JP6419453B2 - Cutting tool and method of manufacturing cutting tool - Google Patents

Cutting tool and method of manufacturing cutting tool Download PDF

Info

Publication number
JP6419453B2
JP6419453B2 JP2014086183A JP2014086183A JP6419453B2 JP 6419453 B2 JP6419453 B2 JP 6419453B2 JP 2014086183 A JP2014086183 A JP 2014086183A JP 2014086183 A JP2014086183 A JP 2014086183A JP 6419453 B2 JP6419453 B2 JP 6419453B2
Authority
JP
Japan
Prior art keywords
cutting
cutting tool
blade
blade groove
margin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014086183A
Other languages
Japanese (ja)
Other versions
JP2015205360A (en
Inventor
馬場 誠
誠 馬場
中畑 達雄
達雄 中畑
斎藤 学
学 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2014086183A priority Critical patent/JP6419453B2/en
Publication of JP2015205360A publication Critical patent/JP2015205360A/en
Application granted granted Critical
Publication of JP6419453B2 publication Critical patent/JP6419453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はトリム加工用の切削工具に関するものである。   The present invention relates to a cutting tool for trim processing.

繊維強化樹脂(FRP)は、軽量かつ高い強度を有するため、航空機等に多用されている。このFRPは、一般的な鋼材と比較して粘性が強いため溶着しやすく、含有されている炭素やガラス繊維も難削性を示すため、加工する際の切削抵抗が大きい。   Since fiber reinforced resin (FRP) is lightweight and has high strength, it is frequently used in aircraft and the like. Since this FRP has a higher viscosity than ordinary steel materials, it is easy to weld, and the contained carbon and glass fibers also exhibit difficult cutting properties, so that the cutting resistance during processing is large.

このようなFRP材を切削する工具として、ダイヤ目構造の切削工具がある(例えば特許文献1)。このようなダイヤ目構造の切削工具は、通常のスクエアエンドミルなどとは異なり、被削材に当たる切削刃の部位が少ないため、切削抵抗を小さくすることが可能である。   As a tool for cutting such an FRP material, there is a cutting tool having a diamond structure (for example, Patent Document 1). A cutting tool having such a diamond structure is different from a normal square end mill and the like in that there are few cutting blades hitting the work material, so that the cutting resistance can be reduced.

特開平02−131810公報Japanese Patent Laid-Open No. 02-131810

図11は、従来のダイヤ目構造の切削工具100を示す斜視図であり、図12は、側面図である。   FIG. 11 is a perspective view showing a cutting tool 100 having a conventional diamond structure, and FIG. 12 is a side view.

図12に示すように、切削工具100は、先端側の刃部101aと、基部側のシャンク101bとから構成される。刃部101aは、軸に対して所定の角度で右ねじれ刃溝107および左ねじれ刃溝109が形成される。右ねじれ刃溝107と左ねじれ刃溝109は、軸に対して反対方向にねじれるように形成される。   As shown in FIG. 12, the cutting tool 100 includes a blade portion 101a on the distal end side and a shank 101b on the base portion side. The blade portion 101a is formed with a right twist blade groove 107 and a left twist blade groove 109 at a predetermined angle with respect to the axis. The right twist blade groove 107 and the left twist blade groove 109 are formed so as to be twisted in opposite directions with respect to the axis.

右ねじれ刃溝107と左ねじれ刃溝109とで囲まれた部位が切れ刃部103となる。すなわち、複数の切れ刃部103が、右ねじれ刃溝107および左ねじれ刃溝109に沿って併設される。   A portion surrounded by the right helix blade groove 107 and the left helix blade groove 109 is the cutting edge portion 103. That is, a plurality of cutting edge portions 103 are provided along the right twisting blade groove 107 and the left twisting blade groove 109.

図13(a)は、図12のV部拡大図である。切れ刃部103は、略四角錘状の形状である。切れ刃部103の先端側の面がすくい面111となり、頂部が切れ刃113となる。   Fig.13 (a) is the V section enlarged view of FIG. The cutting edge portion 103 has a substantially quadrangular pyramid shape. The front end side surface of the cutting edge portion 103 is a rake face 111 and the top portion is a cutting edge 113.

図13(b)は、図12のW線上での切れ刃部103の断面を示す模式図である。すなわち、図13(b)は、右ねじれ刃溝107に平行な線であって、切れ刃部103の頂点(切れ刃113)を通る線における断面図である。通常、切削工具100の表面には、刃先強度を高めるため、表面被覆119が形成される。表面被覆は、ダイヤモンドコートなどの硬質層である。   FIG.13 (b) is a schematic diagram which shows the cross section of the cutting blade part 103 on the W line | wire of FIG. That is, FIG. 13B is a cross-sectional view taken along a line parallel to the right twisted blade groove 107 and passing through the apex of the cutting edge portion 103 (cutting edge 113). Usually, a surface coating 119 is formed on the surface of the cutting tool 100 in order to increase the edge strength. The surface coating is a hard layer such as a diamond coat.

しかし、前述した様に、切れ刃部103は、略四角錘状であり、頂点の切れ刃113が尖っている。このため、この近傍に被覆される表面被覆が、切削初期に剥離しやすいという問題がある。   However, as described above, the cutting edge portion 103 has a substantially quadrangular pyramid shape, and the apex cutting edge 113 is pointed. For this reason, there exists a problem that the surface coating coat | covered by this vicinity tends to peel in the early stage of cutting.

