JP2008056542A - Rotary cutting tool for processing glass - Google Patents

Rotary cutting tool for processing glass Download PDF

Info

Publication number
JP2008056542A
JP2008056542A JP2006237084A JP2006237084A JP2008056542A JP 2008056542 A JP2008056542 A JP 2008056542A JP 2006237084 A JP2006237084 A JP 2006237084A JP 2006237084 A JP2006237084 A JP 2006237084A JP 2008056542 A JP2008056542 A JP 2008056542A
Authority
JP
Japan
Prior art keywords
tool
groove
hemispherical surface
wear
rotary cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006237084A
Other languages
Japanese (ja)
Inventor
Haruki Kino
晴喜 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006237084A priority Critical patent/JP2008056542A/en
Publication of JP2008056542A publication Critical patent/JP2008056542A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Milling Processes (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary cutting tool with which a groove width can be stably obtained by suppressing the wear of the tool in cutting of a groove of glass to be cut. <P>SOLUTION: The rotary cutting tool has a semi-spherical surface at the tip end part of a columnar tool main body. In the semi-spherical surface, a plurality of grooves extending toward the rear end from the vicinity of the rotary center of the tool are provided, and the ratio of the semi-spherical surface to the groove is set to be 1/0.5 to 1/2.5 at around R45° of the semi-spherical surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、ガラスに溝を加工する回転切削工具に関する。   The present invention relates to a rotary cutting tool for machining a groove in glass.

ガラスに溝切削加工する方法として、ボールエンドミルやスクエアエンドミルの回転中心軸を加工面に対して傾斜させた状態で加工面に平行に送って加工するものがあり(特許文献1参照)、回転中心軸付近の切れ刃より切削速度の高い部分にて、1μm以上の深さの溝を加工するものがあった。
特開2005−96399号公報
As a method of cutting a groove in glass, there is a method in which a rotation center axis of a ball end mill or a square end mill is inclined with respect to the processing surface and sent parallel to the processing surface (see Patent Document 1). Some of them cut a groove with a depth of 1 μm or more at a portion where the cutting speed is higher than the cutting edge near the shaft.
JP 2005-96399 A

しかし、特許文献1に記載されているエンドミルでは、ガラスなどの脆性材料はとても硬く、刃先の損傷により、工具回転軌跡の減寸(以下、摩滅と言う。)が進行しやすく、溝加工時に所望の溝幅を安定して得ることができなかった。特にスクエアエンドミルは底刃と外周刃で形成される回転軌跡がほぼ直角を成すコーナ部があるため、摩滅が進行しやすく、所望の溝深さを安定して得るのに向かない。
本願発明は以上のような背景を元になされたものであり、被削材であるガラスの損傷を抑制しつつ、工具の摩滅を抑制して長時間に亘って安定した溝幅を得ることのできる工具を提供することを目的とする。
However, in the end mill described in Patent Document 1, brittle materials such as glass are very hard, and the tool rotation trajectory tends to be reduced (hereinafter referred to as abrasion) due to damage to the cutting edge, which is desirable during grooving. The groove width could not be obtained stably. In particular, the square end mill has a corner portion in which the rotation trajectory formed by the bottom blade and the outer peripheral blade forms a substantially right angle, and therefore wear easily proceeds, and is not suitable for stably obtaining a desired groove depth.
The present invention has been made based on the background as described above, and it is possible to obtain a stable groove width over a long period of time by suppressing wear of a tool while suppressing damage to glass as a work material. An object is to provide a tool that can be used.

