JP6413177B2 - 車両用クラッチ制御システム - Google Patents

車両用クラッチ制御システム Download PDF

Info

Publication number
JP6413177B2
JP6413177B2 JP2014254386A JP2014254386A JP6413177B2 JP 6413177 B2 JP6413177 B2 JP 6413177B2 JP 2014254386 A JP2014254386 A JP 2014254386A JP 2014254386 A JP2014254386 A JP 2014254386A JP 6413177 B2 JP6413177 B2 JP 6413177B2
Authority
JP
Japan
Prior art keywords
clutch
engine
side portion
rotational speed
driven side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014254386A
Other languages
English (en)
Other versions
JP2016114190A5 (ja
JP2016114190A (ja
Inventor
賢吾 南
賢吾 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2014254386A priority Critical patent/JP6413177B2/ja
Priority to EP15200051.9A priority patent/EP3048323B1/en
Priority to US14/970,426 priority patent/US9637130B2/en
Priority to ES15200051.9T priority patent/ES2641721T3/es
Publication of JP2016114190A publication Critical patent/JP2016114190A/ja
Publication of JP2016114190A5 publication Critical patent/JP2016114190A5/ja
Application granted granted Critical
Publication of JP6413177B2 publication Critical patent/JP6413177B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0283Clutch input shaft speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/065Idle condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30401On-off signal indicating the engage or disengaged position of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3114Vehicle wheels
    • F16D2500/3115Vehicle wheel speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70404Force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70408Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70438From the output shaft
    • F16D2500/7044Output shaft torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

この発明は、エンジンから車輪までの動力伝達経路にクラッチおよびトランスミッションが配置された車両において用いることができるクラッチ制御システムに関する。
特許文献1は、自動車用自動変速装置を開示している。この自動変速装置は、下り坂では、クラッチを直ちにつないで惰性により車速が増加することを防止する。また、この自動変速装置は、上り坂では、エンジン出力を高めに保ちつつ、クラッチを滑らせながら徐々に接合する。それによって、エンジン回転の低下を防止しながらクラッチが接合される。
特許文献2は、車両のためのクラッチ制御装置を開示している。このクラッチ制御装置は、クラッチ断状態で車速が一定値以上になったときにクラッチを接続することにより、空走状態(惰行状態)の車両にエンジンブレーキをかけて減速する。車速は、アウトプットシャフト回転センサの出力信号から求められる。アウトプットシャフト回転センサは、変速機のアウトプットシャフトの回転を検知する
特許文献3は、車両のためのクラッチの制御を開示している。この制御では、機関回転数、変速機入力側回転数およびスロットルバルブ位置に基づいて目標クラッチトルクが算出される。そして、その目標クラッチトルクに基づいてクラッチアクチュエータが制御される。より具体的には、機関回転数および変速機入力側回転数に基づいて、暫定目標クラッチトルクが算出される。一方、変速機入力側回転数およびスロットルバルブ位置に基づいて目標機関回転数が算出される。実際の機関回転数が目標機関回転数を下回っていればクラッチを開方向に移動調節するように暫定目標クラッチトルクを補正して目標クラッチトルクが算出される。実際の機関回転数が目標機関回転数を上回っていればクラッチを閉鎖方向に移動調節するように暫定目標クラッチトルクを補正して目標クラッチトルクが算出される。
実開平3−69537号公報 特開2002−21884号公報 特開平11−132262号公報
この発明の発明者は、上り坂で前進ギヤのまま重力を利用して後退する場合、および下り坂で後進ギヤのまま重力を利用して前進する場合について考察した。
しかし、特許文献1,2,3のいずれにも、このような場合についての具体的な言及はない。
たとえば、特許文献1の先行技術では、上り坂においては、車速の減少に伴って、エンジン出力が高められたうえでクラッチが接合され、前進方向への推進力が高められる。したがって、前進ギヤのまま、重力を利用して車両を後退させることはできない。
また、特許文献2の先行技術では、上り坂でクラッチが切断され、それに伴って重力により車両が後退し始めると、車速が一定値以上となって、クラッチが接続される。しかし、前進ギヤが選択されている場合には、クラッチのエンジン側部材と車輪側部材との回転方向が反対であるので、エンジンストールが生じるおそれがある。したがって、前進ギヤのまま車両を後退させることはできない。なお、アウトプットシャフト回転センサとして、アウトプットシャフトの回転量を検出し、回転方向は検出しない安価な回転センサが用いられるのが通常である。したがって、車両が後退すると、アウトプットシャフト回転センサの出力に基づいて算出される車速が増加する。
特許文献3の先行技術では、上り坂でクラッチが切断されて車両が後退し始めることによって車速(後退方向の車速)が増加すると、クラッチよりも動力伝達経路下流に位置する変速機入力側回転数が増加する。すると、実際の機関回転数がそのままで目標機関回転数が高くなるので、クラッチが開方向に移動調節される。したがって、エンジンブレーキは利用できないが、上り坂で重力を利用して車両を後退させることは可能である。ところが、特許文献3の先行技術では、下り坂を下る(前進する)ときにも、実際の機関回転数がそのままで目標機関回転数が高くなるので、エンジンブレーキを利用することができない。
そこで、この発明の一実施形態は、トランスミッションのギヤ位置と車両の進行方向とが整合しているときにはエンジンブレーキを利用できる一方で、トランスミッションのギヤ位置と車両の進行方向とが整合していないときには、坂道において、重力を利用して車両を移動させることができる車両用クラッチ制御システムを提供する。
また、この発明の一実施形態は、トランスミッションのギヤ位置と車両の進行方向とが整合しているか否かにかかわらずに、エンジンブレーキを利用することができる車両用クラッチ制御システムを提供する。
この発明の一実施形態は、エンジンから車輪までの動力伝達経路にクラッチおよびトランスミッションが配置された車両のためのクラッチ制御システムを提供する。前記クラッチは、前記動力伝達経路上において前記エンジン側および前記車輪側にそれぞれ配置された駆動側部および被駆動側部を有し、クラッチアクチュエータによって前記駆動側部および前記被駆動側部の間を接続および切断するように構成されている。前記トランスミッションは、前記エンジンの駆動力を前記車輪の前進方向の回転力に変換する前進ギヤ位置と、前記エンジンの駆動力を前記車輪の後進方向の回転力に変換する後進ギヤ位置とを含む複数のギヤ位置を選択可能に構成されている。前記クラッチ制御システムは、前記クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、前記エンジンのアイドル回転速度に相当する値よりも低い値を、アクセル全閉に対応する目標回転速度として設定する目標回転速度設定ユニットと、前記駆動側回転速度が前記目標回転速度に対して高ければ、前記クラッチの駆動側部および被駆動側部の互いの押圧力を強め、前記駆動側回転速度が前記目標回転速度に対して低ければ前記押圧力を弱めるように前記クラッチアクチュエータを制御するようにプログラムされた半クラッチ制御ユニットと、前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件のうちの少なくともいずれか一方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットとを含む。
クラッチは、切断状態、接続状態および半クラッチ状態をとることができる。切断状態では、駆動側部および被駆動側部の間が切断され、それらの間でトルクが伝達されない。接続状態では、駆動側部および被駆動側部が滑り無く結合して、それらの間でトルクが伝達される。半クラッチ状態は、接続状態と切断状態との間の中間状態である。半クラッチ状態では、駆動側部と被駆動側部とが互いに滑り接触(摺接)し、それらの間でトルクが部分的に伝達される。
クラッチが切断状態のとき、車輪とエンジンとの間の動力伝達経路が遮断されるので、車両は惰行(coasting)することができる。惰行とは、動力伝達経路が遮断されている状態で車両が走行することである。車両が惰行するとき、通常は、アクセル全閉である。
上記の実施形態では、車両の惰行によって、被駆動側回転速度が駆動側回転速度よりも大きくなる第1条件、および被駆動側回転速度が所定値以上となる第2条件のうちの一方または両方が充足されると、半クラッチ制御が開始される。半クラッチ制御では、駆動側回転速度が目標回転速度よりも高ければ駆動側部および被駆動側部の互いの押圧力が強められる。一方、駆動側回転速度が目標回転速度よりも低ければ、その押圧力が弱められる。押圧力の制御は、クラッチアクチュエータの制御により達成される。したがって、クラッチアクチュエータを制御することにより、駆動側回転速度が目標回転速度に導かれる。アクセル全閉に対する目標回転速度は、アイドル回転速度相当値よりも低い値に設定される。
トランスミッションのギヤ位置が前進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で、車両が下り坂を下る(前進する)場合を考える。車速の増加に伴って、被駆動側回転速度が上昇すると、半クラッチ制御が開始される。車両に働く重力によって、被駆動側部から駆動側部へと駆動側部の回転を促進するトルクが伝えられる。それにより、駆動側回転速度が目標回転速度よりも高い状態が継続するので、クラッチは、半クラッチ状態を経て速やかに接続状態へと至る。接続状態では、アクセル全閉状態のエンジンが、車輪の前進回転を抑制する制動力を発生する。したがって、エンジンブレーキを効かせつつ、重力を利用して、前進して下り坂を下ることができる。
トランスミッションのギヤ位置が後進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で車両が上り坂を下る(後退する)場合の動作も同様である。すなわち、半クラッチ状態では、エンジンの回転を促進するトルクが被駆動側部から駆動側部に伝えられるので、クラッチは、速やかに接続状態に至る。それにより、エンジンブレーキを効かせながら、重力を利用して上り坂を後退して下ることができる。
次に、トランスミッションのギヤ位置が前進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で車両が上り坂を下る(後退する)場合を考える。車速の増加に伴って、被駆動側回転速度が上昇すると、半クラッチ制御が開始される。車両に働く重力によって、被駆動側部から駆動側部へトルクが伝えられる。しかし、前進ギヤ位置で車両が後退しているので、伝達されるトルクは、エンジンの回転を停止させようとする方向のトルクである。そのため、駆動側回転速度が目標回転速度よりも低い状態に至り、それに応じて、駆動側部と被駆動側部との間の押圧力を弱めるようにクラッチアクチュエータが制御される。押圧力が弱められることにより、駆動側部と被駆動側部との間で伝達されるトルクが小さくなる。すると、エンジン回転速度が増加してアイドル回転速度に復帰しようとするので、駆動側回転速度は、アイドル回転速度相当値よりも低く定められている目標回転速度を上回る。これにより、クラッチアクチュエータは駆動側部と被駆動側部との間の押圧力を強めるように制御される。このような動作が繰り返されることにより、半クラッチ状態が継続し、エンジンの駆動力によってクラッチの被駆動側部の回転速度増加が抑制される。すなわち、エンジンブレーキを効かせ、かつエンジンストールを回避しながら、上り坂を前進ギヤのままで重力を利用して後退できる。
トランスミッションのギヤ位置が後進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で車両が下り坂を下る(前進する)場合の動作も同様である。すなわち、半クラッチ状態では、エンジンの回転を停止させる方向のトルクが被駆動側部から駆動側部に伝達されるので、クラッチアクチュエータは、目標回転速度を維持するように、押圧力を強めたり弱めたりする動作を繰り返す。それにより、エンジンブレーキを効かせ、かつエンジンストールを回避しながら、下り坂を後進ギヤのままで重力を利用して前進できる。
この発明の一実施形態では、前記目標回転速度設定ユニットが、前記エンジンの運転を維持できる下限エンジン回転速度に相当する値よりも高い値を、アクセル全閉に対応する目標回転速度として設定する。
この構成によれば、アクセル全閉に対応する目標回転速度が、エンジンの運転を維持できる(換言すれば、エンジンストールしない)下限エンジン回転速度に相当する値よりも高い。そのため、エンジンストールを回避しながら、ギヤ位置が前進ギヤ位置か後進ギヤ位置かによらず、エンジンブレーキを効かせながら重力を利用して坂を下ることができる。
この発明の一実施形態では、前記目標回転速度設定ユニットが、前記半クラッチ移行制御ユニットが半クラッチ制御に移行したときのアイドル回転速度に応じて前記目標回転速度を可変設定する。この構成によれば、目標回転速度は一定ではなく、半クラッチ制御への移行時のアイドル回転速度に依存する。たとえば、アイドル回転速度は、吸気温度、油温、始動直後か否か、エンジン温度等のパラメータに応じて変動してもよい。このようなアイドル回転速度の変動に応じて適切な目標回転速度が可変設定される。それにより、確実に、エンジンストールを回避しつつ、ギヤ位置が前進ギヤ位置か後進ギヤ位置かによらず、エンジンブレーキを効かせながら重力を利用して坂を下ることができる。
この発明の一実施形態では、前記半クラッチ制御ユニットが、前記押圧力の変化量を、前記駆動側回転速度と前記目標回転速度との差分に応じて可変設定するようにプログラムされている。この構成によれば、駆動側回転速度と目標回転速度との差分に応じて押圧力が増減するので、とくに、ギヤ位置と車両の走行方向とが整合しない状態で坂を下る場合に、適切な押圧力を達成できる。駆動側回転速度と目標回転速度との差分は、目標回転速度に対する駆動側回転速度の偏差(=駆動側回転速度−目標回転速度)であってもよい。
この発明の一実施形態では、前記半クラッチ制御ユニットが、前記差分が大きいほど大きな変化量を設定するようにプログラムされている。この構成によれば、前記差分が大きいほど大きな変化量が設定されることにより、速やかに、適切な押圧力を実現できる。それにより、エンジンストールを回避しながら、適切なエンジンブレーキ力を発生させた状態で、重力を利用して坂を下ることができる。
この発明の他の実施形態は、クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、アイドル回転速度でエンジンが発生するエンジントルクに相当する値よりも大きく、前記アイドル回転速度よりも低い所定の回転速度で前記エンジンが発生するエンジントルクに相当する値よりも小さい値を、アクセル全閉に対応する目標クラッチトルクとして設定する目標クラッチトルク設定ユニットと、前記駆動側部から前記被駆動側部に伝達される実クラッチトルクを取得するクラッチトルク取得ユニットと、前記目標クラッチトルクよりも前記実クラッチトルクが小さければ前記クラッチの駆動側部および被駆動側部の互いの押圧力を強め、前記目標クラッチトルクよりも前記実クラッチトルクが大きければ前記押圧力を弱めるように、前記クラッチアクチュエータを制御するようにプログラムされた半クラッチ制御ユニットと、前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件の一方または両方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットとを含む、車両用クラッチ制御システムを提供する。
この実施形態では、車両の惰行によって、被駆動側回転速度が駆動側回転速度よりも大きくなる第1条件、および被駆動側回転速度が所定値以上となる第2条件のうちの少なくともいずれか一方が充足されると、半クラッチ制御が開始される。半クラッチ制御では、実クラッチトルクが目標クラッチトルクよりも小さければ、駆動側部および被駆動側部の互いの押圧力が強められる。一方、実クラッチトルクが目標クラッチトルクよりも大きければ、その押圧力が弱められる。押圧力の制御は、クラッチアクチュエータの制御により達成される。したがって、クラッチアクチュエータを制御することにより、実クラッチトルクが目標クラッチトルクに導かれる。アクセル全閉に対する目標クラッチトルクは、アイドル回転速度相当値よりも低い回転速度でエンジンが発生するエンジントルクに相当する値に設定される。
クラッチトルクとは、駆動側部から被駆動側部へと伝達されるトルクであり、エンジンの回転方向に相当する方向の値に対して正の符号、エンジンの回転方向とは反対方向に相当する方向の値に対して負の符号が与えられる。アクセル全閉で、かつクラッチが接続状態である場合を考える。エンジン回転速度がアイドル回転速度よりも低いとき、エンジンはアイドル回転速度に向けてエンジン回転速度を増加させようとする。このとき、駆動側部は被駆動側部の回転を加速するトルクを発生する。このときのクラッチトルクは正の符号を持つ。一方、エンジン回転速度がアイドル回転速度よりも高いとき、エンジンはアイドル回転速度に向けてエンジン回転速度を減少させようとする。このとき、駆動部は被駆動側部の回転を減速するトルクを発生する。このときのクラッチトルクは負の符号を持つ。
トランスミッションのギヤ位置が前進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で、車両が下り坂を下る(前進する)場合を考える。車速の増加に伴って、被駆動側回転速度が上昇すると、半クラッチ制御が開始される。車両に働く重力によって、被駆動側部から駆動側部へと駆動側部の回転を促進するトルクが伝えられる。それにより、エンジン回転速度がアイドル回転速度よりも高くなり、駆動側から被駆動側へと伝達されるトルク、すなわち、実クラッチトルクが負の状態となる。これにより、実クラッチトルクが目標クラッチトルクよりも小さい状態が継続するので、クラッチアクチュエータは押圧力を強めるように制御される。したがって、クラッチは、半クラッチ状態を経て速やかに接続状態へと至る。接続状態では、アクセル全閉状態のエンジンが、車輪の前進回転を抑制する制動力を発生する。したがって、エンジンブレーキを効かせつつ、重力を利用して、前進して下り坂を下ることができる。
トランスミッションのギヤ位置が後進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で車両が上り坂を下る(後退する)場合の動作も同様である。すなわち、半クラッチ状態では、エンジンの回転を促進するトルクが被駆動側部から駆動側部に伝えられるので、実クラッチトルクが目標クラッチトルクを下回る状態が継続する。よって、クラッチは、速やかに接続状態に至る。それにより、エンジンブレーキを効かせながら、重力を利用して上り坂を後退して下ることができる。
次に、トランスミッションのギヤ位置が前進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で車両が上り坂を下る(後退する)場合を考える。車速の増加に伴って、被駆動側回転速度が上昇すると、半クラッチ制御が開始される。車両に働く重力によって、被駆動側部から駆動側部へトルクが伝えられる。しかし、前進ギヤ位置で車両が後退しているので、伝達されるトルクは、エンジンの回転を停止させようとする方向のトルクである。それにより、エンジン回転速度がアイドル回転速度を下回る状態となり、エンジンはアイドル回転速度へと復帰しようとする。そのため、駆動側部から被駆動側部へと伝達されるトルク、すなわち実クラッチトルクは正の値となり、目標クラッチトルクを上回る。それに応じて、駆動側部と被駆動側部との間の押圧力を弱めるようにクラッチアクチュエータが制御され、エンジンストールが回避される。一方、押圧力が弱められることにより、駆動側部と被駆動側部との間で伝達される実クラッチトルクが小さくなる。そうして、実クラッチトルクが目標クラッチトルクを下回ると、クラッチアクチュエータは駆動側部と被駆動側部との間の押圧力を強めるように制御される。このような動作が繰り返されることにより、半クラッチ状態が継続し、エンジンの駆動力によってクラッチの被駆動側部の回転速度増加が抑制される。すなわち、エンジンブレーキを効かせ、かつエンジンストールを回避しながら、上り坂を前進ギヤのままで重力を利用して後退できる。
トランスミッションのギヤ位置が後進ギヤ位置であり、アクセル全閉およびクラッチ切断状態で車両が下り坂を下る(前進する)場合の動作も同様である。すなわち、半クラッチ状態では、エンジンの回転を停止させる方向のトルクが被駆動側部から駆動側部に伝えられるので、クラッチアクチュエータは、目標クラッチトルクを維持するように、押圧力を強めたり弱めたりする動作を繰り返す。それにより、エンジンブレーキを効かせ、かつエンジンストールを回避しながら、下り坂を後進ギヤのままで重力を利用して前進できる。
この発明の一実施形態では、前記目標クラッチトルク設定ユニットが、前記エンジンの運転を維持できる下限エンジン回転速度よりも高いエンジン回転速度で前記エンジンが発生するエンジントルクに相当する値を、アクセル全閉に対応する目標クラッチトルクとして設定する。換言すれば、目標クラッチトルク設定ユニットは、前記エンジンの運転を維持できる下限エンジン回転速度で前記エンジンが発生するエンジントルクに相当する値よりも小さい値を、アクセル全閉に対応する目標クラッチトルクとして設定する。
この構成によれば、アクセル全閉に対応する目標クラッチトルクが、エンジンの運転を維持できる下限エンジン回転速度でのエンジントルクに相当する値よりも小さい。そのため、エンジンストールを回避しながら、ギヤ位置が前進ギヤ位置か後進ギヤ位置かによらず、エンジンブレーキを効かせながら、重力を利用して坂を下ることができる。
この発明の一実施形態では、前記目標クラッチトルク設定ユニットが、前記半クラッチ移行制御ユニットが半クラッチ制御に移行したときのアイドル回転速度に応じて前記目標クラッチトルクを可変設定する。この構成によれば、目標クラッチトルクは一定ではなく、半クラッチ制御への移行時のアイドル回転速度に依存する。たとえば、アイドル回転速度は、吸気温度、油温、始動直後か否か、エンジン温度等のパラメータに応じて変動してもよい。このようなアイドル回転速度の変動に応じて適切な目標クラッチトルクが可変設定される。それにより、確実に、エンジンストールを回避しつつ、ギヤ位置が前進ギヤ位置か後進ギヤ位置かによらず、エンジンブレーキを効かせながら、重力を利用して坂を下ることができる。
この発明の一実施形態では、前記半クラッチ制御ユニットが、前記押圧力の変化量を、前記実クラッチトルクと前記目標クラッチトルクとの差分に応じて可変設定するようにプログラムされている。この構成によれば、実クラッチトルクと目標クラッチトルクとの差分に応じて押圧力が増減するので、とくに、ギヤ位置と車両の走行方向とが整合しない状態で坂を下る場合に、適切な押圧力を達成できる。実クラッチトルクと目標クラッチトルクとの差分は、実クラッチトルクに対する目標クラッチトルクの偏差(=目標クラッチトルク−実クラッチトルク)であってもよい。
この発明の一実施形態では、前記半クラッチ制御ユニットが、前記差分が大きいほど大きな変化量を設定するようにプログラムされている。この構成によれば、前記差分が大きいほど大きな変化量が設定されることにより、速やかに、適切な押圧力を実現できる。それにより、エンジンストールを回避しながら、適切なエンジンブレーキ力を発生させた状態で、重力を利用して坂を下ることができる。
この発明の一実施形態では、前記第2回転速度検出ユニットは、前記クラッチの被駆動側部から前記車輪までのいずれかの回転軸の回転に応じて、回転方向に関係無く、回転量に応じた回転パルスを生成する回転パルス生成ユニットを含む。この構成によれば、第2回転速度検出ユニットが検出する被駆動側回転速度は、回転方向に関する情報を有していない。すなわち、第2回転速度検出ユニットは、回転方向に関する情報を出力しない、安価な回転パルス生成ユニットを用いて構成されている。このような安価な構成であっても、ギヤ位置に関係無く、エンジンストールを回避しながら、エンジンブレーキを効かせて、重力を利用して坂を下ることができる。なぜなら、駆動側回転速度を目標回転速度と比較してクラッチの押圧力を制御する構成は、前述のとおり、ギヤ位置と車両の走行方向とが整合しているか否かによらずに作動可能だからである。同様に、実クラッチトルクを目標クラッチトルクと比較してクラッチの押圧力を制御する構成も、ギヤ位置と車両の操向方向とが整合しているかによらずに作動可能だからである。
この発明のさらの他の実施形態は、クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが整合しているときにクラッチアクチュエータに対して第1半クラッチ制御を実行し、前記トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが不整合であるときに前記クラッチアクチュエータに対して前記第1半クラッチ制御とは異なる第2半クラッチ制御を実行するようにプログラムされた半クラッチ制御ユニットと、前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件の一方または両方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットとを含む、車両用クラッチ制御システムを提供する。
この構成によれば、車両の惰行によって、被駆動側回転速度が駆動側回転速度よりも大きくなる第1条件、および被駆動側回転速度が所定値以上となる第2条件のうちの一方または両方が充足されると、半クラッチ制御が開始される。半クラッチ制御は、トランスミッションのギヤ位置と被駆動側部の回転方向とが整合していれば第1半クラッチ制御であり、それらが不整合であれば第2半クラッチ制御である。ギヤ位置と被駆動側部の回転方向との整合/不整合に応じて、適切な半クラッチ制御を実行できる。
第1半クラッチ制御は、駆動側部および被駆動側部の間の押圧力を単調増加させ、半クラッチ状態から接続状態へと導いて、接続状態を保持する制御であってもよい。これにより、エンジンブレーキを効かせることができる。第2半クラッチ制御は、駆動側部および被駆動側部の押圧力を増減させて、半クラッチ状態を保持する制御であってもよい。これにより、エンジンストールを回避しながら、エンジンの回転によって車輪の回転を抑制できる。こうして、ギヤ位置と被駆動側部の回転方向の整合/不整合によらずに、エンジンストールを回避しながら、エンジンブレーキを利用できる。
この発明の一実施形態では、前記クラッチ制御システムが、前記トランスミッションのギヤ位置情報を取得するギヤ位置取得ユニットと、前記車輪が前進方向に回転しているか後進方向に回転しているかを判別する前後進判別ユニットとをさらに含む。また、前記半クラッチ制御ユニットは、前記取得されたギヤ位置情報が前進ギヤ位置を示しかつ前記車輪が前進方向に回転していると判別されている場合、および前記取得されたギヤ位置情報が後進ギヤ位置を示しかつ前記車輪が後進方向に回転していると判別されている場合に、前記第1半クラッチ制御を実行するようにプログラムされている。また、前記半クラッチ制御ユニットは、前記取得されたギヤ位置情報が前進ギヤ位置を示しかつ前記車輪が後進方向に回転していると判別されている場合、および前記取得されたギヤ位置情報が後進ギヤ位置を示しかつ前記車輪が前進方向に回転していると判別されている場合に、前記第2半クラッチ制御を実行するようにプログラムされている。
この構成によれば、ギヤ位置取得ユニットによってギヤ位置が取得され、前後進判別ユニットによって車輪の回転方向が判別される。そして、ギヤ位置と車輪回転方向とが整合していれば第1半クラッチ制御が実行され、それらが不整合なら第2半クラッチ制御が実行される。こうして、ギヤ位置と車輪の回転方向の整合/不整合に応じて、適切な半クラッチ制御を実行できる。
この発明の一実施形態では、前記前後進判別ユニットが、前記第2回転速度検出ユニットと一体化された回転方向センサを含む。この構成によれば、ユニットを増やすことなく車輪の回転方向を検出できる。したがって、コストの大幅な増加を招くことなく、ギヤ位置と被駆動側部の回転方向との整合/不整合に応じて、適切な半クラッチ制御を実行できる。
この発明の一実施形態では、前記第2半クラッチ制御は、前記クラッチを切断状態に維持するように前記クラッチアクチュエータを駆動する制御を含む。この構成によれば、ギヤ位置と被駆動側部の回転方向とが不整合のときには、クラッチが切断状態に維持されるので、被駆動側部からのトルク入力によってエンジンストールが生じることを回避できる。よって、ギヤ位置と被駆動側部の回転方向とが不整合の状態のときでも、エンジンストールを回避しながら、重力を利用して坂を下ることができる。
この発明の一実施形態では、前記第2半クラッチ制御は、前記第1半クラッチ制御に比較して、前記駆動側部および前記被駆動側部の間を弱い押圧力で互いに押し付けるように前記クラッチアクチュエータを駆動する制御を含む。この構成によれば、ギヤ位置と被駆動側部の回転方向とが不整合のときに、駆動側部と被駆動側部との押圧力が弱められるので、被駆動側部から入力されたトルクのエンジンへの入力が制限される。それにより、エンジンストールを回避できる。したがって、エンジンストールを回避しながら、重力を利用して坂を下ることができる。
この発明の一実施形態では、前記第1半クラッチ制御は、前記被駆動側回転速度に応じて前記クラッチの駆動側部および被駆動側部の互いの押圧力を可変するように前記クラッチアクチュエータを駆動する制御を含み、前記第2半クラッチ制御は、前記被駆動側回転速度に応じて前記押圧力を可変し、かつ同じ被駆動側回転速度に対して前記第1半クラッチ制御による前記押圧力よりも小さい押圧力を生じるように前記クラッチアクチュエータを駆動する制御を含む。
この構成によれば、被駆動側回転速度に応じて適切な半クラッチ制御を行える。そして、ギヤ位置と車輪の回転方向とが不整合のときには、それらが整合しているときよりも、駆動側部と被駆動側部との押圧力が小さくされる。それにより、エンジンストールを回避しながら、半クラッチ制御を行えるので、重力を利用して坂を下ることができる。