また、切削工具を回転させて被削材と接触させた際に、切削工具(切れ刃部103)は、被削材に対して2方向に力を付与する。すなわち、被削材から、2方向の切削抵抗を受けることになる。この切削抵抗が大きくなりすぎると、振動が大きくなり、面品位の低下や切れ刃部103の破損などの問題がある。   Further, when the cutting tool is rotated and brought into contact with the work material, the cutting tool (cutting edge portion 103) applies force to the work material in two directions. That is, the cutting force in two directions is received from the work material. If this cutting resistance becomes too large, vibration will increase, causing problems such as deterioration of surface quality and breakage of the cutting edge portion 103.

特に、被削物が大型化すると、被削材の固定状態も不安定になりやすく、振動が大きな問題となる。   In particular, when the work size is increased, the fixed state of the work material tends to become unstable, and vibration becomes a big problem.

本発明は、このような問題に鑑みて考案されたもので、振動が少ない切削工具を提供することを目的とする。   The present invention has been devised in view of such problems, and an object thereof is to provide a cutting tool with less vibration.

前述した目的を達成するため、第1の発明は、トリム加工用の切削工具であって、前記切削工具は、刃部とシャンクとからなり、前記刃部は、右ねじれ刃溝と左ねじれ刃溝とがそれぞれ所定のねじれ角で設けられ、前記右ねじれ刃溝および前記左ねじれ刃溝で分断された複数の切れ刃部からなり、前記複数の切れ刃部は前記刃部に均一に配置され、前記複数の切れ刃部は略四角錘台形状であり、頂部に略四角形のマージン面が形成され、それぞれの前記マージン面が、切削工具の回転軸を中心とした同一円周面上に形成されることを特徴とするトリム加工用の切削工具である。
In order to achieve the above-described object, a first invention is a trimming cutting tool, wherein the cutting tool includes a blade portion and a shank, and the blade portion includes a right twist blade groove and a left twist blade. Each groove is provided with a predetermined twist angle, and includes a plurality of cutting edge portions divided by the right twisting blade groove and the left twisting blade groove, and the plurality of cutting edge portions are uniformly disposed on the blade portion. The plurality of cutting edge portions have a substantially square frustum shape, and a substantially rectangular margin surface is formed at the top, and each of the margin surfaces is formed on the same circumferential surface with the rotation axis of the cutting tool as the center. It is the cutting tool for trim processing characterized by being performed.

このように、それぞれの切れ刃部の頂部のマージン面が同一円周面上に形成されるため、切れ刃部にかかる切削抵抗の方向を分散させることができる。このため、振動を抑制し、高い面品位を得ることができる。   Thus, since the margin surface of the top part of each cutting edge part is formed on the same circumferential surface, the direction of the cutting resistance applied to the cutting edge part can be dispersed. For this reason, vibration can be suppressed and high surface quality can be obtained.

前記マージン面は、頂部側からの平面視において略平行四辺形であり、前記マージン面の一組の平行な辺の長さをL1mm、他の組の平行な辺の長さをL2mmとし、前記右ねじれ刃溝に平行な方向に併設される刃の列数をnとした際に、2.5/n≦L1≦L2≦5/nの関係を満たすことが望ましい。   The margin surface is a substantially parallelogram in plan view from the top side, the length of one set of parallel sides of the margin surface is L1 mm, the length of the other set of parallel sides is L2 mm, It is desirable that the relationship of 2.5 / n ≦ L1 ≦ L2 ≦ 5 / n be satisfied, where n is the number of blade rows arranged in parallel to the right twisted blade groove.

切れ刃部の形状をこのようにすることで、振動を抑制することができる。   By making the shape of the cutting edge portion like this, vibration can be suppressed.

前記切削工具の外周面には、表面被覆が施されていることが望ましい。   The outer peripheral surface of the cutting tool is preferably provided with a surface coating.

上記の構成により、切削工具の表面硬度等を高め、より工具寿命を延ばすことが可能となる。この際、切れ刃部の頂部にマージン面が形成されているため、表面被覆の剥離を抑えることができる。   With the above configuration, the surface hardness and the like of the cutting tool can be increased and the tool life can be further extended. At this time, since the margin surface is formed at the top of the cutting edge portion, peeling of the surface coating can be suppressed.

第2の発明は、第1の発明に係るトリム加工用の切削工具の製造方法であって、円柱状の母材に対し、前記母材の側面に、それぞれ所定のねじれ角で右ねじれ刃溝と左ねじれ刃溝とを設け、前記刃溝で分断された複数の切れ刃部からなる刃部を形成し、前記刃溝を形成する際に、前記切れ刃部が略四角形のマージン面を有する略四角錘台形状となるように、頂部に母材表面の円筒形状の一部を残すことを特徴とするトリム加工用の切削工具の製造方法である。 2nd invention is the manufacturing method of the cutting tool for trim processing which concerns on 1st invention, Comprising: With respect to a column-shaped base material, it is a right twist blade groove | channel with each predetermined twist angle on the side surface of the said base material. And a left twisted blade groove , forming a blade portion composed of a plurality of cutting blade portions divided by the blade groove, and when forming the blade groove, the cutting blade portion has a substantially rectangular margin surface A trimming cutting tool manufacturing method is characterized in that a part of a cylindrical shape of a base material surface is left at the top so as to have a substantially square frustum shape.

