JP6404959B2 - Energy-saving blast furnace slag glass ceramic manufacturing method - Google Patents

Energy-saving blast furnace slag glass ceramic manufacturing method Download PDF

Info

Publication number
JP6404959B2
JP6404959B2 JP2017009551A JP2017009551A JP6404959B2 JP 6404959 B2 JP6404959 B2 JP 6404959B2 JP 2017009551 A JP2017009551 A JP 2017009551A JP 2017009551 A JP2017009551 A JP 2017009551A JP 6404959 B2 JP6404959 B2 JP 6404959B2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace slag
mold
temperature
glass ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017009551A
Other languages
Japanese (ja)
Other versions
JP2017132688A (en
Inventor
宋春燕
貴永亮
王書▲ファン▼
趙定国
王亜文
Original Assignee
華北理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華北理工大学 filed Critical 華北理工大学
Publication of JP2017132688A publication Critical patent/JP2017132688A/en
Application granted granted Critical
Publication of JP6404959B2 publication Critical patent/JP6404959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0063Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は冶金固体廃棄物の高付加価値化利用及び省エネ化の技術分野に関し、特に省エネ型高炉スラグ製ガラスセラミックスの製造方法に関する。 The present invention relates to the technical field of high value-added utilization and energy saving of metallurgical solid waste, and more particularly, to a method for producing energy-saving blast furnace slag glass ceramics.

ガラスセラミックスは、一般的なガラスと石材の技術を組み合わせて開発した新材料であり、結晶相とガラス相で構成されるものであり、高強度、低熱膨張係数、酸アルカリ腐食に対する耐性、耐摩耗性等の優れた特性を有するため、建築分野、耐熱パネル、酸アルカリ腐食抵抗や光学の分野に幅広く適用できる。原料として、ガラスセラミックスを製造するには産業廃棄物、例えばフライアッシュ、冶金ダスト、使用済みガラス、冶金スラグ等が大量利用され、それにより廃棄物を資源化させて、大きな環境保全利益及び経済的利益が期待できる。 Glass ceramics is a new material developed by combining general glass and stone technologies. It consists of a crystal phase and a glass phase, and has high strength, low thermal expansion coefficient, resistance to acid-alkali corrosion, and wear resistance. Because of its excellent properties such as properties, it can be widely applied in the fields of architecture, heat-resistant panels, acid-alkali corrosion resistance and optics. In order to produce glass ceramics as raw materials, industrial wastes such as fly ash, metallurgical dust, used glass, metallurgical slag, etc. are used in large quantities. Profit can be expected.

高炉スラグは鉄鋼冶金産業の副産物として、酸化カルシウム、シリカ、アルミナや酸化マグネシウム等の酸化物を主成分することから、ガラスセラミックスの製造に相応しい原料である。1トンの銑鉄を生産するのに300〜400kgの高炉スラグが発生することになり、不完全な統計によれば、中国では1年間に1.5億トン以上の高炉スラグが発生する。現在、中国では高炉スラグの大部分に対しては、水焼入れ法により造粒スラグを製造して、セメント原料として使用されるが、付加価値が極めて低い。従って、如何に大量の高炉スラグを使用して高付加価値を有するガラスセラミックスを製造するかは、冶金廃棄物の利用についての研究焦点となっている。今のところ、高炉スラグ製ガラスセラミックスの製造方法として、先ず混合物料を溶融し、次に冷却させてガラス基質を得た後、加熱して熱処理過程を完了する溶融加熱処理方法が一般的である。高炉スラグ製ガラスセラミックスの製造技術について大量の研究を行ったが、エネルギー消費量が大きく、製造コストが高いという問題が存在する。発明特許[特許番号:200710054035.3]には、高炉スラグを使用してガラスセラミックスを製造する方法が提供されているが、まだ冷却後の固体高炉スラグを使用して、再び溶融するまで加熱する手段が使用されるもので、溶融高炉スラグの顕熱の利用が言及されず、エネルギーが無駄になる。 Blast furnace slag is a suitable raw material for the production of glass ceramics because it contains oxides such as calcium oxide, silica, alumina and magnesium oxide as by-products of the steel and metallurgical industry. 300 to 400 kg of blast furnace slag is generated to produce 1 ton of pig iron. According to incomplete statistics, more than 150 million tons of blast furnace slag is generated per year in China. At present, most of blast furnace slag in China is manufactured as granulated slag by the water quenching method and used as a raw material for cement, but its added value is extremely low. Therefore, how to produce glass ceramics with high added value using a large amount of blast furnace slag has become a research focus on the utilization of metallurgical waste. At present, as a method for producing glass ceramics made of blast furnace slag, a melt heat treatment method is generally used in which a mixture material is first melted and then cooled to obtain a glass substrate, which is then heated to complete a heat treatment process. . Although a large amount of research has been conducted on the manufacturing technology of blast furnace slag glass ceramics, there are problems of high energy consumption and high manufacturing costs. The invention patent [Patent Number: 200710054035.3] provides a method for producing glass ceramics using blast furnace slag, but still uses solid blast furnace slag after cooling to heat until it is melted again. Means are used, the use of sensible heat of molten blast furnace slag is not mentioned, and energy is wasted.

