JP6413108B2 - Manufacturing method of semiconductor cooling device - Google Patents
Manufacturing method of semiconductor cooling device Download PDFInfo
- Publication number
- JP6413108B2 JP6413108B2 JP2014207088A JP2014207088A JP6413108B2 JP 6413108 B2 JP6413108 B2 JP 6413108B2 JP 2014207088 A JP2014207088 A JP 2014207088A JP 2014207088 A JP2014207088 A JP 2014207088A JP 6413108 B2 JP6413108 B2 JP 6413108B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling device
- semiconductor cooling
- plate
- container
- upper lid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001816 cooling Methods 0.000 title claims description 108
- 239000004065 semiconductor Substances 0.000 title claims description 107
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000003756 stirring Methods 0.000 claims description 23
- 230000005855 radiation Effects 0.000 claims description 21
- 238000003466 welding Methods 0.000 claims description 21
- 239000002826 coolant Substances 0.000 claims description 18
- 238000005520 cutting process Methods 0.000 claims description 10
- 238000005304 joining Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000110 cooling liquid Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
本発明は、電気自動車のモータ制御等に用いられるスイッチング素子である半導体パワーデバイスを冷却する半導体冷却装置の製造方法、およびその製造方法によって製造された半導体冷却装置に関するものである。 The present invention relates to a method for manufacturing a semiconductor cooling device that cools a semiconductor power device that is a switching element used for motor control of an electric vehicle and the like, and a semiconductor cooling device manufactured by the manufacturing method.
IGBT素子やパワートランジスタ素子等の半導体パワーデバイスは、スイッチング時に大電流が流れるため、多くの熱を発生する。そのため、使用時には半導体素子を冷却する必要があり、従来から多くの半導体冷却装置が知られている(例えば特許文献1)。 Semiconductor power devices such as IGBT elements and power transistor elements generate a large amount of heat because a large current flows during switching. For this reason, it is necessary to cool the semiconductor element at the time of use, and many semiconductor cooling devices are conventionally known (for example, Patent Document 1).
こうした半導体冷却装置の一例について、図7を用いて説明する。図7は、熱交換器である半導体冷却装置23の断面図である。半導体冷却装置23は、図7に示すように、裏面側に複数の放熱フィン29(29a,29b)が形成されたアッパーケースである上蓋部42と、ロアーケースである、凹状部410を有する本体容器部41と、が上蓋取付部411,411において閉止され、回転工具52によって摩擦撹拌接合されることによって製造される。 An example of such a semiconductor cooling device will be described with reference to FIG. FIG. 7 is a cross-sectional view of the semiconductor cooling device 23 that is a heat exchanger. As shown in FIG. 7, the semiconductor cooling device 23 includes a top cover 42 that is an upper case in which a plurality of heat radiation fins 29 (29 a and 29 b) are formed on the back surface side, and a main body having a concave portion 410 that is a lower case. The container part 41 is manufactured by being closed at the upper lid attaching parts 411 and 411 and friction stir joined by the rotary tool 52.
しかしながら、このような半導体冷却装置にあっては、摩擦撹拌接合を行う際に、回転工具52によって接合する部材に加えられる押付荷重Fが、アッパーケースである上蓋部42の裏面側に形成された放熱フィン29aを介してロアーケースである本体容器部41に伝わるため、図7に2点鎖線で示すように、製造時にロアーケース41が変形してしまうという課題があった。 However, in such a semiconductor cooling device, when the friction stir welding is performed, the pressing load F applied to the member to be joined by the rotary tool 52 is formed on the back surface side of the upper lid portion 42 that is the upper case. Since it is transmitted to the main body container portion 41 which is the lower case through the heat radiation fins 29a, there is a problem that the lower case 41 is deformed at the time of manufacture as shown by a two-dot chain line in FIG.
すなわち、摩擦撹拌接合を行う際には、回転工具52によって、上蓋取付部411,411に大きな押付荷重Fが加えられる。この押付荷重Fは、図7に点線状矢印で示すように、押付荷重Faとして上蓋部42の内部を伝わって放熱フィン29に伝達される。そして、さらに、点線状矢印で示す押付荷重Fbとして、放熱フィン29のうち、先端が本体容器部41の底面部28bに接触している放熱フィン29aの内部を伝わって、底面部28bを図7の紙面下方に向かって押し下げる。そのため、本体容器部41の底面部28bが放熱フィン29aに押されて変形してしまい、半導体冷却装置としての所定の性能を発揮できなくなる虞があった。 That is, when performing friction stir welding, a large pressing load F is applied to the upper lid attaching portions 411 and 411 by the rotary tool 52. The pressing load F is transmitted as a pressing load Fa to the radiating fin 29 through the inside of the upper lid portion 42 as indicated by a dotted arrow in FIG. Further, as the pressing load Fb indicated by the dotted arrow, the tip of the radiating fin 29 is transmitted through the inside of the radiating fin 29a in contact with the bottom surface portion 28b of the main body container portion 41, and the bottom surface portion 28b is shown in FIG. Push down toward the bottom of the paper. Therefore, the bottom surface portion 28b of the main body container portion 41 is pushed and deformed by the radiation fins 29a, and there is a possibility that the predetermined performance as the semiconductor cooling device cannot be exhibited.
上記課題を解決するために、本発明の半導体冷却装置の製造方法は、冷却液流路となる凹状部を有する、容器状部材を形成する容器状部材形成工程と、裏面に複数の放熱フィンを有する、板状部材を形成する板状部材形成工程と、前記板状部材の表面の縁部に、前記放熱フィンの突設位置に沿って延びる溝部を形成する溝部形成工程と、前記板状部材によって前記容器状部材を閉止する閉止工程と、前記板状部材と前記容器状部材とを摩擦撹拌接合によって接合する接合工程と、前記板状部材の表面を切削することによって前記溝部を除去して、発熱型半導体が当接される当接面を形成する切削工程と、によって製造されることを特徴とする。 In order to solve the above-described problems, a manufacturing method of a semiconductor cooling device of the present invention includes a container-shaped member forming step of forming a container-shaped member having a concave portion serving as a coolant flow path, and a plurality of heat radiation fins on the back surface. A plate-like member forming step for forming a plate-like member; a groove-forming step for forming a groove portion extending along a projecting position of the radiation fin at an edge of the surface of the plate-like member; and the plate-like member Removing the groove by cutting the surface of the plate-like member, a closing step of closing the vessel-like member by, a joining step of joining the plate-like member and the container-like member by friction stir welding, and And a cutting process for forming an abutting surface against which the heat-generating semiconductor abuts.