このようにすることで、切れ刃部の先端を、後から研削して面を形成する必要がない。   By doing in this way, it is not necessary to grind the front-end | tip of a cutting blade part later, and to form a surface.

本発明によれば、振動が少ない切削工具を提供することができる。   According to the present invention, it is possible to provide a cutting tool with less vibration.

切削工具1の斜視図。The perspective view of the cutting tool 1. FIG. 切削工具1の側面図。The side view of the cutting tool 1. FIG. 切れ刃部3の拡大図。The enlarged view of the cutting blade part 3. FIG. 右ねじれ刃溝7に平行な線上の切れ刃部3の形状を示す模式図で、(a)は外形を示す図、(b)は平面図。It is a schematic diagram which shows the shape of the cutting blade part 3 on the line parallel to the right twist blade groove | channel 7, (a) is a figure which shows an external shape, (b) is a top view. 切削工具1の展開模式図。FIG. 3 is a developed schematic view of the cutting tool 1. 切れ刃部3の断面図。Sectional drawing of the cutting blade part 3. FIG. マージン面を有さない従来の切削工具での切削抵抗を示す図。The figure which shows the cutting resistance with the conventional cutting tool which does not have a margin surface. マージン面の辺長さが0.1mmの切削工具での切削抵抗を示す図。The figure which shows the cutting resistance with the cutting tool whose side length of a margin surface is 0.1 mm. マージン面の辺長さが0.3mmの切削工具での切削抵抗を示す図。The figure which shows the cutting resistance with the cutting tool whose side length of a margin surface is 0.3 mm. マージン面の辺長さが0.5mmの切削工具での切削抵抗を示す図。The figure which shows the cutting resistance with the cutting tool whose side length of a margin surface is 0.5 mm. 従来の切削工具100の斜視図。The perspective view of the conventional cutting tool 100. FIG. 従来の切削工具100の側面図。The side view of the conventional cutting tool 100. FIG. 従来の切削工具100の切れ刃部103の形状を示す図で、(a)は斜視図、(b)は断面図。It is a figure which shows the shape of the cutting-blade part 103 of the conventional cutting tool 100, (a) is a perspective view, (b) is sectional drawing.

以下、本発明の実施の形態について説明する。図1は本発明の一実施例である切削工具1の斜視図、図2は側面図である。切削工具は、トリム加工用の工具である。切削工具1は、刃部1aとシャンク1bとからなる。   Embodiments of the present invention will be described below. FIG. 1 is a perspective view of a cutting tool 1 according to an embodiment of the present invention, and FIG. 2 is a side view. The cutting tool is a tool for trim processing. The cutting tool 1 includes a blade portion 1a and a shank 1b.

刃部1aには、工具の軸方向に対して所定の角度の右ねじれ刃溝7と左ねじれ刃溝9が設けられる。右ねじれ刃溝7は、工具先端側から見て右方向にねじれる。左ねじれ刃溝9は、工具先端側から見て左方向にねじれる。すなわち、右ねじれ刃溝7と左ねじれ刃溝9は、反対側にねじれる。右ねじれ刃溝7と左ねじれ刃溝9は、軸方向に対して、同一角度で形成されることが望ましい。ここで、好ましいねじれ角の範囲は15°〜35°であり、より好ましくは20°〜30°である。ねじれ角が15°未満の場合、刃の剛性が弱くなり、チッピングが発生しやすくなる。ねじれ角が35°以上の場合、振動増大による面品位の劣化が懸念される。   The blade portion 1a is provided with a right twist blade groove 7 and a left twist blade groove 9 having a predetermined angle with respect to the axial direction of the tool. The right twisted blade groove 7 is twisted in the right direction when viewed from the tip side of the tool. The left twisted blade groove 9 is twisted in the left direction when viewed from the tip side of the tool. That is, the right twist blade groove 7 and the left twist blade groove 9 are twisted in opposite directions. It is desirable that the right twist blade groove 7 and the left twist blade groove 9 are formed at the same angle with respect to the axial direction. Here, the range of a preferable twist angle is 15 ° to 35 °, and more preferably 20 ° to 30 °. When the twist angle is less than 15 °, the rigidity of the blade becomes weak and chipping is likely to occur. When the twist angle is 35 ° or more, there is a concern about deterioration of surface quality due to increased vibration.

右ねじれ刃溝7と左ねじれ刃溝9とで囲まれた部位は、切れ刃部3となる。すなわち、切れ刃部3は、刃部1aにおいて、略同一のピッチで、軸に対して所定の角度で併設される。   A portion surrounded by the right twisted blade groove 7 and the left twisted blade groove 9 is a cutting blade portion 3. That is, the cutting edge portion 3 is provided side by side at a predetermined angle with respect to the axis at substantially the same pitch in the blade portion 1a.

図3は、図2のA部拡大図であり、切れ刃部3の拡大斜視図である。切れ刃部3は、略四角錘台形状である。すなわち、四角錘形状の上部が切り取られた形状である。したがって、切れ刃部3の頂部には、略平坦なマージン面5が形成される。マージン面5は、略四角形である。   FIG. 3 is an enlarged view of a portion A in FIG. 2, and is an enlarged perspective view of the cutting edge portion 3. The cutting edge portion 3 has a substantially square frustum shape. In other words, the upper part of the quadrangular pyramid shape is cut off. Therefore, a substantially flat margin surface 5 is formed at the top of the cutting edge portion 3. The margin surface 5 is substantially rectangular.