高炉スラグの顕熱は高いエネルギーレベルを持っているので、冶金産業での高品質廃熱資源に属する。高炉内から排出される高炉スラグの温度は通常1450℃以上であり、1トンあたりの高炉スラグに含まれる初期顕熱は約60kgの標準的な石炭の発熱量に相当する。回収技術の不足によって、現在の高炉スラグの顕熱回収率が極めて低い。そのため、高温溶融高炉スラグの顕熱資源をガラスセラミックスの製造過程に用いると、高炉スラグの顕熱を回収してガラスセラミックスの製造コストを削減できるだけでなく、製造周期を短縮できる。発明特許[出願番号:201010274345.8]の提供する溶融高炉スラグを使用してガラスセラミックスを直接製造する方法では、溶融高炉スラグの顕熱が利用されるが、添加される副材料のSiOは溶融したものでなければならず、SiOの溶融も大量のエネルギーが必要である。 Since the sensible heat of blast furnace slag has a high energy level, it belongs to high quality waste heat resources in the metallurgical industry. The temperature of the blast furnace slag discharged from the inside of the blast furnace is usually 1450 ° C. or more, and the initial sensible heat contained in the blast furnace slag per ton corresponds to a standard coal calorific value of about 60 kg. Due to the lack of recovery technology, the current sensible heat recovery rate of blast furnace slag is extremely low. Therefore, when the sensible heat resource of the high-temperature molten blast furnace slag is used in the glass ceramic production process, not only can the sensible heat of the blast furnace slag be recovered to reduce the production cost of the glass ceramic, but also the production cycle can be shortened. Invention patent [application number: 201010274345.8] In the method for producing a glass ceramic directly using molten blast furnace slag provided by, but sensible heat of molten blast furnace slag is utilized, SiO 2 sub materials to be added It must be melted and the melting of SiO 2 requires a large amount of energy.

本願は溶融高炉スラグの高発熱量の特徴を利用し、高温溶融高炉スラグの顕熱を固体副材料の溶融に直接用いることで、副材料の溶融や成分均質化に必要な熱を節約し、更に、炉を交換せずに後続熱処理過程を同一多機能金型内で行うことができ、それによってガラスセラミックスの製造周期を短縮させる省エネ型高炉スラグ製ガラスセラミックスの製造方法を提供する。 This application utilizes the characteristics of the high calorific value of the molten blast furnace slag, and by directly using the sensible heat of the high temperature molten blast furnace slag to melt the solid secondary material, the heat necessary for melting the secondary material and homogenizing the components is saved, Furthermore, the present invention provides a method for producing energy-saving blast furnace slag glass ceramics that can perform the subsequent heat treatment process in the same multifunctional die without replacing the furnace, thereby shortening the glass ceramic production cycle.

本発明の目的は、プロセスがシンプルで、溶融高炉スラグの顕熱を効果的に使用して省エネ型ガラスセラミックスを製造する方法を提供して、プロセスが複雑で、エネルギー消費量が大きくて、生産コストが高い等の従来のガラスセラミックスの製造過程の欠陥を克服することである。 The object of the present invention is to provide a method for manufacturing energy-saving glass ceramics with a simple process, effectively using the sensible heat of molten blast furnace slag, the process is complicated, the energy consumption is large, the production It is to overcome the defects in the manufacturing process of conventional glass ceramics such as high cost.