本発明に係る半導体冷却装置の製造方法によれば、板状部材の表面に形成された溝部が、板状部材と容器状部材とを摩擦撹拌接合する際に、押し当てた回転工具によって発生する押付荷重を吸収するダンパー領域として作用するため、板状部材内における押付荷重の伝達が緩和されて、板状部材の裏面に形成された放熱フィンに伝わり難くなる。したがって、放熱フィンを介して容器状部材の凹状部を形成する底面部に伝わる押付荷重が減少するため、摩擦撹拌接合を行う際の半導体冷却装置の変形を防止することができる。 According to the method for manufacturing a semiconductor cooling device of the present invention, the groove formed on the surface of the plate-like member is generated by the pressed rotary tool when the plate-like member and the container-like member are joined by friction stir welding. Since it acts as a damper region that absorbs the pressing load, the transmission of the pressing load in the plate-like member is relaxed, and it becomes difficult to be transmitted to the radiation fin formed on the back surface of the plate-like member. Therefore, since the pressing load transmitted to the bottom surface portion that forms the concave portion of the container-like member via the radiation fin is reduced, it is possible to prevent the semiconductor cooling device from being deformed when the friction stir welding is performed.
以下、本発明の半導体冷却装置の製造方法の具体的な実施形態について、図面を参照して説明する。 Hereinafter, specific embodiments of a method for manufacturing a semiconductor cooling device of the present invention will be described with reference to the drawings.
図1,図2は、本発明の一実施形態である半導体冷却構造21を示す斜視図である。まず、図1,図2を用いて、半導体冷却構造21の全体構成について説明する。
[全体構成の説明]
1 and 2 are perspective views showing a semiconductor cooling structure 21 according to an embodiment of the present invention. First, the overall configuration of the semiconductor cooling structure 21 will be described with reference to FIGS.
[Description of overall configuration]
図1の斜視図、および図2の分解斜視図に示すように、半導体冷却構造21は、少なくとも1個の発熱型半導体22a(半導体)が収容されたパワーモジュール22と、このパワーモジュール22の下面側に当接配置された下部半導体冷却装置23(半導体冷却装置)と、パワーモジュール22の上面に当接配置された上部半導体冷却装置24と、この上部半導体冷却装置24の上部に当接配置された荷重受板25と、この荷重受板25の上面側に設けられて荷重受板25を介して上部半導体冷却装置24をパワーモジュール22の上面へ圧接可能な弾性部材26と、を備えている。なお、発熱型半導体22aとしては、例えば、IGBT素子やパワートランジスタ素子に代表されるパワーデバイスが用いられる。 As shown in the perspective view of FIG. 1 and the exploded perspective view of FIG. 2, the semiconductor cooling structure 21 includes a power module 22 in which at least one heat generating semiconductor 22 a (semiconductor) is accommodated, and a lower surface of the power module 22. A lower semiconductor cooling device 23 (semiconductor cooling device) disposed in contact with the upper side, an upper semiconductor cooling device 24 disposed in contact with the upper surface of the power module 22, and an upper portion of the upper semiconductor cooling device 24. A load receiving plate 25 and an elastic member 26 provided on the upper surface side of the load receiving plate 25 and capable of pressing the upper semiconductor cooling device 24 against the upper surface of the power module 22 via the load receiving plate 25. . For example, a power device represented by an IGBT element or a power transistor element is used as the heat generating semiconductor 22a.
図3は、図1に示す半導体冷却構造21のうち、弾性部材26が圧接している位置を矢印Aの方向から見た断面図である。 FIG. 3 is a cross-sectional view of the semiconductor cooling structure 21 shown in FIG. 1 as viewed from the direction of arrow A at the position where the elastic member 26 is in pressure contact.
下部半導体冷却装置23(半導体冷却装置)は、図3に示すように、内部に冷却液流路27となる凹状部410を有する下部冷却装置本体28(容器状部材)を備えている。この下部冷却装置本体28の一端側には冷却液流路27と連通する冷却液入口23a(図1または図2)が設けられ、下部冷却装置本体28の他端側には冷却液流路27と連通する冷却液出口23b(図2)が設けられている。そして、下部冷却装置本体28の上面には、パワーモジュール22を当接配置可能な当接面28aが設けられている。また、当接面28aの裏面側には、冷却液流路27に沿って延びる互いに平行な複数の放熱フィン29(29a,29b)が設けられている。 As shown in FIG. 3, the lower semiconductor cooling device 23 (semiconductor cooling device) includes a lower cooling device main body 28 (container-like member) having a concave portion 410 serving as a coolant flow path 27 therein. A coolant inlet 23a (FIG. 1 or 2) communicating with the coolant flow path 27 is provided at one end side of the lower cooling device body 28, and the coolant flow path 27 is provided at the other end side of the lower cooling device body 28. A coolant outlet 23b (FIG. 2) is provided in communication with the coolant. A contact surface 28 a on which the power module 22 can be placed in contact is provided on the upper surface of the lower cooling device main body 28. In addition, a plurality of parallel radiation fins 29 (29a, 29b) extending along the coolant flow path 27 are provided on the back surface side of the contact surface 28a.
なお、図3に示すように、上蓋部42(板状部材)の幅方向中央付近に設けられた放熱フィン29aの先端部は、上蓋部42の幅方向左右端付近に設けられた放熱フィン29bの先端部よりも下方に延長されて、本体容器部41(容器状部材)の底面部28bに当接している。即ち、上蓋部42の幅方向左右端付近の放熱フィン29bの先端部と下部冷却装置本体28の底面部28bとの間には、僅かな隙間28cが設けられている。 As shown in FIG. 3, the front end portion of the radiating fin 29 a provided near the center in the width direction of the upper lid portion 42 (plate-like member) is the radiating fin 29 b provided near the left and right ends in the width direction of the upper lid portion 42. The lower end of the main body container 41 (container-like member) is in contact with the bottom surface 28b. That is, a slight gap 28 c is provided between the front end portion of the heat radiation fin 29 b near the left and right ends in the width direction of the upper lid portion 42 and the bottom surface portion 28 b of the lower cooling device main body 28.