切れ刃部3の、右ねじれ刃溝7に沿った方向であって、凹状の面が右ねじれ刃すくい面13となる。また、左ねじれ刃溝9に沿った方向であって、凹状の面が左ねじれ刃すくい面11となる。   In the direction of the cutting edge portion 3 along the right twisted blade groove 7, the concave surface becomes the right twisted blade rake face 13. Further, the concave surface in the direction along the left helix blade groove 9 becomes the left helix blade rake face 11.

右ねじれ刃溝7と左ねじれ刃溝9とが同一角度(軸に対して逆方向)で形成されると、マージン面5は、略平行四辺形(略ひし形および略正方形含む)となる。   When the right helix blade groove 7 and the left helix blade groove 9 are formed at the same angle (opposite direction with respect to the axis), the margin surface 5 becomes a substantially parallelogram (including a substantially rhombus and a substantially square).

右ねじれ刃溝7と平行な辺であって、右ねじれ刃すくい面13側の辺が、右ねじれ刃17となる。また、左ねじれ刃溝9と平行な辺であって、左ねじれ刃すくい面11側の辺が、左ねじれ刃15となる。   The side parallel to the right twist blade groove 7 and on the right twist blade rake face 13 side becomes the right twist blade 17. Further, the side parallel to the left twist blade groove 9 and the side on the left twist blade rake face 11 side becomes the left twist blade 15.

なお、切削工具1は、例えば、以下のように製造される。素材となる丸棒に対して、右ねじれ刃溝7と左ねじれ刃溝9を形成する。この際、右ねじれ刃溝7と左ねじれ刃溝9とで形成される切れ刃部3の頂部に、円筒形状の外周面の一部が残るようにする。すなわち、マージン面5は、元の素材の外周面が残った部位である。したがって、マージン面5は、切削工具1の回転軸を中心とした同一円周面上に形成され、全てのマージン面5は、切削工具1の回転軸から同一の距離に形成される。このため、マージン面5は、完全に平坦ではなく、切削工具1の周方向にわずかに湾曲する。なお、図面では、マージン面5を平坦に図示する。   In addition, the cutting tool 1 is manufactured as follows, for example. A right twisted blade groove 7 and a left twisted blade groove 9 are formed on a round bar as a material. At this time, a part of the outer peripheral surface of the cylindrical shape is left at the top of the cutting edge portion 3 formed by the right twisted blade groove 7 and the left twisted blade groove 9. That is, the margin surface 5 is a portion where the outer peripheral surface of the original material remains. Therefore, the margin surface 5 is formed on the same circumferential surface around the rotation axis of the cutting tool 1, and all the margin surfaces 5 are formed at the same distance from the rotation axis of the cutting tool 1. For this reason, the margin surface 5 is not completely flat but slightly curved in the circumferential direction of the cutting tool 1. In the drawing, the margin surface 5 is shown flat.

図4(a)は、右ねじれ刃溝7に平行な線であって、マージン面5の中心を通る線上における切れ刃部3の外形模式図であり、図4(b)はこの平面図である。また、図5は、切削工具1(刃部1a)の展開模式図である。なお、図5において、図中左側が切削工具1の刃部1aの先端であり、右側がシャンク1b側である。前述したように、切れ刃部3の上面にはマージン面5が形成される。マージン面5を形成する一組の平行な辺の長さL1mmおよび他の平行な辺の長さL2mm(但しL2≧L1)(図4(b)参照)は、右ねじれ刃溝7に平行な方向に併設される切れ刃部3の列数をn(図5参照)とした際に、2.5/n≦L1≦L2≦5/nの関係を満たすことが望ましい。ここで、L1およびL2は、左ねじれ刃15または右ねじれ刃17のどちらの長さであってもよい。また、以下の説明において、L1を短辺、L2を長辺とするが、L1=L2を排除するものではない。   FIG. 4A is a schematic external view of the cutting edge portion 3 on a line parallel to the right twisted blade groove 7 and passing through the center of the margin surface 5, and FIG. 4B is a plan view thereof. is there. FIG. 5 is a developed schematic view of the cutting tool 1 (blade portion 1a). In FIG. 5, the left side in the drawing is the tip of the blade 1a of the cutting tool 1, and the right side is the shank 1b side. As described above, the margin surface 5 is formed on the upper surface of the cutting edge portion 3. The length L1 mm of a pair of parallel sides forming the margin surface 5 and the length L2 mm of other parallel sides (L2 ≧ L1) (see FIG. 4B) are parallel to the right twisted blade groove 7. When the number of rows of cutting edge portions 3 provided in the direction is n (see FIG. 5), it is desirable to satisfy the relationship of 2.5 / n ≦ L1 ≦ L2 ≦ 5 / n. Here, L1 and L2 may be the length of either the left helix blade 15 or the right helix blade 17. In the following description, L1 is a short side and L2 is a long side, but L1 = L2 is not excluded.