上記目的を達成させるために、本発明は以下の技術案を採用する。
1)高炉スラグの使用量を45〜65%、高炉スラグ製ガラスセラミックスの目的成分(wt.%)をCaO10〜30%、SiO35〜60%、Al10〜15%、MgO8〜12%、KO2〜5%、ZnO3〜4%、TiO3〜6%に設計し、なお、高炉スラグにおける他の成分は配慮しない。
高炉製鉄過程は連続した工業生産過程であるため、各チャージの出滓スラグの成分がほぼ同じである。本発明では、ガラスセラミックスの原料を配合する時、使用された溶融高炉スラグの成分として前チャージのスラグ成分を使用し、次に設定されたガラスセラミックス成分に応じて他の副材料の使用量を算出する。
2)高炉製鉄現場で、所定量の高温溶融高炉スラグを恒温電気炉の黒鉛坩堝に投入するとともに、ガラスセラミックスの製造に必要な、他の均一に混合した副材料を加え、副材料の溶融及び全ての材料成分の均質化を1400〜1500℃の範囲におけるある温度で0.5〜2時間保温した黒鉛坩堝において行う。
電気炉における黒鉛坩堝の恒温制御はコンピュータプログラムにより自動的に制御され、入力電力及び保温時間に基づいて黒鉛坩堝の保温がかかる熱を算出できる。等質量の同じ成分を有する固体材料を黒鉛坩堝において同じ時間保温するのに必要な熱を基準に、坩堝の保温により消費されるエネルギーのうち、高温溶融高炉スラグの顕熱が占める比率が概算(固体材料の融解潜熱等の要素による影響を無視する)できる。使用される溶融高炉スラグが多いほど、導入する溶融スラグの温度が高く、更に節約されるエネルギーが多い。
3)完全な溶融及び成分均質化を行った溶融材料を、ハウジングがステンレス鋼で、内部が耐火煉瓦組積構造で、発熱材料が耐火煉瓦下に敷設された抵抗線又はSiCロッドであり、温度制御がコンピュータプログラムにより実行される恒温制御が可能な金型に注入する。金型の温度を750〜1250℃において柔軟に調整可能にして、昇温速度を制御可能にし、ガラスセラミックスの熱処理メカニズムに基づき段階毎の保温時間を決定し、熱処理終了後、金型への給電加熱を停止し、ガラスセラミックスを金型において室温まで自然冷却させ、それによって、ガラスセラミックスの核生成及び結晶成長の過程はステンレス鋼金型において完了される。
In order to achieve the above object, the present invention employs the following technical solution.
1) The amount of blast furnace slag used is 45 to 65%, the target components (wt.%) Of glass ceramics made of blast furnace slag are CaO 10 to 30%, SiO 2 35 to 60%, Al 2 O 3 10 to 15%, MgO 8 to 12%, K 2 O2~5%, designed ZnO3~4%, TiO 2 3~6%, the other ingredients in the blast furnace slag is not conscious.
Since the blast furnace ironmaking process is a continuous industrial production process, the composition of the output slag of each charge is almost the same. In the present invention, when the glass ceramic raw material is blended, the slag component of the pre-charge is used as the component of the used molten blast furnace slag, and then the amount of other auxiliary materials used is determined according to the set glass ceramic component. calculate.
2) At the blast furnace steel production site, a predetermined amount of high-temperature molten blast furnace slag is put into a graphite crucible of a constant temperature electric furnace, and other uniformly mixed sub-materials necessary for the production of glass ceramics are added to melt the sub-materials. Homogenization of all material components is performed in a graphite crucible kept at a temperature in the range of 1400-1500 ° C. for 0.5-2 hours.
The constant temperature control of the graphite crucible in the electric furnace is automatically controlled by a computer program, and the heat applied to the graphite crucible can be calculated based on the input power and the heat retention time. Based on the heat required to keep solid materials having the same components of the same mass in the graphite crucible for the same time, the ratio of the sensible heat of the high-temperature molten blast furnace slag to the energy consumed by the crucible heat insulation is estimated ( The influence of factors such as the latent heat of fusion of solid materials can be ignored). The more molten blast furnace slag that is used, the higher the temperature of the molten slag that is introduced and the more energy is saved.
3) A melted material that has been completely melted and homogenized, is a resistance wire or SiC rod with a housing made of stainless steel, an interior with a refractory brick masonry structure, and a heat generating material laid under the refractory brick. The mold is injected into a mold capable of constant temperature control, which is executed by a computer program. The temperature of the mold can be adjusted flexibly at 750 to 1250 ° C, the rate of temperature rise can be controlled, the heat retention time for each stage is determined based on the heat treatment mechanism of the glass ceramics, and power supply to the mold after the heat treatment is completed Heating is stopped and the glass ceramic is allowed to cool naturally to room temperature in the mold, whereby the nucleation and crystal growth processes of the glass ceramic are completed in the stainless steel mold.

本発明の利点としては、従来の高炉スラグ製ガラスセラミックスの製造過程における固体原料の加熱溶融ステップの代わりとして、高炉生産現場で発生する高温溶融高炉スラグを直接使用し、固体副材料と同時に恒温坩堝に投入して副材料溶融と成分均質化を行うことによって、溶融高炉スラグの顕熱を効果的に利用して、従来の高炉スラグ処理プロセスにおけるエネルギー無駄を回避するだけでなく、高炉スラグ製ガラスセラミックスの製造プロセスを簡略化させ、生産コストを削減させ、生産周期を短縮させる。 As an advantage of the present invention, a high temperature molten blast furnace slag generated at the blast furnace production site is directly used as a substitute for the heating and melting step of the solid raw material in the manufacturing process of the conventional blast furnace slag glass ceramics, and the constant temperature crucible is simultaneously used with the solid secondary material By using the sensible heat of the molten blast furnace slag, it is possible not only to avoid energy waste in the conventional blast furnace slag treatment process, but also to make blast furnace slag glass. Simplify the ceramic manufacturing process, reduce production costs, and shorten production cycles.

本発明の別の利点としては、ガラスセラミックスの元の成分に応じて、ガラスセラミックスの熱処理温度及び保温時間が設計でき、温調調整は抵抗線の入力電力を変化することにより実現できる。製造されるガラスセラミックスの形状に対応するために、金型内部を任意の形状や寸法に設計したり区分したりすることができる。金型の領域毎に独立した温度と保温時間の制御が可能である。更に、ガラスセラミックス製品の組織及び特性の要求に応じて、段階的な熱処理メカニズムが設計できる。連続生産過程において、ステンレス鋼金型でのガラスセラミックスの熱処理時間が長いため、設計時に金型と高炉スラグ量の適合性を配慮した上、複数の金型を循環的に使用する設計方式でも、単一金型の複数の領域を循環的に使用する方式でもよい。 As another advantage of the present invention, the heat treatment temperature and heat retention time of the glass ceramic can be designed according to the original components of the glass ceramic, and the temperature adjustment can be realized by changing the input power of the resistance wire. In order to correspond to the shape of the glass ceramics to be manufactured, the inside of the mold can be designed or divided into an arbitrary shape and size. Independent temperature and heat retention time can be controlled for each mold area. Furthermore, a stepwise heat treatment mechanism can be designed according to the requirements of the structure and properties of the glass ceramic product. In the continuous production process, since the heat treatment time of glass ceramics in the stainless steel mold is long, considering the compatibility of the mold and blast furnace slag amount at the time of design, even in the design method using multiple molds cyclically, A method may be used in which a plurality of areas of a single mold are used cyclically.

本発明のプロセスのフローチャートである。4 is a flowchart of the process of the present invention. 本発明で製造された省エネ型ガラスセラミックスの走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the energy-saving glass ceramics manufactured by this invention. 本発明で製造された省エネ型ガラスセラミックス板のX線回折(XRD)スペクトルである。It is an X-ray diffraction (XRD) spectrum of the energy-saving glass ceramics plate manufactured by this invention.

発明を実施するための具体的に実施形態Specific embodiments for carrying out the invention

以下、具体的な実施例を利用して本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail using specific examples.

実施例1
1)高炉スラグの使用量を61.6%、高炉スラグ製ガラスセラミックスの目的成分(wt.%)をCaO25%、SiO40%、Al12%、MgO10%、KO3%、ZnO3%、TiO5%に設計し、なお、高炉スラグにおける他の成分は無視する。
2)前チャージの高炉スラグを測定した結果、化学成分はCaO40.57%、SiO34.15%、Al15.88%、MgO7.88%、KO0.57%、TiO0.95%であり、この成分の測定結果は本実施例に使用される溶融高炉スラグの化学成分である。本実施例では、溶融高炉スラグが616g使用され、計算したところ、各種副材料の使用量はそれぞれ、SiO190g、Al22g、MgO52g、KO26g、TiO44g、ZnO30gである。これら副材料を均一に混合して、温度1490℃の溶融高炉スラグとともに恒温電気炉の黒鉛坩堝に投入し、黒鉛坩堝を1520℃で1時間保温する。算出したところ、坩堝の保温に消費されるエネルギーのうち、高温溶融高炉スラグの顕熱が占める比率は約52%であり、すなわち、同じ成分を有するガラスセラミックスを製造する従来の溶融プロセスに対して、溶融段階によるエネルギー消費量を50%以上節約できる。
3)溶融及び成分均質化を行った溶融材料を800℃の金型内に注入して、1時間保温してガラス基質の製造と核生成を完成し、次に金型を980℃に昇温して、1時間保温して結晶成長を行う。次に、金型の加熱を停止して、高炉スラグ製ガラスセラミックスを室温に自然冷却させる。
得られたガラスセラミックス板についてX線回折(XRD)測定と組織特性評価を行った結果、主な結晶相はカルシウムアクケルナイトと普通輝石であり、ガラスセラミックス板は十分に結晶化されている。
Example 1
1) The amount of blast furnace slag used is 61.6%, the target components (wt.%) Of glass ceramics made of blast furnace slag are CaO 25%, SiO 2 40%, Al 2 O 3 12%, MgO 10%, K 2 O 3%, Designed to be ZnO 3%, TiO 2 5%, and other components in the blast furnace slag are ignored.
2) As a result of measuring precharged blast furnace slag, chemical components were CaO 40.57%, SiO 2 34.15%, Al 2 O 3 15.88%, MgO 7.88%, K 2 O 0.57%, TiO 2. 0.95%, and the measurement result of this component is the chemical component of the molten blast furnace slag used in this example. In this example, 616 g of molten blast furnace slag was used, and when calculated, usage amounts of various auxiliary materials were SiO 2 190 g, Al 2 O 3 22 g, MgO 52 g, K 2 O 26 g, TiO 2 44 g, and ZnO 30 g, respectively. These sub-materials are uniformly mixed and charged into a graphite crucible of a constant temperature electric furnace together with a molten blast furnace slag having a temperature of 1490 ° C., and the graphite crucible is kept at 1520 ° C. for 1 hour. The calculated ratio of the sensible heat of the high-temperature molten blast furnace slag is about 52% of the energy consumed for the heat insulation of the crucible, that is, compared to the conventional melting process for producing glass ceramics having the same components. The energy consumption by the melting stage can be saved by 50% or more.
3) Molten material that has been melted and homogenized is poured into a mold at 800 ° C. and kept for 1 hour to complete the production and nucleation of the glass substrate, and then the mold is heated to 980 ° C. Then, the crystal is grown by keeping the temperature for 1 hour. Next, the heating of the mold is stopped, and the blast furnace slag glass ceramic is naturally cooled to room temperature.
As a result of X-ray diffraction (XRD) measurement and structural property evaluation of the obtained glass ceramic plate, the main crystal phases are calcium ackelnite and ordinary pyroxene, and the glass ceramic plate is sufficiently crystallized.

実施例2
1)高炉スラグの使用量を49.3%、高炉スラグ製ガラスセラミックスの目的成分(wt.%)をCaO20%、SiO45%、Al12%、MgO10%、KO3%、ZnO3%、TiO5%に設計し、なお、高炉スラグにおける他の成分は無視する。
2)前チャージの高炉スラグを測定した結果、化学成分はCaO40.57%、SiO34.15%、Al15.88%、MgO7.88%、KO0.57%、TiO0.95%であり、この成分測定結果は本実施例に使用される溶融高炉スラグの化学成分である。本実施例では、溶融高炉スラグは493g使用され、計算したところ、各種副材料の使用量はそれぞれ、SiO282g、Al42g、MgO61g、KO27g、TiO45g、ZnO30gである。これら副材料を均一に混合して、温度1510℃の溶融高炉スラグとともに恒温電気炉の黒鉛坩堝に投入し、黒鉛坩堝を1450℃で1.5時間保温する。計算したところ、坩堝の保温に消費されるエネルギーのうち、高温溶融高炉スラグの顕熱が占める比率は約47%であり、すなわち、同じ成分を有するガラスセラミックスを製造する従来の溶融プロセスに対して、溶融段階によるエネルギー消費量を45%以上節約できる。
3)完全な溶融及び成分均質化を行った溶融材料を800℃の金型に注入して、1時間保温してガラス基質の製造と核生成を完成し、次に金型を980℃に昇温して、1時間保温して結晶成長を行う。次に、金型の加熱を停止して、高炉スラグ製ガラスセラミックスを室温に自然冷却させる。
得られたガラスセラミックス板についてX線回折(XRD)測定と組織特性評価を行った結果、主な結晶相は透輝石と普通輝石であり、ガラスセラミックス板は十分に結晶化されている。
Example 2
1) The amount of blast furnace slag used is 49.3%, the target components (wt.%) Of glass ceramics made of blast furnace slag are CaO 20%, SiO 2 45%, Al 2 O 3 12%, MgO 10%, K 2 O 3%, Designed to be ZnO 3%, TiO 2 5%, and other components in the blast furnace slag are ignored.
2) As a result of measuring precharged blast furnace slag, chemical components were CaO 40.57%, SiO 2 34.15%, Al 2 O 3 15.88%, MgO 7.88%, K 2 O 0.57%, TiO 2. This component measurement result is a chemical component of the molten blast furnace slag used in this example. In this example, 493 g of molten blast furnace slag was used, and when calculated, usage amounts of various auxiliary materials were SiO 2 282 g, Al 2 O 3 42 g, MgO 61 g, K 2 O 27 g, TiO 2 45 g, and ZnO 30 g, respectively. These sub-materials are uniformly mixed and charged into a graphite crucible of a constant temperature electric furnace together with a molten blast furnace slag having a temperature of 1510 ° C., and the graphite crucible is kept at 1450 ° C. for 1.5 hours. When calculated, the ratio of the sensible heat of the high-temperature molten blast furnace slag to the energy consumed for the heat insulation of the crucible is about 47%, that is, compared to the conventional melting process for producing glass ceramics having the same components. The energy consumption by the melting stage can be saved by 45% or more.
3) The molten material, which has been completely melted and homogenized, is poured into a mold at 800 ° C. and incubated for 1 hour to complete the production and nucleation of the glass substrate, and then the mold is raised to 980 ° C. Warm and incubate for 1 hour for crystal growth. Next, the heating of the mold is stopped, and the blast furnace slag glass ceramic is naturally cooled to room temperature.
As a result of X-ray diffraction (XRD) measurement and structural property evaluation of the obtained glass ceramic plate, the main crystal phases are diopside and ordinary pyroxene, and the glass ceramic plate is sufficiently crystallized.

