JP6403550B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP6403550B2
JP6403550B2 JP2014237779A JP2014237779A JP6403550B2 JP 6403550 B2 JP6403550 B2 JP 6403550B2 JP 2014237779 A JP2014237779 A JP 2014237779A JP 2014237779 A JP2014237779 A JP 2014237779A JP 6403550 B2 JP6403550 B2 JP 6403550B2
Authority
JP
Japan
Prior art keywords
power transmission
transmission winding
winding portion
power
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014237779A
Other languages
Japanese (ja)
Other versions
JP2016101029A (en
Inventor
典央 川見
典央 川見
長谷川 裕章
裕章 長谷川
Original Assignee
北陸電機製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北陸電機製造株式会社 filed Critical 北陸電機製造株式会社
Priority to JP2014237779A priority Critical patent/JP6403550B2/en
Publication of JP2016101029A publication Critical patent/JP2016101029A/en
Application granted granted Critical
Publication of JP6403550B2 publication Critical patent/JP6403550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電気自動車や電動車椅子など電動車両の電源装置に対し非接触で充電を行う非接触給電装置に関する。   The present invention relates to a non-contact power supply device that performs non-contact charging for a power source device of an electric vehicle such as an electric vehicle or an electric wheelchair.

電動車両の電源装置を充電する為に用いられる非接触給電装置は、一般的に、分離型変圧器の一次側(以下「送電」と記す)巻線部をプラットフォームに備えると共に、二次側(以下「受電」と記す)巻線部を電動車両の裏側に備えることで、一次側巻線部により二次側巻線部に誘導起電力を励起し、その電力を蓄電池に蓄える構成を採る。   A non-contact power feeding device used for charging a power supply device of an electric vehicle generally includes a primary side (hereinafter referred to as “power transmission”) winding portion of a separation transformer on a platform and a secondary side ( By providing a winding portion on the back side of the electric vehicle (hereinafter referred to as “power reception”), an induced electromotive force is excited in the secondary winding portion by the primary winding portion and the electric power is stored in the storage battery.

この様な分離型変圧器において、前記送電巻線部と受電巻線部に位置ズレが存在すると、磁気結合の不十分さで前記送電巻線部による受電巻線部への給電効率が低下する。
従来、この様な事態を回避すべく、下記特許文献1乃至4で開示された技術を例として様々な措置が講じられている。
In such a separate transformer, if there is a positional deviation between the power transmission winding and the power receiving winding, the power feeding efficiency to the power receiving winding by the power transmission winding decreases due to insufficient magnetic coupling. .
Conventionally, in order to avoid such a situation, various measures have been taken taking the techniques disclosed in Patent Documents 1 to 4 below as examples.

前記従来の技術は、例えば、高い給電効率が得られる限られた給電エリアに素早く電動車両を停車させるには、運転手に高度の熟練が求められるという問題がある。
また、熟練されていない運転手の便宜を図るには、電動車両用の非接触給電装置の様な大容量の受電巻線部に対応できる比較的大型の送電巻線部を複数設置するスペースを確保しなければならないという問題がある。
The conventional technique has a problem that, for example, in order to quickly stop an electric vehicle in a limited power supply area where high power supply efficiency can be obtained, the driver needs to be highly skilled.
In addition, for the convenience of an unskilled driver, a space for installing a plurality of relatively large power transmission windings that can handle a large capacity receiving winding such as a non-contact power feeding device for an electric vehicle is provided. There is a problem that it must be secured.

モーター等の駆動手段を使用して機械的に位置ズレを補正する手法を採るにしても、電動車両や送電巻線部を移動させるための駆動装置が大型化し、設置スペースの確保が困難となる他、別途当該駆動装置の保守点検が必要となるという問題がある。   Even if a method of mechanically correcting the positional deviation using a driving means such as a motor is adopted, the driving device for moving the electric vehicle and the power transmission winding part becomes large, and it is difficult to secure an installation space. In addition, there is a problem that separate maintenance and inspection of the drive device is necessary.

特開昭63−48102号公報JP-A-63-48102 特許第4772744号公報Japanese Patent No. 4772744 特開平10−215532号公報Japanese Patent Laid-Open No. 10-215532 特開2009−95072号公報JP 2009-95072 A

これらに関して、本願出願人は、実用的な送電巻線部の設置スペースの下、給電作業に運転の熟練を要することなく比較的高い給電効率が得られ、且つ当該給電効率が安定した非接触給電が行える非接触給電装置を提供すべく、既に特許出願(特願2013−077510「非接触給電装置」以下「先願」と記す)を行っている。   With regard to these, the applicant of the present application is able to obtain a relatively high power supply efficiency without requiring skill of operation for power supply work under a practical installation space of the power transmission winding section, and the contactless power supply in which the power supply efficiency is stable. In order to provide a non-contact power supply device that can perform the above, a patent application (Japanese Patent Application No. 2013-075510 “Non-contact power supply device”, hereinafter referred to as “prior application”) has already been filed.

本発明は、前記先願の技術に、位置ズレ補正に関し合理的で且つ安定した適応範囲が得られる技術を更に適用したものである。
即ち、前記先願に開示された技術は、送電巻線部の位置ズレ補正後の位置についての配慮を示しておらず、仮に、送電巻線部が位置ズレ補正先に留まれば、先の位置ズレ補正時には十分であった適応距離では、次なる位置ズレ補正に必要な移動距離が賄えない場合が生じる。
前記送電巻線部の可動範囲に等しい位置範囲に配置された前記受電巻線部に対して確実に位置ズレ補正を行えるようにするには、前記位置ズレ補正の適応距離は、前記送電巻線部の可動範囲の内側で賄える最大距離にまで拡大せねばならず、その様に適用距離を長くすれば、位置ズレ補正に要する時間が長くなるなどの問題がある。
一方、位置ズレ補正後に、前記送電巻線部をその可動範囲の中央などの基準位置にリセット(復帰)するにしても、それを適切に行うには、更に複雑な構成を要しかねないという問題もあった。
The present invention is obtained by further applying a technique capable of obtaining a reasonable and stable adaptive range with respect to the positional deviation correction to the technique of the prior application.
In other words, the technology disclosed in the prior application does not show consideration for the position after correcting the displacement of the power transmission winding, and if the power transmission winding stays at the position offset correction destination, The adaptive distance that was sufficient at the time of deviation correction may not be able to cover the moving distance necessary for the next positional deviation correction.
In order to reliably perform positional deviation correction with respect to the power receiving winding portion disposed in a position range equal to the movable range of the power transmission winding portion, the adaptive distance of the position deviation correction is set to the power transmission winding. The maximum distance that can be covered within the movable range of the part must be extended, and if the application distance is increased in this way, there is a problem that the time required for correcting the misalignment becomes longer.
On the other hand, even if the power transmission winding part is reset (returned) to a reference position such as the center of the movable range after the positional deviation correction, a more complicated configuration may be required to properly do so. There was also a problem.

本発明は上記実情に鑑みてなされたものであって、送電巻線部をその可動範囲の基準位置にまで確実に復帰させる簡易な構成を具備した非接触給電装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact power feeding device having a simple configuration that reliably returns the power transmission winding portion to the reference position of the movable range.