マージン面5の短辺長さL1が、2.5/nよりも小さい場合、マージン面5を形成した効果が小さい。また、マージン面5の長辺長さL2が、5/nよりも大きい場合、被削材との接触面積が増大するため、切削抵抗が大きくなる。このため、マージン面5の辺長さLmmは、上記の関係を満たすことが望ましい。   When the short side length L1 of the margin surface 5 is smaller than 2.5 / n, the effect of forming the margin surface 5 is small. Further, when the long side length L2 of the margin surface 5 is larger than 5 / n, the contact area with the work material increases, so that the cutting resistance increases. For this reason, it is desirable that the side length Lmm of the margin surface 5 satisfies the above relationship.

図6は、切れ刃部3の断面図である。切れ刃部3には、表面被覆19を設けることが望ましい。ここで、切削工具1の材質は、WC粉末とCo粉末の混合粉末を金型成形および焼結したものであり、表面被覆19は、ダイヤモンドコート、DLC(Diamond Like Carbon)などの硬質皮膜である。表面被覆19によって、切削工具1の表面硬度を上げることができる。   FIG. 6 is a cross-sectional view of the cutting edge portion 3. The cutting edge 3 is desirably provided with a surface coating 19. Here, the material of the cutting tool 1 is obtained by molding and sintering a mixed powder of WC powder and Co powder, and the surface coating 19 is a hard film such as diamond coat and DLC (Diamond Like Carbon). . The surface coating 19 can increase the surface hardness of the cutting tool 1.

本発明では、マージン面5を形成するため、被削材に対する切削抵抗が、3方向(図中D、E、F方向)に分散される。すなわち、従来の切削工具100と比較して、刃先にかかる抵抗が多方向となるため、振動を抑制することができる。   In the present invention, in order to form the margin surface 5, the cutting resistance against the work material is distributed in three directions (D, E, and F directions in the figure). That is, as compared with the conventional cutting tool 100, since the resistance applied to the cutting edge is multidirectional, vibration can be suppressed.

また、マージン面5が略平坦であるため、切れ刃部3の頂部への表面被覆19が付きやすく、従来の切削工具100と比較して、表面被覆19がはがれにくい。また、先端がとがっていないため、切れ刃部3の頂部の強度を上げることができる。また、マージン面5によって切削するため、鋭利な刃先で加工する場合と比較して、被削材の面粗度を向上させることができる。   Further, since the margin surface 5 is substantially flat, the surface coating 19 is easily attached to the top of the cutting edge portion 3, and the surface coating 19 is less likely to be peeled off as compared with the conventional cutting tool 100. Moreover, since the tip is not sharp, the strength of the top of the cutting edge 3 can be increased. Moreover, since it cuts with the margin surface 5, compared with the case where it processes with a sharp blade edge | tip, the surface roughness of a workpiece can be improved.

次に、切削工具の切れ刃部形状を変化させて、被削材を切削し、その際の切削抵抗を調査した。切削工具としては、右ねじれ刃数(右ねじれ刃溝数)が13枚、左ねじれ刃数(左ねじれ刃溝数)が15枚のものを用いた。   Next, the cutting edge shape of the cutting tool was changed to cut the work material, and the cutting resistance at that time was investigated. As the cutting tool, a tool with 13 right-hand twist blades (number of right-hand twist blade grooves) and 15 left-hand twist blades (number of left twist blade grooves) was used.

切削条件は、回転数:10000min−1(切削速度:Vc=314m/min)、工具送り速度:Vf=1000mm/min、工具軸方向切り込み量×工具径方向切り込み量:ap×ae=10×10mm、工具突出し量(オーバーハング):OH=45mmとした。切削刃、エアを吹き付けながら行った。また、被削材は、CFRP材(寸法150mm×150mm×10mm)とした。 Cutting conditions are: rotation speed: 10000 min −1 (cutting speed: Vc = 314 m / min), tool feed speed: Vf = 1000 mm / min, cutting amount in the tool axis direction × cutting amount in the tool radial direction: ap × ae = 10 × 10 mm Tool protrusion amount (overhang): OH = 45 mm. The cutting blade and air were blown. The work material was a CFRP material (dimensions 150 mm × 150 mm × 10 mm).

切削工具としては、刃径がφ10mm、刃長が30mmのものを用いた。また、マージン面5の辺長さが、0mm(マージン面なし)、0.1mm、0.3mm、0.5mmのものをそれぞれ評価した。なお、マージン面はひし形であり、4辺の長さはほぼ同一である。それぞれの切削工具で、被削材にトリム加工を行い、その際の切削抵抗を調査した。切削抵抗は、工具の送り方向、軸方向、径方向の互いに直交する3方向について調査した。   A cutting tool having a blade diameter of 10 mm and a blade length of 30 mm was used. Moreover, the side length of the margin surface 5 was evaluated as 0 mm (no margin surface), 0.1 mm, 0.3 mm, and 0.5 mm, respectively. The margin surface is a rhombus, and the lengths of the four sides are almost the same. Trimming was performed on the work material with each cutting tool, and the cutting resistance at that time was investigated. The cutting resistance was investigated in three directions orthogonal to each other in the feed direction, the axial direction, and the radial direction of the tool.

図7は、マージン面5の辺長さが、0mm(マージン面なし)の切削抵抗を示す図、図8は、マージン面5の辺長さが、0.1mmの切削抵抗を示す図、図9は、マージン面5の辺長さが、0.3mmの切削抵抗を示す図、図10は、マージン面5の辺長さが、0.5mmの切削抵抗を示す図である。なお、各図において、上図が工具の送り方向の切削抵抗(X方向)、中図が工具の径方向(Y方向)、下図が工具の軸方向(Z方向)の切削抵抗である。また、各図とも、縦軸が切削抵抗(荷重)(N)を示し、横軸は時間である。   FIG. 7 is a diagram showing cutting resistance when the side length of the margin surface 5 is 0 mm (no margin surface), and FIG. 8 is a diagram showing cutting resistance when the side length of the margin surface 5 is 0.1 mm. 9 is a diagram showing a cutting resistance with a side length of the margin surface 5 of 0.3 mm, and FIG. 10 is a diagram showing a cutting resistance with a side length of the margin surface 5 of 0.5 mm. In each figure, the upper figure shows the cutting resistance (X direction) in the feed direction of the tool, the middle figure shows the cutting resistance in the radial direction (Y direction) of the tool, and the lower figure shows the cutting resistance in the axial direction (Z direction) of the tool. In each figure, the vertical axis represents cutting resistance (load) (N), and the horizontal axis represents time.

図7に示すように、マージン面5を有さない切削工具では、切削抵抗が大きくぶれている。例えば、X方向の切削抵抗は、−800N〜+400Nの幅で振動し、Y方向の切削抵抗は、−500N〜+1000Nの幅で振動し、Z方向の切削抵抗は、−400N〜+400Nの幅で振動した。このように工具に大きな振動が生じた。また、被削体の切削面の表面粗さを測定したところ、Ra=11.45μmと大きな値であった。また、切削抵抗の変動が大きいため、切削抵抗の最大値も大きくなった。   As shown in FIG. 7, in the cutting tool that does not have the margin surface 5, the cutting resistance greatly fluctuates. For example, the cutting resistance in the X direction vibrates with a width of −800N to + 400N, the cutting resistance in the Y direction vibrates with a width of −500N to + 1000N, and the cutting resistance in the Z direction has a width of −400N to + 400N. Vibrated. Thus, a large vibration occurred in the tool. Moreover, when the surface roughness of the cut surface of the workpiece was measured, it was a large value of Ra = 11.15 μm. Moreover, since the variation of the cutting force was large, the maximum value of the cutting force was also increased.

また、図8に示すように、マージン面5の辺長さが0.1mmの切削工具では、図7と同様に工具径方向の切削抵抗の振動が大きい結果となった。例えば、X方向の切削抵抗は、−1600N〜+1200N(平均約−300N)の幅で振動し、Y方向の切削抵抗は、−400N〜+800N(平均約400N)の幅で振動し、Z方向の切削抵抗は、−800N〜+800N(平均約0N)の幅で振動した。この例では、各方向の切削抵抗の平均値は、図7の例の最大値よりも小さくなっているが、振動幅が大きい。例えば、送り方向(Y方向)の切削抵抗として、−方向の切削抵抗が生じている。また、被削体の切削面の表面粗さを測定したところRa=3.94μmであり、マージン面なしのものと比較すると、改善されてはいるものの、目標とするRa=3.2μmを達成することはできなかった。このように、マージン面5の辺長さ0.1mmでは、十分な効果を得ることができなかった。   Further, as shown in FIG. 8, in the cutting tool having the margin surface 5 having a side length of 0.1 mm, the vibration of the cutting resistance in the tool radial direction was large as in FIG. For example, the cutting resistance in the X direction vibrates with a width of −1600N to + 1200N (average of about −300N), and the cutting resistance of the Y direction vibrates with a width of −400N to + 800N (average of about 400N). The cutting resistance vibrated with a width of −800 N to +800 N (average of about 0 N). In this example, the average value of the cutting resistance in each direction is smaller than the maximum value in the example of FIG. 7, but the vibration width is large. For example, as the cutting resistance in the feed direction (Y direction), a negative cutting resistance is generated. Further, when the surface roughness of the cut surface of the work piece was measured, Ra = 3.94 μm, which was improved compared to that without the margin surface, but achieved the target Ra = 3.2 μm. I couldn't. Thus, a sufficient effect could not be obtained when the side length of the margin surface 5 was 0.1 mm.

一方、図9に示すように、マージン面5の辺長さが0.3mmの切削工具では、すべての方向の切削抵抗がほぼ一定となった。例えば、X方向の切削抵抗は、約−100N、Y方向の切削抵抗は、約+600N、Z方向の切削抵抗は、ほとんど0となった。すなわち、振動が小さくなった。また、各方向における切削抵抗の平均値も図7の例の各方向の最大値よりも小さくなった。また、被削体の切削面の表面粗さを測定したことろ、Ra=3.11μmであり、目標とするRa=3.2μmを達成した。なお、この切削工具は、n=13、L1=L2=0.3mmであるため、2.5/n(≒0.19)≦L1=L2(=0.3)≦5/n(≒0.38)の関係を満たす。   On the other hand, as shown in FIG. 9, in the cutting tool having the side length of the margin surface 5 of 0.3 mm, the cutting resistance in all directions became almost constant. For example, the cutting resistance in the X direction was about −100 N, the cutting resistance in the Y direction was about +600 N, and the cutting resistance in the Z direction was almost zero. That is, the vibration is reduced. Moreover, the average value of the cutting force in each direction was also smaller than the maximum value in each direction in the example of FIG. In addition, the surface roughness of the cut surface of the work was measured, and Ra = 3.11 μm, and the target Ra = 3.2 μm was achieved. Since this cutting tool has n = 13 and L1 = L2 = 0.3 mm, 2.5 / n (≈0.19) ≦ L1 = L2 (= 0.3) ≦ 5 / n (≈0) .38) is satisfied.