このように、上蓋部42の幅方向中央付近の放熱フィン29aの先端部を本体容器部41(容器状部材)の底面部28bに当接させることによって、弾性部材26による圧接に耐えて、パワーモジュール22と下部半導体冷却装置23(半導体冷却装置)を確実に当接させることができ、これによって、パワーモジュール22の高い冷却効果を得ることができる。 In this manner, the front end portion of the heat dissipating fin 29a near the center in the width direction of the upper lid portion 42 is brought into contact with the bottom surface portion 28b of the main body container portion 41 (container-like member), so The module 22 and the lower semiconductor cooling device 23 (semiconductor cooling device) can be reliably brought into contact with each other, whereby a high cooling effect of the power module 22 can be obtained.
また、上蓋部42の幅方向左右端付近の放熱フィン29bの先端部よりも下の部分の冷却液流路27を互いに連通させることによって、下部半導体冷却装置23(半導体冷却装置)の幅方向への伝熱を促進することにより、放熱フィン29の間を完全に隔離して下部半導体冷却装置23の幅方向への伝熱を抑制した場合と比べて高い冷却効率を得ることができる。 In addition, the coolant flow paths 27 in the lower part of the upper lid portion 42 in the vicinity of the left and right ends in the width direction are communicated with each other in the width direction of the lower semiconductor cooling device 23 (semiconductor cooling device). By promoting this heat transfer, it is possible to obtain a higher cooling efficiency than when the heat radiation fins 29 are completely isolated and the heat transfer in the width direction of the lower semiconductor cooling device 23 is suppressed.
再び図1,図2に戻って、パワーモジュール22は、発熱型半導体22a(半導体)を3個内蔵する平面視長方形状の板状体とされている。なお、発熱型半導体22aの設置数は、3個に限るものではない。 1 and 2 again, the power module 22 is a plate-like body having a rectangular shape in plan view and including three heat generating semiconductors 22a (semiconductors). Note that the number of the exothermic semiconductors 22a is not limited to three.
そして、下部半導体冷却装置23(半導体冷却装置)と上部半導体冷却装置24とは、パワーモジュール22の全面を覆い隠して、十分な冷却効果を得るようにするために、パワーモジュール22よりも一回り程度以上大きい平面視長方形状のものとされている。 The lower semiconductor cooling device 23 (semiconductor cooling device) and the upper semiconductor cooling device 24 cover the entire surface of the power module 22 so as to obtain a sufficient cooling effect. It is a rectangular shape in plan view that is larger than the extent.
下部半導体冷却装置23(半導体冷却装置)と上部半導体冷却装置24とは、ボルトなどの締結具31(図1または図2)を用いて直接締結固定されている。本実施例においては、締結具31は、下部半導体冷却装置23と上部半導体冷却装置24との4箇所のコーナー部に取り付けられている。なお、締結具31の取付位置はこれに限るものではない。 The lower semiconductor cooling device 23 (semiconductor cooling device) and the upper semiconductor cooling device 24 are directly fastened and fixed using a fastener 31 (FIG. 1 or 2) such as a bolt. In the present embodiment, the fasteners 31 are attached to four corner portions of the lower semiconductor cooling device 23 and the upper semiconductor cooling device 24. In addition, the attachment position of the fastener 31 is not restricted to this.
そして、下部半導体冷却装置23(半導体冷却装置)の一端側に設けた冷却液入口23aから供給された冷却液L(図1または図2)は、下部半導体冷却装置23の内部を長手方向の一端側から他端側へと流れて、下部半導体冷却装置23の他端側に設けた冷却液出口23bから排出されると共に、上部半導体冷却装置24の他端側に設けた冷却液入口24a(図2)から上部半導体冷却装置24の内部へ入り、上部半導体冷却装置24の内部を他端側から一端側へと流れて、上部半導体冷却装置24の一端側に設けた冷却液出口24b(図1または図2)から排出されるように構成されている。すなわち、上部半導体冷却装置24も下部半導体冷却装置23と同様、液冷式のものとされている。 Then, the cooling liquid L (FIG. 1 or 2) supplied from the cooling liquid inlet 23a provided on one end side of the lower semiconductor cooling device 23 (semiconductor cooling device) passes through the inside of the lower semiconductor cooling device 23 in one end in the longitudinal direction. Flows from the side to the other end side, is discharged from the coolant outlet 23b provided on the other end side of the lower semiconductor cooling device 23, and is also supplied to the coolant inlet 24a provided on the other end side of the upper semiconductor cooling device 24 (FIG. 2) enters the inside of the upper semiconductor cooling device 24, flows inside the upper semiconductor cooling device 24 from the other end side to one end side, and is provided with a coolant outlet 24b provided on one end side of the upper semiconductor cooling device 24 (FIG. 1). Or it is comprised so that it may discharge | emit from FIG. That is, the upper semiconductor cooling device 24 is also of a liquid cooling type like the lower semiconductor cooling device 23.
なお、下部半導体冷却装置23他端側の冷却液出口23bと、上部半導体冷却装置24他端側の冷却液入口24aとの間には、シール部材32(図2)または、シール性を有する接続部材が設けられる。即ち、下部半導体冷却装置23(半導体冷却装置)と上部半導体冷却装置24とは、連続した一つの冷却液Lの流れが形成されるように接続されている。 A seal member 32 (FIG. 2) or a sealable connection is provided between the coolant outlet 23b on the other end of the lower semiconductor cooling device 23 and the coolant inlet 24a on the other end of the upper semiconductor cooling device 24. A member is provided. That is, the lower semiconductor cooling device 23 (semiconductor cooling device) and the upper semiconductor cooling device 24 are connected so that a continuous flow of the cooling liquid L is formed.