本願発明は、円柱状の工具本体の先端部に半球面を有する回転切削工具であり、前記半球面には、工具回転中心付近から後端へ向かって延在する複数の溝を設け、且つ、前記半球面と前記溝の比率を、半球面のR45度付近で、1:0.5〜2.5としたことを特徴とする。これにより、半球面と溝の壁面で形成される稜線が損傷しても工具の摩滅を抑制でき、長時間に亘って所望の溝幅を得ることができる。また、上記本願発明において、前記複数の溝は、R10度の位置から後端へ向かって設けることが好ましく、工具先端に近い位置まで溝を設け、工具先端側を使用する加工にも対応できる。さらに、前記半球面部に硬質皮膜を被覆し、前記硬質皮膜の硬さはHV30GPa以上であることが好ましく、半球面の摩滅を抑制して回転軌跡をさらに長時間に亘って維持することができる。   The present invention is a rotary cutting tool having a hemispherical surface at the tip of a cylindrical tool body, the hemispherical surface is provided with a plurality of grooves extending from the vicinity of the tool rotation center toward the rear end, and The ratio of the hemispherical surface to the groove is set to 1: 0.5 to 2.5 in the vicinity of R45 degrees of the hemispherical surface. Thereby, even if the ridge formed by the hemispherical surface and the wall surface of the groove is damaged, wear of the tool can be suppressed, and a desired groove width can be obtained over a long time. Further, in the present invention, the plurality of grooves are preferably provided from the position of R10 degrees toward the rear end, and the grooves are provided to a position close to the tool front end, which can cope with machining using the tool front end side. Further, the hemispherical portion is covered with a hard film, and the hardness of the hard film is preferably HV30 GPa or more, and the rotation trajectory can be maintained for a longer time by suppressing wear of the hemispherical surface.

以上のように本願発明によれば、被削材であるガラスの溝切削において、工具の摩滅を抑制して溝幅を安定して得ることのできる回転切削工具を提供することができた。   As described above, according to the present invention, it is possible to provide a rotary cutting tool capable of stably obtaining a groove width by suppressing wear of a tool in cutting a glass groove as a work material.

以下、図を用いて本願発明を説明する。図1に示すように、本願発明の工具は、工具本体1の一端に半球面2を有する。図2、図3に示すように、半球面2の最も工具先端側に突出する最先端部3は工具の回転中心上に位置する。半球面2の最先端部3を中心として放射状に複数の溝4を設け、半球面2を工具中心側から外周側へ帯状に設ける。溝4の工具回転方向を向く壁面と半球面2とで稜線5を形成し、稜線5で被削材を切削する。図4に示すように、本願発明は工具回転軸を加工面に対して傾けて使用することで、切削速度が遅い工具先端側を使用せずに切削でき、溝4は必ずしも工具先端まで設ける必要はない。本願発明は、半球面2と溝4の比率をR45度付近で1:0.5〜2.5の範囲に設けたので、稜線5が損傷しても、その後方に回転径の変化しない半球面2が存在するので、工具の回転軌跡の半径の減少である摩滅を抑制でき、長時間に亘って所望の溝幅を得ることができる。ここで、R45度とは、工具正面視で、半球面の中心点を通り、且つ、工具回転中心軸と45度を成す線が、半球面と交わる位置であり、半球面2と溝4の比率とは、工具左側面視で、前記線が半球面と交わる位置における半球面2と溝4の比率を取る。半球面2と溝4の比率が1:0.5より小さいと、半球面2の割合が大きくなり、半球面2が被削材と擦れる距離が大きくなり、摩滅が進行しやすい。また、半球面2と溝4の比率が1:2.5を超えると、半球面2の幅が小さくなり、摩滅を抑制することができない。   Hereinafter, the present invention will be described with reference to the drawings. As shown in FIG. 1, the tool of the present invention has a hemispherical surface 2 at one end of a tool body 1. As shown in FIGS. 2 and 3, the most distal end portion 3 of the hemispherical surface 2 that protrudes to the most distal end side of the tool is located on the rotation center of the tool. A plurality of grooves 4 are provided radially around the most distal end portion 3 of the hemispherical surface 2, and the hemispherical surface 2 is provided in a band shape from the tool center side to the outer peripheral side. A ridge line 5 is formed by the wall surface of the groove 4 facing the tool rotation direction and the hemispherical surface 2, and the work material is cut by the ridge line 5. As shown in FIG. 4, according to the present invention, the tool rotation axis is inclined with respect to the machining surface, so that cutting can be performed without using the tool tip side having a slow cutting speed, and the groove 4 is necessarily provided to the tool tip. There is no. In the present invention, since the ratio of the hemispherical surface 2 to the groove 4 is provided in the range of 1: 0.5 to 2.5 near R45 degrees, even if the ridge line 5 is damaged, the hemisphere whose rotation diameter does not change behind it. Since the surface 2 is present, it is possible to suppress wear, which is a decrease in the radius of the rotation trajectory of the tool, and to obtain a desired groove width over a long period of time. Here, R45 degrees is a position at which a line passing through the center point of the hemisphere and forming 45 degrees with the tool rotation center axis intersects the hemisphere when viewed from the front of the tool. The ratio is the ratio of the hemispherical surface 2 and the groove 4 at the position where the line intersects the hemispherical surface as viewed from the left side of the tool. When the ratio of the hemispherical surface 2 to the groove 4 is smaller than 1: 0.5, the ratio of the hemispherical surface 2 is increased, the distance at which the hemispherical surface 2 rubs against the work material is increased, and wear tends to proceed. On the other hand, if the ratio of the hemispherical surface 2 to the groove 4 exceeds 1: 2.5, the width of the hemispherical surface 2 becomes small and wear cannot be suppressed.

