JP6418829B2 - Conductive polymer solution and conductive coating film - Google Patents

Conductive polymer solution and conductive coating film Download PDF

Info

Publication number
JP6418829B2
JP6418829B2 JP2014150582A JP2014150582A JP6418829B2 JP 6418829 B2 JP6418829 B2 JP 6418829B2 JP 2014150582 A JP2014150582 A JP 2014150582A JP 2014150582 A JP2014150582 A JP 2014150582A JP 6418829 B2 JP6418829 B2 JP 6418829B2
Authority
JP
Japan
Prior art keywords
conductive polymer
group
poly
polymer solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014150582A
Other languages
Japanese (ja)
Other versions
JP2016023287A (en
Inventor
総 松林
総 松林
孝則 鈴木
孝則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Nissin Chemical Industry Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Nissin Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Nissin Chemical Industry Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2014150582A priority Critical patent/JP6418829B2/en
Publication of JP2016023287A publication Critical patent/JP2016023287A/en
Application granted granted Critical
Publication of JP6418829B2 publication Critical patent/JP6418829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、導電性を有する粘着層を形成可能な導電性ポリマー溶液、および当該溶液を基体上に供給し形成して成る導電性塗膜に関する。   The present invention relates to a conductive polymer solution capable of forming an adhesive layer having conductivity, and a conductive coating film formed by supplying the solution onto a substrate.

一般的に、主鎖がπ電子を含む共役系で構成されるπ共役系導電性高分子は、電解重合法あるいは化学酸化重合法により合成される。電解重合法では、ドーパントとなる電解質と、π共役系導電性高分子を形成するための前駆体モノマーとの混合溶液を用意し、当該溶液中に電極を配置すると共に予め形成した電極材料などの支持体を浸漬しておき、電極間に電圧を印加することによって、π共役系導電性高分子が当該支持体表面にフィルム状に形成される。このように、電解重合法は、電解重合用の装置を必要とし、かつバッチ生産となることから、大量生産性に劣る。一方、化学酸化重合法では、上記のような制約は無く、π共役系導電性高分子を形成する前駆体モノマーに酸化剤と酸化重合触媒とを添加し、溶液中で大量のπ共役系導電性高分子を製造することができる。   In general, a π-conjugated conductive polymer whose main chain is composed of a conjugated system containing π electrons is synthesized by an electrolytic polymerization method or a chemical oxidative polymerization method. In the electropolymerization method, a mixed solution of an electrolyte serving as a dopant and a precursor monomer for forming a π-conjugated conductive polymer is prepared, an electrode is placed in the solution, and a previously formed electrode material or the like is prepared. By immersing the support and applying a voltage between the electrodes, a π-conjugated conductive polymer is formed on the surface of the support in the form of a film. As described above, the electrolytic polymerization method is inferior in mass productivity because it requires an apparatus for electrolytic polymerization and batch production. On the other hand, in the chemical oxidative polymerization method, there is no restriction as described above, and an oxidant and an oxidation polymerization catalyst are added to the precursor monomer that forms the π-conjugated conductive polymer, and a large amount of π-conjugated conductive in solution. Can be produced.

しかし、化学酸化重合法では、π共役系導電性高分子を構成する主鎖の共役系の成長に伴い、溶媒に対する溶解性が乏しくなるため、π共役系導電性高分子は、溶媒に不溶の固体粉末で得られる。このため、塗布等の手法によって、プラスチック等の各種基材上にπ共役系導電性高分子の膜を均一な厚みにて形成することは難しい。かかる理由から、π共役系導電性高分子に官能基を導入して溶媒に可溶にする方法、バインダ樹脂にπ共役系導電性高分子を分散させて溶媒に可溶化する方法、π共役系導電性高分子にアニオン基含有高分子酸を添加して溶媒に可溶化する方法などが試みられている。   However, in the chemical oxidative polymerization method, the solubility in a solvent becomes poor with the growth of the conjugated system of the main chain constituting the π-conjugated conductive polymer, so the π-conjugated conductive polymer is insoluble in the solvent. Obtained as a solid powder. For this reason, it is difficult to form a π-conjugated conductive polymer film with a uniform thickness on various substrates such as plastics by a technique such as coating. For this reason, a method of introducing a functional group into a π-conjugated conductive polymer to make it soluble in a solvent, a method of dispersing a π-conjugated conductive polymer in a binder resin and making it soluble in a solvent, a π-conjugated system An attempt has been made to add an anionic group-containing polymer acid to a conductive polymer and solubilize it in a solvent.

例えば、π共役系導電性高分子の水への溶解性を向上させるため、分子量2,000〜500,000のアニオン基含有高分子酸としてのポリスチレンスルホン酸の存在下にて、酸化剤を用いて、3,4−ジアルコキシチオフェンを化学酸化重合し、ポリ(3,4−ジアルコキシチオフェン)水溶液を製造する方法が知られている(例えば、特許文献1を参照)。また、ポリアクリル酸の存在下で、π共役系導電性高分子を形成するための前駆体モノマーを化学酸化重合し、π共役系導電性高分子コロイド水溶液を製造する方法も知られている(例えば、特許文献2を参照)。   For example, in order to improve the solubility of π-conjugated conductive polymer in water, an oxidizing agent is used in the presence of polystyrene sulfonic acid as an anion group-containing polymer acid having a molecular weight of 2,000 to 500,000. A method for producing a poly (3,4-dialkoxythiophene) aqueous solution by chemical oxidative polymerization of 3,4-dialkoxythiophene is known (see, for example, Patent Document 1). Also known is a method of producing a π-conjugated conductive polymer colloid aqueous solution by chemical oxidative polymerization of a precursor monomer for forming a π-conjugated conductive polymer in the presence of polyacrylic acid ( For example, see Patent Document 2).

さらに、有機溶剤に可溶若しくは分散して有機樹脂と混合可能な導電性溶液を製造する方法も提案されている。その一例として、ポリアニリンの有機溶剤溶液およびその製造方法が知られている(例えば、特許文献3を参照)。また、ポリアニオンと真性導電性高分子とを含む水溶液から有機溶剤への転相による溶媒置換法も知られている(例えば、特許文献4、特許文献5、特許文献6および特許文献7を参照)。また、凍結乾燥後の真性導電性高分子を有機溶剤に溶解させる方法も知られている(例えば、特許文献8を参照)。しかし、これらの方法では、ポリアニリンの例のように他の有機樹脂との混合が困難であり、加えて、多量の水を含む溶剤系に限られるという問題がある。水が少量若しくは実質的に水を含まない場合であっても、上記文献(例えば、特許文献4、特許文献5、特許文献6および特許文献7を参照)のように、アミン化合物を用いることに起因して、樹脂と混合した場合の経時的な色調劣化、導電性高分子へのポリアニオンのドープがアミンによって徐々に引き抜かれて導電性が経時的に低下するという問題がある。さらには、付加硬化型シリコーン樹脂に導電性高分子を混合した場合には、アミンによる硬化阻害が生じ、シリコーン樹脂の硬化が不十分であるという欠点もある。一方、縮合硬化型シリコーン樹脂に導電性高分子を混合した場合には、アミンによるシラノールやアルコキシシリル基の縮合に関与するといった現象が生じ、保存特性が低下するという欠点がある。   Furthermore, a method for producing a conductive solution that is soluble or dispersed in an organic solvent and can be mixed with an organic resin has been proposed. As an example, an organic solvent solution of polyaniline and a method for producing the same are known (for example, see Patent Document 3). In addition, a solvent replacement method by phase inversion from an aqueous solution containing a polyanion and an intrinsic conductive polymer to an organic solvent is also known (see, for example, Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7). . In addition, a method of dissolving an intrinsic conductive polymer after lyophilization in an organic solvent is also known (see, for example, Patent Document 8). However, in these methods, there is a problem that mixing with other organic resins is difficult as in the case of polyaniline, and in addition, the solvent system is limited to a large amount of water. Even when the amount of water is small or substantially free of water, an amine compound is used as in the above-mentioned documents (see, for example, Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7). As a result, there is a problem that the color tone deteriorates with time when mixed with the resin, and the polyanion dope into the conductive polymer is gradually pulled out by the amine and the conductivity decreases with time. Furthermore, when a conductive polymer is mixed with an addition-curable silicone resin, there is a drawback that curing is inhibited by amines and the silicone resin is not sufficiently cured. On the other hand, when a conductive polymer is mixed with a condensation curable silicone resin, there is a drawback in that a phenomenon such as participation in the condensation of silanol or alkoxysilyl group by amine occurs and storage characteristics are deteriorated.

従来から、シリコーン業界においては、剥離用途あるいは粘着剤用途で、絶縁性の高いシリコーン組成物に対して帯電防止機能を付与したいという要望が存在する。この要望に応えるべく、従来から、カーボン粉末、金属粉末、イオン性導電物質をシリコーン組成物に添加する方法が試みられている。しかし、このような方法では、シリコーン樹脂の透明性、剥離性能、粘着性能、導電性の耐湿度依存性などの多くの機能を満足させるに至っていないのが現状である。なお、導電性高分子をエマルジョンの形態でシリコーン樹脂エマルジョンに混合する技術が知られているが(例えば、特許文献9および特許文献10を参照)、この技術の製造物は、水分散体であるため、実用性に限界があるとともに水による機器の腐食、密着性の不足などの欠点がある。   Conventionally, in the silicone industry, there is a demand for imparting an antistatic function to a silicone composition having a high insulating property for a peeling application or an adhesive application. In order to meet this demand, conventionally, a method of adding carbon powder, metal powder, and ionic conductive material to a silicone composition has been attempted. However, in such a method, at present, many functions such as transparency, peeling performance, adhesion performance, and electrical conductivity humidity resistance of the silicone resin have not been satisfied. In addition, although the technique which mixes a conductive polymer with a silicone resin emulsion in the form of an emulsion is known (for example, refer patent document 9 and patent document 10), the product of this technique is an aqueous dispersion. For this reason, there is a limit to practicality and there are drawbacks such as corrosion of equipment due to water and insufficient adhesion.

特開平7−090060号公報JP-A-7-090060 特開平7−165892号公報Japanese Patent Laid-Open No. 7-165892 国際公開WO2005/052058International Publication WO2005 / 052058 特開2006−249303号公報JP 2006-249303 A 特開2007−254730号公報JP 2007-254730 A 特開2008−045061号公報JP 2008-050661 A 特開2008−045116号公報JP 2008-045116 A 特開2011−032382号公報JP 2011-032382 A 特開2002−241613号公報JP 2002-241613 A 特開2003−251756号公報JP 2003-251756 A

上述した従来の導電性溶液は、アミン系化合物を用い、導電性高分子を水相から有機相に転相すると、アミン系化合物に由来する上記欠点を克服することはできない。また、水分散体の形態は、実用性が低く、水による腐食も起き易いという欠点がある。このような欠点を克服し、シリコーン粘着剤に導電性を付与したいという強い要望がある。   The conventional conductive solution described above cannot overcome the above-described drawbacks derived from amine compounds when an amine compound is used and the conductive polymer is phase-inverted from an aqueous phase to an organic phase. In addition, the form of the water dispersion has the disadvantages that it has low practicality and is easily corroded by water. There is a strong demand to overcome such drawbacks and to impart conductivity to the silicone adhesive.

本発明は、アミン系化合物由来の問題および水由来の問題を低減でき、導電性を有するシリコーン粘着層を形成可能な導電性ポリマー溶液およびそれを基体上に供給し形成して成る導電性塗膜を提供することを目的とする。   The present invention relates to a conductive polymer solution capable of reducing problems derived from amine compounds and water, and capable of forming a conductive silicone adhesive layer, and a conductive coating film formed by supplying the same onto a substrate. The purpose is to provide.

上記目的を達成するために、本発明者らは、アミン系化合物を使用せず、オキシラン系あるいはオキセタン系の化合物を使用して水相から有機相への転相を可能にする全く新しい技術を開発し、シリコーン粘着剤と相溶性のある導電性ポリマー溶液を作製し、本発明の完成に至った。具体的な課題解決手段は、以下のとおりである。   In order to achieve the above object, the present inventors have developed a completely new technology that enables phase inversion from an aqueous phase to an organic phase by using an oxirane or oxetane compound without using an amine compound. The present inventors have developed and produced a conductive polymer solution compatible with the silicone pressure-sensitive adhesive, and completed the present invention. Specific problem solving means are as follows.