上記課題を解決するためになされた本発明による非接触給電装置は、電動車両の通行及び停止が可能となる路面に設定されたプラットフォームと、電動車両が具備する受電巻線部に誘導起電力及び引力を励起させる送電巻線部と、前記プラットフォーム下において前記送電巻線部を水平移動可能とする支持体と、前記支持体下の中央部において前記送電巻線部を磁気誘導する磁性ベースと、前記送電巻線部と前記磁性ベースとの間に介在するシールド板と、前記送電巻線部の運転周波数を変更する運転周波数調整手段とを備えている。なお、こゝに「磁気誘導する」とは、送電巻線部で発生した磁気の力(磁力)を利用して、所定の場所へ誘導するの意である。 The non-contact power feeding device according to the present invention, which has been made to solve the above problems, includes a platform set on a road surface that allows passage and stopping of an electric vehicle, and an induced electromotive force in a power receiving winding unit included in the electric vehicle. A power transmission winding portion that excites attraction, a support that enables horizontal movement of the power transmission winding portion under the platform, a magnetic base that magnetically induces the power transmission winding portion in a central portion under the support, A shield plate interposed between the power transmission winding portion and the magnetic base; and an operation frequency adjusting means for changing an operation frequency of the power transmission winding portion . Here, “magnetic induction” means to induce to a predetermined place using the magnetic force (magnetic force) generated in the power transmission winding part.

加えて、前記運転周波数調整手段は、前記受電巻線部に誘導起電力及び引力を励起させる時に前記送電巻線で励起された磁気が前記シールド板を通過せず、且つ前記送電巻線部を磁性ベースへ磁気誘導する時に前記送電巻線部で励起された磁気が前記シールド板を通過する様に前記運転周波数を調整するものである。
即ち、前記運転周波数調整手段は、前記受電巻線部に誘導起電力及び引力を励起させる時に前記送電巻線部で励起された磁気の浸透深さを前記シールド板の材質に応じてその厚みを下回る浸透深さとし、且つ前記送電巻線部を磁性ベースへ磁気誘導する時に前記送電巻線部で励起された磁気の浸透深さを前記シールド板の材質に応じてその厚みを上回る浸透深さとするように、前記送電巻線部の運転周波数を切り替える。
In addition, the operating frequency adjusting means may be configured such that when the induced electromotive force and attractive force are excited in the power receiving winding portion, the magnetism excited by the power transmission winding does not pass through the shield plate, and the power transmission winding portion is The operating frequency is adjusted so that the magnetism excited by the power transmission winding portion passes through the shield plate when magnetically induced to the magnetic base.
That is, the operating frequency adjusting means determines the penetration depth of the magnetism excited in the power transmission winding portion when exciting the induced electromotive force and attractive force in the power receiving winding portion according to the material of the shield plate. The penetration depth is lower than that, and the penetration depth of the magnetism excited by the power transmission winding portion when magnetically inducing the power transmission winding portion to the magnetic base is set to be greater than the thickness depending on the material of the shield plate. Thus, the operating frequency of the power transmission winding is switched.

前記送電巻線部及び前記支持体の側方を囲うシールド側壁を設けると共に、前記シールド側壁に鉄等の磁性体を用いた場合には、前記運転周波数調整手段は、前記受電巻線部に誘導起電力及び引力を励起させる時及び前記送電巻線部を磁性ベースへ磁気誘導する時に、前記送電巻線部で励起された磁気が前記シールド側壁を透過しないように前記運転周波数を調整する。
即ち、その際、前記運転周波数調整手段は、前記受電巻線部に誘導起電力及び引力を励起させる時及び前記送電巻線部を磁性ベースへ磁気誘導する時に、前記送電巻線部で励起された磁気の浸透深さを前記シールド側壁の材質に応じてその厚みを下回る浸透深さとするように、前記送電巻線部の運転周波数を切り替える。
When a shield side wall that surrounds the sides of the power transmission winding part and the support is provided, and when a magnetic material such as iron is used for the shield side wall, the operating frequency adjusting means is guided to the power reception winding part. When the electromotive force and the attractive force are excited and when the power transmission winding is magnetically induced to the magnetic base, the operating frequency is adjusted so that the magnetism excited by the power transmission winding does not pass through the shield side wall.
That is, at that time, the operating frequency adjusting means is excited by the power transmission winding unit when exciting the induced electromotive force and attractive force in the power receiving winding unit and when magnetically inducing the power transmission winding unit to the magnetic base. The operating frequency of the power transmission winding is switched so that the penetration depth of the magnetic field is a penetration depth lower than the thickness depending on the material of the shield side wall.

上記本発明による非接触給電装置によれば、送電巻線部が発生する磁力により送電巻線部を受電巻線部に近接させ、自動的に位置ズレ補正を行うことができ、且つ位置ズレ補正後の動揺を回避する作用も得ることができる。   According to the non-contact power feeding device according to the present invention, the power transmission winding portion can be brought close to the power receiving winding portion by the magnetic force generated by the power transmission winding portion, and the positional deviation correction can be automatically performed. The effect | action which avoids later shaking can also be acquired.

前記支持体下の中央部において前記送電巻線部を磁気誘導する磁性ベースと、前記送電巻線部と前記磁性ベースとの間に介在するシールド板と、前記送電巻線部の運転周波数を変更する運転周波数調整手段とを備える構成を採ることによって、位置ズレ補正動作の度に、前記送電巻線部をその可動範囲の中央部に設定した基準位置に復帰させることができる。
その結果、電動車両を定められた位置範囲に停車しさえすれば、確実に最も効率的な給電作業が行われる位置に向けて位置ズレ補正が行われることはもとより、位置ズレ補正動作に伴う所要時間の短縮にも寄与することになる。
The magnetic base that magnetically induces the power transmission winding portion in the central portion under the support, the shield plate interposed between the power transmission winding portion and the magnetic base, and the operating frequency of the power transmission winding portion are changed. By adopting a configuration including the operating frequency adjusting means, the power transmission winding portion can be returned to the reference position set at the center of the movable range each time the positional deviation correction operation is performed.
As a result, as long as the electric vehicle is stopped in a predetermined position range, the positional deviation correction is performed toward the position where the most efficient power feeding operation is surely performed. It will also contribute to shortening the time.

本発明による非接触給電装置で行われる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process performed with the non-contact electric power feeder by this invention. 本発明による非接触給電装置で行われる位置ズレ補正処理の一例を示す行程図である。It is a process figure which shows an example of the position shift correction process performed with the non-contact electric power feeder by this invention. 従来の非接触給電装置で行われる位置ズレ補正処理の一例を示す行程図である。It is a process figure which shows an example of the position shift correction process performed with the conventional non-contact electric power feeder. 本発明による非接触給電装置の(A):位置ズレ補正時、(B):リセット時において発生する磁束の一例を回路図と共に示したものある。An example of the magnetic flux generated at the time of (A): positional deviation correction and (B): at the time of reset of the non-contact power feeding device according to the present invention is shown together with a circuit diagram. 本発明による非接触給電装置のプラットフォームの例を示す構造図である。It is a block diagram which shows the example of the platform of the non-contact electric power feeder by this invention. 本発明による非接触給電装置の(A):位置ズレ補正時、(B):リセット時において発生する磁束の一例を示す概略図である。It is the schematic which shows an example of the magnetic flux which generate | occur | produces at the time of (A): position shift correction | amendment of the non-contact electric power feeder by this invention, and (B): reset. 本発明による非接触給電装置の給電時、位置ズレ補正時及びリセット時における送電巻線部の運転周波数とシールド板及びシールド側壁に対する磁束の浸透状況の例を示す表である。It is a table | surface which shows the example of the permeation | transmission state of the magnetic flux with respect to the operating frequency of a power transmission coil | winding part at the time of electric power feeding of the non-contact electric power feeder by this invention, a position shift correction | amendment, and a reset. 本発明による非接触給電装置に採用できる制動手段の一例を示す、(A):制動時、(B):制動解除時、(C):制動開始時の要部正面図である。It is an example of a braking means that can be employed in the non-contact power feeding device according to the present invention, (A): at the time of braking, (B): at the time of braking release, (C): front view of the main part at the start of braking. 本発明による非接触給電装置の(A):位置ズレ補正時、(B):リセット時において発生する磁束の一例を回路図と共に示したものある。An example of the magnetic flux generated at the time of (A): positional deviation correction and (B): at the time of reset of the non-contact power feeding device according to the present invention is shown together with a circuit diagram.