次に、本願発明は、溝4をR10度の位置から工具後端へ向かって設けた。R10度とは、上記R45度と同様に、工具正面視で、半球面の中心点を通り、且つ、工具回転中心軸と10度を成す線が、半球面2と交わる位置である。これにより、加工時の加工面に対する工具の傾斜角を大きく取ることができ、加工の自由度が高まる。R10度の位置より工具先端側まで溝を設けると、工具先端まで十分な半球面の幅を設けることができず、工具の摩滅を抑制できない。   Next, this invention provided the groove | channel 4 toward the tool rear end from the position of R10 degree | times. R10 degrees is a position where a line passing through the center point of the hemisphere and forming 10 degrees with the tool rotation center axis intersects the hemisphere 2 in the tool front view as in the case of R45 degrees. Thereby, the inclination angle of the tool with respect to the machining surface at the time of machining can be increased, and the degree of machining freedom is increased. If a groove is provided from the position of R10 degrees to the tool tip side, a sufficient hemispherical width cannot be provided to the tool tip, and wear of the tool cannot be suppressed.

更に、半球面2の工具回転方向の幅は工具先端側から後端に向かうに従って大きく設ける事が好ましい。これは稜線5の切削負荷は部位によって異なり、工具先端部よりも後端側に向かうに従って、一刃送り量に対する切り込み量が大きくなり、且つ、工具径が大きくなって切削速度が大きくなることから、稜線の負荷が大きく、発熱して摩滅が進行しやすくなるため、後端に向かうに従って幅を大きくすることにより、工具の摩滅を抑え、溝幅を長時間に亘って安定して得ることができる。   Furthermore, it is preferable that the width of the hemispherical surface 2 in the tool rotation direction is increased as it goes from the tool front end side to the rear end. This is because the cutting load of the ridge line 5 varies depending on the part, and the cutting amount with respect to the one-blade feed amount increases as the distance from the tool tip portion toward the rear end side, and the tool diameter increases and the cutting speed increases. Because the load on the ridge line is large and the wear tends to progress due to heat generation, increasing the width toward the rear end suppresses wear of the tool, and the groove width can be obtained stably over a long period of time. it can.

前記複数の溝が工具回転軸を中心として工具回転方向に均等に配置されていることが好ましく、これにより、各稜線5の1刃送り量を一定にでき、負荷を均等にでき、摩滅を抑制できる。不均等に配置されていると、稜線によっては1刃送り量が大きくなり、切り込み量が大きくなり、被削材のヒビや欠けの原因となりやすい。   It is preferable that the plurality of grooves are arranged uniformly in the tool rotation direction around the tool rotation axis, thereby making it possible to make the feed amount of one edge of each ridge line 5 constant, equalize the load, and suppress wear. it can. If they are arranged unevenly, the feed amount for one blade is increased depending on the ridge line, the cut amount is increased, and it is easy to cause cracks and chipping of the work material.