また、上記した荷重受板25は、パワーモジュール22の全面を圧接し得るようにするために、パワーモジュール22よりも一回り程度以上大きい平面視長方形状のものとされている。 In addition, the load receiving plate 25 described above has a rectangular shape in plan view that is one or more times larger than the power module 22 so that the entire surface of the power module 22 can be pressed.
弾性部材26は、上部半導体冷却装置24の幅方向へ延びる短冊状のものとされると共に、その中間部に、荷重受板25を部分的に押圧可能な押圧部26a(図1または図2)を少なくとも一つ有している。弾性部材26は、その両端部を下部半導体冷却装置23(半導体冷却装置)の側面に一体に固定された取付部33に、ボルトなどの締結具34を用いて締結固定される。弾性部材26は、上部半導体冷却装置24の長手方向に対し少なくとも一箇所設けられている。本実施例においては、3個の発熱型半導体22a(半導体)の間の2箇所の位置に設けられている。
[摩擦撹拌接合の説明]
The elastic member 26 is formed in a strip shape extending in the width direction of the upper semiconductor cooling device 24, and a pressing portion 26a (FIG. 1 or 2) capable of partially pressing the load receiving plate 25 at an intermediate portion thereof. It has at least one. The elastic member 26 is fastened and fixed to a mounting portion 33 integrally fixed to the side surface of the lower semiconductor cooling device 23 (semiconductor cooling device) using fasteners 34 such as bolts. The elastic member 26 is provided at least in one place with respect to the longitudinal direction of the upper semiconductor cooling device 24. In this embodiment, it is provided at two positions between the three heat generating semiconductors 22a (semiconductors).
[Description of friction stir welding]
図3に示すように、下部半導体冷却装置23(半導体冷却装置)の下部冷却装置本体28は、少なくとも、冷却液流路27の下部を構成する凹状部410を有する本体容器部41(容器状部材)と、表面に当接面28aを有し、裏面に複数の放熱フィン29(29a,29b)を有して、本体容器部41(容器状部材)の凹状部410の上縁に設けられた、肉厚d0の段差部を有する上蓋取付部411に対し、摩擦撹拌接合によって閉止固定可能な上蓋部42(板状部材)と、を有している。 As shown in FIG. 3, the lower cooling device main body 28 of the lower semiconductor cooling device 23 (semiconductor cooling device) has at least a main body container portion 41 (container-like member) having a concave portion 410 that constitutes the lower portion of the coolant channel 27. ) And a contact surface 28a on the front surface, and a plurality of radiating fins 29 (29a, 29b) on the back surface, provided on the upper edge of the concave portion 410 of the main body container portion 41 (container-like member). The upper lid mounting portion 411 having a step portion having a wall thickness d0 has an upper lid portion 42 (plate-like member) that can be closed and fixed by friction stir welding.
上蓋部42(板状部材)は、凹状部410を閉止することによって、冷却液流路27の上部を構成する。また、上蓋部42(板状部材)は、表面に当接面28aを有し、裏面に複数の放熱フィン29(29a,29b)を有することにより、伝熱促進部材として使用される。上蓋取付部411は、本体容器部41(容器状部材)の上面に対して、上蓋部42(板状部材)を面一状態で取付可能な段差部とされる。本体容器部41(容器状部材)および上蓋部42(板状部材)は、摩擦撹拌接合が可能で、しかも、熱伝導率の高い金属、例えば、アルミニウムや銅などによって構成されている。 The upper lid part 42 (plate-like member) configures the upper part of the coolant channel 27 by closing the concave part 410. Moreover, the upper cover part 42 (plate-shaped member) is used as a heat transfer promoting member by having a contact surface 28a on the front surface and a plurality of heat radiation fins 29 (29a, 29b) on the back surface. The upper lid attaching portion 411 is a stepped portion that can attach the upper lid portion 42 (plate-like member) in a flush state to the upper surface of the main body container portion 41 (container-like member). The main body container portion 41 (container-like member) and the upper lid portion 42 (plate-like member) are capable of friction stir welding and are made of a metal having high thermal conductivity, such as aluminum or copper.
ここで、本体容器部41(容器状部材)を上蓋部42(板状部材)で閉止する際の加工法である摩擦撹拌接合について、図4を用いて説明する。摩擦撹拌接合(Friction Stir Welding、略してFSW)は、図4に示すように、先端に突起状のプローブ51を有する円柱状の回転工具52を回転させながら、接合しようとする部材53,54に強い力で押し付けて、プローブ51を部材53,54の接合部55に嵌入させることにより、摩擦熱を発生させて部材53,54を軟化させると共に、回転工具52の回転力によって接合部55の周辺を塑性流動させて練り混ぜるようにしつつ部材53,54を一体化する接合方法である。そして、さらに、部材53,54の接合部55に沿って、回転工具52を移動させながら接合を行うことによって、部材53,54の接合部55が一体化される。 Here, friction stir welding, which is a processing method when the main body container portion 41 (container-like member) is closed by the upper lid portion 42 (plate-like member), will be described with reference to FIG. As shown in FIG. 4, friction stir welding (FSW for short) is performed on members 53 and 54 to be joined while rotating a cylindrical rotary tool 52 having a protruding probe 51 at the tip. By pressing with a strong force and fitting the probe 51 into the joint portion 55 of the members 53 and 54, frictional heat is generated to soften the members 53 and 54, and the periphery of the joint portion 55 by the rotational force of the rotary tool 52. This is a joining method in which the members 53 and 54 are integrated while plastically flowing and kneading. Further, the joining portions 55 of the members 53 and 54 are integrated by performing joining while moving the rotary tool 52 along the joining portions 55 of the members 53 and 54.
本実施例においては、本体容器部41(容器状部材)の上蓋取付部411と、上蓋取付部411に取り付けられた上蓋部42(板状部材)と、の境界部分が摩擦撹拌接合によって接合されることによって閉止される。
[半導体冷却装置の製造方法の説明]
In this embodiment, the boundary portion between the upper lid attaching portion 411 of the main body container portion 41 (container-like member) and the upper lid portion 42 (plate-like member) attached to the upper lid attaching portion 411 is joined by friction stir welding. Is closed.