図10に示すように、マージン面5の辺長さが0.5mmの切削工具では、すべての方向の切削抵抗がほぼ一定となり、振動が小さくなった。例えば、X方向の切削抵抗は、約−400N、Y方向の切削抵抗は、約+2400N、Z方向の切削抵抗は、ほとんど0となった。しかし、Y方向の切削抵抗が、他の切削工具と比較して大きくなった。例えば、図7のY方向の最大値よりも大きくなった。これは、マージン面5が大きくなりすぎたことで、被削材との接触面積が増大したためである。また、被削体の切削面の表面粗さを測定したことろ、Ra=5.38μmであり、目標とするRa=3.2μmを達成することはできなかった。   As shown in FIG. 10, in the cutting tool with the side length of the margin surface 5 being 0.5 mm, the cutting resistance in all directions was almost constant and the vibration was reduced. For example, the cutting resistance in the X direction was about −400 N, the cutting resistance in the Y direction was about +2400 N, and the cutting resistance in the Z direction was almost zero. However, the cutting resistance in the Y direction is larger than that of other cutting tools. For example, it is larger than the maximum value in the Y direction in FIG. This is because the contact area with the work material has increased because the margin surface 5 has become too large. In addition, the surface roughness of the cut surface of the workpiece was measured, and Ra = 5.38 μm, and the target Ra = 3.2 μm could not be achieved.

なお、このような傾向は、他の刃数の切削工具を用いても同様であった。このように、切削工具が、2.5/n≦L1≦L2≦5/nの関係を満たす面を形成することで、振動の発生を抑制することができる。   Such a tendency was the same even when cutting tools having other numbers of blades were used. As described above, the cutting tool can form a surface satisfying the relationship of 2.5 / n ≦ L1 ≦ L2 ≦ 5 / n, thereby suppressing generation of vibration.

以上、本実施の形態によれば、切れ刃部の形状を適切にすることで、切削時の振動を抑制し、さらに切削抵抗を小さくすることができる。また、面を形成することで、刃先強度を増加させ、表面被覆もはがれにくくすることができる。   As mentioned above, according to this Embodiment, the vibration at the time of cutting can be suppressed and cutting resistance can be made small by making the shape of a cutting blade part suitable. Further, by forming the surface, the strength of the blade edge can be increased and the surface coating can be made difficult to peel off.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1………切削工具
1a………刃部
1b………シャンク
3………切れ刃部
5………マージン面
7………右ねじれ刃溝
9………左ねじれ刃溝
11………左ねじれ刃すくい面
13………右ねじれ刃すくい面
15………左ねじれ刃
17………右ねじれ刃
19………表面被覆
100………切削工具
101a………刃部
101b………シャンク
103………切れ刃部
107………右ねじれ刃溝
109………左ねじれ刃溝
111………すくい面
113………切れ刃
119………表面被覆
DESCRIPTION OF SYMBOLS 1 ......... Cutting tool 1a ......... Blade 1b ......... Shank 3 ......... Cutting edge 5 ......... Margin surface 7 ......... Right twist blade groove 9 ......... Left twist blade groove 11 ......... Left helix blade rake face 13 ......... Right helix edge rake face 15 ......... Left helix edge 17 ......... Right helix edge 19 ......... Surface coating 100 ......... Cutting tool 101a ......... Blade 101b ......... Shank 103 ......... Cut edge 107 ......... Right helix edge groove 109 ......... Left helix edge groove 111 ......... Rake face 113 ......... Cut edge 119 ......... Surface coating

Claims (4)