上記目的を達成するための導電性ポリマー溶液は、(a)π共役系導電性高分子と、(b)上記(a)π共役系導電性高分子にドープしたポリアニオンと、(c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物と、(d)シリコーン粘着剤と、(e)有機溶剤とを含む。   A conductive polymer solution for achieving the above object includes (a) a π-conjugated conductive polymer, (b) the polyanion doped in the (a) π-conjugated conductive polymer, and (c) the ( b) a reaction product of an anion other than that required for doping in the polyanion, an oxirane group and / or oxetane group-containing organic compound, (d) a silicone pressure-sensitive adhesive, and (e) an organic solvent.

別の実施の形態にかかる導電性ポリマー溶液は、(d)シリコーン粘着剤を付加硬化型のものとする。   In the conductive polymer solution according to another embodiment, (d) a silicone pressure-sensitive adhesive is of an addition curing type.

別の実施の形態にかかる導電性ポリマー溶液は、(d)シリコーン粘着剤を電子線硬化型のものとする。   In the conductive polymer solution according to another embodiment, (d) the silicone adhesive is an electron beam curable type.

別の実施の形態にかかる導電性ポリマー溶液は、(a)π共役系導電性高分子を、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの内の2以上の共重合体からなる群から選択される少なくとも1種以上の繰り返し単位を有するものとする。   The conductive polymer solution according to another embodiment comprises (a) a π-conjugated conductive polymer, polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes. And at least one repeating unit selected from the group consisting of two or more of these copolymers.

別の実施の形態にかかる導電性ポリマー溶液は、(a)π共役系導電性高分子を、ポリ(3,4−エチレンジオキシチオフェン)またはポリピロールとする。   In the conductive polymer solution according to another embodiment, (a) the π-conjugated conductive polymer is poly (3,4-ethylenedioxythiophene) or polypyrrole.

別の実施の形態にかかる導電性ポリマー溶液は、(b)ポリアニオンを、スルホン酸基、リン酸基およびカルボキシル基から選択される1種若しくはそれ以上の混合物とする。   In the conductive polymer solution according to another embodiment, (b) the polyanion is a mixture of one or more selected from a sulfonic acid group, a phosphoric acid group, and a carboxyl group.

別の実施の形態にかかる導電性ポリマー溶液は、(b)ポリアニオンを、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸アルキレンスルホン酸、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)またはそれらの1種以上を共重合構成体として含むものとする。   The conductive polymer solution according to another embodiment comprises (b) a polyanion, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyacrylic acid alkylene sulfonic acid, poly (2-acrylamido-2-methyl-1-propanesulfonic acid). Or 1 type or more of them shall be included as a copolymerization structure.

本発明の実施の形態にかかる導電性塗膜は、上記いずれかの導電性ポリマー溶液を基体上に供給して硬化させてなる導電性塗膜である。   The conductive coating film according to the embodiment of the present invention is a conductive coating film obtained by supplying any one of the above conductive polymer solutions onto a substrate and curing the solution.

本発明によれば、アミン系化合物由来の問題および水由来の問題を低減でき、導電性を有するシリコーン粘着層を形成可能な導電性ポリマー溶液およびそれを基体上に供給し形成して成る導電性塗膜を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the problem derived from an amine compound and the problem derived from water can be reduced, and the electroconductive polymer solution which can form the silicone adhesive layer which has electroconductivity, and the electroconductivity formed by supplying it on a base | substrate and forming A coating film can be provided.

以下、本発明に係る導電性ポリマー溶液および導電性塗膜の各実施の形態について説明する。   Hereinafter, each embodiment of the conductive polymer solution and the conductive coating film according to the present invention will be described.

<A 導電性ポリマー溶液の実施の形態>
1.導電性ポリマー溶液
本発明の実施の形態に係る導電性ポリマー溶液は、(a)π共役系導電性高分子と、(b)上記(a)π共役系導電性高分子にドープしたポリアニオンと、(c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物と、(d)シリコーン粘着剤と、(e)有機溶剤とを含む。本願で用いられるポリアニオンをドーパントとしている真性導電性高分子は、おおよそ数十ナノメータの粒子径を持つ微粒子から形成される。かかる微粒子は、界面活性剤の作用をも持つポリアニオンの存在によって可視光領域において透明であって、溶媒中に微粒子が溶解しているように見える。実際には、当該微粒子は溶媒中に分散しているが、本願では、この状態を「分散可溶」の状態と称している。この場合の溶媒は、有機溶剤であるが、有機溶剤のみに限定されず、有機溶剤を主とする限り、少量の水を含んでいても良い。ここで、「有機溶剤を主とする」とは、溶媒中に占める有機溶剤が質量比にて50%を超えることを意味する。特に、溶媒は、重量比にて有機溶剤:水=90:10〜100:0の範囲であるのが好ましい。
<A Embodiment of Conductive Polymer Solution>
1. Conductive polymer solution The conductive polymer solution according to the embodiment of the present invention includes (a) a π-conjugated conductive polymer, (b) the polyanion doped in the (a) π-conjugated conductive polymer, (C) (b) a reaction product of an anion other than that required for doping in the polyanion and an oxirane group and / or oxetane group-containing organic compound, (d) a silicone adhesive, and (e) an organic solvent. including. The intrinsic conductive polymer having a polyanion as a dopant used in the present application is formed from fine particles having a particle size of approximately several tens of nanometers. Such fine particles are transparent in the visible light region due to the presence of a polyanion that also acts as a surfactant, and the fine particles appear to be dissolved in the solvent. Actually, the fine particles are dispersed in a solvent. In the present application, this state is referred to as a “dispersion-soluble” state. The solvent in this case is an organic solvent, but is not limited to only an organic solvent, and may contain a small amount of water as long as the organic solvent is mainly used. Here, “mainly organic solvent” means that the organic solvent in the solvent exceeds 50% by mass. In particular, the solvent is preferably in the range of organic solvent: water = 90: 10 to 100: 0 by weight ratio.

1.1 製造方法
導電性ポリマー溶液を構成する(a)π共役系導電性高分子にドープしたポリアニオンと、(c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物を含み、まだシリコーン粘着剤を含まない粘着剤未含有組成物は、一例として、以下の方法によって製造することができる。
(1)導電性高分子/ポリアニオン錯体水分散体の溶液からの製造方法
導電性高分子/ポリアニオン錯体水分散体は、導電性高分子用のモノマーとドーパントとが共存した水溶液または水分散体の状態に、酸化剤の存在下で重合を行う。ただし、このようなモノマーからの重合のみならず、市販の導電性高分子/ドーパント水分散体を用いても良い。市販の導電性高分子/ドーパント水分散体としては、例えば、Heraeus社のPEDOT/PSS水分散体(商品名: Clevios)、アグファ社のPEDOT/PSS水分散体(商品名: Orgacon)などを挙げることができる。
1.1 Production Method (a) A polyanion doped in a π-conjugated conductive polymer that constitutes a conductive polymer solution, (c) an anion other than that required for doping in the (b) polyanion, an oxirane group, and A pressure-sensitive adhesive-free composition containing a reaction product with an oxetane group-containing organic compound and not yet containing a silicone pressure-sensitive adhesive can be produced, for example, by the following method.
(1) Method for producing conductive polymer / polyanion complex aqueous dispersion from solution The conductive polymer / polyanion complex aqueous dispersion is an aqueous solution or aqueous dispersion in which a monomer for a conductive polymer and a dopant coexist. Polymerization is carried out in the presence of an oxidizing agent. However, not only polymerization from such a monomer but also a commercially available conductive polymer / dopant aqueous dispersion may be used. Examples of commercially available conductive polymer / dopant aqueous dispersions include Heraeus PEDOT / PSS aqueous dispersion (trade name: Clevios), Agfa PEDOT / PSS aqueous dispersion (trade name: Orgacon), and the like. be able to.

上記粘着剤未含有組成物は、上述の水分散体に、オキシラン基若しくはオキセタン基含有化合物を溶剤と共に添加後、アニオンとオキシラン基若しくはオキセタン基とを反応させて、その後に反応液を濃縮、濾別あるいは乾固して得られる。その後、好適には、得られた濃縮物あるいは固体を、有機溶剤を主とする溶媒中に可溶若しくは分散させて、塗料の形態で使用する。また、上記水分散体に、オキシラン基若しくはオキセタン基含有化合物を溶剤と共に添加後、アニオンとオキシラン基若しくはオキセタン基とを反応させている間若しくは反応後に、水に不溶の有機溶剤を加えて、水不溶の溶剤相に粘着剤未含有組成物を転相させ、必要に応じて脱水などの工程を経た後に、粘着剤未含有組成物を、有機溶剤を主とする溶媒中に可溶若しくは分散させても良い。   The pressure-sensitive adhesive-free composition is prepared by adding an oxirane group or oxetane group-containing compound together with a solvent to the aqueous dispersion, reacting an anion with an oxirane group or oxetane group, and then concentrating and filtering the reaction solution. Obtained separately or by drying. Thereafter, the obtained concentrate or solid is preferably dissolved or dispersed in a solvent mainly composed of an organic solvent and used in the form of a paint. Further, after adding the oxirane group or oxetane group-containing compound together with the solvent to the aqueous dispersion, an organic solvent insoluble in water is added during or after the reaction between the anion and the oxirane group or oxetane group. The adhesive-free composition is phase-inverted into an insoluble solvent phase, and after steps such as dehydration as necessary, the adhesive-free composition is dissolved or dispersed in a solvent mainly composed of an organic solvent. May be.

(2)凍結乾燥された導電性高分子/ポリアニオン錯体固形物からの製造方法
既に固体となっているπ共役系導電性高分子にドープしたポリアニオンの状態の導電性組成物に、水および/またはオキシラン基若しくはオキセタン基含有化合物が溶解する溶剤を適量添加後、アニオンとオキシラン基若しくはオキセタン基とを反応させる。その後、反応液を濃縮、濾別あるいは乾固して、粘着剤未含有組成物を得る。その後、好適には、得られた濃縮物あるいは固体を、有機溶剤を主とする溶媒中に可溶若しくは分散させて、塗料の形態で使用する。また、上記製造において、アニオンとオキシラン基若しくはオキセタン基とを反応させた後、水に不溶の有機溶剤を加えて、水不溶の溶剤相に粘着剤未含有組成物を転相させ、必要に応じて脱水などの工程を経た後に、粘着剤未含有組成物を、有機溶剤を主とする溶媒中に可溶若しくは分散させても良い。このように、(2)の方法では、凍結乾燥された粘着剤未含有組成物を原料として用いているので、特に、濃縮する工程の時間を短縮できる。
(2) Production Method from Lyophilized Conductive Polymer / Polyanion Complex Solid Material A conductive composition in a polyanion state doped with a π-conjugated system conductive polymer that has already been solid, and water and / or After adding an appropriate amount of a solvent in which the oxirane group or oxetane group-containing compound is dissolved, the anion is reacted with the oxirane group or oxetane group. Thereafter, the reaction solution is concentrated, filtered or dried to obtain an adhesive-free composition. Thereafter, the obtained concentrate or solid is preferably dissolved or dispersed in a solvent mainly composed of an organic solvent and used in the form of a paint. Also, in the above production, after reacting an anion with an oxirane group or oxetane group, an organic solvent insoluble in water is added, and the adhesive-free composition is phase-inverted to the water-insoluble solvent phase, and if necessary After the steps such as dehydration, the pressure-sensitive adhesive-free composition may be dissolved or dispersed in a solvent mainly composed of an organic solvent. As described above, in the method (2), since the freeze-dried pressure-sensitive adhesive-free composition is used as a raw material, the time for the concentration step can be shortened.