以下、本発明による非接触給電装置の実施の形態を図面に基づき説明する。
本発明による非接触給電装置は、本願出願人による前記先願(特願2013−077510「非接触給電装置」)の明細書等に記載の技術を基礎としたものである。
Embodiments of a non-contact power feeding device according to the present invention will be described below with reference to the drawings.
The non-contact power feeding device according to the present invention is based on the technology described in the specification of the prior application (Japanese Patent Application No. 2013-075510 “Non-contact power feeding device”) by the applicant of the present application.

本発明による非接触給電装置は、電動車両の通行及び停止が可能となる路面に設定されたプラットフォームPと、電動車両が具備する受電巻線部1に誘導起電力及び引力を励起させる送電巻線部2と、前記プラットフォームP下において前記送電巻線部2を同じ姿勢で水平移動可能とする支持体Fと、前記支持体F下の中央部において前記送電巻線部2を磁気誘導する磁性ベース3と、前記送電巻線部2と前記磁性ベース3との間に介在するシールド板4と、前記送電巻線部2の運転周波数を変更する運転周波数調整手段を備えて構成される。   A non-contact power feeding device according to the present invention includes a platform P set on a road surface where an electric vehicle can pass and stop, and a power transmission winding that excites induced electromotive force and attractive force in a power receiving winding portion 1 provided in the electric vehicle. Part 2, support F that enables horizontal movement of power transmission winding part 2 in the same posture under platform P, and magnetic base that magnetically induces power transmission winding part 2 in the central part under support F 3, a shield plate 4 interposed between the power transmission winding portion 2 and the magnetic base 3, and an operation frequency adjusting means for changing the operation frequency of the power transmission winding portion 2.

図5及び図6に示す例の前記プラットフォームPは、前記電動車両が停車でき且つ給電時において磁化されないFRPなどの非磁性体(強磁性体、常磁性体又は反磁性体などの磁性体を除くもの)からなる路板5と、当該路板5下に前記支持体Fとなる絶縁性流動体を蓄える為のタンクTと、当該タンクTの底壁T1中央に前記送電巻線部2の磁気誘導先である基準位置Oを設けるための誘導空間Sを備える。
前記タンクTは、磁気シールド性を持つアルミなどの非磁性体や鉄などの磁性体を素材として用いることによって、当該タンクTの底壁T1を前記シールド板4として用いることができるが、当該タンクTの下位に、当該タンクTの底壁T1の略全域を覆う前記シールド板4を別途配置しても良い。
The platform P in the example shown in FIG. 5 and FIG. 6 is a non-magnetic material such as FRP that can stop the electric vehicle and is not magnetized during power feeding (excluding magnetic materials such as a ferromagnetic material, a paramagnetic material, or a diamagnetic material). ), A tank T for storing an insulating fluid serving as the support F under the road plate 5, and a magnetic field of the power transmission winding portion 2 at the center of the bottom wall T1 of the tank T. A guidance space S for providing a reference position O which is a guidance destination is provided.
The tank T can use the bottom wall T1 of the tank T as the shield plate 4 by using a nonmagnetic material such as aluminum having magnetic shielding properties or a magnetic material such as iron as a material. The shield plate 4 that covers substantially the entire area of the bottom wall T1 of the tank T may be separately disposed below T.

前記タンクTは、前記電動車両が備える前記受電巻線部1と前記プラットフォームPが備える前記送電巻線部2との位置ズレ補正の際に、実用的な適応範囲を提供できる広さを有し、且つそこに蓄えられた前記絶縁性流動体の表面又は内部において前記送電巻線部2が移動する軌道と、前記路板5とが平行となる構造を採る。
前記誘導空間Sは、前記タンクTの底壁T1(シールド板4)の近傍の下位中央部に前記磁性ベース3を配置し、他の部分に非磁性体を充填する構成を採る。
前記磁性ベース3は、フェライトや鉄等の磁性体を用い、前記非磁性体は、絶縁油(鉱油、植物油、シリコン油等)等を用いる。
The tank T has a width that can provide a practical applicable range when correcting the positional deviation between the power receiving winding part 1 provided in the electric vehicle and the power transmission winding part 2 provided in the platform P. And the track | orbit which the said power transmission winding part 2 moves in the surface or the inside of the said insulating fluid stored there, and the said road board 5 are taken in parallel.
The induction space S employs a configuration in which the magnetic base 3 is disposed in the lower central portion in the vicinity of the bottom wall T1 (shield plate 4) of the tank T, and other portions are filled with a nonmagnetic material.
The magnetic base 3 uses a magnetic material such as ferrite or iron, and the non-magnetic material uses insulating oil (mineral oil, vegetable oil, silicon oil, etc.) or the like.

この例における前記受電巻線部1と前記送電巻線部2は、フェライト等の磁性体からなるコの字状を呈するコア1a,2aの各々に、受電コイル1bと送電コイル2bが巻きつけられたものであって、前記電動車両の受電巻線部1と前記プラットフォームPの送電巻線部2の両者で分離型変圧器を構成する(図8参照)。   In this example, the power receiving coil portion 1 and the power transmitting coil portion 2 are formed by winding a power receiving coil 1b and a power transmitting coil 2b around each of cores 1a, 2a made of a magnetic material such as ferrite. In other words, both the power receiving winding portion 1 of the electric vehicle and the power transmission winding portion 2 of the platform P constitute a separate transformer (see FIG. 8).

また、この例の前記受電巻線部1は、蓄電池6に給電する充電器7、受電(二次)並列共振コンデンサC2、これらを要する受電回路を開閉する処理切替スイッチSW2などと共に受電部を構成する。
一方、この例の前記送電巻線部2は、三相200V電源8、当該電源8を給電用電源に調整するインバータ給電装置9、送電(一次)直列共振コンデンサ(一次コンデンサ)C1、当該一次コンデンサC1を短絡する処理切替スイッチSW1などと共に送電部を構成する(図4参照)。
In addition, the power receiving winding portion 1 of this example constitutes a power receiving portion together with a charger 7 for supplying power to the storage battery 6, a power receiving (secondary) parallel resonant capacitor C2, a processing changeover switch SW2 for opening and closing a power receiving circuit that requires them. To do.
On the other hand, the power transmission winding unit 2 in this example includes a three-phase 200V power supply 8, an inverter power supply device 9 that adjusts the power supply 8 as a power supply for power supply, a power transmission (primary) series resonance capacitor (primary capacitor) C1, and the primary capacitor. A power transmission unit is configured together with the processing changeover switch SW1 that short-circuits C1 (see FIG. 4).