本願発明は、図4に示すように、工具を傾斜させた方向(図4左側)へ送りながら加工する場合、工具先端視で反時計周りの方向に工具が回転するとき、稜線5が工具先端から後端に向かうに従って工具回転方向へ向かうように形成することが好ましく、被削材と稜線5の切削開始部にかかる切削力は被削材内部の方向に働き、圧縮作用によって切り屑が生成され、被削材の割れを抑える事ができる。また、工具の送り方向とは反対側に切り屑の排出が行われ、稜線5への切り屑の噛み込みを防止できる。これにより稜線5の損傷を抑制でき、安定して溝幅が得られると共に、被削材の表面粗さを向上できる。   In the present invention, as shown in FIG. 4, when machining while feeding the tool in a tilted direction (left side in FIG. 4), when the tool rotates counterclockwise in the tool tip view, the ridge line 5 becomes the tool tip. It is preferable to form it so as to go in the direction of tool rotation as it goes from the rear end to the rear end, and the cutting force applied to the work material and the cutting start part of the ridge line 5 works in the direction of the work material, and chips are generated by the compression action It is possible to suppress cracking of the work material. Further, chips are discharged on the side opposite to the feed direction of the tool, and the biting of chips into the ridge line 5 can be prevented. Thereby, damage to the ridge line 5 can be suppressed, the groove width can be stably obtained, and the surface roughness of the work material can be improved.

また、半球面2の工具回転中心軸に直角な断面視で、稜線5のすくい角は負である事が好ましい。これにより、被削材側に圧縮力を発生させ、被削材を押し付けるように切り屑が生成されていくことで、加工する溝と被削材の表面の境界部に割れやカケの発生を抑制でき、綺麗な加工面を得ることができる。ガラスは脆性材料であるため、鋭角な刃先で加工を行うと、ガラスの機械特性による脆さが原因で加工面に割れが多く発生してしまう。また、本願発明の工具は半球面に硬さがHV30GPa以上の硬質皮膜を被覆することが好ましく、半球面5の摩耗を抑制し、工具の摩滅を抑制できる。また、本願発明において、溝の数は4以上が好ましく、多数の稜線5を設けることで、送り速度を上げ、高能率にガラスの溝加工を行うことができる。溝の長手方向に直交する断面で、溝形状はU字状、V字状、半球状のいずれでも良い。更には、図7に例示するように、工具回転中心付近から後端へ向かって広角に延在する複数の溝を設けても良い。以下、実施例に基づいて、具体的に説明する。   Moreover, it is preferable that the rake angle of the ridge line 5 is negative in a cross-sectional view perpendicular to the tool rotation center axis of the hemispherical surface 2. As a result, compressive force is generated on the work material side, and chips are generated so as to press the work material, so that cracks and chips are generated at the boundary between the groove to be machined and the surface of the work material. It can be suppressed and a beautiful processed surface can be obtained. Since glass is a brittle material, when it is processed with a sharp edge, many cracks occur on the processed surface due to the brittleness caused by the mechanical properties of the glass. Moreover, it is preferable that the tool of this invention coat | covers a hard film | membrane whose hardness is HV30GPa or more on a hemispherical surface, and can suppress wear of the hemispherical surface 5 and can suppress wear of a tool. Further, in the present invention, the number of grooves is preferably 4 or more, and by providing a large number of ridge lines 5, it is possible to increase the feed rate and perform glass groove processing with high efficiency. In the cross section orthogonal to the longitudinal direction of the groove, the groove shape may be U-shaped, V-shaped, or hemispherical. Furthermore, as illustrated in FIG. 7, a plurality of grooves extending at a wide angle from the vicinity of the tool rotation center toward the rear end may be provided. Hereinafter, specific description will be made based on examples.