この発明の一実施形態では、前記第2半クラッチ制御は、前記クラッチが接続状態に至る押圧力よりも小さい上限押圧力以下の押圧力を生じるように前記クラッチアクチュエータを駆動する制御を含む。この構成によれば、ギヤ位置と車輪の回転方向とが不整合のときに行われる第2半クラッチ制御では、クラッチが接続状態に至らないようにクラッチアクチュエータが制御される。それによって、エンジンストールを回避しながら、エンジンと車輪との間のトルク伝達を行える。よって、エンジンブレーキを効かせながら、重力を利用して坂を下ることができる。
この発明の一実施形態では、前記車両用クラッチ制御システムは、前記被駆動側回転速度が所定値以下のときに前記クラッチを切断するように前記クラッチアクチュエータを制御する切断制御ユニットをさらに含む。この構成によれば、車両が減速することによって被駆動側回転速度が所定値以下になると、クラッチが切断される。これにより、エンジン回転速度が過度に減少することを回避でき、クラッチの自動切断によって、エンジンストールを回避できる。
この発明の一実施形態では、前記被駆動側回転速度が前記車両の車速に相当している。この構成によれば、被駆動側回転速度が車速に対応しているので、車速に応じた半クラッチ制御が可能となる。被駆動側回転速度として車速を用いてもよいし、車速に対応する別の指標を用いてもよい。
図1は、この発明の一実施形態に係るクラッチ制御システムを備えた車両の要部の構成を示すブロック図である。 図2は、前記車両の惰行時の半クラッチ制御におけるアクセル全閉用の目標エンジン回転速度および目標クラッチトルクの設定例を説明するための図である。 図3は、前記車両に備えられた制御ユニットの動作を説明するためのフローチャートであり、主として惰行時の制御動作が示されている。 図4Aは、半クラッチ制御移行判定(図3のステップS4)の具体例を説明するためのフローチャートである。図4Bは、半クラッチ制御終了判定(図3のステップS6)の具体例を説明するためのフローチャートである。 図5は、半クラッチ制御の具体例を説明するためのフローチャートである。 図6は、クラッチ押圧量変化量の演算例を説明するためのブロック図である。 図7は、クラッチ押圧量変化量の演算例を説明するための図である。 図8は、トランスミッションのギヤ位置が前進ギヤ位置に設定されている状態で、下り坂を惰行により下る(前進する)場合の動作例を示す。 図9は、トランスミッションのギヤ位置が前進ギヤ位置に設定されている状態で、上り坂を惰行により下る(後進する)場合の動作例を示す。 図10Aは、比較例の構成による動作を説明するための図である。 図10Bは、比較例の構成による動作を説明するための図である。 図11は、実クラッチトルクの求め方を説明するための図である。 図12は、半クラッチ状態におけるクラッチトルクとクラッチ押圧力との関係を示す。 図13は、半クラッチ制御の具体例を説明するためのフローチャートである。 図14は、クラッチ押圧量変化量の演算例を説明するためのブロック図である。 図15は、クラッチ押圧量変化量の演算例を説明するための図である。 図16は、トランスミッションのギヤ位置が前進ギヤ位置に設定されている状態で、下り坂を惰行により下る(前進する)場合の動作例を示す。 図17は、トランスミッションのギヤ位置が前進ギヤ位置に設定されている状態で、上り坂を惰行により下る(後進する)場合の動作例を示す。 図18は、この発明の第3の実施形態に係るクラッチ制御システムが適用された車両の構成を説明するためのブロック図である。 図19は、半クラッチ制御の具体例を説明するためのフローチャートである。 図20は、第1半クラッチ制御および第2半クラッチ制御の具体例を示す特性図である。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
この発明の実施形態が適用される車両の形態および用途にとくに制限はない。この発明の実施形態がとくに有用な車両の一つのカテゴリは、ユーティリティビークル(Utility vehicle)である。とりわけ、レクレーショナル・オフハイウェイ・ビークル(Recreational Off-Highway Vehicle)と称される四輪駆動の全地形型車両において、この発明の実施形態が有用である。ユーティリティビークルは不整地での走行に使用されることがある。このようなカテゴリの車両では、エンジンブレーキを効かせながら重力を利用して下り坂を下りたり、急な上り坂の登坂を断念し、重力を利用して上り坂を下ったりする場合がある。場合によっては、後進ギヤで坂を登ったり、下ったりする場面もあり得る。
図1は、この発明の一実施形態に係るクラッチ制御システムを備えた車両1の要部の構成を示すブロック図である。車両1は、エンジン(内燃機関)2と、クラッチ3と、トランスミッション4と、車輪5とを含む。エンジン2が発生する駆動力が、動力伝達経路6を通って、車輪5に伝達される。クラッチ3およびトランスミッション4は、動力伝達経路6に配置されている。この実施形態では、エンジン2とトランスミッション4との間にクラッチ3が配置されている。
エンジン2は、スロットルバルブ21、燃料噴射弁22および点火ユニット23を含む。運転者によって操作されるアクセル操作子20がスロットルバルブ21に結合されている。したがって、アクセル操作子20の操作量(アクセル開度)とスロットル開度とは対応関係がある。アクセル操作子20は、アクセルペダルであってもよい。燃料噴射弁22は、アクセル開度等に応じて設定される噴射量の燃料をエンジン2内に噴射する。点火ユニット23は、エンジンサイクル内の所定の点火タイミングでエンジン2内で火花放電を生じさせ、燃料と空気との混合気に点火する。
クラッチ3は、駆動側部31および被駆動側部32を含み、駆動側部31と被駆動側部32とが互いに接近および離間するように構成されている。エンジン2が発生するトルク(エンジントルク)は、駆動側部31に入力される。より具体的には、エンジン2のクランク軸24の回転が駆動側部31に伝達される。クランク軸24と駆動側部31との間には、減速ギヤが設けられていてもよい。被駆動側部32は、トランスミッション4のメイン軸41に結合されている。
トランスミッション4は、メイン軸41と、ドライブ軸42と、複数の変速ギヤ43と、シフトカム44と、シフタ45とを含む。複数の変速ギヤ43は、複数のギヤ位置に配置可能である。複数のギヤ位置は、少なくとも一つの前進ギヤ位置と、少なくとも一つの後進ギヤ位置とを含む。メイン軸41の回転は、ギヤ位置に応じた変速比および方向の回転に変換されて、ドライブ軸42に伝達される。ドライブ軸42は、車輪5に機械的に結合されている。シフタ45は、シフトカム44を操作する操作部材である。シフトカム44を変位(たとえば回転変位)させることにより、変速ギヤ43の配置を変更でき、それによって、ギヤ位置を選択できる。
車両1は、さらに、クラッチアクチュエータ11、シフトアクチュエータ13、および制御ユニット10を含む。制御ユニット10は、クラッチアクチュエータ11およびシフトアクチュエータ13を制御するようにプログラムされている。アクチュエータ11,13は、電動アクチュエータであってもよいし、油圧アクチュエータであってもよい。
クラッチアクチュエータ11は、クラッチ3の駆動側部31および被駆動側部32を互いに接近および離間させる。クラッチアクチュエータ11は、さらに、駆動側部31および被駆動側部32が接触している状態で、互いの押圧力を強めたり、弱めたりするように構成されている。これにより、駆動側部31と被駆動側部32とが摩擦接触し、それらの間で伝達されるトルクが増減する。
クラッチ3は、切断状態と、接続状態と、半クラッチ状態とをとることができる。切断状態では、駆動側部31および被駆動側部32の間が離間され、それらの間でトルクが伝達されない。接続状態では、駆動側部31および被駆動側部32が滑り無く結合してそれらの間でトルクが伝達される。半クラッチ状態は、接続状態と切断状態との間の中間状態である。半クラッチ状態では、駆動側部31と被駆動側部32とが互いに滑り接触(摺接)し、それらの間でトルクが部分的に伝達される。クラッチアクチュエータ11の制御によって、クラッチ3の状態を切断状態、半クラッチ状態および接続状態の間で変化させ、かつ半クラッチ状態における駆動側部31と被駆動側部32との押圧力を変化させることができる。
クラッチアクチュエータ11の作動子の位置を検出するために、クラッチアクチュエータセンサ12が設けられている。クラッチアクチュエータ11の作動子の位置は、クラッチの駆動側部31と被駆動側部32との間の距離に対応する。この距離は、駆動側部31と被駆動側部32とが接触している状態では、駆動側部31と被駆動側部32との押圧力に対応する。
以下では、駆動側部31と被駆動側部32との間の距離およびそれらの間の押圧力を総称するパラメータとして、「クラッチ押圧量」を導入する。クラッチ押圧量は、駆動側部31と被駆動側部32との距離が大きいほど小さく、その距離が小さいほど大きい。駆動側部31と被駆動側部32とが接している状態では、互いの押圧力が大きいほど、クラッチ押圧量が大きい。
クラッチ押圧量は、具体的には、駆動側部31と被駆動側部32との間の距離に対応しており、より具体的には、クラッチアクチュエータ11の作動子の変位量に対応している。制御ユニット10は、クラッチアクチュエータセンサ12の出力信号に基づいて、クラッチアクチュエータ11を駆動し、それによって、クラッチ押圧量を制御する。
シフトアクチュエータ13は、シフトカム44を操作するためのシフタ45を作動させ、それによって、ギヤ位置を変更するためのシフト動作を実行する。シフトアクチュエータ13の作動子の位置を検出するために、シフトアクチュエータセンサ14が設けられている。シフトアクチュエータ13の作動子の位置は、シフタ45の位置に対応する。制御ユニット10は、シフトアクチュエータセンサ14の出力信号に基づいて、シフトアクチュエータ13を制御する。
トランスミッション4には、ギヤ位置を検出するギヤ位置センサ15と、車速を検出する車速センサ16とが備えられている。これらのセンサの出力信号は制御ユニット10に入力されている。
ギヤ位置センサ15は、トランスミッション4のギヤ位置を検出する。具体的には、ギヤ位置センサ15は、シフトカム44の位置(たとえば回転位置)を検出するセンサであってもよい。
車速センサ16は、車輪5の回転速度を検出する。たとえば、車速センサ16は、ドライブ軸42の回転速度を検出するセンサであってもよい。ドライブ軸42の回転速度は、車輪5の回転速度に比例するので、ドライブ軸42の回転速度を検出することによって、車輪5の回転速度を検出できる。そして、車輪5の回転速度は車速に対応しているので、ドライブ軸42回転速度は車速を表す指標として用いることができる。ドライブ軸42の回転速度とクラッチ3の被駆動側部32の回転速度との間には、トランスミッション4における変速ギヤ比に基づく対応関係がある。したがって、ドライブ軸42の回転速度を検出する車速センサ16は、被駆動側部32の回転速度である被駆動側回転速度を検出する第2回転速度検出ユニットの一例である。
車速センサ16は、より具体的には、ドライブ軸42の回転に伴って、回転方向に関係無く、回転量に応じた回転パルスを生成する回転パルス生成ユニット16aを含む。回転パルス生成ユニット16aが生成した回転パルスが、制御ユニット10に入力される。制御ユニット10は、たとえば、単位時間に入力される回転パルスを計数し、その計数結果に基づいて車速を演算してもよい。また、制御ユニット10は、所定の複数個の回転パルスが入力されるのに要する所要時間を計測し、その計測された所要時間に基づいて車速を演算してもよい。
制御ユニット10には、メインキースイッチ35、バッテリ25、スロットル開度センサ26、ブレーキスイッチ27、クランクセンサ28、水温センサ29、シフトアップスイッチ30U、シフトダウンスイッチ30D、リバース専用スイッチ33などが接続されている。
メインキースイッチ35は、車両1に電源を投入するためにメインキーを用いて導通/遮断操作されるキースイッチである。バッテリ25は、制御ユニット10等の電装品に電力を供給する。制御ユニット10は、バッテリ25の電圧をモニタしている。
スロットル開度センサ26は、エンジン2のスロットル開度を検出する。エンジン2のスロットルバルブ21には、アクセル操作子20が結合されているので、アクセル操作子20の操作量(アクセル開度)とスロットル開度との間には対応関係がある。したがって、スロットル開度センサ26は、アクセル操作子20の操作量を検出するアクセル開度センサとしても機能している。水温センサ29は、エンジン2の冷却水の温度を検出する。
クランクセンサ28は、エンジン2のクランク軸24の回転を検出するセンサである。クランクセンサ28は、たとえば、クランク軸24の回転に伴って、その回転方向に関係なく、回転量に応じた回転パルスを生成する回転パルス生成ユニット28aを含む。制御ユニット10は、クランクセンサ28が生成する回転パルスに基づいて、エンジン回転速度を求める。エンジン回転速度は、クラッチ3の駆動側部31の回転速度に対応する値である。したがって、クランクセンサ28は、駆動側部31の回転速度である駆動側回転速度を検出する第1回転速度検出ユニットの一例である。
シフトアップスイッチ30Uは、トランスミッション4のギヤ位置(変速段)を高速側に一段変更するために運転者によって操作されるスイッチである。シフトダウンスイッチ30Dは、トランスミッション4のギヤ位置(変速段)を低速側に一段変更するために運転者によって操作されるスイッチである。これらのシフトスイッチ30U,30Dの出力信号は、制御ユニット10に入力される。制御ユニット10は、シフトスイッチ30U,30Dからの入力に応じて、クラッチアクチュエータ11およびシフトアクチュエータ13を駆動して変速動作を行い、複数の前進ギヤ位置の間でギヤ位置(変速段)を変更する。
リバース専用スイッチ33は、トランスミッション4の後進ギヤ位置を選択するために運転者によって操作されるスイッチである。制御ユニット10は、車両1が停止状態のときに、リバース専用スイッチ33が操作されると、クラッチアクチュエータ11およびシフトアクチュエータ13を制御して、トランスミッション4のギヤ位置を後進位置に変更する。
車両1を発進させるとき、運転者は、シフトスイッチ30U,30Dまたはリバース専用スイッチ33を操作して、ニュートラル以外のギヤ位置を選択する。これにより、制御ユニット10は、シフトアクチュエータ13を駆動して、トランスミッション4の変速ギヤ43の配置を、選択されたギヤ位置に変更する。運転者は、さらに、アクセル操作子20を操作して、アクセル開度を増加させる。それに応じて、スロットル開度が増加すると、エンジン回転速度が増加する。そのエンジン回転速度の増加に応じて、制御ユニット10はクラッチアクチュエータ11を制御してクラッチ押圧量を増加させ、駆動側部31および被駆動側部32を接近させる。
制御ユニット10は、スロットル開度に応じた目標エンジン回転速度を設定し、エンジン回転速度がその目標エンジン回転速度に向かって増加するように、クラッチ押圧量を制御する。これにより、駆動側部31および被駆動側部32の互いの押圧力が徐々に増加し、クラッチ3は、切断状態から半クラッチ状態を経て接続状態に至る。
こうして、エンジン2が発生するトルクがクラッチ3を介してトランスミッション4に伝達される。さらに、トランスミッション4で変速された回転が車輪5に伝達されることにより、車両1が移動する。クラッチ3が接続状態に至った後は、制御ユニット10は、スロットル開度に応じたエンジン出力が得られるように、燃料噴射弁22の制御(燃料噴射制御)および点火ユニット23の制御(点火制御)を実行する。
走行中に、運転者がシフトアップスイッチ30Uまたはシフトダウンスイッチ30Dを操作すると、変速指令が制御ユニット10に入力される。これに応答して、制御ユニット10は、変速動作を実行する。具体的には、制御ユニット10は、クラッチアクチュエータ11を制御してクラッチ3を切断する。さらに、制御ユニット10は、シフトアクチュエータ13を制御して、変速指令に対応する選択ギヤ位置に変速ギヤ43の配置を変更する。この後、制御ユニット10は、クラッチアクチュエータ11を制御して、半クラッチ状態を経て、クラッチ3を接続状態へと導く。クラッチ3が接続状態となって変速動作が完了すると、制御ユニット10は、スロットル開度に応じたエンジン出力が得られるように、燃料噴射制御および点火制御を実行する。
