JP6417200B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP6417200B2
JP6417200B2 JP2014249832A JP2014249832A JP6417200B2 JP 6417200 B2 JP6417200 B2 JP 6417200B2 JP 2014249832 A JP2014249832 A JP 2014249832A JP 2014249832 A JP2014249832 A JP 2014249832A JP 6417200 B2 JP6417200 B2 JP 6417200B2
Authority
JP
Japan
Prior art keywords
vehicle mounting
pneumatic tire
circumferential groove
land
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014249832A
Other languages
Japanese (ja)
Other versions
JP2016107934A (en
Inventor
正樹 和田
正樹 和田
家朋 松永
家朋 松永
雅史 脇山
雅史 脇山
達也 中井
達也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2014249832A priority Critical patent/JP6417200B2/en
Publication of JP2016107934A publication Critical patent/JP2016107934A/en
Application granted granted Critical
Publication of JP6417200B2 publication Critical patent/JP6417200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、周方向溝に挟まれた陸部をタイヤ踏面側に有する空気入りタイヤに関する。   The present invention relates to a pneumatic tire having a land portion sandwiched between circumferential grooves on a tire tread side.

周方向溝に挟まれた陸部をタイヤ踏面側に有する空気入りタイヤが広く使用されている。このような空気入りタイヤでは、陸部踏面を凸形状、すなわち、陸部踏面の周方向溝隣接部に比べて陸部踏面の中央部を張り出させた形状にすることで、接地圧が高めとなる領域を陸部中央に形成して初期操舵性に関する操縦安定性を良くすることが行われている(例えば特許文献1参照)。   Pneumatic tires having land portions sandwiched between circumferential grooves on the tire tread side are widely used. In such a pneumatic tire, the land tread has a convex shape, i.e., the center of the land tread is projected over the circumferential groove adjacent portion of the land tread, thereby increasing the contact pressure. A region to be formed is formed at the center of the land portion to improve the steering stability related to the initial steering performance (see, for example, Patent Document 1).

特開2012-116410公報JP2012-116410

しかしながら、陸部中央に凸形状の領域を形成すると、陸部周縁から水膜が浸入し易くなるため、排水性の観点ではあまり好ましくないという問題があった。特に旋回時では陸部踏面を挟む両側の周方向溝隣接部から水膜が浸入し易くなるため、この問題が顕著となる。   However, when a convex region is formed at the center of the land, a water film easily enters from the periphery of the land, which is not preferable from the viewpoint of drainage. In particular, when turning, this problem becomes prominent because the water film easily enters from the circumferential groove adjacent portions on both sides sandwiching the land surface.

本発明は、上記課題に鑑みてなされたものであり、陸部中央での高めの接地圧を維持しつつ、陸部踏面の周縁からの水膜の浸入を抑えた空気入りタイヤを提供することを課題とする。   The present invention has been made in view of the above problems, and provides a pneumatic tire that suppresses the infiltration of a water film from the periphery of the land portion tread while maintaining a high contact pressure at the center of the land portion. Is an issue.

本発明に係る空気入りタイヤは、周方向溝に挟まれた陸部をタイヤ踏面側に有する空気入りタイヤであって、タイヤ幅方向断面では、前記陸部の踏面が凸形状であり、前記踏面の頂点と前記踏面の車両装着内側端とのタイヤ径方向の高さ差をhi、前記踏面の頂点と前記踏面の車両装着外側端とのタイヤ径方向の高さ差をhoとすると、ho<hiの関係を満たし、前記周方向溝のうち前記陸部の車両装着内側に隣接する内側周方向溝の車両装着外側端を通過してタイヤ径方向に延びる幅方向端仮想直線をlo、前記内側周方向溝の車両装着内側端を通過してタイヤ径方向に延びる幅方向端仮想直線をliとし、loとliとの中間位置を通過してタイヤ径方向に延びる中間位置仮想直線をlcとし、lcに直交し前記内側周方向溝の最深位置を通過する最深仮想直線をlbとし、lo、lb、liによって囲まれる陸部断面積をSioとし、li、lc、lbによって囲まれる陸部断面積をSiiとし、前記周方向溝のうち前記陸部の車両装着外側に隣接する外側周方向溝に関しSiiを示す領域に対応する領域の陸部断面積をSoiとすると、Soi<Sioの関係を満たすことを特徴とする。   The pneumatic tire according to the present invention is a pneumatic tire having a land portion sandwiched between circumferential grooves on the tire tread side, wherein the tread surface of the land portion has a convex shape in a cross section in the tire width direction. The height difference in the tire radial direction between the top of the tread and the vehicle mounting inner end of the tread is represented by hi, and the height difference in the tire radial direction between the top of the tread and the vehicle mounted outer end of the tread is represented by ho < The width direction imaginary straight line that satisfies the relationship of hi and passes through the vehicle mounting outer end of the inner circumferential groove adjacent to the vehicle mounting inner side of the land portion of the circumferential groove and extends in the tire radial direction is lo, The width direction end virtual straight line extending in the tire radial direction passing through the vehicle mounting inner end of the circumferential groove is denoted by li, and the intermediate position virtual straight line extending in the tire radial direction passing through an intermediate position between lo and li is denoted by lc, The deepest position of the inner circumferential groove perpendicular to lc Lb is the deepest virtual straight line passing through L, s i is the cross-sectional area of the land surrounded by lo, lb and li, S i is the cross-sectional area of the land surrounded by li, lc and lb, and If the land cross-sectional area of the region corresponding to the region indicating Sii with respect to the outer circumferential groove adjacent to the outer side of the vehicle mounted on the vehicle is defined as Soi, the relationship of Soi <Sio is satisfied.

