimension t3 of the flange portion 20 (t1> t3), the fixing area of the buffer rubber 24 on the axial end surface of the outer cylindrical member 14 is reduced. It is possible to ensure a large value, and to adjust the axial dimension of the buffer rubber 24 and the stopper clearance of the stopper means 42 more greatly. Therefore, the influence of the buffer rubber 24 on the spring characteristics in the axial direction can be adjusted with a greater degree of freedom, and the desired vibration-proof characteristics and durability can be realized advantageously.

しかも、厚肉部30の厚さ寸法t1がフランジ部20の厚さ寸法t3の3倍以下(t1≦3*t3)とされていることによって、厚肉部30がフランジ部20に対して極端に厚肉とならないようにされており、筒状部18とフランジ部20の接続部分において厚さの差に起因する応力集中が緩和されて、フランジ部20の基端等で割れなどの発生が防止される。   Moreover, since the thickness dimension t1 of the thick-walled portion 30 is not more than three times the thickness dimension t3 of the flange portion 20 (t1 ≦ 3 * t3), the thick-walled portion 30 is extremely different from the flange portion 20. Therefore, the stress concentration caused by the difference in thickness at the connecting portion between the cylindrical portion 18 and the flange portion 20 is alleviated, and cracks and the like are generated at the proximal end of the flange portion 20 and the like. Is prevented.

また、厚肉部30と薄肉部32の内径寸法の差R2−R1が、厚肉部30の内径寸法R1の0.2倍よりも小さく(R2−R1<0.2*R1)されており、サスペンションブッシュ10のサイズに対して厚肉部30と薄肉部32の差が十分に小さくされている。これにより、本体ゴム弾性体16を固着される筒状部18に設けられて内周側へ突出する厚肉部30がサスペンションブッシュ10の防振特性に及ぼす影響を抑えることができて、目的とする防振性能をばね特性の大幅なチューニング変更を要することなく実現できる。   Further, the difference R2-R1 in the inner diameter dimension between the thick part 30 and the thin part 32 is smaller than 0.2 times the inner diameter dimension R1 of the thick part 30 (R2-R1 <0.2 * R1). The difference between the thick portion 30 and the thin portion 32 is sufficiently small with respect to the size of the suspension bush 10. Thereby, it is possible to suppress the influence of the thick wall portion 30 provided on the cylindrical portion 18 to which the main rubber elastic body 16 is fixed and protruding toward the inner peripheral side on the vibration isolation characteristics of the suspension bush 10. The anti-vibration performance can be realized without requiring a large tuning change of the spring characteristics.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、アウタ筒部材14における筒状部18の内周面が、軸方向の全長に亘ってテーパ面26で構成されて。筒状部18の内径寸法および厚さ寸法が軸方向の全長に亘って変化していても良い。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, the inner peripheral surface of the cylindrical portion 18 in the outer cylindrical member 14 is configured by the tapered surface 26 over the entire length in the axial direction. The inner diameter dimension and the thickness dimension of the cylindrical portion 18 may change over the entire length in the axial direction.

さらに、厚肉部30と薄肉部32は、必ずしもテーパ面26(テーパ部28)によって形成される構造には限定されず、例えば、筒状部18が内周面に段差を有する段付き円筒形状とされて、内径寸法および厚さ寸法が段階的に変化する構造とされることにより、筒状部18の軸方向一方の端部が他方の端部よりも厚肉とされていても良い。   Further, the thick portion 30 and the thin portion 32 are not necessarily limited to the structure formed by the tapered surface 26 (tapered portion 28). For example, the cylindrical portion 18 has a stepped cylindrical shape having a step on the inner peripheral surface. Thus, by adopting a structure in which the inner diameter dimension and the thickness dimension change stepwise, one end portion in the axial direction of the cylindrical portion 18 may be thicker than the other end portion.

更にまた、筒状部18の外周面は、径方向寸法が軸方向で略一定とされたストレート形状であることが望ましいが、例えば、軸方向で外径寸法が次第に変化するテーパ形状なども採用され得る。   Furthermore, it is desirable that the outer peripheral surface of the cylindrical portion 18 has a straight shape in which the radial dimension is substantially constant in the axial direction. For example, a tapered shape in which the outer diameter dimension gradually changes in the axial direction is also employed. Can be done.