クラッチ3が接続状態のとき、ギヤ位置毎に予め定められているシフトダウン閾値を車速が下回ると、制御ユニット10は、オートシフトダウン制御を実行する。より具体的には、変速段ごとに定められているクラッチ切断閾値を車速が下回ると、制御ユニット10は、クラッチアクチュエータ11を制御してクラッチ3を切断状態とする。そして、制御ユニット10は、車速がシフトダウン閾値を下回ると、シフトアクチュエータ13を制御して、変速段を1段下げるようにギヤ位置を変更する。車速がシフトダウン後の変速段に対応したシフトダウン閾値をさらに下回るならば、制御ユニット10は、変速段をさらに1段下げるようにギヤ位置を変更する。その後、制御ユニット10は、クラッチアクチュエータ11を制御し、半クラッチ状態を経て、クラッチ3を接続状態へと導く。クラッチ3が接続状態となって変速動作が完了すると、制御ユニット10は、スロットル開度に応じたエンジン出力が得られるように、燃料噴射制御および点火制御を実行する。
変速段が最下段となり、その最下段に対応したクラッチ切断閾値を車速が下回ると、制御ユニット10は、クラッチ3を切断する。より具体的には複数の前進ギヤ位置のうちの最下段の前進ギヤ位置が選択されている状態で、車速がクラッチ切断閾値を下回ると、クラッチ3が切断される。後進ギヤ位置についても同様である。後進ギヤ位置がただ一つである場合には、車速が後進ギヤ位置に対応したクラッチ切断閾値を下回ると、クラッチ3が切断される。
このとき、車両1が、上り坂または下り坂にあって、ブレーキがかけられていなければ、重力によって車両1が惰行する。これを利用して、惰行によって、下り坂を下ったり(前進)、上り坂を下ったり(後進)したりすることができる。この惰行時には、次のような制御が実行される。
スロットル開度センサ26によってアクセル全閉(スロットル全閉)が検出されており、かつ車速センサ16が所定の車速閾値未満の車速を検出しているときには、制御ユニット10は、クラッチ3を切断状態に保持するようにクラッチアクチュエータ11を制御する。車両1が惰行すると、車速センサ16は車速の増加を検出する。その検出される車速が所定の半クラッチ制御開始閾値を超えると、制御ユニット10は、クラッチアクチュエータ11を制御して、駆動側部31と被駆動側部32との間でトルク伝達される状態にクラッチ3を制御する。より正確には、制御ユニット10は、クラッチ3が切断状態のときに、次の2つの条件のうちの少なくともいずれか一方が充足されると、半クラッチ制御を開始する。
条件1:被駆動側回転速度が駆動側回転速度よりも大きい。
条件2:被駆動側回転速度が所定値以上である。
被駆動側回転速度とは、クラッチ3の被駆動側部32の回転速度、すなわち、メイン軸41の回転速度であり、車速に対応している。メイン軸41の回転速度は、ドライブ軸42の回転速度に比例し、その比例定数は、選択されているギヤ位置での変速比である。そして、この実施形態では、車速センサ16は、ドライブ軸42の回転速度を検出している。したがって、選択されているギヤ位置(変速段)の変速比と車速とに基づいて被駆動側回転速度を算出できる。
駆動側回転速度とは、クラッチ3の駆動側部31の回転速度であり、エンジン回転速度に対応している。たとえば、クランク軸24と駆動側部31との間に減速ギヤが配置されている場合には、エンジン回転速度と減速ギヤのギヤ比とに基づいて駆動側回転速度を算出できる。
必ずしも被駆動側回転速度および駆動側回転速度そのものを算出する必要はない。たとえば、車速が選択ギヤ位置に応じた半クラッチ制御開始閾値(たとえば15km/h程度)を超えれば、条件2が充足される。すなわち、条件2の判断において、車速を被駆動側回転速度の代替指標として用いてもよい。また、たとえば、エンジン回転速度を選択ギヤ位置での変速比等に基づいてドライブ軸42上での回転速度に換算して車速換算値を求め、その車速換算値を駆動側回転速度相当値として求めてもよい。そして、その車速換算値と車速センサ16が検出する車速とを比較することで、条件1の成否を判断してもよい。より具体的には、クラッチ3が切断状態であり、エンジン回転速度がアイドル回転速度以下のときに、車速が半クラッチ制御開始閾値を超えれば、条件1,2が充足されてもよい。
半クラッチ制御において、制御ユニット10は、アクセル全閉に対して、通常とは異なる目標エンジン回転速度を設定する。そして、制御ユニット10は、アクセル全閉時には、その目標エンジン回転速度が達成されるようにクラッチアクチュエータ11を制御(クラッチ押圧量を制御)して、駆動側部31と被駆動側部32との間の押圧力を制御する。
図2は、前記惰行時の半クラッチ制御におけるアクセル全閉時の目標エンジン回転速度の設定例を説明するための図であり、アクセル全閉でクラッチ3が接続状態のときのエンジン2の特性を表す。横軸はエンジン回転速度を表し、縦軸はクラッチ軸に換算したエンジントルク、すなわち、クラッチ3が駆動側部31から被駆動側部32へと伝達するトルク(クラッチトルク)を表す。
駆動側部31が被駆動側部32の回転を促進するトルクが生じているとき、すなわち、力行状態のとき、エンジントルクは正の値である。駆動側部31が被駆動側部32の回転を抑制するトルクが生じているとき、すなわち、制動状態のとき、エンジントルクは負の値である。
アイドル回転速度Niのとき、エンジントルクは零である。エンジン回転速度がアイドル回転速度Niを超えているとき、エンジントルクは負の値である。なぜなら、エンジン2は、アイドル回転速度Niを保とうとするので、回転を抑制するエンジントルクを発生するからである。エンジン回転速度がアイドル回転速度Ni未満のとき、エンジントルクは正の値である。なぜなら、エンジン2は、アイドル回転速度Niを保とうとするので、回転を促進するエンジントルクを発生するからである。
エンジン回転速度が下限エンジン回転速度NL以下のエンジンストール領域RN0のときには、エンジン2の運転を維持できず、エンジン2が停止する。下限エンジン回転速度とは、エンジンストールしないエンジン回転速度の下限値である。
車両1が下り坂にあって、アクセル全閉でかつクラッチ3が接続状態である場合を考える。このとき、車両1が受ける重力のために車速が増加すると、エンジン2がアイドル回転速度を保とうとする結果、負のエンジントルクによって車両1が制動される(エンジンブレーキ)。また、アクセル全閉でクラッチ3が接続状態のとき、上り坂や路面摩擦のために車速が減少し、その結果、エンジン回転速度がアイドル回転速度未満となる場合を考える。このとき、エンジン2がアイドル回転速度を保とうとする結果、正のエンジントルクによって車両1が加速される。
半クラッチ制御におけるアクセル全閉用の目標エンジン回転速度NTは、アイドル回転速度Niよりも低く、かつ下限エンジン回転速度NLよりも高い値に設定される。すなわち、アクセル全閉用の目標エンジン回転速度NTは、アイドル回転速度Niを上限とし、下限エンジン回転速度NLを下限とする目標エンジン回転速度設定領域RN1内の値に設定される。
制御ユニット10は、吸気温度、油温、始動直後か否か、冷却水温度(エンジン温度)等に応じて、アイドル回転速度Niを可変設定する。それに応じて、制御ユニット10は、半クラッチ制御を開始したときのアイドル回転速度Niに応じて、アクセル全閉用の目標エンジン回転速度NTを可変設定する。
半クラッチ制御では、制御ユニット10は、目標エンジン回転速度NTが達成されるように、クラッチアクチュエータ11を制御し、それによって、クラッチ3の駆動側部31と被駆動側部32との間の押圧力を制御する。これにより、駆動側部31と被駆動側部32との間で伝達されるクラッチトルクが可変され、エンジン回転速度が目標エンジン回転速度NTに制御される。
図3は、制御ユニット10の動作を説明するためのフローチャートであり、主として惰行時の制御動作が示されている。制御ユニット10は、この動作を所定の制御周期(たとえば10m秒)で繰り返す。
制御ユニット10は、ギヤ位置センサ15から選択ギヤ位置(選択中のギヤ位置)の情報を取得する。制御ユニット10は、その選択ギヤ位置が前進ギヤ位置のうちの最下段のギヤ位置(最下段ギヤ位置)であるかまたは後進ギヤ位置(複数の後進ギヤ位置がある場合には最下段の後進ギヤ位置)であるかを判断する(ステップS1)。この判断が肯定(YES)されると、制御ユニット10は、車速センサ16が検出する車速がクラッチ切断閾値(たとえば、10km/h程度)未満かどうかを判断する(ステップS2)。この判断が否定(NO)であれば、ステップS3以降の処理は行わず、その他の処理を行う。車速がクラッチ切断閾値未満になると(ステップS2:YES)、制御ユニット10は、クラッチアクチュエータ11を制御して、クラッチ3を切断状態に制御する(ステップS3)。この処理が、制御ユニット10の切断制御ユニットとしての機能に相当する。
クラッチ3が切断状態になると、制御ユニット10は、半クラッチ制御に移行するかどうかを判断する(ステップS4)。この判断は、制御ユニット10の半クラッチ移行制御ユニットとしての機能である。半クラッチ制御に移行すべきであると判断すると(ステップS4:YES)、制御ユニット10は、半クラッチ制御(ステップS5)を開始する。半クラッチ制御に移行すべきでないと判断すると(ステップS4:NO)、制御ユニット10は、半クラッチ制御を行わず、その他の処理に移る。
半クラッチ制御中(ステップS5)は、制御ユニット10は、半クラッチ制御終了条件が充足されるかどうかを判断する(ステップS6)。半クラッチ制御終了条件が満たされれば(ステップS6:YES)、制御ユニット10は、ステップS3に戻ってクラッチ3を切断状態とし、半クラッチ制御を終了する。制御ユニット10は、半クラッチ制御終了条件が充足されなければ(ステップS6:NO)、半クラッチ制御(ステップS5)を継続する。
図4Aは、半クラッチ制御移行判定(図3のステップS4)の具体例を説明するためのフローチャートである。制御ユニット10は、クラッチ3が切断状態かどうかを判断する(ステップS11)。また、制御ユニット10は、被駆動側回転速度が駆動側回転速度よりも大きいかどうかを判断する(ステップS12)。この実施形態では、制御ユニット10は、被駆動側回転速度が駆動側回転速度に所定の値α(α≧0)を加算した値よりも大きいか否かを判断する。言い換えれば、制御ユニット10は、被駆動側回転速度と駆動側回転速度との差が所定の値αよりも大きいか否かを判断する。さらに、制御ユニット10は、被駆動側回転速度が所定値以上かどうかを判断する(ステップS13)。この実施形態では、制御ユニット10は、車速が第1所定値V1(V1>0。V1は、たとえば15km/h程度)以上かどうかを判断する。これらの判断は、いずれの順序で行われてもよい。制御ユニット10は、ステップS11の判断が否定されれば、半クラッチ制御へは移行しない。また、制御ユニット10は、ステップS12およびS13の判断(半クラッチ制御移行条件)がいずれも否定されれば、半クラッチ制御へは移行しない。
制御ユニット10は、ステップS11の判断が肯定され、かつステップS12および13の少なくともいずれか一方の判断が肯定されると、半クラッチ制御(図3のステップS5)へ移行する。これらの処理(ステップS11〜S13)が、制御ユニット10の半クラッチ移行制御ユニットとしての機能に相当する。
なお、図4Aの例では、ステップS12またはステップS13の判断が肯定されることを条件に半クラッチ制御に移行している。しかし、ステップS12およびステップS13のうちの両方が肯定されることを、半クラッチ制御に移行する条件としてもよい。
また、ステップS12およびステップS13のいずれか一方の判断を省いても差し支えない。さらに、クラッチ3を切断(図3のステップS3)した後に半クラッチ制御移行判定(ステップS4、図4A)を行う場合には、クラッチ3が切断状態か否かの判断(ステップS11)を省いてもよい。
図4Bは、半クラッチ制御終了判定(図3のステップS6)の具体例を説明するためのフローチャートである。制御ユニット10は、駆動側回転速度が半クラッチ制御時のアクセル全閉用目標エンジン回転速度よりも小さいかどうかを判断する(ステップS21)。この実施形態では、制御ユニット10は、エンジン回転速度が目標エンジン回転速度から所定の値β(β≧0)を減算した値よりも小さいか否かを判断する。駆動側回転速度の代わりに、エンジン回転速度を用いて同様の判断を行ってもよい。エンジン回転速度と駆動側回転速度とは比例関係にあるからである。さらに、制御ユニット10は、被駆動側回転速度が所定値以下かどうかを判断する(ステップS22)。この実施形態では、制御ユニット10は、車速が第2所定値V2(V2>0。たとえばV2<V1。V2は、たとえば10km/h程度)以下かどうかを判断する。これらの判断は、いずれの順序で行われてもよい。制御ユニット10は、ステップS21〜S22のいずれかの判断(半クラッチ制御終了条件)が肯定されると、半クラッチ制御を終了して、クラッチを切断する(図3のステップS3)。また、制御ユニット10は、上記の全ての判断(ステップS21〜S22)が定されると、半クラッチ制御(図3ステップS5)を継続する。
半クラッチ制御(図3ステップS5)の実行中に、クラッチ3が接続状態に至ると、制御ユニット10は、半クラッチ制御を終了する。
図5は、半クラッチ制御の具体例を説明するためのフローチャートである。制御ユニット10は、半クラッチ制御に移行したときのアイドル回転速度を取得する(ステップS31)。制御ユニット10は、そのアイドル回転速度に基づいて、半クラッチ制御時のアクセル全閉用目標エンジン回転速度を設定する(ステップS32)。これが、制御ユニット10の目標回転速度設定ユニットとしての機能である。アクセル全閉用の目標エンジン回転速度の設定については、図2を参照して前述したとおりである。
制御ユニット10は、さらに、目標エンジン回転速度と、クランクセンサ28の出力に基づいて算出される実際のエンジン回転速度とに基づいて、クラッチ押圧量の変化量を演算する(ステップS33)。そして、制御ユニット10は、演算されたクラッチ押圧量変化量に基づいて、クラッチ指令値を更新する(ステップS34)。クラッチ指令値とは、クラッチアクチュエータ11の作動指令値である。制御ユニット10は、前回の制御周期におけるクラッチ指令値(前回値)に対してクラッチ押圧量変化量を加算することにより、今回の制御周期におけるクラッチ指令値(今回値)を求める。ステップS33,S34の処理は、制御ユニット10の半クラッチ制御ユニットとしての機能に相当する。
クラッチ押圧量変化量が正の値のとき、クラッチ押圧量が増加する。それに応じて、制御ユニット10は、クラッチ3の駆動側部31および被駆動側部32が互いに近づくように、すなわち、接続方向に変位するように、クラッチアクチュエータ11を制御する。クラッチ押圧量変化量が負の値のとき、クラッチ押圧量が減少する。それに応じて、制御ユニット10は、クラッチ3の駆動側部31および被駆動側部32が互いに離れるように、すなわち、切断方向に変位するように、クランチアクチュエータ11を制御する。
図6は、クラッチ押圧量変化量の演算例を説明するためのブロック図である。この例では、制御ユニット10は、アクセル全閉用目標エンジン回転速度に対する実エンジン回転速度の偏差(実エンジン回転速度−目標エンジン回転速度)を求め、その偏差に係数K1(K1>0)を乗じてクラッチ押圧量変化量を求める。すなわち、いわゆるP制御(比例制御)によって、クラッチ押圧量変化量が求められている。むろん、目標エンジン回転速度と実エンジン回転速度との差分を用いたPI制御(比例積分制御)またはPID(比例積分微分)制御などの他の演算方法によってクラッチ押圧量変化量が求められてもよい。
このように、目標エンジン回転速度および実エンジン回転速度の差分を用いたフィードバック制御が行われることにより、実エンジン回転速度が目標エンジン回転速度に導かれるように、クラッチ押圧量が増減される。
クラッチ押圧量の急変を回避するために、クラッチ押圧量変化量を所定の上限値(>0)に制限してもよい。これにより、クラッチ3が瞬時に接続されることを回避して、駆動側部31と被駆動側部32とを徐々に(段階的に)接続することができる。