この例の前記送電巻線部2は、前記絶縁性流動体上を一定の深度で浮遊し水平移動可能とするフロート11と一体化した非磁性体を素材とする支持フレーム12に固定する(図8又は前記先願記載の技術参照)。
前記フロート11は、例えば、ゴムや合成樹脂など絶縁性を持つ非磁性体を素材とし、その浮力をもって前記送電巻線部2を前記絶縁性流動体の表面又は内部に漂わせ、前記受電巻線部1と前記送電巻線部2が平行となる浮遊姿勢を好適に維持できる様に、前記送電巻線部2各位置においてバランスが良く且つ安定した浮力を確保できる構成及び配置を採る。
The power transmission winding portion 2 of this example is fixed to a support frame 12 made of a non-magnetic material integrated with a float 11 that floats on the insulating fluid at a certain depth and can move horizontally (see FIG. 8 or the technology described in the prior application).
The float 11 is made of, for example, an insulating nonmagnetic material such as rubber or synthetic resin, and floats the power transmission winding portion 2 on the surface or inside of the insulating fluid with its buoyancy, so that the power receiving winding A configuration and arrangement that can ensure a well-balanced and stable buoyancy at each position of the power transmission winding part 2 so that the floating posture in which the part 1 and the power transmission winding part 2 are parallel can be suitably maintained.

この様に、前記送電巻線部2を前記絶縁性流動体に浮遊させることによって、比較的弱い磁力であっても前記位置ズレ補正を容易に行う事が出来、しかも、比較的簡素な構造で実現できるので、当該構造の追加に伴う装置規模の拡大やコストの増加を回避することができる。
尚、前記絶縁性流動体は、絶縁油(鉱油、植物油、シリコン油等)等から選択する。
前記絶縁性流動体の充填量は、前記送電巻線部2が前記路板5の裏面に出来るだけ近接し、且つ当該送電巻線部2が前記路板5又は前記タンクTの底壁T1と接することなく自由に移動できる量とする。
In this way, by suspending the power transmission winding part 2 in the insulating fluid, the positional deviation correction can be easily performed even with a relatively weak magnetic force, and with a relatively simple structure. Since this can be realized, it is possible to avoid an increase in device scale and an increase in cost due to the addition of the structure.
The insulating fluid is selected from insulating oil (mineral oil, vegetable oil, silicone oil, etc.) and the like.
The filling amount of the insulating fluid is such that the power transmission winding portion 2 is as close as possible to the back surface of the road plate 5 and the power transmission winding portion 2 is connected to the road plate 5 or the bottom wall T1 of the tank T. The amount can move freely without touching.

当該例における前記支持フレーム12は、その前後左右の端部などにバランスを失することなく付設した制動手段13を備える(図8又は前記先願記載の技術参照)。
前記受電巻線部1に前記送電巻線部2が近接した際、前記送電巻線部2の動揺を抑制する前記制動手段13を備えれば、両巻線部1,2が非接触給電に最適な位置関係で固定され給電効率を高い状態に安定維持することができる。
The support frame 12 in this example includes braking means 13 attached to the front, rear, left, and right ends of the support frame without losing balance (see the technique described in FIG. 8 or the prior application).
If the power transmission winding unit 2 is close to the power receiving winding unit 1 and the braking means 13 is provided to suppress the vibration of the power transmission winding unit 2, both winding units 1 and 2 can be contactlessly fed. It is fixed in an optimal positional relationship, and power supply efficiency can be stably maintained at a high level.

前記制動手段13は、前記支持フレーム12に対して直線軌道で昇降可能なアンカー14と当該アンカー14の昇降動作の上限を規制する制止部材15を備える。
前記アンカー14及び前記制止部材15は、磁性体で構成され、前記コア2a、アンカー14、及び当該制止部材15で一連の磁路を形成する(図8参照)。
The braking means 13 includes an anchor 14 that can be lifted and lowered with respect to the support frame 12 in a straight track and a restraining member 15 that restricts the upper limit of the lifting and lowering operation of the anchor 14.
The anchor 14 and the restraining member 15 are made of a magnetic material, and the core 2a, the anchor 14 and the restraining member 15 form a series of magnetic paths (see FIG. 8).

当該例における前記アンカー14は、その下端に加圧部を備え、当該加圧部の先端がその自重で前記タンクTの底壁T1に圧接することによって前記送電巻線部2を制動し、前記磁路の形成によって当該アンカー14が上昇し前記加圧部が前記タンクTの底壁T1から離れることによって前記制動が解除される構造とする。
この様に、前記制動手段13を、前記送電巻線部2が励起する引力で動作させる構成を採ることによって、別途アクチュエータを付設することなく簡素な構成で十分な制動効果を低コストで得ることができる。
The anchor 14 in the example includes a pressurizing portion at the lower end, and the tip of the pressurizing portion presses against the bottom wall T1 of the tank T with its own weight, thereby braking the power transmission winding portion 2, The anchor 14 is lifted by the formation of a magnetic path, and the pressure is released from the bottom wall T1 of the tank T so that the braking is released.
In this way, by adopting a configuration in which the braking means 13 is operated by the attractive force excited by the power transmission winding portion 2, a sufficient braking effect can be obtained at a low cost with a simple configuration without additionally providing an actuator. Can do.

この例における運転周波数調整手段は、CPU、メモリ、IOポート、車体検出センサ及び入出力インターフェースで構成される制御部に含まれており、前記受電巻線部1に誘導起電力を励起させるために前記送電巻線部2に供給する電力の運転周波数を前記シールド板4の素材及び厚み(材質)に応じて、前記シールド板4を透過しない周波数(以下「給電・補正周波数」と記す)と、それらを共に透過する周波数(以下「リセット周波数」と記す)とで切り替えるべく前記インバータ給電装置9を制御する。   The operating frequency adjusting means in this example is included in a control unit including a CPU, a memory, an IO port, a vehicle body detection sensor, and an input / output interface, and is used to excite the induced electromotive force in the power receiving winding unit 1. According to the material and thickness (material) of the shield plate 4, the operating frequency of the electric power supplied to the power transmission winding unit 2 is a frequency that does not pass through the shield plate 4 (hereinafter referred to as “feeding / correction frequency”), The inverter power feeding device 9 is controlled so as to switch between frequencies that transmit both of them (hereinafter referred to as “reset frequency”).

<位置ズレ補正処理>
この例の位置ズレ補正処理において、前記制御部は、前記プラットフォームPへの前記電動車両Aの停車及び前記送電巻線部2に対して前記電動車両Aの前記受電巻線部1の位置が一定量を超えてずれていることを検出し、前記運転周波数調整手段により、前記インバータ給電装置9が出力する電力の運転周波数を前記給電・補正周波数に切り替える処理を行うと共に、前記処理切替スイッチSW1を閉じ且つスイッチSW2を開くことによって前記送電巻線部2に電力を供給する(図1及び図4(A)参照)。
<Position displacement correction processing>
In the positional deviation correction process of this example, the control unit stops the electric vehicle A to the platform P and the position of the power receiving winding unit 1 of the electric vehicle A with respect to the power transmission winding unit 2 is constant. It is detected that the deviation exceeds the amount, and the operation frequency adjusting means performs a process of switching the operation frequency of the power output from the inverter power supply device 9 to the power supply / correction frequency, and the process changeover switch SW1 is set. Electric power is supplied to the power transmission winding section 2 by closing and opening the switch SW2 (see FIGS. 1 and 4A).