また、緩衝ゴム24は、部品点数を少なくするためには本体ゴム弾性体16と一体であることが望ましいが、例えば、緩衝ゴム24を本体ゴム弾性体16とは別体で形成して、緩衝ゴム24を本体ゴム弾性体16とは異なる形成材料で形成することにより、本体ゴム弾性体16に要求される特性と緩衝ゴム24に要求される特性とを、それぞれ有利に実現することができる。   The buffer rubber 24 is preferably integrated with the main rubber elastic body 16 in order to reduce the number of parts. For example, the buffer rubber 24 is formed separately from the main rubber elastic body 16 so as to be buffered. By forming the rubber 24 from a material different from that of the main rubber elastic body 16, the characteristics required for the main rubber elastic body 16 and the characteristics required for the buffer rubber 24 can be advantageously realized.

また、緩衝ゴム24は、車両装着状態で必ずしもインナ軸部材12側(車両ボデー34)に当接している必要はなく、振動入力のない静置状態で離隔していると共に、軸方向の振動入力時に当接するようにしても良い。   The shock absorbing rubber 24 is not necessarily in contact with the inner shaft member 12 side (the vehicle body 34) when the vehicle is mounted, and is separated in a stationary state without vibration input, and the vibration input in the axial direction. You may make it contact | abut sometimes.

本発明に係る筒形防振装置は、必ずしもサスペンションブッシュとして用いられるものではなく、エンジンマウントやメンバマウント、デフマウントなどにも好適に採用され得る。更に、本発明は、自動車用の筒形防振装置にのみ適用されるものではなく、例えば、自動二輪車や鉄道用車両、産業用車両などに用いられる筒形防振装置にも、適用可能である。   The cylindrical vibration isolator according to the present invention is not necessarily used as a suspension bush, but can be suitably used for an engine mount, a member mount, a differential mount, and the like. Furthermore, the present invention is not only applied to a tubular vibration isolator for automobiles, but can also be applied to a cylindrical vibration isolator used for, for example, a motorcycle, a railway vehicle, an industrial vehicle, and the like. is there.

10:サスペンションブッシュ(筒形防振装置)、12:インナ軸部材、14:アウタ筒部材、16:本体ゴム弾性体、18:筒状部、20:フランジ部、26:テーパ面、30:厚肉部(ストレート部)、42:ストッパ手段 10: Suspension bush (cylindrical vibration isolator), 12: Inner shaft member, 14: Outer cylinder member, 16: Rubber elastic body, 18: Cylindrical part, 20: Flange part, 26: Tapered surface, 30: Thickness Meat part (straight part), 42: Stopper means

Claims (6)

インナ軸部材が合成樹脂で形成されたアウタ筒部材の筒状部に挿入されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって相互に弾性連結されていると共に、該筒状部の軸方向一方の端部には外周へ広がるフランジ部が一体形成されて、該フランジ部の軸方向外面に緩衝ゴムが固着されており、該インナ軸部材と該アウタ筒部材の軸方向での相対変位量を制限するストッパ手段が該インナ軸部材と該フランジ部の該緩衝ゴムを介した軸方向の当接によって構成される筒形防振装置において、
前記フランジ部を形成された前記筒状部の軸方向一方の端部の内径寸法が該筒状部の軸方向他方の端部の内径寸法よりも小さくされていると共に、該筒状部の軸方向一方の端部が該筒状部の軸方向他方の端部よりも厚肉とされていることを特徴とする筒形防振装置。
The inner shaft member is inserted into the cylindrical portion of the outer cylindrical member made of synthetic resin, and the inner shaft member and the outer cylindrical member are elastically connected to each other by the main rubber elastic body. A flange portion extending to the outer periphery is integrally formed at one end portion in the axial direction, and a buffer rubber is fixed to the outer surface in the axial direction of the flange portion, and the inner shaft member and the outer cylinder member are relatively opposite to each other in the axial direction. In the cylindrical vibration damping device in which the stopper means for limiting the amount of displacement is configured by the axial contact between the inner shaft member and the flange portion via the buffer rubber,
The inner diameter dimension of one end portion in the axial direction of the cylindrical portion on which the flange portion is formed is smaller than the inner diameter dimension of the other end portion in the axial direction of the cylindrical portion, and the axis of the cylindrical portion One end portion in the direction is thicker than the other end portion in the axial direction of the tubular portion.
前記フランジ部を形成された前記筒状部の軸方向一方の端部と他方の端部との厚さの差が5mm以下とされている請求項1に記載の筒形防振装置。   The cylindrical vibration isolator according to claim 1, wherein a difference in thickness between one end in the axial direction and the other end of the cylindrical portion on which the flange portion is formed is 5 mm or less. 前記フランジ部を形成された前記筒状部の軸方向一方の端部が該フランジ部よりも厚肉とされていると共に、該筒状部の軸方向一方の端部の厚さが該フランジ部の3倍以下とされている請求項1又は2に記載の筒形防振装置。   One end in the axial direction of the cylindrical portion on which the flange portion is formed is thicker than the flange portion, and the thickness of one end in the axial direction of the cylindrical portion is the flange portion. The cylindrical vibration isolator according to claim 1 or 2, wherein the vibration isolator is 3 times or less. 前記フランジ部を形成された前記筒状部の軸方向一方の端部と該筒状部の軸方向他方の端部の内径寸法の差が、該筒状部の軸方向一方の端部の内径寸法の0.2倍よりも小さくされている請求項1〜3の何れか一項に記載の筒形防振装置。   The difference between the inner diameter dimensions of one end in the axial direction of the cylindrical portion where the flange portion is formed and the other end in the axial direction of the cylindrical portion is the inner diameter of the one end in the axial direction of the cylindrical portion. The cylindrical vibration isolator as described in any one of Claims 1-3 currently made smaller than 0.2 times the dimension. 前記筒状部の内周面の少なくとも一部が、前記フランジ部を形成された該筒状部の軸方向一方から該筒状部の軸方向他方に向かって次第に大径となるテーパ面とされている請求項1〜4の何れか一項に記載の筒形防振装置。   At least a part of the inner peripheral surface of the cylindrical portion is a tapered surface that gradually increases in diameter from one axial direction of the cylindrical portion on which the flange portion is formed toward the other axial direction of the cylindrical portion. The cylindrical vibration isolator according to any one of claims 1 to 4. 前記フランジ部を形成された前記筒状部の軸方向一方の端部は、内径寸法が軸方向で一定のストレート部とされている請求項1〜5の何れか一項に記載の筒形防振装置。   The cylindrical anti-body according to any one of claims 1 to 5, wherein one end portion in the axial direction of the cylindrical portion on which the flange portion is formed is a straight portion having an inner diameter dimension constant in the axial direction. Shaker.
JP2015038756A 2015-02-27 2015-02-27 Cylindrical vibration isolator Active JP6424112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038756A JP6424112B2 (en) 2015-02-27 2015-02-27 Cylindrical vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038756A JP6424112B2 (en) 2015-02-27 2015-02-27 Cylindrical vibration isolator