トリム加工用の切削工具であって、
前記切削工具は、刃部とシャンクとからなり、
前記刃部は、右ねじれ刃溝と左ねじれ刃溝とがそれぞれ所定のねじれ角で設けられ、
前記右ねじれ刃溝および前記左ねじれ刃溝で分断された複数の切れ刃部からなり、前記複数の切れ刃部は前記刃部に均一に配置され、
前記複数の切れ刃部は略四角錘台形状であり、頂部に略四角形のマージン面が形成され、
それぞれの前記マージン面が、切削工具の回転軸を中心とした同一円周面上に形成されることを特徴とするトリム加工用の切削工具。
A cutting tool for trim processing,
The cutting tool comprises a blade portion and a shank,
The blade portion is provided with a right twist blade groove and a left twist blade groove with respective predetermined twist angles,
It consists of a plurality of cutting blade portions divided by the right twisting blade groove and the left twisting blade groove, the plurality of cutting blade portions are uniformly arranged on the blade portion,
The plurality of cutting edge portions have a substantially square frustum shape, and a substantially rectangular margin surface is formed at the top,
Each of the margin surfaces is formed on the same circumferential surface around the rotation axis of the cutting tool.
前記マージン面は、頂部側からの平面視において略平行四辺形であり、
前記マージン面の一組の平行な辺の長さをL1mm、他の組の平行な辺の長さをL2mmとし、前記右ねじれ刃溝に平行な方向に併設される刃の列数をnとした際に、
2.5/n≦L1≦L2≦5/n
の関係を満たすことを特徴とする請求項1記載のトリム加工用の切削工具。
The margin surface is a substantially parallelogram in plan view from the top side,
The length of one set of parallel sides of the margin surface is L1 mm, the length of the other set of parallel sides is L2 mm, and the number of rows of blades arranged in parallel to the right twisted blade groove is n. When
2.5 / n ≦ L1 ≦ L2 ≦ 5 / n
The cutting tool for trim processing according to claim 1, wherein:
前記切削工具の外周面には、表面被覆が施されていることを特徴とする請求項1または請求項2に記載のトリム加工用の切削工具。   The cutting tool for trim processing according to claim 1 or 2, wherein a surface coating is applied to an outer peripheral surface of the cutting tool. 請求項1に記載のトリム加工用の切削工具の製造方法であって、
円柱状の母材に対し、前記母材の側面に、それぞれ所定のねじれ角で右ねじれ刃溝と左ねじれ刃溝とを設け、前記刃溝で分断された複数の切れ刃部からなる刃部を形成し、
前記刃溝を形成する際に、前記切れ刃部が略四角形のマージン面を有する略四角錘台形状となるように、頂部に母材表面の円筒形状の一部を残すことを特徴とするトリム加工用の切削工具の製造方法。
It is a manufacturing method of the cutting tool for trim processing according to claim 1,
A blade portion comprising a plurality of cutting edge portions divided by the blade groove, with a right-handed twisted groove and a left-handed twisted groove provided at a predetermined twist angle on the side surface of the base material with respect to the cylindrical base material. Form the
A trim characterized in that when forming the blade groove, a part of the cylindrical shape of the base material surface is left on the top so that the cutting edge portion has a substantially square frustum shape having a substantially square margin surface. A method of manufacturing a cutting tool for machining.
JP2014086183A 2014-04-18 2014-04-18 Cutting tool and method of manufacturing cutting tool Active JP6419453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014086183A JP6419453B2 (en) 2014-04-18 2014-04-18 Cutting tool and method of manufacturing cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086183A JP6419453B2 (en) 2014-04-18 2014-04-18 Cutting tool and method of manufacturing cutting tool

Publications (2)

Publication Number Publication Date
JP2015205360A JP2015205360A (en) 2015-11-19
JP6419453B2 true JP6419453B2 (en) 2018-11-07

Family

ID=54602654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086183A Active JP6419453B2 (en) 2014-04-18 2014-04-18 Cutting tool and method of manufacturing cutting tool

Country Status (1)

Country Link
JP (1) JP6419453B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10272504B2 (en) * 2016-02-02 2019-04-30 Sandvik Intellectual Property Tool with right-hand and left-hand cutting features extending along the full length of the cutting zone
EP3348340B1 (en) * 2017-01-16 2020-01-01 Seco Tools Ab Rotary cutting tool
DE102017112827B4 (en) * 2017-06-12 2022-08-11 Kohnle GmbH Milling tool for processing fiber-reinforced materials
CN107470683A (en) * 2017-08-24 2017-12-15 杨明卫 A kind of side cut milling cutter
CN109648125B (en) * 2019-01-25 2020-06-16 大连理工大学 Multi-tooth design method capable of realizing alternate cutting of left-handed cutting edge and right-handed cutting edge
US20230130145A1 (en) * 2020-04-02 2023-04-27 Seco Tools Ab Rotary cutting tool with continuous major flutes and discontinuous minor flutes intersecting to form quadrilateral-shaped face portions
EP4008465A1 (en) * 2020-12-03 2022-06-08 CERATIZIT Balzheim GmbH & Co. KG Milling tool for the machining of fibre composites

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125726U (en) * 1979-02-22 1980-09-05
JP2646110B2 (en) * 1988-06-03 1997-08-25 ジーエヌツール 株式会社 Reamer with nick
JP2001287114A (en) * 2000-04-10 2001-10-16 Nachi Fujikoshi Corp Cemented carbide end mill
US7090442B2 (en) * 2003-12-09 2006-08-15 The Boeing Company Shaper router and method
US9232953B2 (en) * 2012-10-08 2016-01-12 Peter Bono Cutting tool for bone, cartilage, and disk removal

Also Published As

Publication number Publication date
JP2015205360A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP6419453B2 (en) Cutting tool and method of manufacturing cutting tool
JP5764181B2 (en) Hard film coated cutting tool
JP5366003B2 (en) Router end mill
JP5184902B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP5474032B2 (en) Rotary cutting tool
JP5610292B2 (en) End mill
JP5451831B2 (en) Drilling tools and drilling methods for fiber reinforced composites
US20130017025A1 (en) End mill
KR101838346B1 (en) Ball end mill
KR20150082176A (en) Drill and bore formation method
JPWO2019054289A1 (en) Small diameter drill and manufacturing method of small diameter drill
JP2015000458A (en) End mill
WO2012017645A1 (en) Drill
JP5258677B2 (en) Triple angle drill
CN104015211B (en) The cutting working method of aramid fiber reinforced composite
KR20110023709A (en) Rotary cutting tool
US20210213545A1 (en) Rotary cutting tool
JP2008056542A (en) Rotary cutting tool for processing glass
JP6729853B2 (en) Drill
JP2018164946A (en) Radius end mill
JP6930404B2 (en) End mill
JP5734137B2 (en) Drill and method of manufacturing workpiece using the drill
JP3185869U (en) End mill
JP2019136847A (en) drill
JP2018161717A (en) drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20180712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250