1.2 導電性ポリマー溶液の原料
(a)π共役系導電性高分子
π共役系導電性高分子は、主鎖がπ共役系で構成されている有機高分子であれば、何らの限定もなく用いることができる。例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの内の2以上の共重合体を好適に挙げることができる。重合の容易性、空気中における安定性の観点では、特に、ポリピロール類、ポリチオフェン類あるいはポリアニリン類を好適に用いることができる。π共役系導電性高分子は、本発明においては、無置換のままでも、十分に高い導電性およびバインダへの相溶性を示すが、導電性、バインダへの分散性若しくは溶解性をより高めるためには、アルキル基、アルケニル基、カルボキシル基、スルホ基、アルコキシル基、ヒドロキシル基、シアノ基などの官能基が導入されても良い。
1.2 Raw Material for Conductive Polymer Solution (a) π-Conjugated Conductive Polymer π-conjugated conductive polymer is not limited as long as the main chain is an organic polymer composed of π-conjugated system. Can be used. For example, polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers of two or more thereof can be preferably exemplified. In view of ease of polymerization and stability in air, polypyrroles, polythiophenes or polyanilines can be particularly preferably used. In the present invention, the π-conjugated conductive polymer exhibits sufficiently high conductivity and compatibility with the binder even if it is not substituted, but in order to further improve conductivity, dispersibility or solubility in the binder. A functional group such as an alkyl group, an alkenyl group, a carboxyl group, a sulfo group, an alkoxyl group, a hydroxyl group, or a cyano group may be introduced.

上記のπ共役系導電性高分子の好適な例としては、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。   Preferred examples of the π-conjugated conductive polymer include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), and poly (3-n-propylpyrrole). ), Poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4 Dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), Poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly ( -Hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), polythiophene, poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butyl Thiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecylthiophene) , Poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene) , Poly (3,4-dibutylthiophene), poly (3-hydroxythiophene), Poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3-octyloxythiophene) , Poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxythiophene), poly ( 3,4-diethoxythiophene), poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxythiophene), poly (3,4-diheptyl) Oxythiophene), poly (3,4-dioctyloxythiophene), poly (3,4- Decyloxythiophene), poly (3,4-didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4-butenedioxy) Thiophene), poly (3-methyl-4-methoxythiophene), poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene), poly (3-methyl-4-carboxythiophene), poly (3 -Methyl-4-carboxyethylthiophene), poly (3-methyl-4-carboxybutylthiophene), polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-anilinesulfonic acid), And poly (3-aniline sulfonic acid).

上記のπ共役系導電性高分子の例において、抵抗値あるいは反応性を考慮すると、ポリピロール、ポリチオフェン、ポリ(N−メチルピロール)、ポリ(3−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)から選択される1種若しくは2種以上からなる共重合体を、特に好適に用いることができる。高導電性および高耐熱性の面では、さらに、ポリピロール、ポリ(3,4−エチレンジオキシチオフェン)を好適に用いることができる。また、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)のようなアルキル置換化合物は、有機溶剤を主とする溶媒への溶解性、疎水性樹脂を添加したときの相溶性および分散性を向上させるために、より好適に用いることができる。アルキル基の中でも、メチル基は、導電性に悪影響を与えることが少ないので、より好ましい。   In the example of the π-conjugated conductive polymer, considering resistance value or reactivity, polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methoxythiophene), poly (3,4-ethylenediene) A copolymer composed of one or more selected from oxythiophene) can be used particularly preferably. In terms of high conductivity and high heat resistance, polypyrrole and poly (3,4-ethylenedioxythiophene) can be preferably used. In addition, alkyl-substituted compounds such as poly (N-methylpyrrole) and poly (3-methylthiophene) are soluble in solvents mainly composed of organic solvents, compatible and dispersible when a hydrophobic resin is added. In order to improve this, it can use more suitably. Among alkyl groups, a methyl group is more preferable because it hardly affects the conductivity.

(b)ポリアニオン
ポリアニオンは、アニオン性化合物であれば、特に制約無く用いることができる。アニオン性化合物とは、分子中に、(a)π共役系導電性高分子への化学酸化ドーピングが起こりうるアニオン基を有する化合物である。アニオン基としては、製造の容易さおよび高い安定性の観点から、硫酸エステル基、リン酸エステル基、リン酸基、カルボキシル基、スルホン基、などが好ましい。これらのアニオン基の内、(a)π共役系導電性高分子へのドープ効果に優れる理由から、スルホン基、硫酸エステル基、カルボキシル基がより好ましい。
(B) Polyanion The polyanion can be used without particular limitation as long as it is an anionic compound. An anionic compound is a compound having in the molecule an anionic group capable of causing chemical oxidation doping to the (a) π-conjugated conductive polymer. As the anion group, a sulfate ester group, a phosphate ester group, a phosphate group, a carboxyl group, a sulfone group, and the like are preferable from the viewpoint of ease of production and high stability. Among these anionic groups, (a) a sulfone group, a sulfate ester group, and a carboxyl group are more preferable because of its excellent doping effect on the π-conjugated conductive polymer.

ポリアニオンとしては、例えば、アニオン基を有さないポリマーをスルホ化剤によりスルホ化してポリマー内にアニオン基を導入したポリマーの他、アニオン基含有重合性モノマーを重合して得られたポリマーを挙げることができる。通常、ポリアニオンは、製造の容易さの観点から、好ましくは、アニオン基含有重合性モノマーを重合して得る。かかる製造方法としては、例えば、溶媒中、アニオン基含有重合性モノマーを、酸化剤および/または重合触媒の存在下、酸化重合またはラジカル重合させて得る方法を例示できる。より具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保持し、そこに、予め溶媒に所定量の酸化剤および/または重合触媒を溶解しておいた溶液を添加して、所定時間で反応させる。当該反応により得られたポリマーは、触媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させることもできる。アニオン基含有重合性モノマーの重合に際して使用する酸化剤および/または酸化触媒、溶媒は、(a)π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。   Examples of the polyanion include a polymer obtained by polymerizing an anion group-containing polymerizable monomer in addition to a polymer in which an anion group is introduced into a polymer by sulfonating a polymer having no anion group with a sulfonating agent. Can do. Usually, the polyanion is preferably obtained by polymerizing an anion group-containing polymerizable monomer from the viewpoint of ease of production. Examples of the production method include a method obtained by subjecting an anionic group-containing polymerizable monomer to oxidative polymerization or radical polymerization in a solvent in the presence of an oxidizing agent and / or a polymerization catalyst. More specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent and maintained at a constant temperature, and a predetermined amount of an oxidizing agent and / or a polymerization catalyst is previously dissolved in the solvent. The solution was added and allowed to react for a predetermined time. The polymer obtained by the reaction is adjusted to a certain concentration by a catalyst. In this production method, a polymerizable monomer having no anionic group can be copolymerized with the anionic group-containing polymerizable monomer. The oxidizing agent and / or oxidation catalyst and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer (a) forming the π-conjugated conductive polymer. .

アニオン基含有重合性モノマーは、分子内にアニオン基と重合可能な官能基を有するモノマーであり、具体的には、ビニルスルホン酸及びその塩類、アリルスルホン酸及びその塩類、メタリルスルホン酸及びその塩類、スチレンスルホン酸及びその塩類、メタリルオキシベンゼンスルホン酸及びその塩類、アリルオキシベンゼンスルホン酸及びその塩類、α−メチルスチレンスルホン酸及びその塩類、アクリルアミド−t−ブチルスルホン酸及びその塩類、2−アクリルアミド−2−メチルプロパンスルホン酸及びその塩類、シクロブテン−3−スルホン酸及びその塩類、イソプレンスルホン酸及びその塩類、1,3−ブタジエン−1−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−2−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−4−スルホン酸及びその塩類、アクリル酸エチルスルホン酸(CHCH−COO−(CH−SOH)及びその塩類、アクリル酸プロピルスルホン酸(CHCH−COO−(CH−SOH)及びその塩類、アクリル酸−t−ブチルスルホン酸(CHCH−COO−C(CHCH−SOH)及びその塩類、アクリル酸−n−ブチルスルホン酸(CHCH−COO−(CH−SOH)及びその塩類、アリル酸エチルスルホン酸(CHCHCH−COO−(CH−SOH)及びその塩類、アリル酸−t−ブチルスルホン酸(CHCHCH−COO−C(CHCH−SOH)及びその塩類、4−ペンテン酸エチルスルホン酸(CHCH(CH−COO−(CH−SOH)及びその塩類、4−ペンテン酸プロピルスルホン酸(CHCH(CH−COO−(CH−SOH)及びその塩類、4−ペンテン酸−n−ブチルスルホン酸(CHCH(CH−COO−(CH−SOH)及びその塩類、4−ペンテン酸−t−ブチルスルホン酸(CHCH(CH−COO−C(CHCH−SOH)及びその塩類、4−ペンテン酸フェニレンスルホン酸(CHCH(CH−COO−C−SOH)及びその塩類、4−ペンテン酸ナフタレンスルホン酸(CHCH(CH−COO−C10−SOH)及びその塩類、メタクリル酸エチルスルホン酸(CHC(CH)−COO−(CH−SOH)及びその塩類、メタクリル酸プロピルスルホン酸(CHC(CH)−COO−(CH−SOH)及びその塩類、メタクリル酸−t−ブチルスルホン酸(CHC(CH)−COO−C(CHCH−SOH)及びその塩類、メタクリル酸−n−ブチルスルホン酸(CHC(CH)−COO−(CH−SOH)及びその塩類、メタクリル酸フェニレンスルホン酸(CHC(CH)−COO−C−SOH)及びその塩類、メタクリル酸ナフタレンスルホン酸(CHC(CH)−COO−C10−SOH)及びその塩類等が挙げられる。また、これらを2種以上含む共重合体であってもよい。 The anionic group-containing polymerizable monomer is a monomer having a functional group capable of polymerizing with an anionic group in the molecule. Specifically, vinylsulfonic acid and its salts, allylsulfonic acid and its salts, methallylsulfonic acid and its Salts, styrenesulfonic acid and its salts, methallyloxybenzenesulfonic acid and its salts, allyloxybenzenesulfonic acid and its salts, α-methylstyrenesulfonic acid and its salts, acrylamide-t-butylsulfonic acid and its salts, 2 Acrylamide-2-methylpropanesulfonic acid and its salts, cyclobutene-3-sulfonic acid and its salts, isoprenesulfonic acid and its salts, 1,3-butadiene-1-sulfonic acid and its salts, 1-methyl-1, 3-butadiene-2-sulfonic acid and its salts, 1-methyl 1,3-butadiene-4-sulfonic acid and salts thereof, ethyl acrylate sulfonic acid (CH 2 CH-COO- (CH 2) 2 -SO 3 H) and its salts, acrylic acid propyl sulfonic acid (CH 2 CH- COO— (CH 2 ) 3 —SO 3 H) and salts thereof, acrylic acid-t-butylsulfonic acid (CH 2 CH—COO—C (CH 3 ) 2 CH 2 —SO 3 H) and salts thereof, acrylic acid -n- butyl sulfonic acid (CH 2 CH-COO- (CH 2) 4 -SO 3 H) and its salts, allyl ethyl sulfonic acid (CH 2 CHCH 2 -COO- (CH 2) 2 -SO 3 H) and its salts, allyl acid -t- butyl sulfonic acid (CH 2 CHCH 2 -COO-C (CH 3) 2 CH 2 -SO 3 H) and salts thereof, 4-pentenoic acid ethyl Sulfonic acid (CH 2 CH (CH 2) 2 -COO- (CH 2) 2 -SO 3 H) and salts thereof, 4-pentenoic acid propyl sulfonic acid (CH 2 CH (CH 2) 2 -COO- (CH 2 ) 3 -SO 3 H) and salts thereof, 4-pentenoic acid-n-butylsulfonic acid (CH 2 CH (CH 2 ) 2 —COO— (CH 2 ) 4 —SO 3 H) and salts thereof, 4-pentene acid -t- butyl sulfonic acid (CH 2 CH (CH 2) 2 -COO-C (CH 3) 2 CH 2 -SO 3 H) and salts thereof, 4-pentenoic acid phenylene sulfonic acid (CH 2 CH (CH 2 ) 2- COO—C 6 H 4 —SO 3 H) and salts thereof, 4-pentenoic acid naphthalenesulfonic acid (CH 2 CH (CH 2 ) 2 —COO—C 10 H 8 —SO 3 H) and salts thereof, Me Methacrylic acid ethyl sulfonic acid (CH 2 C (CH 3) -COO- (CH 2) 2 -SO 3 H) and salts thereof, propyl methacrylate sulfonic acid (CH 2 C (CH 3) -COO- (CH 2) 3 -SO 3 H) and its salts, methacrylic acid -t- butyl sulfonic acid (CH 2 C (CH 3) -COO-C (CH 3) 2 CH 2 -SO 3 H) and its salts, methacrylic acid -n - butyl sulfonic acid (CH 2 C (CH 3) -COO- (CH 2) 4 -SO 3 H) and its salts, methacrylic acid phenylene sulfonic acid (CH 2 C (CH 3) -COO-C 6 H 4 - SO 3 H) and its salts, methacrylic acid naphthalenesulfonic acid (CH 2 C (CH 3 ) —COO—C 10 H 8 —SO 3 H) and its salts, and the like. Moreover, the copolymer containing 2 or more types of these may be sufficient.

