JP6404592B2 - Thermal barrier material - Google Patents

Thermal barrier material Download PDF

Info

Publication number
JP6404592B2
JP6404592B2 JP2014095710A JP2014095710A JP6404592B2 JP 6404592 B2 JP6404592 B2 JP 6404592B2 JP 2014095710 A JP2014095710 A JP 2014095710A JP 2014095710 A JP2014095710 A JP 2014095710A JP 6404592 B2 JP6404592 B2 JP 6404592B2
Authority
JP
Japan
Prior art keywords
particles
group
polymerization
refractive index
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014095710A
Other languages
Japanese (ja)
Other versions
JP2015212058A (en
Inventor
靖久 市橋
靖久 市橋
雅嗣 森下
雅嗣 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2014095710A priority Critical patent/JP6404592B2/en
Publication of JP2015212058A publication Critical patent/JP2015212058A/en
Application granted granted Critical
Publication of JP6404592B2 publication Critical patent/JP6404592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Special Wing (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、特定波長の光を反射する構造体を用いた遮熱材料に関する。   The present invention relates to a heat shielding material using a structure that reflects light of a specific wavelength.

従来、遮熱材料として、金属による赤外線の反射を利用したものがよく知られている。例えば、PETフィルムにアルミニウム蒸着層及び紫外線、電子線等で硬化する樹脂からなるハードコート層を順に積層し、他方の面に粘着剤層を設けた積層フィルムを窓ガラスに貼り、アルミニウム蒸着層によって太陽光に含まれる近赤外線を反射するようにしている(特許文献1参照)。   Conventionally, as a heat shielding material, a material using infrared reflection by a metal is well known. For example, an aluminum vapor-deposited layer and a hard coat layer made of a resin curable by ultraviolet rays, electron beams, etc. are laminated in order on a PET film, and a laminated film provided with an adhesive layer on the other surface is attached to a window glass, The near infrared rays contained in the sunlight are reflected (see Patent Document 1).

特開2005−343113号公報JP 2005-343113 A

しかしながら、金属を用いた遮熱材料は可視光の透過性が低く、また電磁波の透過性も悪くなる。一般に、金属成分を含む遮熱材料は、赤外線の反射には望ましいが、可視光透過率及び電磁波の透過性が下がることで、携帯電話、ワイヤレス無線通信等の使用に弊害が出る可能性が高い。   However, a heat-shielding material using a metal has a low visible light permeability and a poor electromagnetic wave permeability. In general, a heat-shielding material containing a metal component is desirable for reflection of infrared rays, but its visible light transmittance and electromagnetic wave permeability are lowered, and there is a high possibility that it will be harmful to the use of mobile phones, wireless radio communications, etc. .

そこで、本発明は、金属を使わずとも遮熱性に優れ、かつ、可視光及び電磁波の透過性を維持できる遮熱材料を容易に提供することを目的とする。   Therefore, an object of the present invention is to easily provide a heat shielding material that has excellent heat shielding properties and can maintain visible light and electromagnetic wave permeability without using metal.

本発明は、以下のものに関する。
[1]平均粒径が90〜350nmであり、屈折率nが1.0〜2.5である粒子と屈折率nが1.05〜1.9である化合物とを含む構造体を有する遮熱材料であって、粒子の屈折率nと化合物の屈折率nとは異なっており、構造体が、780〜1200nmの波長領域に含まれる特定波長の光を反射し、構造体の表面に入射させた光の入射角θ、構造体の表面から深さ方向における粒子の平均粒子間距離d及び構造体の平均屈折率neffから下記式(1)で計算された反射ピーク波長λcalと、構造体の表面に入射させた光の反射光のうち、反射率が最大となる実測の反射ピーク波長λexpと、が下記式(2)で表される関係を満たし、可視光透過率が50%以上である、遮熱材料。

[2]化合物がポリマーであり、該ポリマーの分子量分布が1.55以下である、[1]に記載の遮熱材料。
[3]粒子が無機化合物粒子である、[1]又は[2]に記載の遮熱材料。
[4]粒子の屈折率nと、化合物の屈折率nとの差が0.05以上である、[1]〜[3]のいずれかに記載の遮熱材料。
[5]構造体が、粒子と化合物とが結合した有機無機複合粒子からなる、[1]〜[4]のいずれかに記載の遮熱材料。
[6]反射ピーク波長λexpが異なる構造体からなる層を2層以上有する、[1]〜[5]のいずれかに記載の遮熱材料。
[7]透明基材と、該透明基材上に形成された上記構造体からなる層とを備える、[1]〜[6]のいずれかに記載の遮熱材料。
[8]構造体からなる層の透明基材と反対側の面にハードコート層を更に備える、[7]に記載の遮熱材料。
[9]透明基材と構造体からなる層との間に、赤外線吸収層及び/又は紫外線吸収層を更に備える、[7]又は[8]に記載の遮熱材料。
The present invention relates to the following.
[1] The average particle size of 90~350Nm, refractive index n b and the refractive index n a is 1.0 to 2.5 particles a structure containing a compound is 1.05 to 1.9 a thermal barrier material having, is different from the refractive index n b of the refractive index n a and the compound particles, structure, reflects light having a specific wavelength contained in a wavelength region of 780~1200Nm, structure The reflection peak wavelength calculated by the following formula (1) from the incident angle θ of the light incident on the surface of the structure, the average interparticle distance d of the particles in the depth direction from the surface of the structure, and the average refractive index n eff of the structure λ cal and the actually measured reflection peak wavelength λ exp having the maximum reflectance among the reflected light of the light incident on the surface of the structure satisfy the relationship represented by the following formula (2), and visible light A heat shielding material having a transmittance of 50% or more.

[2] The heat shielding material according to [1], wherein the compound is a polymer, and the molecular weight distribution of the polymer is 1.55 or less.
[3] The heat shielding material according to [1] or [2], wherein the particles are inorganic compound particles.
[4] the refractive index and n a particle, the difference between the refractive index n b of the compound is 0.05 or more, a thermal barrier material according to any one of [1] to [3].
[5] The heat shielding material according to any one of [1] to [4], wherein the structure is composed of organic-inorganic composite particles in which particles and a compound are bonded.
[6] The heat shielding material according to any one of [1] to [5], which includes two or more layers made of structures having different reflection peak wavelengths λ exp .
[7] The heat-shielding material according to any one of [1] to [6], comprising a transparent substrate and a layer made of the above-described structure formed on the transparent substrate.
[8] The heat shielding material according to [7], further comprising a hard coat layer on the surface of the layer made of the structure opposite to the transparent substrate.
[9] The heat shielding material according to [7] or [8], further comprising an infrared absorption layer and / or an ultraviolet absorption layer between the transparent substrate and the layer made of the structure.

本発明によれば、金属を使わずとも遮熱性に優れ、かつ、可視光及び電磁波の透過性を維持できる遮熱材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the thermal-insulation material which is excellent in thermal-insulation property, and can maintain the transmittance | permeability of visible light and electromagnetic waves, without using a metal.

遮熱材料の構成の一実施形態を模式的に示した図である。It is the figure which showed typically one Embodiment of the structure of the heat-shielding material. 構造体を構成する粒子間の平均粒子間距離dを模式的に示す図である。It is a figure which shows typically the average distance d between the particles which comprise a structure. 遮熱効果の測定系を模式的に示す図である。It is a figure which shows typically the measuring system of a thermal-insulation effect. 構造体1のBIB加工断面SEM写真である。2 is a BEM-processed cross-sectional SEM photograph of the structure 1. 図4のBIB加工断面SEM写真の拡大写真である。It is an enlarged photograph of the BIB processing cross-section SEM photograph of FIG. 構造体1の5°正反射スペクトルである。5 is a 5 ° specular reflection spectrum of the structure 1.

以下、本発明を実施するための形態(以下、本実施形態)について詳細に説明する。なお、本発明は、本実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as the present embodiment) will be described in detail. In addition, this invention is not limited to this Embodiment, It can implement by changing variously within the range of the summary. In addition, it is to be understood that the terms used in the present specification are used in the meaning normally used in the art unless otherwise specified.

<遮熱材料>
本実施形態の遮熱材料は、平均粒径が90〜350nmであり、屈折率nが1.0〜2.5である粒子と屈折率nが1.05〜1.9である化合物とを含む構造体を有し、可視光透過率が50%以上である。ただし、粒子の屈折率nと化合物の屈折率nとは異なっている。
<Heat shielding material>
Compounds thermal barrier material of the present embodiment, the average particle size of 90~350Nm, particles and the refractive index n b refractive index n a is 1.0 to 2.5 is 1.05 to 1.9 The visible light transmittance is 50% or more. However, different from the refractive index n b of the refractive index n a and a compound of the particles.

本実施形態に係る構造体は、780〜1200nmの波長領域に含まれる特定波長の光を反射し、構造体の表面に入射させた光の入射角θ、構造体の表面から深さ方向における粒子の平均粒子間距離d及び構造体の平均屈折率neffから下記式(1)で計算された反射ピーク波長λcalと、構造体の表面に入射させた光の反射光のうち、反射率が最大となる実測の反射ピーク波長λexpと、が下記式(2)で表される関係を満たす。
The structure according to the present embodiment reflects light having a specific wavelength included in the wavelength region of 780 to 1200 nm, and the incident angle θ of light incident on the surface of the structure, particles in the depth direction from the surface of the structure. Of the reflection peak wavelength λ cal calculated by the following formula (1) from the average inter-particle distance d and the average refractive index n eff of the structure, and the reflected light of the light incident on the surface of the structure, the reflectance is The maximum actually measured reflection peak wavelength λ exp satisfies the relationship represented by the following formula (2).

上記式(2)を満たすということは、構造体が特定波長を反射することを意味する。   Satisfying the above formula (2) means that the structure reflects a specific wavelength.

構造体に含まれる粒子及び化合物の屈折率差(│n−n│)は、好ましくは0.05以上、より好ましくは0.08以上、更に好ましくは0.1以上である。屈折率差が小さ過ぎると構造体の反射率が小さくなる傾向にあり、構造体を遮熱材料として利用する際に不利である。屈折率差の上限は特に制限されないが、1.0程度である。 The difference in refractive index (| n a −n b |) between the particles and the compound contained in the structure is preferably 0.05 or more, more preferably 0.08 or more, and still more preferably 0.1 or more. If the refractive index difference is too small, the reflectance of the structure tends to be small, which is disadvantageous when the structure is used as a heat shielding material. The upper limit of the refractive index difference is not particularly limited, but is about 1.0.

本実施形態に係る構造体は、780〜1200nmの波長領域に含まれる特定波長の光を反射し、かつ、最大反射率が10%以上であることが好ましく、780〜1100nmの波長領域に含まれる特定波長の光を反射し、かつ、最大反射率が10%以上であることが好ましい。   The structure according to the present embodiment reflects light having a specific wavelength included in the wavelength region of 780 to 1200 nm, and the maximum reflectance is preferably 10% or more, and is included in the wavelength region of 780 to 1100 nm. It is preferable that light of a specific wavelength is reflected and the maximum reflectance is 10% or more.

[粒子]
本実施形態に係る粒子は、90〜350nmの平均粒径を有し、1.0〜2.5の屈折率を有する。上記粒子は、ある一定の体積を持つ物質であり、球状でもよく、立方体状でもよく、特に制限されない。粒子は、有機化合物から形成されていてもよく、また無機化合物から形成されていてもよく、有機化合物及び無機化合物から形成されていてもよい。また、本実施形態に係る粒子は、空隙を有していてもよい。
[particle]
The particles according to the present embodiment have an average particle diameter of 90 to 350 nm and a refractive index of 1.0 to 2.5. The particles are substances having a certain volume, and may be spherical or cubic, and are not particularly limited. The particles may be formed from an organic compound, may be formed from an inorganic compound, or may be formed from an organic compound and an inorganic compound. Moreover, the particle | grains concerning this embodiment may have a space | gap.

(無機化合物粒子)
本実施形態に係る粒子は、無機化合物から形成される無機化合物粒子であることが好ましい。無機化合物とは、有機化合物以外の化合物であり、具体的には、一部の炭素化合物を除き、炭素以外の元素で構成される化合物を指す。
(Inorganic compound particles)
The particles according to this embodiment are preferably inorganic compound particles formed from an inorganic compound. An inorganic compound is a compound other than an organic compound, and specifically refers to a compound composed of an element other than carbon except for some carbon compounds.

無機化合物を構成する元素としては、例えば、周期律表1〜16族の元素が挙げられる。この元素は、特に限定されるものではないが、周期律表2〜14族に属する元素が好ましい。その具体例としては、2族元素(Mg、Ca、Ba等)、3族元素(La、Ce、Eu、Ac、Th等)、4族元素(Ti、Zr、Hf等)、5族元素(V、Nb、Ta等)、6族元素(Cr、Mo、W等)、7族元素(Mn、Re等)、8族元素(Fe、Ru、Os等)、9族元素(Co、Rh、Ir等)、10族元素(Ni、Pd、Pt等)、11族元素(Cu、Ag、Au等)、12族元素(Zn、Cd等)、13族元素(Al、Ga、In等)、及び14族元素(Si、Ge、Sn、Pb等)が挙げられる。   As an element which comprises an inorganic compound, the element of the periodic table 1-16 group is mentioned, for example. Although this element is not specifically limited, the element which belongs to periodic table group 2-14 is preferable. Specific examples thereof include group 2 elements (Mg, Ca, Ba, etc.), group 3 elements (La, Ce, Eu, Ac, Th, etc.), group 4 elements (Ti, Zr, Hf, etc.), group 5 elements ( V, Nb, Ta, etc.), Group 6 elements (Cr, Mo, W, etc.), Group 7 elements (Mn, Re, etc.), Group 8 elements (Fe, Ru, Os, etc.), Group 9 elements (Co, Rh, etc.) Ir, etc.), Group 10 elements (Ni, Pd, Pt, etc.), Group 11 elements (Cu, Ag, Au, etc.), Group 12 elements (Zn, Cd, etc.), Group 13 elements (Al, Ga, In, etc.), And Group 14 elements (Si, Ge, Sn, Pb, etc.).

これら元素を含む無機化合物としては、例えば、酸化物(複合酸化物を含む)、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物)、オキソ酸塩(硝酸塩、硫酸塩、リン酸塩、ホウ酸塩、過塩素酸塩、炭酸塩等)、一酸化炭素、二酸化炭素及び二硫化炭素等の陰性の元素と上記元素とから形成される化合物、並びに、青酸、青酸塩、シアン酸塩、チオシアン酸塩及び炭化物などの塩が挙げられる。   Examples of inorganic compounds containing these elements include oxides (including complex oxides), halides (fluorides, chlorides, bromides, iodides), oxo acid salts (nitrates, sulfates, phosphates, borons). Acid salts, perchlorates, carbonates, etc.), compounds formed from negative elements such as carbon monoxide, carbon dioxide and carbon disulfide and the above elements, as well as cyanic acid, cyanate, cyanate, thiocyanate And salts such as acid salts and carbides.

炭素化合物のうち、例外的に無機化合物に分類されるものには、例えば、ダイヤモンド、ロンズデーライト、グラファイト、グラフェン、フラーレン類(バックミンスターフラーレン、カーボンナノチューブ、カーボンナノホーン等)、ガラス状炭素、カルビン、アモルファス炭素、カーボンナノフォームなど炭素の同素体等が挙げられる。   Among the carbon compounds, those that are exceptionally classified as inorganic compounds include, for example, diamond, ronsdaylite, graphite, graphene, fullerenes (buckminsterfullerene, carbon nanotube, carbon nanohorn, etc.), glassy carbon, and calvin. And carbon allotropes such as amorphous carbon and carbon nanofoam.

1つの無機化合物粒子は、上記元素のうち1種を単独で又は2種以上含んでいてもよい。複数種の元素は、粒子中に均一に存在していても、偏在していてもよく、ある元素の化合物の粒子の表面が、別の元素の化合物によって被覆されていてもよい。これら無機化合物は、単独で使用しても、複数を組み合わせて使用してもよい。   One inorganic compound particle may contain one or more of the above elements alone. The plural kinds of elements may be present uniformly or unevenly in the particle, and the surface of the particle of a compound of one element may be coated with a compound of another element. These inorganic compounds may be used alone or in combination.

無機化合物粒子(特に球状粒子)の大きさは、特に限定されるものではないが、平均粒径(粒子の外径の平均値)は好ましくは90〜350nmである。平均粒径が350nmより大きいと、有機無機複合粒子を光学材料として使用したときに、光の散乱などが大きくなる傾向があり、平均粒径が90nm未満であると、近赤外領域で光学特性が出せない可能性が高い。同様の観点から、無機化合物粒子の平均粒径はより好ましくは90〜320nm、更に好ましくは90〜300nmである。無機化合物粒子の平均粒径の測定方法は後述の実施例において詳細に説明される。   The size of the inorganic compound particles (particularly spherical particles) is not particularly limited, but the average particle size (average value of the outer diameter of the particles) is preferably 90 to 350 nm. When the average particle size is larger than 350 nm, when organic / inorganic composite particles are used as an optical material, light scattering tends to increase. When the average particle size is less than 90 nm, optical characteristics in the near infrared region. There is a high probability that From the same viewpoint, the average particle diameter of the inorganic compound particles is more preferably 90 to 320 nm, and still more preferably 90 to 300 nm. A method for measuring the average particle diameter of the inorganic compound particles will be described in detail in Examples described later.

無機化合物粒子の形状や結晶形は、特に限定されるものではなく、例えば、球状、結晶状、鱗片状、柱状、管状、繊維状、多孔質状、数珠状等、様々な形状であってよいが、個々の形状、大きさが揃っているものが周期的な配列の観点から望ましい。また、空気の熱伝導度が低いことによる遮熱効果を期待できるため、無機化合物粒子の形状は中空状であってもよい。   The shape and crystal form of the inorganic compound particles are not particularly limited, and may be various shapes such as, for example, spherical, crystalline, scaly, columnar, tubular, fibrous, porous, and beaded. However, those having individual shapes and sizes are desirable from the viewpoint of periodic arrangement. In addition, since the heat shielding effect due to the low thermal conductivity of air can be expected, the shape of the inorganic compound particles may be hollow.