本発明によれば、陸部中央での高めの接地圧を維持しつつ、陸部踏面の周縁からの水膜の浸入を抑えた空気入りタイヤを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pneumatic tire which suppressed the penetration | invasion of the water film from the periphery of a land part tread can be provided, maintaining the high contact pressure in a land part center.

本発明の一実施形態に係る空気入りタイヤで、陸部および周方向溝を説明するための平面図である。In the pneumatic tire concerning one embodiment of the present invention, it is a top view for explaining a land part and a circumferential direction groove. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG.

以下、添付図面を参照しつつ本発明の実施の形態を説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに限定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not limited to. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

図1は、本発明の一実施形態(以下、本実施形態という)に係る空気入りタイヤの一例で、陸部および周方向溝を説明するための平面図であり、図2は図1のA−A線断面図である。本実施形態の空気入りタイヤは、タイヤ周方向Uに延在する複数の周方向溝(周方向主溝)と、これらの周方向溝に区画されて成る複数の陸部とを備える。   FIG. 1 is an example of a pneumatic tire according to an embodiment of the present invention (hereinafter referred to as the present embodiment), and is a plan view for explaining a land portion and a circumferential groove, and FIG. FIG. The pneumatic tire of the present embodiment includes a plurality of circumferential grooves (circumferential main grooves) extending in the tire circumferential direction U, and a plurality of land portions defined by these circumferential grooves.

以下、本実施形態では、4本の周方向溝10、12、14、16により、3本のリブ20、22、24がトレッド部28のセンター領域に区画され、また、左右一対のリブ30、32がトレッド部28のショルダー領域に区画された空気入りタイヤ34の例で説明する。なお、本実施形態では、3本のリブのうち中央のリブ20はタイヤ赤道面CLが通過している。   Hereinafter, in the present embodiment, three ribs 20, 22, 24 are partitioned by the four circumferential grooves 10, 12, 14, 16 into the center region of the tread portion 28, and a pair of left and right ribs 30, An example of a pneumatic tire 34 in which 32 is partitioned into a shoulder region of the tread portion 28 will be described. In the present embodiment, the tire equatorial plane CL passes through the central rib 20 among the three ribs.

図1、図2に示すように、タイヤ幅方向断面では、リブ22の踏面23が凸形状である。そして、踏面23の頂点23pと踏面23の車両装着内側端23iとのタイヤ径方向の高さ差(タイヤ径方向落ち高さ)をhi、踏面23の頂点23pと踏面23の車両装着外側端23oとのタイヤ径方向の高さ差をhoとすると、hi>ho の関係が満たされている。なお、踏面23の車両装着内側端23iは周方向溝10の車両装着外側の幅方向端(すなわち周方向溝10の車両装着外側端10o)と踏面23との交点であるとも言え、踏面23の車両装着外側端23oは周方向溝14の車両装着内側の幅方向端(すなわち周方向溝14の車両側着内側端14i)と踏面23との交点であるとも言える。   As shown in FIGS. 1 and 2, the tread surface 23 of the rib 22 has a convex shape in the cross section in the tire width direction. Then, the difference in height in the tire radial direction between the vertex 23p of the tread 23 and the vehicle mounting inner end 23i of the tread 23 (tire radial drop height) is hi, and the vehicle mounting outer end 23o of the tread 23p and the tread 23 is the vehicle mounting outer end 23o. If the difference in height in the tire radial direction with respect to is ho, the relationship of hi> ho is satisfied. Note that the vehicle mounting inner end 23i of the tread 23 can be said to be an intersection of the widthwise end of the circumferential groove 10 on the outer side of the vehicle mounting (that is, the vehicle mounting outer end 10o of the circumferential groove 10) and the tread 23. It can be said that the vehicle mounting outer end 23 o is an intersection of the widthwise end of the circumferential groove 14 on the vehicle mounting inner side (that is, the vehicle side wearing inner end 14 i of the circumferential groove 14) and the tread surface 23.