アニオン基を有さない重合性モノマーとしては、エチレン、プロぺン、1−ブテン、2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、スチレン、p−メチルスチレン、p−エチルスチレン、p−ブチルスチレン、2,4,6−トリメチルスチレン、p−メトキシスチレン、α−メチルスチレン、2−ビニルナフタレン、6−メチル−2−ビニルナフタレン、1−ビニルイミダゾール、ビニルピリジン、ビニルアセテート、アクリルアルデヒド、アクリルニトリル、N−ビニル−2−ピロリドン、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニルイミダゾ−ル、アクリルアミド、N,N−ジメチルアクリルアミド、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸イソオクチル、アクリル酸イソノニルブチル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸ステアリル、アクリル酸イソボニル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸エチルカルビトール、アクリル酸フェノキシエチル、アクリル酸ヒドロキシエチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸メトキシブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、アクリロイルモルホリン、ビニルアミン、N,N−ジメチルビニルアミン、N,N−ジエチルビニルアミン、N,N−ジブチルビニルアミン、N,N−ジ−t−ブチルビニルアミン、N,N−ジフェニルビニルアミン、N−ビニルカルバゾール、ビニルアルコール、塩化ビニル、フッ化ビニル、メチルビニルエーテル、エチルビニルエーテル、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、2−メチルシクロヘキセン、ビニルフェノール、1,3−ブタジエン、1−メチル−1,3−ブタジエン、2−メチル−1,3−ブタジエン、1,4−ジメチル−1,3−ブタジエン、1,2−ジメチル−1,3−ブタジエン、1,3−ジメチル−1,3−ブタジエン、1−オクチル−1,3−ブタジエン、2−オクチル−1,3−ブタジエン、1−フェニル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1−ヒドロキシ−1,3−ブタジエン、2−ヒドロキシ−1,3−ブタジエン等が挙げられる。   Examples of the polymerizable monomer having no anionic group include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, styrene, p-methylstyrene, p. -Ethylstyrene, p-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, α-methylstyrene, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, 1-vinylimidazole, vinylpyridine, Vinyl acetate, acrylaldehyde, acrylonitrile, N-vinyl-2-pyrrolidone, N-vinylacetamide, N-vinylformamide, N-vinylimidazole, acrylamide, N, N-dimethylacrylamide, acrylic acid, methyl acrylate, Ethyl acrylate, propyl acrylate, acrylic acid -Butyl, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, isononyl butyl acrylate, lauryl acrylate, allyl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, benzyl acrylate, ethyl acrylate Carbitol, phenoxyethyl acrylate, hydroxyethyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, methoxybutyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methacryl T-butyl acid, 2-ethylhexyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate, methacrylic acid Benzyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, acryloylmorpholine, vinylamine, N, N-dimethylvinylamine, N, N-diethylvinylamine, N, N-dibutylvinylamine, N, N-di -T-butylvinylamine, N, N-diphenylvinylamine, N-vinylcarbazole, vinyl alcohol, vinyl chloride, vinyl fluoride, methyl vinyl ether, ethyl vinyl ether, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, 2-methylcyclohexene, vinylphenol, 1,3-butadiene, 1-methyl-1,3-butadiene, 2-methyl-1,3-butadiene, 1,4-dimethyl-1,3-butadiene, 1,2- Dimethyl , 3-butadiene, 1,3-dimethyl-1,3-butadiene, 1-octyl-1,3-butadiene, 2-octyl-1,3-butadiene, 1-phenyl-1,3-butadiene, 2-phenyl -1,3-butadiene, 1-hydroxy-1,3-butadiene, 2-hydroxy-1,3-butadiene and the like.

こうして得られるポリアニオンの重合度は、特に限定されるものではないが、通常、モノマーの単位が10〜100,000程度であり、溶媒可溶化、分散性および導電性を良好にする観点から、50〜10,000程度とするのがより好ましい。   The degree of polymerization of the polyanion thus obtained is not particularly limited, but is usually from about 10 to 100,000 monomer units, and from the viewpoint of improving solvent solubilization, dispersibility, and conductivity. More preferably, it is about 10,000.

ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)を好適に挙げることができる。   Specific examples of the polyanion include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly (2-acrylamido-2-methyl-1-propanesulfonic acid). Can be preferably mentioned.

得られたアニオン性化合物がアニオン塩である場合には、アニオン酸に変質させるのが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法などを挙げることができる。これらの方法の中でも、作業容易性の観点から、限外ろ過法が好ましい。ただし、金属イオン濃度を低減することを要する場合には、イオン交換法を用いる。   When the obtained anionic compound is an anionic salt, it is preferable to change it to an anionic acid. Examples of the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, and an ultrafiltration method. Among these methods, the ultrafiltration method is preferable from the viewpoint of workability. However, when it is necessary to reduce the metal ion concentration, an ion exchange method is used.

(a)π共役系導電性高分子と(b)ポリアニオンとの組み合わせとしては、(a)および(b)の各グループから選択されたものを使用できるが、化学的安定性、導電性、保存安定性、入手容易性などの観点から、(a)π共役系導電性高分子の一例であるポリ(3,4−エチレンジオキシチオフェン)と、(b)ポリアニオンの一例であるポリスチレンスルホン酸との組み合わせが好ましい。ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸とは、前述のように、導電性高分子用のモノマーとドーパントが共存した水溶液または水分散液の状態で酸化剤の存在下にて重合を行い、合成しても良い。また、市販の導電性高分子/ドーパント水分散体を使用しても良い。   As a combination of (a) π-conjugated conductive polymer and (b) polyanion, those selected from each group of (a) and (b) can be used, but chemical stability, conductivity, storage From the viewpoint of stability, availability, etc., (a) poly (3,4-ethylenedioxythiophene) which is an example of a π-conjugated conductive polymer, and (b) polystyrene sulfonic acid which is an example of a polyanion The combination of is preferable. As described above, poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid are in the presence of an oxidizing agent in the state of an aqueous solution or aqueous dispersion in which a monomer for a conductive polymer and a dopant coexist. Polymerization may be performed for synthesis. Further, a commercially available conductive polymer / dopant aqueous dispersion may be used.

ポリアニオンの含有量は、好ましくはπ共役系導電性高分子1モルに対して0.1〜10モルの範囲、より好ましくは1〜7モルの範囲である。ポリアニオンの含有量を0.1モル以上とすることにより、π共役系導電性高分子へのドーピング効果を高め、導電性を高めることができる。加えて、溶媒への溶解性が高くなり、均一分散形態の導電性高分子の溶液を得やすくなる。一方、ポリアニオンの含有量を10モル以下にすると、π共役系導電性高分子の含有割合を相対的に多くすることができ、より高い導電性を発揮させることができる。   The content of the polyanion is preferably in the range of 0.1 to 10 mol, more preferably in the range of 1 to 7 mol, with respect to 1 mol of the π-conjugated conductive polymer. By setting the polyanion content to 0.1 mol or more, the doping effect on the π-conjugated conductive polymer can be enhanced, and the conductivity can be enhanced. In addition, the solubility in a solvent becomes high, and it becomes easy to obtain a solution of a conductive polymer in a uniformly dispersed form. On the other hand, when the polyanion content is 10 mol or less, the content ratio of the π-conjugated conductive polymer can be relatively increased, and higher conductivity can be exhibited.

(c)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物
ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物は、前述の(a)π共役系導電性高分子、(b)ポリアニオンに、オキシラン基および/またはオキセタン基含有有機化合物を添加して反応させることにより得られる。
(C) Reaction product of an anion other than that required for doping in the polyanion and an oxirane group and / or oxetane group-containing organic compound Anion other than that required for doping in the polyanion, and an oxirane group and / or oxetane group A reaction product with an organic compound can be obtained by adding an oxirane group and / or oxetane group-containing organic compound to the aforementioned (a) π-conjugated conductive polymer and (b) polyanion for reaction.

オキシラン基および/またはオキセタン基含有有機化合物としては、ポリアニオンのアニオン基または電子吸引基に配位あるいは結合するものであれば、特に限定されない。1分子中に1個以下のオキシラン基若しくはオキセタン基を含有する化合物を用いると、凝集やゲル化を低減できる点でより好ましい。オキシラン基および/またはオキセタン基含有有機化合物の分子量は、有機溶剤への易溶解性を考慮すると、好ましくは50〜2,000の範囲である。   The oxirane group and / or oxetane group-containing organic compound is not particularly limited as long as it is coordinated or bonded to the anion group or electron withdrawing group of the polyanion. It is more preferable to use a compound containing one or less oxirane group or oxetane group in one molecule because aggregation and gelation can be reduced. The molecular weight of the oxirane group and / or oxetane group-containing organic compound is preferably in the range of 50 to 2,000 in view of easy solubility in an organic solvent.

オキシラン基および/またはオキセタン基含有有機化合物の量は、好ましくは、π共役系導電性高分子のポリアニオン中のアニオン基あるいは電子吸引基に対して、重量比で0.1〜50であり、より好ましくは1.0〜30.0である。オキシラン基および/またはオキセタン基含有有機化合物の量を上記重量比で0.1以上とすると、オキシラン基および/またはオキセタン基含有有機化合物を、ポリアニオンのアニオン基が溶剤に溶解する程度に変成することが出来る。一方、オキシラン基および/またはオキセタン基含有有機化合物の量を上記重量比で50以下とすると、余剰のオキシラン基および/またはオキセタン基含有有機化合物が導電性高分子溶液中に析出しにくいので、得られる導電性塗膜の導電率および機械的物性の低下を防止しやすい。   The amount of the oxirane group and / or oxetane group-containing organic compound is preferably 0.1 to 50 by weight with respect to the anion group or electron withdrawing group in the polyanion of the π-conjugated conductive polymer, and more Preferably it is 1.0-30.0. When the amount of the oxirane group and / or oxetane group-containing organic compound is 0.1 or more in the above weight ratio, the oxirane group and / or oxetane group-containing organic compound is modified so that the anion group of the polyanion dissolves in the solvent. I can do it. On the other hand, if the amount of the oxirane group and / or oxetane group-containing organic compound is 50 or less in the above weight ratio, the excess oxirane group and / or oxetane group-containing organic compound is difficult to precipitate in the conductive polymer solution. It is easy to prevent a decrease in the electrical conductivity and mechanical properties of the resulting conductive coating film.