図7は、クラッチ押圧量変化量の演算例を説明するための図である。図7(a)は、実エンジン回転速度の変化を示し、図7(b)はクラッチ指令値の変化を示している。クラッチ指令値は、駆動側部31と被駆動側部32との間の距離(クラッチ押圧量)に対応している。クラッチ指令値は、切断状態に対応する値と接続状態に対応する値との間の値をとることができる。
時刻t1に半クラッチ制御が開始されると、制御周期T毎に、目標エンジン回転速度に対する実エンジン回転速度の差分が求められる。半クラッチ制御の開始直後は目標エンジン回転速度と実エンジン回転速度との差分が大きいので、クラッチ押圧量変化量も大きい。したがって、駆動側部31と被駆動側部32との間の距離が大幅に縮められる。それによって、駆動側部31と被駆動側部32とが接触して半クラッチ状態に至ると、駆動側部31と被駆動側部32とが摩擦接触している状態となるので、実エンジン回転速度が目標エンジン回転速度へと近づく。したがって、それらの差分が小さくなるので、クラッチ押圧量変化量が小さくなる。それにより、駆動側部31と被駆動側部32との間の距離、すなわち、クラッチ押圧量変化量が徐々に小さくなっていく。そうして、目標エンジン回転速度と実エンジン回転速度との差分が零になると、クラッチ押圧量変化量が零になり、その状態が保持される。こうして、実エンジン回転速度が目標エンジン回転速度に収束し、その状態を保持する半クラッチ状態が継続する。
図8は、トランスミッション4のギヤ位置が前進ギヤ位置に設定されている状態で、下り坂を惰行により下る(前進する)場合の動作例を示す。
クラッチ3が切断状態であり、車両1が重力により惰行して車速が増加し、被駆動側回転速度が駆動側回転速度を上回ると(または、車速が第1所定値V1以上となると)、半クラッチ制御が開始される(時刻t2)。
制御ユニット10は、アクセル全閉用の目標エンジン回転速度をアイドル回転速度よりも低い値に設定し、その目標エンジン回転速度と実エンジン回転速度との差分に応じてクラッチ押圧量変化量を演算する。目標エンジン回転速度がアイドル回転速度よりも低いので、クラッチ押圧量が増加され、クラッチ3は半クラッチ状態となる。それにより、被駆動側部32の回転が駆動側部31に伝えられるので、実エンジン回転速度が増加し、目標エンジン回転速度と実エンジン回転速度の差分がさらに増加する。それによって、クラッチ3は、半クラッチ状態から速やかに接続状態に至り(時刻t3)、駆動側回転速度と被駆動側回転速度とが一致する。
車両1に働く重力のために、実エンジン回転速度がアイドル回転速度よりも大きく、したがって、目標エンジン回転速度よりも大きい状態に保持される。その結果、クラッチ3は接続状態に保たれる。
クラッチ3が接続状態になると、実エンジン回転速度がアイドル回転速度よりも大きいので、クラッチトルクは負となり(図2参照)、エンジントルクによって被駆動側部32の回転が抑制される。これにより、エンジンブレーキを効かせながら、下り坂を下ることができる。
トランスミッション4のギヤ位置が後進ギヤ位置とされている状態で、上り坂を惰行により下る(後進する)場合の動作も同様である。なぜなら、後進ギヤで車両1が後進するときには、クラッチ3の被駆動側部32は、エンジン2により回転される駆動側部31と同方向に回転するからである。
図9は、トランスミッション4のギヤ位置が前進ギヤ位置に設定されている状態で、上り坂を惰行により下る(後進する)場合の動作例を示す。
クラッチ3が切断状態であり、車両1が惰行して車速が増加し、被駆動側回転速度が駆動側回転速度を上回ると(または、車速が第1所定値V1以上となると)、半クラッチ制御が開始される(時刻t4)。
制御ユニット10は、アクセル全閉用目標エンジン回転速度をアイドル回転速度よりも低い値に設定し、その目標エンジン回転速度と実エンジン回転速度との差分に応じてクラッチ押圧量変化量を演算する。実エンジン回転速度(アイドル回転速度)が目標エンジン回転速度よりもいので、クラッチ押圧量変化量は正の値である。したがって、クラッチ押圧量が増加し、クラッチ3は、切断状態から半クラッチ状態となる。
前進ギヤ位置での後進であるため、エンジン2がクラッチ3の駆動側部31に与えるトルクの方向と、車輪5から被駆動側部32に伝達されるトルクの方向とは反対である。そのため、駆動側部31および被駆動側部32が接触すると、実エンジン回転速度が減少する。目標エンジン回転速度がアイドル回転速度よりも低いので、実エンジン回転速度は目標エンジン回転速度に近づいていき、エンジントルクは正の値(図2参照)となる。実エンジン回転速度が目標エンジン回転速度に近づくことによって、クラッチ押圧量変化量は減少していく。さらに、実エンジン回転速度が目標エンジン回転速度よりも低くなると、クラッチ押圧量変化量は負の値となり、クラッチ押圧量が減少することになる。こうして、実エンジン回転速度が目標エンジン回転速度に近づくようにクラッチ押圧量が増減され、その状態を保つ半クラッチ状態が継続する。
このような動作によって、エンジン2が発生する正のエンジントルクによって被駆動側部32の回転が抑制され、エンジン2のトルクを利用して車輪5を制動できる。その一方で、実エンジン回転速度は、目標エンジン回転速度の近傍の値に保持されるので、エンジンストールが生じることもない。こうして、エンジンストールを回避しながら、エンジンブレーキを効かせつつ、前進ギヤのままで下り坂を惰行して下る(後進する)ことができる。
トランスミッション4のギヤ位置が後進ギヤ位置とされている状態で、下り坂を惰行により下る(前進する)場合の動作も同様である。なぜなら、後進ギヤで車両1が前進するときには、クラッチ3の被駆動側部32は、エンジン2により回転される駆動側部31とは反対方向に回転するからである。
図10Aおよび図10Bは、比較例の構成による動作を説明するための図である。ここで想定する比較例は、アクセル全閉のときに、車速がアイドル回転速度相当値を超えると、クラッチ接続動作を開始するように構成されている。
前進ギヤ位置で下り坂を前進して下る場合には、図10Aに示すように、車速のクランク軸回転換算値がエンジン回転速度に達するとクラッチを接続するための制御が開始される。それにより、クラッチは、切断状態から、半クラッチ状態を経て、接続状態に至る。このとき、エンジンは、アクセル全閉でアイドル回転速度よりも高回転の状態となるので、クラッチが車輪に伝達するエンジントルクは負の値となり(図2参照)、エンジンは車輪の回転を抑制する。よって、エンジンブレーキを利用して下り坂を下ることができる。
一方、前進ギヤ位置で上り坂を登ろうとして、途中で登坂を諦め、惰行して後退する場合の動作を図10Bに示す。アクセルを全閉にすることにより、エンジン回転速度が減少し、それに応じて車速も減少する。エンジン回転速度がアイドル回転速度に達すると、クラッチが切断される。その後、車速が零になり、車両が後退を始める。図10Bで、後退を表すために車速が負値となっているが、回転パルス生成ユニットを用いた車速センサは、回転方向の情報を生成できない。したがって、車速情報は、参照符号60で示すように、その大きさのみの情報である。この場合、車速の絶対値がアイドル回転速度相当値に達すると、クラッチを接続するための動作が始まり、半クラッチ状態を経て、接続状態に至る。
ところが、前進ギヤ位置で車両が後退するため、クラッチの駆動側部に与えられるエンジンのトルクの方向と、クラッチの被駆動側部に車輪から入力されるトルクの方向とが、反対である。そのため、クラッチが接続状態になると、エンジン回転速度がアイドル回転速度から急減して、エンジンストールしてしまう。したがって、エンジンブレーキを利用しながら後退することができない。しかも、クラッチが自動的に接続されてしまうので、エンジンストールを回避しながら、重力を利用して坂を下ることもできない。
前述した実施形態では、このような問題が生じず、前進ギヤのまま上り坂を惰行して後退する際に、エンジンストールを生じることなく、かつエンジンブレーキを利用することができる。
以上のように、この実施形態によれば、クラッチ3が切断状態のときに、車両1の惰行によって、被駆動側回転速度が駆動側回転速度よりも大きくなる条件1、および車速(すなわち、被駆動側回転速度)が第1所定値V1以上となる条件2のうちの一方または両方が充足されると、半クラッチ制御が開始される。半クラッチ制御では、エンジン回転速度(駆動側回転速度に相当)がアクセル全閉用目標エンジン回転速度よりも高ければ、駆動側部31および被駆動側部32の互いの押圧力が強められる。一方、エンジン回転速度が目標エンジン回転速度よりも低ければ、その押圧力が弱められる。押圧力の制御は、クラッチアクチュエータ11の制御により達成される。したがって、クラッチアクチュエータ11を制御することにより、エンジン回転速度が目標エンジン回転速度に導かれる。アクセル全閉に対する目標エンジン回転速度は、アイドル回転速度よりも低い値に設定される。
これにより、既に詳述したとおり、トランスミッション4のギヤ位置と車両1の進行方向とが整合しているか否かに関わりなく、エンジンブレーキを効かせながら、重力を利用して坂を下ることができ、エンジンストールが生じることもない。
また、この実施形態では、半クラッチ制御において、アクセル全閉用目標エンジン回転速度は、エンジン2の運転を維持できる下限エンジン回転速度よりも高い値に設定される。したがって、ギヤ位置と車両1の走行方向とが不整合のときでも、エンジンストールを回避し、かつエンジンブレーキを効かせながら、重力を利用して坂を下ることができる。
また、この実施形態では、アイドル回転速度が吸気温度、油温、始動直後か否か、冷却水温度(エンジン温度)等のパラメータに応じて可変設定され、それに応じて、半クラッチ制御開始時のアイドル回転速度に基づいて目標エンジン回転速度が可変設定される。それにより、確実に、エンジンストールを回避しつつ、ギヤ位置が前進ギヤ位置か後進ギヤ位置かによらず、エンジンブレーキを効かせながら重力を利用して坂を下ることができる。
また、この実施形態では、クラッチ3の押圧量変化量(半クラッチ状態では押圧力変化量)が、実エンジン回転速度と目標エンジン回転速度との差分(より具体的には、目標エンジン回転速度に対する実エンジン回転速度の偏差)に応じて可変設定される。それにより、とくに、ギヤ位置と車両1の走行方向とが整合しない状態で坂を下る場合に、クラッチ3において、適切な押圧力を達成できる。
また、前記差分が大きいほど大きなクラッチ押圧量変化量が設定されることにより、速やかに、適切な押圧力を実現できる。それにより、エンジンストールを回避しながら、適切なエンジンブレーキ力を発生させた状態で、重力を利用して坂を下ることができる。
さらに、この実施形態では、車速センサ16は、ドライブ軸42の回転に応じて、回転方向に関係無く、回転量に応じた回転パルスを生成する回転パルス生成ユニット16aを有している。したがって、車速情報は、車両1の走行方向、すなわち、車輪5の回転方向に関する情報を有していない。このように、方向に関する情報を出力しない安価な車速センサ16を用いる構成でありながら、ギヤ位置に関係無く、エンジンストールを回避しながら、エンジンブレーキを効かせて、重力を利用して坂を下ることができる。なぜなら、エンジン回転速度を目標エンジン回転速度と比較してクラッチ3の押圧力を制御する構成は、前述のとおり、ギヤ位置と車両1の走行方向とが整合しているか否かによらずに作動可能だからである。
また、この実施形態では、車速、すなわち、被駆動側回転速度がクラッチ切断閾値のときにクラッチ3が切断される。すなわち、車両1が減速することによって被駆動側回転速度が所定値以下になると、クラッチ3が切断される。これにより、エンジン回転速度が過度に減少することを回避でき、クラッチ3の自動切断によって、エンジンストールを回避できる。
また、この実施形態では、被駆動側回転速度が車両1の車速に相当している。したがって、車速に応じた半クラッチ制御が可能となる。被駆動側回転速度として車速を用いてもよいし、車速に対応する別の指標を被駆動側回転速度として用いてもよい。
次に、この発明の第2の実施形態について説明する。この第2の実施形態の説明において、前述の図1および図2を再び参照する。
第1の実施形態では、半クラッチ制御において、アクセル全閉用目標エンジン回転速度NTが設定され、エンジン回転速度が目標エンジン回転速度NTになるように、クラッチアクチュエータ11が制御されている。これに対して、第2の実施形態では、半クラッチ制御においては、アクセル全閉時に適用すべき目標クラッチトルクTTが設定され、実際のクラッチトルク(実クラッチトルク)が目標クラッチトルクTTになるように、クラッチアクチュエータ11が制御される。
図11は、実クラッチトルクの求め方を説明するための図である。クラッチトルクとは、クラッチ3の駆動側部31から被駆動側部32へと伝達されるトルクである。駆動側部31から被駆動側部32へとエンジン2の回転方向のトルクが伝達される場合に、クラッチトルクは正の値をとる。エンジン2の回転方向とは反対方向のトルクが駆動側部31から被駆動側部32へと伝達される場合に、すなわち、エンジンブレーキがかかる状態のとき、クラッチトルクは負の値をとる。
駆動側部31に伝達されるエンジントルクTe、クラッチトルクTc、およびエンジン回転速度ωの間には、次式で示す関係式が成立する。ただし、Iは、動力伝達経路6においてクラッチ3の駆動側部31およびそれよりも上流側(エンジン2側)の全体の慣性モーメントであり、tは時間である。
Te−Tc=I×(dω/dt) …(1)
したがって、Te>Tcならエンジン回転速度ωが増加する。Te<Tcならエンジン回転速度ωが減少する。Te=Tcならエンジン回転速度ωは変化しない。
前記(1)式を変形することにより、クラッチトルクTcは、次式で得られることが分かる。
Tc=Te−I×(dω/dt) …(2)
すなわち、エンジントルクTeおよびエンジン回転速度の時間変化dω/dtに基づいて、クラッチトルクTc(実クラッチトルク)を求めることができる。
図12は、半クラッチ状態におけるクラッチトルクとクラッチ押圧力(駆動側部31と被駆動側部32との押圧力)との関係を示す。駆動側回転速度が被駆動側回転速度よりも大きいとき、クラッチトルクは正の値をとる。逆に、駆動側回転速度が被駆動側回転速度よりも小さいとき、クラッチトルクは負の値をとる。クラッチトルクの大きさ(絶対値)は、クラッチ押圧力が小さいほど、すなわち、切断状態に近づくほど小さくなる。
再び図2を参照して目標クラッチトルクの設定について説明する。
半クラッチ制御におけるアクセル全閉用目標クラッチトルクTTは、アイドル回転速度Niのときのクラッチトルク(=0)よりも大きく、かつ下限エンジン回転速度NLでのクラッチトルクTU(上限クラッチトルク)よりも低い値に設定される。換言すれば、下限エンジン回転速度NLよりも高く、かつアイドル回転速度Niよりも低いエンジン回転速度でエンジン2が発生するエンジントルクに相当する値が、アクセル全閉に対応する目標クラッチトルクTTとして設定される。すなわち、第1の実施形態での半クラッチ制御における目標エンジン回転速度設定領域RN1に対応する目標クラッチトルク設定領域RT1内で、アクセル全閉用の目標クラッチトルクTTが設定される。制御ユニット10は、吸気温度、油温、始動直後か否か、冷却水温度(エンジン温度)等に応じて、アイドル回転速度Niを可変設定する。それに応じて、制御ユニット10は、半クラッチ制御を開始したときのアイドル回転速度Niに応じて、アクセル全閉用目標クラッチトルクTTを可変設定する。
半クラッチ制御では、制御ユニット10は、目標クラッチトルクTTが達成されるように、クラッチアクチュエータ11を制御し、それによって、クラッチ3の駆動側部31と被駆動側部32との間の押圧力を制御する。これにより、駆動側部31と被駆動側部32との間で伝達されるクラッチトルクが可変され、実クラッチトルクが目標クラッチトルクTTに制御される。
半クラッチ制御を終了するときには、制御ユニット10は、アクセル全閉用の目標クラッチトルクTTを破棄して、スロットル開度に応じてエンジン出力を制御する通常動作に復帰することが好ましい。