(実施例1)
本発明例1として、超硬合金製の工具を用意し、工具径を0.4mmに設け、半球面2に溝4を6つ、工具先端視で、図3に示すように、工具先端から後端へ工具の最先端を中心として放射状に等間隔に、R10度の位置から工具後端へ向かって設けた。溝4と半球面2により稜線5を形成した。稜線5のすくい角は−10°に設けた。R45度の位置の半球面2と溝4の比率を1:2とした。比較例2として、本発明例1と同様の仕様で、隣り合う溝同士で隔てられた半球面に稜線から回転方向に逃げを設け、逃げ角を10°に設けたものを用意した。
切削テストとして、被削材に長さ70mm、幅30mm、厚み1.7mmの石英ガラスを用い、図4に示すように、工具の回転中心軸を被削材の加工面に対して45°傾けて工作機械のチャックに回転可能に把持した。工具の回転数は20000min−1、1刃送り量は6nm、送り速度は0.24mm/min、加工面に垂直方向の切り込み量は0.02mmで、工具の傾き方向(図4では左側)へ工具を送って加工する。加工する溝形状は最大溝幅が0.174mm、最大深さが0.02mmである。また加工に際し、冷却のため被削材を水中に沈めた状態で加工を行った。本テストでは溝幅0.165mm未満、溝深さ0.015mm未満に達した時、加工を中止した。また、切削距離20mm毎の工具の最大摩滅量を測定した。
ここで、最大摩滅量とは、工具の回転軸を含む断面視で切れ刃が成す回転軌跡において、加工前の半球状の回転軌跡から、加工後の回転軌跡までの加工前の回転軌跡の半径方向の減寸量であり、半球面の回転軌跡の摩滅のうち、最大の箇所を記録した。
(Example 1)
As Example 1 of the present invention, a cemented carbide tool is prepared, the tool diameter is set to 0.4 mm, six grooves 4 are formed in the hemispherical surface 2, and the tool tip is viewed from the tool tip as shown in FIG. From the position of R10 degrees toward the rear end of the tool, the rear end was provided at equal intervals radially from the front end of the tool. A ridge 5 is formed by the groove 4 and the hemispherical surface 2. The rake angle of the ridge line 5 was set to -10 °. The ratio of the hemispherical surface 2 and the groove 4 at the position of R45 degrees was 1: 2. As Comparative Example 2, a hemispherical surface separated by adjacent grooves and provided with relief in the rotational direction from the ridge line and with a relief angle of 10 ° was prepared with the same specifications as Example 1 of the present invention.
As a cutting test, quartz glass having a length of 70 mm, a width of 30 mm, and a thickness of 1.7 mm is used as a work material, and the rotation center axis of the tool is inclined by 45 ° with respect to the work surface of the work material as shown in FIG. The machine tool was gripped so that it could rotate. The rotation speed of the tool is 20000 min −1 , the feed rate of the blade is 6 nm, the feed rate is 0.24 mm / min, the depth of cut in the direction perpendicular to the machining surface is 0.02 mm, and the tool tilt direction (left side in FIG. 4) Send tools and process. The groove shape to be processed has a maximum groove width of 0.174 mm and a maximum depth of 0.02 mm. In the processing, the work was performed with the work material submerged in water for cooling. In this test, the processing was stopped when the groove width was less than 0.165 mm and the groove depth was less than 0.015 mm. Moreover, the maximum amount of wear of the tool for each cutting distance of 20 mm was measured.
Here, the maximum amount of wear is the radius of the rotation trajectory before machining from the hemispherical rotation trajectory before machining to the rotation trajectory after machining in the rotation trajectory formed by the cutting edge in a cross-sectional view including the rotation axis of the tool. This is the amount of reduction in the direction, and the largest portion of the wear of the rotational trajectory of the hemisphere was recorded.