また、周方向溝のうちリブ22の車両装着内側(IN側)に隣接する周方向溝10(以下、内側周方向溝10という)の車両装着外側端10oを通過してタイヤ径方向Dに延びる幅方向端仮想直線をlo、内側周方向溝10の車両装着内側端10iを通過してタイヤ径方向Dに延びる幅方向端仮想直線をliとする。そして、loとliとの中間位置を通過してタイヤ径方向Dに延びる中間位置仮想直線をlcとし、lcに直交し内側周方向溝10の最深位置10qを通過する最深仮想直線をlbとする。そして、lo、lc、lbによって囲まれるリブ断面積をSioとし、li、lc、lbによって囲まれるリブ断面積をSiiとする。また、周方向溝のうちリブ22の車両装着外側(OUT側)に隣接する周方向溝14(以下、外側周方向溝14という)に関し、Siiを示す領域に対応する領域のリブ断面積をSoiとすると、Soi<Sioの関係が満たされている。   Further, the circumferential groove 10 extends in the tire radial direction D through the vehicle mounting outer end 10o of the circumferential groove 10 adjacent to the vehicle mounting inner side (IN side) of the rib 22 (hereinafter referred to as the inner circumferential groove 10). Let the width direction virtual imaginary straight line be lo, and let the width direction virtual imaginary straight line that extends in the tire radial direction D through the vehicle wearing inner edge 10i of the inner circumferential groove 10 be li. An intermediate position imaginary straight line passing through an intermediate position between lo and li and extending in the tire radial direction D is defined as lc, and a deepest imaginary straight line orthogonal to lc and passing through the deepest position 10q of the inner circumferential groove 10 is defined as lb. . A rib cross-sectional area surrounded by lo, lc and lb is Sio, and a rib cross-sectional area surrounded by li, lc and lb is Sii. In addition, regarding the circumferential groove 14 (hereinafter referred to as the outer circumferential groove 14) adjacent to the vehicle mounting outside (OUT side) of the rib 22 among the circumferential grooves, the rib cross-sectional area of the region corresponding to the region indicating Sii is represented by Soi. Then, the relationship of Soi <Sio is satisfied.

更に、本実施形態では、内側周方向溝10において、Sio>Siiの関係が満たされている。なお、外側周方向溝14に関し、Sioを示す領域に対応する領域のリブ断面積をSooとすると、本実施形態ではSoi<Sooの関係が満たされている。   Further, in the present embodiment, the relationship of Sio> Sii is satisfied in the inner circumferential groove 10. Regarding the outer circumferential groove 14, assuming that the rib cross-sectional area of the region corresponding to the region indicating Sio is Soo, the relationship of Soi <Soo is satisfied in this embodiment.

また、本実施形態では、タイヤ幅方向断面では、内側周方向溝10は、溝底面10bと、溝壁面10wと、両者を繋ぐ溝底角部にあたる円弧部10rとを有する。そして、円弧部10rを、溝断面において車両装着外側の外側円弧部10or、車両装着内側の内側円弧部10irとしたとき、外側円弧部10orの最小曲率半径をR1、内側円弧部10irの最小曲率半径をR2とすると、R1>R2 の関係が満たされている。ここで最小の曲率半径とした理由としては、この円弧部10rは1つの円弧で形成されても、複数の円弧が連続的に連なって形成されてもよいためである。   In the present embodiment, in the tire width direction cross section, the inner circumferential groove 10 has a groove bottom surface 10b, a groove wall surface 10w, and a circular arc portion 10r corresponding to a groove bottom corner that connects the two. When the circular arc portion 10r is an outer circular arc portion 10or outside the vehicle mounting and an inner circular arc portion 10ir inside the vehicle mounting in the groove cross section, the minimum curvature radius of the outer circular arc portion 10or is R1, and the minimum curvature radius of the inner circular arc portion 10ir. When R2 is R2, the relationship of R1> R2 is satisfied. Here, the reason why the radius of curvature is the minimum is that the arc portion 10r may be formed by one arc or a plurality of arcs continuously connected.

また、本実施形態では、内側周方向溝10の車両装着外側端10oでの溝壁面10wとloとのなす角度をα、内側周方向溝10の車両装着内側端10iでの溝壁面10wとliとのなす角度をβとすると、α>β の関係が満たされている。   Further, in the present embodiment, the angle formed by the groove wall surface 10w and lo at the vehicle mounting outer end 10o of the inner circumferential groove 10 is α, and the groove wall surface 10w and li at the vehicle mounting inner end 10i of the inner circumferential groove 10 is li. If the angle formed by β is β, the relationship α> β is satisfied.