前記送電巻線部2は、電力を供給されることにより、コア2a、アンカー14、及び制止部材15で磁路を形成する(図8(A)参照)。
前記送電巻線部2で発生する磁束を十分に増加させると、前記磁路の磁力が増加し、前記アンカー14は、前記制止部材15と前記コア2aにそれぞれ引き寄せられ、前記制止部材15に規制されるに至るまで上昇する(図8(B)参照)。
The power transmission winding part 2 forms a magnetic path with the core 2a, the anchor 14, and the restraining member 15 by being supplied with electric power (see FIG. 8A).
When the magnetic flux generated in the power transmission winding portion 2 is sufficiently increased, the magnetic force of the magnetic path increases, and the anchor 14 is attracted to the restraining member 15 and the core 2a, respectively, and is restricted by the restraining member 15. It rises until it is done (see FIG. 8B).

その際、前記送電巻線部2のコア2aから前記受電巻線部1のコア1aへ、前記路板5を透過した磁束が入ることで、前記絶縁性流動体に浮遊する前記送電巻線部2が、前記電動車両Aに設けた前記受電巻線部1に引き寄せられて移動する(図3従来技術の補正前後参照)。
前記給電・補正周波数による前記送電巻線部2の磁束は、前記シールド板4は透過できず遮断されてしまうため、前記送電巻線部2は前記磁性ベース3に向かうことなく、前記電動車両Aの受電巻線部1に向かって移動する力が生じることとなる。
At that time, the power transmission winding part floating in the insulating fluid is obtained when the magnetic flux that has passed through the path plate 5 enters from the core 2a of the power transmission winding part 2 to the core 1a of the power reception winding part 1. 2 is attracted to and moved by the power receiving winding portion 1 provided in the electric vehicle A (see FIG. 3 before and after correction of the prior art).
Since the magnetic flux of the power transmission winding part 2 due to the power feeding / correction frequency cannot be transmitted through the shield plate 4 and is cut off, the power transmission winding part 2 does not go to the magnetic base 3 but the electric vehicle A A force that moves toward the power receiving winding portion 1 is generated.

尚、前記位置ズレ補正処理における、前記送電コイル2b及び前記受電コイル1bに供給する電流は、前記両巻線部2,1間に生じる磁力によっても両者のギャップを維持し、前記送電巻線部2を引き上げるには至らない大きさとする。   Note that the current supplied to the power transmission coil 2b and the power receiving coil 1b in the positional deviation correction process maintains a gap between the two winding parts 2 and 1, and the power transmission coil part 2 is not large enough to raise.

<給電処理>
この例の給電処理は、前記送電巻線部2と前記受電巻線部1とで前記分離型変圧器を構成し、インバータ給電装置9で発生させた電力を、前記充電器7を介して前記蓄電池6に供給する。
前記給電処理において、前記制御部は、前記送電巻線部2が前記受電巻線部1の略直下における許容範囲内に移動したことを検出し、前記運転周波数調整手段により、前記インバータ給電装置9が出力する電力の運転周波数を前記給電・補正周波数に切り替える処理を行うと共に、前記処理切替スイッチSW1を開放し且つSW2を閉じることによって、前記受電巻線部1への励磁を開始する(図1参照)。
<Power supply processing>
In the power supply processing of this example, the power transmission winding unit 2 and the power receiving winding unit 1 constitute the separation type transformer, and the electric power generated by the inverter power supply device 9 is transmitted through the charger 7. Supply to storage battery 6.
In the power feeding process, the control unit detects that the power transmission winding unit 2 has moved within an allowable range substantially directly below the power receiving winding unit 1, and the inverter power feeding device 9 is operated by the operating frequency adjusting unit. Is performed to switch the operation frequency of the electric power output to the power supply / correction frequency, and the process selector switch SW1 is opened and the switch SW2 is closed to start excitation of the power receiving winding unit 1 (FIG. 1). reference).

この際、前記送電巻線部2で発生する磁束を前記位置ズレ補正処理に比べて減少させることで、前記アンカー14の上昇が維持できずにその加圧部が前記タンクTの底壁T1に達するまで自重で降下し、前記給電処理に移行する直前の位置ズレ補正処理終了位置において、前記送電巻線部2の移動が制止される(図8(C)参照)。
尚、前記送電巻線部2に対して前記受電巻線部1の位置がずれていることを検出する手法や、前記送電巻線部2が前記受電巻線部1の略直下における許容範囲内に移動したことを検出する手法は、前記従来手法をはじめとする既成の手法から適宜選択すれば良い。
At this time, by reducing the magnetic flux generated in the power transmission winding portion 2 as compared with the positional deviation correction process, the pressurization portion cannot be maintained on the bottom wall T1 of the tank T without being able to maintain the rise of the anchor 14. It moves down by its own weight until it reaches, and the movement of the power transmission winding portion 2 is stopped at the position deviation correction processing end position immediately before the shift to the power supply processing (see FIG. 8C).
It should be noted that a method for detecting that the position of the power receiving winding portion 1 is shifted with respect to the power transmitting winding portion 2 or that the power transmitting winding portion 2 is within an allowable range substantially directly below the power receiving winding portion 1. The method for detecting the movement to the position may be appropriately selected from existing methods including the conventional method.

<リセット処理>
この例のリセット処理は、前記送電巻線部2を前記磁性ベース3に導かせ、前記送電巻線部2の可動範囲の中央部に位置する基準位置へ復帰させるものである。
前記制御部は、前記電動車両Aへの給電作業が終了したことを検出し、前記運転周波数調整手段により、前記インバータ給電装置9が出力する電力の運転周波数を前記リセット周波数に切り替える処理を行うと共に、前記処理切替スイッチSW1を閉じ且つスイッチSW2を開くことによって前記送電巻線部2に電力を供給する。
<Reset processing>
In the reset process of this example, the power transmission winding unit 2 is guided to the magnetic base 3 and returned to the reference position located at the center of the movable range of the power transmission winding unit 2.
The control unit detects that the power supply operation to the electric vehicle A has been completed, and performs a process of switching the operation frequency of the electric power output from the inverter power supply device 9 to the reset frequency by the operation frequency adjusting unit. Then, power is supplied to the power transmission winding unit 2 by closing the processing switch SW1 and opening the switch SW2.

前記位置ズレ補正処理と同様に、前記送電巻線部2で発生する磁束を十分に増加させると、前記磁路の磁力が増加し、前記アンカー14は、前記制止部材15と前記コア2aにそれぞれ引き寄せられ、前記制止部材15に規制されるに至るまで上昇する(図8(B)参照)。   Similarly to the displacement correction process, when the magnetic flux generated in the power transmission winding portion 2 is sufficiently increased, the magnetic force of the magnetic path increases, and the anchor 14 is attached to the restraining member 15 and the core 2a, respectively. It is pulled up and rises until it is regulated by the restraining member 15 (see FIG. 8B).

前記リセット周波数による送電巻線部2の磁束は、前記シールド板4を透過するため、前記送電巻線部2は、前記受電巻線部1及び前記磁性ベース3の双方に対して吸引力が働くこととなりかねないが、前記電動車両Aが前記プラットフォームP上から離脱していれば、前記磁性ベース3に対してのみ吸引力が働き、前記送電巻線部2は、前記基準位置へ抵抗なく復帰することとなる。   Since the magnetic flux of the power transmission winding 2 due to the reset frequency passes through the shield plate 4, the power transmission winding 2 exerts an attractive force on both the power reception winding 1 and the magnetic base 3. However, if the electric vehicle A is detached from the platform P, an attractive force acts only on the magnetic base 3, and the power transmission winding part 2 returns to the reference position without resistance. Will be.