結果として、図5に示すように、工具の送りによって半球面に被削材との擦過痕が若干生じたが、ガラス切削加工は切り込み量が極小であるため、半球面の摩耗はそれほど進行せず、本発明例1の最大摩滅量は切削長200mm時点において5.6μmと良好であり、最大溝幅0.168mm、最大溝深さ0.016mmと溝幅、溝深さ共に長時間維持できた。また、溝の底面の平均面粗さRaは0.078μmと良好であり、溝を平坦に設けることができた。一方、比較例2は、図6に示すように、200mm切削した段階で、最大摩滅量は10.2μmと、7μmを超え、溝幅が維持できなかった。これは、半球面に逃げを設けたため、切れ刃の機械的強度が不足し、切れ刃の摩耗と共に工具の回転軌跡が減寸したと考えられる。また、溝底の平均面粗さRaは0.1μmを超え、切れ刃の損傷により溝底が平坦に得られなかった。結果より、本願発明は摩滅の進行を抑え、所望の溝加工が可能であることが分かった。   As a result, as shown in FIG. 5, a slight amount of scratches with the work material was generated on the hemispherical surface due to the feed of the tool. In addition, the maximum wear amount of the present invention example 1 is as good as 5.6 μm at the cutting length of 200 mm, and the maximum groove width is 0.168 mm and the maximum groove depth is 0.016 mm, and both the groove width and groove depth can be maintained for a long time. It was. Further, the average surface roughness Ra of the bottom surface of the groove was as good as 0.078 μm, and the groove could be provided flat. On the other hand, as shown in FIG. 6, in Comparative Example 2, the maximum abrasion amount was 10.2 μm, exceeding 7 μm, and the groove width could not be maintained after cutting 200 mm. This is thought to be because the mechanical strength of the cutting edge was insufficient because the relief was provided in the hemispherical surface, and the rotation trajectory of the tool was reduced with wear of the cutting edge. Moreover, the average surface roughness Ra of the groove bottom exceeded 0.1 μm, and the groove bottom was not obtained flat due to damage to the cutting edge. From the results, it has been found that the present invention suppresses the progress of abrasion and enables desired groove processing.

(実施例2)
本発明例3〜5、比較例6として、本発明例1と同様の仕様で、R45度で半球面と溝の比率を1:0.5〜3に設けたものを用いて実施例1と同様のテストを実施した。工具の仕様と切削テストの結果を表1に示す。
(Example 2)
Inventive Examples 3 to 5 and Comparative Example 6 are the same as those of Inventive Example 1, and R45 degrees and the ratio of the hemispherical surface to the groove are set to 1: 0.5 to 3, and Example 1 is used. A similar test was conducted. Table 1 shows the tool specifications and cutting test results.

Figure 2008056542
Figure 2008056542

表1より、本発明例3〜5は200m切削時、最大摩滅量が7μm以下であり、摩滅の進行を抑制できた。これは、半球面の幅を十分に設けることで、摩耗を抑制し、工具の回転軌跡を維持することができたためと考えられる。この結果から、R45度で半球面と溝の比率を1:0.5〜2.5とすることで、摩滅の進行を抑え工具寿命を大幅に長くすることができることが分かった。   From Table 1, Examples 3 to 5 of the present invention had a maximum wear amount of 7 μm or less at the time of cutting 200 m, and the progress of wear could be suppressed. This is considered to be because wear was suppressed and the rotation trajectory of the tool could be maintained by providing a sufficient hemispherical width. From this result, it was found that by setting the ratio of the hemispherical surface to the groove at R45 degrees to 1: 0.5 to 2.5, the wear life can be suppressed and the tool life can be greatly prolonged.

図1は、本発明例の正面図である。FIG. 1 is a front view of an example of the present invention. 図2は、図1の拡大図である。FIG. 2 is an enlarged view of FIG. 図3は、図2の左側面図である。FIG. 3 is a left side view of FIG. 図4は、本願発明の加工状態を表す説明図である。FIG. 4 is an explanatory diagram showing the machining state of the present invention. 図5は、本発明例1の最大摩滅量の変化を示す。FIG. 5 shows a change in the maximum amount of wear of Example 1 of the present invention. 図6は、比較例2の最大摩滅量の変化を示す。FIG. 6 shows the change in the maximum amount of wear in Comparative Example 2. 図7は、本願発明の他の実施形態の左側面図である。FIG. 7 is a left side view of another embodiment of the present invention.

符号の説明Explanation of symbols

1 工具本体
2 半球面
3 最先端部
4 溝
5 稜線
6 被削材
DESCRIPTION OF SYMBOLS 1 Tool main body 2 Hemisphere 3 The most advanced part 4 Groove 5 Ridge line 6 Work material

Claims (3)