車両1が惰行するときの制御ユニット10の動作は、前述の第1の実施形態の説明で参照した図3の場合と同様である。そして、半クラッチ制御移行判定(図3のステップS4)、および半クラッチ制御終了判定(図3のステップS6)に関する動作も同様であり、図4Aおよび図4Bにそれぞれ示されているとおりである。したがって、以下では、図3、図4Aおよび図4Bを併せて参照する。
この実施形態では、半クラッチ制御(図3のステップS5)の内容が第1の実施形態(図5参照)とは異なっており、制御ユニット10による半クラッチ制御は、図13に示すとおりである。
図13は、半クラッチ制御の具体例を説明するためのフローチャートである。制御ユニット10は、半クラッチ制御に移行したときのアイドル回転速度を取得する(ステップS41)。制御ユニット10は、そのアイドル回転速度に基づいて、アクセル全閉用の目標クラッチトルクを設定する(ステップS42)。目標クラッチトルクの設定については、図2を参照して前述したとおりである。ステップS41,S42の処理が、制御ユニット10の目標クラッチトルク設定ユニットとしての機能に相当する。
制御ユニット10は、さらに、実クラッチトルクを演算する(ステップS43)。この演算が、制御ユニット10のクラッチトルク取得ユニットとしての機能に相当する。実クラッチトルクの演算については、図11を参照して前述したとおりである。
さらに、制御ユニット10は、目標クラッチトルクと実クラッチトルクとに基づいて、クラッチ押圧量の変化量を演算する(ステップS44)。そして、制御ユニット10は、演算されたクラッチ押圧量変化量に基づいて、クラッチ指令値を更新する(ステップS45)。制御ユニット10は、前回の制御周期におけるクラッチ指令値(前回値)に対してクラッチ押圧量変化量を加算して、今回の制御周期におけるクラッチ指令値(今回値)を求める。
なお、クラッチトルクは、駆動車輪5のトルクに比例する。そこで、ドライブ軸42の捩れをトルクセンサで計測することによってクラッチトルクを取得してもよい。また、ドライブ軸42の両端部の位相差を検出することによって、クラッチトルクを取得することもできる。
図14は、クラッチ押圧量変化量の演算例を説明するためのブロック図である。この例では、制御ユニット10は、実クラッチトルクに対する目標クラッチトルクの偏差(=目標クラッチトルク−実クラッチトルク)を求め、その偏差に係数K2(K2>0)を乗じてクラッチ押圧量変化量を求める。すなわち、いわゆるP制御(比例制御)によって、クラッチ押圧量変化量が求められている。むろん、実クラッチトルクと目標クラッチトルクとの差分を用いたPI制御(比例積分制御)またはPID(比例積分微分)制御などの他の演算方法によってクラッチ押圧量変化量が求められてもよい。
このように、実クラッチトルクおよび目標クラッチトルクの差分を用いたフィードバック制御が行われることにより、実クラッチトルクが目標クラッチトルクに導かれるように、クラッチ押圧量が増減される。
図15は、クラッチ押圧量変化量の演算例を説明するための図である。図15(a)は、実クラッチトルクの変化を示し、図15(b)はクラッチ指令値の変化を示している。クラッチ指令値は、前述のとおり、駆動側部31と被駆動側部32との間の距離に対応している。クラッチ指令値は、切断状態に対応する値と接続状態に対応する値との間の値をとることができる。
時刻t11に半クラッチ制御が開始されると、制御周期T毎に、実クラッチトルクに対する目標クラッチトルクの差分が求められる。半クラッチ制御の開始直後は実クラッチトルクと目標クラッチトルクとの差分が大きいので、クラッチ押圧量変化量も大きい。したがって、駆動側部31と被駆動側部32との間の距離が大幅に縮められる。それによって、駆動側部31と被駆動側部32とが接触して半クラッチ状態に至ると、駆動側部31と被駆動側部32とが摩擦接触している状態となるので、実クラッチトルクが目標クラッチトルクへと近づく。したがって、それらの差分が小さくなるので、クラッチ押圧量変化量が小さくなる。それにより、駆動側部31と被駆動側部32との間の距離、すなわち、クラッチ押圧量変化量が徐々に小さくなっていく。そうして、実クラッチトルクと目標クラッチトルクとの差分が零になると、クラッチ押圧量変化量が零になり、その状態が保持される。こうして、実クラッチトルクが目標クラッチトルクに収束し、その状態を保持する半クラッチ状態が継続する。
図16は、トランスミッション4のギヤ位置が前進ギヤ位置に設定されている状態で、下り坂を惰行により下る(前進する)場合の動作例を示す。
クラッチ3が切断状態であり、車両1が重力により惰行して車速が増加し、被駆動側回転速度が駆動側回転速度を上回ると(または、車速が第1所定値V1以上となると)、半クラッチ制御が開始される(時刻t12)。制御ユニット10は、アクセル全閉用目標クラッチトルクをアイドル回転速度でのエンジントルク相当値(=0)よりも大きい値に設定し、その目標クラッチトルクと実クラッチトルクとの差分に応じてクラッチ押圧量変化量を演算する。目標クラッチトルクが実クラッチトルクよりも大きいので、クラッチ押圧量が増加され、クラッチ3は半クラッチ状態となる。それにより、車輪5から入力されるトルクが、被駆動側部32から駆動側部31に伝えられるので、実クラッチトルクが減少し(負の値となり)、目標クラッチトルクと実クラッチトルクとの差分がさらに増加する。それによって、クラッチ3は、半クラッチ状態から速やかに接続状態に至り(時刻t13)、駆動側回転速度と被駆動側回転速度とが一致する。
車両1に働く重力のために、実エンジン回転速度がアイドル回転速度よりも大きく、したがって、実クラッチトルクは負の状態、すなわち、目標クラッチトルクよりも小さい状態に保たれる。その結果、クラッチ3は接続状態に保たれる。
クラッチ3が接続状態になると、実エンジン回転速度がアイドル回転速度よりも大きいので、クラッチトルクは負となり(図2参照)、エンジントルクによって被駆動側部32の回転が抑制される。これにより、エンジンブレーキを効かせながら、下り坂を下ることができる。
トランスミッション4のギヤ位置が後進ギヤ位置とされている状態で、上り坂を惰行により下る(後進する)場合の動作も同様である。なぜなら、後進ギヤ位置で車両1が後進するときには、クラッチ3の被駆動側部32は、エンジン2により回転される駆動側部31と同方向に回転するからである。
図17は、トランスミッション4のギヤ位置が前進ギヤ位置に設定されている状態で、上り坂を惰行により下る(後進する)場合の動作例を示す。
クラッチ3が切断状態であり、車両1が惰行して車速が増加し、被駆動側回転速度が駆動側回転速度を上回ると(または、車速が第1所定値V1以上になると)、半クラッチ制御が開始される(時刻t14)。制御ユニット10は、アクセル全閉用の目標クラッチトルクをアイドル回転速度でのエンジントルク相当値(=0)よりも大きい値に設定し、その目標クラッチトルクと実クラッチトルクとの差分に応じてクラッチ押圧量変化量を演算する。切断状態ではクラッチトルクは零であるので、それによって、クラッチ押圧量変化量が増加し、クラッチ3は、切断状態から半クラッチ状態となる。
前進ギヤ位置での後進であるため、エンジン2がクラッチ3の駆動側部31に与えるトルクの方向と、車輪5から被駆動側部32に伝達されるトルクの方向とは反対である。そのため、駆動側部31および被駆動側部32が接触すると実エンジン回転速度が減少する。それにより、エンジン2は正のトルクを発生し(図2参照)、それに応じて、実クラッチトルクが増加して正の値となる。そうして、実クラッチトルクが目標クラッチトルクに近づいていく。一方、実クラッチトルクが目標クラッチトルクに近づくことによって、クラッチ押圧量変化量は減少していく。さらに、実クラッチトルクが目標クラッチトルクよりも大きくなると、クラッチ押圧量変化量は負の値となり、クラッチ押圧量が減少することになる。こうして、実クラッチトルクが目標クラッチトルクに近づくようにクラッチ押圧量が増減され、その状態を保つ半クラッチ状態が継続する。
このような動作によって、エンジン2が発生する正のエンジントルクによって被駆動側部32の回転が抑制され、エンジン2のトルクを利用して車輪5を制動できる。その一方で、エンジン回転速度は、目標クラッチトルクに対応する値(図2参照)に保持されるので、エンジンストールが生じることもない。こうして、エンジンストールを回避しながら、エンジンブレーキを効かせつつ、前進ギヤのままで下り坂を惰行して下る(後進する)ことができる。
トランスミッション4のギヤ位置が後進ギヤ位置とされている状態で、下り坂を惰行により下る(前進する)場合の動作も同様である。なぜなら、後進ギヤで車両1が前進するときには、クラッチ3の被駆動側部32は、エンジン2により回転される駆動側部31とは反対方向に回転するからである。
以上のように、この実施形態によれば、クラッチ3が切断状態のときに、車両1の惰行によって、被駆動側回転速度が駆動側回転速度よりも大きくなる条件1、および車速(すなわち、被駆動側回転速度)が第1所定値V1以上となる条件2のうちの一方または両方が充足されると、半クラッチ制御が開始される。半クラッチ制御では、実クラッチトルクが目標クラッチトルクよりも小さければ、駆動側部31および被駆動側部32の互いの押圧力が強められる。一方、実クラッチトルクが目標クラッチトルクよりも大きければ、その押圧力が弱められる。押圧力の制御は、クラッチアクチュエータ11の制御により達成される。したがって、クラッチアクチュエータ11を制御することにより、実クラッチトルクが目標クラッチトルクに導かれる。目標クラッチトルクは、アイドル回転速度相当値よりも低い回転速度でエンジン2が発生するエンジントルクに相当する値に設定される。
これにより、既に詳述したとおり、トランスミッション4のギヤ位置と車両1の進行方向とが整合しているか否かに関わりなく、エンジンブレーキを効かせながら、重力を利用して坂を下ることができ、エンジンストールが生じることもない。
また、この実施形態では、半クラッチ制御において、アクセル全閉に対応する目標クラッチトルクは、エンジン2の運転を維持できる下限エンジン回転速度よりも高いエンジン回転速度でエンジン2が発生するエンジントルクに相当する値に設定される。したがって、ギヤ位置と車両1の走行方向とが不整合のときでも、エンジンストールを回避し、かつエンジンブレーキを効かせながら、重力を利用して坂を下ることができる。
また、この実施形態では、アイドル回転速度が吸気温度、油温、始動直後か否か、冷却水温度(エンジン温度)等のパラメータに応じて可変設定され、それに応じて、半クラッチ制御開始時のアイドル回転速度に応じて目標クラッチトルクが可変設定される。それにより、確実に、エンジンストールを回避しつつ、ギヤ位置が前進ギヤ位置か後進ギヤ位置かによらず、エンジンブレーキを効かせながら、重力を利用して坂を下ることができる。
また、この実施形態では、クラッチ押圧量変化量が、実クラッチトルクと目標クラッチトルクとの差分(より具体的には、実クラッチトルクに対する目標クラッチトルクの偏差)に応じて可変設定される。それにより、とくに、ギヤ位置と車両1の走行方向とが整合しない状態で坂を下る場合に、適切な押圧力を達成できる。
また、前記差分が大きいほど大きな変化量が設定されることにより、速やかに、適切な押圧力を実現できる。それにより、エンジンストールを回避しながら、適切なエンジンブレーキ力を発生させた状態で、重力を利用して坂を下ることができる。
さらに、この実施形態では、車速センサ16は、ドライブ軸42の回転に応じて、回転方向に関係無く、回転量に応じた回転パルスを生成する回転パルス生成ユニット16aを有している。したがって、車速情報は、車両1の走行方向、すなわち、車輪5の回転方向に関する情報を有していない。このように、方向に関する情報を出力しない安価な車速センサ16を用いる構成でありながら、ギヤ位置に関係無く、エンジンストールを回避しながら、エンジンブレーキを効かせて、重力を利用して坂を下ることができる。なぜなら、実クラッチトルクを目標クラッチトルクと比較してクラッチ3の押圧力を制御する構成は、前述のとおり、ギヤ位置と車両1の操向方向とが整合しているかによらずに作動可能だからである。
また、この実施形態では、車速、すなわち、被駆動側回転速度がクラッチ切断閾値以下のときにクラッチ3が切断される。すなわち、車両1が減速することによって被駆動側回転速度が所定値以下になると、クラッチ3が切断される。これにより、エンジン回転速度が過度に減少することを回避でき、クラッチ3の自動切断によって、エンジンストールを回避できる。
また、この実施形態では、被駆動側回転速度が車両1の車速に相当している。したがって、車速に応じた半クラッチ制御が可能となる。被駆動側回転速度として車速を用いてもよいし、車速に対応する別の指標を被駆動側回転速度として用いてもよい。
図18は、この発明の第3の実施形態に係るクラッチ制御システムが適用された車両1の構成を説明するためのブロック図である。図18において、図1に示された各部の対応部分に同一の参照符号を付す。
この実施形態では、車速センサ50は、回転パルス生成ユニット50aと、回転方向センサ50bとを一体的に備えている。
回転パルス生成ユニット50aは、ドライブ軸42の回転に伴って、回転方向に関係無く、回転量に応じた回転パルスを生成する。回転パルス生成ユニット50aが生成した回転パルスが、制御ユニット10に入力される。第1の実施形態の場合と同様に、制御ユニット10は、たとえば、単位時間に入力される回転パルスを計数し、その計数結果に基づいて車速を演算してもよい。また、制御ユニット10は、所定の複数個の回転パルスが入力されるのに要する所要時間を計測し、その計測された所要時間に基づいて車速を演算してもよい。
回転方向センサ50bは、ドライブ軸42の回転方向が前進方向か後進方向かを検出する。前進方向とは、車両1が前進するときのドライブ軸42の回転方向である。後進方向とは、車両1が後進するときのドライブ軸42の回転方向である。回転方向センサ50bは、たとえば、回転パルス生成ユニット50aに対して90度位相のずれた回転パルスを生成する別の回転パルス生成ユニットであってもよい。この場合、制御ユニット10は、2つの回転パルス生成ユニット50a,50bの出力信号波形の位相ずれに基づいて、ドライブ軸42の回転方向を判別するように構成されていてもよい。
車両1が惰行するときの制御ユニット10の動作は、前述の第1の実施形態の説明で参照した図3の場合と同様である。そして、半クラッチ制御移行判定(図3のステップS4)、および半クラッチ制御終了判定(図3のステップS6)に関する動作も同様であり、図4Aおよび図4Bにそれぞれ示されているとおりである。したがって、以下では、図3、図4Aおよび図4Bを併せて参照する。
この実施形態では、半クラッチ制御(図3のステップS5)の内容が第1および第2の実施形態とは異なっている。具体的には、制御ユニット10による処理は、図19に示すとおりである。
図19は、半クラッチ制御の具体例を説明するためのフローチャートである。半クラッチ制御に移行すると、制御ユニット10は、ギヤ位置センサ15からギヤ位置情報を取得し(ステップS51)、さらに、回転方向センサ50bの出力に基づいてドライブ軸42の回転方向が前進方向か後進方向かを判別する(ステップS52)。ギヤ位置センサ15は、ギヤ位置情報を取得するギヤ位置取得ユニットの一例である。また、回転方向センサ50bは、前後進判別ユニットの一例である。
さらに、制御ユニット10は、取得したギヤ位置と回転方向センサ50bが検出するドライブ軸42の回転方向とが整合するかどうかを判断する(ステップS53)。
制御ユニット10は、取得されたギヤ位置情報が前進ギヤ位置を示し、かつドライブ軸42の回転方向が前進方向であれば、「整合」と判断する。さらに、制御ユニット10は、取得されたギヤ位置情報が後進ギヤ位置を示し、かつドライブ軸42の回転方向が後進方向であれば、「整合」と判断する。一方、制御ユニット10は、取得されたギヤ位置情報が前進ギヤ位置を示し、かつドライブ軸42の回転方向が後進方向であれば、「不整合」と判断する。さらに、制御ユニット10は、取得されたギヤ位置情報が後進ギヤ位置を示し、かつドライブ軸42の回転方向が前進方向であれば、「不整合」と判断する。
整合の判断の場合には、制御ユニット10は、第1半クラッチ制御を実行する(ステップS54)。一方、不整合の判断の場合には、制御ユニット10は、第1半クラッチ制御とは異なる第2半クラッチ制御を実行する(ステップS55)。
この構成によれば、車両1の惰行によって、被駆動側回転速度が駆動側回転速度よりも大きくなり(図4AのステップS12)、かつ車速が第1所定値V1以上となると(図4AのステップS13)、半クラッチ制御(図19)が開始される。半クラッチ制御は、トランスミッション4のギヤ位置と被駆動側部32の回転方向とが整合していれば第1半クラッチ制御(図19のステップS54)であり、それらが不整合であれば第2半クラッチ制御(図19のステップS55)である。したがって、ギヤ位置と被駆動側部32の回転方向との整合/不整合に応じて、適切な半クラッチ制御を実行できる。
また、車速センサ50は、回転パルス生成ユニット50aと回転方向センサ50bとを一体化した構成であるので、ユニットを増やすことなく車輪5の回転方向を検出でき、車両1が前進しているか後進しているかを判定できる。したがって、コストの大幅な増加を招くことなく、ギヤ位置と車両1の走行方向との整合/不整合に応じて、適切な半クラッチ制御を実行できる。
第1半クラッチ制御は、たとえば、第1の実施形態の半クラッチ制御(図5参照)と同様の制御であってもよい。すなわち、制御ユニット10は、アクセル全閉用目標エンジン回転速度を設定し(ステップS31,S32)、目標エンジン回転速度に対する実エンジン回転速度の偏差(差分)に基づいてクラッチ押圧力変化量を求める(ステップS33)。さらに、制御ユニット10は、そのクラッチ押圧量変化量を前回のクラッチ指令値に加算してクラッチ指令値を更新する(ステップS34)。つまり、第1半クラッチ制御は、被駆動側回転速度に応じて駆動側部31と被駆動側部32との押圧量を可変する制御であってもよい。
また、第1半クラッチ制御は、第2の実施形態の半クラッチ制御(図13参照)と同様の制御であってもよい。すなわち、制御ユニット10は、アクセル全閉用の目標クラッチトルクを設定し(ステップS41,S42)、実クラッチトルクに対する目標クラッチトルクの偏差(差分)に基づいてクラッチ押圧力変化量を求める(ステップS43,S44)。さらに、制御ユニット10は、そのクラッチ押圧量変化量を前回のクラッチ指令値に加算してクラッチ指令値を更新する(ステップS45)。つまり、第1半クラッチ制御は、クラッチトルクに応じて駆動側部31と被駆動側部32との押圧力を可変する制御であってもよい。
いずれの場合も、第1半クラッチ制御は、駆動側部31および被駆動側部32の間の押圧力を単調増加させ、クラッチ3を半クラッチ状態から接続状態へと導いて、接続状態を保持する制御である。これにより、エンジンブレーキを効かせることができる。
第2半クラッチ制御は、駆動側部31および被駆動側部32の押圧力を増減させ、エンジン回転速度またはクラッチトルクを一定に保つようにして、半クラッチ状態を保持する制御であってもよい。これにより、エンジンストールを回避しながら、エンジン2の回転によって車輪5の回転を抑制できる。こうして、ギヤ位置と被駆動側部32の回転方向との整合/不整合によらずに、エンジンストールを回避しながら、エンジンブレーキを利用できる。
第2半クラッチ制御は、クラッチ3を切断状態に維持するようにクラッチアクチュエータ11を駆動する制御であってもよい。この場合、ギヤ位置と被駆動側部32の回転方向とが不整合のときには、クラッチが切断状態に維持されるので、被駆動側部32からのトルク入力によってエンジンストールが生じることを回避できる。よって、ギヤ位置と被駆動側部32の回転方向とが不整合の状態のときでも、エンジンストールを回避しながら、重力を利用して坂を下ることができる。
また、第2半クラッチ制御は、第1半クラッチ制御に比較して、駆動側部31および被駆動側部32を弱い押圧力で互いに押し付けるようにクラッチアクチュエータ11を駆動する制御であってもよい。この構成によれば、ギヤ位置と被駆動側部32の回転方向とが不整合のときに、駆動側部31と被駆動側部32との押圧力が弱められるので、被駆動側部32から入力されたトルクのエンジン2への入力が制限される。それにより、エンジンストールを回避できる。したがって、エンジンストールを回避しながら、重力を利用して坂を下ることができる。
また、図20に示すように、第1半クラッチ制御は、車速、すなわち、被駆動側回転速度に応じてクラッチ押圧量を増減する制御であってもよい。具体的には、被駆動側回転速度が大きいほどクラッチ押圧量が大きくなる特性に従ってクラッチ押圧量を定めることが好ましい。第1半クラッチ制御におけるクラッチ押圧量の上限値は、切断状態に相当する値であってもよい。
この場合において、図20に併せて示すように、第2半クラッチ制御も同様に、車速、すなわち、被駆動側回転速度に応じてクラッチ押圧量を増減する制御であってもよい。具体的には、被駆動側回転速度が大きいほどクラッチ押圧量が大きくなる特性に従ってクラッチ押圧量を定めることが好ましい。ただし、第2半クラッチ制御のクラッチ押圧量は、同じ被駆動側回転速度に対する第1半クラッチ制御によるクラッチ押圧量よりも小さい値であることが好ましい。また、第2半クラッチ制御におけるクラッチ押圧量の上限値は、クラッチ3が接続状態に至るクラッチ押圧量よりも小さい上限押圧量以下とされていることが好ましい。
このような構成により、被駆動側回転速度に応じて適切な半クラッチ制御を行える。そして、ギヤ位置と車輪5の回転方向とが不整合のときには、それらが整合しているときよりも、駆動側部31と被駆動側部32との押圧力が小さくされる。それにより、エンジンストールを回避しながら、半クラッチ制御を行えるので、重力を利用して坂を下ることができる。また、ギヤ位置と車輪5の回転方向とが不整合のときに行われる第2半クラッチ制御では、クラッチ3が接続状態に至らないようにクラッチアクチュエータ11が制御される。それによって、エンジンストールを回避しながら、エンジン2と車輪5との間のトルク伝達を行える。よって、エンジンブレーキを効かせながら、重力を利用して坂を下ることができる。
この発明の実施形態について説明してきたが、この発明は、次に例示的に列挙するとおり、さらに別の形態で実施することもできる。
(1)前述の実施形態では、一つの制御ユニット10が、エンジン2、クラッチ3およびトランスミッション4を制御する構成を示した。このことは、制御ユニット10がただ一つのコンピュータを含むことを必ずしも意味しない。すなわち、制御ユニット10が複数のコンピュータを含んでいてもよい。たとえば、制御ユニット10は、エンジン2を制御するエンジン制御ユニットと、クラッチ3およびトランスミッション4を制御する変速制御ユニットとを含んでいてもよい。
(2)前述の実施形態では、車速の低下に伴ってオートシフトダウンが行われる構成を示した。しかし、この発明は、車速の低下に伴ってクラッチを自動切断する機能を含むがオートシフトダウン機能は含まない構成の車両にも適用できる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 :車両
2 :エンジン
3 :クラッチ
4 :トランスミッション
5 :車輪
6 :動力伝達経路
10 :制御ユニット
11 :クラッチアクチュエータ
12 :クラッチアクチュエータセンサ
13 :シフトアクチュエータ
14 :シフトアクチュエータセンサ
15 :ギヤ位置センサ
16 :車速センサ
16a :回転パルス生成ユニット
20 :アクセル操作子
21 :スロットルバルブ
24 :クランク軸
26 :スロットル開度センサ
27 :ブレーキスイッチ
28 :クランクセンサ
28a :回転パルス生成ユニット
29 :水温センサ
30D :シフトダウンスイッチ
30U :シフトアップスイッチ
31 :駆動側部
32 :被駆動側部
33 :リバース専用スイッチ
41 :メイン軸
42 :ドライブ軸
43 :変速ギヤ
44 :シフトカム
50 :車速センサ
50a :回転パルス生成ユニット
50b :回転方向センサ
NL :下限エンジン回転速度
NT :半クラッチ制御時のアクセル全閉用目標エンジン回転速度
Ni :アイドル回転速度
R0 :下限エンジン回転速度
RN0 :エンジンストール領域
RN1 :目標エンジン回転速度設定領域
RT1 :目標クラッチトルク設定領域
TT :目標クラッチトルク
TU :上限クラッチトルク

Claims (20)

  1. エンジンから車輪までの動力伝達経路にクラッチおよびトランスミッションが配置された車両のためのクラッチ制御システムであって、
    前記クラッチが、前記動力伝達経路上において前記エンジン側および前記車輪側にそれぞれ配置された駆動側部および被駆動側部を有し、クラッチアクチュエータによって前記駆動側部および前記被駆動側部の間を接続および切断するように構成されており、
    前記トランスミッションが、前記エンジンの駆動力を前記車輪の前進方向の回転力に変換する前進ギヤ位置と、前記エンジンの駆動力を前記車輪の後進方向の回転力に変換する後進ギヤ位置とを含む複数のギヤ位置を選択可能に構成されており、
    前記クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、
    前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、
    前記エンジンのアイドル回転速度に相当する値よりも低い値を、アクセル全閉に対応する目標回転速度として設定する目標回転速度設定ユニットと、
    前記駆動側回転速度が前記目標回転速度に対して高ければ、前記クラッチの駆動側部および被駆動側部の互いの押圧力を強め、前記駆動側回転速度が前記目標回転速度に対して低ければ前記押圧力を弱めるように前記クラッチアクチュエータを制御するようにプログラムされた半クラッチ制御ユニットと、
    前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件のうちの少なくともいずれか一方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットと
    を含む、車両用クラッチ制御システム。
  2. 前記目標回転速度設定ユニットが、前記エンジンの運転を維持できる下限エンジン回転速度に相当する値よりも高い値を、アクセル全閉に対応する目標回転速度として設定する、請求項1に記載の車両用クラッチ制御システム。
  3. 前記目標回転速度設定ユニットが、前記半クラッチ移行制御ユニットが半クラッチ制御に移行したときのアイドル回転速度に応じて前記目標回転速度を可変設定する、請求項1または2に記載の車両用クラッチ制御システム。
  4. 前記半クラッチ制御ユニットが、前記押圧力の変化量を、前記駆動側回転速度と前記目標回転速度との差分に応じて可変設定するようにプログラムされている、請求項1〜3のいずれか一項に記載の車両用クラッチ制御システム。
  5. 前記半クラッチ制御ユニットが、前記差分が大きいほど大きな変化量を設定するようにプログラムされている、請求項4に記載の車両用クラッチ制御システム。
  6. エンジンから車輪までの動力伝達経路にクラッチおよびトランスミッションが配置された車両のためのクラッチ制御システムであって、
    前記クラッチが、前記動力伝達経路上において前記エンジン側および前記車輪側にそれぞれ配置された駆動側部および被駆動側部を有し、クラッチアクチュエータによって前記駆動側部および前記被駆動側部の間を接続および切断するように構成されており、
    前記トランスミッションが、前記エンジンの駆動力を前記車輪の前進方向の回転力に変換する前進ギヤ位置と、前記エンジンの駆動力を前記車輪の後進方向の回転力に変換する後進ギヤ位置とを含む複数のギヤ位置を選択可能に構成されており、
    前記クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、
    前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、
    アイドル回転速度で前記エンジンが発生するエンジントルクに相当する値よりも大きく、前記アイドル回転速度よりも低い所定の回転速度で前記エンジンが発生するエンジントルクに相当する値よりも小さい値を、アクセル全閉に対応する目標クラッチトルクとして設定する目標クラッチトルク設定ユニットと、
    前記駆動側部から前記被駆動側部に伝達される実クラッチトルクを取得するクラッチトルク取得ユニットと、
    前記目標クラッチトルクよりも前記実クラッチトルクが小さければ前記クラッチの駆動側部および被駆動側部の互いの押圧力を強め、前記目標クラッチトルクよりも前記実クラッチトルクが大きければ前記押圧力を弱めるように、前記クラッチアクチュエータを制御するようにプログラムされた半クラッチ制御ユニットと、
    前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件のうちの少なくともいずれか一方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットと
    を含む、車両用クラッチ制御システム。
  7. 前記目標クラッチトルク設定ユニットが、前記エンジンの運転を維持できる下限エンジン回転速度よりも高いエンジン回転速度で前記エンジンが発生するエンジントルクに相当する値を、アクセル全閉に対応する目標クラッチトルクとして設定する、請求項6に記載の車両用クラッチ制御システム。
  8. 前記目標クラッチトルク設定ユニットが、前記半クラッチ移行制御ユニットが半クラッチ制御に移行したときのアイドル回転速度に応じて前記目標クラッチトルクを可変設定する、請求項6または7に記載の車両用クラッチ制御システム。
  9. 前記半クラッチ制御ユニットが、前記押圧力の変化量を、前記実クラッチトルクと前記目標クラッチトルクとの差分に応じて可変設定するようにプログラムされている、請求項6〜8のいずれか一項に記載の車両用クラッチ制御システム。
  10. 前記半クラッチ制御ユニットが、前記差分が大きいほど大きな変化量を設定するようにプログラムされている、請求項9に記載の車両用クラッチ制御システム。
  11. 前記第2回転速度検出ユニットは、前記クラッチの被駆動側部から前記車輪までのいずれかの回転軸の回転に応じて、回転方向に関係無く、回転量に応じた回転パルスを生成する回転パルス生成ユニットを含む、請求項1〜10のいずれか一項に記載の車両用クラッチ制御システム。
  12. エンジンから車輪までの動力伝達経路にクラッチおよびトランスミッションが配置された車両のためのクラッチ制御システムであって、
    前記クラッチが、前記動力伝達経路上において前記エンジン側および前記車輪側にそれぞれ配置された駆動側部および被駆動側部を有し、クラッチアクチュエータによって前記駆動側部および前記被駆動側部の間を接続および切断するように構成されており、
    前記トランスミッションが、前記エンジンの駆動力を前記車輪の前進方向の回転力に変換する前進ギヤ位置と、前記エンジンの駆動力を前記車輪の後進方向の回転力に変換する後進ギヤ位置とを含む複数のギヤ位置を選択可能に構成されており、
    前記クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、
    前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、
    前記トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが整合しているときに前記クラッチアクチュエータに対して第1半クラッチ制御を実行し、前記トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが不整合であるときに前記クラッチアクチュエータに対して前記第1半クラッチ制御とは異なる第2半クラッチ制御を実行するようにプログラムされた半クラッチ制御ユニットと、
    前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件の一方または両方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットと
    を含み、
    前記第2半クラッチ制御は、前記第1半クラッチ制御に比較して、前記駆動側部および前記被駆動側部の間を弱い押圧力で互いに押し付けるように前記クラッチアクチュエータを駆動する制御を含む、車両用クラッチ制御システム。
  13. エンジンから車輪までの動力伝達経路にクラッチおよびトランスミッションが配置された車両のためのクラッチ制御システムであって、
    前記クラッチが、前記動力伝達経路上において前記エンジン側および前記車輪側にそれぞれ配置された駆動側部および被駆動側部を有し、クラッチアクチュエータによって前記駆動側部および前記被駆動側部の間を接続および切断するように構成されており、
    前記トランスミッションが、前記エンジンの駆動力を前記車輪の前進方向の回転力に変換する前進ギヤ位置と、前記エンジンの駆動力を前記車輪の後進方向の回転力に変換する後進ギヤ位置とを含む複数のギヤ位置を選択可能に構成されており、
    前記クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、
    前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、
    前記トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが整合しているときに前記クラッチアクチュエータに対して第1半クラッチ制御を実行し、前記トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが不整合であるときに前記クラッチアクチュエータに対して前記第1半クラッチ制御とは異なる第2半クラッチ制御を実行するようにプログラムされた半クラッチ制御ユニットと、
    前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件の一方または両方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットと
    を含み、
    前記第1半クラッチ制御は、前記被駆動側回転速度に応じて前記クラッチの駆動側部および被駆動側部の互いの押圧力を可変するように前記クラッチアクチュエータを駆動する制御を含み、
    前記第2半クラッチ制御は、前記被駆動側回転速度に応じて前記押圧力を可変し、かつ同じ被駆動側回転速度に対して前記第1半クラッチ制御による前記押圧力よりも小さい押圧力を生じるように前記クラッチアクチュエータを駆動する制御を含む、車両用クラッチ制御システム。
  14. 前記第2半クラッチ制御は、前記クラッチが接続状態に至る押圧力よりも小さい上限押圧力以下の押圧力を生じるように前記クラッチアクチュエータを駆動する制御を含む、請求項12または13に記載の車両用クラッチ制御システム。
  15. エンジンから車輪までの動力伝達経路にクラッチおよびトランスミッションが配置された車両のためのクラッチ制御システムであって、
    前記クラッチが、前記動力伝達経路上において前記エンジン側および前記車輪側にそれぞれ配置された駆動側部および被駆動側部を有し、クラッチアクチュエータによって前記駆動側部および前記被駆動側部の間を接続および切断するように構成されており、
    前記トランスミッションが、前記エンジンの駆動力を前記車輪の前進方向の回転力に変換する前進ギヤ位置と、前記エンジンの駆動力を前記車輪の後進方向の回転力に変換する後進ギヤ位置とを含む複数のギヤ位置を選択可能に構成されており、
    前記クラッチの駆動側部の回転速度に対応する駆動側回転速度を検出する第1回転速度検出ユニットと、
    前記クラッチの被駆動側部の回転速度に対応する被駆動側回転速度を検出する第2回転速度検出ユニットと、
    前記トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが整合しているときに前記クラッチアクチュエータに対して第1半クラッチ制御を実行し、前記トランスミッションのギヤ位置と前記クラッチの被駆動側部の回転方向とが不整合であるときに前記クラッチアクチュエータに対して前記第1半クラッチ制御とは異なる第2半クラッチ制御を実行するようにプログラムされた半クラッチ制御ユニットと、
    前記クラッチが切断状態のときに、前記被駆動側回転速度が前記駆動側回転速度より大きいという第1条件、および前記被駆動側回転速度が所定値以上という第2条件の一方または両方が成立すると、前記半クラッチ制御ユニットによる半クラッチ制御に移行するようにプログラムされた半クラッチ移行制御ユニットと
    を含み、
    前記第2半クラッチ制御は、前記クラッチが接続状態に至る押圧力よりも小さい上限押圧力以下の押圧力を生じるように前記クラッチアクチュエータを駆動する制御を含む、車両用クラッチ制御システム。
  16. 前記第2半クラッチ制御は、前記クラッチを切断状態に維持するように前記クラッチアクチュエータを駆動する制御を含む、請求項15に記載の車両用クラッチ制御システム。
  17. 前記トランスミッションのギヤ位置情報を取得するギヤ位置取得ユニットと、
    前記車輪が前進方向に回転しているか後進方向に回転しているかを判別する前後進判別ユニットとをさらに含み、
    前記半クラッチ制御ユニットが、
    前記取得されたギヤ位置情報が前進ギヤ位置を示しかつ前記車輪が前進方向に回転していると判別されている場合、および前記取得されたギヤ位置情報が後進ギヤ位置を示しかつ前記車輪が後進方向に回転していると判別されている場合に、前記第1半クラッチ制御を実行し、
    前記取得されたギヤ位置情報が前進ギヤ位置を示しかつ前記車輪が後進方向に回転していると判別されている場合、および前記取得されたギヤ位置情報が後進ギヤ位置を示しかつ前記車輪が前進方向に回転していると判別されている場合に、前記第2半クラッチ制御を実行するようにプログラムされている、請求項12〜16のいずれか一項に記載の車両用クラッチ制御システム。
  18. 前記前後進判別ユニットが、前記第2回転速度検出ユニットと一体化された回転方向センサを含む、請求項17に記載の車両用クラッチ制御システム。
  19. 前記被駆動側回転速度が所定値以下のときに前記クラッチを切断するように前記クラッチアクチュエータを制御する切断制御ユニットをさらに含む、請求項1〜18のいずれか一項に記載の車両用クラッチ制御システム。
  20. 前記被駆動側回転速度が前記車両の車速に相当している、請求項1〜19のいずれか一項に記載の車両用クラッチ制御システム。
JP2014254386A 2014-12-16 2014-12-16 車両用クラッチ制御システム Active JP6413177B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014254386A JP6413177B2 (ja) 2014-12-16 2014-12-16 車両用クラッチ制御システム
EP15200051.9A EP3048323B1 (en) 2014-12-16 2015-12-15 Clutch control system for vehicle
US14/970,426 US9637130B2 (en) 2014-12-16 2015-12-15 Clutch control system for vehicle
ES15200051.9T ES2641721T3 (es) 2014-12-16 2015-12-15 Sistema de control de embrague para vehículo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254386A JP6413177B2 (ja) 2014-12-16 2014-12-16 車両用クラッチ制御システム

Publications (3)

Publication Number Publication Date
JP2016114190A JP2016114190A (ja) 2016-06-23
JP2016114190A5 JP2016114190A5 (ja) 2017-08-24
JP6413177B2 true JP6413177B2 (ja) 2018-10-31

Family

ID=55069670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254386A Active JP6413177B2 (ja) 2014-12-16 2014-12-16 車両用クラッチ制御システム

Country Status (4)

Country Link
US (1) US9637130B2 (ja)
EP (1) EP3048323B1 (ja)
JP (1) JP6413177B2 (ja)
ES (1) ES2641721T3 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201319641D0 (en) * 2013-11-07 2013-12-25 Jaguar Land Rover Ltd Driveline and method of controlling a driveline
CN108290570B (zh) * 2015-11-04 2021-12-21 卡明斯公司 传动系脱离和滑行管理
KR101795282B1 (ko) * 2016-06-28 2017-11-08 현대자동차주식회사 차량용 클러치 제어방법
US11401987B2 (en) 2018-05-23 2022-08-02 Transmission Cvtcorp Inc. Control of the engagement rate of a clutch
BE1026305B1 (nl) * 2018-05-25 2019-12-23 Punch Powertrain Nv Een aandrijflijn voor een voertuig en werkwijze voor het aansturen van een aandrijflijn in een voertuig
JP7147585B2 (ja) * 2019-01-23 2022-10-05 トヨタ自動車株式会社 車両制御装置
JP2021067271A (ja) 2019-10-17 2021-04-30 ヤマハ発動機株式会社 車両用自動変速装置およびそれを備えた車両
US20210323515A1 (en) * 2020-04-21 2021-10-21 Polaris Industries Inc. Systems and methods for operating an all-terrain vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170920A (ja) * 1982-03-31 1983-10-07 Aisin Seiki Co Ltd 自動クラツチ制御装置
JPH0369537U (ja) 1989-11-10 1991-07-10
JP3484836B2 (ja) * 1995-08-24 2004-01-06 トヨタ自動車株式会社 車両用直結クラッチのスリップ制御装置
US6171212B1 (en) 1997-08-26 2001-01-09 Luk Getriebe Systeme Gmbh Method of and apparatus for controlling the operation of a clutch in the power train of a motor vehicle
JP4114307B2 (ja) * 2000-06-30 2008-07-09 いすゞ自動車株式会社 クラッチ制御装置
US6873894B2 (en) * 2002-07-16 2005-03-29 Magna Drivetrain Of America, Inc. Method for operating an adaptive clutch in a power transfer assembly
JP3896976B2 (ja) * 2003-03-19 2007-03-22 日産自動車株式会社 マニュアルトランスミッションの自動変速制御装置
DE10333602A1 (de) * 2003-07-24 2005-02-17 Daimlerchrysler Ag Vorrichtung zum Betätigen einer Drehmomentübertragungseinheit
US8287433B2 (en) * 2008-01-10 2012-10-16 Komatsu Ltd. Work vehicle
JP2010169168A (ja) * 2009-01-21 2010-08-05 Yamaha Motor Co Ltd クラッチ制御装置およびそれを備えた車両
US9488267B2 (en) * 2012-09-14 2016-11-08 Ford Global Technologies, Llc Line pressure control with input shaft torque measurement

Also Published As

Publication number Publication date
US20160167655A1 (en) 2016-06-16
US9637130B2 (en) 2017-05-02
ES2641721T3 (es) 2017-11-13
EP3048323A1 (en) 2016-07-27
JP2016114190A (ja) 2016-06-23
EP3048323B1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6413177B2 (ja) 車両用クラッチ制御システム
JP5565324B2 (ja) 車両制御装置
JP6036473B2 (ja) 車両用駆動装置
JP5573747B2 (ja) ハイブリッド車両の変速制御装置
US20150166064A1 (en) Vehicle control system
JP5203105B2 (ja) 変速制御システムおよび車両
JP2010052726A (ja) 変速制御システムおよび車両
JP5278134B2 (ja) 惰行制御装置
US9643610B2 (en) Method and arrangement for controlling an automatic transmission unit
JP2016114190A5 (ja)
US20080207397A1 (en) Clutch Controller, Method for Controlling Clutch, and Straddle-Type Vehicle
EP2607670B1 (en) Control device for vehicle engine
WO2005075239A1 (ja) 車両用動力伝達装置のエンジン制御装置
WO2014174939A1 (ja) 車両用駆動装置
JP6424380B2 (ja) 車両用変速システム
JP5124398B2 (ja) トルク推定システムおよび車両
GB2517816B (en) A method for limiting the amount of energy dissipated in a friction clutch during engagement of the clutch
JP4778338B2 (ja) クリープ制御装置
JP5662075B2 (ja) 車両の動力伝達制御装置
US7896776B2 (en) Gear change control device, straddle-type vehicle, and method of controlling gearbox
CN109973643B (zh) 一种基于前馈pid的自动变速器怠速空挡控制方法
JP5873277B2 (ja) 車両の動力伝達制御装置
JP5240062B2 (ja) 惰行制御装置
EP1447259B1 (en) Power control apparatus and power control method for internal combustion engines
JP6897171B2 (ja) 車両の制御システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6413177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250