[Description of Manufacturing Method of Semiconductor Cooling Device]
次に、本実施例の下部半導体冷却装置23(半導体冷却装置)の製造方法について、図5(a)〜図5(f)を用いて説明する。
(容器状部材形成工程)
Next, a manufacturing method of the lower semiconductor cooling device 23 (semiconductor cooling device) of the present embodiment will be described with reference to FIGS. 5 (a) to 5 (f).
(Container-shaped member forming process)
まず、図5(a)に示すように、ダイキャスト成形によって、冷却液流路27(図3)となる凹状部410を有する本体容器部41(容器状部材)を形成する。なお、上蓋取付部411,411の肉厚dは、本体容器部41として成形されたときの最終的な肉厚d0(図3)に対して、より厚くなるように成形される。
(板状部材形成工程)
First, as shown in FIG. 5A, a main body container portion 41 (container-like member) having a concave portion 410 to be the coolant flow path 27 (FIG. 3) is formed by die casting. The thickness d of the upper lid attaching portions 411 and 411 is formed so as to be thicker than the final thickness d0 (FIG. 3) when the main body container portion 41 is formed.
(Plate-shaped member forming process)
次に、図5(b)に示すように、上蓋部42(板状部材)を押出成形することによって、その裏面側に複数の放熱フィン29(29a,29b)を形成する。このとき、上蓋部42の肉厚dは、最終的に形成される下部半導体冷却装置23(図3)の上蓋部42の肉厚d0(図3)に対して、より厚くなるように成形される。
(溝部形成工程)
Next, as shown in FIG. 5B, a plurality of heat radiation fins 29 (29a, 29b) are formed on the back surface side of the upper lid portion 42 (plate member) by extrusion molding. At this time, the thickness d of the upper lid portion 42 is formed to be thicker than the thickness d0 (FIG. 3) of the upper lid portion 42 of the lower semiconductor cooling device 23 (FIG. 3) to be finally formed. The
(Groove formation process)
次に、図5(c)に示すように、上蓋部42(板状部材)表面の外周縁部に、放熱フィン29(29a,29b)の突設位置に沿って延びる角断面を有する溝部42a,42bを形成する。この溝部42a,42bは、上蓋部42(板状部材)のうち、放熱フィン29bが形成された領域の表面側に形成される。なお、この溝部42a,42bは、先に説明した板状部材形成工程において、放熱フィン29(29a,29b)と同時に押出成形によって形成してもよいし、放熱フィン29(29a,29b)を有する板状部材を形成した後で、切削加工によって、別途形成してもよい。 Next, as shown in FIG. 5 (c), a groove portion 42a having an angular cross section extending along the protruding position of the radiation fins 29 (29a, 29b) on the outer peripheral edge portion of the surface of the upper lid portion 42 (plate-like member). , 42b. The groove portions 42a and 42b are formed on the surface side of the region where the radiation fins 29b are formed in the upper lid portion 42 (plate-like member). The grooves 42a and 42b may be formed by extrusion molding at the same time as the radiation fins 29 (29a and 29b) or have the radiation fins 29 (29a and 29b) in the plate member forming process described above. After forming the plate-like member, it may be formed separately by cutting.
なお、溝部42a,42bの深さhは、上蓋部42の肉厚d,最終的に形成される下部半導体冷却装置23(図3)の上蓋部42の肉厚d0(図3)に対して、h<d−d0となるように形成される。
(閉止工程)
The depth h of the grooves 42a and 42b is relative to the thickness d of the upper lid portion 42 and the thickness d0 (FIG. 3) of the upper lid portion 42 of the lower semiconductor cooling device 23 (FIG. 3) to be finally formed. , H <d−d0.
(Closing process)
次に、図5(d)に示すように、溝部42a,42bが形成された上蓋部42(板状部材)を、本体容器部41(容器状部材)の上蓋取付部411,411に嵌め込んで閉止する。
(接合工程)
Next, as shown in FIG. 5D, the upper lid portion 42 (plate-like member) in which the groove portions 42a and 42b are formed is fitted into the upper lid attaching portions 411 and 411 of the main body container portion 41 (container-like member). Close with.
(Joining process)
そして、図5(e)に示すように、回転工具52を用いて、上蓋取付部411,411に沿って摩擦撹拌接合を行い、上蓋部42(板状部材)と本体容器部41(容器状部材)とを接合する。このようにして、下部半導体冷却装置30a(23)が形成される。
(切削工程)
Then, as shown in FIG. 5 (e), using the rotary tool 52, friction stir welding is performed along the upper lid attaching portions 411 and 411, and the upper lid portion 42 (plate member) and the main body container portion 41 (container-like shape). Member). In this way, the lower semiconductor cooling device 30a (23) is formed.
(Cutting process)
最後に、図5(f)に示すように、下部半導体冷却装置30a(23)の溝部42a,42bを含む切削部位43を面切削して除去し、上蓋部42(板状部材)を最適な肉厚d0にするとともに、パワーモジュール22(図1,図2)を当接配置可能な平面状の当接面28aを形成する。このようにして、下部半導体冷却装置30b(23)が形成される。こうして形成された下部半導体冷却装置30bが、図1,図2で説明した下部半導体冷却装置23(半導体冷却装置)として用いられる。
[溝部の作用の説明]
Finally, as shown in FIG. 5 (f), the cutting portion 43 including the groove portions 42a and 42b of the lower semiconductor cooling device 30a (23) is removed by surface cutting, and the upper lid portion 42 (plate-like member) is optimized. In addition to the thickness d0, a planar contact surface 28a on which the power module 22 (FIGS. 1 and 2) can be placed in contact is formed. In this way, the lower semiconductor cooling device 30b (23) is formed. The lower semiconductor cooling device 30b formed in this way is used as the lower semiconductor cooling device 23 (semiconductor cooling device) described with reference to FIGS.
[Explanation of groove function]
ここで、上蓋部42の表面に形成した溝部42a,42bの作用について、図5(e)を用いて説明する。 Here, the operation of the groove portions 42a and 42b formed on the surface of the upper lid portion 42 will be described with reference to FIG.
摩擦撹拌接合による加工によって、上蓋取付部411,411に加えられた押付荷重Fは、上蓋部42(板状部材)の内部を通って放熱フィン29に伝達されるが、その伝達経路の途中に溝部42a,42bが形成されているため、押付荷重Fは溝部42a,42bに伝達されて、溝部42a,42bを変形させるように作用する。 The pressing load F applied to the upper lid attaching portions 411 and 411 by the processing by friction stir welding is transmitted to the radiating fin 29 through the inside of the upper lid portion 42 (plate member), but in the middle of the transmission path. Since the groove portions 42a and 42b are formed, the pressing load F is transmitted to the groove portions 42a and 42b and acts to deform the groove portions 42a and 42b.
したがって、溝部42a,42bを超えて、上蓋部42(板状部材)の幅方向中央付近に向かって伝達される荷重は減少する。これによって、上蓋部42(板状部材)の幅方向中央付近の放熱フィン29aに伝達される荷重が減少するため、本体容器部41(容器状部材)の底面部28bに伝達される荷重が減少して、本体容器部41(容器状部材)の底面部28bの変形が防止される。即ち、本実施例において、溝部42a,42bは、押付荷重Fを吸収して緩和するダンパー領域として作用する。 Accordingly, the load transmitted beyond the groove portions 42a and 42b toward the vicinity of the center in the width direction of the upper lid portion 42 (plate member) is reduced. As a result, the load transmitted to the heat dissipating fins 29a near the center in the width direction of the upper lid portion 42 (plate-like member) is reduced, so the load transmitted to the bottom surface portion 28b of the main body container portion 41 (container-like member) is reduced. And the deformation | transformation of the bottom face part 28b of the main body container part 41 (container-shaped member) is prevented. That is, in this embodiment, the groove portions 42a and 42b act as a damper region that absorbs and reduces the pressing load F.
このように、放熱フィン29aに伝達される押付荷重Fを緩和させるため、溝部42c,42dは、放熱フィン29bが形成された領域に設けられる。 Thus, in order to relieve the pressing load F transmitted to the radiating fin 29a, the grooves 42c and 42d are provided in the region where the radiating fin 29b is formed.
なお、形成する溝部42a,42bの幅や深さを変化させることによって、吸収できる押付荷重Fの大きさが変化する。即ち、溝部42a,42bの幅を大きくする、もしくは、溝部42a,42bの深さを深くすることによって、より大きな押付荷重Fを吸収することができる。しかしながら、幅や深さが大きい溝部42a,42bを形成すると、上蓋部42(板状部材)の強度が減少して、摩擦撹拌接合による加工中に上蓋部42(板状部材)が破損する虞があるため、溝部42a,42bの幅と深さは、上蓋部42(板状部材)の厚さや強度、また、摩擦撹拌接合の加工条件(例えば、入力される押付荷重Fの大きさ)に応じて、適切な値が設定される。
[実施例1の変形例の説明]
In addition, the magnitude | size of the pressing load F which can be absorbed changes by changing the width | variety and depth of the groove parts 42a and 42b to form. That is, a larger pressing load F can be absorbed by increasing the width of the groove portions 42a and 42b or increasing the depth of the groove portions 42a and 42b. However, if the groove portions 42a and 42b having a large width and depth are formed, the strength of the upper lid portion 42 (plate-like member) is reduced, and the upper lid portion 42 (plate-like member) may be damaged during processing by friction stir welding. Therefore, the width and depth of the groove portions 42a and 42b depend on the thickness and strength of the upper lid portion 42 (plate member) and the processing conditions for friction stir welding (for example, the magnitude of the input pressing load F). Accordingly, an appropriate value is set.
[Description of Modified Example of Embodiment 1]
次に、実施例1の変形例について、図6(a)〜図6(c)を用いて説明する。図6(a)は、角断面をなす溝部42a,42bの代わりに、半円形状の断面を有する溝部42c,42dを形成した例である。この溝部42c,42dは、前述したように、放熱フィン29bが形成された領域に設けられる。 Next, a modification of the first embodiment will be described with reference to FIGS. 6 (a) to 6 (c). FIG. 6A shows an example in which grooves 42c and 42d having a semicircular cross section are formed instead of the grooves 42a and 42b having a square cross section. As described above, the grooves 42c and 42d are provided in the region where the heat radiating fins 29b are formed.
また、図6(b)は、角断面をなす溝部42a,42bの代わりに、三角形状の断面を有する溝部42e,42fを形成した例である。この溝部42e,42fも、放熱フィン29bが形成された領域に設けられる。 FIG. 6B shows an example in which groove portions 42e and 42f having a triangular cross section are formed instead of the groove portions 42a and 42b having a square cross section. The groove portions 42e and 42f are also provided in the region where the radiation fins 29b are formed.
このように角断面以外の断面形状を有する溝部42c〜42fを形成した場合であっても、放熱フィン29aへの押付荷重Fの伝達を緩和する効果が期待できるため、角断面形状の溝部42a,42bを形成した場合と同様の効果を奏する。なお、溝部の具体的な断面形状は、上蓋部42(板状部材)の厚さや強度、また、摩擦撹拌接合の加工条件(入力される押付荷重Fの大きさ、プローブ51(図4)のサイズ等)に応じて、適切な断面形状を選択すればよい。 Even when the groove portions 42c to 42f having a cross-sectional shape other than the square cross section are formed as described above, the effect of reducing the transmission of the pressing load F to the radiating fin 29a can be expected. The same effect as the case where 42b is formed is produced. The specific cross-sectional shape of the groove portion includes the thickness and strength of the upper lid portion 42 (plate-like member), the friction stir welding processing conditions (the magnitude of the input pressing load F, and the probe 51 (FIG. 4)). An appropriate cross-sectional shape may be selected according to the size and the like.
さらに、実施例1では溝部42a,42bは、上蓋部42(板状部材)の長手方向に沿って連続的に形成したが、これは、図6(c)に示すように、上蓋部42(板状部材)の長手方向に沿って断続的な溝部を有する断続溝部42g,42hとして形成しても、押付荷重F(図5(a))を受け止めて吸収するダンパー領域を構成することができるため、上蓋部42の内部を伝達する押付荷重Fを緩和する効果が期待できる。 Furthermore, in Example 1, although the groove parts 42a and 42b were continuously formed along the longitudinal direction of the upper cover part 42 (plate-shaped member), as shown in FIG.6 (c), this is shown in FIG. Even if the intermittent groove portions 42g and 42h having intermittent groove portions along the longitudinal direction of the plate-like member) are formed, a damper region that receives and absorbs the pressing load F (FIG. 5A) can be configured. Therefore, an effect of relaxing the pressing load F that transmits the inside of the upper lid portion 42 can be expected.
以上説明したように、実施例1に係る下部半導体冷却装置23(30b)(半導体冷却装置)の製造方法によれば、上蓋部42(板状部材)の表面に形成された溝部42a,42bが、上蓋部42(板状部材)と本体容器部41(容器状部材)とを摩擦撹拌接合する際に、押し当てた回転工具52によって発生する押付荷重Fを吸収するダンパー領域として作用するため、上蓋部42(板状部材)内における押付荷重Fの伝達が緩和されて、上蓋部42(板状部材)の裏面に形成された放熱フィン29(29a)に伝わり難くなる。したがって、放熱フィン29(29a)を介して本体容器部41(容器状部材)の凹状部410を形成する底面部28bに伝わる押付荷重Fbが減少するため、摩擦撹拌接合を行う際の下部半導体冷却装置23(30b)(半導体冷却装置)の変形を防止することができる。これにより、下部半導体冷却装置23(30b)の品質差が小さくなるため、歩留まりが高くなって半導体冷却装置の生産効率を向上させることができる。 As described above, according to the manufacturing method of the lower semiconductor cooling device 23 (30b) (semiconductor cooling device) according to the first embodiment, the groove portions 42a and 42b formed on the surface of the upper lid portion 42 (plate member) are provided. In order to act as a damper region that absorbs the pressing load F generated by the pressed rotary tool 52 when the upper lid portion 42 (plate-like member) and the main body container portion 41 (container-like member) are friction stir welded, The transmission of the pressing load F in the upper lid portion 42 (plate-like member) is alleviated, and is difficult to be transmitted to the radiation fins 29 (29a) formed on the back surface of the upper lid portion 42 (plate-like member). Therefore, since the pressing load Fb transmitted to the bottom surface portion 28b forming the concave portion 410 of the main body container portion 41 (container-like member) via the heat radiation fin 29 (29a) is reduced, the lower semiconductor cooling at the time of performing the friction stir welding is performed. Deformation of the device 23 (30b) (semiconductor cooling device) can be prevented. Thereby, since the quality difference of the lower semiconductor cooling device 23 (30b) becomes small, a yield becomes high and the production efficiency of a semiconductor cooling device can be improved.
また、実施例1の製造方法によって製造された下部半導体冷却装置23(30b)(半導体冷却装置)によれば、下部半導体冷却装置23(30b)を製造する際の変形が防止されるため、冷却性能のばらつきを小さくすることができる。 Further, according to the lower semiconductor cooling device 23 (30b) (semiconductor cooling device) manufactured by the manufacturing method of the first embodiment, since deformation during the manufacturing of the lower semiconductor cooling device 23 (30b) is prevented, cooling is performed. Variations in performance can be reduced.
さらに、実施例1に係る下部半導体冷却装置23(30b)(半導体冷却装置)によれば、複数の放熱フィン29(29a,29b)のうち少なくとも一部の放熱フィン29aの先端部が、本体容器部41(容器状部材)の底面部28bに当接するため、弾性部材26による圧接に耐えて、パワーモジュール22と下部半導体冷却装置23(30b)を確実に当接させて、パワーモジュール22の高い冷却効果を得ることができる。また、一部の放熱フィン29bの先端部よりも下の部分を互いに連通させることによって、下部半導体冷却装置23(半導体冷却装置)の幅方向への伝熱が促進されるため、放熱フィン29の間を完全に隔離して下部半導体冷却装置23(30b)の幅方向への伝熱を抑制した場合と比べて高い冷却効率を得ることができる。 Furthermore, according to the lower semiconductor cooling device 23 (30b) (semiconductor cooling device) according to the first embodiment, at least some of the radiating fins 29a among the radiating fins 29 (29a, 29b) have the tip portions of the main body container. Since it abuts against the bottom surface portion 28b of the portion 41 (container-like member), it can withstand the pressure contact by the elastic member 26, and the power module 22 and the lower semiconductor cooling device 23 (30b) are securely abutted to increase the height of the power module 22. A cooling effect can be obtained. In addition, by communicating the portions below the tips of some of the radiating fins 29b with each other, heat transfer in the width direction of the lower semiconductor cooling device 23 (semiconductor cooling device) is promoted. Higher cooling efficiency can be obtained as compared with the case where the gap is completely isolated and heat transfer in the width direction of the lower semiconductor cooling device 23 (30b) is suppressed.
なお、実施例1において、上蓋部42(板状部材)に形成する溝部42a,42bの位置(上蓋取付部411からの距離)は、加工する上蓋部42(板状部材)の材質や厚さ、本体容器部41の材質や厚さ、摩擦撹拌接合の加工条件(入力される押付荷重Fの大きさ等)を勘案して、適切な値が設定される。 In Example 1, the positions (distances from the upper lid attaching portion 411) of the grooves 42a and 42b formed in the upper lid portion 42 (plate member) are the material and thickness of the upper lid portion 42 (plate member) to be processed. An appropriate value is set in consideration of the material and thickness of the main body container portion 41 and the processing conditions for friction stir welding (the magnitude of the input pressing load F, etc.).
また、実施例1では、下部半導体冷却装置23と上部半導体冷却装置24を用いて、2パス方式の半導体冷却構造21を構成する例をあげて説明したが、本発明に係る半導体冷却装置の製造方法によって製造される半導体冷却装置は、4パス方式等、それ以外の冷却構造にも同様に適用可能である。 In the first embodiment, the example in which the two-pass semiconductor cooling structure 21 is configured using the lower semiconductor cooling device 23 and the upper semiconductor cooling device 24 has been described. However, the manufacture of the semiconductor cooling device according to the present invention is described. The semiconductor cooling device manufactured by the method can be similarly applied to other cooling structures such as a 4-pass system.
以上、この発明の実施例を図面により詳述してきたが、実施例はこの発明の例示にしか過ぎないものであるため、この発明は実施例の構成にのみ限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれることは勿論である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the embodiments are only examples of the present invention, and the present invention is not limited to the configurations of the embodiments. Needless to say, design changes and the like within a range not departing from the gist of the invention are included in the present invention.
23,30a,30b 下部半導体冷却装置(半導体冷却装置)
28a 当接面
28b 底面部
29,29a,29b 放熱フィン
41 本体容器部(容器状部材)
42 上蓋部(板状部材)
42a,42b 溝部
43 切削部位
52 回転工具
410 凹状部
411 上蓋取付部
F 押付荷重
d,d0 肉厚
h 深さ
23, 30a, 30b Lower semiconductor cooling device (semiconductor cooling device)
28a Contact surface 28b Bottom part 29, 29a, 29b Radiation fin 41 Main body container part (container-like member)
42 Upper lid (plate-shaped member)
42a, 42b Groove 43 Cutting site 52 Rotating tool 410 Recessed portion 411 Upper lid mounting portion F Pressing load d, d0 Thickness h Depth
Claims (1)
裏面に複数の放熱フィンを有する、板状部材を形成する板状部材形成工程と、
前記板状部材の表面の縁部に、前記放熱フィンの突設位置に沿って延びる溝部を形成する溝部形成工程と、
前記板状部材によって前記容器状部材を閉止する閉止工程と、
前記板状部材と前記容器状部材とを摩擦撹拌接合によって接合する接合工程と、
前記板状部材の表面を切削することによって前記溝部を除去して、発熱型半導体が当接される当接面を形成する切削工程と、を備える半導体冷却装置の製造方法。
A container-shaped member forming step of forming a container-shaped member having a concave portion serving as a coolant flow path;
A plate-shaped member forming step for forming a plate-shaped member having a plurality of heat radiation fins on the back surface;
A groove forming step of forming a groove extending along the protruding position of the heat dissipating fin at the edge of the surface of the plate-like member;
A closing step of closing the container-like member by the plate-like member;
A joining step of joining the plate-like member and the container-like member by friction stir welding;
And removing the groove by cutting the surface of the plate-like member, a method of manufacturing a semiconductor cooling device comprising: a cutting step, the forming the abutment surface heating type semiconductor is contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014207088A JP6413108B2 (en) | 2014-10-08 | 2014-10-08 | Manufacturing method of semiconductor cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014207088A JP6413108B2 (en) | 2014-10-08 | 2014-10-08 | Manufacturing method of semiconductor cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016076636A JP2016076636A (en) | 2016-05-12 |
JP6413108B2 true JP6413108B2 (en) | 2018-10-31 |
Family
ID=55951693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014207088A Expired - Fee Related JP6413108B2 (en) | 2014-10-08 | 2014-10-08 | Manufacturing method of semiconductor cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6413108B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11328852B2 (en) * | 2018-05-17 | 2022-05-10 | Ihi Corporation | Coil device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008254047A (en) * | 2007-04-06 | 2008-10-23 | Mitsubishi Heavy Ind Ltd | Heat exchanging plate and its manufacturing method |
JP5262822B2 (en) * | 2009-02-23 | 2013-08-14 | 日本軽金属株式会社 | Manufacturing method of liquid cooling jacket |
JP5567530B2 (en) * | 2011-08-19 | 2014-08-06 | 日立オートモティブシステムズ株式会社 | Friction stir welding structure and power semiconductor device |
JP5862272B2 (en) * | 2011-12-19 | 2016-02-16 | 日本軽金属株式会社 | Manufacturing method of liquid cooling jacket |
JP2014094409A (en) * | 2012-10-10 | 2014-05-22 | Nippon Light Metal Co Ltd | Method of producing heat exchanger plate and friction agitation joining method |
-
2014
- 2014-10-08 JP JP2014207088A patent/JP6413108B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11328852B2 (en) * | 2018-05-17 | 2022-05-10 | Ihi Corporation | Coil device |
Also Published As
Publication number | Publication date |
---|---|
JP2016076636A (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8365409B2 (en) | Heat exchanger and method of manufacturing the same | |
JP6055126B2 (en) | Forging method | |
JP4445566B2 (en) | Heat exchanger | |
JP4485583B2 (en) | Heat exchanger and manufacturing method thereof | |
US20150359142A1 (en) | Method for producing cooling device and heat-dissipating member | |
JP2008186820A (en) | Heat generation body cooling structure and drive | |
JP2010069503A (en) | Manufacturing method of heat exchanger | |
US10600721B2 (en) | Heat exchanger for dual-sided cooling of electronic modules | |
CN105390459A (en) | Semiconductor device and method of manufacturing same | |
CN107771005B (en) | Heat radiation module and manufacturing method thereof | |
JP6413108B2 (en) | Manufacturing method of semiconductor cooling device | |
JP5976235B1 (en) | Power converter | |
JP2013225553A (en) | Heat exchanger and manufacturing method of the same | |
JP5316004B2 (en) | Cooling system | |
CN108231708B (en) | Heat exchanger for double-sided cooling of electronic modules | |
JP5589829B2 (en) | Heat exchanger | |
JP7363446B2 (en) | Cooling system | |
JP2016074015A (en) | Semiconductor cooler structure | |
JP4503202B2 (en) | Heat sink manufacturing method | |
JP2013051274A (en) | Cooling device | |
JP7035878B2 (en) | Cooler | |
JP2016076639A (en) | Semiconductor cooling device | |
CN110461130B (en) | Mosaic type heat dissipation structure and manufacturing method thereof | |
JP2016076637A (en) | Semiconductor cooling structure | |
JP7045912B2 (en) | Semiconductor devices and their manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6413108 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S343 | Written request for registration of root pledge or change of root pledge |
Free format text: JAPANESE INTERMEDIATE CODE: R316354 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
SZ02 | Written request for trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316Z02 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316803 |
|
SZ02 | Written request for trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316Z02 |
|
SZ03 | Written request for cancellation of trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316Z03 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |