JP6410071B1 - Solid-liquid separator - Google Patents

Solid-liquid separator Download PDF

Info

Publication number
JP6410071B1
JP6410071B1 JP2018076861A JP2018076861A JP6410071B1 JP 6410071 B1 JP6410071 B1 JP 6410071B1 JP 2018076861 A JP2018076861 A JP 2018076861A JP 2018076861 A JP2018076861 A JP 2018076861A JP 6410071 B1 JP6410071 B1 JP 6410071B1
Authority
JP
Japan
Prior art keywords
liquid
squeezing
screen
pressing
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076861A
Other languages
Japanese (ja)
Other versions
JP2019181387A (en
Inventor
勝彦 井伊
勝彦 井伊
Original Assignee
丸井工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸井工業株式会社 filed Critical 丸井工業株式会社
Priority to JP2018076861A priority Critical patent/JP6410071B1/en
Application granted granted Critical
Publication of JP6410071B1 publication Critical patent/JP6410071B1/en
Publication of JP2019181387A publication Critical patent/JP2019181387A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Beans For Foods Or Fodder (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Filtration Of Liquid (AREA)

Abstract

【課題】液中濾過方式で圧搾を行う圧搾機を備える固液分離装置において、適切な濾過処理能力を維持しながら、固液分離処理を長時間に亘って安定的に効率良く行うことができるようにする。【解決手段】取出口21に接続される液搬出手段3に減圧手段34を設け、減圧手段34に由来する減圧吸引作用により、液室14内で圧搾スクリーン10が浸漬する液中濾過状態を維持しながら取出口21を介して液室14から液体成分6を取り出す。これにより、圧搾スクリーン10の内方からの圧搾作用に加えて、圧搾スクリーン10の外方からの負圧作用を圧搾スクリーン10に作用させることができるので、従来の圧搾作用のみで濾過を行う形態に比べて、圧搾スクリーン10は目詰まりを起こし難く、当該圧搾スクリーン10の濾過処理能力が急激に低下することを防ぐことができる。【選択図】図1In a solid-liquid separation apparatus equipped with a squeezing machine that performs squeezing by submerged filtration, solid-liquid separation processing can be performed stably and efficiently over a long period of time while maintaining appropriate filtration processing capacity. Like that. SOLUTION: A liquid discharge means 3 connected to an outlet 21 is provided with a pressure reducing means 34, and a submerged filtration state in which the squeezed screen 10 is immersed in the liquid chamber 14 is maintained by a vacuum suction action derived from the pressure reducing means 34. However, the liquid component 6 is taken out from the liquid chamber 14 through the outlet 21. Thereby, in addition to the squeezing action from the inside of the squeezing screen 10, the negative pressure action from the outside of the squeezing screen 10 can be applied to the squeezing screen 10, so that the filtration is performed only by the conventional squeezing action. Compared to the above, the crushing screen 10 is less likely to be clogged, and the filtration processing capability of the crushing screen 10 can be prevented from rapidly decreasing. [Selection] Figure 1

Description

本発明は、液中濾過方式で圧搾を行うスクリュー型の圧搾機を備える固液分離装置に関する。 The present invention relates to a solid-liquid separation equipment comprising a screw-type presses for performing compression in a liquid filtration system.

この種の液中濾過方式で圧搾を行うスクリュー型の圧搾機を備える固液分離装置は、本出願人による特許文献1に公知である。特許文献1に記載の圧搾機は、豆腐製造用の圧搾機であり、多孔板で円筒状に形成された圧搾スクリーンと、この圧搾スクリーンの外周に所定間隔を置いて配置されたジャケットと、圧搾スクリーンの内部で回転駆動されるスクリューとを備える。ジャケットの内部が圧搾スクリーンにより圧搾室と豆乳室とに内外に区画されており、豆乳室内の圧搾スクリーンの上面を越える液位線を基準にして、この液位線より上方に位置するジャケットの周壁に、豆乳を排出する取出口が開口されている。ジャケットの出口側の上面中央には、先の取出口が設けられ、ジャケットの出口側の下面中央にはドレン口が設けられている。蒸煮釜で加熱した煮ごを圧搾機へ移送するために、蒸煮釜の排出口と圧搾機の軸受ケースとの間はステンレス管からなる移送通路が接続されており、移送通路の中途部に設けられた移送ポンプを駆動させることで、蒸煮釜中の煮ごを圧搾機に圧送することができる。   A solid-liquid separation apparatus including a screw-type pressing machine that performs pressing by this type of submerged filtration method is known from Patent Document 1 by the present applicant. The pressing machine described in Patent Document 1 is a pressing machine for tofu production, a pressing screen formed in a cylindrical shape with a perforated plate, a jacket disposed at a predetermined interval on the outer periphery of the pressing screen, and a pressing And a screw that is driven to rotate inside the screen. The inside of the jacket is partitioned into a pressing chamber and a soy milk chamber by a pressing screen, and the peripheral wall of the jacket located above the liquid level line with reference to the liquid level line that exceeds the upper surface of the pressing screen in the soy milk chamber In addition, an outlet for discharging soy milk is opened. A front outlet is provided at the center of the upper surface on the outlet side of the jacket, and a drain port is provided at the center of the lower surface on the outlet side of the jacket. In order to transfer the boiled rice cooked in the steamer to the press, a transfer passage made of stainless steel pipe is connected between the steamer outlet and the bearing case of the press, and it is provided in the middle of the transfer passage. By driving the transferred pump, the boiled steamer in the steaming pot can be pumped to the press.

圧搾機の軸受ケースに圧送された煮ごは、スクリューで下流側へ移送される間に圧搾され、圧搾スクリーンから豆乳が絞り出される。圧搾室内の圧搾かすであるおからは、圧搾機の下流端に設けられた排出口よりシュートを介して落下排出される。かかる圧搾時には下方側のドレン口は閉じられており、絞られた豆乳は豆乳室内に留まり、圧搾開始後まもなく圧搾スクリーンの全体が豆乳中に浸漬する状態で豆乳室内に充満する。豆乳の液位が上昇するのに伴って、豆乳室内にあった空気は取出口から排出される。圧搾処理の進行に伴って取出口から溢れ出た豆乳は、取出口に接続した豆乳通路を介して豆乳容器で受けられ、或いは次の処理装置へと送給される。   The boiled rice fed to the bearing case of the pressing machine is compressed while being transferred to the downstream side by a screw, and soy milk is squeezed out from the pressing screen. Okara, which is squeezed in the compression chamber, is dropped and discharged through a chute from a discharge port provided at the downstream end of the squeezing machine. At the time of such pressing, the lower drain port is closed, and the squeezed soymilk stays in the soymilk chamber, and soon after the start of pressing, the entire pressing screen is filled in the soymilk chamber. As the liquid level of the soy milk rises, the air in the soy milk chamber is discharged from the outlet. The soy milk that has overflowed from the outlet as the pressing process proceeds is received in the soy milk container via the soy milk passage connected to the outlet, or is fed to the next processing apparatus.

以上のように特許文献1の圧搾機では、ジャケット内の豆乳室に豆乳を充満し、少なくとも圧搾スクリーンが豆乳中に浸漬する状態で圧搾を行っているため、圧搾時に圧搾スクリーンから噴出する豆乳がジャケットの内面壁と衝突して気泡を生じることを抑えて、気泡を含まない良質の豆乳を煮ごから圧搾することができる。   As described above, in the expression machine of Patent Document 1, since the soymilk chamber in the jacket is filled with soymilk and at least the expression screen is squeezed in the soymilk, soymilk squirts from the expression screen during expression. It is possible to squeeze high-quality soy milk that does not contain air bubbles from the boiled rice, while preventing air bubbles from colliding with the inner wall of the jacket.

特開平8−275749号公報JP-A-8-275749

以上のように従来の圧搾機では、移送ポンプにより圧搾機の上流側に移送された煮ごは、スクリューの推進力により圧搾機の下流側に移送され、下流端へ到達するまでの間に圧搾・濾過されて液体分(豆乳)と、固形分(おから)とに分離される。しかしながら従来の圧搾機では、圧搾スクリーンの網目に固形分が付着して目詰まりを起こすと、スクリューの推進力によって固形分が網目から豆乳室側へ押し出されなければ、当該網目における目詰まりは解消されず、適切に煮ごを濾過することが困難となる。最悪の場合には、圧搾スクリーンの内面に固形分の堆積層が形成されると、当該圧搾スクリーンが機能喪失に陥るおそれもある。圧搾スクリーンに目詰まりが生じると、固形分であるおからに含まれる水分量が変動することも避けられない。以上より、従来の圧搾機においては、適切な濾過処理能力を維持しながら、煮ごに対する圧搾処理を長時間にわたって安定的に効率よく行うことは困難となっていた。   As described above, in the conventional pressing machine, the boiled rice that has been transferred to the upstream side of the pressing machine by the transfer pump is transferred to the downstream side of the pressing machine by the propulsive force of the screw and is compressed until it reaches the downstream end. -It is filtered and separated into a liquid component (soy milk) and a solid component (okara). However, in the conventional press, when clogging occurs due to solids adhering to the mesh of the pressing screen, clogging in the mesh is eliminated unless the solids are pushed out from the mesh to the soy milk chamber side by the thrust of the screw. This makes it difficult to properly filter the boiled rice. In the worst case, when a solid accumulation layer is formed on the inner surface of the pressing screen, the pressing screen may lose its function. When clogging occurs in the squeezed screen, it is inevitable that the amount of water contained in okara, which is a solid content, fluctuates. As mentioned above, in the conventional pressing machine, it has been difficult to stably and efficiently perform the pressing process on the boiled rice for a long time while maintaining an appropriate filtration capacity.

加えて従来の圧搾機では、移送ポンプにより圧搾機に向けて煮ごを圧送しているため、大量の気泡を含む煮ごや高温の煮ごの場合にはキャビテーションが発生することが避けられず、煮ごをスムーズに圧搾機に移送させることができず、結果として圧搾機の濾過処理能力の低下を招いていた。また、移送ポンプの通過時に煮ごが加圧されて、その物性が変化するおそれもあった。   In addition, in the conventional squeezer, since the simmer is pumped toward the squeezer by the transfer pump, it is inevitable that cavitation occurs in the case of a simmer that contains a large amount of air bubbles or a hot simmer. The boiled rice cake could not be smoothly transferred to the squeezer, resulting in a decrease in the filtration capacity of the squeezer. Moreover, the boiled rice was pressurized when passing through the transfer pump, and its physical properties could change.

本発明は、液中濾過方式で圧搾を行う圧搾機を備える固液分離装置において、適切な濾過処理能力を維持しながら、固液分離処理を長時間に亘って安定的に効率よく行うことができるようにすることを第1の目的とする。
加えて本発明は、液中濾過方式で圧搾を行う圧搾機を備える固液分離装置において、処理対象物が気泡を含むような場合や、処理対象物が高温である場合でもキャビテーションが発生せず、安定的に圧搾対象を圧搾機に供給することができるようにすることを第2の目的とする。
The present invention Oite the solid-liquid separation equipment comprising a squeezing machine which performs pressing in a liquid filtration system, while maintaining adequate filtering capacity, stably and efficiently over a solid-liquid separation process to long The first object is to be able to do this.
In addition, the present invention is Oite the solid-liquid separation equipment comprising a squeezing machine which performs pressing in a liquid filtration system, if the processing object is to include bubbles or cavitation even if the processing object is a high-temperature The second object is to stably supply the squeezing target to the squeezing machine without being generated.

本発明は、固液混在の処理対象物4に対して圧搾を行い、固形成分5と液体成分6とに分離する圧搾手段1と、圧搾手段1に処理対象物4を送り込む処理対象物供給手段2と、圧搾手段1から液体成分6を取り出す液搬出手段3とを備える固液分離装置を対象とする。圧搾手段1は、多孔板で円筒状に形成された圧搾スクリーン10と、圧搾スクリーン10の外周面を覆うジャケット11と、圧搾スクリーン10の内部に回転駆動可能に配された圧搾スクリュー12とを備える。圧搾スクリーン10とジャケット11との間が液室14とされ、圧搾スクリーン10の内部が圧搾室15とされている。液室14内の圧搾スクリーン10の上面よりも上方に位置するジャケット11の周壁に、液体成分6を取り出すための取出口21が設けられており、液室14内で圧搾スクリーン10が浸漬する状態で処理対象物4に対する濾過が行われるようになっている。取出口21に接続される液搬出手段3が減圧手段34を備えており、当該減圧手段34に由来する減圧吸引作用により、液室14内で圧搾スクリーン10が浸漬する液中濾過状態を維持しながら取出口21を介して液室14から液体成分6が取り出されるように構成されている。液搬出手段3は、取出口21に接続された取出流路30と、取出流路30に接続された気液分離手段31と、気液分離手段31に接続された減圧流路33と、減圧流路33に接続された減圧手段34とを含む。気液分離手段は真空タンク31であり、この真空タンク31に液体成分の搬出流路32が接続されており、減圧流路33に、搬出流路32の開操作時に真空タンク31に外部空気を取り込むための空気供給手段47が設けられている。 The present invention squeezes a solid-liquid mixed processing object 4 and separates it into a solid component 5 and a liquid component 6, and a processing object supply means for feeding the processing object 4 into the pressing means 1. 2 and the liquid carrying-out means 3 which takes out the liquid component 6 from the pressing means 1 are made into the object. The pressing means 1 includes a pressing screen 10 formed in a cylindrical shape with a perforated plate, a jacket 11 that covers the outer peripheral surface of the pressing screen 10, and a pressing screw 12 that is disposed inside the pressing screen 10 so as to be rotationally driven. . The space between the pressing screen 10 and the jacket 11 is a liquid chamber 14, and the inside of the pressing screen 10 is a pressing chamber 15. The outlet 21 for taking out the liquid component 6 is provided in the surrounding wall of the jacket 11 located above the upper surface of the pressing screen 10 in the liquid chamber 14, and the pressing screen 10 is immersed in the liquid chamber 14. Thus, filtration of the processing object 4 is performed . The liquid carry-out means 3 connected to the outlet 21 is provided with a pressure reducing means 34, and a submerged filtration state in which the squeezing screen 10 is immersed in the liquid chamber 14 is maintained by a vacuum suction action derived from the pressure reducing means 34. the liquid component 6 from the liquid chamber 14 through the outlet 21 preparative while has been configured to be taken out. The liquid carry-out means 3 includes an extraction channel 30 connected to the extraction port 21, a gas-liquid separation unit 31 connected to the extraction channel 30, a decompression channel 33 connected to the gas-liquid separation unit 31, and a decompression Pressure reducing means 34 connected to the flow path 33. The gas-liquid separating means is a vacuum tank 31, and a liquid component discharge passage 32 is connected to the vacuum tank 31, and external air is supplied to the vacuum tank 31 when the discharge passage 32 is opened. Air supply means 47 for taking in is provided.

減圧手段34の減圧吸引作用により、処理対象物供給手段2から圧搾室15内に処理対象物4が送給されるように構成することができる。   The processing object 4 can be configured to be fed into the squeezing chamber 15 from the processing object supply means 2 by the reduced pressure suction action of the decompression means 34.

出流路32に、真空タンク31内の液体成分6を圧送するとともに、減圧手段34と協同して減圧吸引作用を発揮する吸込ポンプ60が設けられている構成を採ることができる。 The transportable Izuru path 32, together with the pumping liquid component 6 in the vacuum tank 31, it is possible to employ a configuration in which the suction pump 60 to exert a vacuum suction effect in cooperation with the pressure reducing means 34 is provided.

処理対象物供給手段2は、処理対象物4を圧搾手段1に向って圧送する移送ポンプ28を備えるものとすることができる。   The processing object supply unit 2 may include a transfer pump 28 that pumps the processing object 4 toward the pressing unit 1.

本発明の固液分離装置においては、液室14内の圧搾スクリーン10の上面よりも上方に位置するジャケット11の周壁に、液体成分6を取り出すための取出口21を設けて、液室14内で圧搾スクリーン10が浸漬する状態で処理対象物4に対して濾過(液中濾過)を行うようにしたので、濾過時に圧搾スクリーン10から噴出する液体成分6がジャケット11の内壁面に接触して気泡が生じることを解消でき、気泡を含まない良質の液体成分6を処理対象物4から得ることができる。加えて、減圧手段34に由来する減圧吸引作用により、圧搾スクリーン10の上面よりも上方に位置する取出口21から液体成分6を取り出すので、液体成分6の取出口21からの取出時に液中濾過状態が損なわれることはなく、この点でも濾過時に圧搾スクリーン10から噴出する液体成分6がジャケット11の内壁面に接触して気泡が生じることを抑えて、液体成分6の品質向上に貢献できる。特に本発明を豆乳製造用の圧搾装置に適用した場合には、気泡を含まない良質の豆乳を煮ごから得ることができる Oite the solid-liquid separation equipment of the present invention, the peripheral wall of the jacket 11 positioned above the upper surface of the pressing screen 10 in the liquid chamber 14, provided with a outlet 21 for taking out the liquid component 6, the liquid Since the processing object 4 is filtered (in-liquid filtration) while the pressing screen 10 is immersed in the chamber 14, the liquid component 6 ejected from the pressing screen 10 during filtration is applied to the inner wall surface of the jacket 11. The generation of bubbles by contact can be eliminated, and a high-quality liquid component 6 that does not contain bubbles can be obtained from the processing object 4. In addition, since the liquid component 6 is taken out from the outlet 21 located above the upper surface of the squeezing screen 10 by the vacuum suction action derived from the decompression means 34, the liquid filtration is performed when the liquid component 6 is taken out from the outlet 21. The state is not impaired, and in this respect as well, the liquid component 6 ejected from the squeezing screen 10 during filtration can be prevented from coming into contact with the inner wall surface of the jacket 11 to generate bubbles, thereby contributing to the improvement of the quality of the liquid component 6. In particular, when the present invention is applied to a pressing device for producing soymilk, high-quality soymilk that does not contain bubbles can be obtained from boiled rice.

また、本発明の固液分離装置によれば、減圧手段34の減圧吸引作用を受けて液室14側を圧搾室15側よりも負圧とすることができるので、圧搾スクリュー12による処理対象物4の推進力に由来する内方からの圧搾作用に加えて、外方からの負圧作用を圧搾スクリーン10に作用させることができる。従って、本発明によれば、従来の圧搾作用のみで濾過を行う形態に比べて、圧搾スクリーン10は目詰まりを起こし難く、圧搾手段1の濾過処理能力が急激に低下することを防ぐことができ、固液分離処理をより長時間に亘って安定的に実行することができる。実例を挙げると、従来の豆乳製造用の圧搾装置(固液分離装置)では、圧搾スクリーン10の目詰まりに由来する濾過処理能力の低下に鑑みると、約10時間の連続運転が可能であり、当該約10時間の運転毎に洗浄動作が必要となっていたのに対して、本発明の圧搾装置(固液分離装置)を用いれば、20時間を越える連続運転が可能となり、従来装置に比べて生産性の格段の向上を図ることができる。また、濾過処理能力が低下した結果、固形成分5に含まれる水分量が増加するような不都合が発生することも防ぐことができる。圧搾スクリーン10の全体で負圧作用による濾過処理を行うことができるので、換言すれば圧搾作用と負圧作用の両作用により濾過処理を行うことができるので、圧搾作用のみにより濾過処理を行う従来形態に比べて、より効率的に固液分離処理を実行できる。 Further, according to the solid-liquid separation equipment of the present invention, it is possible to negative pressure than pressing chamber 15 side receives with the liquid chamber 14 side vacuum suction effect of the vacuum means 34, processed by squeezing screw 12 In addition to the squeezing action from the inside derived from the propulsive force of the object 4, a negative pressure action from the outside can be applied to the squeezing screen 10. Therefore, according to this invention, compared with the form which performs filtration only by the conventional squeezing action, the squeezing screen 10 is less likely to be clogged, and can prevent the filtration processing capability of the squeezing means 1 from rapidly decreasing. The solid-liquid separation process can be stably performed over a longer time. To give an example, in the conventional pressing device for producing soymilk (solid-liquid separation device), in view of the reduction in the filtration capacity resulting from clogging of the pressing screen 10, continuous operation for about 10 hours is possible, While a washing operation is required every 10 hours of operation, using the squeezing device (solid-liquid separation device) of the present invention enables continuous operation over 20 hours, compared to conventional devices. Thus, productivity can be greatly improved. In addition, it is possible to prevent the occurrence of inconvenience such as an increase in the amount of water contained in the solid component 5 as a result of the reduction of the filtration capacity. Since the filtration process by the negative pressure action can be performed on the entire pressing screen 10, in other words, the filtration process can be performed by both the pressing action and the negative pressure action, so that the filtration process is performed only by the pressing action. Compared with the form, the solid-liquid separation process can be executed more efficiently.

圧搾手段1から液体成分6を取り出す液搬出手段3に減圧手段34を設けて、換言すれば、圧搾手段1の下流側に減圧手段34を設けて、この減圧手段34の減圧吸引作用により圧搾手段1に向けて処理対象物4を供給するようにしたので、処理対象物4が気泡を含むような場合や、処理対象物4が高温である場合でも、減圧手段34がキャビテーションを起こすことはなく、安定的に処理対象物4を圧搾手段1に供給することができる。処理対象物4が粘度の高い場合でも、より安定的に処理対象物4を圧搾手段1に供給することができる。   The liquid discharge means 3 for taking out the liquid component 6 from the squeezing means 1 is provided with a decompression means 34, in other words, a decompression means 34 is provided on the downstream side of the squeezing means 1, and the decompression means 34 is provided with a decompression suction action. Since the processing object 4 is supplied toward 1, the decompression means 34 does not cause cavitation even when the processing object 4 contains bubbles or when the processing object 4 is hot. The processing object 4 can be stably supplied to the pressing means 1. Even when the processing object 4 has a high viscosity, the processing object 4 can be supplied to the squeezing means 1 more stably.

具体的には、液搬出手段3は、取出口21に接続された取出流路30と、取出流路30に接続された気液分離手段31と、気液分離手段31に接続された減圧流路33と、減圧流路33に接続された減圧手段である減圧ポンプ34とを含むものとすることができる。これにより、取出流路30および気液分離手段31を介して、減圧手段34の減圧吸引作用を圧搾手段1に作用させることができる。   Specifically, the liquid carry-out means 3 includes a take-out flow path 30 connected to the take-out port 21, a gas-liquid separation means 31 connected to the take-out flow path 30, and a decompressed flow connected to the gas-liquid separation means 31. The passage 33 and the decompression pump 34 which is decompression means connected to the decompression flow path 33 can be included. Thereby, the decompression suction action of the decompression means 34 can be applied to the squeezing means 1 via the extraction flow path 30 and the gas-liquid separation means 31.

気液分離手段は真空タンク31であり、真空タンク31に液体成分6の搬出流路32が接続されており、減圧流路33に、搬出流路32の開操作時に真空タンク31に外部空気を取り込むための空気供給手段47が設けられている構成を採ることができる。これによれば、真空タンク31の液体成分6を搬出流路32から搬出するときに、空気供給手段47を介して真空タンク31内に外部空気を取り込むことでスムーズに液体成分6を真空タンク31から搬出することができる。   The gas-liquid separation means is a vacuum tank 31, and a discharge passage 32 for the liquid component 6 is connected to the vacuum tank 31, and external air is supplied to the vacuum tank 31 when the discharge passage 32 is opened to the decompression passage 33. It is possible to adopt a configuration in which an air supply means 47 for taking in is provided. According to this, when the liquid component 6 in the vacuum tank 31 is carried out from the carry-out flow path 32, the liquid component 6 is smoothly drawn into the vacuum tank 31 by taking in external air into the vacuum tank 31 via the air supply means 47. Can be taken out from.

処理対象物供給手段2が、処理対象物4を圧搾手段1に向って圧送する移送ポンプ28を備えるものとしていると、減圧手段(減圧ポンプ)34と移送ポンプ28の両者の移送力が相俟って、処理対象物4を圧搾手段1に向けてより安定的に供給することができる。   When the processing object supply unit 2 includes the transfer pump 28 that pumps the processing object 4 toward the squeezing unit 1, the transfer forces of both the decompression unit (decompression pump) 34 and the transfer pump 28 are combined. Thus, the processing object 4 can be supplied more stably toward the pressing means 1.

本発明の実施例1に係る固液分離装置を示す概略構成図である。It is a schematic block diagram which shows the solid-liquid separation apparatus which concerns on Example 1 of this invention. 固液分離装置を構成する圧搾機の縦断正面図である。It is a vertical front view of the pressing machine which comprises a solid-liquid separator. 固液分離装置を構成する液搬出部を示す正面図である。It is a front view which shows the liquid carrying-out part which comprises a solid-liquid separator. 固液分離方法を説明するための概略構成図である。It is a schematic block diagram for demonstrating the solid-liquid separation method. 固液分離方法を説明するための概略構成図である。It is a schematic block diagram for demonstrating the solid-liquid separation method. 本発明の実施例2に係る固液分離装置を示す概略構成図であるIt is a schematic block diagram which shows the solid-liquid separation apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る固液分離装置を示す概略構成図である。It is a schematic block diagram which shows the solid-liquid separation apparatus which concerns on Example 3 of this invention.

(実施例1) 図1ないし図5に本発明に係る固液分離装置を豆乳製造用の圧搾装置に適用した実施例1を示す。本実施例における左右、上下とは、図2に示す交差矢印と、各矢印の近傍に表記した左右、上下の表示に従う。図1および図2に示すように、圧搾装置は、固液混在の処理対象物である煮ご4に対して圧搾を行い、固形成分であるおから5と、液体成分である豆乳6とに分離する圧搾機(圧搾手段)1と、圧搾機1の上流側に配されて、圧搾機1に煮ご4を送り込む処理対象物供給部(処理対象物供給手段)2と、圧搾機1から豆乳6を取り出す液搬出部(液搬出手段)3とを備える。 Shows (Example 1) Figure 1 to Example 1 according to the solid-liquid separation equipment according to the present invention in FIG. 5 to squeezing device for soymilk production. In the present embodiment, left and right and up and down follow the crossing arrows shown in FIG. 2 and the left and right and up and down displays shown near each arrow. As shown in FIG. 1 and FIG. 2, the squeezing apparatus squeezes the boiled rice 4 that is a solid-liquid mixed processing object, and into okara 5 that is a solid component and soymilk 6 that is a liquid component. From the pressing machine (squeezing means) 1 to be separated, the processing object supply unit (processing object supply means) 2 that is arranged on the upstream side of the pressing machine 1 and feeds the boiled food 4 into the pressing machine 1, and the pressing machine 1 A liquid carry-out section (liquid carry-out means) 3 for taking out the soy milk 6 is provided.

図2に示すように、圧搾機1は、鋼合金製多孔板で円筒状に形成された圧搾スクリーン10と、圧搾スクリーン10の外周面を覆うジャケット11と、圧搾スクリーン10の内部に回転駆動可能に配された圧搾スクリュー12と、圧搾スクリーン10の右端の出口端に設けられた弁機構13などで構成されたスクリュープレス型の圧搾機である。圧搾スクリーン10とジャケット11は内外二重に配されており、液室14と圧搾室15とを内外に区画する。ここでは、圧搾スクリーン10とジャケット11との間が液室14とされ、圧搾スクリーン10の内部が圧搾室15とされている。   As shown in FIG. 2, the pressing machine 1 can be driven to rotate inside a pressing screen 10 formed in a cylindrical shape with a steel alloy perforated plate, a jacket 11 covering the outer peripheral surface of the pressing screen 10, and the pressing screen 10. It is a screw press type squeezing machine comprised by the squeezing screw 12 distribute | arranged to and the valve mechanism 13 etc. which were provided in the exit end of the right end of the squeezing screen 10. The pressing screen 10 and the jacket 11 are arranged in an inner and outer double, and divide the liquid chamber 14 and the pressing chamber 15 into the inside and outside. Here, the space between the pressing screen 10 and the jacket 11 is a liquid chamber 14, and the inside of the pressing screen 10 is a pressing chamber 15.

ジャケット11の内径寸法は、左右方向に亘って均一に設定されているのに対して、圧搾スクリーン10は、出口側(右側)に行くに従って漸次径寸法が小さくなるテーパー筒状に形成されている。圧搾スクリュー12は、回転自在に支持される軸12aと、軸12aの周面に固定された螺旋状の圧搾羽根12bとで構成される。圧搾羽根12bは出口側(右側)に向って先細りテーパー状に形成され、さらに羽根ピッチは出口側(右側)に近付くほど小さくされており、圧搾羽根12bの先端は、その全長に亘って圧搾スクリーン10に内接するように構成されている。   While the inner diameter dimension of the jacket 11 is set uniformly in the left-right direction, the squeezing screen 10 is formed in a tapered cylindrical shape in which the diameter dimension gradually decreases toward the outlet side (right side). . The pressing screw 12 includes a shaft 12a that is rotatably supported and a spiral pressing blade 12b that is fixed to the peripheral surface of the shaft 12a. The squeezing blade 12b is tapered toward the outlet side (right side), and the blade pitch is made smaller as it approaches the outlet side (right side). The tip of the squeezing blade 12b extends over the entire length of the squeezing screen. 10 is inscribed.

図1に示すように、圧搾スクリュー12の駆動機構は、減速機付きのモータ17と、圧搾スクリュー12の基端を支持する軸受18とで構成されている。図1および図2において符号19は、ジャケット11の下流側に連結された搬入室を示しており、この搬入室19に設けられた流入口20を介して処理対象物供給部2より圧搾機1内に煮ご4が送り込まれるようになっている。   As shown in FIG. 1, the drive mechanism of the compression screw 12 includes a motor 17 with a speed reducer and a bearing 18 that supports the base end of the compression screw 12. In FIG. 1 and FIG. 2, the code | symbol 19 has shown the carrying-in chamber connected with the downstream of the jacket 11, and the pressing machine 1 from the process target supply part 2 via the inflow port 20 provided in this carrying-in chamber 19 is shown. The boiled rice 4 is sent into the inside.

液室14内の圧搾スクリーン10の上面より上方に位置するジャケット11の周壁に、豆乳を取り出す取出口21が開設されている。この実施例では、ジャケット11の上面に取出口21が設けられ、ジャケット11の下面に排水用のドレン口22が設けられている。このように圧搾スクリーン10の上面より上方に取出口21が設けられていると、液室14内で圧搾スクリーン10が浸漬する状態で圧搾スクリーン10により煮ご4に対する濾過を行うことができる。すなわち液中濾過を実行できる。また、液中濾過状態を維持しながら取出口21を介して液室14から豆乳6を搬出することができる。   An outlet 21 for taking out soy milk is provided in the peripheral wall of the jacket 11 located above the upper surface of the pressing screen 10 in the liquid chamber 14. In this embodiment, an outlet 21 is provided on the upper surface of the jacket 11, and a drain port 22 for drainage is provided on the lower surface of the jacket 11. Thus, when the outlet 21 is provided above the upper surface of the pressing screen 10, the cooking screen 4 can be filtered by the pressing screen 10 while the pressing screen 10 is immersed in the liquid chamber 14. That is, in-liquid filtration can be performed. Further, the soy milk 6 can be carried out from the liquid chamber 14 through the outlet 21 while maintaining the in-liquid filtration state.

ジャケット11の出口側の端部(右端)には封止栓23が固定されている。封止栓23には絞り粕でありケーキ状に形成されたおから5の出口、すなわちケーキ出口24が開設され、このケーキ出口24に弁機構13が設けられている。弁機構13は、ケーキ出口24の開口縁に設けられたヒンジ軸を中心に揺動可能に装着されて、ケーキ出口24を開閉操作する弁体13aと、封止栓23から右方向に片持ち状に伸びるロッド13bと、ロッド13bに沿って左右方向にスライド移動可能に構成されて弁体13aの外側面を受け止める牽制アーム13cと、ロッド13bに装着されて牽制アーム13cの抜け止めを規制するロック体13dと、牽制アーム13cとロック体13dとの間に配置されて、牽制アーム13cを介して弁体13aを閉姿勢に付勢するばね13eとで構成される。圧搾スクリュー12の推進力により圧搾室15の右端に移動されたおから5は、ばね13eの付勢力に抗して弁体13aを開き、ケーキ出口24を介してジャケット11の外部に落下排出される。   A sealing plug 23 is fixed to the end (right end) of the jacket 11 on the outlet side. The sealing plug 23 is provided with an outlet for the okara 5 formed in a cake shape, ie, a cake outlet, that is, a cake outlet 24, and a valve mechanism 13 is provided at the cake outlet 24. The valve mechanism 13 is swingably mounted around a hinge shaft provided at the opening edge of the cake outlet 24 and cantilevered rightward from the sealing plug 23 and a valve body 13a for opening and closing the cake outlet 24. A rod 13b extending in the shape of a rod, a check arm 13c configured to be slidable in the left-right direction along the rod 13b, and receiving the outer surface of the valve body 13a, and attached to the rod 13b to prevent the check arm 13c from coming off. It is comprised by the lock body 13d and the spring 13e which is arrange | positioned between the check arm 13c and the lock body 13d, and urges | biases the valve body 13a to a closed attitude | position via the check arm 13c. Okara 5 moved to the right end of the compression chamber 15 by the propulsive force of the compression screw 12 opens the valve body 13a against the urging force of the spring 13e, and is dropped and discharged to the outside of the jacket 11 through the cake outlet 24. The

図1において、処理対象物供給部2は、図外の蒸煮釜により茹で上げられた煮ご4が収容される原料タンク26と、原料タンク26と流入口20とを連結するステンレス管からなる移送流路27と、移送流路27の流路途中に設けられた移送ポンプ28とを備える。原料タンク26は、下窄まりテーパー状の中空容器であり、底部に移送流路27が連結されている。   In FIG. 1, the processing object supply unit 2 is composed of a raw material tank 26 in which the boiled rice 4 raised by a steaming pot (not shown) is accommodated, and a stainless steel pipe connecting the raw material tank 26 and the inlet 20. A flow path 27 and a transfer pump 28 provided in the middle of the flow path of the transfer flow path 27 are provided. The raw material tank 26 is a constricted and tapered hollow container, and a transfer channel 27 is connected to the bottom.

液搬出部3は、取出口21に接続されて圧搾機1の液室14から豆乳を取り出すための取出流路30と、取出流路30に接続された真空タンク(気液分離手段)31と、真空タンク31に接続されて該真空タンク31内に収容された豆乳を搬出するための搬出流路32と、真空タンク31に接続されて該真空タンク31内の空気を排出して減圧するための減圧流路33と、減圧流路33の流路途中に設けられた減圧ポンプ(減圧手段)34と、ドレン口22に接続されたドレン流路35などで構成される。取出流路30、減圧流路33、およびドレン流路35のそれぞれには、各流路を開閉するための第1〜第3コック36〜38が設けられ、搬出流路32には、これを開閉する第1電磁弁39が設けられている。取出流路30の下流端はドレン流路35の下流端に接続されており、該ドレン流路35の下流端を介して取出流路30に取り出された豆乳は真空タンク31内に供給されるようになっている。   The liquid carry-out unit 3 is connected to the take-out port 21 and has a take-out flow path 30 for taking out soy milk from the liquid chamber 14 of the press 1, and a vacuum tank (gas-liquid separation means) 31 connected to the take-out flow path 30. A discharge passage 32 connected to the vacuum tank 31 for discharging the soy milk contained in the vacuum tank 31, and a vacuum passage 31 connected to the vacuum tank 31 for discharging and depressurizing the air in the vacuum tank 31. The decompression flow path 33, a decompression pump (decompression means) 34 provided in the middle of the decompression flow path 33, a drain flow path 35 connected to the drain port 22, and the like. Each of the take-out flow path 30, the decompression flow path 33, and the drain flow path 35 is provided with first to third cocks 36 to 38 for opening and closing the respective flow paths. A first electromagnetic valve 39 that opens and closes is provided. The downstream end of the extraction flow path 30 is connected to the downstream end of the drain flow path 35, and the soy milk extracted to the extraction flow path 30 via the downstream end of the drain flow path 35 is supplied into the vacuum tank 31. It is like that.

真空タンク31は、縦長に形成された金属製の中空円筒体であり、図1および図3に示すように、筒壁の下部に豆乳の供給口41が開設され、底壁に搬出口42が開設され、天壁に排気口43が開設されている。供給口41にはドレン流路35の下流端が接続され、供給口41には搬出流路32が接続され、排気口43には減圧流路33が接続されている。減圧流路33は、真空タンク31の排気口43から上方に伸びる第1流路33aと、第1流路33aの途中に接続されて水平方向に伸びる第2流路33bと、第2流路33bに連続して下方向に伸びて第2コック37に至る第3流路33cと、第2コック37から搬出流路32に至る第4流路33dと、第2コック37から減圧ポンプ34に至る第5流路33eとで構成される。第2コック37は三方コックであり、第3流路33cと第4流路33dとの間を連通状態とする待機姿勢と、第3流路33cと第5流路33eとを連通状態とする運転姿勢との間で切り替え可能に構成されている。   The vacuum tank 31 is a metal hollow cylindrical body formed in a vertically long shape. As shown in FIGS. 1 and 3, a soymilk supply port 41 is opened at the bottom of the cylindrical wall, and a carry-out port 42 is formed at the bottom wall. It is opened and an exhaust port 43 is opened on the top wall. The supply port 41 is connected to the downstream end of the drain channel 35, the supply port 41 is connected to the carry-out channel 32, and the exhaust port 43 is connected to the decompression channel 33. The decompression flow path 33 includes a first flow path 33a extending upward from the exhaust port 43 of the vacuum tank 31, a second flow path 33b connected in the middle of the first flow path 33a and extending in the horizontal direction, and a second flow path. A third flow path 33c extending continuously downward from 33b to the second cock 37, a fourth flow path 33d extending from the second cock 37 to the carry-out flow path 32, and from the second cock 37 to the decompression pump 34. And the fifth flow path 33e. The second cock 37 is a three-way cock, and a standby posture for communicating between the third flow path 33c and the fourth flow path 33d, and a communication state between the third flow path 33c and the fifth flow path 33e. It is configured to be switchable between driving postures.

第1流路33aの上端には静電容量形の液位センサ45が固定されており、真空タンク31内に伸びる検知プローブ46により、真空タンク31内の豆乳6の液位の変動に応じて液位信号を出力する。ここでは、液位が真空タンク31の所定位置まで上昇したときと、液位が所定位置まで下降したときに、液位信号が出力されるようになっている。第2流路33bには、第1電磁弁39により搬出流路32を開いたときに、真空タンク31に外部空気を取り込むための空気供給路47が接続されており、この空気供給路47は流路途中に設けられた第2電磁弁48により開閉可能に構成されている。符号49は空気供給路47の上端に設けられた塵埃除去用のフィルターを示す。なお、液位センサ45からの液位信号は、図外の圧搾装置の全体を制御する制御装置に送られる。   A capacitance type liquid level sensor 45 is fixed to the upper end of the first flow path 33a, and the detection probe 46 extending into the vacuum tank 31 responds to fluctuations in the liquid level of the soy milk 6 in the vacuum tank 31. Outputs a liquid level signal. Here, a liquid level signal is output when the liquid level rises to a predetermined position in the vacuum tank 31 and when the liquid level drops to a predetermined position. An air supply path 47 for taking in external air into the vacuum tank 31 when the unloading flow path 32 is opened by the first electromagnetic valve 39 is connected to the second flow path 33b. The second electromagnetic valve 48 provided in the middle of the flow path can be opened and closed. Reference numeral 49 denotes a dust removing filter provided at the upper end of the air supply path 47. In addition, the liquid level signal from the liquid level sensor 45 is sent to the control apparatus which controls the whole expression apparatus outside a figure.

第3流路33cの上端には、減圧ポンプ34の駆動時に冷却水を供給するための冷却水供給路50が接続されている。この冷却水供給路50は流路途中に設けられた第3電磁弁51により開閉可能に構成されている。   A cooling water supply path 50 for supplying cooling water when the decompression pump 34 is driven is connected to the upper end of the third flow path 33c. The cooling water supply path 50 is configured to be opened and closed by a third electromagnetic valve 51 provided in the middle of the flow path.

図3に示すように、液搬出部3を構成する真空タンク31、減圧ポンプ34などは吸込ユニット52としてユニット化されている。図3において、符号53は吸込ユニット52の全体を支持するベース、符号54はベース53から上方に伸びて真空タンク31を支持する脚柱を示す。また図3において符号55は減圧ポンプ34を駆動するモータを示す。   As shown in FIG. 3, the vacuum tank 31, the decompression pump 34, and the like constituting the liquid carry-out unit 3 are unitized as a suction unit 52. In FIG. 3, reference numeral 53 denotes a base that supports the entire suction unit 52, and reference numeral 54 denotes a pedestal that extends upward from the base 53 and supports the vacuum tank 31. In FIG. 3, reference numeral 55 denotes a motor that drives the decompression pump 34.

以上のような構成からなる圧搾装置の固液分離動作について、図4および図5を参照して説明する。まず原料タンク26内に煮ご4が収容されている状態で、移送ポンプ28、減圧ポンプ34および圧搾機1のモータ17を起動させる。このとき図4に示すように、圧搾装置のオペレータは、第1コック36を取出流路30が連通する開姿勢とし、第2コック37を第3流路33cと第5流路33eとが連通する運転姿勢とし、第3コック38をドレン流路35を閉じる閉姿勢に操作する。また制御装置からの制御信号により、第1電磁弁39は搬出流路32を閉じる閉姿勢とされ、第2電磁弁48は空気供給路47を閉じる閉姿勢とされ、第3電磁弁51は冷却水供給路50を開ける開姿勢とされる。冷却水供給路50から第3流路33cに供給された冷却水は、第5流路33eを介して減圧ポンプ34に供給される。以上より、原料タンク26内の煮ご4は、移送ポンプ28により吸い出されたのち、減圧ポンプ34に由来する減圧吸引作用により移送流路27と流入口20とを介して圧搾機1の搬入室19に送られる。搬入室19内に送られた煮ご4は、圧搾スクリュー12の推進力によりケーキ出口24の側に向って圧搾室15内を移送され、その間に圧搾室15内に残留するおから5と、圧搾スクリーン10の圧搾孔を介して液室14内に移行する豆乳6とに圧搾分離される。加えて、減圧ポンプ34の減圧吸引作用により液室14側は圧搾室15側より負圧となるため、高圧の圧搾室15内の煮ご4に含まれる豆乳6が低圧の液室14側に吸込まれることによっても、豆乳6を煮ご4から分離することができる。以上のように本実施例の圧搾装置では、圧搾スクリュー12による圧搾作用と、減圧ポンプ34による負圧作用の両作用により、濾過動作、すなわち固液分離動作を実行することができる。なお、圧搾作用による固液分離は圧搾スクリーン10の下流側の端部(右端部)でのみ行われるのに対して、負圧作用による固液分離は圧搾スクリーン10の全体で行われる。   The solid-liquid separation operation of the pressing device having the above configuration will be described with reference to FIGS. 4 and 5. First, the transfer pump 28, the decompression pump 34, and the motor 17 of the squeezing machine 1 are started in a state where the cooker 4 is accommodated in the raw material tank 26. At this time, as shown in FIG. 4, the operator of the squeezing device takes the first cock 36 into an open posture in which the extraction flow path 30 communicates, and the second cock 37 communicates with the third flow path 33 c and the fifth flow path 33 e. The third cock 38 is operated to a closed posture that closes the drain passage 35. Further, the first electromagnetic valve 39 is closed to close the carry-out flow path 32, the second electromagnetic valve 48 is closed to close the air supply path 47, and the third electromagnetic valve 51 is cooled by the control signal from the control device. The open posture is such that the water supply path 50 is opened. The cooling water supplied from the cooling water supply path 50 to the third flow path 33c is supplied to the decompression pump 34 via the fifth flow path 33e. As described above, the boiled rice 4 in the raw material tank 26 is sucked out by the transfer pump 28 and then brought into the squeezing machine 1 through the transfer flow path 27 and the inlet 20 by the vacuum suction action derived from the vacuum pump 34. Sent to chamber 19. The boiled rice 4 sent into the carry-in chamber 19 is transferred in the pressing chamber 15 toward the cake outlet 24 by the propulsive force of the pressing screw 12, and the okara 5 remaining in the pressing chamber 15 during that time, It is squeezed and separated into soy milk 6 that moves into the liquid chamber 14 through the squeezing holes of the squeezing screen 10. In addition, since the liquid chamber 14 side has a negative pressure from the squeezing chamber 15 side due to the vacuum suction action of the decompression pump 34, the soy milk 6 contained in the boil 4 in the high-pressure squeezing chamber 15 is moved to the low-pressure liquid chamber 14 side. The soymilk 6 can also be separated from the boiled egg 4 by being sucked. As described above, in the pressing device according to the present embodiment, the filtering operation, that is, the solid-liquid separation operation can be performed by both the pressing action by the pressing screw 12 and the negative pressure action by the decompression pump 34. The solid-liquid separation by the pressing action is performed only at the downstream end (right end) of the pressing screen 10, whereas the solid-liquid separation by the negative pressure action is performed by the entire pressing screen 10.

上記のように固液分離動作時には、第3コック38は閉姿勢とされており、ドレン流路35は閉じられている。このため、圧搾スクリーン10により絞られた豆乳6は液室14内に溜まり、圧搾開始後まもなく圧搾スクリーン10の全体が豆乳6中に浸漬する状態で液室14内に充満する。液室14内の豆乳6の液位が上昇するのに伴って、液室14内にあった空気は取出口21から排出される。圧搾かすであるおから5は、ケーキ出口24を介して落下排出される。   As described above, during the solid-liquid separation operation, the third cock 38 is in a closed posture, and the drain flow path 35 is closed. For this reason, the soy milk 6 squeezed by the pressing screen 10 accumulates in the liquid chamber 14 and fills the liquid chamber 14 in a state where the entire pressing screen 10 is immersed in the soy milk 6 shortly after the start of pressing. As the liquid level of the soy milk 6 in the liquid chamber 14 rises, the air in the liquid chamber 14 is discharged from the outlet 21. The squeezed okara 5 is dropped and discharged through the cake outlet 24.

このように豆乳6が液室14内に充満する状態(液中濾過状態)で煮ご4の圧搾を行うと、圧搾スクリーン10から絞り出される豆乳6の噴出流は、液室14内に充満する豆乳6中を流動するだけで直ちに豆乳6内に溶け込むので、噴出流がジャケット11の内面に衝突して気泡が発生することはない。かかる液中濾過状態においても、減圧ポンプ34の減圧吸引作用を受けて液室14側は圧搾室15側よりも負圧となるため、先の負圧作用によっても、煮ご4から豆乳6は分離される。液室14内の豆乳6は、減圧ポンプ34の減圧吸引作用により取出口21を介して取出流路30に吸上げられるので、液中濾過状態を維持しながら、液室14から豆乳6を取り出すことができる。取出流路30に吸上げられた豆乳6は、供給口41から真空タンク31に送られて貯留される。   When the boil 4 is squeezed in such a state that the soy milk 6 is filled in the liquid chamber 14 (in-liquid filtration state), the jet flow of the soy milk 6 squeezed from the squeezing screen 10 fills the liquid chamber 14. Since it flows into the soymilk 6 just by flowing in the soymilk 6, the jet flow does not collide with the inner surface of the jacket 11 to generate bubbles. Even in this submerged filtration state, the liquid chamber 14 side is under a negative pressure than the squeezing chamber 15 side due to the vacuum suction action of the vacuum pump 34. To be separated. Since the soy milk 6 in the liquid chamber 14 is sucked into the take-out flow path 30 via the take-out port 21 by the vacuum suction action of the decompression pump 34, the soy milk 6 is taken out from the liquid chamber 14 while maintaining the in-liquid filtration state. be able to. The soy milk 6 sucked into the take-out flow path 30 is sent from the supply port 41 to the vacuum tank 31 and stored.

圧搾の進行に伴って真空タンク31内の液位が所定位置にまで上昇したことが液位センサ45により検知されると、真空タンク31から搬出流路32を介して豆乳6を送り出す。具体的には、図5に示すように、オペレータは第1コック36を取出流路30を閉じる閉姿勢に操作する。制御装置からの制御信号により、第1電磁弁39は搬出流路32を開く開姿勢とされ、第2電磁弁48は空気供給路47を開く開姿勢とされ、第3電磁弁51は冷却水供給路50を閉じる閉姿勢とされる。減圧ポンプ34と圧搾機1のモータ17の駆動は停止される。以上より、空気供給路47を介して真空タンク31内に空気を供給しながら、真空タンク31内の豆乳6を搬出流路32からスムーズに送り出すことができる。真空タンク31内の液位が所定位置まで下がったことが液位センサ45により検知されると、再び図4の運転状態に復帰して、圧搾機1による固液分離動作を行う。以上のように、圧搾装置は、真空タンク31への豆乳6の貯留と、真空タンク31からの豆乳6の送出とを繰り返すバッチ方式により固液分離を実行する。   When the liquid level sensor 45 detects that the liquid level in the vacuum tank 31 has risen to a predetermined position as the squeezing progresses, the soy milk 6 is sent out from the vacuum tank 31 via the carry-out flow path 32. Specifically, as shown in FIG. 5, the operator operates the first cock 36 in a closed posture that closes the take-out flow path 30. In accordance with a control signal from the control device, the first electromagnetic valve 39 is set to an open posture for opening the carry-out passage 32, the second electromagnetic valve 48 is set to an open posture for opening the air supply passage 47, and the third electromagnetic valve 51 is set to cooling water. The closed posture is such that the supply path 50 is closed. The drive of the decompression pump 34 and the motor 17 of the pressing machine 1 is stopped. As described above, the soy milk 6 in the vacuum tank 31 can be smoothly sent out from the carry-out flow path 32 while supplying air into the vacuum tank 31 via the air supply path 47. When the liquid level sensor 45 detects that the liquid level in the vacuum tank 31 has been lowered to a predetermined position, the operation state of FIG. 4 is restored and the solid-liquid separation operation by the press 1 is performed. As described above, the pressing device performs solid-liquid separation by a batch system that repeats the storage of the soymilk 6 to the vacuum tank 31 and the delivery of the soymilk 6 from the vacuum tank 31.

洗浄動作時には、原料タンク26に洗浄液を充填させたうえで、移送ポンプ28、減圧ポンプ34を駆動させて圧搾機1に洗浄液を送り込むことで、圧搾スクリュー12や圧搾スクリーン10を洗浄することができる。このときに、第3コック38を開姿勢とすることで、ドレン流路35を介して洗浄液を圧搾機1から排出することができる。   At the time of the cleaning operation, the raw material tank 26 is filled with the cleaning liquid, and then the transfer pump 28 and the decompression pump 34 are driven to send the cleaning liquid to the pressing machine 1, whereby the pressing screw 12 and the pressing screen 10 can be cleaned. . At this time, the cleaning liquid can be discharged from the squeezing machine 1 through the drain passage 35 by setting the third cock 38 to the open posture.

以上のように本実施例に係る圧搾装置においては、液室14内の圧搾スクリーン10の上面よりも上方に位置するジャケット11の周壁に、豆乳6を取り出すための取出口21を設けて、液室14内で圧搾スクリーン10が浸漬する状態で煮ご4に対して濾過(液中濾過)を行うようにしたので、濾過時に圧搾スクリーン10から噴出する豆乳6がジャケット11の内壁面に接触して気泡が生じることを解消でき、気泡を含まない良質の豆乳6を煮ご4から得ることができる。また、減圧ポンプ34に由来する減圧吸引作用により、圧搾スクリーン10の上面よりも上方に位置する取出口21から豆乳6を取り出すので、豆乳6の取出口21からの取出時に液中濾過状態が損なわれることはなく、この点でも濾過時に圧搾スクリーン10から噴出する豆乳6がジャケット11の内壁面に接触して気泡が生じることを抑えて、豆乳6の品質向上に貢献できる。   As described above, in the pressing device according to the present embodiment, the outlet 21 for taking out the soymilk 6 is provided on the peripheral wall of the jacket 11 located above the upper surface of the pressing screen 10 in the liquid chamber 14, and the liquid Since the squeezing screen 10 is immersed in the chamber 14 and the boiled rice 4 is filtered (in-liquid filtration), the soy milk 6 ejected from the squeezing screen 10 at the time of filtration contacts the inner wall surface of the jacket 11. Thus, the generation of bubbles can be eliminated, and high-quality soy milk 6 containing no bubbles can be obtained from the boiled rice 4. Moreover, since the soy milk 6 is taken out from the outlet 21 located above the upper surface of the pressing screen 10 by the vacuum suction action derived from the vacuum pump 34, the in-liquid filtration state is impaired when the soy milk 6 is taken out from the outlet 21. In this respect as well, the soy milk 6 ejected from the pressing screen 10 at the time of filtration can be prevented from coming into contact with the inner wall surface of the jacket 11 to generate bubbles, thereby contributing to the improvement of the quality of the soy milk 6.

圧搾スクリーン10の内方からの圧搾作用に加えて、圧搾スクリーン10の外方からの負圧作用を圧搾スクリーン10に作用させることができるので、従来の圧搾作用のみで濾過を行う形態に比べて、圧搾スクリーン10は目詰まりを起こし難く、当該圧搾スクリーン10の濾過処理能力が急激に低下することを防ぐことができる。従って本実施例に係る圧搾装置によれば、より長期に亘って適切な濾過処理能力を維持することができ、固液分離処理をより長時間に亘って安定的に実行できる。実例を挙げると、従来の豆乳製造用の圧搾装置では、圧搾スクリーン10の目詰まりに由来する濾過処理能力の低下に鑑みると、約10時間の連続運転が可能であり、当該約10時間の運転毎に洗浄動作が必要となっていたのに対して、本実施例の圧搾装置を用いれば、20時間を越える連続運転が可能となり、従来装置に比べて生産性の格段の向上を図ることができる。また、濾過処理能力が低下した結果、おから5に含まれる水分量が増加するような不都合の発生も防止できる。圧搾スクリーン10の全体で負圧作用による濾過処理を行うことができるので、圧搾作用のみにより濾過処理を行う従来形態に比べて、より効率的に固液分離処理を実行できる。   In addition to the squeezing action from the inside of the squeezing screen 10, a negative pressure action from the outside of the squeezing screen 10 can be applied to the squeezing screen 10, so that it is compared with a mode in which filtration is performed only by the conventional squeezing action The pressing screen 10 is less likely to be clogged, and the filtration processing capacity of the pressing screen 10 can be prevented from rapidly decreasing. Therefore, according to the squeezing apparatus according to the present embodiment, it is possible to maintain an appropriate filtration processing capacity for a longer period of time, and it is possible to stably perform the solid-liquid separation process for a longer period of time. For example, in a conventional pressing device for producing soymilk, in view of a decrease in filtration capacity resulting from clogging of the pressing screen 10, continuous operation for about 10 hours is possible, and the operation for about 10 hours is performed. Whereas a cleaning operation is required every time, if the squeezing device of this embodiment is used, continuous operation over 20 hours can be performed, and productivity can be significantly improved compared to conventional devices. it can. Moreover, it is possible to prevent the occurrence of inconvenience such as an increase in the amount of water contained in okara 5 as a result of the reduction of the filtration capacity. Since the filtration process by the negative pressure action can be performed on the entire squeezing screen 10, the solid-liquid separation process can be executed more efficiently than the conventional form in which the filtration process is performed only by the squeezing action.

圧搾機1の下流側に配置された減圧ポンプ34の減圧吸引作用により、原料タンク26内から圧搾機1に向けて煮ご4を供給するようにしたので、煮ご4が気泡を含むような場合や、煮ご4が高温である場合でも、当該減圧ポンプ34がキャビテーションを起こすことはなく、安定的に煮ご4を圧搾機1に供給することができる。なお、本実施例では処理対象物供給部2の移送ポンプ28がキャビテーションを起こすおそれはあるが、その場合でも(キャビテーションを起こした場合でも)減圧ポンプ34の減圧吸引作用により圧搾機1に向けて煮ご4を供給することができるので、より安定的に煮ご4の供給を進めることができる。また、両ポンプ(減圧ポンプ34と移送ポンプ28)の移送力が相俟って、煮ご4を圧搾機1に向けて供給することができるので、減圧ポンプ34の減圧吸引作用だけで煮ご4を供給する形態に比べて、より安定的に煮ご4を圧搾機1に供給できる利点もある。   The boiled food 4 is supplied from the raw material tank 26 toward the pressing machine 1 by the reduced pressure suction action of the pressure reducing pump 34 disposed on the downstream side of the pressing machine 1, so that the boiled food 4 contains bubbles. Even when the cooker 4 is hot, the decompression pump 34 does not cause cavitation, and the cooker 4 can be stably supplied to the press 1. In this embodiment, the transfer pump 28 of the processing object supply unit 2 may cause cavitation, but even in that case (even when cavitation occurs), the reduced pressure suction action of the decompression pump 34 is directed toward the press 1. Since the boiled rice 4 can be supplied, the supply of the boiled rice 4 can be advanced more stably. Moreover, since the transfer force of both pumps (the decompression pump 34 and the transfer pump 28) can be combined and the boiled rice 4 can be supplied toward the squeezing machine 1, only the decompression suction action of the decompression pump 34 is used for the boiled rice. Compared with the form which supplies 4, there also exists an advantage which can supply the boiled rice 4 to the pressing machine 1 more stably.

(実施例2)図6に本発明の実施例2に係る固液分離装置(豆乳製造用の圧搾装置)を示す。この圧搾装置では、搬出流路32の流路途中に吸込ポンプ60を設けた点が、先の実施例1と相違する。それ以外の点は、先の実施例1と同様であるので、同一の部材には同一の符号を付して、その説明を省略する。 (Embodiment 2) FIG. 6 shows a solid-liquid separator (squeezing apparatus for producing soymilk) according to Embodiment 2 of the present invention. In this squeezing device, the point that the suction pump 60 is provided in the middle of the carry-out flow passage 32 is different from the first embodiment. Since the other points are the same as in the first embodiment, the same members are denoted by the same reference numerals, and the description thereof is omitted.

実施例2の圧搾装置によれば、固液分離動作時においては、減圧ポンプ34、移送ポンプ28、および吸込ポンプ60の3つのバランス制御により、連続的に固液分離動作を実行することが可能となる。従って、実施例1のような真空タンク31内への豆乳6の貯留と、真空タンク31からの豆乳6の送出を繰り返すバッチ式の圧搾装置に比べて、より迅速に固液分離処理を実行して、豆乳6を得ることができる。   According to the squeezing apparatus of the second embodiment, during the solid-liquid separation operation, the solid-liquid separation operation can be continuously executed by three balance controls of the decompression pump 34, the transfer pump 28, and the suction pump 60. It becomes. Therefore, the solid-liquid separation process is executed more quickly than the batch type pressing device that repeats the storage of the soymilk 6 in the vacuum tank 31 and the delivery of the soymilk 6 from the vacuum tank 31 as in the first embodiment. Soy milk 6 can be obtained.

(実施例3)図7に本発明の実施例3に係る固液分離装置(豆乳製造用の圧搾装置)を示す。この圧搾装置では、圧搾機1が立直姿勢に配された縦型である点が、実施例1と相違する。それ以外の点は、先の実施例1と同様である。 (Embodiment 3) FIG. 7 shows a solid-liquid separation apparatus (squeezing apparatus for producing soymilk) according to Embodiment 3 of the present invention. In this squeezing device, the point that the squeezing machine 1 is a vertical type arranged in an upright posture is different from the first embodiment. The other points are the same as in the first embodiment.

本発明の固液分離装置として、上記実施例では豆乳製造用の圧搾装置を例にして説明したが、本発明はこれに限られず、例えばりんご等の果実飲料製造用の圧搾装置にも本発明は適用できる。上記実施例においては、処理対象物供給部2に移送ポンプ28が設けられていたが、本発明はこれに限られず、移送ポンプ28を廃して、減圧ポンプ34の減圧吸引作用のみで原料タンク26から処理対象物を圧搾機1に送給されるように構成することができる。上記実施例においては、減圧手段としては真空ポンプである減圧ポンプを挙げたが、本発明はこれに限られず、エゼクタ等であっても良く、要は減圧吸引作用を発揮するものであればよい。   As the solid-liquid separation device of the present invention, the above embodiment has been described by taking a pressing device for producing soymilk as an example, but the present invention is not limited thereto, and the present invention is also applied to a pressing device for manufacturing fruit drinks such as apples. Is applicable. In the above embodiment, the transfer pump 28 is provided in the processing object supply unit 2, but the present invention is not limited to this. The transfer pump 28 is eliminated and only the vacuum suction action of the vacuum pump 34 is used for the raw material tank 26. The processing object can be configured to be fed to the press 1. In the above embodiment, the pressure reducing means is a vacuum pump as a vacuum pump. However, the present invention is not limited to this, and may be an ejector or the like, as long as it exhibits a vacuum suction action. .

1 圧搾手段(圧搾機)
2 処理対象物供給手段(処理対象物供給部)
3 液搬出手段(液搬出部)
4 処理対象物(煮ご)
5 固形成分(おから)
6 液体成分(豆乳)
10 圧搾スクリーン
11 ジャケット
12 圧搾スクリュー
14 液室
15 圧搾室
21 取出口
28 移送ポンプ
30 取出流路
31 気液分離手段(真空タンク)
32 搬出流路
33 減圧流路
34 減圧手段(減圧ポンプ)
47 空気供給手段(空気供給路)
60 吸込ポンプ
1 Pressing means (pressing machine)
2 Processing object supply means (processing object supply unit)
3 Liquid unloading means (Liquid unloading part)
4 processing object (boiled rice)
5 Solid ingredients (Okara)
6 Liquid ingredients (soy milk)
DESCRIPTION OF SYMBOLS 10 Squeeze screen 11 Jacket 12 Squeeze screw 14 Liquid chamber 15 Squeeze chamber 21 Extraction port 28 Transfer pump 30 Extraction flow path 31 Gas-liquid separation means (vacuum tank)
32 Unloading channel 33 Depressurizing channel 34 Depressurizing means (depressurizing pump)
47 Air supply means (air supply path)
60 Suction pump

Claims (4)

固液混在の処理対象物(4)に対して圧搾を行い、固形成分(5)と液体成分(6)とに分離する圧搾手段(1)と、圧搾手段(1)に処理対象物(4)を送り込む処理対象物供給手段(2)と、圧搾手段(1)から液体成分(6)を取り出す液搬出手段(3)とを備え、
圧搾手段(1)は、多孔板で円筒状に形成された圧搾スクリーン(10)と、圧搾スクリーン(10)の外周面を覆うジャケット(11)と、圧搾スクリーン(10)の内部に回転駆動可能に配された圧搾スクリュー(12)とを備え、圧搾スクリーン(10)とジャケット(11)との間が液室(14)とされ、圧搾スクリーン(10)の内部が圧搾室(15)とされており、
液室(14)内の圧搾スクリーン(10)の上面よりも上方に位置するジャケット(11)の周壁に、液体成分(6)を取り出すための取出口(21)が設けられており、液室(14)内で圧搾スクリーン(10)が浸漬する状態で処理対象物(4)に対する濾過が行われるようになっており、
取出口(21)に接続される液搬出手段(3)は減圧手段(34)を備えており、当該減圧手段(34)に由来する減圧吸引作用により、液室(14)内で圧搾スクリーン(10)が浸漬する液中濾過状態を維持しながら取出口(21)を介して液室(14)から液体成分(6)が取り出されるように構成されており、
液搬出手段(3)が、取出口(21)に接続された取出流路(30)と、取出流路(30)に接続された気液分離手段(31)と、気液分離手段(31)に接続された減圧流路(33)と、減圧流路(33)に接続された減圧手段(34)とを含み、
気液分離手段は真空タンク(31)であり、
真空タンク(31)に液体成分(6)の搬出流路(32)が接続されており、
減圧流路(33)に、搬出流路(32)の開操作時に真空タンク(31)に外部空気を取り込むための空気供給手段(47)が設けられていることを特徴とする固液分離装置。
The processing object (4) which is pressed into the solid-liquid mixed processing object (4) and separated into the solid component (5) and the liquid component (6) and the pressing means (1). ) And a liquid carry-out means (3) for taking out the liquid component (6) from the squeezing means (1),
The squeezing means (1) can be rotationally driven inside the squeezing screen (10), the jacket (11) covering the outer peripheral surface of the squeezing screen (10), and the pressing screen (10). And a compression chamber (15) between the compression screen (10) and the jacket (11), and the inside of the compression screen (10) as a compression chamber (15). And
An outlet (21) for taking out the liquid component (6) is provided on the peripheral wall of the jacket (11) located above the upper surface of the pressing screen (10) in the liquid chamber (14). (14) In the state where the squeezing screen (10) is immersed, the filtration of the processing object (4) is performed,
The liquid carry-out means (3) connected to the outlet (21) is provided with a pressure reducing means (34), and a pressure screen (in the liquid chamber (14) by a vacuum suction action derived from the pressure reducing means (34). 10) is configured such that the liquid component (6) is taken out from the liquid chamber (14) through the outlet (21) while maintaining the filtered state in the liquid in which the liquid is immersed .
The liquid carry-out means (3) includes an extraction channel (30) connected to the extraction port (21), a gas-liquid separation unit (31) connected to the extraction channel (30), and a gas-liquid separation unit (31 And a decompression means (34) connected to the decompression flow path (33),
The gas-liquid separation means is a vacuum tank (31),
A discharge path (32) for the liquid component (6) is connected to the vacuum tank (31),
A solid-liquid separation device characterized in that the decompression channel (33) is provided with air supply means (47) for taking external air into the vacuum tank (31) when the carry-out channel (32) is opened. .
減圧手段(34)の減圧吸引作用により、処理対象物供給手段(2)から圧搾室(15)内に処理対象物(4)が送給される、請求項1記載の固液分離装置。   The solid-liquid separator according to claim 1, wherein the processing object (4) is fed from the processing object supply means (2) into the squeezing chamber (15) by the reduced pressure suction action of the decompression means (34). 搬出流路(32)に、真空タンク(31)内の液体成分(6)を圧送するとともに、減圧手段(34)と協同して減圧吸引作用を発揮する吸込ポンプ(60)が設けられている、請求項1又は2記載の固液分離装置。 A suction pump (60) that pumps the liquid component (6) in the vacuum tank (31) into the carry-out flow path (32) and exhibits a vacuum suction action in cooperation with the pressure reduction means (34) is provided. The solid-liquid separation device according to claim 1 or 2. 処理対象物供給手段(2)が、処理対象物(4)を圧搾手段(1)に向って圧送する移送ポンプ(28)を備える、請求項1乃至3のいずれかひとつに記載の固液分離装置 Solid-liquid separation according to any one of claims 1 to 3, wherein the processing object supply means (2) comprises a transfer pump (28) for pumping the processing object (4) towards the squeezing means (1). Equipment .
JP2018076861A 2018-04-12 2018-04-12 Solid-liquid separator Active JP6410071B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076861A JP6410071B1 (en) 2018-04-12 2018-04-12 Solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076861A JP6410071B1 (en) 2018-04-12 2018-04-12 Solid-liquid separator

Publications (2)

Publication Number Publication Date
JP6410071B1 true JP6410071B1 (en) 2018-10-24
JP2019181387A JP2019181387A (en) 2019-10-24

Family

ID=63920582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076861A Active JP6410071B1 (en) 2018-04-12 2018-04-12 Solid-liquid separator

Country Status (1)

Country Link
JP (1) JP6410071B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538497A (en) * 2019-09-30 2019-12-06 平顶山市安泰华矿用安全设备制造有限公司 Negative pressure drainage mobile water-slag separating device
CN111016252A (en) * 2019-12-26 2020-04-17 兴化市荣宝油脂有限公司 Full-automatic rapeseed oil squeezing device
CN113752610A (en) * 2021-10-11 2021-12-07 靖州县金茶油科技开发有限责任公司 Tea-seed oil seed of tea-seed oil production usefulness squeezes equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138585A (en) * 1977-05-10 1978-12-04 Mitsubishi Heavy Ind Ltd Slurry separation and concentration device
JPH08103237A (en) * 1994-10-05 1996-04-23 Mase Bankin Seisakusho:Kk Solid-liquid separating device for slurry of soybean
JPH08275749A (en) * 1995-04-06 1996-10-22 Marui Kogyo Kk Squeezer for tofu production and squeezing method
JPH0947249A (en) * 1995-08-09 1997-02-18 Takai Seisakusho:Kk Production of tofu and apparatus therefor
JPH11169123A (en) * 1997-12-11 1999-06-29 Shikoku Kakoki Co Ltd Sterilization method for soybean milk and production of sterile bean curd
JP2000189093A (en) * 1998-12-28 2000-07-11 Ishida Co Ltd Apparatus for manufacturing soymilk and compressor for soymilk manufacturing apparatus
JP2000245380A (en) * 1999-02-26 2000-09-12 Ishida Co Ltd Apparatus for preparation of soymilk
WO2001010243A1 (en) * 1999-08-03 2001-02-15 Morinaga Milk Industry Co., Ltd. Production method for soybean processed food and heating-deaerating device for mashed soybean soup

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138585A (en) * 1977-05-10 1978-12-04 Mitsubishi Heavy Ind Ltd Slurry separation and concentration device
JPH08103237A (en) * 1994-10-05 1996-04-23 Mase Bankin Seisakusho:Kk Solid-liquid separating device for slurry of soybean
JPH08275749A (en) * 1995-04-06 1996-10-22 Marui Kogyo Kk Squeezer for tofu production and squeezing method
JPH0947249A (en) * 1995-08-09 1997-02-18 Takai Seisakusho:Kk Production of tofu and apparatus therefor
JPH11169123A (en) * 1997-12-11 1999-06-29 Shikoku Kakoki Co Ltd Sterilization method for soybean milk and production of sterile bean curd
JP2000189093A (en) * 1998-12-28 2000-07-11 Ishida Co Ltd Apparatus for manufacturing soymilk and compressor for soymilk manufacturing apparatus
JP2000245380A (en) * 1999-02-26 2000-09-12 Ishida Co Ltd Apparatus for preparation of soymilk
WO2001010243A1 (en) * 1999-08-03 2001-02-15 Morinaga Milk Industry Co., Ltd. Production method for soybean processed food and heating-deaerating device for mashed soybean soup

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538497A (en) * 2019-09-30 2019-12-06 平顶山市安泰华矿用安全设备制造有限公司 Negative pressure drainage mobile water-slag separating device
CN111016252A (en) * 2019-12-26 2020-04-17 兴化市荣宝油脂有限公司 Full-automatic rapeseed oil squeezing device
CN113752610A (en) * 2021-10-11 2021-12-07 靖州县金茶油科技开发有限责任公司 Tea-seed oil seed of tea-seed oil production usefulness squeezes equipment
CN113752610B (en) * 2021-10-11 2023-03-14 靖州县金茶油科技开发有限责任公司 Tea-seed oil seed of tea-seed oil production usefulness squeezes equipment

Also Published As

Publication number Publication date
JP2019181387A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6410071B1 (en) Solid-liquid separator
DK3023485T3 (en) DEVICE AND PROCEDURE FOR THE EXTRACTION OF AROMATIC MATERIALS FROM VEGETABLE AROMABRIERS IN A BRIDGE LIQUID
KR101362721B1 (en) Roller type separator for solid liquid mixture
KR100796017B1 (en) Espresso coffee extracting method
CN208626771U (en) A kind of syrup filter plant
CN116179268A (en) Automatic change butter production system
CN208263509U (en) Oil press is used in a kind of processing of camellia oil
CN110367818B (en) Coffee extraction device and coffee extraction method
KR20110051127A (en) Roller type separator for solid liquid mixture
JP2022502105A (en) How to pour a hot drink
JPH08108005A (en) Deaeration device
CN109588732A (en) A kind of agricultural planting finished product draining device based on reverse discharging technology
CN209451366U (en) It can warm mode health food extraction element
JP2010279967A (en) Dehydrator
CN216320128U (en) Vacuum degassing device for beverage processing
CN105039157B (en) Reaction device for synthesizing cephalosporin product by means of enzymic method
CN203221666U (en) Oil heating and filtering device processing oil and domestic oil press
CN115299779B (en) Beverage brewing equipment, pipeline system thereof and working method thereof
CN214261400U (en) Fruit and vegetable juice filtering device convenient to clean
CN219500387U (en) Vegetable protein beverage pulping system
CN215302873U (en) Filter residue boiling system
CN220867356U (en) Brewing beer cold-brewing coffee surge device
CN219861247U (en) Continuous peeling and oil pressing refining production line for cyperus esculentus
CN103213298A (en) Oil heating filtering device used for processing oil and household oil press
CN217449036U (en) Laboratory pilot-scale test equipment of continuous preparation tobacco extract product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180416

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180416

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6410071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250