実施例3
1)高炉スラグの使用量を61.6%、高炉スラグ製ガラスセラミックスの目的成分(wt.%)をCaO25%、SiO40%、Al12%、MgO10%、KO3%、ZnO3%、TiO5%に設計し、高炉スラグにおける他の成分は無視する。
2)前チャージの高炉スラグを測定した結果、化学成分はCaO40.57%、SiO34.15%、Al15.88%、MgO7.88%、KO0.57%、TiO0.95%であり、この成分測定結果は本実施例に使用される溶融高炉スラグの化学成分である。本実施例では、溶融高炉スラグは616g使用され、計算した結果、各種副材料の使用量はそれぞれ、SiO190g、Al22g、MgO52g、KO26g、TiO44g、ZnO30gである。これら副材料を均一に混合して、温度1470℃の溶融高炉スラグとともに恒温電気炉の黒鉛坩堝に投入し、黒鉛坩堝を1440℃で1.2時間保温する。計算したところ、坩堝の保温に消費されるエネルギーのうち、高温溶融高炉スラグの顕熱が占める比率は約51%であり、すなわち、同じ成分を有するガラスセラミックスを製造する従来の溶融プロセスに対して、溶融段階によるエネルギー消費量を50%以上節約できる。
3)完全な溶融及び成分均質化を行った溶融材料を775℃の金型に注入して、1時間保温してガラス基質の製造と核生成を完成し、次に金型を940℃に昇温して、1.5時間保温して結晶成長を行う。次に、金型の加熱を停止して、高炉スラグ製ガラスセラミックスを室温に自然冷却させる。
得られたガラスセラミックス板についてX線回折(XRD)測定と組織特性評価を行った結果、主な結晶相はカルシウムアクケルナイトと普通輝石であり、ガラスセラミックス板は十分に結晶化されている。
Example 3
1) The amount of blast furnace slag used is 61.6%, the target components (wt.%) Of glass ceramics made of blast furnace slag are CaO 25%, SiO 2 40%, Al 2 O 3 12%, MgO 10%, K 2 O 3%, Designed to 3% ZnO, 5% TiO 2 , ignore other components in blast furnace slag.
2) As a result of measuring precharged blast furnace slag, chemical components were CaO 40.57%, SiO 2 34.15%, Al 2 O 3 15.88%, MgO 7.88%, K 2 O 0.57%, TiO 2. This component measurement result is a chemical component of the molten blast furnace slag used in this example. In this example, 616 g of molten blast furnace slag was used, and as a result of calculation, the usage amounts of various auxiliary materials were SiO 2 190 g, Al 2 O 3 22 g, MgO 52 g, K 2 O 26 g, TiO 2 44 g, and ZnO 30 g. These sub-materials are uniformly mixed and charged into a graphite crucible of a constant temperature electric furnace together with a molten blast furnace slag having a temperature of 1470 ° C., and the graphite crucible is kept at 1440 ° C. for 1.2 hours. As a result of calculation, the ratio of the sensible heat of the high-temperature molten blast furnace slag to the energy consumed for the heat insulation of the crucible is about 51%, that is, compared with the conventional melting process for producing glass ceramics having the same components. The energy consumption by the melting stage can be saved by 50% or more.
3) The molten material, which has been completely melted and homogenized, is poured into a mold at 775 ° C. and incubated for 1 hour to complete the production and nucleation of the glass substrate, and then the mold is raised to 940 ° C. The crystal is grown by warming and holding for 1.5 hours. Next, the heating of the mold is stopped, and the blast furnace slag glass ceramic is naturally cooled to room temperature.
As a result of X-ray diffraction (XRD) measurement and structural property evaluation of the obtained glass ceramic plate, the main crystal phases are calcium ackelnite and ordinary pyroxene, and the glass ceramic plate is sufficiently crystallized.

上記具体的な実施過程及び結果の分析から明らかなように、本願では、溶融高炉スラグの初期顕熱を十分且つ効果的に利用して、合理的な成分配合と製造プロセスの最適化と組み合わせることによって、典型的な物相構造及び組織形態特徴を有する省エネ型高炉スラグ製ガラスセラミックスを製造するだけでなく、生産コストを削減させ、製造周期を短縮させ、冶金固体廃棄物を高付加価値で利用して省エネ化したガラスセラミックスの製造分野に効率よく適用できる。 As is clear from the above specific implementation process and analysis of the results, in this application, the initial sensible heat of the molten blast furnace slag is fully and effectively used to combine rational component formulation and optimization of the manufacturing process. Not only produces energy-saving blast furnace slag glass ceramics with typical phase structure and structure morphology, but also reduces production costs, shortens production cycles, and uses metallurgical solid waste with high added value Therefore, it can be efficiently applied to the field of manufacturing glass ceramics that are energy saving.

Claims (3)