Publications (2)

Publication Number Publication Date
JP2016161003A JP2016161003A (en) 2016-09-05
JP6424112B2 true JP6424112B2 (en) 2018-11-14

Family

ID=56844532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038756A Active JP6424112B2 (en) 2015-02-27 2015-02-27 Cylindrical vibration isolator

Country Status (1)

Country Link
JP (1) JP6424112B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373930B2 (en) 2016-10-31 2018-08-15 本田技研工業株式会社 Autonomous vehicle
JP7094199B2 (en) * 2018-10-26 2022-07-01 Toyo Tire株式会社 Anti-vibration bush

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119031U (en) * 1980-02-05 1981-09-10
JP2001074080A (en) * 1999-09-07 2001-03-23 Toyo Tire & Rubber Co Ltd Elastic bush and its assembly body
JP2010255716A (en) * 2009-04-23 2010-11-11 Bridgestone Corp Vibration isolator

Also Published As

Publication number Publication date
JP2016161003A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6867138B2 (en) Anti-vibration bush
JP5290260B2 (en) Rubber cushion for tank
JP6190638B2 (en) Anti-vibration bush and method for manufacturing anti-vibration bush
US20050254888A1 (en) Torque rod and method of producing the same
JP6532367B2 (en) Tubular vibration control with bracket
JP6783135B2 (en) Cylindrical anti-vibration device
US20120074630A1 (en) Anti-vibration bush
JP6002607B2 (en) Vibration isolator
JP2012211604A (en) Vibration-isolating device
JP6424112B2 (en) Cylindrical vibration isolator
JP7121860B2 (en) car body damper brace
JP5595203B2 (en) Toe collect bush
JP5806877B2 (en) Anti-vibration bush
JP4624494B2 (en) Cylindrical dynamic damper and manufacturing method thereof
JP6257389B2 (en) Cylindrical vibration isolator and manufacturing method thereof
JP5568522B2 (en) Damper mount
JP4666692B2 (en) Anti-vibration bush and manufacturing method thereof
JP5951468B2 (en) Anti-vibration bush
JP6793011B2 (en) Vehicle suspension structure
JP7432455B2 (en) Cylindrical vibration isolator
JP3456286B2 (en) Cylindrical anti-vibration mount
JP2018159455A (en) Cylindrical vibration damper
JP7121719B2 (en) Cylindrical anti-vibration device with bracket
JP6275472B2 (en) Cylindrical vibration isolator
JP7374754B2 (en) Vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6424112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150