オキシラン基および/またはオキセタン基含有有機化合物としては、オキシラン基若しくはオキセタン基を分子中に有していればどのような分子構造を持つ化合物でも良い。ただし、極性の低い有機溶剤に可溶化するには、カーボン数の多い化合物が有効である。好適にはカーボン数が10以上の化合物が使用される。また、製造工程中において水を多用する場合には、加水分解や水と反応する官能基を有するアルコキシシリル基を含有する化合物は、なるべく使用しないのが好ましい。一方、凍結乾燥を経由の製造方法の場合には、アルコキシシリル基を含有する化合物もまた、その特徴を維持したまま溶剤に分散あるいは可溶するので、使用しても良い。従来から、導電性向上剤或いは架橋剤としてオキシラン基或いはオキセタン基を有する化合物を、導電性ポリマー水溶液に添加されることが行われている。それら公知の技術と本願との差異は、1)導電性高分子のドーパント兼分散剤であるポリアニオンとオキシラン基或いはオキセタン基含有化合物とを反応させた反応物を得ていること、2)水分を除去若しくは低減していること、にある。これら1)および2)の要件を達成することによって、水分の少ない状態で有機溶剤への可溶化が達成され、有機樹脂との混合も可能であるという効果を発現できる。   The oxirane group and / or oxetane group-containing organic compound may be a compound having any molecular structure as long as it has an oxirane group or oxetane group in the molecule. However, a compound having a large number of carbons is effective for solubilization in an organic solvent having a low polarity. A compound having 10 or more carbon atoms is preferably used. In addition, when water is frequently used during the production process, it is preferable to avoid using a compound containing an alkoxysilyl group having a functional group that reacts with hydrolysis or water as much as possible. On the other hand, in the case of a production method via lyophilization, an alkoxysilyl group-containing compound may also be used because it is dispersed or soluble in a solvent while maintaining its characteristics. Conventionally, a compound having an oxirane group or an oxetane group as a conductivity improver or a crosslinking agent is added to a conductive polymer aqueous solution. The difference between these known techniques and the present application is that 1) a reaction product obtained by reacting a polyanion which is a dopant / dispersant of a conductive polymer and an oxirane group or oxetane group-containing compound is obtained. Is being removed or reduced. By achieving the requirements 1) and 2), it is possible to achieve the effect that solubilization in an organic solvent is achieved in a state of low moisture, and mixing with an organic resin is possible.

以下、オキシラン基および/またはオキセタン基含有有機化合物を例示する。   Examples of organic compounds containing oxirane groups and / or oxetane groups will be given below.

(オキシラン基含有化合物)
単官能オキシラン基含有化合物としては、プロピレンオキサイド、2,3−ブチレンオキサイド、イソブチレンオキサイド、1,2−ブチレンオキサイド、1,2−エポキシヘキサン、1,2−エポキシヘプタン、1,2−エポキシペンタン、1,2−エポキシオクタン、1,2−エポキシデカン、1,3−ブタジエンモノオキサイド、1,2−エポキシテトラデカン、グリシジルメチルエーテル、1,2−エポキシオクタデカン、1,2−エポキシヘキサデカン、エチルグリシジルエーテル、グリシジルイソプロピルエーテル、tert−ブチルグリシジルエーテル、1,2−エポキシエイコサン、2−(クロロメチル)−1,2−エポキシプロパン、グリシドール、エピクロルヒドリン、エピブロモヒドリン、ブチルグリシジルエーテル、1,2−エポキシヘキサン、1,2−エポキシ−9−デカン、2−(クロロメチル)−1,2−エポキシブタン、2−エチルヘキシルグリシジルエーテル、1,2−エポキシ−1H,1H,2H,2H,3H,3H−トリフルオロブタン、アリルグリシジルエーテル、テトラシアノエチレンオキサイド、グリシジルブチレート、1,2−エポキシシクロオクタン、グリシジルメタクリレート、1,2−エポキシシクロドデカン、1−メチル−1,2−エポキシシクロヘキサン、1,2−エポキシシクロペンタデカン、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,2−エポキシ−1H,1H,2H,2H,3H,3H−ヘプタデカフルオロブタン、3,4−エポキシテトラヒドロフラン、グリシジルステアレート、3−グリシジルオキシプロピルトリメトキシシラン、エポキシ琥珀酸、グリシジルフェニルエーテル、イソホロンオキサイド、α−ピネンオキサイド、2,3−エポキシノルボルネン、ベンジルグリシジルエーテル、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、3−[2−(パーフルオロヘキシル)エトキシ]−1,2−エポキシプロパン、1,1,1,3,5,5,5−ヘプタメチル−3−(3−グリシジルオキシプロピル)トリシロキサン、9,10−エポキシ−1,5−シクロドデカジエン、4−tert−ブチル安息香酸グリシジル、2,2−ビス(4−グリシジルオキシフェニル)プロパン、2−tert−ブチル−2−[2−(4−クロロフェニル)]エチルオキシラン、スチレンオキサイド、グリシジルトリチルエーテル、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−フェニルプリピレンオキサイド、コレステロール−5α,6α−エポキシド、スチルベンオキサイド、p−トルエンスルホン酸グリシジル、3−メチル−3−フェニルグリシド酸エチル、N−プロピル−N−(2,3−エポキシプロピル)ペルフルオロ−n−オクチルスルホンアミド、(2S,3S)−1,2−エポキシ−3−(tert−ブトキシカルボニルアミノ)−4−フェニルブタン、3−ニトロベンゼンスルホン酸(R)−グリシジル、3−ニトロベンゼンスルホン酸−グリシジル、パルテノリド、N−グリシジルフタルイミド、エンドリン、デイルドリン、4−グリシジルオキシカルバゾール、7,7−ジメチルオクタン酸[オキシラニルメチル]などを例示できる。
(Oxirane group-containing compound)
Monofunctional oxirane group-containing compounds include propylene oxide, 2,3-butylene oxide, isobutylene oxide, 1,2-butylene oxide, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxypentane, 1,2-epoxyoctane, 1,2-epoxydecane, 1,3-butadiene monooxide, 1,2-epoxytetradecane, glycidyl methyl ether, 1,2-epoxy octadecane, 1,2-epoxyhexadecane, ethyl glycidyl ether Glycidyl isopropyl ether, tert-butyl glycidyl ether, 1,2-epoxyeicosane, 2- (chloromethyl) -1,2-epoxypropane, glycidol, epichlorohydrin, epibromohydrin, butyl glycidyl ether 1,2-epoxyhexane, 1,2-epoxy-9-decane, 2- (chloromethyl) -1,2-epoxybutane, 2-ethylhexyl glycidyl ether, 1,2-epoxy-1H, 1H, 2H, 2H , 3H, 3H-trifluorobutane, allyl glycidyl ether, tetracyanoethylene oxide, glycidyl butyrate, 1,2-epoxycyclooctane, glycidyl methacrylate, 1,2-epoxycyclododecane, 1-methyl-1,2-epoxy Cyclohexane, 1,2-epoxycyclopentadecane, 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,2-epoxy-1H, 1H, 2H, 2H, 3H, 3H-heptadecafluorobutane, 3, 4-epoxytetrahydrofuran, glycidyl stearate , 3-glycidyloxypropyltrimethoxysilane, epoxysuccinic acid, glycidylphenyl ether, isophorone oxide, α-pinene oxide, 2,3-epoxynorbornene, benzylglycidyl ether, diethoxy (3-glycidyloxypropyl) methylsilane, 3- [ 2- (Perfluorohexyl) ethoxy] -1,2-epoxypropane, 1,1,1,3,5,5,5-heptamethyl-3- (3-glycidyloxypropyl) trisiloxane, 9,10-epoxy -1,5-cyclododecadiene, glycidyl 4-tert-butylbenzoate, 2,2-bis (4-glycidyloxyphenyl) propane, 2-tert-butyl-2- [2- (4-chlorophenyl)] ethyl Oxirane, styrene oxide, glycidyl Tyl ether, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2-phenylpropylene oxide, cholesterol-5α, 6α-epoxide, stilbene oxide, glycidyl p-toluenesulfonate, 3-methyl-3-phenylglycyl Ethyl sidate, N-propyl-N- (2,3-epoxypropyl) perfluoro-n-octylsulfonamide, (2S, 3S) -1,2-epoxy-3- (tert-butoxycarbonylamino) -4- Phenylbutane, 3-nitrobenzenesulfonic acid (R) -glycidyl, 3-nitrobenzenesulfonic acid-glycidyl, parthenolide, N-glycidylphthalimide, endrin, dieldrin, 4-glycidyloxycarbazole, 7,7-dimethyloctanoic acid [oxirani Methyl] etc. can be exemplified.

多官能オキシラン基含有化合物としては、1,7−オクタジエンジエポキシド、ネオペンチルグリコールジグリシジルエーテル、4−ブタンジオールジグリシジルエーテル、1,2:3,4−ジエポキシブタン、1,2−シクロヘキサンジカルボン酸ジグリシジル、イソシアヌル酸トリグリシジルネオペンチルグリコールジグリシジルエーテル、1,2:3,4−ジエポキシブタン、ポリエチレングリコール#200ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、水添ビスフェノールAジグリシジルエーテルなどを例示できる。   Polyfunctional oxirane group-containing compounds include 1,7-octadiene diepoxide, neopentyl glycol diglycidyl ether, 4-butanediol diglycidyl ether, 1,2: 3,4-diepoxybutane, 1,2-cyclohexane Diglycidyl dicarboxylate, triglycidyl isocyanurate triglycidyl neopentyl glycol diglycidyl ether, 1,2: 3,4-diepoxybutane, polyethylene glycol # 200 diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether Ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-he Sanji ol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, hydrogenated bisphenol A diglycidyl ether and the like can be exemplified.

(オキセタン基含有化合物)
単官能オキセタン基含有化合物としては、3−エチル−3−ヒドロキシメチルオキセタン(=オキセタンアルコール)、2−エチルヘキシルオキセタン、(3−エチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メタアクリレートなどを例示できる。
(Oxetane group-containing compound)
Monofunctional oxetane group-containing compounds include 3-ethyl-3-hydroxymethyloxetane (= oxetane alcohol), 2-ethylhexyloxetane, (3-ethyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) A methacrylate etc. can be illustrated.

多官能オキセタン基含有化合物としては、キシリレンビスオキセタン、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン、1,4−ベンゼンジカルボン酸,ビス{[3−エチル−3−オキセタニル]メチル}エステルなどを例示できる。   Examples of the polyfunctional oxetane group-containing compound include xylylene bisoxetane, 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane, 1,4-benzenedicarboxylic acid, bis {[3- And ethyl-3-oxetanyl] methyl} ester.

以上のように、ポリアニオンのアニオン基にオキシラン基若しくはオキセタン基が反応しているため、ポリアニオンの親水性が失われ、親油性を呈する。したがって、(a)π共役系導電性高分子にドープしたポリアニオンと、(c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物を含む組成物は、有機溶剤に高濃度に可溶化あるいは分散可能である。   As described above, since the oxirane group or oxetane group is reacted with the anion group of the polyanion, the hydrophilicity of the polyanion is lost and the lipophilicity is exhibited. Therefore, (a) a reaction between a polyanion doped in a π-conjugated conductive polymer, (c) an anion other than that required for doping in the (b) polyanion, and an oxirane group and / or oxetane group-containing organic compound The composition containing the product can be solubilized or dispersed at a high concentration in an organic solvent.

(d)シリコーン粘着剤
シリコーン粘着剤は、その硬化方式により付加反応硬化型、過酸化物硬化型、電子線硬化型などのいくつかのタイプに分けられる。
(D) Silicone pressure-sensitive adhesive Silicone pressure-sensitive adhesives are classified into several types such as an addition reaction curable type, a peroxide curable type, and an electron beam curable type depending on the curing method.