更には、車両装着外側の溝壁角(α)は、車両装着内側の溝壁角(β)+2°〜30°の範囲であることが望ましい。2度未満だと操縦安定性、排水性の最適バランスを達成しにくく、30度を超えると溝内で左右のバランスが悪化する可能性があるためであり、上記範囲とすることで操縦安定性、排水性を高いレベルにすることができる。   Furthermore, it is desirable that the groove wall angle (α) on the vehicle mounting outer side is in the range of the groove wall angle (β) on the vehicle mounting inner side + 2 ° to 30 °. If it is less than 2 degrees, it is difficult to achieve the optimum balance between steering stability and drainage, and if it exceeds 30 degrees, the left and right balance may deteriorate in the groove. , Drainage can be at a high level.

具体的には、車両装着内側の溝壁角(β)を例えば10°とした場合には、車両装着外側の溝壁角(α)は12°〜40°とするとよい。なお、好ましくは+2〜10°の範囲とする。   Specifically, when the groove wall angle (β) on the vehicle mounting inner side is set to 10 °, for example, the groove wall angle (α) on the vehicle mounting outer side is preferably set to 12 ° to 40 °. In addition, Preferably it is set as the range of + 2-10 degrees.

(作用、効果)
以下、本実施形態の作用、効果を説明する。本実施形態では、リブ22の踏面23の落ち高さhi、hoに関し、車両装着外側の落ち高さ(タイヤ径方向の高さ差)hoを車両装着内側の落ち高さhiよりも小さくしたので、旋回時に水膜が接地面と踏面23との間に浸入し易い車両装着外側からの浸入を抑えつつもリブ中央付近での接地圧を有効に向上させ、操縦安定性を向上させることができる。
(Function, effect)
Hereinafter, the operation and effect of the present embodiment will be described. In the present embodiment, with respect to the drop heights hi and ho of the tread 23 of the rib 22, the drop height (the difference in height in the tire radial direction) ho on the outside of the vehicle is made smaller than the drop height hi on the inside of the vehicle. In addition, it is possible to effectively improve the contact pressure near the center of the ribs and improve the handling stability while suppressing the intrusion from the outside of the vehicle mounting where the water film easily enters between the contact surface and the tread surface 23 when turning. .

また、旋回時(コーナーリング時)には、各リブの車両装着外側に車両装着内側よりも大きな横力が作用する。本実施形態では、α>β の関係が満たされているので、各リブの車両装着外側の溝壁面のほうが車両装着内側の溝壁面に比べ、タイヤ径方向と平行に近くなる(すなわち、タイヤ径方向となす角度が小さい)。これにより、旋回時の横力によるリブ変形を効果的に抑えることができる。   Also, during turning (cornering), a greater lateral force acts on the outer side of each rib mounted on the vehicle than on the inner side of the vehicle. In this embodiment, since the relationship of α> β is satisfied, the groove wall surface on the vehicle mounting outer side of each rib is closer to the tire radial direction than the groove wall surface on the vehicle mounting inner side (that is, the tire diameter). Small angle with the direction). Thereby, the rib deformation by the lateral force at the time of turning can be suppressed effectively.

そして、操縦安定性を向上させるために単に落ち高さをこのようにしただけではリブ22の剛性バランスがリブ幅方向W(タイヤ幅方向)で異なり、偏摩耗等の懸念にもなり得るが、本実施形態では、リブ剛性が弱い車両装着内側の周方向溝10(内側周方向溝10)側でのリブ断面積Sioと、リブ剛性が強い車両装着外側の周方向溝14(外側周方向溝14)側でのリブ断面積Soiとが、Soi<Sio の関係を満たしており、両周方向溝側でのリブ22の剛性差を縮めるようにリブ剛性のバランスを図っている。   And by simply doing the drop height in this way to improve steering stability, the rigidity balance of the ribs 22 differs in the rib width direction W (tire width direction), which may be a concern for uneven wear, In the present embodiment, the rib cross-sectional area Sio on the vehicle-mounted inner circumferential groove 10 (inner circumferential groove 10) side with weak rib rigidity and the vehicle-mounted outer circumferential groove 14 (outer circumferential groove with strong rib rigidity). The rib cross-sectional area Soi on the 14) side satisfies the relationship Soi <Sio, and the rib rigidity is balanced so as to reduce the difference in rigidity between the ribs 22 on both circumferential grooves.

従って、ドライ路面での操縦安定性やウェット路面での旋回時の操縦安定性と、耐偏摩耗性とを両立させた空気入りタイヤ34とすることができる。   Therefore, the pneumatic tire 34 can achieve both steering stability on a dry road surface, steering stability when turning on a wet road surface, and uneven wear resistance.