無機化合物粒子の一つとして、無機酸化物粒子があげられる。無機酸化物粒子としては、炭素以外の元素、例えば、Si、Zr、Ti、Ar、Sn、Ca、Ba等の酸化物から形成された粒子であれば、特に限定されるものではない。無機化合物粒子としては、入手のし易さの観点から、SiO、ZrO、TiO、Al、BaTiO、及びCaCOが好ましく、特に好ましくは、SiOである。無機化合物には、単独の無機化合物だけではなく、複数の無機化合物からなる複合物も含まれる。具体的には、例えば、酸化スズを含有する酸化インジウム(インジウムスズ酸化物、ITO)、アンチモンを含有する酸化スズ(ATO)、「ZrO粒子又はTiO粒子表面が、SiOやAlで被覆された無機酸化物粒子」、「ZrO、SiO及びSnOの複合無機酸化物粒子」等が挙げられる。これらは、単独で使用しても、複数を組み合わせて使用してもよい。 One example of inorganic compound particles is inorganic oxide particles. The inorganic oxide particle is not particularly limited as long as it is a particle formed from an element other than carbon, for example, an oxide such as Si, Zr, Ti, Ar, Sn, Ca, and Ba. As the inorganic compound particles, SiO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , BaTiO 3 , and CaCO 3 are preferable from the viewpoint of easy availability, and SiO 2 is particularly preferable. The inorganic compound includes not only a single inorganic compound but also a composite composed of a plurality of inorganic compounds. Specifically, for example, indium oxide containing tin oxide (indium tin oxide, ITO), tin oxide containing antimony (ATO), “the surface of ZrO 2 particles or TiO 2 particles is SiO 2 or Al 2 O 3 ”,“ composite inorganic oxide particles of ZrO 2 , SiO 2 and SnO ”, and the like. These may be used alone or in combination.

[化合物]
本実施形態に係る化合物は、1.05〜1.9の屈折率を有する。化合物は、有機化合物であってもよいし、無機化合物であってもよく、有機化合物及び無機化合物からなってもよい。上記化合物は、有機化合物であることが好ましく、ポリマーであることがより好ましい。ポリマーとしては、後述するポリマーが挙げられる。
[Compound]
The compound according to this embodiment has a refractive index of 1.05 to 1.9. The compound may be an organic compound, an inorganic compound, or an organic compound and an inorganic compound. The compound is preferably an organic compound, and more preferably a polymer. Examples of the polymer include polymers described below.

(複合粒子)
本実施形態に係る複合粒子とは、上記粒子と、該粒子に結合している化合物とを含む粒子である。複合粒子は、無機化合物粒子と該無機化合物粒子に結合しているポリマーとを含む有機無機複合粒子であることが好ましい。
(Composite particles)
The composite particle according to the present embodiment is a particle containing the particle and a compound bonded to the particle. The composite particles are preferably organic-inorganic composite particles containing inorganic compound particles and a polymer bonded to the inorganic compound particles.

有機無機複合粒子を構成するポリマーの少なくとも一部は、無機化合物粒子の表面に、後述の重合用カップリング剤(重合開始基を有する重合用カップリング剤)を介して結合している。無機化合物粒子とポリマーとの結合は、結合の強さの観点から、共有結合であることが好ましい。ポリマーは、1種又は2種以上のラジカル重合性モノマーをモノマー単位として含んでいることが好ましい。また、有機無機複合粒子は、異なるモノマー単位から構成される複数種のポリマーを含有していてもよい。   At least a part of the polymer constituting the organic-inorganic composite particles is bonded to the surface of the inorganic compound particles via a polymerization coupling agent (a polymerization coupling agent having a polymerization initiating group) described later. The bond between the inorganic compound particles and the polymer is preferably a covalent bond from the viewpoint of bond strength. The polymer preferably contains one or more radically polymerizable monomers as monomer units. The organic-inorganic composite particles may contain a plurality of types of polymers composed of different monomer units.

(重合用カップリング剤)
本実施形態における重合用カップリング剤は、無機化合物粒子表面と、上述のポリマーとを連結するために用いられる化合物である。この重合用カップリング剤は、重合開始基と、無機化合物粒子表面と反応して結合を生成する官能基とを有する化合物であれば、特に限定されるものではない。このときの無機化合物粒子表面は、無機化合物そのものから形成されていてもよいし、表面処理されていてもよい。ここでいう表面処理とは、化学反応、熱処理、光照射、プラズマ照射、放射線照射等により、無機化合物粒子表面を官能基により修飾することである。
(Coupling agent for polymerization)
The coupling agent for polymerization in the present embodiment is a compound used for linking the surface of the inorganic compound particles and the above-described polymer. The polymerization coupling agent is not particularly limited as long as it is a compound having a polymerization initiating group and a functional group that reacts with the surface of the inorganic compound particles to form a bond. The surface of the inorganic compound particles at this time may be formed from the inorganic compound itself or may be surface-treated. The surface treatment here is to modify the surface of the inorganic compound particles with a functional group by chemical reaction, heat treatment, light irradiation, plasma irradiation, radiation irradiation or the like.

重合用カップリング剤を、無機化合物粒子表面と結合させる方法としては、特に限定されるものではないが、例えば、無機化合物粒子表面の水酸基と重合用カップリング剤とを反応させる方法や、無機化合物粒子表面の表面処理により導入された官能基と重合用カップリング剤とを反応させる方法がある。無機化合物粒子に結合した重合用カップリング剤に、更に重合用カップリング剤を反応させて、複数の重合用カップリング剤を連結することも可能である。また、重合用カップリング剤の種類によっては、水や触媒を併用してもよい。   The method for bonding the polymerization coupling agent to the surface of the inorganic compound particles is not particularly limited. For example, a method of reacting the hydroxyl group on the surface of the inorganic compound particles with the coupling agent for polymerization, or an inorganic compound There is a method of reacting a functional group introduced by surface treatment of the particle surface with a coupling agent for polymerization. It is also possible to connect a plurality of polymerization coupling agents by further reacting the polymerization coupling agent bonded to the inorganic compound particles with a polymerization coupling agent. Depending on the type of the coupling agent for polymerization, water or a catalyst may be used in combination.

重合用カップリング剤が有する官能基は、特に制限はないが、例えば無機化合物粒子表面の水酸基との反応により結合を生成する場合には、リン酸基、カルボキシ基、酸ハライド基、酸無水物基、イソシアネート基、グリシジル基、クロロシリル基、アルコキシシリル基、シラノール基、アミノ基、ホスホニウム基及びスルホニウム基等が挙げられる。中でも、反応性と、酸残存量や着色とのバランスの観点から、好ましいのは、イソシアネート基、クロロシリル基、アルコキシシリル基及びシラノール基であり、更に好ましくは、クロロシリル基及びアルコキシシリル基である。   The functional group of the polymerization coupling agent is not particularly limited. For example, when a bond is formed by reaction with a hydroxyl group on the surface of the inorganic compound particle, a phosphate group, a carboxy group, an acid halide group, an acid anhydride is formed. Group, isocyanate group, glycidyl group, chlorosilyl group, alkoxysilyl group, silanol group, amino group, phosphonium group and sulfonium group. Among these, from the viewpoint of the balance between the reactivity and the remaining amount of acid and coloring, preferred are an isocyanate group, a chlorosilyl group, an alkoxysilyl group, and a silanol group, and more preferred are a chlorosilyl group and an alkoxysilyl group.

重合用カップリング剤の官能基数は、特に限定されるものではないが、1官能又は2官能であることが好ましく、特に好ましくは1官能である。官能基が2個以上存在すると、重合用カップリング剤の縮合物(副生物)が生成し、その除去が困難になる。また、有機無機複合粒子中に未反応の官能基が残存するため、加熱乾燥、加熱加工する工程などによってはアルコールや水などを生成し、構造体中に気泡を生じる要因となりうる。また、無機化合物粒子が凝集する要因にもなりうる。   The number of functional groups of the coupling agent for polymerization is not particularly limited, but is preferably monofunctional or bifunctional, particularly preferably monofunctional. When two or more functional groups are present, a condensate (by-product) of the coupling agent for polymerization is generated, and it is difficult to remove it. In addition, since unreacted functional groups remain in the organic-inorganic composite particles, alcohol, water or the like may be generated depending on heat drying, heat processing, or the like, which may cause bubbles in the structure. Moreover, it can also become a factor which inorganic compound particle aggregates.

重合用カップリング剤が有する重合開始基は、重合開始能を有する官能基であれば、特に限定されるものではない。例えば、後述のニトロキシド媒介ラジカル重合(以下、「NMP」という。)、原子移動ラジカル重合(以下、「ATRP」という。)、可逆的付加・脱離連鎖移動重合(以下、「RAFT」という。)に用いられる重合開始基が挙げられる。   The polymerization initiating group possessed by the polymerization coupling agent is not particularly limited as long as it is a functional group having polymerization initiating ability. For example, nitroxide-mediated radical polymerization (hereinafter referred to as “NMP”), atom transfer radical polymerization (hereinafter referred to as “ATRP”), and reversible addition / elimination chain transfer polymerization (hereinafter referred to as “RAFT”). And a polymerization initiating group used in the above.

NMPにおける重合開始基は、ニトロキシド基が結合している基であれば、特に限定されるものではない。   The polymerization initiating group in NMP is not particularly limited as long as it is a group to which a nitroxide group is bonded.

ATRPにおける重合開始基は、典型的には、ハロゲン原子を含む基である。ハロゲン原子の結合解離エネルギーが低いことが好ましい。例えば、3級炭素原子に結合したハロゲン原子、ビニル基、ビニリデン基及びフェニル基等の不飽和炭素−炭素結合に隣接する炭素原子に結合したハロゲン原子、カルボニル基、シアノ基及びスルホニル基等のヘテロ原子含有共役性基に直接結合するか又はこれらに隣接する原子に結合したハロゲン原子が導入された基が、好ましい構造として挙げられる。より具体的には、下記一般式(I)で表される有機ハロゲン化物基、及び、一般式(II)で表されるハロゲン化スルホニル基が好適である。   The polymerization initiating group in ATRP is typically a group containing a halogen atom. It is preferable that the bond dissociation energy of the halogen atom is low. For example, a halogen atom bonded to a tertiary carbon atom, a halogen atom bonded to a carbon atom adjacent to an unsaturated carbon-carbon bond such as a vinyl group, a vinylidene group or a phenyl group, a hetero group such as a carbonyl group, a cyano group or a sulfonyl group. A preferable structure includes a group in which a halogen atom bonded directly to an atom-containing conjugated group or bonded to an atom adjacent thereto is introduced. More specifically, an organic halide group represented by the following general formula (I) and a sulfonyl halide group represented by the general formula (II) are preferable.

式(I)及び(II)中、R及びRは、それぞれ独立に水素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよいアリル基、置換基を有していてもよい炭素数6〜20のアリール基、アルキルアリール基、又は、置換基を有していてもよいアルキルアリール基を示し、Zはハロゲン原子を示す。 In formulas (I) and (II), R 1 and R 2 each independently have a hydrogen atom, a C 1-20 alkyl group that may have a substituent, or a substituent. An allyl group, an aryl group having 6 to 20 carbon atoms that may have a substituent, an alkylaryl group, or an alkylaryl group that may have a substituent, and Z represents a halogen atom.

式(I)の重合開始基は、下記一般式(III)に示されるように、カルボニル基を有するものであってもよい。式(III)中、R、R及びZは、式(I)中のR、R及びZと同義である。 The polymerization initiating group of the formula (I) may have a carbonyl group as shown in the following general formula (III). Wherein (III), R 1, R 2 and Z have the same meanings as R 1, R 2 and Z in formula (I).

式(III)の重合開始基の具体例を下記化学式に示す。   Specific examples of the polymerization initiating group of formula (III) are shown in the following chemical formula.

RAFTにおける重合開始基は、一般的なラジカル重合開始基であれば、特に限定されるものではない。また、RAFT剤として機能するイオウ原子を含有する基を重合開始基として使用することもできる。重合開始基の例としては、トリチオカーボネート、ジチオエステル、チオアミド、チオカルバメート、ジチオカルバメート、チオウラン、チオ尿素、ジチオオキサミド、チオケトン及びトリスルフィドが挙げられる。   The polymerization initiating group in RAFT is not particularly limited as long as it is a general radical polymerization initiating group. Moreover, the group containing the sulfur atom which functions as a RAFT agent can also be used as a polymerization initiating group. Examples of the polymerization initiating group include trithiocarbonate, dithioester, thioamide, thiocarbamate, dithiocarbamate, thiouranium, thiourea, dithiooxamide, thioketone, and trisulfide.

重合用カップリング剤は、下記式(IV)で表される構造を有することが好ましい。
X−Si(R11)(R12)(R13) ・・・(IV)
The coupling agent for polymerization preferably has a structure represented by the following formula (IV).
X-Si (R 11 ) (R 12 ) (R 13 ) (IV)

式(IV)中、Xは、上述の重合開始基であり、R11及びR12は、それぞれ独立に、炭素原子数が1〜10のアルキル基であり、R13は、炭素原子数が1〜10のアルコキシ基、水素原子、水酸基又はハロゲン原子である。 In formula (IV), X is the above-mentioned polymerization initiating group, R 11 and R 12 are each independently an alkyl group having 1 to 10 carbon atoms, and R 13 is 1 carbon atom. -10 alkoxy groups, hydrogen atoms, hydroxyl groups or halogen atoms.

好適な重合用カップリング剤の具体例としては、以下のようなシラン化合物がある。
・3−(2−ブロモイソブチロキシ)プロピルジメチルクロロシラン(Cas番号:370870−81−8)
・プロピオン酸,2−ブロモ−2−メチル−,3−(ジクロロメチルシリル)プロピル エステル(Cas番号:1057260−39−5)
・プロピオン酸,2−ブロモ−2−メチル−,3−(トリクロロシリル)プロピル エステル(Cas番号:688359−84−4)
・3−(メトキシジメチルシリルプロピル)−2−ブロモ−2−メチルプロピオネート(Cas番号:531505−27−8)
・3−(ジメトキシメチルシリルプロピル)−2−ブロモ−2−メチルプロピオネート(Cas番号:1186667−60−6)
・3−(トリメトキシシリルプロピル)−2−ブロモ−2−メチルプロピオネート(Cas番号:314021−97−1)
・(3−(2−ブロモイソブチリル)プロピル)ジメチルエトキシシラン(Cas番号:265119−86−6)
・(3−(2−ブロモイソブチリル)プロピル)メチルジエトキシシラン(Cas番号:1186667−65−1)
・プロピオン酸,2−ブロモ−2−メチル−,3−(トリエトキシシリル)プロピル エステル(Cas番号:880339−31−1)
・プロピオン酸,2−ブロモ−,3−(クロロジメチルシリル)プロピル エステル(Cas番号:438001−36−6)
・プロピオン酸,2−ブロモ−,3−(トリクロロシリル)プロピル エステル(Cas番号:663174−64−9)
・プロピオン酸,2−ブロモ−,3−(メトキシジメチルシリル)プロピル エステル(Cas番号:861807−46−7)
・(3−(2−ブロモプロピオニル)プロピル)ジメチルエトキシシラン(Cas番号:265119−85−5)
・(3−(2−ブロモプロピオニル)プロピル)トリエトキシシラン(Cas番号:1233513−06−8)
Specific examples of suitable coupling agents for polymerization include the following silane compounds.
3- (2-Bromoisobutyroxy) propyldimethylchlorosilane (Cas number: 370870-81-8)
Propionic acid, 2-bromo-2-methyl-, 3- (dichloromethylsilyl) propyl ester (Cas number: 1057260-39-5)
Propionic acid, 2-bromo-2-methyl-, 3- (trichlorosilyl) propyl ester (Cas number: 688359-84-4)
3- (methoxydimethylsilylpropyl) -2-bromo-2-methylpropionate (Cas number: 531505-27-8)
3- (Dimethoxymethylsilylpropyl) -2-bromo-2-methylpropionate (Cas number: 1186667-60-6)
3- (Trimethoxysilylpropyl) -2-bromo-2-methylpropionate (Cas number: 314021-97-1)
(3- (2-Bromoisobutyryl) propyl) dimethylethoxysilane (Cas number: 265119-86-6)
(3- (2-Bromoisobutyryl) propyl) methyldiethoxysilane (Cas number: 11866667-65-1)
Propionic acid, 2-bromo-2-methyl-, 3- (triethoxysilyl) propyl ester (Cas number: 880339-31-1)
Propionic acid, 2-bromo-, 3- (chlorodimethylsilyl) propyl ester (Cas number: 438001-36-6)
Propionic acid, 2-bromo-, 3- (trichlorosilyl) propyl ester (Cas number: 663174-64-9)
Propionic acid, 2-bromo-, 3- (methoxydimethylsilyl) propyl ester (Cas number: 861807-46-7)
(3- (2-Bromopropionyl) propyl) dimethylethoxysilane (Cas number: 265119-85-5)
(3- (2-Bromopropionyl) propyl) triethoxysilane (Cas number: 1233513-06-8)

上述の重合用カップリング剤の重合開始基による修飾量は、無機化合物粒子の単位面積当たり、好ましくは0.01〜2本/nmであり、より好ましくは0.05〜2本/nmであり、更に好ましくは0.05〜1本/nmである。 Modification amount due to polymerization initiating group for polymerization coupling agents described above, per unit area of the inorganic compound particles is preferably 0.01 to 2 present / nm 2, more preferably 0.05 to 2 present / nm 2 More preferably, it is 0.05 to 1 / nm 2 .

(シランカップリング剤)
重合用カップリング剤のほかに無機化合物粒子の表面の例えば水酸基のキャッピングのために、重合開始能を有しないシランカップリング剤を併用してもよい。これにより、無機化合物粒子の分散性を改善することができる。シランカップリング剤は無機化合物粒子表面と反応して結合を生成する官能基を有する化合物であれば、特に限定されるものではない。好適なシランカップリング剤の具体例としては、以下のようなシラン化合物がある。
・ヘキサメチルジシラザン(Cas番号:999−97−3)
・N,N−ビス(トリメチルシリル)ウレア(Cas番号:18297−63−7)
・N,O−ビス(トリメチルシリル)トリフロロアセトアミド(Cas番号:25561−30−2)
・トリメチルシリルトリフロロメタンスルホネート(Cas番号:27607−77−8)
・トリエチルシラン(Cas番号:617−86−7)
・トリメチルシリルアセチレン(Cas番号:1066−54−2)
・ヘキサメチルジシラン(Cas番号:1450−14−2)
・アリルトリメチルシラン(Cas番号:762−72−1)
・トリメチルビニルシラン(Cas番号:754−05−2)
・メチルトリメトキシシラン(Cas番号:1185−55−3)
・ジメチルジメトキシシラン(Cas番号:1112−39−6)
・フェニルトリメトキシシラン(Cas番号:2996−92−1)
・メチルトリエトキシシラン(Cas番号:2031−67−6)
・ジメチルジエトキシシラン(Cas番号:78−62−6)
・フェニルトリエトキシシラン(Cas番号:780−69−8)
・ヘキシルトリメトキシシラン(Cas番号:3069−19−0)
・ヘキシルトリエトキシシラン(Cas番号:18166−37−5)
・デシルトリメトキシシラン(Cas番号:5575−48−4)
(Silane coupling agent)
In addition to the polymerization coupling agent, a silane coupling agent having no polymerization initiating ability may be used in combination for capping, for example, hydroxyl groups on the surface of the inorganic compound particles. Thereby, the dispersibility of inorganic compound particles can be improved. The silane coupling agent is not particularly limited as long as it is a compound having a functional group that reacts with the surface of the inorganic compound particles to generate a bond. Specific examples of suitable silane coupling agents include the following silane compounds.
Hexamethyldisilazane (Cas number: 999-97-3)
N, N-bis (trimethylsilyl) urea (Cas number: 18297-63-7)
N, O-bis (trimethylsilyl) trifluoroacetamide (Cas number: 25561-30-2)
Trimethylsilyl trifluoromethanesulfonate (Cas number: 27607-77-8)
Triethylsilane (Cas number: 617-86-7)
Trimethylsilyl acetylene (Cas number: 1066-54-2)
Hexamethyldisilane (Cas number: 1450-14-2)
Allyltrimethylsilane (Cas number: 762-72-1)
Trimethylvinylsilane (Cas number: 754-05-2)
・ Methyltrimethoxysilane (Cas number: 1185-55-3)
Dimethyldimethoxysilane (Cas number: 1112-39-6)
Phenyltrimethoxysilane (Cas number: 2996-92-1)
・ Methyltriethoxysilane (Cas number: 2031-67-6)
Dimethyldiethoxysilane (Cas number: 78-62-6)
Phenyltriethoxysilane (Cas number: 780-69-8)
・ Hexyltrimethoxysilane (Cas number: 3069-19-0)
-Hexyltriethoxysilane (Cas number: 18166-37-5)
Decyltrimethoxysilane (Cas number: 5575-48-4)

(ポリマー)
上記ポリマーの重合形態は、特に限定されるものではないが、例えば、ホモポリマー、周期共重合ポリマー、ブロック共重合ポリマー、ランダム共重合ポリマー、グラジエント共重合ポリマー、テーパード共重合ポリマー又はグラフト共重合ポリマーが挙げられる。
(polymer)
The polymerization form of the polymer is not particularly limited. For example, a homopolymer, a periodic copolymer, a block copolymer, a random copolymer, a gradient copolymer, a tapered copolymer, or a graft copolymer Is mentioned.

上記ポリマーは、汎用有機溶媒に対する溶解性や熱分解抑制の観点から、アクリル酸エステル類及びメタクリル酸エステル類のホモポリマー又は共重合ポリマーであることが好ましい。   The polymer is preferably a homopolymer or copolymer of acrylic acid esters and methacrylic acid esters from the viewpoint of solubility in general-purpose organic solvents and suppression of thermal decomposition.

ラジカル重合性のモノマーは、原子移動ラジカル重合(以下、「ATRP」という。)、又は可逆的付加・脱離連鎖移動重合(以下、「RAFT」という)で重合可能であることが好ましい。   The radical polymerizable monomer is preferably polymerizable by atom transfer radical polymerization (hereinafter referred to as “ATRP”) or reversible addition / elimination chain transfer polymerization (hereinafter referred to as “RAFT”).

上記モノマーとしては、例えば、エチレン、「ブタ−1,3−ジエン、2−メチルブタ−1,3−ジエン、2−クロロブタ−1,3−ジエンのようなジエン類」、「スチレン、α−メチルスチレン、4−メチルスチレン、4−ヒドロキシスチレン、アセトキシスチレン、4−クロロメチルスチレン2,3,4,5,6−ペンタフルオロスチレン、4−アミノスチレンなどのスチレン類」、「アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸tert−ブチル、アクリル酸イソブチル、アクリル酸2−エチルヘキシル、アクリル酸オクチル、アクリル酸オクタデシル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸トリメチルシリル、アクリル酸アミド、アクリル酸2−(ジメチルアミノ)エチル、アクリル酸2,2,2−トリフルオロエチル、アクリル酸2,2,3,3,−テトラフルオロプロピル、アクリル酸1,1,1,3,3,3−ヘキサフルオロイソプロピル、アクリル酸1H,1H,2H,2H−ヘプタデカフルオロデシル、アクリル酸1H,1H,3H−ヘキサフルオロブチル、アクリル酸1H,1H,5H−オクタフルオロペンチル、アクリル酸1H,1H−ヘプタフルオロブチル、アクリル酸2−イソシアナトエチル、1,1−(ビスアクリロイルオキシメチル)エチルイソシアネートなどのアクリル酸エステル類」、「メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸tert−ブチル、メタクリル酸イソブチル、メタクリル酸2−エチルヘキシル、メタクリル酸オクチル、メタクリル酸オクタデシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸トリメチルシリル、メタクリル酸アミド、メタクリル酸2−(ジメチルアミノ)エチル、メタクリル酸2−(ジエチルアミノ)エチル、メタクリル酸2,2,2−トリフルオロエチル、メタクリル酸1H,1H,2H,2H−ヘプタデカフルオロデシル、メタクリル酸1H,1H,3H−ヘキサフルオロブチル、メタクリル酸2,2,3,3,−テトラフルオロプロピル、メタクリル酸1H,1H,5H−オクタフルオロペンチル、メタクリル酸1H,1H,7H−ドデカフルオロペンチル、メタクリル酸2−イソシアナトエチル、メタクリル酸2−(0−[1’−メチルプロピリデンアミノ]カルボキシアミノ)エチル、2−[(3,5−ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレートなどのメタクリル酸エステル類」、「アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸3−ヒドロキシプロピル、アクリル酸2−ヒドロキシブチル、アクリル酸3−ヒドロキシブチル、アクリル酸4−ヒドロキシブチル、アクリル酸2−ヒドロキシヘキシル、アクリル酸6−ヒドロキシヘキシル、アクリル酸3−パーフルオロブチル−2−ヒドロキシプロピル、アクリル酸3−パーフルオロヘキシル−2−ヒドロキシプロピル、アクリル酸3−パーフルオロオクチル−2−ヒドロキシプロピル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸3−ヒドロキシプロピル、メタクリル酸2−ヒドロキシブチル、メタクリル酸3−ヒドロキシブチル、メタクリル酸4−ヒドロキシブチル、メタクリル酸6−ヒドロキシヘキシル、メタクリル酸シクロヘキシル、メタクリル酸3−パーフルオロブチル−2−ヒドロキシプロピル、メタクリル酸3−パーフルオロヘキシル−2−ヒドロキシプロピル、メタクリル酸3−パーフルオロオクチル−2−ヒドロキシプロピル、アクリルアミド、メタクリルアミド、N−シクロプロピルアクリルアミド、N,N−ジメチルアクリルアミド、N−ヒドロキシメチルアクリルアミド、N−イソプロピルアクリルアミド、アクリロニトリル、メタクリロニトリルなどの(メタ)アクリル酸誘導体」、「酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニルのようなビニルエステル類」、「ビニルメチルエーテル、ビニルエチルエーテルなどのビニルエーテル類」、「ビニルメチルケトン、ビニルヘキシルケトン、ビニルケトン類、N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドンなどのN−ビニル化合物」、「アリルアルコール、塩化アリル、酢酸アリル、塩化ビニル、塩化ビニリデンのようなアリル化合物」、「フッ化ビニル、フッ化ビニリデンなどのフッ素アルキル基を有する化合物」、「アクリル酸グリシジル、メタクリル酸グリシジル、4−グリシジルスチレン等の官能性モノマー類」、「アクリル酸アリル、メタクリル酸アリル、ジアクリル酸無水物、ジアクリル酸1,2−エタンジイル、トリアクリル酸ペンタエリスリトール、テトラアクリル酸ペンタエリスリトール、ジビニルベンゼンなどの反応性二重結合を二つ以上有する化合物」などが挙げられる。中でも、コーティング膜や成形体の透明性を特に重視する場合は、スチレン類、アクリル酸エステル又はメタクリル酸エステルを選択することが好ましい。   Examples of the monomer include ethylene, “dienes such as buta-1,3-diene, 2-methylbuta-1,3-diene, 2-chlorobuta-1,3-diene”, “styrene, α-methyl. Styrenes such as styrene, 4-methylstyrene, 4-hydroxystyrene, acetoxystyrene, 4-chloromethylstyrene 2,3,4,5,6-pentafluorostyrene, 4-aminostyrene "," methyl acrylate, acrylic Ethyl acid, n-butyl acrylate, tert-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, octadecyl acrylate, cyclohexyl acrylate, benzyl acrylate, trimethylsilyl acrylate, amide acrylate, acrylic Acid 2- (dimethylamino) ethyl, 2,2,2-trifluoroethyl laurate, 2,2,3,3-tetrafluoropropyl acrylate, 1,1,1,3,3,3-hexafluoroisopropyl acrylate, 1H, 1H acrylic acid , 2H, 2H-heptadecafluorodecyl, 1H, 1H, 3H-hexafluorobutyl acrylate, 1H, 1H, 5H-octafluoropentyl acrylate, 1H, 1H-heptafluorobutyl acrylate, 2-isocyanato acrylate Acrylic esters such as ethyl, 1,1- (bisacryloyloxymethyl) ethyl isocyanate ”,“ methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, isobutyl methacrylate, methacrylic acid 2 ” -Ethylhexyl, octyl methacrylate, methacryl Octadecyl acid, cyclohexyl methacrylate, benzyl methacrylate, trimethylsilyl methacrylate, methacrylic acid amide, 2- (dimethylamino) ethyl methacrylate, 2- (diethylamino) ethyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate, 1H, 1H, 3H-hexafluorobutyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, 1H, 1H, 5H methacrylate Octafluoropentyl, 1H, 1H, 7H-dodecafluoropentyl methacrylate, 2-isocyanatoethyl methacrylate, 2- (0- [1′-methylpropylideneamino] carboxyamino) ethyl methacrylate, 2-[(3 , 5-Dimethylpyra Methacrylic acid esters such as “(yl) carbonylamino] ethyl methacrylate”, “2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 3-hydroxybutyl acrylate” 4-hydroxybutyl acrylate, 2-hydroxyhexyl acrylate, 6-hydroxyhexyl acrylate, 3-perfluorobutyl-2-hydroxypropyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, acrylic acid 3-perfluorooctyl-2-hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, meta 3-hydroxybutyl toluate, 4-hydroxybutyl methacrylate, 6-hydroxyhexyl methacrylate, cyclohexyl methacrylate, 3-perfluorobutyl-2-hydroxypropyl methacrylate, 3-perfluorohexyl-2-hydroxypropyl methacrylate , 3-perfluorooctyl-2-hydroxypropyl methacrylate, acrylamide, methacrylamide, N-cyclopropylacrylamide, N, N-dimethylacrylamide, N-hydroxymethylacrylamide, N-isopropylacrylamide, acrylonitrile, methacrylonitrile, etc. (Meth) acrylic acid derivatives ”,“ vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate ”,“ vinyl methyl ether, vinyl Vinyl ethers such as ethyl ether "," N-vinyl compounds such as vinyl methyl ketone, vinyl hexyl ketone, vinyl ketones, N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl pyrrolidone "," allyl alcohol " , Allyl compounds such as allyl chloride, allyl acetate, vinyl chloride and vinylidene chloride "," compounds having a fluorine alkyl group such as vinyl fluoride and vinylidene fluoride "," glycidyl acrylate, glycidyl methacrylate, 4-glycidyl styrene " Functional monomers such as “allyl acrylate, allyl methacrylate, diacrylic anhydride, 1,2-ethanediyl diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, divinylbenzene, etc. Compounds having a double bond of two or more ", and the like. Among these, when importance is attached to the transparency of the coating film or the molded product, it is preferable to select styrenes, acrylic esters or methacrylic esters.

上記モノマーの中でも、低屈折率の発現や撥水性/撥油性の付与を目的とする場合、フッ素を含有するモノマーを少なくとも1種以上選択することが好ましく、入手が容易であることから、アクリル酸2,2,2−トリフルオロエチル、アクリル酸2,2,3,3−テトラフルオロプロピル、アクリル酸2,2,3,3,3−ペンタフルオロプロピル、アクリル酸1,1,1,3,3,3−ヘキサフルオロイソプロピル、メタクリル酸2,2,2−トリフルオロエチル、メタクリル酸2,2,3,3−テトラフルオロプロピル、メタクリル酸2,2,3,3,3−ペンタフルオロプロピル、及びメタクリル酸1,1,1,3,3,3−ヘキサフルオロイソプロピルが更に好ましい。   Among the above monomers, for the purpose of expressing a low refractive index and imparting water repellency / oil repellency, it is preferable to select at least one monomer containing fluorine, and acrylic acid is easily available. 2,2,2-trifluoroethyl, acrylic acid 2,2,3,3-tetrafluoropropyl, acrylic acid 2,2,3,3,3-pentafluoropropyl, acrylic acid 1,1,1,3 3,3-hexafluoroisopropyl, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, And 1,1,1,3,3,3-hexafluoroisopropyl methacrylate are more preferred.

フッ素を含有しないモノマーとしては、入手が容易であることから、アクリル酸エステル及びメタクリル酸エステルからなる群より選択される少なくとも1種のモノマーの使用が好ましく、中でも、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル及びメタクリル酸ブチルから選ばれるモノマーが好ましい。   As the monomer not containing fluorine, since it is easily available, it is preferable to use at least one monomer selected from the group consisting of acrylic acid esters and methacrylic acid esters. Among them, methyl acrylate, ethyl acrylate, Monomers selected from butyl acrylate, methyl methacrylate, ethyl methacrylate and butyl methacrylate are preferred.

さらに高屈折率の発現のためのモノマーとして、メタクリル酸ベンジル、N−ビニルカルバゾール、N−ビニルフタルイミド、メタクリル酸1−ナフチル、2−ビニルチオフェン、フェニルビニルスルフィドが好ましい。   Further, benzyl methacrylate, N-vinyl carbazole, N-vinyl phthalimide, 1-naphthyl methacrylate, 2-vinyl thiophene, and phenyl vinyl sulfide are preferable as monomers for developing a high refractive index.

以下に、好ましいモノマーの具体例を化学式で示す。   Specific examples of preferable monomers are shown below by chemical formulas.


メタクリル酸エステル

Methacrylic acid ester


アクリル酸エステル

Acrylic ester


スチレン類

Styrenes

上記ポリマーは、有機無機複合粒子を架橋させる目的で、架橋性官能基を有していてもよい。架橋性官能基の種類は、特に限定されるものではないが、反応性の観点から、(メタ)アクリロイル基や、環状エーテル基(エポキシ基、オキセタン基等)などが好ましい。   The polymer may have a crosslinkable functional group for the purpose of crosslinking the organic-inorganic composite particles. The type of the crosslinkable functional group is not particularly limited, but a (meth) acryloyl group, a cyclic ether group (epoxy group, oxetane group, etc.) and the like are preferable from the viewpoint of reactivity.

本実施形態に用い得る反応性二重結合は、後述する紫外線光等の活性光線の照射によりラジカルを発生する化合物(光ラジカル開始剤)から重合反応を開始して、硬化することができる不飽和結合のことをいう。反応性二重結合としては、(メタ)アクリロイル基(アクリロイル基又はメタクリロイル基)中の炭素−炭素二重結合が好ましい。   The reactive double bond that can be used in this embodiment is an unsaturated compound that can be cured by initiating a polymerization reaction from a compound (photo radical initiator) that generates radicals upon irradiation with actinic rays such as ultraviolet light described later. It means a bond. As the reactive double bond, a carbon-carbon double bond in a (meth) acryloyl group (acryloyl group or methacryloyl group) is preferable.

反応性二重結合をポリマー中に導入する方法としては、反応性二重結合を二つ以上有する化合物をモノマーとして使用してポリマーを合成する方法、官能基を有するモノマーからポリマーを合成した後に、反応性二重結合を有する化合物をその官能基に付加させる方法等が挙げられる。   As a method of introducing a reactive double bond into a polymer, a method of synthesizing a polymer using a compound having two or more reactive double bonds as a monomer, and a method of synthesizing a polymer from a monomer having a functional group, Examples thereof include a method of adding a compound having a reactive double bond to the functional group.

反応性二重結合を二つ以上有する化合物としては、限定されるものではないが、有機ポリマーを合成する際にゲル化等の問題を抑制できる、反応性の異なる二つ以上の二重結合を有する化合物が好ましい。中でも入手が容易な点からアクリル酸アリルがより好ましい。   The compound having two or more reactive double bonds is not limited, but two or more double bonds with different reactivity can be used to suppress problems such as gelation when synthesizing an organic polymer. The compound which has is preferable. Of these, allyl acrylate is more preferable because it is easily available.

反応性二重結合を有する化合物をポリマーに付加させる手法としては、ポリマー中の官能基と反応性二重結合を有する化合物中の官能基とを反応させることが好ましい。ポリマー中又は反応性二重結合を有する化合物中の官能基としては、水酸基、アルコキシシリル基、エポキシ基、カルボキシル基、イソシアネート基、アミノ基、アミド基等の官能基が好ましい。これらの官能基の組み合わせとしては、例えば、水酸基−カルボキシル基、アミノ基−カルボキシル基、アミド基−カルボキシル基、アルコキシシリル基−カルボニル基、イソシアネート基−水酸基、エポキシ基−水酸基、アルコキシシリル基−水酸基、アミド基−水酸基、エポキシ基−アミノ基等が挙げられる。   As a method for adding a compound having a reactive double bond to the polymer, it is preferable to react a functional group in the polymer with a functional group in the compound having a reactive double bond. The functional group in the polymer or the compound having a reactive double bond is preferably a functional group such as a hydroxyl group, an alkoxysilyl group, an epoxy group, a carboxyl group, an isocyanate group, an amino group, or an amide group. Examples of combinations of these functional groups include hydroxyl group-carboxyl group, amino group-carboxyl group, amide group-carboxyl group, alkoxysilyl group-carbonyl group, isocyanate group-hydroxyl group, epoxy group-hydroxyl group, alkoxysilyl group-hydroxyl group. Amide group-hydroxyl group, epoxy group-amino group and the like.

反応性二重結合を有し、かつ水酸基を有する化合物としては、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル等のヒドロキシアルキルビニルエーテル類;ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル等のエチレングリコールモノビニルエーテル類;ヒドロキシエチルアリルエーテル、ヒドロキシブチルアリルエーテル、シクロヘキサンジメタノールモノアリルエーテル等のヒドロキシアルキルアリルエーテル類;ヒドロキシエチルカルボン酸ビニルエステル、ヒドロキシブチルカルボン酸ビニルエステル、((ヒドロキシメチルシクロヘキシル)メトキシ)酢酸ビニルエステル等のヒドロキシアルキルビニルエステル類;ヒドロキシエチルカルボン酸アリルエステル、ヒドロキシブチルカルボン酸アリルエステル、((ヒドロキシメチルシクロヘキシル)メトキシ)酢酸アリルエステル等のヒドロキシアルキルカルボン酸アリルエステル類;ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸ヒドロキシアルキルエステル類などが挙げられる。   Examples of the compound having a reactive double bond and a hydroxyl group include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, and cyclohexanedimethanol monovinyl ether; diethylene glycol monovinyl ether, triethylene glycol monovinyl ether, tetraethylene glycol Ethylene glycol monovinyl ethers such as monovinyl ether; hydroxyalkyl allyl ethers such as hydroxyethyl allyl ether, hydroxybutyl allyl ether, cyclohexanedimethanol monoallyl ether; hydroxyethyl carboxylic acid vinyl ester, hydroxybutyl carboxylic acid vinyl ester, (( Hydroxymethylcyclohexyl) methoxy) vinyl acetate Hydroxyalkyl vinyl esters such as hydroxyethyl carboxylic acid allyl ester, hydroxybutyl carboxylic acid allyl ester, ((hydroxymethylcyclohexyl) methoxy) acetic acid allyl ester, etc .; hydroxyethyl (meth) acrylate, etc. (Meth) acrylic acid hydroxyalkyl esters and the like.

反応性二重結合を有し、かつアルコキシシリル基を有する化合物としては、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロビルメチルジメトキシシラン、トリメトキシシリルプロピルビニルエーテルなどが挙げられる。   Examples of the compound having a reactive double bond and having an alkoxysilyl group include 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyl trimethylsilane, and trimethoxysilylpropyl vinyl ether. Is mentioned.

反応性二重結合を有し、かつカルボキシル基を有する化合物としては、例えば、(メタ)アクリル酸、イタコン酸、フマル酸、マレイン酸、無水マレイン酸、シトラコン酸、ウンデシレン酸などが好ましい。アミノ基を有する化合物としては、アミノプロビルビニルエーテル、ジエチルアミノエチルビニルエーテル等が挙げられる。   As the compound having a reactive double bond and having a carboxyl group, (meth) acrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, citraconic acid, undecylenic acid and the like are preferable. Examples of the compound having an amino group include aminopropyl vinyl ether and diethylaminoethyl vinyl ether.

反応性二重結合を有し、かつイソシアネート基を有する化合物としては、2−イソシアネートエチル(メタ)アクリレート、1,1−ビス(アクリロイルメチル)エチルイソシアネート、メタクリル酸2−[0−(1’−メチルプロピリデンアミノ)カルボキシアミノ]エチル、2−[(3,5−ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート等が好ましい。   Examples of the compound having a reactive double bond and an isocyanate group include 2-isocyanatoethyl (meth) acrylate, 1,1-bis (acryloylmethyl) ethyl isocyanate, 2- [0- (1′-methacrylic acid) methacrylate. Methylpropylideneamino) carboxyamino] ethyl, 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate and the like are preferable.

反応性二重結合を有し、かつエポキシ基含を有する化合物としては、グリシジルビニルエーテル、グリシジルカルボン酸ビニルエステル、グリシジルアリルエーテル、グリシジル(メタ)アクリレート等が挙げられる。   Examples of the compound having a reactive double bond and having an epoxy group include glycidyl vinyl ether, glycidyl carboxylic acid vinyl ester, glycidyl allyl ether, glycidyl (meth) acrylate and the like.

特に限定されるものではないが、架橋性官能基としてイソシアネート基を導入する場合、重合反応の容易さと官能基の反応性の観点から、(メタ)アクリル酸2−イソシアナトエチル、メタクリル酸2−[0−(1’−メチルプロピリデンアミノ)カルボキシアミノ)エチル、及び2−[(3,5−ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート等をモノマー単位の一つとして使用することでポリマーを合成する手法が好ましい。更に、(メタ)アクリル酸2−イソシアナトエチル等を、モノマー単位の一つとして使用してポリマーを合成し、得られたポリマー中のイソシアネート基と、ヒドロキシエチル(メタ)アクリレート等の水酸基を反応させることで、架橋性官能基として、(メタ)アクリロイル基を導入することも可能である。   Although not particularly limited, when an isocyanate group is introduced as a crosslinkable functional group, (meth) acrylic acid 2-isocyanatoethyl, methacrylic acid 2- A polymer is synthesized by using [0- (1′-methylpropylideneamino) carboxyamino) ethyl, 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate, etc. as one of the monomer units. The technique is preferred. Furthermore, a polymer is synthesized using 2-isocyanatoethyl (meth) acrylate as one of the monomer units, and the isocyanate group in the obtained polymer reacts with a hydroxyl group such as hydroxyethyl (meth) acrylate. By doing so, it is also possible to introduce a (meth) acryloyl group as the crosslinkable functional group.

架橋性官能基として、(メタ)アクリロイル基を導入する場合、重合反応の容易さと官能基の反応性の観点から、ヒドロキシエチル(メタ)アクリレートをモノマー単位の一つとして使用することでポリマーを合成した後に、ポリマー中の水酸基と2−イソシアネートエチル(メタ)アクリレート、1,1−(ビスアクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基を反応させる手法がより好ましい。   When a (meth) acryloyl group is introduced as a crosslinkable functional group, a polymer is synthesized by using hydroxyethyl (meth) acrylate as one of the monomer units from the viewpoint of easy polymerization reaction and functional group reactivity. Then, a method of reacting a hydroxyl group in the polymer with an isocyanate group such as 2-isocyanatoethyl (meth) acrylate and 1,1- (bisacryloyloxymethyl) ethyl isocyanate is more preferable.

また架橋性官能基として、環状エーテル基(エポキシ基等)を導入する場合、重合反応の容易さの観点から、グリリジル(メタ)アクリレートを、モノマー単位の一つとして使用することでポリマーを合成する手法が好ましい。   When a cyclic ether group (such as an epoxy group) is introduced as a crosslinkable functional group, a polymer is synthesized by using glycidyl (meth) acrylate as one of monomer units from the viewpoint of ease of polymerization reaction. The technique is preferred.

上記ポリマーの形状は、特に限定されるものではないが、例えば、鎖状、分岐鎖状、ラダー型、スター型が挙げられる。その他、任意の置換基等を導入し、分散性や相溶性を向上させることも可能である。   The shape of the polymer is not particularly limited, and examples thereof include a chain shape, a branched chain shape, a ladder shape, and a star shape. In addition, it is possible to introduce an arbitrary substituent or the like to improve the dispersibility and compatibility.

上記ポリマーの分子量は、特に限定されるものではないが、その数平均分子量(以下、「Mn」という。)は、好ましくは4000〜1000000g/mol、より好ましくは8000〜800000g/mol、更に好ましくは10000〜500000g/molである。Mnが4000g/mol未満であると、無機化合物粒子の周りに形成されるポリマー層の厚みが薄くなることで有機無機複合粒子からなる構造体内部に空隙を生じる可能性がある。1000000g/molを超えると、有機無機複合粒子中の無機化合物粒子の無機化合物としての特性が発現されにくくなる。   The molecular weight of the polymer is not particularly limited, but the number average molecular weight (hereinafter referred to as “Mn”) is preferably 4000 to 1000000 g / mol, more preferably 8000 to 800000 g / mol, and still more preferably. It is 10,000 to 500,000 g / mol. When the Mn is less than 4000 g / mol, the thickness of the polymer layer formed around the inorganic compound particles becomes thin, and there is a possibility that voids are generated inside the structure composed of the organic-inorganic composite particles. When it exceeds 1000000 g / mol, it becomes difficult to express the characteristics of the inorganic compound particles in the organic-inorganic composite particles as an inorganic compound.

上記ポリマーの分子量分布は、質量平均分子量(以下、「Mw」という。)とMnより、Mw/Mnにより求められる。ここでいうMn及びMwは、後述の実施例において詳細に説明されるように、ゲルパーミエーションクロマトグラフィー(GPC)により測定される、ポリメタクリル酸メチル換算の値である。   The molecular weight distribution of the polymer is determined by Mw / Mn from the mass average molecular weight (hereinafter referred to as “Mw”) and Mn. Mn and Mw here are polymethyl methacrylate equivalent values measured by gel permeation chromatography (GPC), as will be described in detail in the examples described later.

本実施形態において、有機無機複合粒子に含まれるポリマーの分子量分布は1.55以下が好ましい。無機化合物粒子の分散性、有機無機複合粒子の周期的な配列の観点から、ポリマーの分子量(鎖長)が揃っていること、つまり、分子量分布が1に近い値であることが好ましい。係る観点から、分子量分布は、好ましくは1.0〜1.53、より好ましくは1.0〜1.50、さらに好ましくは1.0〜1.48である。   In this embodiment, the molecular weight distribution of the polymer contained in the organic-inorganic composite particles is preferably 1.55 or less. From the viewpoint of the dispersibility of the inorganic compound particles and the periodic arrangement of the organic-inorganic composite particles, it is preferable that the molecular weight (chain length) of the polymer is uniform, that is, the molecular weight distribution is close to 1. From such a viewpoint, the molecular weight distribution is preferably 1.0 to 1.53, more preferably 1.0 to 1.50, and still more preferably 1.0 to 1.48.

重合反応において、連鎖移動反応や二分子停止反応などが起こった場合には、分子量分布が2.0より大きくなる。その場合、フリーポリマーが生成する又は無機化合物粒子が凝集するなどの不具合が生じることがある。また、本実施形態に係る有機無機複合粒子が特定波長の光又は赤外線を反射する構造体であるためには、ポリマーの分子量が揃った、より均一なシェル層を形成するとよい。   In the polymerization reaction, when a chain transfer reaction or a bimolecular termination reaction occurs, the molecular weight distribution becomes larger than 2.0. In that case, problems such as formation of free polymer or aggregation of inorganic compound particles may occur. In addition, in order for the organic-inorganic composite particles according to the present embodiment to be a structure that reflects light or infrared rays having a specific wavelength, a more uniform shell layer having a uniform molecular weight of the polymer is preferably formed.

[有機無機複合粒子の製造方法]
本実施形態に係る有機無機複合粒子の製造方法は、例えば、無機化合物粒子の表面に、重合開始基を有する重合用カップリング剤を結合させる表面改質工程と、重合開始基により開始されるラジカル重合によりポリマー殻を形成させる重合工程を備える方法により得ることができる。
[Method for producing organic-inorganic composite particles]
The method for producing organic-inorganic composite particles according to the present embodiment includes, for example, a surface modification step for bonding a polymerization coupling agent having a polymerization initiating group to the surface of inorganic compound particles, and a radical initiated by the polymerization initiating group. It can be obtained by a method comprising a polymerization step of forming a polymer shell by polymerization.

無機化合物粒子と重合用カップリング剤との反応により、無機化合物粒子の表面に重合開始基が導入された表面改質無機化合物粒子が得られる。無機化合物粒子と重合用カップリング剤との反応は、これらが分散又は溶解する反応液中で行うことができる。この時、反応液を加熱してもよい。また、無機化合物粒子と重合用カップリング剤との反応後に、さらに重合開始基を含有しないシランカップリング剤を重合用カップリング剤が結合した表面改質無機化合物粒子に反応させてもよい。   Surface-modified inorganic compound particles in which a polymerization initiating group is introduced on the surface of the inorganic compound particles are obtained by the reaction between the inorganic compound particles and the coupling agent for polymerization. The reaction between the inorganic compound particles and the coupling agent for polymerization can be performed in a reaction solution in which they are dispersed or dissolved. At this time, the reaction solution may be heated. Further, after the reaction between the inorganic compound particles and the polymerization coupling agent, a silane coupling agent that does not contain a polymerization initiating group may be further reacted with the surface-modified inorganic compound particles bonded with the polymerization coupling agent.

ラジカル重合の方式は特に限定されず、例えば、塊状重合法又は溶液重合法を選択できる。更に、生産性や安全性の観点から、懸濁重合、乳化重合、分散重合、シード重合等の方式を採用してもよい。   The method of radical polymerization is not particularly limited, and for example, a bulk polymerization method or a solution polymerization method can be selected. Furthermore, from the viewpoint of productivity and safety, methods such as suspension polymerization, emulsion polymerization, dispersion polymerization, and seed polymerization may be employed.

重合温度は、特に限定されるものではなく、重合方法及びモノマー種に応じ、適宜、選択することができる。例えばATRPの場合、重合温度は好ましくは−50℃〜200℃、更に好ましくは0℃〜150℃、特に好ましくは20℃〜130℃である。モノマーがアクリル酸エステル及び/又はメタクリル酸エステルを含む場合、40〜130℃で重合を行うと、比較的短時間で精密重合することができる。   The polymerization temperature is not particularly limited, and can be appropriately selected according to the polymerization method and the monomer type. For example, in the case of ATRP, the polymerization temperature is preferably −50 ° C. to 200 ° C., more preferably 0 ° C. to 150 ° C., and particularly preferably 20 ° C. to 130 ° C. When the monomer contains an acrylic ester and / or a methacrylic ester, when polymerization is carried out at 40 to 130 ° C., precise polymerization can be carried out in a relatively short time.

重合時間は、特に制限されるものではなく、重合方法やモノマー種に応じ、適宜、選択することができるが、例えば、1〜32時間とすることができる。重合時間がこの範囲内にあると、有機無機複合粒子における無機化合物粒子の含有量が好ましいものとなり、有機無機複合体からなる構造体の構造が安定する。同様の観点から、重合時間は、1.5〜24時間とすることがより好ましい。   The polymerization time is not particularly limited and can be appropriately selected depending on the polymerization method and the monomer type, and can be, for example, 1 to 32 hours. When the polymerization time is within this range, the content of the inorganic compound particles in the organic-inorganic composite particles is preferable, and the structure of the structure composed of the organic-inorganic composite is stabilized. From the same viewpoint, the polymerization time is more preferably 1.5 to 24 hours.

重合反応は、無溶媒で行っても、溶媒存在下で行ってもよい。溶媒を使用する場合、表面改質無機化合物粒子の分散性と、重合触媒の溶解性とが良好な溶媒が好ましい。溶媒は単独で用いても、複数種を組み合わせて使用してもよい。   The polymerization reaction may be performed without a solvent or in the presence of a solvent. When using a solvent, a solvent having good dispersibility of the surface-modified inorganic compound particles and solubility of the polymerization catalyst is preferable. A solvent may be used independently or may be used in combination of multiple types.

溶媒の種類は、特に限定されるものではないが、例えば、アセトン、メチルイソブチルケトン(MIBK)、メチルエチルケトン(MEK)、アニソール、トルエン、キシレン、テトラヒドロフラン(THF)、1−プロパノール、2−プロパノール、メタノール、エタノール、1−ブタノール、t−ブタノール、アセトニトリル、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)、N−メチルピロリドン、1,4−ジオキサン、水等が挙げられる。   The type of the solvent is not particularly limited. For example, acetone, methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), anisole, toluene, xylene, tetrahydrofuran (THF), 1-propanol, 2-propanol, methanol , Ethanol, 1-butanol, t-butanol, acetonitrile, dimethylformamide (DMF), dimethylacetamide, dimethyl sulfoxide (DMSO), N-methylpyrrolidone, 1,4-dioxane, water and the like.

溶媒の使用量は、特に限定されるものではないが、例えば、モノマー100質量部に対し、0〜1000質量部が好ましく、より好ましくは0〜500質量部である。溶媒量が少ないと、反応速度が大きい傾向にあり有利であるが、モノマー種や重合条件によっては、重合溶液粘度が高くなる傾向にある。また、溶媒量が多いと、重合溶液粘度が低くなるが、反応速度が低下するため、適宜、配合比率を調整するのが好ましい。   Although the usage-amount of a solvent is not specifically limited, For example, 0-1000 mass parts is preferable with respect to 100 mass parts of monomers, More preferably, it is 0-500 mass parts. If the amount of the solvent is small, the reaction rate tends to be large, which is advantageous, but depending on the monomer species and the polymerization conditions, the viscosity of the polymerization solution tends to increase. Further, when the amount of the solvent is large, the viscosity of the polymerization solution is lowered, but the reaction rate is lowered. Therefore, it is preferable to appropriately adjust the blending ratio.

重合反応は、無触媒で行っても、触媒を使用して行ってもよいが、生産性の観点から、触媒を使用することが好ましい。触媒の種類は、特に限定されるものではないが、重合方法やモノマー種等により、任意の触媒を適宜、使用すればよい。例えば、ATRPの場合、触媒の種類は、一般的に知られている各種のものの中から、重合方式等に応じて適宜選択すればよい。具体的には、例えば、Cu(0)、Cu、Cu2+、Fe、Fe2+、Fe3+、Ru2+又はRu3+を含む金属触媒を使用できる。中でも、分子量や分子量分布の高度な制御を達成するためには、特にCuを含む1価の銅化合物及び0価の銅が好ましい。その具体例としては、Cu(0)、CuCl、CuBr、CuBr、CuO等の銅触媒が挙げられる。これらは、単独で使用しても、複数を組み合わせて使用してもよい。触媒の使用量は、重合開始基1モルに対して、通常0.01〜100モル、好ましくは0.01〜50モル、更に好ましくは0.01〜10モルである。また、還元剤を添加したARGET ATPR法を用いてもよい。還元剤としては、例えば、アスコルビン酸、2−エチルヘキサン酸すず(II)等を用いることができる。 The polymerization reaction may be performed without a catalyst or using a catalyst, but it is preferable to use a catalyst from the viewpoint of productivity. The type of the catalyst is not particularly limited, but any catalyst may be appropriately used depending on the polymerization method, the monomer type, and the like. For example, in the case of ATRP, the type of catalyst may be appropriately selected from various commonly known types according to the polymerization method and the like. Specifically, for example, a metal catalyst containing Cu (0), Cu + , Cu 2+ , Fe + , Fe 2+ , Fe 3+ , Ru 2+ or Ru 3+ can be used. Among these, in order to achieve a high degree of control of molecular weight and molecular weight distribution, a monovalent copper compound containing Cu + and zero-valent copper are particularly preferable. Specific examples thereof include copper catalysts such as Cu (0), CuCl, CuBr, CuBr 2 , and Cu 2 O. These may be used alone or in combination. The usage-amount of a catalyst is 0.01-100 mol normally with respect to 1 mol of polymerization start groups, Preferably it is 0.01-50 mol, More preferably, it is 0.01-10 mol. Moreover, you may use the ARGET ATPR method which added the reducing agent. As the reducing agent, for example, ascorbic acid, 2-ethylhexanoic acid tin (II) or the like can be used.

有機無機複合粒子中の無機化合物粒子の含有量は、当該有機無機複合粒子の全質量を基準として5〜95質量%が好ましく、より好ましくは10〜90質量%、更に好ましくは10〜80質量%である。無機化合物粒子の含有量が95質量%を超えると構造体自身の脆くなり、成形が困難になる。無機化合物粒子の含有量が5質量%を下回ると無機化合物粒子の比率が小さすぎて、構造体の反射率が小さくなり実用的ではなくなる。   The content of the inorganic compound particles in the organic / inorganic composite particles is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 10 to 80% by mass based on the total mass of the organic / inorganic composite particles. It is. When the content of the inorganic compound particles exceeds 95% by mass, the structure itself becomes brittle and molding becomes difficult. When the content of the inorganic compound particles is less than 5% by mass, the ratio of the inorganic compound particles is too small, and the reflectance of the structure becomes small, which is not practical.

上述の製造方法であれば、特に限定されるものではないが、以下に代表的な製造方法を示す。   Although it will not specifically limit if it is the above-mentioned manufacturing method, The typical manufacturing method is shown below.

(表面改質工程)
(1)無機化合物粒子の分散液に、重合開始基を有する重合用カップリング剤を加え、所定の温度で反応させ、更に重合開始基を含有しないシランカップリング剤加えて所定の温度で反応させ、表面改質無機化合物粒子の分散液を得る。
(2)室温まで冷却後、上記分散液を所定の溶媒で洗浄し、遠心分離等で固形分を分離・乾燥し、表面改質無機化合物粒子を得る。
(Surface modification process)
(1) To a dispersion of inorganic compound particles, a polymerization coupling agent having a polymerization initiating group is added and reacted at a predetermined temperature, and further a silane coupling agent not containing a polymerization initiating group is added and reacted at a predetermined temperature. Then, a dispersion of the surface-modified inorganic compound particles is obtained.
(2) After cooling to room temperature, the dispersion is washed with a predetermined solvent, and the solid content is separated and dried by centrifugation or the like to obtain surface-modified inorganic compound particles.

(重合工程)
(1)上記の方法で得られた表面改質無機化合物粒子を重合溶媒に分散させた後、ラジカル重合性モノマーと触媒を加え、所定の条件で反応し、重合開始基により開始されるリビングラジカル重合により、前記無機化合物粒子に結合しているポリマーを形成させ、有機無機複合粒子を得る。
(2)得られた有機無機複合粒子を洗浄し、未反応モノマーなどと分離後、真空乾燥により紛体として回収する。
(Polymerization process)
(1) After the surface-modified inorganic compound particles obtained by the above method are dispersed in a polymerization solvent, a radically polymerizable monomer and a catalyst are added, the reaction is performed under predetermined conditions, and a living radical initiated by a polymerization initiating group By polymerization, a polymer bonded to the inorganic compound particles is formed to obtain organic-inorganic composite particles.
(2) The obtained organic-inorganic composite particles are washed, separated from unreacted monomers and the like, and collected as a powder by vacuum drying.

<構造体の製造方法>
本実施形態に係る構造体は、例えば、粒子に化合物が結合した複合粒子の紛体をプレスにより成形することができる。
<Method for manufacturing structure>
In the structure according to the present embodiment, for example, a powder of composite particles in which a compound is bonded to particles can be formed by pressing.

プレスの温度は、有機無機複合粒子中のポリマーのガラス転移温度(Tg)より少なくとも120℃以上、好ましくは150℃以上、さらに好ましくは170℃以上高いことが望ましい。プレスの温度が低いと粒子と媒体の配列が不規則になりやすく、反射率が低くなる   The pressing temperature is desirably at least 120 ° C., preferably 150 ° C. or more, and more preferably 170 ° C. or more higher than the glass transition temperature (Tg) of the polymer in the organic-inorganic composite particles. If the temperature of the press is low, the arrangement of particles and media tends to be irregular, and the reflectance is low.

プレスの圧力は、2Mpa以上、好ましくは3MPa以上、さらに好ましくは6Mpa以上である。プレスの圧力が低いと粒子と媒体の配列が不規則になりやすく、反射率が低くなる。   The pressure of the press is 2 Mpa or more, preferably 3 MPa or more, more preferably 6 Mpa or more. When the press pressure is low, the arrangement of the particles and the medium tends to be irregular, and the reflectance is low.

プレス時の雰囲気は特に限定されないが、Tgより大幅に高い温度でプレスする場合、ポリマーの酸化等による劣化を防ぐため、真空下又は窒素雰囲気下で行うことが望ましい。   The atmosphere at the time of pressing is not particularly limited, but when pressing at a temperature significantly higher than Tg, it is desirable to perform in a vacuum or a nitrogen atmosphere in order to prevent deterioration due to oxidation of the polymer or the like.

また、あらかじめPETフィルム、PENフィルム、カプトンフィルム、ガラス基板、シリコンウェハー等に、溶剤に溶かした複合粒子をキャスト、スピンコート、バーコート、ダイコート等で塗布したのち、真空熱プレス機、加圧・加熱ローラー等により所定の温度と圧力をかけて構造体を成形することもできる。   In addition, after applying composite particles dissolved in solvent to PET film, PEN film, Kapton film, glass substrate, silicon wafer, etc. by casting, spin coating, bar coating, die coating, etc., vacuum hot press machine, The structure can also be formed by applying a predetermined temperature and pressure with a heating roller or the like.

構造体中の無機化合物粒子の含有量は、構造体の全質量を基準として10〜80質量%が好ましく、15〜70質量%がより好ましく、22〜60質量%が更に好ましい。無機化合物粒子の含有量が80質量%を超えると構造体の成形時に有機無機複合粒子間に多くの空隙が空き、有機無機複合粒子が配列しにくくなる。無機化合物粒子の含有量が10質量%を下回ると無機化合物粒子の比率が小さすぎて、構造体の反射率が小さくなり実用的ではなくなる。   The content of the inorganic compound particles in the structure is preferably 10 to 80% by mass, more preferably 15 to 70% by mass, and still more preferably 22 to 60% by mass based on the total mass of the structure. If the content of the inorganic compound particles exceeds 80% by mass, many voids are left between the organic-inorganic composite particles when the structure is molded, and the organic-inorganic composite particles are difficult to arrange. When the content of the inorganic compound particles is less than 10% by mass, the ratio of the inorganic compound particles is too small, and the reflectance of the structure becomes small, which is not practical.

[構造体の光学特性の評価方法]
構造体の光学特性の評価方法は、240nm〜2600nmの領域で分光光度計により透過スペクトル又は反射スペクトルを測定することで特定の反射ピークを持つかどうかを判断するのが好ましい。構造体の構造に関する知見を詳しく得るためには、分光光度計を用いて正反射スペクトルを測定するのがより好ましい。この際、入射角は、入射光がサンプルに入射する面に対して垂直な軸からの傾きを入射角とする。すなわち、入射面に対して垂直に入射光が入射する場合を入射角0°として、平行に入射する場合を入射角90°と定義する。なお正反射スペクトルの測定に際しては、入射角5°又は8°で測定するのが一般的であるが、入射角を明記してあれば、5°又は8°以外の入射角で測定しても構わない。なお、一般に入射角が0°〜15°の領域では、入射角による正反射のピーク波長の短波長シフトは小さいが、45°を超えるとピーク波長は大きく短波長にシフトする。
[Method for evaluating optical properties of structure]
As a method for evaluating the optical characteristics of the structure, it is preferable to determine whether or not a specific reflection peak is obtained by measuring a transmission spectrum or a reflection spectrum with a spectrophotometer in a region of 240 nm to 2600 nm. In order to obtain detailed knowledge about the structure of the structure, it is more preferable to measure the specular reflection spectrum using a spectrophotometer. At this time, the incident angle is defined as an inclination from an axis perpendicular to a surface on which incident light is incident on the sample. That is, the incident angle is defined as 0 ° when incident light is incident perpendicular to the incident surface, and the incident angle is defined as 90 ° when incident in parallel. When measuring the specular reflection spectrum, it is common to measure at an incident angle of 5 ° or 8 °. However, if the incident angle is specified, it can be measured at an incident angle other than 5 ° or 8 °. I do not care. In general, in a region where the incident angle is 0 ° to 15 °, the short wavelength shift of the peak wavelength of regular reflection due to the incident angle is small, but when it exceeds 45 °, the peak wavelength is greatly shifted to a short wavelength.

[遮熱材料の作製方法]
上述の方法により成形された構造体を、本実施形態の遮熱材料として用いることができる。遮熱材料の製品形態としては、上述の構造体を板状又はシート状に成形したものが挙げられる。本実施形態の遮熱材料は、反射ピーク波長λexpの異なる構造体を複数積層していてもよい。
[Production method of heat shielding material]
The structure molded by the above-described method can be used as the heat shielding material of this embodiment. Examples of the product form of the heat shielding material include those obtained by molding the above-described structure into a plate shape or a sheet shape. The heat shielding material of the present embodiment may be formed by stacking a plurality of structures having different reflection peak wavelengths λ exp .

遮熱材料を窓ガラスの遮断に用いる場合は、PETフィルム、PENフィルム等の透明基材の上に、本実施形態に係る構造体の層を設けたものを遮熱材料として用いることができる。すなわち、本実施形態の遮熱材料は、透明基材と該透明基材上に形成された構造体からなる層とを備えていてもよい。   In the case where the heat shielding material is used for shielding the window glass, a structure in which a layer of the structure according to the present embodiment is provided on a transparent substrate such as a PET film or a PEN film can be used as the heat shielding material. That is, the heat shielding material of the present embodiment may include a transparent base material and a layer made of a structure formed on the transparent base material.

遮熱材料の耐久性及び実用性の観点から、構造体からなる層の透明基材と反対側の面である遮熱材料の最表層には、ハードコート層が形成されていてもよい。図1は、本実施形態を遮熱材料の構成の一例を模式的に示す図である。遮熱材料10は、透明基材2と、構造体からなる層1と、ハードコート層3とをこの順に備えている。また、窓ガラスに遮熱材料を固定し易くする観点から、遮熱材料10は、透明基材2の構造体からなる層1とは反対側の面に粘着層を有していてもよい。   From the viewpoint of durability and practicality of the heat shielding material, a hard coat layer may be formed on the outermost layer of the heat shielding material, which is the surface of the layer made of the structure opposite to the transparent substrate. FIG. 1 is a diagram schematically illustrating an example of the configuration of the heat shielding material according to the present embodiment. The heat shielding material 10 includes a transparent base material 2, a layer 1 made of a structure, and a hard coat layer 3 in this order. Further, from the viewpoint of facilitating fixing of the heat shielding material to the window glass, the heat shielding material 10 may have an adhesive layer on the surface opposite to the layer 1 made of the structure of the transparent substrate 2.

遮熱効果をより一層向上する観点から、透明基材2と構造体からなる層1との間には、赤外線吸収層及び/又は紫外線吸収層を設けることができる。また、透明基材2と構造体からなる層1との間には、赤外線反射層を設けることができる。耐光性の観点から、紫外線吸収剤をハードコート層、赤外線吸収層又は赤外線反射層に混ぜ込んでもよい。   From the viewpoint of further improving the heat shielding effect, an infrared absorption layer and / or an ultraviolet absorption layer can be provided between the transparent substrate 2 and the layer 1 made of the structure. Moreover, an infrared reflective layer can be provided between the transparent substrate 2 and the layer 1 made of the structure. From the viewpoint of light resistance, an ultraviolet absorber may be mixed into the hard coat layer, infrared absorption layer, or infrared reflection layer.

ハードコート層3としては、特に限定されないが、紫外線硬化樹脂を用いることができ、中でも、多官能アクリレートを含む紫外線硬化樹脂が好ましい。   Although it does not specifically limit as the hard-coat layer 3, An ultraviolet curable resin can be used, Among these, the ultraviolet curable resin containing polyfunctional acrylate is preferable.

赤外線吸収層は、特に限定されないが、赤外線吸収剤を含む紫外線硬化樹脂を用いることができる。赤外線吸収剤とは、例えば、アンチモンドープ酸化スズ、アンチモンドープ酸化亜鉛、ガリウムドープ酸化亜鉛、錫ドープ酸化インジウム等を用いることができる。なお、赤外線吸収層は、ハードコート層内に赤外線吸収剤を混ぜ込み形成することもできる。赤外線反射層としては、薄膜の多層膜による干渉効果を利用した赤外線反射層を用いることもできる。   Although an infrared absorption layer is not specifically limited, The ultraviolet curable resin containing an infrared absorber can be used. As the infrared absorber, for example, antimony-doped tin oxide, antimony-doped zinc oxide, gallium-doped zinc oxide, tin-doped indium oxide, or the like can be used. The infrared absorption layer can be formed by mixing an infrared absorber in the hard coat layer. As the infrared reflection layer, an infrared reflection layer using an interference effect by a thin multilayer film can also be used.

紫外線吸収層としては、特に限定されないが、紫外線吸収剤を含む紫外線硬化樹脂を用いることができる。紫外線吸収剤として、有機系紫外線吸収剤又は無機系紫外線吸収剤を用いることができる。有機系紫外線吸収剤としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、ヒドロキシフェニルトリアジン誘導体等が挙げられる。無機系紫外線吸収剤としては、例えば、酸化セリウム、酸化亜鉛、酸化チタン等が挙げられる。なお、紫外線吸収層は、ハードコート層内に紫外線吸収剤を混ぜ込み形成することもできる。   Although it does not specifically limit as an ultraviolet absorption layer, The ultraviolet curable resin containing a ultraviolet absorber can be used. As the ultraviolet absorber, an organic ultraviolet absorber or an inorganic ultraviolet absorber can be used. Examples of the organic ultraviolet absorber include 2-hydroxy-4-methoxybenzophenone and hydroxyphenyltriazine derivatives. Examples of the inorganic ultraviolet absorber include cerium oxide, zinc oxide, and titanium oxide. The ultraviolet absorbing layer can be formed by mixing an ultraviolet absorber in the hard coat layer.

本実施形態の遮熱材料の可視光透過率は、50%以上である。これにより、例えば、遮熱材料を窓に貼りつけた場合、外部の熱は遮断するが、可視光は透過するため、室内の明るさを保つことができる。遮熱効果を向上する観点から、遮熱材料の可視光透過率は、85%以下が好ましく、80%以下がより好ましい。   The visible light transmittance of the heat shielding material of this embodiment is 50% or more. Thus, for example, when a heat shielding material is attached to a window, external heat is blocked, but visible light is transmitted, so that the brightness of the room can be maintained. From the viewpoint of improving the heat shielding effect, the visible light transmittance of the heat shielding material is preferably 85% or less, more preferably 80% or less.

本実施形態の遮熱材料は、例えば、日射の遮熱のために窓ガラスに貼りつけて室内の温度上昇を抑えるため、又は、屋根の上に塗布し、屋内の室温上昇を抑えるために用いることができる。本実施形態の遮熱材料は、電気デバイス内の局所的な熱の制御等にも用いることができる。   The heat-shielding material of this embodiment is used, for example, in order to suppress indoor temperature rise by sticking to a window glass to shield solar radiation, or to apply on a roof and suppress indoor temperature rise. be able to. The heat shielding material of this embodiment can also be used for local heat control in an electric device.

以下に本実施形態をより具体的に説明した実施例を例示する。ただし、本発明はその要旨を超えない限りにおいて以下の実施例に限定されるものではない。   Examples of the present embodiment will be described below more specifically. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

実施例及び比較例における物性の評価は以下の手順で行った。   Evaluation of physical properties in Examples and Comparative Examples was performed according to the following procedure.

<粒子の平均粒径の算出>
粒子のSEM写真又はTEM写真から、視野内の20個の粒子の直径を求めその平均値を平均粒径とした。
<Calculation of average particle diameter of particles>
From the SEM photograph or TEM photograph of the particles, the diameter of 20 particles in the field of view was determined and the average value was taken as the average particle diameter.

<表面改質無機化合物粒子の分析方法>
・重合開始基の含有量の分析方法
得られた表面改質無機化合物粒子を乾燥させた粉末中のハロゲン原子の量(質量%)を蛍光X線分析装置(XRF)(株式会社リガク製、商品名「ZSX」)を用いて測定した。無機化合物粒子単位表面積当たりの重合開始基の修飾量は、以下の式より算出した。
(1)重合開始基の修飾量(本)=表面改質無機化合物粒子量(g)×(表面改質無機化合物粒子中のBr量(質量%)÷100÷79.9+表面改質無機化合物粒子中のCl量(質量%)÷100÷35.5)×6.022×1023
(2)無機化合物粒子の表面積(nm)=無機化合物粒子量(g)×無機化合物粒子の比表面積(m/g)×1018
(3)無機化合物粒子単位表面積当たりの重合開始基の修飾量(本/nm)=(1)÷(2)
<Analytical method of surface-modified inorganic compound particles>
Method for analyzing the content of polymerization initiating groups The amount (% by mass) of halogen atoms in the powder obtained by drying the obtained surface-modified inorganic compound particles was measured using an X-ray fluorescence analyzer (XRF) (Rigaku Corporation, product Name “ZSX”). The modification amount of the polymerization initiating group per unit surface area of the inorganic compound particles was calculated from the following formula.
(1) Modification amount of polymerization initiating group (present) = surface modified inorganic compound particle amount (g) × (Br amount (mass%) in surface modified inorganic compound particles) ÷ 100 ÷ 79.9 + surface modified inorganic compound Cl amount (% by mass) in particles ÷ 100 ÷ 35.5) × 6.022 × 10 23
(2) Surface area of inorganic compound particles (nm 2 ) = Amount of inorganic compound particles (g) × Specific surface area of inorganic compound particles (m 2 / g) × 10 18
(3) Modification amount of polymerization initiating group per unit surface area of inorganic compound particles (lines / nm 2 ) = (1) ÷ (2)

<ポリマーの分子量及び分子量の分散度>
ポリマーの分子量及び分子量の分散度を、以下の方法で測定した。
<Polymer molecular weight and molecular weight dispersion>
The molecular weight of the polymer and the degree of molecular weight dispersion were measured by the following method.

(前処理)
無機化合物粒子に結合したポリマーの分子量測定のための前処理として、以下の手順に従って、有機無機複合粒子に対してフッ化水素酸処理(以下、「HF処理」という。)を施した。
(1)テフロン(登録商標)製回転子を入れたテフロン(登録商標)製、又は、任意の樹脂製容器に、3mLのトルエン(和光純薬工業株式会社製)と、23.4mgの相間移動触媒(Aldrich社製、「Aliquat336」)を加え、攪拌して、相間移動触媒がトルエンに溶解した溶液を得る。
(2)溶液に有機無機複合粒子のサンプル300mgを加え、攪拌により溶解させる。
(3)得られた溶液から2mLを取り出し、2mLのフッ化水素酸(和光純薬工業株式会社製、濃度:46〜48%)を加え、室温で24時間攪拌して、無機化合物粒子からポリマーを分離する。
(4)上記溶液を、炭酸カルシウム(和光純薬工業株式会社製)の水溶液によって中和する。この時、相分離が困難な場合は、更にトルエン2mLを加えて遠心分離した溶液を使用してもよい。
(Preprocessing)
As a pretreatment for measuring the molecular weight of the polymer bonded to the inorganic compound particles, hydrofluoric acid treatment (hereinafter referred to as “HF treatment”) was performed on the organic-inorganic composite particles according to the following procedure.
(1) 3 mL of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) and 23.4 mg of phase transfer in a Teflon (registered trademark) or any resin container containing a Teflon (registered trademark) rotor A catalyst (“Aliquat 336” manufactured by Aldrich) is added and stirred to obtain a solution in which the phase transfer catalyst is dissolved in toluene.
(2) A 300 mg sample of organic-inorganic composite particles is added to the solution and dissolved by stirring.
(3) 2 mL is taken out from the obtained solution, 2 mL of hydrofluoric acid (manufactured by Wako Pure Chemical Industries, Ltd., concentration: 46 to 48%) is added, and the mixture is stirred at room temperature for 24 hours. Isolate.
(4) The above solution is neutralized with an aqueous solution of calcium carbonate (Wako Pure Chemical Industries, Ltd.). At this time, if phase separation is difficult, a solution obtained by further adding 2 mL of toluene and centrifuging may be used.

(分子量測定)
上記前処理で得られたサンプル溶液について、下記の条件によりゲルパーミエーションクロマトグラフィー(GPC)の測定を行った。測定結果から、ポリメタクリル酸メチルスタンダード(昭和電工製 Shoedex STANDARD)を用いて作成した検量線に基づいて、メインピークのポリメタクリル酸メチル換算の数平均分子量(Mn)及び質量平均分子量(Mw)を求めた。
・装置:東ソー株式会社製、「HLC−8220GPC」
・検出器:RI検出器
・移動相:テトラヒドロフラン
・流量:1mL/分
・カラム:東ソー株式会社製の「TSKgel GMHXL」を2本、「TSKgel G3000HXL」を1本、「TSKgel G2000HXL」を1本連結したものを用いた。
・カラム温度:40℃
(Molecular weight measurement)
About the sample solution obtained by the said pre-processing, the measurement of the gel permeation chromatography (GPC) was performed on condition of the following. From the measurement results, the number average molecular weight (Mn) and mass average molecular weight (Mw) in terms of polymethyl methacrylate of the main peak are calculated based on a calibration curve created using polymethyl methacrylate standard (Shodedex STANDARD manufactured by Showa Denko). Asked.
・ Equipment: “HLC-8220GPC” manufactured by Tosoh Corporation
Detector: RI detector Mobile phase: Tetrahydrofuran Flow rate: 1 mL / min Column: Tosoh 2 made of "TSKgel GMH XL" Inc., one of "TSKgel G3000H XL" and "TSKgel G2000H XL" One connected was used.
-Column temperature: 40 ° C

(分子量分布)
ポリメタクリル酸メチル換算の数平均分子量(Mn)及び質量平均分子量(Mw)を以下の式に代入して、ポリマーの分子量分布を求めた。
分子量分布=Mw/Mn
(Molecular weight distribution)
The number average molecular weight (Mn) and mass average molecular weight (Mw) in terms of polymethyl methacrylate were substituted into the following formula to determine the molecular weight distribution of the polymer.
Molecular weight distribution = Mw / Mn

<有機無機複合粒子の無機化合物含有量の測定>
熱重量測定装置により、以下の条件で有機無機複合粒子を加熱したときの質量減量を求めた。
・装置:株式会社島津製作所、「TGA−50」
・雰囲気:1%酸素含有窒素気流
・試料容器:アルミパン
・温度プログラム:25℃スタート→20℃/分で昇温→500℃に到達→500℃で20分間保持した。
次いで、測定された質量減量(質量%)を以下の式に代入し、無機化合物粒子の含有量(質量%)を算出した。
無機化合物含有量(質量%)=100−質量減量(質量%)
<Measurement of inorganic compound content of organic-inorganic composite particles>
The mass loss when the organic-inorganic composite particles were heated under the following conditions was determined using a thermogravimetric apparatus.
・ Equipment: Shimadzu Corporation, “TGA-50”
Atmosphere: 1% oxygen-containing nitrogen stream Sample container: aluminum pan Temperature program: Start at 25 ° C. → Temperature rise at 20 ° C./minute→Achieve 500 ° C. → Hold at 500 ° C. for 20 minutes.
Subsequently, the measured weight loss (mass%) was substituted into the following formula to calculate the content (mass%) of inorganic compound particles.
Inorganic compound content (mass%) = 100-mass loss (mass%)

<Tgの測定>
ポリマーのTgは、汎用のポリマーについては例えば、Polymer Handbook 第3版(John Wiley&Sons)などに記載の公知の値を用いることもできるが、有機無機複合粒子のTgを測定して代用してもかまわない。その場合、示差走査熱量測定装置(DSC)により、以下の条件で有機無機複合体のTgを求めた。
・装置:PerkinElmer社製、「Diamond DSC」
・温度プログラム:−40℃スタート→20分間保持→20℃/分で昇温→200℃
<Measurement of Tg>
As the polymer Tg, a known value described in, for example, Polymer Handbook 3rd Edition (John Wiley & Sons) can be used for a general-purpose polymer, but the Tg of organic-inorganic composite particles may be used instead. Absent. In that case, Tg of the organic-inorganic composite was calculated | required with the following conditions with the differential scanning calorimeter (DSC).
・ Device: “Diamond DSC” manufactured by PerkinElmer
・ Temperature program: Start at -40 ℃ → Hold for 20 minutes → Increase temperature at 20 ℃ / minute → 200 ℃

<構造体の成形方法>
圧縮成形機を用いて、以下の条件で有機無機複合体粒子を真空熱プレスすることによって、厚み約40〜180μmの構造体を作製した。
真空熱プレス用圧縮成形機
・装置:株式会社神藤金属工業所製、「SFV−30」
・温度:160〜255℃
・プレス圧:3〜9MPa
・真空度:5kPa以下
冷却用圧縮成形機
・装置:株式会社神藤金属工業所製、「AYS.10」
・冷却水温度:24℃
・プレス圧:70kgf/cm
<Method of forming structure>
Using a compression molding machine, the organic-inorganic composite particles were vacuum hot pressed under the following conditions to produce a structure having a thickness of about 40 to 180 μm.
Compression molding machine for vacuum hot press ・ Apparatus: “SFV-30” manufactured by Kamito Metal Industry Co., Ltd.
-Temperature: 160-255 ° C
・ Pressing pressure: 3-9MPa
・ Vacuum degree: 5 kPa or less Cooling compression molding machine / equipment: “AYS.
・ Cooling water temperature: 24 ℃
・ Pressing pressure: 70 kgf / cm 2

カプトンフィルム上にプレス型枠(10cm×10cm、厚さ:40〜180μm)を置き、その枠内に有機無機複合粒子の粉末を型枠の厚みに応じて0.2〜2g置き、上からカプトンフィルムで挟んだ。さらに、アルミ板(厚さ:0.1mm)でカプトンフィルムの両面からはさみ、アルミ板の両面をSUS板(厚さ:3mm)で挟み、サンプルを作製した。作製したサンプルを所定温度の真空圧縮成形機SFV−30に投入し、真空引きを開始した(プレス開始時の真空度は5kPa以下)。サンプルを投入後、8分間予熱しその後、数MPaのプレス圧を1〜2秒かけたのち、直ぐに圧を開放し、成形時の気泡を除去した。この気泡抜きを二回繰り返したのち、所定プレス圧にて10秒間プレスし、圧を開放し、真空をブレイクし、大気圧に戻ったところで真空圧縮成形機SFV−30からカプトンフィルム、アルミ板、SUS板に挟まれた状態のサンプルを取り出した。サンプルを冷却用圧縮成形機AYS.10に投入し、70kgf/cmの圧をかけて2分30秒間冷却させた。その後、圧を開放し、サンプルを冷却用圧縮成形機から取り出し、構造体をカプトンフィルムから剥がしとった。 A press mold (10 cm × 10 cm, thickness: 40 to 180 μm) is placed on the Kapton film, and 0.2 to 2 g of the organic-inorganic composite particle powder is placed in the frame in accordance with the thickness of the mold, and Kapton from above. I sandwiched it with film. Further, a sample was prepared by sandwiching an aluminum plate (thickness: 0.1 mm) from both sides of the Kapton film and sandwiching both sides of the aluminum plate with an SUS plate (thickness: 3 mm). The prepared sample was put into a vacuum compression molding machine SFV-30 at a predetermined temperature, and evacuation was started (the degree of vacuum at the start of pressing was 5 kPa or less). After the sample was put in, it was preheated for 8 minutes, after which a press pressure of several MPa was applied for 1 to 2 seconds, and then the pressure was released immediately to remove bubbles during molding. After repeating this degassing twice, press for 10 seconds at a predetermined press pressure, release the pressure, break the vacuum, and return to atmospheric pressure, from the vacuum compression molding machine SFV-30, Kapton film, aluminum plate, A sample sandwiched between SUS plates was taken out. The sample was compressed by a compression molding machine AYS. 10 was applied, and a pressure of 70 kgf / cm 2 was applied and the mixture was cooled for 2 minutes and 30 seconds. Then, the pressure was released, the sample was taken out from the cooling compression molding machine, and the structure was peeled off from the Kapton film.

<透明基材上に構造体からなる層を形成する方法>
有機無機複合粒子をアニソールに溶解させ、20質量%の分散液とした。分散液をセレクトコーター(オーエスジーシステムプロダクツ株式会社製 セレクトローラー OSP−150)を用いて、透明基材であるPENフィルム(帝人デュポンフィルム株式会社製 テオネックスQ65HA 100μm厚)上に塗布した後、130℃の乾燥機(ヤマト科学株式会社製、DK63)で10分間乾燥させ、有機無機複合粒子からなる塗膜を得た。
<Method of forming a layer composed of a structure on a transparent substrate>
Organic-inorganic composite particles were dissolved in anisole to prepare a 20% by mass dispersion. Using a select coater (select roller OSP-150 manufactured by OSG System Products Co., Ltd.), the dispersion liquid was applied onto a PEN film (Teonex Q65HA 100 μm thickness manufactured by Teijin DuPont Films Co., Ltd.), which is a transparent substrate. The film was dried for 10 minutes with a dryer (Yamato Scientific Co., Ltd., DK63) to obtain a coating film composed of organic-inorganic composite particles.

乾燥後の塗膜を、上述の真空熱プレス用圧縮成形機及び冷却用圧縮成形機を用い、以下の手順で成形した。乾燥後の塗膜の塗布面にカプトンフィルムを置き、2枚のアルミ板で両面から挟んだ後、2枚のアルミ板をSUS板(厚さ:3mm)で更に挟み、サンプルを作製した。作製したサンプルを230℃の真空圧縮成形機SFV−30に投入し、真空引きを開始した(プレス開始時の真空度は5kPa以下)。サンプルを投入後、5分間予熱し、その後、7MPaにて10秒間プレスした。その後、圧を開放して真空をブレイクし、大気圧に戻ったところで真空圧縮成形機SFV−30からカプトンフィルム、アルミ板、SUS板に挟まれた状態のサンプルを取り出した。サンプルを冷却用圧縮成形機AYS.10に投入し、70kgf/cmの圧をかけて2分30秒間冷却させた。その後、圧を開放し、サンプルを冷却用圧縮成形機から取り出し、表面のカプトンフィルムを剥がし、透明基材上に構造体からなる層を形成した。 The dried coating film was molded according to the following procedure using the above-mentioned vacuum hot press compression molding machine and cooling compression molding machine. A Kapton film was placed on the coated surface of the coated film after drying and sandwiched from both sides with two aluminum plates, and then the two aluminum plates were further sandwiched with a SUS plate (thickness: 3 mm) to prepare a sample. The prepared sample was put into a 230 ° C. vacuum compression molding machine SFV-30, and evacuation was started (the degree of vacuum at the start of pressing was 5 kPa or less). The sample was preheated for 5 minutes and then pressed at 7 MPa for 10 seconds. Thereafter, the pressure was released to break the vacuum, and when the pressure returned to atmospheric pressure, a sample sandwiched between the Kapton film, the aluminum plate, and the SUS plate was taken out from the vacuum compression molding machine SFV-30. The sample was compressed by a compression molding machine AYS. 10 was applied, and a pressure of 70 kgf / cm 2 was applied and the mixture was cooled for 2 minutes and 30 seconds. Thereafter, the pressure was released, the sample was taken out from the cooling compression molding machine, the surface Kapton film was peeled off, and a layer made of a structure was formed on the transparent substrate.

<構造体の平均屈折率測定>
屈折率測定装置を使用し、平均屈折率を下記条件で測定した。
・装置:Metricon社製、「MODEL 2010 PRISM COUPLER」
・モード:バルクモード(ただし、透明基材上に形成された構造体の場合は、デュアル フィルムモードで構造体の屈折率を測定した。)
・測定波長:633nm
<Measurement of average refractive index of structure>
Using a refractive index measuring device, the average refractive index was measured under the following conditions.
-Equipment: "METEL 2010 PRISM COUPLER" manufactured by Metricon
-Mode: Bulk mode (however, in the case of a structure formed on a transparent substrate, the refractive index of the structure was measured in dual film mode.)
・ Measurement wavelength: 633 nm

このようにして測定された構造体の屈折率を平均屈折率neffとする。なお、サンプルの形状などのため前記装置で実測ができない場合は、粒子及び化合物の各々の屈折率n、n及び各々の体積分率V、Vを用いて下記式(4)より平均屈折率neffを算出した。
eff=n×V+n×V(4)
The refractive index of the structure measured in this way is defined as an average refractive index n eff . In the case it can not be measured by the device such as for example the shape, each of the refractive index n a of particles and compounds, n b and each of the volume fraction V a, the following equation using the V b from (4) The average refractive index n eff was calculated.
n eff = n a × V a + n b × V b (4)

なお、各々の体積分率V、Vは、以下の方法で求めた。前述の構造体中の無機化合物粒子の含有量から粒子と化合物の重量分率Wa及びWbが求まる。粒子及び化合物の密度をそれぞれA、Bとすると、下記式(5)及び下記式(6)よりV及びVを算出した。
=(W/A)÷(W/A+W/B) (5)
=(W/B)÷(W/A+W/B) (6)
Incidentally, each of the volume fraction V a, V b was determined by the following method. From the content of the inorganic compound particles in the aforementioned structure, the weight fractions Wa and Wb of the particles and the compound can be obtained. V a and V b were calculated from the following formula (5) and the following formula (6) where the densities of the particles and the compound were A and B, respectively.
V a = (W a / A) ÷ (W a / A + W b / B) (5)
V b = (W b / B ) ÷ (W a / A + W b / B) (6)

<反射率の測定>
下記分光光度計で、波長240〜2600nmの範囲で、反射率を測定した。
・装置:株式会社日立ハイテクノロジーズ製、「日立分光光度計U−4100」:固体試料測定システム、5°正反射測定付属装置を使用し反射率を測定した。
・測定:基準ミラー(210−7754)でベースライン補正を行った後、サンプルの裏面に黒のビニールテープを貼り、裏面の反射の影響をなくした状態で絶対反射率を測定した。入射角は、θ=5°で測定を行った。UV/可視光領域はスキャンスピード300nm/min、スリット 6nm、近赤外領域はスキャンスピード700nm/min、スリット20nmで240〜2600nmの範囲を1nm間隔で測定した。
<Measurement of reflectance>
The reflectance was measured in the wavelength range of 240 to 2600 nm with the following spectrophotometer.
-Apparatus: Hitachi High-Technologies Corporation, "Hitachi spectrophotometer U-4100": The reflectance was measured using a solid sample measurement system and a 5 [deg.] Regular reflection measurement accessory.
Measurement: After performing baseline correction with a reference mirror (210-7754), a black vinyl tape was applied to the back surface of the sample, and the absolute reflectance was measured in a state where the influence of reflection on the back surface was eliminated. The incident angle was measured at θ = 5 °. The UV / visible light region was measured at a scan speed of 300 nm / min and a slit of 6 nm, the near infrared region was scanned at a scan speed of 700 nm / min, and the slit was 20 nm and the range of 240 to 2600 nm was measured at 1 nm intervals.

<可視光透過率の測定>
JIS A5759(建築窓ガラスフィルム)に基づき、分光光度計を用いる手法で測定した。下記分光度計で、波長240〜2600nmの範囲で透過率を測定し、JIS A5759に基づき可視光透過率を算出した。
・装置:株式会社日立ハイテクノロジーズ製、「日立分光光度計U−4100」、固体試料測定システムの応用計測モードで可視光透過率を算出した。
<Measurement of visible light transmittance>
Based on JIS A5759 (architectural window glass film), it was measured by a technique using a spectrophotometer. With the following spectrophotometer, the transmittance was measured in the wavelength range of 240 to 2600 nm, and the visible light transmittance was calculated based on JIS A5759.
Apparatus: Visible light transmittance was calculated in an applied measurement mode of Hitachi High-Technologies Corporation, “Hitachi Spectrophotometer U-4100”, a solid sample measurement system.

<構造体の断面SEM観察>
・前処理
構造体を、株式会社日立ハイテクノロジーズ製、「HITACHI E−3500」イオンミリング装置にて、ブロードイオンビーム(BIB)加工法により断面を作製した。その後、試料の観察面(表面、断面)に導電化処理を実施した。
<SEM observation of cross section of structure>
-Pre-processing The cross section was produced for the structure by the broad ion beam (BIB) processing method by the Hitachi High-Technologies Corporation make "HITACHI E-3500" ion milling apparatus. Thereafter, a conductive treatment was performed on the observation surface (surface, cross section) of the sample.

・SEM観察
株式会社日立ハイテクノロジーズ製「HITACHI S−4800」(加速電圧1.0kV)にて各試料の表面及び断面のSEM観察を行った。
-SEM observation SEM observation of the surface and cross section of each sample was performed with "HITACHI S-4800" (acceleration voltage 1.0 kV) manufactured by Hitachi High-Technologies Corporation.

<平均粒子間距離dの算出>
構造体の表層付近のBIB加工断面SEM写真から粒子間の平均粒子間距離dを求めた。図2は、構造体を構成する粒子間の平均粒子間距離dを模式的に示す図である。具体的には、BIB加工断面SEM写真の最表層から深さ方向に5層粒子が並んでいる個所を、任意に3か所選定した。粒子径が±10%以内のバラつきで揃っている個所について、3つの粒子の中心を通るように表層と平行線を5本引いた。各層の層間距離の平均値を粒子間距離とし、他の2か所で同様に求めた粒子間距離との平均値を最終的な平均粒子間距離dとした。
<Calculation of average interparticle distance d>
The average inter-particle distance d between particles was determined from a BIB processed cross-sectional SEM photograph near the surface layer of the structure. FIG. 2 is a diagram schematically showing an average inter-particle distance d between particles constituting the structure. Specifically, three locations where five-layer particles are arranged in the depth direction from the outermost layer of the BIB processed cross-sectional SEM photograph were arbitrarily selected. About the part where the particle diameter is uniform within ± 10%, five surface layers and parallel lines were drawn so as to pass through the centers of the three particles. The average value of the inter-layer distances of the respective layers was defined as the inter-particle distance, and the average value of the inter-particle distances obtained in the same manner at the other two locations was defined as the final average inter-particle distance d.

<構造体の膜厚の測定>
構造体の膜厚は、株式会社ミツトヨ製、ABSデジマチックシックネスゲージ(コードNo.547−401)にて測定した。
<Measurement of film thickness of structure>
The film thickness of the structure was measured with an ABS Digimatic Thickness Gauge (Code No. 547-401) manufactured by Mitutoyo Corporation.

<遮熱効果の測定>
遮熱材料の遮熱効果は、図3に示す測定系を用いて測定した。発砲スチロール製クールボックス5(アズワン製、F−5)外寸法 250mm×180mm×高さ173mm、内寸法 196mm×130mm×高さ124mmの上に40cm離して、写真照明用アイランプ6(岩崎電気製、フラッド(散光型)PRF300W)をセットした。クールボックス5のふたには、直径22mmの穴をあけ、0.7mm厚のガラス板7を置き、その上に測定用サンプル8を置いた。なお、市販品又は遮熱フィルムの場合、ガラス板に張り付けて測定に用いた。クールボックスの内部には、直径22mmの穴の真下に来るように温湿度データロガー9(和光純薬工業製、THMchip THM10−TH)を穴の直下50mmの高さに来るように置き、写真照明用アイランプの点灯後から1分おきに60分間内部の温度を測定した。リファレンスとして、測定用サンプルを置かず0.7mmのガラス板のみで同様なセットを作製し、クールボックス内部の温度を測定した。リファレンスの温度から測定用サンプルを用いた時のクールボックス内の温度を引いて温度差を求め、温度差が大きいほど遮熱効果が高いとした。
<Measurement of heat shielding effect>
The heat shielding effect of the heat shielding material was measured using the measurement system shown in FIG. Styrofoam cool box 5 (manufactured by ASONE, F-5) Outer dimensions 250mm x 180mm x Height 173mm, Inner dimensions 196mm x 130mm x Height 124mm 40cm away, photographic lighting eyelamp 6 (Iwasaki Electric) , Flood (diffuse type) PRF300W) was set. A hole with a diameter of 22 mm was formed in the lid of the cool box 5, a 0.7 mm thick glass plate 7 was placed thereon, and a measurement sample 8 was placed thereon. In the case of a commercially available product or a thermal barrier film, it was attached to a glass plate and used for measurement. Inside the cool box, place the temperature / humidity data logger 9 (manufactured by Wako Pure Chemical Industries, THMchip THM10-TH) so that it is directly below the hole with a diameter of 22 mm so that it is at a height of 50 mm directly under the hole. The internal temperature was measured for 60 minutes every minute after the eye lamp was turned on. As a reference, a similar set was prepared using only a 0.7 mm glass plate without placing a measurement sample, and the temperature inside the cool box was measured. The temperature difference was obtained by subtracting the temperature in the cool box when the measurement sample was used from the reference temperature, and the greater the temperature difference, the higher the heat shielding effect.

<電磁波透過性の評価方法>
電磁波の透過性は、ASTM D4935に基づき、アジレントテクノロージー社製 8510XFネットワークアナライザーを用いて、サンプルフィルム又はシートを長さ5cm、幅1cmの短冊状に切断し、導波管内に装着して、3GHz〜100MHzの周波数で掃引し、平均の電磁波透過性を測定した。電磁波透過性が−5dB以上であれば実用上問題ないため、評価を○とし、電磁波透過性が−5dBを下回るものを×と評価した。
<Evaluation method of electromagnetic wave transmission>
Based on ASTM D4935, the electromagnetic wave permeability is 3 GHz by cutting a sample film or sheet into a strip of 5 cm length and 1 cm width using an 8510XF network analyzer manufactured by Agilent Technologies. The average electromagnetic wave permeability was measured by sweeping at a frequency of ˜100 MHz. If the electromagnetic wave permeability was −5 dB or more, there was no practical problem. Therefore, the evaluation was “good”, and the electromagnetic wave permeability was less than −5 dB.

<原材料>
実施例及び比較例で使用した原材料の内容を(1)〜(7)に示す。
(1)無機化合物粒子溶液
(1−1)200nm球状シリカ溶液:平均粒径:202nm、日産化学工業株式会社製、「MEK−ST−2040」、SiO含有量:40質量%、屈折率:1.45、比表面積14m/g(窒素吸着によるBET法で測定)
(1−2)50nm球状シリカ溶液:平均粒径:48nm、日産化学工業株式会社製、「MEK−ST−L」、SiO含有量:40質量%、屈折率:1.45、比表面積61m/g(窒素吸着によるBET法で測定)
<Raw materials>
The contents of the raw materials used in the examples and comparative examples are shown in (1) to (7).
(1) Inorganic compound particle solution (1-1) 200 nm spherical silica solution: average particle diameter: 202 nm, manufactured by Nissan Chemical Industries, Ltd., “MEK-ST-2040”, SiO 2 content: 40% by mass, refractive index: 1.45, specific surface area 14 m 2 / g (measured by BET method by nitrogen adsorption)
(1-2) 50 nm spherical silica solution: average particle diameter: 48 nm, manufactured by Nissan Chemical Industries, Ltd., “MEK-ST-L”, SiO 2 content: 40 mass%, refractive index: 1.45, specific surface area 61 m 2 / g (measured by the BET method with nitrogen adsorption)

(2)重合用カップリング剤
(2−1)3−(2−ブロモイソブチロキシ)プロピルジメチルクロロシラン(以下、「BPS」という。
(2) Coupling agent for polymerization (2-1) 3- (2-Bromoisobutoxy) propyldimethylchlorosilane (hereinafter referred to as “BPS”).

公知の方法(特開2006−063042号公報等)を参考に、下記化学式(8)で表されるBPSを合成した。
BPS represented by the following chemical formula (8) was synthesized with reference to a known method (Japanese Patent Laid-Open No. 2006-063042).

(3)シランカップリング剤
(3−1)1,1,1,3,3,3−ヘキサメチルジシラザン(以下、「HMDS」という。):東京化成工業株式会社製
(3) Silane coupling agent (3-1) 1,1,1,3,3,3-hexamethyldisilazane (hereinafter referred to as “HMDS”): manufactured by Tokyo Chemical Industry Co., Ltd.

(4)重合触媒
(4−1)臭化銅(I)(CuBr):和光純薬工業株式会社製
(4−2)臭化銅(II)(CuBr):和光純薬工業株式会社製
(4) Polymerization catalyst (4-1) Copper bromide (I) (CuBr): Wako Pure Chemical Industries, Ltd. (4-2) Copper bromide (II) (CuBr 2 ): Wako Pure Chemical Industries, Ltd.

(5)配位子
(5−1)N,N,N’,N”,N”−ペンタメチルジエチレントリアミン(以下、「PMDETA」という。):Aldrich社製
(5) Ligand (5-1) N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine (hereinafter referred to as “PMDETA”): manufactured by Aldrich

(6)モノマー
(6−1)メタクリル酸ベンジル(以下、「BzMA」という。):和光純薬工業株式会社製。ポリ(メタクリル酸ベンジル)の屈折率は1.57であり、Tgは54℃である。
(6) Monomer (6-1) Benzyl methacrylate (hereinafter referred to as “BzMA”): manufactured by Wako Pure Chemical Industries, Ltd. Poly (benzyl methacrylate) has a refractive index of 1.57 and a Tg of 54 ° C.

(7)溶剤等
(7−1)メタノール:和光純薬工業株式会社製
(7−2)アニソール:和光純薬工業株式会社製
(7−3)ヘキサン:和光純薬工業株式会社製
(7) Solvents, etc. (7-1) Methanol: Wako Pure Chemical Industries, Ltd. (7-2) Anisole: Wako Pure Chemical Industries, Ltd. (7-3) Hexane: Wako Pure Chemical Industries, Ltd.

<表面改質無機化合物粒子の合成>
(表面改質無機化合物粒子Aの合成)
冷却管を接続し、回転子を入れた二口フラスコの内部を、窒素置換した。窒素下で、フラスコ内に200nm球状シリカ溶液(日産化学工業株式会社製、「MEK−ST−2040」)を200g導入し、更に、14.3mLのBPSを導入し、攪拌を開始した。フラスコを80℃のオイルバスに浸し、攪拌しながら2時間反応を行った。窒素下で14.3mLのHMDSを導入した。室温で2時間攪拌後、80℃で2時間攪拌して反応を行い、反応液を室温まで冷却した。反応液を1Lのヘキサンに投入後、遠沈管に移し、遠心分離機(株式会社久保田製作所製、型式:7700)を用いて、8500rpm、10℃で、30分間、遠心分離を行った。遠沈管内の沈殿物を少量のMEKで溶解させて、更にヘキサンに投入後、遠心分離を行なった。この操作を計3回行った後、遠沈管内の沈殿物を60℃、真空下で、12時間乾燥させて、表面改質無機化合物粒子Aを得た。得られた表面改質無機化合物粒子AのXRFにより求めたBr含有率は0.11質量%で単位面積当たりの本数は、0.61本/nmであった。
<Synthesis of surface modified inorganic compound particles>
(Synthesis of surface-modified inorganic compound particles A)
A condenser tube was connected, and the inside of the two-necked flask containing the rotor was purged with nitrogen. Under nitrogen, 200 g of a 200 nm spherical silica solution (manufactured by Nissan Chemical Industries, Ltd., “MEK-ST-2040”) was introduced into the flask, and 14.3 mL of BPS was further introduced, and stirring was started. The flask was immersed in an 80 ° C. oil bath and reacted for 2 hours with stirring. 14.3 mL of HMDS was introduced under nitrogen. After stirring at room temperature for 2 hours, the reaction was performed by stirring at 80 ° C. for 2 hours, and the reaction solution was cooled to room temperature. The reaction solution was poured into 1 L of hexane, transferred to a centrifuge tube, and centrifuged at 8500 rpm, 10 ° C. for 30 minutes using a centrifuge (manufactured by Kubota Corporation, model: 7700). The precipitate in the centrifuge tube was dissolved with a small amount of MEK, and further poured into hexane, followed by centrifugation. After performing this operation three times in total, the precipitate in the centrifuge tube was dried at 60 ° C. under vacuum for 12 hours to obtain surface-modified inorganic compound particles A. The obtained surface-modified inorganic compound particles A had a Br content of 0.11% by mass and a number per unit area of 0.61 / nm 2 as determined by XRF.

(表面改質無機化合物粒子Bの合成)
冷却管を接続し、回転子を入れた二口フラスコの内部を、窒素置換した。窒素下で、フラスコ内に50nm球状シリカ溶液(日産化学工業株式会社製、「MEK−ST−L)を272.2g導入し、更に、37mLのBPSを導入し、攪拌を開始した。フラスコを80℃のオイルバスに浸し、攪拌しながら2時間反応を行った。窒素下で37mLのHMDSを導入した。室温で2時間攪拌後、80℃で2時間攪拌して反応を行い、反応液を室温まで冷却した。反応液を1Lのヘキサンに投入後、遠沈管に移し、遠心分離機(株式会社久保田製作所製、型式:7700)を用いて、8500rpm、10℃で、30分間、遠心分離を行った。遠沈管内の沈殿物を少量のMEKで溶解させて、更にヘキサンに投入後、遠心分離を行なった。この操作を計3回行った後、遠沈管内の沈殿物を60℃、真空下で、12時間乾燥させて、表面改質無機化合物粒子Bを得た。得られた表面改質無機化合物粒子BのXRFにより求めたBr含有率は0.18質量%で単位面積当たりの本数は、0.25本/nmであった。
(Synthesis of surface-modified inorganic compound particles B)
A condenser tube was connected, and the inside of the two-necked flask containing the rotor was purged with nitrogen. Under nitrogen, 272.2 g of a 50 nm spherical silica solution (manufactured by Nissan Chemical Industries, Ltd., “MEK-ST-L”) was introduced into the flask, and 37 mL of BPS was further introduced, followed by stirring. The reaction was carried out for 2 hours with stirring in an oil bath at 0 ° C. 37 mL of HMDS was introduced under nitrogen, stirred at room temperature for 2 hours, and then stirred at 80 ° C. for 2 hours to carry out the reaction. The reaction solution was poured into 1 L of hexane, transferred to a centrifuge tube, and centrifuged at 8500 rpm, 10 ° C. for 30 minutes using a centrifuge (manufactured by Kubota Corporation, model: 7700). The precipitate in the centrifuge tube was dissolved in a small amount of MEK, and then poured into hexane, followed by centrifugation.After performing this operation three times in total, the precipitate in the centrifuge tube was vacuumed at 60 ° C. Dry for 12 hours under Thus, surface modified inorganic compound particles B were obtained, and the Br content obtained by XRF of the obtained surface modified inorganic compound particles B was 0.18% by mass, and the number per unit area was 0.25. / Nm 2 .

表面改質無機化合物粒子A及びBの特性を表1に示す。   Table 1 shows the characteristics of the surface-modified inorganic compound particles A and B.

[実施例1]
表面改質無機化合物粒子Aを用いて、以下の手順で有機無機複合粒子を作製した。
(1)回転子を入れたシュレンクフラスコに、180.7mgのCuBr、28.1mgのCuBrを加え、フラスコ内部を真空処理してから窒素置換する操作を3回繰り返して、フラスコ内を脱酸素した後、アニソールを20ml窒素下で導入し、攪拌した。
(2)上記溶液に、0.318mLのN,N,N’,N'',N''−ペンタメチルジエチレントリアミン(PMDETA)を加え、攪拌したものを触媒溶液とした。
(3)回転子を入れた別のシュレンクフラスコに、表面改質無機化合物粒子Aを10.0g投入した。
(4)(3)のフラスコ内部を真空処理してから窒素置換する操作を3回繰り返して、フラスコ内を脱酸素した。
(5)フラスコに、窒素下でアニソールを47.5mL導入し、更にBzMAを105mL導入し、90℃のオイルバスに浸し、攪拌した。
(6)更に、上記で調製した触媒溶液を5mL窒素下で導入後、反応液を攪拌し重合反応を行った。
(7)触媒投入後、1時間毎に反応液中の組成分析をGC測定より行い、BzMAの消費量を確認し、適宜、サンプリングしながら14時間重合した。
(8)重合終了後、シュレンクフラスコを氷浴で急冷し、反応液を1Lのメタノール中に攪拌しながらゆっくりと滴下し、10分間攪拌した。その後、30分間静置し十分沈殿したところで、上澄み液を除去し、再びメタノールを1L追加し、10分間攪拌した。再び、30分間静置し十分沈殿したところで、上澄み液を除去し、再度メタノールを1L追加し、10分間攪拌した。内容物を遠沈管に移し、遠心分離機(株式会社久保田製作所製、型式:7700)を用いて、8500rpm、10℃で、10分間、遠心分離を行った。遠沈管内の沈殿物を60℃、真空下で8時間乾燥させて、有機無機複合粒子Aを得た。得られた有機無機複合粒子Aは白色の粉末であった。
[Example 1]
Using the surface-modified inorganic compound particles A, organic-inorganic composite particles were produced by the following procedure.
(1) Add 180.7 mg of CuBr and 28.1 mg of CuBr 2 to a Schlenk flask containing a rotor, vacuum the inside of the flask, and then replace with nitrogen three times to deoxidize the flask. After that, anisole was introduced under 20 ml nitrogen and stirred.
(2) To the above solution, 0.318 mL of N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine (PMDETA) was added and stirred to obtain a catalyst solution.
(3) Into another Schlenk flask containing a rotor, 10.0 g of the surface-modified inorganic compound particles A was added.
(4) The operation of evacuating the inside of the flask in (3) and then substituting with nitrogen was repeated 3 times to deoxygenate the inside of the flask.
(5) 47.5 mL of anisole was introduced into the flask under nitrogen, and 105 mL of BzMA was further introduced, and the flask was immersed in an oil bath at 90 ° C. and stirred.
(6) Furthermore, after introducing the catalyst solution prepared above under 5 mL nitrogen, the reaction solution was stirred to conduct a polymerization reaction.
(7) After adding the catalyst, composition analysis in the reaction solution was performed by GC measurement every hour to confirm the consumption amount of BzMA, and polymerization was performed for 14 hours while appropriately sampling.
(8) After completion of the polymerization, the Schlenk flask was rapidly cooled in an ice bath, and the reaction solution was slowly added dropwise to 1 L of methanol while stirring, followed by stirring for 10 minutes. Then, when it left still for 30 minutes and settled sufficiently, the supernatant liquid was removed, 1 L of methanol was added again, and it stirred for 10 minutes. When the mixture was allowed to stand again for 30 minutes and sufficiently precipitated, the supernatant was removed, 1 L of methanol was added again, and the mixture was stirred for 10 minutes. The contents were transferred to a centrifuge tube and centrifuged at 8500 rpm, 10 ° C. for 10 minutes using a centrifuge (manufactured by Kubota Corporation, model: 7700). The precipitate in the centrifuge tube was dried at 60 ° C. under vacuum for 8 hours to obtain organic-inorganic composite particles A. The obtained organic / inorganic composite particles A were white powder.

有機無機複合粒子Aの無機化合物含有率をTGA−50で求めたところ22.5質量%であった。また、有機無機複合粒子Aの分子量及び分子量分布をHF処理後のGPCで測定したところMn=90000、Mw/Mn=1.40であった。   It was 22.5 mass% when the inorganic compound content rate of the organic inorganic composite particle A was calculated | required by TGA-50. Moreover, when the molecular weight and molecular weight distribution of the organic-inorganic composite particles A were measured by GPC after HF treatment, Mn = 90000 and Mw / Mn = 1.40.

有機無機複合粒子Aを40μm厚のプレス型枠を用いて、255℃、8MPaで真空熱プレスすることで厚さ40μmの特定波長を反射する構造体1を得た。構造体1の平均屈折率neffは、1.552であった。構造体1のBIB加工断面SEM写真を図4に、その拡大写真を図5に示す。図5より構造体1の平均粒子間距離dを算出したところ、295nmであった。構造体1の5°正反射スペクトルを測定すると795nmにピークを持つ反射ピークが観測され、その反射率は23.5%であった。得られた反射スペクトルを図6に示す。 The organic / inorganic composite particles A were vacuum-heat pressed at 255 ° C. and 8 MPa using a 40 μm-thick press form to obtain a structure 1 that reflects a specific wavelength of 40 μm. The average refractive index n eff of the structure 1 was 1.552. A BIB-processed cross-sectional SEM photograph of the structure 1 is shown in FIG. 4, and an enlarged photograph thereof is shown in FIG. The average interparticle distance d of the structure 1 was calculated from FIG. 5 and found to be 295 nm. When the 5 ° specular reflection spectrum of the structure 1 was measured, a reflection peak having a peak at 795 nm was observed, and the reflectance was 23.5%. The obtained reflection spectrum is shown in FIG.

構造体1を遮熱材料として用い、遮熱効果、可視光透過率及び電磁波透過性を前述の方法で測定した。結果を表4に示す。   The structure 1 was used as a heat shielding material, and the heat shielding effect, visible light transmittance, and electromagnetic wave transmittance were measured by the above-described methods. The results are shown in Table 4.

[実施例2]
重合時間を24時間に変えた以外は、実施例1と同様の方法で有機無機複合粒子Bを得た。有機無機複合粒子Bを用いて、実施例1と同等の方法で厚さ40μmの構造体2を作製、遮熱材料として用いた。
[Example 2]
Organic-inorganic composite particles B were obtained in the same manner as in Example 1 except that the polymerization time was changed to 24 hours. Using organic / inorganic composite particles B, a structure 2 having a thickness of 40 μm was produced by the same method as in Example 1, and used as a heat shielding material.

[実施例3]
重合時間を40時間に変えた以外は、実施例1と同様の方法で有機無機複合粒子Cを得た。有機無機複合粒子Cを用いて、実施例1と同等の方法で厚さ40μmの構造体3を作製し、遮熱材料として用いた。
[Example 3]
Organic-inorganic composite particles C were obtained in the same manner as in Example 1 except that the polymerization time was changed to 40 hours. Using organic-inorganic composite particles C, a structure 3 having a thickness of 40 μm was produced by the same method as in Example 1, and used as a heat shielding material.

[実施例4]
実施例1で得られた有機無機複合粒子Aを1g秤量し、4gのアニソールを加えてマグネチックスターラーで4時間攪拌しながら分散させ、20質量%の有機無機複合粒子のアニソール分散液とした。得られた分散液を前述の方法で、透明基材であるPENフィルム(帝人デュポンフィルム株式会社製 テオネックスQ65HA 100μm厚)上に塗布し、130℃で10分間乾燥させた。乾燥後の塗布層の厚みは10μmであった。得られたフィルムは、ややヘイジーなフィルムとなった。次に、前述の方法で、230℃、7MPaで10秒間、真空熱プレスを行い、透明基材上に構造体4を形成したものを遮熱材料として用いた。
[Example 4]
1 g of the organic-inorganic composite particles A obtained in Example 1 were weighed, 4 g of anisole was added, and the mixture was dispersed with stirring with a magnetic stirrer for 4 hours to obtain an anisole dispersion of 20% by mass of organic-inorganic composite particles. The obtained dispersion was applied on the PEN film (Teonex Q65HA 100 μm thickness, manufactured by Teijin DuPont Films, Ltd.), which was a transparent substrate, and dried at 130 ° C. for 10 minutes by the method described above. The thickness of the coating layer after drying was 10 μm. The obtained film became a somewhat hazy film. Next, vacuum hot pressing was performed at 230 ° C. and 7 MPa for 10 seconds by the method described above, and a structure 4 formed on a transparent substrate was used as a heat shielding material.

[実施例5]
構造体1及び3を重ね、遮熱材料として用いた。
[Example 5]
The structures 1 and 3 were stacked and used as a heat shielding material.

[比較例1]
表面改質無機化合物粒子Bを用いたこと以外は、実施例1と同様の方法で有機無機複合粒子Dを得た。有機無機複合粒子Dを用いて、実施例1と同等の方法で厚さ40μmの構造体5を作製し、遮熱材料として用いた。
[Comparative Example 1]
Organic-inorganic composite particles D were obtained in the same manner as in Example 1 except that the surface-modified inorganic compound particles B were used. Using organic / inorganic composite particles D, a structure 5 having a thickness of 40 μm was produced by the same method as in Example 1, and used as a heat shielding material.

[比較例2]
アルミ蒸着膜を備える遮熱・遮光フィルム(トラスコ中山社製、透明タイプTSF−4518−TM)を遮熱材料として用いた。
[Comparative Example 2]
A heat-shielding / light-shielding film (transparent type TSF-4518-TM manufactured by Trusco Nakayama Co., Ltd.) provided with an aluminum vapor deposition film was used as a heat-shielding material.

有機無機複合粒子A〜Dの特性を表2に示す。   Table 2 shows the characteristics of the organic-inorganic composite particles A to D.

実施例1〜4及び比較例1の構造体の特性を表3に、実施例1〜5及び比較例1の遮熱材料と比較例2の遮熱・遮光フィルムの遮熱効果、可視光透過率及び電磁波透過性を表4に示す。   The characteristics of the structures of Examples 1 to 4 and Comparative Example 1 are shown in Table 3, the heat shielding materials of Examples 1 to 5 and Comparative Example 1 and the heat shielding and light shielding film of Comparative Example 2, and visible light transmission. Table 4 shows the rate and electromagnetic wave permeability.

以上の結果から、本発明の遮熱材料は、可視光及び電磁波の透過性を確保しつつ、遮熱効果があることが確認できる。   From the above results, it can be confirmed that the heat shielding material of the present invention has a heat shielding effect while ensuring the transmittance of visible light and electromagnetic waves.

本発明によれば、金属を使わずとも遮熱性に優れ、かつ、可視光及び電磁波の透過性を維持できる遮熱材料を容易に提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide easily the heat-shielding material which is excellent in heat-shielding property, and can maintain the transparency of visible light and electromagnetic waves, without using a metal.

1…構造体からなる層、2…透明基材、3…ハードコート層、5…クールボックス、6…写真照明用アイランプ、7…ガラス板、8…測定用サンプル、9…温湿度データロガー、10…遮熱材料。   DESCRIPTION OF SYMBOLS 1 ... The layer which consists of structures, 2 ... Transparent base material, 3 ... Hard coat layer, 5 ... Cool box, 6 ... Eye lamp for photography illumination, 7 ... Glass plate, 8 ... Sample for measurement, 9 ... Temperature / humidity data logger 10: Heat shielding material.

Claims (5)

平均粒径が90〜350nmであり、波長633nmにおける屈折率nが1.0〜2.5である粒子と、波長633nmにおける屈折率nが1.05〜1.9である化合物とを含む構造体を有する遮熱材料であって、
前記化合物は、分子量分布が1.55以下のポリマーであり、
前記粒子の屈折率nと前記化合物の屈折率nとは異なっており、
前記粒子の屈折率n と、前記化合物の屈折率n との差が0.08以上であり、
前記粒子が無機化合物粒子であり、
前記構造体が、前記粒子と前記化合物とが結合した複合粒子からなり、
前記構造体が、780〜1200nmの波長領域に含まれる特定波長の光を反射し、
前記構造体の表面に入射させた光の入射角θ、前記構造体の表面から深さ方向における前記粒子の平均粒子間距離d及び前記構造体の平均屈折率neffから下記式(1)で計算された反射ピーク波長λcalと、前記構造体の表面に入射させた光の反射光のうち、反射率が最大となる実測の反射ピーク波長λexpと、が下記式(2)で表される関係を満たし、
可視光透過率が50%以上80%以下である、遮熱材料。
Average particle diameter of 90~350Nm, the particle refractive index n a at a wavelength of 633nm is 1.0 to 2.5, and a compound refractive index n b is from 1.05 to 1.9 at a wavelength of 633nm A heat shield material having a structure including:
The compound is a polymer having a molecular weight distribution of 1.55 or less,
It is different from the refractive index n b of the refractive index n a and the compound of the particles,
Refractive index and n a of the particles, the difference between the refractive index n b of said compound is 0.08 or more,
The particles are inorganic compound particles;
The structure is composed of composite particles in which the particles and the compound are bonded,
The structure reflects light of a specific wavelength included in a wavelength region of 780 to 1200 nm,
From the incident angle θ of light incident on the surface of the structure, the average inter-particle distance d of the particles in the depth direction from the surface of the structure, and the average refractive index n eff of the structure, The calculated reflection peak wavelength λ cal and the actually measured reflection peak wavelength λ exp that maximizes the reflectance of the reflected light of the light incident on the surface of the structure are expressed by the following formula (2). Satisfy the relationship
A heat shielding material having a visible light transmittance of 50% or more and 80% or less .
前記反射ピーク波長λexpが異なる構造体からなる層を2層以上有する、請求項に記載の遮熱材料。 A layer the reflection peak wavelength lambda exp is of different structure having two or more layers, the thermal barrier material of claim 1. 透明基材と、該透明基材上に形成された前記構造体からなる層と、を備える、請求項1又は2に記載の遮熱材料。 The heat-shielding material according to claim 1 or 2 , comprising a transparent substrate and a layer made of the structure formed on the transparent substrate. 前記構造体からなる層の前記透明基材と反対側の面にハードコート層を更に備える、請求項に記載の遮熱材料。 The heat-shielding material according to claim 3 , further comprising a hard coat layer on a surface opposite to the transparent substrate of the layer made of the structure. 前記透明基材と前記構造体からなる層との間に、赤外線吸収層及び/又は紫外線吸収層を更に備える、請求項又はに記載の遮熱材料。
The heat shielding material according to claim 3 or 4 , further comprising an infrared absorption layer and / or an ultraviolet absorption layer between the transparent substrate and the layer made of the structure.
JP2014095710A 2014-05-07 2014-05-07 Thermal barrier material Active JP6404592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014095710A JP6404592B2 (en) 2014-05-07 2014-05-07 Thermal barrier material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014095710A JP6404592B2 (en) 2014-05-07 2014-05-07 Thermal barrier material

Publications (2)

Publication Number Publication Date
JP2015212058A JP2015212058A (en) 2015-11-26
JP6404592B2 true JP6404592B2 (en) 2018-10-10

Family

ID=54696639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014095710A Active JP6404592B2 (en) 2014-05-07 2014-05-07 Thermal barrier material

Country Status (1)

Country Link
JP (1) JP6404592B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230194B (en) * 2021-12-08 2023-07-07 中稀产业发展(天津)集团有限公司 Rare earth-based ultraviolet shielding coated glass

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128600A (en) * 2000-10-18 2002-05-09 Takashi Honda Ordered-structure optical material and method for producing the same
JP2006225619A (en) * 2005-02-15 2006-08-31 Joyo Kikai Kk Colloidal particle arranged body
JP4743017B2 (en) * 2006-06-22 2011-08-10 豊田合成株式会社 Infrared reflective material, infrared reflective laminate, and infrared reflective structure
JP2008165030A (en) * 2006-12-28 2008-07-17 Nippon Paint Co Ltd Manufacturing method of photonic crystal membrane and photonic crystal membrane obtained thereby
JP5493248B2 (en) * 2007-04-25 2014-05-14 日油株式会社 Method for producing core-shell fine particles and method for producing intermediates thereof
JP4356779B2 (en) * 2007-07-13 2009-11-04 豊田合成株式会社 Infrared reflecting material, infrared reflecting laminate, infrared reflecting structure, and method for producing the same
JP5308047B2 (en) * 2008-03-27 2013-10-09 豊田合成株式会社 Colloidal crystal composition
JP2010271528A (en) * 2009-05-21 2010-12-02 National Institute For Materials Science Colloid crystal structure and method for producing the same
JP2011164469A (en) * 2010-02-12 2011-08-25 Nippon Paint Co Ltd Compact having photonic crystal structure and method of manufacturing the same
KR101787215B1 (en) * 2011-03-14 2017-10-18 아사히 가세이 케미칼즈 가부시키가이샤 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, micro-structure, optical material, antireflection member, and optical lens
JP2015112812A (en) * 2013-12-12 2015-06-22 旭化成ケミカルズ株式会社 Laminate
JP6340229B2 (en) * 2014-03-31 2018-06-06 旭化成株式会社 Structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015212058A (en) 2015-11-26

Similar Documents

Publication Publication Date Title
JP6093744B2 (en) Organic-inorganic composite and its manufacturing method, organic-inorganic composite film and its manufacturing method, photonic crystal, coating material, thermoplastic composition, fine structure, optical material, antireflection member, and optical lens
JP6453522B2 (en) Antireflection film and method for producing the same
JP5708647B2 (en) Composition for colloidal crystals
KR101973195B1 (en) Anti-reflective film and preparation method of the same
WO2014142583A1 (en) Plastic film
WO2012005542A2 (en) Antireflection film and method for manufacturing same
WO2016199682A1 (en) Infrared shielding body
ITMI20060094A1 (en) TRANSFERABLE FILM FOR SURFACE COATING PROCEDURE FOR ITS IMPLEMENTATION AND APPLICATION PROCEDURE
TW200831588A (en) Low refractive index composition
WO2008032722A1 (en) Coating material, optical article using the same, and method for producing optical article
JP2009083223A (en) Manufacturing method of polymer silane coupling agent coated metal oxide particles used for base material with hard coat film, coating solution for forming hard coat film and hard coat film
KR20140015443A (en) Antireflective film comprising large particle size fumed silica
JP2018530770A (en) Antireflection film and method for producing the same
JP6404592B2 (en) Thermal barrier material
JP2000275403A (en) Antireflection film and display device with antireflection film arranged thereon
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
JP6340229B2 (en) Structure and manufacturing method thereof
JP2012131928A (en) Film-formable organic-inorganic complex, and method for production thereof
JP5438421B2 (en) Fluororesin and antireflection materials
JPH1152103A (en) Antireflection film and display arranged the film
JP2009075576A (en) Method for producing antireflection film, image display device and coating composition
Yu et al. Nanocomposites of polymer and inorganic nanoparticles prepared by focused microwave polymerization for optical thin films applications
JP4655614B2 (en) Magnesium fluoride particle organosol, method for producing the same, and paint using the same
JP5757114B2 (en) Laminated body and antireflection member
JP2013072065A (en) Polymer-modified inorganic particles, coating composition containing polymer-modified inorganic particles, and method for manufacturing polymer-modified inorganic particles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150