(d1)付加反応硬化型
付加硬化型シリコーン粘着剤は、例えば、末端にビニル基を有するシリコーンゴム(生ゴムなど)と、シリコーンレジンと、Si−H基を有する架橋剤と、反応抑制剤と、付加反応触媒とを含む。シリコーンゴムそのものは、粘着性に乏しいため、付加硬化型シリコーン粘着剤は、粘着性付与剤としてシリコーンレジンを混合してなる。シリコーンレジンは、好ましくは、Qユニット(SiにOを4個結合した単位)を結合させ、末端の反応を止めるべく、Mユニット(Siに1個のOと3個のメチル基を結合した単位)を結合させた構造を有する。架橋剤は、Si−H基を有するオルガノハイドロジェンポリシロキサンであり、直鎖状あるいは分岐状のいずれをも使用できる。反応制御剤は、粘着剤の硬化前の増粘やゲル化を防止するための成分であり、例えば、3−メチル−1−ブチン−3−オール、3−メチル−1−ペンチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニルシクロヘキサノール、3−メチル−3−トリメチルシロキシ−1−ブチン、3−メチル−3−トリメチルシロキシ−1−ペンチン、3,5−ジメチル−3−トリメチルシロキシ−1−ヘキシン、1−エチニル−1−トリメチルシロキシシクロヘキサン、ビス(2,2−ジメチル−3−ブチノキシ)ジメチルシラン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、1,1,3,3−テトラメチル−1,3−ジビニルジシロキサン等を使用できる。付加反応触媒としては、塩化白金酸、塩化白金酸のアルコール溶液、塩化白金酸とアルコールとの反応物、塩化白金酸とオレフィン化合物との反応物、塩化白金酸とビニル基含有シロキサンとの反応物、白金−オレフィン錯体、白金−ビニル基含有シロキサン錯体等の白金系触媒、ロジウム錯体、ルテニウム錯体等の白金族金属系触媒が挙げられる。また、これらのものをイソプロパノール、トルエン等の溶剤や、シリコーンオイルなどに溶解、分散させたものを用いることができる。
(D1) Addition reaction curable type The addition curable type silicone pressure sensitive adhesive includes, for example, a silicone rubber having a vinyl group at its terminal (raw rubber, etc.), a silicone resin, a crosslinking agent having a Si-H group, a reaction inhibitor, And an addition reaction catalyst. Since the silicone rubber itself has poor adhesiveness, the addition-curable silicone adhesive is formed by mixing a silicone resin as a tackifier. The silicone resin preferably has an M unit (a unit in which one O and three methyl groups are bonded to Si) in order to bond a Q unit (a unit in which four Os are bonded to Si) and stop the terminal reaction. ). The cross-linking agent is an organohydrogenpolysiloxane having a Si—H group, and either linear or branched can be used. The reaction control agent is a component for preventing thickening and gelation of the pressure-sensitive adhesive before curing, such as 3-methyl-1-butyn-3-ol and 3-methyl-1-pentyne-3-ol. 3,5-dimethyl-1-hexyn-3-ol, 1-ethynylcyclohexanol, 3-methyl-3-trimethylsiloxy-1-butyne, 3-methyl-3-trimethylsiloxy-1-pentyne, 3,5 -Dimethyl-3-trimethylsiloxy-1-hexyne, 1-ethynyl-1-trimethylsiloxycyclohexane, bis (2,2-dimethyl-3-butynoxy) dimethylsilane, 1,3,5,7-tetramethyl-1, 3,5,7-tetravinylcyclotetrasiloxane, 1,1,3,3-tetramethyl-1,3-divinyldisiloxane and the like can be used. Examples of the addition reaction catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, a reaction product of chloroplatinic acid and alcohol, a reaction product of chloroplatinic acid and an olefin compound, and a reaction product of chloroplatinic acid and a vinyl group-containing siloxane. Platinum-based catalysts such as platinum-olefin complexes and platinum-vinyl group-containing siloxane complexes, and platinum group metal catalysts such as rhodium complexes and ruthenium complexes. Moreover, what melt | dissolved and disperse | distributed these things to solvents, such as isopropanol and toluene, silicone oil, etc. can be used.

付加硬化型シリコーン粘着剤としては、一例としては、以下の化合物から主に構成される。
a)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン
b)末端をトリメチルシリル基とするシリコーンレジン
c)分子中に少なくとも3個のヒドロシリル基を有するオルガノポリシロキサン
d)主として白金、パラジウム、ロジウム等の白金族金属変性体若しくは錯体からなるヒドロシリル化触媒
As an example, the addition-curable silicone pressure-sensitive adhesive is mainly composed of the following compounds.
a) Organopolysiloxane having at least two alkenyl groups in the molecule b) Silicone resin having a trimethylsilyl group at the end c) Organopolysiloxane having at least three hydrosilyl groups in the molecule d) Mainly platinum, palladium, rhodium Hydrosilylation catalyst comprising platinum group metal modification or complex such as

(d2)過酸化物硬化型
過酸化物硬化型シリコーン粘着剤は、例えば、ポリジメチルシロキサンに代表されるポリジアルキルシロキサンと、シリコーンレジンと、過酸化ベンゾイルに代表される有機過酸化物とを含む。シリコーンレジンは、付加反応硬化型シリコーン粘着剤に含まれるものと同種のものを使用できる。有機過酸化物は、例えば、ジベンゾイルパーオキサイド、4,4’−ジメチルジベンゾイルパーオキサイド、3,3’−ジメチルジベンゾイルパーオキサイド、2,2’−ジメチルジベンゾイルパーオキサイド、2,2’,4,4’−テトラクロロジベンゾイルパーオキサイド、クミルパーオキサイドなどを挙げることができる。
(D2) Peroxide-curing type The peroxide-curing type silicone pressure-sensitive adhesive contains, for example, a polydialkylsiloxane typified by polydimethylsiloxane, a silicone resin, and an organic peroxide typified by benzoyl peroxide. . The same type of silicone resin as that contained in the addition reaction curable silicone pressure-sensitive adhesive can be used. Examples of the organic peroxide include dibenzoyl peroxide, 4,4′-dimethyldibenzoyl peroxide, 3,3′-dimethyldibenzoyl peroxide, 2,2′-dimethyldibenzoyl peroxide, and 2,2 ′. , 4,4′-tetrachlorodibenzoyl peroxide, cumyl peroxide, and the like.

(d3)電子線硬化型
電子線硬化型シリコーン粘着剤は、例えば、以下例1〜例6記載のいずれかの化合物に加え、上述と同種のシリコーンレジンと、重合開始剤とを含み、電子線によって硬化される。
<例1>
アクリルアミド基含有オルガノポリシロキサン
このオルガノポリシロキサンは、分子中に、下記一般式(I)で表されるアクリルアミド官能基を含むオルガノポリシロキサンである。
(D3) Electron beam curable type The electron beam curable silicone pressure-sensitive adhesive contains, for example, the same type of silicone resin as described above and a polymerization initiator in addition to any of the compounds described in Examples 1 to 6 below. Is cured by.
<Example 1>
Acrylamide group-containing organopolysiloxane This organopolysiloxane is an organopolysiloxane containing an acrylamide functional group represented by the following general formula (I) in the molecule.

Figure 0006418829
Figure 0006418829

上記一般式(I)中、Rは水素原子またはメチル基であり、Rは水素原子または1〜4個の炭素原子を有するアルキル基であり、Rは二価の炭化水素基である。 In the general formula (I), R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 is a divalent hydrocarbon group. .

<例2>
一分子中に少なくとも2個のメルカプトアルキル基を有するオルガノポリシロキサン
このオルガノポリシロキサンは、一分子中に、下記一般式(II)で表されるメルカプトアルキル官能基を少なくとも2個含むオルガノポリシロキサンである。
<Example 2>
Organopolysiloxane having at least two mercaptoalkyl groups in one molecule This organopolysiloxane is an organopolysiloxane having at least two mercaptoalkyl functional groups represented by the following general formula (II) in one molecule. is there.

Figure 0006418829
Figure 0006418829

上記一般式(II)中、Rは水素原子またはメチル基であり、Rは二価の炭化水素基である。 In the general formula (II), R 1 is a hydrogen atom or a methyl group, and R 2 is a divalent hydrocarbon group.

<例3>
一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンからなる組成物
このオルガノポリシロキサンは、一分子中に、少なくとも2個のアルケニル基(−C2n−1(nは、2以上の数。))を含むオルガノポリシロキサンからなる組成物である。
<例4>
アルケニル基含有オルガノポリシロキサン
このオルガノポリシロキサンは、分子中にアルケニル基(−C2n−1(nは、2以上の数。))を含むオルガノポリシロキサンである。
<例5>
アクリル基またはメタクリル基含有オルガノポリシロキサン
このオルガノポリシロキサンは、分子中にアクリル基(CHCHCO−)またはメタクリル基(CHC(CH)CO−)を含むオルガノポリシロキサンである。
<例6>
a)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン
b)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン
<Example 3>
A composition comprising an organopolysiloxane having at least two alkenyl groups in one molecule. This organopolysiloxane has at least two alkenyl groups (-C n H 2n-1 (n is 2 or more) in one molecule. A composition comprising an organopolysiloxane.
<Example 4>
Alkenyl group-containing organopolysiloxane The organopolysiloxane alkenyl groups in the molecule (-C n H 2n-1 ( n is a number of 2 or more.)) Is an organopolysiloxane containing.
<Example 5>
Acrylic or Methacrylic Group-Containing Organopolysiloxane This organopolysiloxane is an organopolysiloxane containing an acrylic group (CH 2 CHCO—) or a methacryl group (CH 2 C (CH 3 ) CO—) in the molecule.
<Example 6>
a) Organopolysiloxane having at least two alkenyl groups in one molecule b) Organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule

(e)有機溶剤
有機溶剤としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホニウムトリアミド、アセトニトリル、ベンゾニトリル等に代表される極性溶媒; クレゾール、フェノール、キシレノール等に代表されるフェノール類; メタノール、エタノール、プロパノール、ブタノール等に代表されるアルコール類; アセトン、メチルエチルケトン、メチルイソブチルケトン等に代表されるケトン類; 酢酸エチル、酢酸プロピル、酢酸ブチル等に代表されるエステル類; ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等に代表される炭化水素類; ギ酸、酢酸等に代表されるカルボン酸; エチレンカーボネート、プロピレンカーボネート等に代表されるカーボネート化合物; ジオキサン、ジエチルエーテル等に代表されるエーテル化合物; エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等に代表される鎖状エーテル類; 3−メチル−2−オキサゾリジノン等に代表される複素環化合物; アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等に代表されるニトリル化合物などを好適に例示できる。これらの有機溶剤は、単独で用いても良く、あるいは2種以上を混合して用いても良い。これらの有機溶剤の内、種々の有機物との易混合性の観点から、アルコール類、ケトン類、エーテル類、エステル類、炭化水素類をより好適に用いることができる。
(E) Organic solvent Examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylenephosphonium triamide, acetonitrile, benzonitrile and the like. Polar solvents; phenols typified by cresol, phenol, xylenol, etc .; alcohols typified by methanol, ethanol, propanol, butanol, etc .; ketones typified by acetone, methyl ethyl ketone, methyl isobutyl ketone, etc .; ethyl acetate, acetic acid Esters represented by propyl, butyl acetate, etc .; Hydrocarbons represented by hexane, heptane, benzene, toluene, xylene, etc .; Carboxylic acids represented by formic acid, acetic acid, etc .; Ethylene carbonate, propylene carbonate Carbonate compounds typified by carbonates; ether compounds typified by dioxane, diethyl ether, etc .; chain ethers typified by ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc. Preferred examples include heterocyclic compounds typified by 3-methyl-2-oxazolidinone and the like; nitrile compounds typified by acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, benzonitrile and the like. These organic solvents may be used alone or in combination of two or more. Among these organic solvents, alcohols, ketones, ethers, esters, and hydrocarbons can be more suitably used from the viewpoint of easy mixing with various organic substances.

(f)その他
導電性ポリマー溶液への添加剤として、例えば、導電性を向上させるものを挙げることができる。
(導電性向上剤)
導電性向上剤としては、グリシジル化合物、極性溶媒、多価脂肪族アルコール、窒素含有芳香族性環式化合物、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基と1個以上のカルボキシ基を有する化合物、ラクタム化合物等が挙げられる。これらのなかでも、剥離性成分の硬化を阻害しにくいものが好ましい。剥離性成分の硬化を阻害しにくければ、該帯電防止性剥離剤から得た剥離剤層に、粘着シートの粘着剤層を重ねた後、粘着剤層に剥離剤が転写することを防ぐことができる。剥離性成分の硬化を阻害しにくい導電性向上剤としては、グリシジル化合物、極性溶媒、多価脂肪族アルコールが挙げられる。また、導電性向上剤は、25℃で液状であることが好ましい。液状であれば、該帯電防止性剥離剤から形成した剥離剤層の透明性を向上させることができ、剥離剤層に貼り合わされる粘着剤層への異物の転写を防ぐことができる。
(F) Others Examples of additives to the conductive polymer solution include those that improve conductivity.
(Conductivity improver)
Examples of conductivity improvers include glycidyl compounds, polar solvents, polyhydric aliphatic alcohols, nitrogen-containing aromatic cyclic compounds, compounds having two or more hydroxy groups, compounds having two or more carboxy groups, one Examples thereof include compounds having the above hydroxy group and one or more carboxy groups, and lactam compounds. Among these, those that hardly inhibit the curing of the peelable component are preferable. If it is difficult to inhibit curing of the peelable component, it is possible to prevent the release agent from being transferred to the pressure-sensitive adhesive layer after the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is superimposed on the release agent layer obtained from the antistatic release agent. it can. Examples of the conductivity improver that does not easily inhibit the peelable component include a glycidyl compound, a polar solvent, and a polyhydric aliphatic alcohol. Further, the conductivity improver is preferably liquid at 25 ° C. If it is liquid, the transparency of the release agent layer formed from the antistatic release agent can be improved, and transfer of foreign matter to the pressure-sensitive adhesive layer bonded to the release agent layer can be prevented.