また、本実施形態では、Sio>Siiの関係が満たされている。内側周方向溝10において両側のリブ断面積を増やすと(すなわち、Sio、Siiの両者とも増やすと)排水性が低下する懸念があるが、高めの接地圧を維持させたい側のみのリブ断面積Sioを増大させることで、排水性も容易に高いレベルに維持することができる。外側周方向溝14に関しても同様のことが言える。   In the present embodiment, the relationship of Sio> Sii is satisfied. If the rib cross-sectional areas on both sides of the inner circumferential groove 10 are increased (that is, if both Sio and Sii are increased), there is a concern that the drainage performance is lowered, but the rib cross-sectional area only on the side where higher ground pressure is desired to be maintained. By increasing Sio, the drainage can be easily maintained at a high level. The same can be said for the outer circumferential groove 14.

また、車両装着外側の外側円弧部10orの最小曲率半径をR1、車両装着内側の内側円弧部10irの最小曲率半径をR2とすると、R1>R2 の関係が満たされている。すなわち、車両装着外側の最小曲率半径を車両側着内側に比べて大きくすることによって、Sio>Siiの関係を簡単に満たすことができている。また、仮に、溝底の角部に相当する外側円弧部10orおよび内側円弧部10irの両方の曲率半径を大きくすると、その分、溝の内側にせり出すため溝断面積の低下、即ち排水性の低下につながるが、本実施形態では、R1(外側円弧部10orの最小曲率半径)のみを比較的大きくしているので、排水性の低下を抑制しつつ、操縦安定性を高いレベルに維持することができる。   Further, the relationship of R1> R2 is satisfied, where R1 is the minimum radius of curvature of the outer arcuate portion 10or outside the vehicle and R2 is the minimum radius of curvature of the inner arcuate portion 10ir inside the vehicle. That is, the relationship of Sio> Sii can be easily satisfied by increasing the minimum radius of curvature on the vehicle-mounted outer side as compared with that on the vehicle-side inner side. Further, if the curvature radii of both the outer arc portion 10or and the inner arc portion 10ir corresponding to the corners of the groove bottom are increased, the groove protrudes to the inside of the groove, so that the groove cross-sectional area decreases, that is, the drainage performance decreases. However, in this embodiment, only R1 (the minimum radius of curvature of the outer circular arc portion 10or) is relatively large, so that it is possible to maintain the steering stability at a high level while suppressing a decrease in drainage. it can.

また、内側周方向溝10の車両装着外側端10oでの溝壁面10wとloとのなす角度をα、内側周方向溝10の車両装着内側端23iでの溝壁面10wとliとのなす角度をβとすると、α>β の関係が満たされている。   In addition, the angle formed by the groove wall surface 10w and lo at the vehicle mounting outer end 10o of the inner circumferential groove 10 is α, and the angle formed by the groove wall surface 10w and li at the vehicle mounting inner end 23i of the inner circumferential groove 10 is α. Assuming β, the relationship α> β is satisfied.

外側円弧部10orと内側円弧部10irとが非対称であると曲率小側に歪が集中しやすくなり、グルーブクラック等の懸念が生じる。本実施形態では、車両装着外側の溝壁角(α)>車両装着内側の溝壁角(β)の関係を満たしている、すなわち、曲率半径が小さい側である車両装着外側の溝壁角βが、曲率半径の大きい側である車両装着内側の溝壁角αよりも小さいので、旋回時に、曲率半径が小さい側である車両装着外側のリブ変形を効果的に抑制することができ、局所的な歪集中を効果的に回避することができる。   If the outer circular arc portion 10or and the inner circular arc portion 10ir are asymmetric, distortion tends to be concentrated on the small curvature side, which may cause a groove crack or the like. In this embodiment, the groove wall angle (α) on the vehicle mounting outer side satisfies the relationship of the groove wall angle (β) on the vehicle mounting inner side, that is, the groove wall angle β on the vehicle mounting outer side on the side having a smaller curvature radius. However, since it is smaller than the groove wall angle α on the vehicle mounting inner side which is the side with the larger radius of curvature, it is possible to effectively suppress the rib deformation on the outer side of the vehicle mounting on the side with the smaller curvature radius when turning. Strain concentration can be effectively avoided.

さらに、溝中心に対し左右の剛性バランスも均一化する方向となるため、操縦安定性を確保しつつ、排水性、溝底クラック性などを高いレベルで両立することができる。   Furthermore, since the rigidity balance on the left and right sides becomes uniform with respect to the groove center, it is possible to achieve both high drainage and groove bottom cracking properties while ensuring steering stability.

また、αがβ+2°未満である場合には操縦安定性と排水性の最適バランスを達成し難いという不都合があり、αがβ+30°を超えると溝内の左右のバランスが悪化する可能性がある。本実施形態では、αをβ+2°〜30°の範囲としているので、操縦安定性と排水性とを高いレベルで保持することができる。   Further, when α is less than β + 2 °, there is a disadvantage that it is difficult to achieve the optimum balance between steering stability and drainage, and when α exceeds β + 30 °, the right and left balance in the groove may be deteriorated. . In the present embodiment, since α is in the range of β + 2 ° to 30 °, steering stability and drainage can be maintained at a high level.

なお、外側円弧部10orの(最小曲率半径)R1は、内側円弧部10irの最小曲率半径R2の3倍以下であることが望ましい。3倍を超えると溝内の左右バランスが悪化するが3倍以内であれば操縦安定性への影響が少ないためである。外側周方向溝14も、内側周方向溝10と同様の構造である。   The (minimum curvature radius) R1 of the outer arc portion 10or is desirably three times or less than the minimum curvature radius R2 of the inner arc portion 10ir. If it exceeds 3 times, the left-right balance in the groove deteriorates, but if it is within 3 times, the influence on the steering stability is small. The outer circumferential groove 14 has the same structure as the inner circumferential groove 10.

また、外側円弧部10orの最小曲率半径(R1)は、3mm〜12mmとするとよい。これは、R1が3mmより小さいと操縦安定性の確保が難しくなり、また、12mmより大きいと断面積が減少し、排水性に影響を及ぼすためである。   The minimum radius of curvature (R1) of the outer arc portion 10or is preferably 3 mm to 12 mm. This is because if R1 is smaller than 3 mm, it is difficult to ensure steering stability, and if it is larger than 12 mm, the cross-sectional area is reduced, affecting drainage.

また、内側円弧部10irの最小曲率半径(R2)は、2mm〜6mmとするとよい。これは、R2が2mmより小さいとクラック性が低下し、6mmより大きいと排水性に影響を及ぼすためである。   The minimum radius of curvature (R2) of the inner arc portion 10ir is preferably 2 mm to 6 mm. This is because if R2 is smaller than 2 mm, the cracking property is lowered, and if it is larger than 6 mm, the drainage property is affected.

また、α(車両装着外側の溝壁角)およびβ(車両装着内側の溝壁角)は、0〜30°以内であることが望ましい。   Also, α (groove wall angle on the vehicle mounting outer side) and β (groove wall angle on the vehicle mounting inner side) are preferably within 0 to 30 °.

また、hi/ho < Sio/Soi の関係を満たすことが、最適バランスの観点で好ましい。また、Sio/Soiは2以上6以下の範囲であることが好ましい。   Moreover, satisfying the relationship of hi / ho <Sio / Soi is preferable from the viewpoint of optimum balance. In addition, Sio / Soi is preferably in the range of 2 to 6.

また、図2に示したように、踏面23の頂点23pが、リブ幅方向Wにおいて車両装着外側に偏在することが好ましい。これによって、接地面と踏面23との間に水膜が浸入することをより防ぐことができ、ウェット路面での旋回時の操縦安定性が更に向上する。   Further, as shown in FIG. 2, it is preferable that the apex 23p of the tread surface 23 is unevenly distributed on the vehicle mounting outer side in the rib width direction W. As a result, it is possible to further prevent the water film from entering between the ground contact surface and the tread surface 23, and to further improve the steering stability when turning on a wet road surface.

また、hi/hoは、1.0より大きく3.5以下の範囲であることが好ましい。   Hi / ho is preferably in the range of more than 1.0 and 3.5 or less.

以上の説明では、リブ22およびそれに隣接する周方向溝10(内側周方向溝)および周方向溝14(外側周方向溝)について詳細に述べたが、これら以外のリブおよび周方向溝についても同様の構成にされていることが好ましい。また、陸部としてリブに代えてブロックが配置されたタイヤであっても同様である。   In the above description, the rib 22 and the circumferential groove 10 (inner circumferential groove) and the circumferential groove 14 (outer circumferential groove) adjacent thereto are described in detail, but the same applies to other ribs and circumferential grooves. It is preferable that it is set as this structure. The same applies to a tire in which blocks are arranged instead of ribs as land portions.

更には、ショルダー陸部(ショルダーリブ)よりタイヤ幅方向内側の全陸部において、リブ22と同様の条件、すなわち、hi>ho、Soi<Sioなどの関係が満たされていることが好ましい。この場合、車両装着外側の陸部ほどhoが小さくなるように、各陸部の寸法が調整されていることが更に好ましい。   Furthermore, it is preferable that conditions similar to those of the rib 22, that is, relationships such as hi> ho and Soi <Sio are satisfied in the entire land portion on the inner side in the tire width direction from the shoulder land portion (shoulder rib). In this case, it is more preferable that the dimensions of each land portion are adjusted so that the ho becomes smaller toward the land portion outside the vehicle.

10…周方向溝、内側周方向溝(周方向溝)、10b…溝底面、10w…溝壁面、10r…円弧部、10or…外側円弧部、10ir…内側円弧部、12…周方向溝、14…周方向溝、外側周方向溝(周方向溝)、16…周方向溝、20…リブ(陸部)、22…リブ(陸部)、23…踏面、23p…頂点、23i…車両装着内側端、23o…車両装着外側端、24…リブ(陸部)、28…トレッド部、34…空気入りタイヤ、D…タイヤ径方向 DESCRIPTION OF SYMBOLS 10 ... Circumferential groove, inner circumferential groove (circumferential groove), 10b ... groove bottom surface, 10w ... groove wall surface, 10r ... arc portion, 10or ... outer arc portion, 10ir ... inner arc portion, 12 ... circumferential groove, 14 ... circumferential groove, outer circumferential groove (circumferential groove), 16 ... circumferential groove, 20 ... rib (land portion), 22 ... rib (land portion), 23 ... tread surface, 23p ... apex, 23i ... vehicle mounting inside End, 23o ... Outer end of vehicle mounting, 24 ... Rib (land portion), 28 ... Tread portion, 34 ... Pneumatic tire, D ... Tire radial direction

Claims (11)

周方向溝に挟まれた陸部をタイヤ踏面側に有する空気入りタイヤであって、
タイヤ幅方向断面では、
前記陸部の踏面が凸形状であり、
前記踏面の頂点と前記踏面の車両装着内側端とのタイヤ径方向の高さ差をhi、前記踏面の頂点と前記踏面の車両装着外側端とのタイヤ径方向の高さ差をhoとすると、
ho<hi
の関係を満たし、
前記周方向溝のうち前記陸部の車両装着内側に隣接する内側周方向溝の車両装着外側端を通過してタイヤ径方向に延びる幅方向端仮想直線をlo、前記内側周方向溝の車両装着内側端を通過してタイヤ径方向に延びる幅方向端仮想直線をliとし、loとliとの中間位置を通過してタイヤ径方向に延びる中間位置仮想直線をlcとし、lcに直交し前記内側周方向溝の最深位置を通過する最深仮想直線をlbとし、lo、lc、lbによって囲まれる陸部断面積をSioとし、li、lc、lbによって囲まれる陸部断面積をSiiとし、前記周方向溝のうち前記陸部の車両装着外側に隣接する外側周方向溝に関しSiiを示す領域に対応する領域の陸部断面積をSoiとすると、
Soi<Sio
の関係を満たす、空気入りタイヤ。
A pneumatic tire having a land portion sandwiched between circumferential grooves on the tire tread side,
In the tire width direction cross section,
The land surface has a convex shape,
If the height difference in the tire radial direction between the apex of the tread and the vehicle mounting inner end of the tread is hi, and the height difference in the tire radial direction between the apex of the tread and the vehicle mounting outer end of the tread is ho,
ho <hi
Satisfy the relationship
Of the circumferential grooves, the width direction end imaginary straight line extending in the tire radial direction through the vehicle mounting outer end of the inner circumferential groove adjacent to the vehicle mounting inner side of the land portion is lo, the vehicle mounting of the inner circumferential groove An imaginary straight line in the width direction extending in the tire radial direction passing through the inner end is defined as li, an imaginary straight line extending in the tire radial direction passing through an intermediate position between lo and li is defined as lc, and orthogonal to lc. The deepest virtual straight line passing through the deepest position of the circumferential groove is lb , the land section area surrounded by lo, lc, lb is Sio, the land section area surrounded by li, lc, lb is Sii, Of the directional grooves, the land cross-sectional area of the region corresponding to the region indicating Sii with respect to the outer circumferential groove adjacent to the vehicle-mounted outer side of the land portion is defined as Soi.
Soi <Sio
Pneumatic tire that satisfies the relationship.
Sio>Sii
の関係を満たす、請求項1に記載の空気入りタイヤ。
Sio> Sii
The pneumatic tire according to claim 1, wherein the relationship is satisfied.
hi/hoは、1.0より大きく3.5以下の範囲である、請求項1または2に記載の空気入りタイヤ。   The pneumatic tire according to claim 1 or 2, wherein hi / ho is in a range of greater than 1.0 and not greater than 3.5. タイヤ幅方向断面では、前記内側周方向溝および前記外側周方向溝は、何れも、溝底面と、溝壁面と、両者を繋ぐ溝底角部にあたる円弧部とを有し、
該円弧部を、溝断面において車両装着外側の外側円弧部、車両装着内側の内側円弧部としたとき、外側円弧部の最小曲率半径をR1、内側円弧部の最小曲率半径をR2とすると、
R1>R2
の関係を満たす、請求項3に記載の空気入りタイヤ。
In the tire width direction cross section, each of the inner circumferential groove and the outer circumferential groove has a groove bottom surface, a groove wall surface, and an arc portion corresponding to a groove bottom corner portion connecting both,
When the arc portion is an outer arc portion outside the vehicle mounting and an inner arc portion inside the vehicle mounting in the groove cross section, the minimum radius of curvature of the outer arc portion is R1, and the minimum radius of curvature of the inner arc portion is R2.
R1> R2
The pneumatic tire according to claim 3, satisfying the relationship:
R1は、R2の3倍以下である、請求項4に記載の空気入りタイヤ。   The pneumatic tire according to claim 4, wherein R1 is three times or less of R2. 前記内側周方向溝の車両装着外側端での溝壁面と前記loとのなす角度をα、前記内側周方向溝の車両装着内側端での溝壁面とliとのなす角度をβとすると、
α>β
の関係を満たす、請求項4または5に記載の空気入りタイヤ。
The angle formed by the groove wall surface at the vehicle mounting outer end of the inner circumferential groove and the lo is α, and the angle formed by the groove wall surface at the vehicle mounting inner end of the inner circumferential groove and li is β,
α> β
The pneumatic tire according to claim 4 or 5, satisfying the relationship:
αは、β+2°〜30°の範囲である、請求項6に記載の空気入りタイヤ。   The pneumatic tire according to claim 6, wherein α is in a range of β + 2 ° to 30 °. hi/ho < Sio/Soi
の関係を満たす、請求項1〜7の何れか1項に記載の空気入りタイヤ。
hi / ho <Sio / Soi
The pneumatic tire according to any one of claims 1 to 7, satisfying the relationship:
前記踏面の頂点が、陸部幅方向において車両装着外側に偏在する、請求項1〜8の何れか1項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 8, wherein an apex of the tread surface is unevenly distributed on a vehicle mounting outer side in a land portion width direction. 前記陸部として適用されるタイヤ陸部は、ショルダー陸部よりタイヤ幅方向内側の全陸部である、請求項1〜9の何れか1項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 9, wherein the tire land portion applied as the land portion is a whole land portion on the inner side in the tire width direction from the shoulder land portion. 車両装着外側の陸部ほどhoが小さくなるように、各陸部の寸法が調整されている、請求項10に記載の空気入りタイヤ。   The pneumatic tire according to claim 10, wherein the dimensions of each land portion are adjusted so that ho becomes smaller toward a land portion outside the vehicle.
JP2014249832A 2014-12-10 2014-12-10 Pneumatic tire Active JP6417200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249832A JP6417200B2 (en) 2014-12-10 2014-12-10 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249832A JP6417200B2 (en) 2014-12-10 2014-12-10 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2016107934A JP2016107934A (en) 2016-06-20
JP6417200B2 true JP6417200B2 (en) 2018-10-31

Family

ID=56121749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249832A Active JP6417200B2 (en) 2014-12-10 2014-12-10 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6417200B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029216A (en) * 2000-07-19 2002-01-29 Bridgestone Corp Pneumatic tire and mounting method for it
JP4973708B2 (en) * 2009-09-11 2012-07-11 横浜ゴム株式会社 Pneumatic tire
JP5454336B2 (en) * 2010-04-28 2014-03-26 横浜ゴム株式会社 Pneumatic tire
JP6094249B2 (en) * 2013-02-15 2017-03-15 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2016107934A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
US10500904B2 (en) Tire
KR101851021B1 (en) Pneumatic tire
US10696101B2 (en) Pneumatic tire
JP6287554B2 (en) Pneumatic tire
JP2016113003A (en) Pneumatic tire
RU2607491C1 (en) Pneumatic tyre
JP6121143B2 (en) Pneumatic tire
JP2016013820A (en) Pneumatic tire
WO2014077271A1 (en) Pneumatic tire
JP6671874B2 (en) Tires for construction vehicles
KR20180089294A (en) Tire
JP7125283B2 (en) pneumatic tire
WO2015178152A1 (en) Pneumatic tire
WO2013088726A1 (en) Pneumatic tire
JP5513065B2 (en) tire
JP2011183993A (en) Pneumatic tire
JP2013244854A (en) Pneumatic tire
JP2009202639A (en) Pneumatic tire
JP6417200B2 (en) Pneumatic tire
JP5520186B2 (en) Pneumatic tire
JP2008189042A (en) Tire for motorcycle
JP5945207B2 (en) Motorcycle tires
JP6158594B2 (en) tire
JP7087890B2 (en) tire
JP6138567B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181005

R150 Certificate of patent or registration of utility model

Ref document number: 6417200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250