円柱状の工具本体の先端部に半球面を有する回転切削工具であり、前記半球面には、工具回転中心付近から後端へ向かって延在する複数の溝を設け、且つ、前記半球面と前記溝の比率を、半球面のR45度付近で、1:0.5〜2.5としたことを特徴とするガラス加工用回転切削工具。 A rotary cutting tool having a hemispherical surface at the front end of a cylindrical tool body, the hemispherical surface having a plurality of grooves extending from the vicinity of the tool rotation center toward the rear end, and the hemispherical surface The rotary cutting tool for glass processing, wherein the groove ratio is set to 1: 0.5 to 2.5 in the vicinity of R45 degrees of the hemispherical surface. 請求項1記載のガラス加工用回転切削工具において、前記複数の溝は、R10度から後端へ向かって設けたことを特徴とするガラス加工用回転切削工具。 2. The rotary cutting tool for glass processing according to claim 1, wherein the plurality of grooves are provided from R10 degrees toward the rear end. 請求項1又は2に記載のガラス加工用回転切削工具において、前記半球面部に硬質皮膜を被覆し、前記硬質皮膜の硬さはHV30GPa以上であることを特徴とするガラス加工用回転切削工具。
The rotary cutting tool for glass processing according to claim 1 or 2, wherein the hemispherical surface portion is coated with a hard coating, and the hardness of the hard coating is HV30 GPa or more.
JP2006237084A 2006-09-01 2006-09-01 Rotary cutting tool for processing glass Pending JP2008056542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237084A JP2008056542A (en) 2006-09-01 2006-09-01 Rotary cutting tool for processing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237084A JP2008056542A (en) 2006-09-01 2006-09-01 Rotary cutting tool for processing glass

Publications (1)

Publication Number Publication Date
JP2008056542A true JP2008056542A (en) 2008-03-13

Family

ID=39239726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237084A Pending JP2008056542A (en) 2006-09-01 2006-09-01 Rotary cutting tool for processing glass

Country Status (1)

Country Link
JP (1) JP2008056542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057011B1 (en) * 2008-11-11 2011-08-17 (주)에이.티.아이 Punching hole chamfering tool of aluminum extrusion material for building exterior
WO2022051108A1 (en) * 2020-09-04 2022-03-10 Corning Incorporated Apparatus and method for cutting hole in glass laminate substrate
WO2023170985A1 (en) * 2022-03-07 2023-09-14 オーエスジー株式会社 Ball end mill
WO2023170986A1 (en) * 2022-03-07 2023-09-14 オーエスジー株式会社 Ball end mill

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057011B1 (en) * 2008-11-11 2011-08-17 (주)에이.티.아이 Punching hole chamfering tool of aluminum extrusion material for building exterior
WO2022051108A1 (en) * 2020-09-04 2022-03-10 Corning Incorporated Apparatus and method for cutting hole in glass laminate substrate
WO2023170985A1 (en) * 2022-03-07 2023-09-14 オーエスジー株式会社 Ball end mill
WO2023170986A1 (en) * 2022-03-07 2023-09-14 オーエスジー株式会社 Ball end mill

Similar Documents

Publication Publication Date Title
JP5764181B2 (en) Hard film coated cutting tool
TWI436840B (en) Ball cutter
JPWO2005102572A1 (en) Ball end mill
JP5842708B2 (en) Ball end mill
JP6641598B2 (en) Cutting tools
JP2006212744A (en) End mill
CN110587836B (en) Micro-milling processing method for sapphire surface
JPWO2019054289A1 (en) Small diameter drill and manufacturing method of small diameter drill
WO2017043129A1 (en) Drill
JP2008056542A (en) Rotary cutting tool for processing glass
JP2005205593A (en) Ball nose end mill
JP2007296588A (en) High hardness end mill
JP2008110437A (en) Ball end mill made from cubic boron nitride
JP6179165B2 (en) Radius end mill
JPWO2019244711A1 (en) End mill
EP3848173B1 (en) Rotary cutting tool
JP2008264965A (en) Grinding forming method and rotary cutting tool
JP2007210070A (en) Turning tool and method of machining metal member using the tool
JP2018126814A (en) Cutting blade, cutting tool, repair method for slab, and method of manufacturing cast piece
JP6930404B2 (en) End mill
JP2004283965A (en) End mill
JP4448386B2 (en) Small-diameter ball end mill
WO2021255919A1 (en) End mill
JP2011110692A (en) Cemented carbide-made end mill
JP5177982B2 (en) End mill

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080523

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080526