省エネ型高炉スラグ製ガラスセラミックスの製造方法であって、
1)高炉スラグの使用量を45〜65%、高炉スラグ製ガラスセラミックスの目的成分(wt.%)をCaO10〜30%、SiO35〜60%、Al10〜15%、MgO8〜12%、KO2〜5%、ZnO3〜4%、TiO3〜6%に設計し、高炉スラグにおける他の成分は配慮しないステップと、
2)高炉製鉄現場で、所定量の高温溶融高炉スラグを恒温電気炉の黒鉛坩堝に投入するとともに、ガラスセラミックスの製造に必要な、他の均一に混合した予熱しておらず固体状態である副材料を加え、副材料の溶融及び全ての材料成分の均質化を1400〜1500℃の範囲におけるある温度下で0.5〜2時間保温した黒鉛坩堝において行うステップと、
3)完全な溶融及び成分均質化を行った溶融材料を恒温制御が可能な金型に注入し、金型の温度を750〜1250℃において柔軟に調整して、昇温速度を制御可能にし、ガラスセラミックスの熱処理メカニズムに基づいて各段階での保温時間を決定し、熱処理終了後に金型への給電加熱を停止し、ガラスセラミックスを金型内で室温まで自然冷却させ、それによって、前記金型でガラスセラミックスの核生成及び結晶成長過程を行い、また、様々なガラスセラミックスによる形状要求を満たすために、金型内部を任意の形状や寸法に設計したり区分したりすることができ、金型の領域毎に独立した温度及び保温時間の制御が可能であり、更に、ガラスセラミックス製品の組織及び性能の要求に応じて、段階的熱処理メカニズムを設計してもよく、複数の金型を循環的に使用する設計方式でもよく単一金型の複数の領域を循環的に使用する方式でもよいステップとによって実現される、省エネ型高炉スラグ製ガラスセラミックスの製造方法。
A method for producing energy-saving blast furnace slag glass ceramics,
1) The amount of blast furnace slag used is 45 to 65%, the target components (wt.%) Of glass ceramics made of blast furnace slag are CaO 10 to 30%, SiO 2 35 to 60%, Al 2 O 3 10 to 15%, MgO 8 to 12%, K 2 O2~5%, designed ZnO3~4%, TiO 2 3~6%, the steps of the other components in the blast furnace slag is not conscious,
2) At the blast furnace steel production site, a predetermined amount of high-temperature molten blast furnace slag is put into the graphite crucible of the constant temperature electric furnace, and other uniformly mixed and not preheated and necessary for the production of glass ceramics. Adding the material, melting the secondary material and homogenizing all the material components in a graphite crucible kept at a temperature in the range of 1400-1500 ° C. for 0.5-2 hours;
3) The molten material that has been completely melted and homogenized is injected into a mold capable of constant temperature control, the mold temperature is adjusted flexibly at 750 to 1250 ° C., and the rate of temperature rise can be controlled, The heat retention time at each stage is determined based on the heat treatment mechanism of the glass ceramics. After the heat treatment is finished, the power supply heating to the mold is stopped, and the glass ceramic is naturally cooled to room temperature in the mold , whereby the mold In order to perform nucleation and crystal growth processes of glass ceramics, and to satisfy the shape requirements of various glass ceramics, the inside of the mold can be designed and divided into arbitrary shapes and dimensions. it is possible to control the temperature and the holding time independent for each region of the further, in response to a request of the organization and performance of the glass ceramic products, it is designed stepwise heat treatment mechanism Ku, is realized by the steps that may in a manner that even better use of multiple regions of a single mold cyclically in the design method using a plurality of molds cyclically, the method of producing energy-saving blast furnace slag glass ceramics .
ガラスセラミックスの製造に必要な他の副材料を溶融状態になるまで予め加熱せずに、高温溶融高炉スラグとともに恒温坩堝に投入して、高温溶融高炉スラグの顕熱と外部電源を利用して固体副材料を加熱して溶融し且つ成分を均質化させ、最終的に柔軟な制御が可能な恒温金型においてガラスセラミックスの製造及び熱処理を完了することを特徴とする請求項1に記載の省エネ型高炉スラグ製ガラスセラミックスの製造方法。     Other sub-materials necessary for the production of glass ceramics are not heated in advance until they are in a molten state, and are put into a constant temperature crucible together with the high-temperature molten blast furnace slag, and then solid using the sensible heat of the high-temperature molten blast furnace slag and an external power The energy-saving mold according to claim 1, wherein the auxiliary material is heated and melted, the components are homogenized, and the glass ceramic production and heat treatment are completed in a constant temperature mold capable of finally being controlled flexibly. A method for producing glass ceramics made of blast furnace slag. ステップ3)の金型内部を任意の形状や寸法に設計したり区分したりすることができ、金型の領域毎において、独立した温度と保温時間による制御する可能であり、更に、連続生産過程において、複数の金型を循環的に使用する設計方式でもよく単一金型の複数の領域を循環的に使用する方式でもよいことを特徴とする請求項1に記載の省エネ型高炉スラグ製ガラスセラミックスの製造方法。     The interior of the mold in step 3) can be designed or divided into any shape and size, and can be controlled by independent temperature and heat retention time for each mold area, and further, continuous production process 2. The energy-saving blast furnace slag glass according to claim 1, wherein a design method using a plurality of molds cyclically or a method using a plurality of areas of a single mold cyclically may be used. Manufacturing method of ceramics.
JP2017009551A 2016-01-27 2017-01-23 Energy-saving blast furnace slag glass ceramic manufacturing method Expired - Fee Related JP6404959B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610054080.8 2016-01-27
CN201610054080.8A CN105417957B (en) 2016-01-27 2016-01-27 The preparation method of energy-saving type blast furnace slag microcrystalline glass

Publications (2)

Publication Number Publication Date
JP2017132688A JP2017132688A (en) 2017-08-03
JP6404959B2 true JP6404959B2 (en) 2018-10-17