グリシジル化合物の具体例としては、エチルグリシジルエーテル、n−ブチルグリシジルエーテル、t−ブチルグリシジルエーテル、アリルグリシジルエーテル、ベンジルグリシジルエーテル、グリシジルフェニルエーテル、ビスフェノールAジグリシジルエーテル、アクリル酸グリシジルエーテル、メタクリル酸グリシジルエーテル等が挙げられる。極性溶媒の具体例としては、N−メチルホルムアミド、N−メチルアクリルアミド、N−メチルメタクリルアミド、N−エチルアクリルアミド、N−エチルメタクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタクリルアミド、N,N−ジエチルアクリルアミド、N,N−ジエチルメタクリルアミド、2−ヒドロキシエチルアクリルアミド、2−ヒドロキシエチルメタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−メチル−2−ピロリドン、N−メチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、乳酸メチル、乳酸エチル、乳酸プロピル等が挙げられる。多価脂肪族アルコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、グリセリン、ジグリセリン、イソプレングリコール、ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、チオジエタノール、ジプロピレングリコール等が挙げられる。   Specific examples of glycidyl compounds include ethyl glycidyl ether, n-butyl glycidyl ether, t-butyl glycidyl ether, allyl glycidyl ether, benzyl glycidyl ether, glycidyl phenyl ether, bisphenol A diglycidyl ether, glycidyl methacrylate, glycidyl methacrylate Examples include ether. Specific examples of the polar solvent include N-methylformamide, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-ethylmethacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N, N-diethylacrylamide, N, N-diethylmethacrylamide, 2-hydroxyethylacrylamide, 2-hydroxyethylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-methyl-2-pyrrolidone, N-methyl Acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylene phosphortriamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, milk Methyl, ethyl lactate, propyl and the like. Examples of the polyhydric aliphatic alcohol include ethylene glycol, diethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, glycerin, diglycerin, isoprene glycol, butanediol, 1,5-pentanediol, 1, Examples include 6-hexanediol, 1,9-nonanediol, neopentyl glycol, trimethylol ethane, trimethylol propane, thiodiethanol, and dipropylene glycol.

導電性向上剤の含有量は、導電性成分100質量部に対して10〜10000質量部であることが好ましく、30〜5000質量部であることがより好ましい。導電性向上剤の含有量が前記下限値以上であれば、帯電防止性をより向上させることができる。一方、前記上限値以下であれば、剥離性をより向上できる。   The content of the conductivity improver is preferably 10 to 10000 parts by mass and more preferably 30 to 5000 parts by mass with respect to 100 parts by mass of the conductive component. When the content of the conductivity improver is at least the lower limit, the antistatic property can be further improved. On the other hand, if it is below the said upper limit, peelability can be improved more.

<B 導電性塗膜の実施の形態>
本発明の実施の形態に係る導電性塗膜は、前記の導電性ポリマー溶液を基体上に供給し形成してなる膜である。導電性ポリマー溶液は、例えば、紙、プラスチック、鉄、セラミックス、ガラスに代表される基体上に供給される。供給方法としては、刷毛やバーコーターを使う塗布法、導電性ポリマー溶液中に基体を浸漬するディップ法、導電性ポリマー溶液を基体上に滴下して基体を回転させて溶液を拡げるスピンコート法などの種々の手法を例示できる。基体上の導電性ポリマー溶液の硬化法は、加熱により有機溶剤などの溶媒を除去する方法、紫外線などの光や電子線を照射して硬化する方法などを例示できる。
<Embodiment of B conductive coating film>
The conductive coating film according to the embodiment of the present invention is a film formed by supplying the conductive polymer solution onto a substrate. The conductive polymer solution is supplied onto a substrate represented by, for example, paper, plastic, iron, ceramics, and glass. Supply methods include brush and bar coater coating methods, dipping method in which the substrate is immersed in a conductive polymer solution, spin coating method in which the conductive polymer solution is dropped onto the substrate and the substrate is rotated to spread the solution, etc. Various methods can be exemplified. Examples of the method for curing the conductive polymer solution on the substrate include a method of removing a solvent such as an organic solvent by heating, a method of curing by irradiating light such as ultraviolet rays or an electron beam, and the like.

以上のように、この実施の形態に係る導電性塗膜は、ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物を含むため、種々の有機溶剤を主とする溶媒中に分散、可溶なものである。導電性塗膜を形成する導電性ポリマー溶液は、従来から知られているアミン系化合物、相間移動触媒を用いた導電性高分子水分散液におけるポリアニオン残渣との反応によって溶剤置換する方法に比べて、保存安定性、電気抵抗値の安定性に優れると共に、アミンなどが障害になる分野にも適用可能である。導電性ポリマー溶液にシリコーン粘着剤を含めることにより、導電性を有するシリコーン粘着剤を得ることができる。   As described above, the conductive coating film according to this embodiment includes reaction products of an anion other than that required for doping in the polyanion and an organic compound containing an oxirane group and / or an oxetane group. It is dispersible and soluble in solvents mainly composed of organic solvents. The conductive polymer solution that forms the conductive coating film is a solvent-substituted method by reaction with a polyanion residue in a conductive polymer aqueous dispersion using a conventionally known amine compound and phase transfer catalyst. In addition to being excellent in storage stability and electrical resistance stability, it can also be applied to fields where amines and the like are obstacles. By including a silicone adhesive in the conductive polymer solution, a conductive silicone adhesive can be obtained.

次に、本発明の製造例および実施例について説明する。ただし、本発明は、以下の実施例に限定されるものではない。   Next, production examples and examples of the present invention will be described. However, the present invention is not limited to the following examples.

<製造例> <Production example>

(製造例1)ポリスチレンスルホン酸の製造
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫酸を1000ml添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約1000ml溶液を除去し、残液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。さらに、得られたろ液に約2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この限外ろ過操作を3回繰り返した。得られた溶液中の水を減圧除去して、無色の固形物を得た。
(Production Example 1) Production of polystyrene sulfonic acid 206 g of sodium styrene sulfonate was dissolved in 1000 ml of ion-exchanged water, and 1.14 g of ammonium persulfate oxidizing agent solution previously dissolved in 10 ml of water was stirred at 80 ° C. The solution was added dropwise for 20 minutes, and the solution was stirred for 12 hours. To the obtained sodium styrenesulfonate-containing solution, 1000 ml of sulfuric acid diluted to 10% by mass was added, about 1000 ml of the polystyrenesulfonic acid-containing solution was removed using an ultrafiltration method, and 2000 ml of ion-exchanged water was added to the remaining liquid. And about 2000 ml solution was removed using ultrafiltration. The above ultrafiltration operation was repeated three times. Further, about 2000 ml of ion-exchanged water was added to the obtained filtrate, and about 2000 ml of solution was removed using an ultrafiltration method. This ultrafiltration operation was repeated three times. Water in the obtained solution was removed under reduced pressure to obtain a colorless solid.

(製造例2)PEDOT−PSSの水溶液の製造
14.2gの3,4−エチレンジオキシチオフェンと、36.7gのポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合した。これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。得られた反応液に2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。そして、得られた溶液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水とを加え、限外ろ過法を用いて約2000mlの溶液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの液を除去した。この操作を3回繰り返した。さらに、得られた溶液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの溶液を除去した。この操作を5回繰り返し、約1.2質量%の青色のPEDOT−PSSの水溶液を得た。
(Production Example 2) Production of aqueous solution of PEDOT-PSS 14.2 g of 3,4-ethylenedioxythiophene and a solution of 36.7 g of polystyrene sulfonic acid dissolved in 2000 ml of ion-exchanged water were mixed at 20 ° C. . While maintaining the mixed solution thus obtained at 20 ° C. and stirring, 29.64 g of ammonium persulfate dissolved in 200 ml of ion exchange water and 8.0 g of ferric sulfate oxidation catalyst solution were slowly added, The reaction was stirred for 3 hours. 2000 ml of ion-exchanged water was added to the resulting reaction solution, and about 2000 ml of solution was removed using an ultrafiltration method. This operation was repeated three times. Then, 200 ml of sulfuric acid diluted to 10% by mass and 2000 ml of ion-exchanged water are added to the resulting solution, and about 2000 ml of solution is removed using an ultrafiltration method, and 2000 ml of ion-exchanged water is added thereto. About 2000 ml of liquid was removed using an ultrafiltration method. This operation was repeated three times. Furthermore, 2000 ml of ion-exchanged water was added to the obtained solution, and about 2000 ml of the solution was removed using an ultrafiltration method. This operation was repeated 5 times to obtain an aqueous solution of about 1.2% by mass of blue PEDOT-PSS.

(製造例3)PEDOT−PSSの分散した有機溶剤の製造
150gのメタノールと12.5gのC12、C13混合高級アルコールグリシジルエーテルを混合した。次いで、製造例2で得た50gのPEDOT−PSSの水溶液を室温で混合撹拌し紺色の析出物を得た。この析出物を濾過回収しメチルエチルケトンに分散させ、約0.5質量%のメチルエチルケトンに分散したPEDOT−PSS(粘着剤未含有組成物)を得た。
(Production Example 3) Production of organic solvent in which PEDOT-PSS was dispersed 150 g of methanol and 12.5 g of C12 and C13 mixed higher alcohol glycidyl ether were mixed. Next, 50 g of the aqueous solution of PEDOT-PSS obtained in Production Example 2 was mixed and stirred at room temperature to obtain an amber-colored precipitate. This precipitate was collected by filtration and dispersed in methyl ethyl ketone to obtain PEDOT-PSS (adhesive - free composition) dispersed in about 0.5% by mass of methyl ethyl ketone.

<導電性塗膜の製造>
(実施例1)
X−40−3229(信越化学工業社製シリコーン粘着剤)10gと、製造例3で得られた粘着剤未含有組成物20gと、CAT−PL−50T(硬化触媒)0.05gとを混合して導電性ポリマー溶液を調製し、これを、#2のバーコーターを用いてPETフィルム上に塗布した。得られた塗膜を130℃で2分間乾燥した後、表面抵抗値を測定した。次に、塗膜を他のPETフィルムと張り合わせた後、20時間室温に静置し、25mm幅に切断して、0.3m/分の速度で180度剥離を行い、剥離強度を測定した。
<Manufacture of conductive coating film>
Example 1
10 g of X-40-3229 (Shin-Etsu Chemical Co., Ltd. silicone adhesive) , 20 g of the adhesive-free composition obtained in Production Example 3, and 0.05 g of CAT-PL-50T (curing catalyst) were mixed. A conductive polymer solution was prepared and applied onto a PET film using a # 2 bar coater. The obtained coating film was dried at 130 ° C. for 2 minutes, and then the surface resistance value was measured. Next, after pasting the coating film with another PET film, it was allowed to stand at room temperature for 20 hours, cut into a width of 25 mm, peeled 180 ° at a speed of 0.3 m / min, and the peel strength was measured.

(比較例1)
実施例2において製造例3で得られた導電性ポリマー溶液をメチルエチルケトンに変えたこと以外は同様にして測定を行った。
(比較例2)
実施例7において製造例3で得られた導電性ポリマー溶液をメチルエチルケトンに変えたこと以外は同様にして測定を行った。
(比較例3)
実施例9において製造例3で得られた導電性ポリマー溶液をメチルエチルケトンに変えたこと以外は同様にして測定を行った。
(Comparative Example 1)
In Example 2, the measurement was performed in the same manner except that the conductive polymer solution obtained in Production Example 3 was replaced with methyl ethyl ketone.
(Comparative Example 2)
In Example 7, the measurement was performed in the same manner except that the conductive polymer solution obtained in Production Example 3 was replaced with methyl ethyl ketone.
(Comparative Example 3)
In Example 9, the measurement was performed in the same manner except that the conductive polymer solution obtained in Production Example 3 was changed to methyl ethyl ketone.

<塗膜の評価方法>
(表面抵抗率)
三菱化学社製ハイレスタMCP−HT450を用い、プローブMCP−HTP12、印加電圧10Vで測定した。
(剥離強度)
厚さ38μmのPETフィルムに、得られた塗料(粘着剤とも称する)を、バーコーターによって塗布し、130℃の熱風式乾燥機中で2分間加熱して粘着層を形成した。次に、粘着層の表面に2.5cm×15cmのポリエステルフィルム(商品名:ルミラーT−60、東レ(株)製)を載せ、次いで、その粘着テープ上で2kgのローラーを用いて圧着し、粘着層にポリエステルフィルムを貼り合せた。その後、室温で20時間放置し、試験片を作製した。そして、引張試験機を用いて、粘着層からポリエステルフィルムを180度の角度で剥離(剥離速度0.3m/分)し、粘着力を測定した。
<Evaluation method of coating film>
(Surface resistivity)
Measured with a probe MCP-HTP12 and an applied voltage of 10 V using a Hiresta MCP-HT450 manufactured by Mitsubishi Chemical Corporation.
(Peel strength)
The obtained paint (also referred to as an adhesive) was applied to a PET film having a thickness of 38 μm with a bar coater and heated in a hot air drier at 130 ° C. for 2 minutes to form an adhesive layer. Next, a 2.5 cm × 15 cm polyester film (trade name: Lumirror T-60, manufactured by Toray Industries, Inc.) is placed on the surface of the adhesive layer, and then crimped using a 2 kg roller on the adhesive tape, A polyester film was bonded to the adhesive layer. Then, it was left to stand at room temperature for 20 hours to produce a test piece. Then, using a tensile tester, the polyester film was peeled from the adhesive layer at an angle of 180 degrees (peeling speed 0.3 m / min), and the adhesive strength was measured.

<評価結果>
表1に、各種実施例及び各種比較例の評価結果を示す。表中、「OVER」は、測定上限値以上を意味する。
<Evaluation results>
Table 1 shows the evaluation results of various examples and various comparative examples. In the table, “OVER” means the measurement upper limit value or more.

Figure 0006418829
Figure 0006418829

上記のように、製造例3の導電性ポリマー溶液を添加しなかった比較例1〜3の塗膜は導電性が低く、高い帯電防止性能を有していなかった。これに対し、製造例3の導電性ポリマー溶液を添加した実施例1〜9の塗膜は導電性に優れ、高い帯電防止機能を有していた。また、実施例2と比較例1、実施例7と比較例2、実施例9と比較例3をそれぞれ比較すると、導電性ポリマーを添加したことによる顕著な粘着力の違いは見られなかった。   As described above, the coating films of Comparative Examples 1 to 3 to which the conductive polymer solution of Production Example 3 was not added had low conductivity and did not have high antistatic performance. On the other hand, the coating films of Examples 1 to 9 to which the conductive polymer solution of Production Example 3 was added were excellent in conductivity and had a high antistatic function. Moreover, when Example 2 and Comparative Example 1, Example 7 and Comparative Example 2, and Example 9 and Comparative Example 3 were compared, respectively, the difference in the remarkable adhesive force by adding a conductive polymer was not seen.

本発明は、例えば、工業用テープ、保護フィルム、剥離紙、粘着層、帯電防止フィルム、導電性塗料、タッチスクリーン、有機EL、導電性高分子繊維などに有効に利用できる。   The present invention can be effectively used for, for example, industrial tapes, protective films, release papers, adhesive layers, antistatic films, conductive paints, touch screens, organic EL, conductive polymer fibers, and the like.

Claims (8)

(a)π共役系導電性高分子と、
(b)上記(a)π共役系導電性高分子にドープしたポリアニオンと、
(c)上記(b)ポリアニオン中のドープに要した以外のアニオンと、オキシラン基および/またはオキセタン基含有有機化合物との反応生成物と、
(d)シリコーン粘着剤と、
(e)有機溶剤と、
を含む導電性ポリマー溶液。
(A) a π-conjugated conductive polymer;
(B) (a) a polyanion doped in the π-conjugated conductive polymer;
(C) (b) a reaction product of an anion other than that required for doping in the polyanion and an organic compound containing an oxirane group and / or an oxetane group,
(D) a silicone adhesive;
(E) an organic solvent;
A conductive polymer solution.
前記(d)シリコーン粘着剤が付加硬化型のものであることを特徴とする請求項1に記載の導電性ポリマー溶液。   The conductive polymer solution according to claim 1, wherein the (d) silicone adhesive is of an addition curing type. 前記(d)シリコーン粘着剤が電子線硬化型のものであることを特徴とする請求項1に記載の導電性ポリマー溶液。   The conductive polymer solution according to claim 1, wherein the (d) silicone pressure-sensitive adhesive is of an electron beam curable type. 前記(a)π共役系導電性高分子が、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの内の2以上の共重合体からなる群から選択される少なくとも1種以上の繰り返し単位を有することを特徴とする請求項1から請求項3のいずれか1項に記載の導電性ポリマー溶液。   The (a) π-conjugated conductive polymer is a polypyrrole, polythiophene, polyacetylene, polyphenylene, polyphenylene vinylene, polyaniline, polyacene, polythiophene vinylene, or a copolymer of two or more thereof 4. The conductive polymer solution according to claim 1, comprising at least one repeating unit selected from the group consisting of: 前記(a)π共役系導電性高分子が、ポリ(3,4−エチレンジオキシチオフェン)またはポリピロールであることを特徴とする請求項4に記載の導電性ポリマー溶液。   The conductive polymer solution according to claim 4, wherein the (a) π-conjugated conductive polymer is poly (3,4-ethylenedioxythiophene) or polypyrrole. 前記(b)ポリアニオンが、スルホン酸基、リン酸基およびカルボキシル基から選択される1種若しくはそれ以上の混合物であることを特徴とする請求項1から請求項5のいずれか1項に記載の導電性ポリマー溶液。   The said (b) polyanion is 1 or more types of mixtures selected from a sulfonic acid group, a phosphoric acid group, and a carboxyl group, The any one of Claims 1-5 characterized by the above-mentioned. Conductive polymer solution. 前記(b)ポリアニオンが、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸アルキレンスルホン酸、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)またはそれらの1種以上を共重合構成体として含むものであることを特徴とする請求項1から請求項6のいずれか1項に記載の導電性ポリマー溶液。   The (b) polyanion is polystyrene sulfonic acid, polyvinyl sulfonic acid, polyacrylic acid alkylene sulfonic acid, poly (2-acrylamido-2-methyl-1-propanesulfonic acid) or one or more of them as a copolymerization constituent. The conductive polymer solution according to claim 1, wherein the conductive polymer solution is contained. 請求項1から請求項7のいずれか1項に記載の導電性ポリマー溶液を基体上に供給して硬化させてなる導電性塗膜。   The electroconductive coating film formed by supplying the electroconductive polymer solution of any one of Claims 1-7 on a base | substrate, and making it harden | cure.
JP2014150582A 2014-07-24 2014-07-24 Conductive polymer solution and conductive coating film Active JP6418829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150582A JP6418829B2 (en) 2014-07-24 2014-07-24 Conductive polymer solution and conductive coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150582A JP6418829B2 (en) 2014-07-24 2014-07-24 Conductive polymer solution and conductive coating film

Publications (2)

Publication Number Publication Date
JP2016023287A JP2016023287A (en) 2016-02-08
JP6418829B2 true JP6418829B2 (en) 2018-11-07

Family

ID=55270348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150582A Active JP6418829B2 (en) 2014-07-24 2014-07-24 Conductive polymer solution and conductive coating film

Country Status (1)

Country Link
JP (1) JP6418829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108841097A (en) 2013-02-15 2018-11-20 信越聚合物株式会社 Electroconductive polymer dispersion liquid and conductive film
WO2019030936A1 (en) * 2017-08-10 2019-02-14 Soken Chemical & Engineering Co., Ltd. Adhesive composition and adhesive sheet
JP6906745B1 (en) * 2020-01-27 2021-07-21 ナガセケムテックス株式会社 Method for producing conductive composition

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014553B2 (en) * 2000-06-26 2012-08-29 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Redispersible latex containing polythiophene
JP4689222B2 (en) * 2004-09-22 2011-05-25 信越ポリマー株式会社 Conductive coating film and method for producing the same
JP4991208B2 (en) * 2006-08-18 2012-08-01 信越ポリマー株式会社 Method for producing conductive polymer solution
JP2008133415A (en) * 2006-11-01 2008-06-12 Shin Etsu Polymer Co Ltd Process for producing electroconductive polymer solution
JP5177669B2 (en) * 2008-10-15 2013-04-03 Necトーキン株式会社 Conductive polymer composition and solid electrolytic capacitor using the same
JP2010159365A (en) * 2009-01-09 2010-07-22 Shin Etsu Polymer Co Ltd Conductive polymer solution, conductive laminate, and input device
JP5393173B2 (en) * 2009-01-21 2014-01-22 信越ポリマー株式会社 Conductive ink, transparent conductive layer, and input device
JP5409134B2 (en) * 2009-06-16 2014-02-05 信越ポリマー株式会社 Conductive polymer solution and method for producing the same, antistatic sheet
JP5501195B2 (en) * 2010-11-04 2014-05-21 信越ポリマー株式会社 Conductive polymer solution, conductive coating film and input device
JP5639904B2 (en) * 2011-01-12 2014-12-10 信越ポリマー株式会社 Method for producing conductive polymer, method for producing conductive polymer organic solvent solution
JP5945881B2 (en) * 2011-05-20 2016-07-05 ナガセケムテックス株式会社 Antistatic release agent composition and release film
JP5810865B2 (en) * 2011-11-25 2015-11-11 信越化学工業株式会社 Condensation reaction curable primer composition for silicone adhesive
JP6171343B2 (en) * 2013-01-04 2017-08-02 三菱ケミカル株式会社 Release film
JP6005832B2 (en) * 2013-02-15 2016-10-12 信越ポリマー株式会社 Curable antistatic organopolysiloxane composition and antistatic silicone coating
CN108841097A (en) * 2013-02-15 2018-11-20 信越聚合物株式会社 Electroconductive polymer dispersion liquid and conductive film

Also Published As

Publication number Publication date
JP2016023287A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP6454367B2 (en) Conductive composition
JP6005832B2 (en) Curable antistatic organopolysiloxane composition and antistatic silicone coating
JP6324250B2 (en) Curable silicone composition and release sheet
JP6258142B2 (en) Conductive polymer solution and conductive coating film
JP7083744B2 (en) Conductive polymer-containing liquid and its manufacturing method, and conductive film manufacturing method
JP6353299B2 (en) Curable antistatic fluorine-containing resin composition and antistatic fluorine-containing resin film
JP6418829B2 (en) Conductive polymer solution and conductive coating film
JP6504843B2 (en) Conductive polymer composition and release film
JP2019131773A (en) Curable composition and antistatic silicone coating
JP2020031013A (en) Method for producing conductive polymer dispersion, and method for producing conductive film
JP7422625B2 (en) Method for producing conductive polymer-containing liquid and method for producing conductive film
JP7462425B2 (en) Method for producing modified conductive composite, method for producing modified conductive composite dispersion, and method for producing conductive film
JP7190357B2 (en) Method for producing conductive polymer composite, method for producing liquid containing conductive polymer, and method for producing conductive film
JP2019214637A (en) Conductive polymer dispersion and method for producing the same, and method for producing conductive film
JP2019214638A (en) Conductive polymer dispersion and method for producing the same, and method for producing conductive film
JP7462426B2 (en) Method for producing modified conductive composite, method for producing modified conductive composite dispersion, and method for producing conductive film
JP7093638B2 (en) Conductive polymer composition and its manufacturing method
JP6932582B2 (en) Conductive polymer composition, its manufacturing method, antistatic resin composition, and antistatic resin film
JP6886368B2 (en) Curable composition and antistatic silicone film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6418829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250