前記電動車両Aが前記プラットフォームP上から離脱する前又は次の給電が行われる電動車両Bが前記プラットフォームP上に載った後に、前記送電巻線部2を前記基準位置へ復帰させる場合には、前記電動車両A又は前記電動車両Bの受電巻線部1に引き寄せられる力に抗して、前記送電巻線部2の吸引力を前記磁性ベース3へ向かせる様に、前記送電巻線部2と前記受電巻線部1間の距離を、前記送電巻線部2と前記磁性ベース3間より十分に長く取り、又は前記磁気ベース3に前記受電巻線部1のコア1aよりも透磁率の高い素材を用いるなど、双方に向かう前記送電巻線部2の磁力に十分な相違が生じるように調整すればよい。   In the case where the electric power transmission winding unit 2 is returned to the reference position before the electric vehicle A is detached from the platform P or after the electric vehicle B to be fed next is placed on the platform P, The power transmission winding portion 2 is configured to direct the attractive force of the power transmission winding portion 2 toward the magnetic base 3 against the force attracted to the power receiving winding portion 1 of the electric vehicle A or the electric vehicle B. The distance between the power receiving winding portion 1 and the power receiving winding portion 1 is sufficiently longer than that between the power transmitting winding portion 2 and the magnetic base 3, or the magnetic base 3 has a magnetic permeability higher than that of the core 1a of the power receiving winding portion 1. What is necessary is just to adjust so that sufficient difference may arise in the magnetic force of the said power transmission winding part 2 which goes to both directions, such as using a high raw material.

前記制御部は、前記復帰作業の終了を検知すると、前記インバータ給電装置9による前記送電巻線部2への給電を停止する。前記給電が途絶え前記磁路が略消滅することに伴い、前記制動手段13が働き、前記送電巻線部2は前記基準位置に停止する。   When the control unit detects the end of the return operation, the control unit stops power supply to the power transmission winding unit 2 by the inverter power supply device 9. As the power supply is interrupted and the magnetic path is almost extinguished, the braking means 13 is activated, and the power transmission winding portion 2 stops at the reference position.

図5(A)は、前記タンクTの素材として鉄を用いた例である。
鉄は、磁性体であるため、前記送電巻線部2との間で磁気による吸引力が働き、前記位置ズレ補正処理や前記リセット処理に支障を来たす場合がある。
そこで、この例は、当該タンクTのシールド側壁10の厚みをその底壁T1の厚みより十分に厚く設定し、且つ前記運転周波数を、前記タンクTの底壁T1のみ透過し、そのシールド側壁10は透過しない周波数とすることによって、前記送電巻線部2の吸引力が前記シールド側壁10に対して働かない構成を採る。
FIG. 5A shows an example in which iron is used as the material of the tank T.
Since iron is a magnetic substance, a magnetic attractive force acts between the power transmission winding portion 2 and may interfere with the positional deviation correction process and the reset process.
Therefore, in this example, the thickness of the shield side wall 10 of the tank T is set sufficiently larger than the thickness of the bottom wall T1, and the operating frequency is transmitted only through the bottom wall T1 of the tank T, and the shield side wall 10 By adopting a frequency that does not transmit, a configuration is adopted in which the attractive force of the power transmission winding part 2 does not act on the shield side wall 10.

図5(B)は、前記タンクTの素材としてアルミを用いた例である。
アルミは、非磁性体であるため、前記送電巻線部2との間で磁気による吸引力は働かず、前記位置ズレ補正処理や前記リセット処理に、前記送電巻線部2の吸引力が前記シールド側壁10に対して働くような支障を来たす虞は少ない。
そこで、この例は、当該タンクTのシールド側壁10の厚みをその底壁T1の厚みと等しく設定し、且つ前記運転周波数を、前記タンクTの底壁T1のみ透過し、そのシールド側壁10は透過しない周波数とすることができる。
FIG. 5B shows an example in which aluminum is used as the material of the tank T.
Since aluminum is a non-magnetic material, magnetic attraction force does not work with the power transmission winding portion 2, and the power transmission winding portion 2 has attraction force for the positional deviation correction processing and the reset processing. There is little possibility that the shield side wall 10 may be hindered.
Therefore, in this example, the thickness of the shield side wall 10 of the tank T is set equal to the thickness of the bottom wall T1, and the operating frequency is transmitted only through the bottom wall T1 of the tank T, and the shield side wall 10 is transmitted through. It can be a frequency that does not.

前記シールド板4又は前記シールド側壁10の素材に応じた浸透深さδ(m)は、導電率σ(S/m)、透磁率μ0、運転周波数fとすると、2/(2πfμ0σ)の平方根で導くことができるので、前記各周波数は、用いる素材の導電率σ(S/m)及び透磁率μ0並びに透過深さδ(m)を用いて、4πfμ0σδから導けばよい。   The penetration depth δ (m) corresponding to the material of the shield plate 4 or the shield side wall 10 is a square root of 2 / (2πfμ0σ) where conductivity σ (S / m), magnetic permeability μ0, and operating frequency f. Therefore, each frequency may be derived from 4πfμ0σδ using the conductivity σ (S / m), the magnetic permeability μ0, and the transmission depth δ (m) of the material to be used.

前記送電巻線部2を移動させる位置ズレ補正処理は、前記給電処理時と比較して大きな電流I(例えば4倍〜5倍程度)を供給する必要がある。
共振コンデンサが接続された前記送電巻線部2に大電流を供給すると、その送電コイル2bに過大な電圧V(V=ωLI,送電コイルリアクタンスL,運転周波数f)が印加されて危険な状態となる。
その様な事態を避け、前記送電巻線部2に安全に大電流Iを流すことができる様にすべく、前記給電・補正周波数は、給電周波数と補正周波数とに分けて設定することもできる。
The positional deviation correction process for moving the power transmission winding unit 2 needs to supply a larger current I (for example, about 4 to 5 times) compared to the power supply process.
When a large current is supplied to the power transmission winding section 2 to which a resonance capacitor is connected, an excessive voltage V (V = ωLI, power transmission coil reactance L, operating frequency f) is applied to the power transmission coil 2b, and a dangerous state occurs. Become.
In order to avoid such a situation and to allow a large current I to flow safely through the power transmission winding section 2, the power supply / correction frequency can be set separately for the power supply frequency and the correction frequency. .

前記給電周波数と前記補正周波数は、ともに前記シールド板4を透過しない周波数であることが求められるが、前記前記位置ズレ補正時に大電流Iを供給することに伴い発生する電圧Vが過大とならない様にするために、前記位置ズレ補正時の運転周波数fを前記給電処理時の運転周波数fよりも低く設定することが望ましい。   Both the power feeding frequency and the correction frequency are required to be frequencies that do not pass through the shield plate 4, but the voltage V generated when the large current I is supplied at the time of the misalignment correction is not excessive. In order to achieve this, it is desirable to set the operating frequency f at the time of the positional deviation correction to be lower than the operating frequency f at the time of the power feeding process.

例えば、前記実施例2であれば、前記シールド側壁10をアルミ5mmとし、前記シールド板4をアルミ3mmとする場合に、前記送電巻線部2の運転周波数を、前記給電処理では約20kHz、前記位置ズレ補正処理では約1kHz、前記リセット処理では約500Hzという様に設定することによって、前記位置ズレ補正処理で前記送電巻線部2に発生する電圧を、前記給電処理で同じ電流を流した場合の電圧の1/20にすることができる。   For example, in the case of Example 2, when the shield side wall 10 is made of aluminum 5 mm and the shield plate 4 is made of aluminum 3 mm, the operating frequency of the power transmission winding part 2 is about 20 kHz in the power supply process, When the same current is applied in the power feeding process to the voltage generated in the power transmission winding part 2 in the positional deviation correction process by setting the positional deviation correction process to approximately 1 kHz and the reset process to approximately 500 Hz. The voltage can be reduced to 1/20 of the voltage.

図9は、前記一次側巻線部に、共振回路を切り替え可能に接続した例である。
各共振回路は、前記給電処置時、位置ズレ補正処理時及びリセット処理時において、各々の処理に適した能力を確保する個々の運転周波数fに適合したものである。
この例は、各運転周波数fの下で共振する共振コンデンサCa,Cb,Ccを前記送信コイル2bに直列に接続する三つの共振回路を並列に設け、各共振回路を各処理に応じて切り替えて接続する切り替え手段としてのスイッチSWa,SWb,SWcを備える(図9参照)。
FIG. 9 shows an example in which a resonance circuit is connected to the primary winding portion in a switchable manner.
Each resonance circuit is adapted to an individual operation frequency f that ensures a capability suitable for each process during the power supply treatment, the positional deviation correction process, and the reset process.
In this example, three resonance circuits that connect resonance capacitors Ca, Cb, and Cc that resonate under each operating frequency f in series to the transmission coil 2b are provided in parallel, and each resonance circuit is switched according to each process. Switches SWa, SWb, SWc as switching means to be connected are provided (see FIG. 9).

各処理の際に前記送電コイル2bを流れる電流I(I=V/ωL,V:コイル印加電圧,送電コイルリアクタンスL,ω=2πf)は、コイル印加電圧、即ち、インバータ出力電圧で決まるため、当該インバータの能力に応じて上限があり、前記運転周波数fは、前記シールド板4の素材及び厚みを考慮して決定するためその調整範囲は限られる。
この様に、前記インバータの出力電圧や前記運転周波数fの範囲が限られているなか、同じインバータで大きな吸引力を得るためには、前記送電コイル2bの巻数を増やし前記送電コイルリアクタンスLを大きくすることが望ましい。
しかし、前記送電コイルリアクタンスLを大きくすると前記送電コイル2bのインピーダンスZ=ωLが大きくなり、同じ電圧Vの下で当該送電コイル2bに流れる電流Iが小さくなるという問題がある。
前記送電コイルリアクタンスLや前記運転周波数fの選択によっては、前記給電処理、位置ズレ補正処理又はリセット処理に支障が出る場合も有り得る。
The current I (I = V / ωL, V: coil application voltage, power transmission coil reactance L, ω = 2πf) flowing through the power transmission coil 2b during each process is determined by the coil application voltage, that is, the inverter output voltage. There is an upper limit according to the capacity of the inverter, and the operating frequency f is determined in consideration of the material and thickness of the shield plate 4, so that the adjustment range is limited.
As described above, in order to obtain a large attractive force with the same inverter while the range of the output voltage of the inverter and the operating frequency f is limited, the number of turns of the power transmission coil 2b is increased and the power transmission coil reactance L is increased. It is desirable to do.
However, when the power transmission coil reactance L is increased, the impedance Z = ωL of the power transmission coil 2b increases, and there is a problem that the current I flowing through the power transmission coil 2b under the same voltage V is reduced.
Depending on the selection of the power transmission coil reactance L and the operating frequency f, there may be a case where the power feeding process, the positional deviation correction process, or the reset process is hindered.

この例は、前記送電コイル2bと個別の共振回路で共振させ、又はより共振に近い状態に前記送電コイル2bの回路インピーダンスを低下させることで、前記各々の処理において前記送電巻線部2のみでは流せなかった大きな電流Iを流すことができ、その結果、前記各々の処理において、前記インバータの限られた出力電圧で前記送電巻線部2に、より大きな吸引力を発生させることができるというものである。   In this example, the power transmission coil 2b is made to resonate with an individual resonance circuit, or the circuit impedance of the power transmission coil 2b is lowered to a state closer to resonance, so that only the power transmission winding unit 2 is used in each process. A large current I that could not be flowed can be flown, and as a result, in each of the processes, a larger attractive force can be generated in the power transmission winding part 2 with a limited output voltage of the inverter. It is.

A 電動車両,B 電動車両,
C1 送電(一次)直列共振コンデンサ,C2 受電(二次)並列共振コンデンサ,
F 支持体,P プラットフォーム,S 誘導空間,
T タンク,T1 底壁,
1 受電巻線部,1a コア,1b 受電コイル,
2 送電巻線部,2a コア,2b 送電コイル,
3 磁性ベース,
4 シールド板,
5 路板,6 蓄電池,7 充電器,8 電源,9 インバータ給電装置,
10 シールド側壁,
11 フロート、12 支持フレーム,
13 制動手段,14 アンカー,15 制止部材
A electric vehicle, B electric vehicle,
C1 power transmission (primary) series resonance capacitor, C2 power reception (secondary) parallel resonance capacitor,
F support, P platform, S guidance space,
T tank, T1 bottom wall,
1 power receiving winding part, 1a core, 1b power receiving coil,
2 power transmission winding part, 2a core, 2b power transmission coil,
3 magnetic base,
4 Shield plate,
5 road plate, 6 storage battery, 7 charger, 8 power supply, 9 inverter power supply,
10 shield side wall,
11 float, 12 support frame,
13 Braking means, 14 anchor, 15 stop member

Claims (3)

電動車両の通行及び停止が可能となる路面に設定されたプラットフォームと、A platform set on the road surface where electric vehicles can pass and stop,
電動車両が具備する受電巻線部に誘導起電力及び引力を励起させる送電巻線部と、A power transmission winding part that excites an induced electromotive force and an attractive force in a power reception winding part included in the electric vehicle;
前記プラットフォーム下において前記送電巻線部を水平移動可能とする支持体と、A support that allows the power transmission winding portion to move horizontally under the platform;
前記支持体下の中央部に前記送電巻線部を当該送電巻線部の磁気で導く磁性ベースと、A magnetic base for guiding the power transmission winding part to the center part under the support by the magnetism of the power transmission winding part;
前記送電巻線部と前記磁性ベースとの間に介在するシールド板と、A shield plate interposed between the power transmission winding portion and the magnetic base;
前記送電巻線部の運転周波数を変更する運転周波数調整手段とを備え、An operation frequency adjusting means for changing the operation frequency of the power transmission winding part,
前記運転周波数調整手段は、The operating frequency adjusting means is
前記受電巻線部に誘導起電力及び引力を励起させる時に前記送電巻線部で励起された磁気の浸透深さを前記シールド板の材質に応じてその厚みを下回る浸透深さとし、且つ前記送電巻線部を当該送電巻線部の磁気で磁性ベースへ導く時に前記送電巻線部で励起された磁気の浸透深さを前記シールド板の材質に応じてその厚みを上回る浸透深さとするように前記送電巻線部の運転周波数を切り替えることを特徴とする非接触給電装置。The penetration depth of magnetism excited in the power transmission winding portion when exciting the induced electromotive force and attractive force in the power receiving winding portion is set to a penetration depth lower than the thickness according to the material of the shield plate, and the power transmission winding The penetration depth of the magnetism excited by the power transmission winding portion when the wire portion is guided to the magnetic base by the magnetism of the power transmission winding portion so as to exceed the thickness according to the material of the shield plate A non-contact power feeding device that switches an operating frequency of a power transmission winding unit.
電動車両の通行及び停止が可能となる路面に設定されたプラットフォームと、A platform set on the road surface where electric vehicles can pass and stop,
電動車両が具備する受電巻線部に誘導起電力及び引力を励起させる送電巻線部と、A power transmission winding part that excites an induced electromotive force and an attractive force in a power reception winding part included in the electric vehicle;
前記プラットフォーム下において前記送電巻線部を水平移動可能とする支持体と、A support that allows the power transmission winding portion to move horizontally under the platform;
前記支持体下の中央部に前記送電巻線部を当該送電巻線部の磁気で導く磁性ベースと、A magnetic base for guiding the power transmission winding part to the center part under the support by the magnetism of the power transmission winding part;
前記送電巻線部と前記磁性ベースとの間に介在するシールド板と、A shield plate interposed between the power transmission winding portion and the magnetic base;
前記送電巻線部の運転周波数を変更する運転周波数調整手段と、Operating frequency adjusting means for changing the operating frequency of the power transmission winding section;
前記送電巻線部及び前記支持体の側方を囲うシールド側壁とを備え、A shield side wall that surrounds the side of the power transmission winding portion and the support,
前記運転周波数調整手段は、The operating frequency adjusting means is
前記受電巻線部に誘導起電力及び引力を励起させる時及び前記送電巻線部を当該送電巻線部の磁気で磁性ベースへ導く時に、前記送電巻線部で励起された磁気の浸透深さを前記シールド側壁の材質に応じてその厚みを下回る浸透深さとするように前記送電巻線部の運転周波数を切り替えることを特徴とする非接触給電装置。The penetration depth of the magnetism excited in the power transmission winding portion when exciting the induced electromotive force and attractive force in the power receiving winding portion and when guiding the power transmission winding portion to the magnetic base by the magnetism of the power transmission winding portion According to the material of the shield side wall, the operating frequency of the power transmission winding part is switched so that the penetration depth is less than its thickness.
電動車両の通行及び停止が可能となる路面に設定されたプラットフォームと、A platform set on the road surface where electric vehicles can pass and stop,
電動車両が具備する受電巻線部に誘導起電力及び引力を励起させる送電巻線部と、A power transmission winding part that excites an induced electromotive force and an attractive force in a power reception winding part included in the electric vehicle;
前記プラットフォーム下において前記送電巻線部を水平移動可能とする支持体と、A support that allows the power transmission winding portion to move horizontally under the platform;
前記支持体下の中央部に前記送電巻線部を当該送電巻線部の磁気で導く磁性ベースと、A magnetic base for guiding the power transmission winding part to the center part under the support by the magnetism of the power transmission winding part;
前記送電巻線部と前記磁性ベースとの間に介在するシールド板と、A shield plate interposed between the power transmission winding portion and the magnetic base;
前記送電巻線部の運転周波数を変更する運転周波数調整手段と、Operating frequency adjusting means for changing the operating frequency of the power transmission winding section;
前記送電巻線部及び前記支持体の側方を囲うシールド側壁とを備え、A shield side wall that surrounds the side of the power transmission winding portion and the support,
前記運転周波数調整手段は、The operating frequency adjusting means is
前記受電巻線部に誘導起電力及び引力を励起させる時に前記送電巻線部で励起された磁気の浸透深さを前記シールド板の材質に応じてその厚みを下回る浸透深さとし、且つ前記送電巻線部を当該送電巻線部の磁気で磁性ベースへ導く時に前記送電巻線部で励起された磁気の浸透深さを前記シールド板の材質に応じてその厚みを上回る浸透深さとするように前記送電巻線部の運転周波数を切り替えると共に、The penetration depth of magnetism excited in the power transmission winding portion when exciting the induced electromotive force and attractive force in the power receiving winding portion is set to a penetration depth lower than the thickness according to the material of the shield plate, and the power transmission winding The penetration depth of the magnetism excited by the power transmission winding portion when the wire portion is guided to the magnetic base by the magnetism of the power transmission winding portion so as to exceed the thickness according to the material of the shield plate While switching the operating frequency of the power transmission winding part,
前記受電巻線部に誘導起電力及び引力を励起させる時及び前記送電巻線部を当該送電巻線部の磁気で磁性ベースへ導く時に、前記送電巻線部で励起された磁気の浸透深さを前記シールド側壁の材質に応じてその厚みを下回る浸透深さとするように前記送電巻線部の運転周波数を切り替えることを特徴とする非接触給電装置。The penetration depth of the magnetism excited in the power transmission winding portion when exciting the induced electromotive force and attractive force in the power receiving winding portion and when guiding the power transmission winding portion to the magnetic base by the magnetism of the power transmission winding portion According to the material of the shield side wall, the operating frequency of the power transmission winding part is switched so that the penetration depth is less than its thickness.
JP2014237779A 2014-11-25 2014-11-25 Non-contact power feeding device Active JP6403550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237779A JP6403550B2 (en) 2014-11-25 2014-11-25 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237779A JP6403550B2 (en) 2014-11-25 2014-11-25 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2016101029A JP2016101029A (en) 2016-05-30
JP6403550B2 true JP6403550B2 (en) 2018-10-10

Family

ID=56077702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237779A Active JP6403550B2 (en) 2014-11-25 2014-11-25 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP6403550B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374850B2 (en) * 2007-10-04 2013-12-25 沖電気工業株式会社 High efficiency contactless power supply system, high efficiency contactless power supply method, high efficiency contactless power supply device
JP5446452B2 (en) * 2009-05-21 2014-03-19 ソニー株式会社 POWER SUPPLY DEVICE, POWERED SUPPLY DEVICE, POWER SUPPLY DEVICE SYSTEM, AND POSITIONING CONTROL METHOD
EP2763271A4 (en) * 2011-09-27 2015-06-24 Nec Casio Mobile Comm Ltd Charger, control method, and terminal device
WO2013128554A1 (en) * 2012-02-27 2013-09-06 株式会社日立エンジニアリング・アンド・サービス Wireless power supply apparatus
JP6071709B2 (en) * 2013-04-03 2017-02-01 北陸電機製造株式会社 Non-contact power feeding device

Also Published As

Publication number Publication date
JP2016101029A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
US10263478B2 (en) Wireless power supply system
CN110867974B (en) Interoperability of magnetic structures for inductive power transfer systems
JP6071709B2 (en) Non-contact power feeding device
EP2394345B1 (en) Inductive power transfer apparatus
JP5437650B2 (en) Non-contact power feeding device
JP6124136B2 (en) Non-contact power receiving device
JP7384821B2 (en) Apparatus, system and method for detecting foreign objects
JP5374850B2 (en) High efficiency contactless power supply system, high efficiency contactless power supply method, high efficiency contactless power supply device
US20120112552A1 (en) Selectively controllable electromagnetic shielding
CN104904096B (en) Contactless power supply system
JP2010183814A (en) Non-contact power transmitter
JP5141285B2 (en) Non-contact charger
WO2015162859A1 (en) Contactless power transmission device, contactless power reception device, and contactless power transmission system
WO2013001810A1 (en) Power supply device and power receiving device used in contactless power transmission
EP3224843A1 (en) Power reception apparatus and power transmission apparatus
JP2015008547A (en) Non-contact power charger
JPWO2019229808A1 (en) Power transmission device and control method of power transmission device
JP6567046B2 (en) Method for operating inductive power transmission system and inductive power transmission system
JP6403550B2 (en) Non-contact power feeding device
JP2012257381A (en) On-vehicle non-contact charging device
JP5329929B2 (en) Non-contact power feeding device
KR20120028310A (en) Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation
WO2016072351A1 (en) Coil device, contactless power supply system, and auxiliary magnetic member
JP2013211466A (en) Non-contact power supply device
JP2013090392A (en) Non-contact charging device and non-contact power supply facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250