Family

ID=55496576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009551A Expired - Fee Related JP6404959B2 (en) 2016-01-27 2017-01-23 Energy-saving blast furnace slag glass ceramic manufacturing method

Country Status (2)

Country Link
JP (1) JP6404959B2 (en)
CN (1) CN105417957B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417072B (en) * 2017-06-20 2019-12-24 许玉蕊 Device for producing foam glass by liquid blast furnace slag
CN108947258B (en) * 2018-09-18 2021-07-02 西南科技大学 Microcrystalline glass using chlorine-containing titanium extraction slag as raw material
CN109133651B (en) * 2018-11-13 2022-02-11 西南科技大学 Microcrystalline glass prepared from chlorine-containing titanium extraction slag
CN112299721A (en) * 2020-10-30 2021-02-02 神华准能资源综合开发有限公司 Method for preparing alumina and co-producing microcrystalline glass based on pulverized coal furnace fly ash and product
CN112239326A (en) * 2020-11-03 2021-01-19 安阳金方冶金有限公司 Method for preparing anti-reflection glass by utilizing liquid refined manganese slag
CN113087398B (en) * 2021-04-13 2022-12-09 山东建筑大学 Microcrystalline glass prepared from coal gasification furnace slag and preparation method thereof
CN113845308B (en) * 2021-11-12 2023-08-11 武汉科技大学 Preparation method of low-cost glass ceramic

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151713A (en) * 1975-06-20 1976-12-27 Nippon Steel Corp Process for preparing artificial masonry products from blast furnace slag
JP3925683B2 (en) * 1999-08-04 2007-06-06 友宏 秋山 Cement or cement additive manufacturing method
CN101372405B (en) * 2007-08-22 2011-09-21 马洪刚 Building material and method of manufacturing the same
CN101941802B (en) * 2010-09-07 2012-06-27 重庆大学 Method for directly utilizing liquid-state blast furnace slag to manufacture glass ceramics
CN102603191A (en) * 2012-04-10 2012-07-25 达州市海蓝冶金设备制造有限公司 Method for manufacturing glass ceramic by titanium-containing melting blast furnace slag
CN104496184B (en) * 2014-09-03 2016-09-07 宝钢矿棉科技(宁波)有限公司 A kind of blast furnace hot molten slag devitrified glass and preparation method thereof
CN104556702B (en) * 2014-12-16 2018-05-18 北京科技大学 A kind of method that high alkalinity devitrified glass is prepared using metallurgical slag

Also Published As

Publication number Publication date
CN105417957B (en) 2018-11-23
CN105417957A (en) 2016-03-23
JP2017132688A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6404959B2 (en) Energy-saving blast furnace slag glass ceramic manufacturing method
Gan et al. Continuous cooling crystallization kinetics of a molten blast furnace slag
CN101381240B (en) Method for preparing dichroite heat proof/refractory materials
CN105884184B (en) A kind of blast furnace cinder prepares the controlled micro crystallization method of devitrified glass
CN103708732B (en) A kind of prepared from steel slag is for the method for devitrified glass
MX2013002551A (en) Method for manufacturing reductive stone material using molten slag.
CN103145338A (en) Preparation method of blast furnace slag microcrystalline glass containing fluorine, potassium, sodium and rare earth
Wang et al. Adjusting the melting and crystallization behaviors of ferronickel slag via partially replacing of SiO2 by B2O3 for mineral wool production
CN104891814A (en) Method for preparing high temperature resistance foam material by adopting molten blast furnace slag
CN104556702A (en) Method for preparing high-alkalinity glass ceramic from metallurgical slag
CN107188411A (en) A kind of utilization manganese alloy smelts the method that high-temperature slag prepares microlite
CN105152536B (en) A kind of method that microcrystal glass material is synthesized using ferrochrome slag
CN106116158A (en) A kind of smelting cinder microcrystalline glass and preparation method thereof
CN103833227A (en) Method for treating waste CRT (cathode ray tube) and preparing glass ceramics by using slag
CN104098283B (en) The construction method of cement is sintered with converter slag
CN106316134A (en) Diopside and feldspar main crystal phase microcrystalline glass and preparing method thereof
CN106316118B (en) Using liquid blast furnace cinder as brown ambetti of primary raw material and preparation method thereof
CN101125735B (en) Method for preparing yellow phosphorus ore slag microcrystalline glass by hot-casting method
CN102173567B (en) Method for preparing fiber reinforced microcrystalline glass insulation material
CN109399940A (en) A kind of preparation method of nickel slag microcrystalline glass
CN102849952A (en) Method for promoting surface crystallization of glass
CN105481382A (en) Preparation method of cordierite fireproof material
CN108439829A (en) A kind of blast furnace cinder acidity coefficient hardening and tempering method
CN105601117B (en) Utilize the method for molten state blast furnace slag one step forming microcrystal glass plate
CN106673449A (en) Utilizing method of copper slag secondary slags

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees