JP6399848B2 - Switch - Google Patents

Switch Download PDF

Info

Publication number
JP6399848B2
JP6399848B2 JP2014156176A JP2014156176A JP6399848B2 JP 6399848 B2 JP6399848 B2 JP 6399848B2 JP 2014156176 A JP2014156176 A JP 2014156176A JP 2014156176 A JP2014156176 A JP 2014156176A JP 6399848 B2 JP6399848 B2 JP 6399848B2
Authority
JP
Japan
Prior art keywords
switch
circuit
igbt
mechanical switch
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014156176A
Other languages
Japanese (ja)
Other versions
JP2016033871A (en
Inventor
恩地 俊行
俊行 恩地
修平 佐竹
修平 佐竹
外山 健太郎
健太郎 外山
磯崎 優
優 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014156176A priority Critical patent/JP6399848B2/en
Publication of JP2016033871A publication Critical patent/JP2016033871A/en
Application granted granted Critical
Publication of JP6399848B2 publication Critical patent/JP6399848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、直流の給配電回路などに適用する双方向の電流遮断機能を備えた開閉器に関する。   The present invention relates to a switch having a bidirectional current interruption function applied to a DC power distribution circuit and the like.

昨今、太陽光発電システム,蓄電池を用いた電源システムなどの普及化に伴い、これらシステムの配電回路に適用する直流用開閉器の研究,開発が進んでいる。     In recent years, with the widespread use of photovoltaic power generation systems, power supply systems using storage batteries, etc., research and development of DC switches applied to the power distribution circuits of these systems is progressing.

ところで、従来における直流用の開閉器(配線用遮断器(MCCB),漏電遮断器(ELB),電磁開閉器(MAG)などの機械式スイッチ(有接点スイッチ))は、開閉動作に伴って回路接点間に発生する直流アークの影響により接点の損傷,消耗が早期に進んで開閉器の動作不良を引き起こす問題がある。   By the way, a conventional DC switch (a mechanical switch (reed switch) such as a circuit breaker (MCCB), an earth leakage circuit breaker (ELB), an electromagnetic switch (MAG), etc.) is provided with a switching operation. Due to the influence of the DC arc generated between the contacts, there is a problem that the contacts are damaged and consumed at an early stage, causing malfunction of the switch.

そのために、従来から様々なアーク消弧対策が提案されており、その一例として機械式スイッチの回路接点に半導体スイッチ(IGBT(Insulated Gate Bipolar Transistor)、MOS−FET、GTOサイリスタなどの無接点式スイッチ)を並列に接続し、機械式スイッチの開極時に該機械式スイッチの回路接点に流れていた主回路電流を前記半導体スイッチに転流させて機械式スイッチの回路接点間に生じたアークを即時に消滅し、その後に半導体スイッチをOFF制御して回路電流を遮断するようにした直流用の開閉器が知られている(例えば、特許文献1参照)。   For this purpose, various arc extinguishing countermeasures have been proposed in the past. As an example, a solid state switch such as an IGBT (Insulated Gate Bipolar Transistor), a MOS-FET, or a GTO thyristor is used as a circuit contact of a mechanical switch. ) In parallel, the main circuit current that was flowing to the circuit contact of the mechanical switch when the mechanical switch was opened is commutated to the semiconductor switch, and the arc generated between the circuit contacts of the mechanical switch is immediately generated. There is known a DC switch in which the circuit current is interrupted by turning off the semiconductor switch after that and the circuit current is cut off (see, for example, Patent Document 1).

しかしながら、特許文献1に開示の開閉器は、半導体スイッチのゲートドライブ回路に独立した駆動電源、およびその制御が必要である。そこで、発明者等は前記ゲートドライブ回路の独立した駆動電源を省略し、その代わりに機械式スイッチの開極動作時にその回路接点間に発生したアーク電圧を半導体スイッチ(IGBT)のゲートに印加することにより、機械式スイッチの開極動作に同期して半導体スイッチをON,OFF制御するようにした開閉器を先に提案しており(特許文献2参照)、その回路構成,および機械式スイッチの開極から電流遮断に至る動作の経緯が詳しく述べられている。   However, the switch disclosed in Patent Document 1 requires a drive power supply independent of the gate drive circuit of the semiconductor switch and its control. Therefore, the inventors omit the independent drive power supply of the gate drive circuit, and instead apply the arc voltage generated between the circuit contacts during the opening operation of the mechanical switch to the gate of the semiconductor switch (IGBT). Therefore, a switch has been proposed previously (see Patent Document 2) in which the semiconductor switch is controlled to be turned on and off in synchronization with the opening operation of the mechanical switch (see Patent Document 2). The details of the operation from opening to current interruption are described in detail.

この特許文献2に開示の開閉器では、機械式スイッチの開極動作時に発生する回路接点間のアーク電圧を利用して半導体スイッチのIGBTをON,OFF制御し、主回路電流を機械式スイッチから半導体スイッチに転流させて遮断するようにしており、これにより先記した特許文献1の開閉器のように独立したゲート駆動電源が不要となって半導体スイッチの制御を簡略化できる。   In the switch disclosed in Patent Document 2, the IGBT of the semiconductor switch is controlled to be turned on and off using the arc voltage between the circuit contacts generated during the opening operation of the mechanical switch, and the main circuit current is controlled from the mechanical switch. The semiconductor switch is commutated to be cut off, which eliminates the need for an independent gate drive power supply like the switch disclosed in Patent Document 1 described above, thereby simplifying the control of the semiconductor switch.

ところで、蓄電池を備えた電源装置のように蓄電池の充電と放電とで回路電流が順逆方向に反転する回路、あるいは太陽光発電システムのような分散型の直流電源間で電力の逆潮流を行う直流系統の連係回路などに適用する直流開閉器については、その機械式スイッチの回路接点に並列接続した半導体スイッチに双方向の電流遮断機能が必要となるが、先記の特許文献2に開示されている直流開閉器では半導体スイッチのIGBTが単方向素子であるため、このままでは主回路電流の通電方向が順逆反転する場合に回路電流を機械式スイッチから半導体スイッチに転流させて遮断することができない。   By the way, a circuit in which the circuit current is reversed in the forward and reverse directions by charging and discharging the storage battery, such as a power supply device equipped with a storage battery, or a direct current that performs reverse power flow between distributed DC power sources such as a photovoltaic power generation system For a DC switch applied to a system linkage circuit or the like, a bidirectional current cut-off function is required for a semiconductor switch connected in parallel to a circuit contact of the mechanical switch. In the DC switch, the IGBT of the semiconductor switch is a unidirectional element, so if the energization direction of the main circuit current is reversed in the forward and reverse directions, the circuit current cannot be commutated from the mechanical switch to the semiconductor switch. .

そこで、発明者等は、機械式スイッチの回路接点に並列接続した半導体スイッチとして、逆直列接続した2個のIGBTと、各IGBTに逆並列接続したダイオードとを組み合わせてなる双方向スイッチを機械式スイッチの回路接点に並列接続した上で、機械式スイッチの開極動作時に生じる回路接点間のアーク電圧を利用して前記双方向スイッチのIGBTをON,OFF制御することで、主回路電流の通電方向が順逆反転する場合でも回路電流を機械式スイッチから半導体スイッチに転流させて遮断できるようにした双方向遮断機能を有する直流用の開閉器を考案し、特願2013−89453号(2013年4月22日出願)として先に提案しており、以下その回路構成,および主回路電流の遮断動作を図10〜図14に基づいて説明する。   Therefore, the inventors have established a mechanical switch as a semiconductor switch connected in parallel to the circuit contact of the mechanical switch by combining two IGBTs connected in reverse series and a diode connected in reverse parallel to each IGBT. The main circuit current is energized by controlling ON / OFF of the IGBT of the bidirectional switch by using the arc voltage between the circuit contacts generated during the opening operation of the mechanical switch after being connected in parallel to the circuit contact of the switch. Japanese Patent Application No. 2013-89453 (2013) has devised a DC switch having a bidirectional cutoff function that allows a circuit current to be commutated from a mechanical switch to a semiconductor switch even when the direction is forward and reverse. (Applied on April 22), the circuit configuration and the main circuit current cutoff operation will be described below with reference to FIGS. That.

すなわち、図10において、直流の主回路1に接続した機械式スイッチ2の回路接点(1極分)は一対の固定接点2a,2bと橋絡可動接点2cからなり、この機械式スイッチ2の回路接点には次記構成になる双方向の半導体スイッチ3が並列接続されている。ここで、半導体スイッチ3は、図示のように逆直列接続した2個のIGBT4(以下、IGBT−1,IGBT−2と呼称する)と、各IGBT−1,IGBT−2にそれぞれ逆並列接続したダイオードD−1,D−2とで双方向スイッチを構成している。なお、11,12は主回路端子である。   That is, in FIG. 10, the circuit contact (for one pole) of the mechanical switch 2 connected to the DC main circuit 1 is composed of a pair of fixed contacts 2a and 2b and a bridge movable contact 2c. A bidirectional semiconductor switch 3 having the following configuration is connected to the contact in parallel. Here, the semiconductor switch 3 is connected in reverse parallel to two IGBTs 4 (hereinafter referred to as IGBT-1 and IGBT-2) connected in reverse series as shown in the figure, and to each of the IGBT-1 and IGBT-2. The diodes D-1 and D-2 constitute a bidirectional switch. Reference numerals 11 and 12 are main circuit terminals.

また、前記IGBT−1,IGBT−2のゲートに対しては、分圧抵抗5,6−1,6−2と、バリスター,ツェナーダイオードなどの過電圧抑制素子7−1,7−2と、コンデンサ8−1,8−2を図示のように組合せて構成したゲートドライブ回路を各IGBTのゲート端子,エミッタ端子と機械式スイッチ2の橋絡可動接点2cとの間に接続し、機械式スイッチ2の開極動作時にその固定/可動接点間に発生したアーク電圧をIGBT−1,IGBT−2のゲート端子に印加してターンオン,ターンオフ制御するようにしている。   For the gates of the IGBT-1 and IGBT-2, voltage dividing resistors 5, 6-1, 6-2, overvoltage suppressing elements 7-1, 7-2 such as varistors and Zener diodes, A gate drive circuit configured by combining capacitors 8-1 and 8-2 as shown in the figure is connected between the gate terminal and emitter terminal of each IGBT and the bridging movable contact 2c of the mechanical switch 2, and the mechanical switch The arc voltage generated between the fixed / movable contacts during the opening operation is applied to the gate terminals of the IGBT-1 and IGBT-2 for turn-on and turn-off control.

上記の回路構成で、機械式スイッチ2の回路接点が閉極した通電状態では、図11(a),(b)の実線矢印で表すように、直流の主回路1の主回路電流が主回路端子11,12の極性に対応して機械式スイッチ2の回路接点を経て流れる。なお、この通電状態では機械式スイッチ2の回路接点が閉極していてその接点間の電位差は0Vであり、半導体スイッチ3のIGBT−1,IGBT−2はいずれもOFF状態である。   With the above circuit configuration, in the energized state where the circuit contact of the mechanical switch 2 is closed, the main circuit current of the DC main circuit 1 is the main circuit as shown by the solid arrows in FIGS. 11 (a) and 11 (b). It flows through the circuit contact of the mechanical switch 2 corresponding to the polarity of the terminals 11 and 12. In this energized state, the circuit contact of the mechanical switch 2 is closed, the potential difference between the contacts is 0V, and both the IGBT-1 and IGBT-2 of the semiconductor switch 3 are in the OFF state.

この通電状態から機械式スイッチ2を開極すると、図12(a),(b)で示すように固定接点2a,2bと橋絡可動接点2cとの間にアークarcが発生し、このアーク電圧(電圧降下)により半導体スイッチ3のゲートドライブ回路には図12の点線矢印で表すような制御電流が流れる。これにより、先記の特許文献2の開閉器で述べた動作と同様に、主回路電流(実線矢印)の通流方向に対応してIGBT−1,IGBT−2のゲートに接続したコンデンサ8−1,8−2が分圧抵抗5を介して順方向に充電される。そして、コンデンサ8−1,8−2の充電電圧が上昇してIGBTのゲートに印加される電圧(順バイアス電圧)が所定の閾値(ゲート−エミッタ間しきい値電圧)を超えると、IGBT−1、もしくはIGBT−2がターンオンしてON状態となる。   When the mechanical switch 2 is opened from this energized state, an arc arc is generated between the fixed contacts 2a, 2b and the bridge movable contact 2c as shown in FIGS. 12 (a) and 12 (b). Due to (voltage drop), a control current as shown by a dotted arrow in FIG. 12 flows through the gate drive circuit of the semiconductor switch 3. As a result, similar to the operation described in the switch of Patent Document 2 above, the capacitor 8- connected to the gates of IGBT-1 and IGBT-2 corresponding to the flow direction of the main circuit current (solid arrow). 1 and 8-2 are charged in the forward direction via the voltage dividing resistor 5. When the charging voltage of the capacitors 8-1 and 8-2 rises and the voltage (forward bias voltage) applied to the gate of the IGBT exceeds a predetermined threshold value (gate-emitter threshold voltage), the IGBT− 1 or IGBT-2 is turned on and turned on.

なお、機械式スイッチ2の開極動作に伴いその回路接点間にアーク電圧が発生した状態では、図示してないが図12(a)におけるコンデンサ8−2、図12(b)におけるコンデンサ8−1も機械式スイッチ2の接点間アーク電圧を受けて充電されるが、図12(a)におけるIGBT−2、図12(b)におけるIGBT−1のゲートに対応するコンデンサの充電電位が逆バイアスとなるので、このIGBTはOFF状態のままである。   In the state in which an arc voltage is generated between the circuit contacts in accordance with the opening operation of the mechanical switch 2, although not shown, the capacitor 8-2 in FIG. 12A and the capacitor 8- in FIG. 1 is charged by receiving the arc voltage between the contacts of the mechanical switch 2, but the charging potential of the capacitor corresponding to the IGBT-2 in FIG. 12A and the gate of the IGBT-1 in FIG. Therefore, this IGBT remains in the OFF state.

これにより、いままで機械式スイッチ2の回路接点を流れていた主回路電流は、図13(a),(b)の実線矢印で表すように半導体スイッチ(双方向スイッチ)3の回路に転流する。この場合に、図13(a)では主回路電流がダイオードD−2とIGBT−1(ON状態)を経由して流れ、主回路電流が逆の方向である図13(b)では、前記とは逆にダイオードD−1とIGBT−2(ON状態)を経由して流れるとともに、いままで機械式スイッチ2の開極動作に伴ってその回路接点間に発生したアークは即時に消滅することになる。   As a result, the main circuit current that has been flowing through the circuit contact of the mechanical switch 2 until now is commutated to the circuit of the semiconductor switch (bidirectional switch) 3 as shown by the solid arrows in FIGS. 13 (a) and 13 (b). To do. In this case, in FIG. 13A, the main circuit current flows through the diode D-2 and IGBT-1 (ON state), and in FIG. Conversely flows through the diode D-1 and IGBT-2 (ON state), and the arc generated between the circuit contacts with the opening operation of the mechanical switch 2 until now is immediately extinguished. Become.

そして、機械式スイッチ2の接点間に生じていたアークが消滅すると、いままで橋絡可動接点2cを通じてIGBT−1,IGBT−2のゲートドライブ回路に流れていた電流も消滅し、これによりコンデンサ8−1,8−2に蓄えられていた充電電荷が図中に表した点線矢印のように分圧抵抗6−1,6−2を通じて放電される。そして、コンデンサ8−1,8−2の放電が進んでIGBT−1,IGBT−2のゲート電圧が所定の閾値以下に低下すると、IGBTはターンオフしてOFF状態となり、これにより図14で表すように直流の主回路1に流れていた回路電流が完全に遮断される。   Then, when the arc generated between the contacts of the mechanical switch 2 disappears, the current that has been flowing to the gate drive circuits of the IGBT-1 and IGBT-2 through the bridge movable contact 2c until then disappears. The charged charges stored in −1 and 8-2 are discharged through the voltage dividing resistors 6-1 and 6-2 as indicated by dotted arrows in the drawing. Then, when the discharge of the capacitors 8-1 and 8-2 progresses and the gate voltages of the IGBT-1 and IGBT-2 decrease below a predetermined threshold value, the IGBT is turned off and turned off, and as shown in FIG. The circuit current flowing in the DC main circuit 1 is completely cut off.

上記の説明から判るように、機械式スイッチ2の回路接点に並列接続した半導体スイッチ3を逆直列接続した2個のIGBT−1,IGBT−2、および該IGBT−1,IGBT−2に逆並列接続したダイオードD−1,D−2とで双方向スイッチを構成することにより、直流回路1の通電方向に制約されることなく、双方向の回路電流を機械式スイッチ2から半導体スイッチ3に転流させて遮断することができる。   As can be seen from the above description, two IGBT-1 and IGBT-2 in which the semiconductor switch 3 connected in parallel to the circuit contact of the mechanical switch 2 is connected in reverse series, and reversely parallel to the IGBT-1 and IGBT-2. By forming a bidirectional switch with the connected diodes D-1 and D-2, the bidirectional circuit current is transferred from the mechanical switch 2 to the semiconductor switch 3 without being restricted by the energization direction of the DC circuit 1. It can be blocked by flowing.

特開平8−106839号公報Japanese Patent Laid-Open No. 8-106839 特開2013−41782号公報JP 2013-41882 A

先述の図10〜図14で述べた従来提案の開閉器においては、機械式スイッチ2の回路接点に並列接続した半導体スイッチ3のスイッチング素子(IGBT−1,IGBT−2)には従来型のIGBTを用いている。   In the conventional switch described in FIGS. 10 to 14 described above, the conventional IGBT is used as the switching element (IGBT-1, IGBT-2) of the semiconductor switch 3 connected in parallel to the circuit contact of the mechanical switch 2. Is used.

ところで、従来型のIGBTは逆印加電圧に対する耐圧(逆耐圧)を持たないために、先記した従来提案(図10参照)の開閉器では、逆直列接続したIGBT−1とIGBT−2にそれぞれダイオードD−1,D−2を逆並列接続して双方向スイッチの逆阻止耐圧を担うようにしている。   By the way, since the conventional IGBT does not have a withstand voltage (reverse withstand voltage) with respect to the reverse applied voltage, in the switch of the conventional proposal (see FIG. 10) described above, each of the IGBT-1 and IGBT-2 connected in reverse series is provided. The diodes D-1 and D-2 are connected in reverse parallel to bear the reverse blocking voltage of the bidirectional switch.

このために、機械式スイッチ2の開極動作に伴って主回路電流が半導体スイッチ3に転流した通電状態(図13(a),(b)参照)では、回路電流がIGBTとダイオードの二つの素子を直列に通過することになり、これにより半導体スイッチ3の回路には(IGBTのオン電圧)+(ダイオードの順電圧)に相応した電圧降下が生じ、その電圧はIGBT,もしくはダイオードの単体素子と較べて2倍となる。このため主回路電流が機械式スイッチ2から半導体スイッチ3の回路に転流した状態では、IGBTとダイオードの各素子に発生する導通損失が加算されて半導体スイッチ3の電力損失が増大する。   For this reason, in the energized state in which the main circuit current is commutated to the semiconductor switch 3 with the opening operation of the mechanical switch 2 (see FIGS. 13A and 13B), the circuit current is equal to that of the IGBT and the diode. As a result, a voltage drop corresponding to (ON voltage of the IGBT) + (forward voltage of the diode) is generated in the circuit of the semiconductor switch 3, and this voltage is the IGBT or a single diode. It is twice as much as the element. For this reason, in a state where the main circuit current is commutated from the mechanical switch 2 to the circuit of the semiconductor switch 3, the conduction loss generated in each element of the IGBT and the diode is added and the power loss of the semiconductor switch 3 increases.

また、回路電流が機械式スイッチ2から半導体スイッチ3に転流する際のスイッチング損失についても、IGBTとダイオードとのスイッチング損失が加算されるため、回路電流が機械式スイッチ2から半導体スイッチ3に転流するスイッチング時間が長くなり、このスイッチング時間が長くなることで機械式スイッチ2の回路接点間に発生したアークが消滅するまでの時間も長引き、それだけ接点の消耗が早く進んで開閉器の寿命が短縮されることになる。例えば、機械式スイッチに適用する電磁開閉器の製品仕様には通常数十万回以上の開閉動作を保証することが要求されるが、回路接点の寿命が短縮されると所要の開閉回数を保証することが困難となる。   In addition, the switching loss when the circuit current is commutated from the mechanical switch 2 to the semiconductor switch 3 is also added to the switching loss between the IGBT and the diode, so that the circuit current is transferred from the mechanical switch 2 to the semiconductor switch 3. The switching time to flow becomes longer, and the longer the switching time, the longer the time until the arc generated between the circuit contacts of the mechanical switch 2 disappears. It will be shortened. For example, the product specifications of electromagnetic switches applied to mechanical switches usually require guaranteeing switching operations of several hundred thousand times or more. However, if the circuit contact life is shortened, the required number of switching times is guaranteed. Difficult to do.

そのほか半導体スイッチ3の損失増加に伴い、その半導体素子を冷却する熱負荷も増すのでその冷却部が大型化して重量,コストも増加する。   In addition, as the loss of the semiconductor switch 3 increases, the heat load for cooling the semiconductor element also increases, so that the cooling section becomes larger and the weight and cost also increase.

本発明は上記の点に鑑みなされたものであり、先記した従来提案のように機械式スイッチに双方向の半導体スイッチを並列接続し、機械式スイッチの開極時にその回路接点間に発生したアーク電圧をゲート制御信号に利用して半導体スイッチをON,OFF制御するようにした双方向の電流遮断機能を備えた開閉器を対象に、機械式スイッチの開極時に回路電流を転流させる半導体スイッチの導通損失,およびスイッチング時間を低減,短縮して機械式スイッチの接点のより一層の長寿命化を図り、併せて半導体スイッチの素子数を削減して小型,軽量、およびコストの低減化が図れるように改良した開閉器を提供することを目的とする。   The present invention has been made in view of the above points, and a bidirectional semiconductor switch is connected in parallel to a mechanical switch as in the above-described conventional proposal, and is generated between circuit contacts when the mechanical switch is opened. A semiconductor that commutates the circuit current when the mechanical switch is open for a switch with a bidirectional current interrupt function that controls the semiconductor switch ON / OFF using the arc voltage as the gate control signal. Reduces and shortens switch conduction loss and switching time to further extend the life of contact points of mechanical switches. At the same time, it reduces the number of elements of semiconductor switches to reduce size, weight, and cost. An object of the present invention is to provide an improved switch which can be improved.

上記目的を達成するために、本発明によれば、電流方向が順逆両方向に反転する回路に適用する開閉器であり、前記回路に接続した機械式スイッチの回路接点に双方向の半導体スイッチを並列接続し、機械式スイッチの開極時に回路電流を半導体スイッチに転流して機械式スイッチの接点間に発生したアークを消滅させ、その後に前記半導体スイッチをOFF制御して電流を遮断するようにした開閉器において、
前記半導体スイッチとして、逆方向の耐圧性能を有する2個の逆阻止型IGBT(RB−IGBT:Reverse Blocking Insulated Gate Bipolar Transistor)を逆並列接続してなる双方向スイッチを前記機械式スイッチに並列接続した上で、機械式スイッチの開極動作時には、その回路接点間に発生したアーク電圧を前記逆阻止型IGBTのゲートに印加して主回路電流を半導体スイッチに転流させ、その後に半導体スイッチをOFF制御して回路電流を遮断するとともに、前記機械式スイッチとして3組の回路接点を備えた3極型スイッチを使用し、その1極を主接点として該回路接点に前記双方向スイッチを並列接続し、残り2極の回路接点を断路用接点として主回路の往路,および復路に介挿接続するようにする。
In order to achieve the above object, according to the present invention, a switch is applied to a circuit in which a current direction is reversed in both forward and reverse directions, and a bidirectional semiconductor switch is connected in parallel to a circuit contact of a mechanical switch connected to the circuit. When the mechanical switch is opened, the circuit current is commutated to the semiconductor switch to extinguish the arc generated between the contacts of the mechanical switch, and then the semiconductor switch is turned off to cut off the current. In the switch
As the semiconductor switch, a bidirectional switch formed by reverse-parallel connection of two reverse blocking IGBTs (RB-IGBT: Reverse Blocking Insulated Gate Bipolar Transistors) having reverse breakdown voltage performance is connected in parallel to the mechanical switch. Above, when opening the mechanical switch, the arc voltage generated between the circuit contacts is applied to the gate of the reverse blocking IGBT to commutate the main circuit current to the semiconductor switch, and then the semiconductor switch is turned off. The circuit current is controlled to be cut off , and a three-pole type switch having three sets of circuit contacts is used as the mechanical switch, and the bidirectional switch is connected in parallel to the circuit contact with one pole as a main contact. The remaining two pole circuit contacts are inserted and connected to the forward and return paths of the main circuit as disconnecting contacts .

上記構成の開閉器によれば、次記効果を奏することができる。   According to the switch configured as described above, the following effects can be obtained.

先ず、機械式スイッチの回路接点に並列接続する半導体スイッチとして、2個の逆阻止型IGBT同士を逆並列接続した双方向スイッチを使用し、さらにこの双方向スイッチに対して機械式スイッチの開極動作時にその回路接点間に発生するアーク電圧を逆阻止型IGBTのゲートに加えてON,OFF制御するようにしたことで、独立したゲート駆動電源を要さずに、機械式スイッチの開極動作に同期して主回路電流を半導体スイッチに転流させて遮断する双方向の遮断機能を持たせることかできる。   First, as a semiconductor switch connected in parallel to the circuit contact of the mechanical switch, a bidirectional switch in which two reverse blocking IGBTs are connected in reverse parallel is used, and the opening of the mechanical switch is further opened with respect to this bidirectional switch. The arc voltage generated between the circuit contacts during operation is added to the gate of the reverse blocking IGBT to control ON / OFF, so that the opening operation of the mechanical switch can be performed without requiring an independent gate drive power supply. In synchronism with this, it is possible to provide a bidirectional cutoff function in which the main circuit current is commutated to and cut off from the semiconductor switch.

また、従来型のIGBTにダイオードを組み合わせて構成した従来の双方向スイッチ(図10参照)と較べて、機械式スイッチの発生アークによる接点消耗を軽減して開閉器の長寿命化を達成できる。   Further, compared with a conventional bidirectional switch (see FIG. 10) configured by combining a conventional IGBT with a diode, contact wear due to an arc generated by the mechanical switch can be reduced, and the life of the switch can be extended.

さらに、従来型のIGBTに接続していたダイオードの省略により、双方向の半導体スイッチを構成する素子数が低減して開閉器に搭載する半導体スイッチの小型,軽量、およびコスト低減化が可能となる。   Further, by omitting the diode connected to the conventional IGBT, the number of elements constituting the bidirectional semiconductor switch is reduced, and the semiconductor switch mounted on the switch can be reduced in size, weight, and cost. .

また、本発明の実施態様として、前記の機械式スイッチに3極型スイッチを用い、その1極の接点を主接点として該回路接点に前記双方向スイッチを並列接続するとともに、残り2極の接点を断路用補助接点として主回路の往路,および復路に介挿接続することにより、機械式スイッチの開極より負荷を電源から完全に切り離して負荷の保守,点検作業を感電のおそれ無しに安全に行うことができるほか、機械式スイッチに並列接続した半導体スイッチも同様に電源から完全に断路して不要な誤動作を防止できる。   As an embodiment of the present invention, a three-pole switch is used as the mechanical switch, the one-pole contact is used as a main contact, the bidirectional switch is connected in parallel to the circuit contact, and the remaining two-pole contact Is used as an auxiliary contact for disconnection in the forward and return paths of the main circuit, so that the load can be completely disconnected from the power supply by opening the mechanical switch so that load maintenance and inspection can be performed safely without fear of electric shock. In addition, the semiconductor switch connected in parallel with the mechanical switch can be completely disconnected from the power source in the same manner, and unnecessary malfunction can be prevented.

本発明の実施例1に係わる開閉器の模式回路図である。It is a schematic circuit diagram of the switch concerning Example 1 of the present invention. 図1の機械式スイッチの閉極時における主回路電流の通電経路を表す図であって、(a),(b)はそれぞれ回路電流の順,逆方向に対応した図である。It is a figure showing the energization path | route of the main circuit current at the time of closing of the mechanical switch of FIG. 1, Comprising: (a), (b) is a figure corresponding to the forward and reverse direction of a circuit current, respectively. 図2の状態から機械式スイッチを開極した直後の通電状態を表す図であって、(a),(b)はそれぞれ回路電流の順,逆方向に対応した図である。It is a figure showing the energization state immediately after opening a mechanical switch from the state of FIG. 2, Comprising: (a), (b) is a figure corresponding to the forward and reverse direction of a circuit current, respectively. 図3の状態から回路電流が双方向スイッチに転流した状態の通電経路を表す図であって、(a),(b)はそれぞれ電回路電流の順,逆方向に対応した図である。FIG. 4 is a diagram illustrating an energization path in a state where a circuit current is commutated from the state of FIG. 3 to a bidirectional switch, and (a) and (b) are diagrams corresponding to forward and reverse directions of the electric circuit current, respectively. 図4(a),(b)の状態から半導体スイッチをOFF制御して回路電流を遮断した状態を表す図である。FIG. 5 is a diagram illustrating a state in which the semiconductor switch is turned off from the states of FIGS. 4A and 4B to cut off the circuit current. 本発明の実施例2に対応する開閉器の模式回路図である。It is a schematic circuit diagram of the switch corresponding to Example 2 of the present invention. 本発明の実施例3に対応する開閉器の模式回路図である。It is a schematic circuit diagram of the switch corresponding to Example 3 of the present invention. 図7の機械式スイッチに用いた3極型電磁開閉器の構造図であって、(a)はその内部機構を表す縦断面図、(b)は(a)の平面図である。FIG. 8 is a structural diagram of a three-pole electromagnetic switch used in the mechanical switch of FIG. 7, wherein (a) is a longitudinal sectional view showing the internal mechanism, and (b) is a plan view of (a). 本発明の実施例4に対応する開閉器の模式回路図である。It is a schematic circuit diagram of the switch corresponding to Example 4 of the present invention. 従来型のIGBTにダイオードを組み合わせた双方向スイッチを機械式スイッチの回路接点に並列接続し、機械式スイッチの開極時にその回路接点間に生じたアーク電圧を利用して半導体スイッチをON,OFF制御するようした従来の直流開閉器を表す模式回路図である。A bidirectional switch that combines a diode with a conventional IGBT is connected in parallel to the circuit contact of the mechanical switch, and the semiconductor switch is turned ON / OFF using the arc voltage generated between the circuit contacts when the mechanical switch is opened. It is a schematic circuit diagram showing the conventional DC switch to be controlled. 図10の機械式スイッチの閉極時における主回路電流の通電経路を表す図であって、(a),(b)はそれぞれ回路電流の順,逆方向に対応した図である。It is a figure showing the energization path | route of the main circuit current at the time of closing of the mechanical switch of FIG. 10, Comprising: (a), (b) is a figure corresponding to the order and reverse direction of a circuit current, respectively. 図11の状態から機械式スイッチを開極した直後の通電状態を表す図であって、(a),(b)はそれぞれ回路電流の順,逆方向に対応した図である。FIG. 12 is a diagram illustrating an energized state immediately after opening the mechanical switch from the state of FIG. 11, and (a) and (b) are diagrams corresponding to the forward and reverse directions of the circuit current, respectively. 図12の状態から回路電流が双方向スイッチに転流した状態の通電経路を表す図であって、(a),(b)はそれぞれ回路電流の順,逆方向に対応した図である。It is a figure showing the energization path | route in the state where the circuit current commutated from the state of FIG. 12 to the bidirectional | two-way switch, Comprising: (a), (b) is a figure corresponding to the order of a circuit current, and a reverse direction, respectively. 図13(a),(b)の状態から半導体スイッチをOFF制御して回路電流を遮断した状態を表す図である。It is a figure showing the state which cut off the circuit current by carrying out OFF control of the semiconductor switch from the state of Fig.13 (a), (b).

以下、本発明による開閉器の構成、電流遮断動作を図示実施例に基づいて説明する。なお、各実施例の図中で図10〜図14に対応する回路部品には同じ符号を付している。   Hereinafter, the configuration of the switch and the current interruption operation according to the present invention will be described based on the illustrated embodiments. In the drawings of the respective embodiments, the same reference numerals are given to circuit components corresponding to FIGS.

先ず、本発明係わる開閉器の回路構成,およびその電流遮断動作を図1〜図5に基づいて説明する。 First, a circuit configuration of a switch according to the present invention and a current interruption operation thereof will be described with reference to FIGS.

すなわち、図示実施例の開閉器3は、先記した従来提案の開閉器(図10参照)と同様に、直流系統の主回路1に接続した機械式スイッチ2(配線用遮断器,漏電遮断器,電磁開閉器など)と、該機械式スイッチ2の回路接点21に並列接続した双方向の半導体スイッチ3との組み合わせから構成されている。また、機械式スイッチ2は、固定接点2a,2bと橋絡可動接点2cからなる。   That is, the switch 3 in the illustrated embodiment is similar to the previously proposed switch (see FIG. 10) described above, and is a mechanical switch 2 (wiring circuit breaker, earth leakage circuit breaker) connected to the main circuit 1 of the DC system. , Electromagnetic switch, etc.) and a bidirectional semiconductor switch 3 connected in parallel to the circuit contact 21 of the mechanical switch 2. The mechanical switch 2 includes fixed contacts 2a and 2b and a bridge movable contact 2c.

ここで、図示の半導体スイッチ3は、逆方向の耐圧性能を有する2個の逆阻止型IGBT(逆阻止型絶縁ゲートバイポーラトランジスタ)4−1,4−2の単体同士を逆並列接続して構成した双方向スイッチで、この双方向スイッチを機械式スイッチ2に並列接続しており、この半導体スイッチ3には図10に示したダイオードD1,D2は接続されて無い。   Here, the semiconductor switch 3 shown in the figure is configured by connecting two reverse blocking IGBTs (Reverse Blocking Insulated Gate Bipolar Transistors) 4-1 and 4-2 having reverse breakdown voltage performance in reverse parallel connection. The bidirectional switch is connected in parallel to the mechanical switch 2, and the diode D1 and D2 shown in FIG.

また、図1においては、前記の逆阻止型IGBT4−1,4−2に対するゲートドライブ回路として、分圧抵抗5−1,5−2,6−1,6−2、バリスター,ツェナーダイオードなどの過電圧抑制素子7−1,7−2、およびコンデンサ8−1,8−2を図示のように接続して機械式スイッチ2の回路接点21の橋絡可動接点2cと主回路1の両端端子11,12との間に構築したゲートドライブ回路9を形成し、このゲートドライブ回路9のコンデンサ8−1,8−2がそれぞれ逆阻止型IGBT4−1,4−2のゲート/エミッタ間に並列接続されている。   In FIG. 1, voltage dividing resistors 5-1, 5-2, 6-1, 6-2, varistors, Zener diodes, etc. are used as gate drive circuits for the reverse blocking IGBTs 4-1, 4-2. The overvoltage suppression elements 7-1 and 7-2 and the capacitors 8-1 and 8-2 are connected as shown in the figure, and the bridge movable contact 2c of the circuit contact 21 of the mechanical switch 2 and both terminals of the main circuit 1 are connected. 11 and 12 is formed, and capacitors 8-1 and 8-2 of the gate drive circuit 9 are connected in parallel between the gates / emitters of the reverse blocking IGBTs 4-1 and 4-2, respectively. It is connected.

次に、図1の開閉器による回路電流の遮断動作について説明する。先ず、直流の主回路1の電流が順方向,および逆方向に流れている通電状態を図2(a),(b)に示す。この通電状態では、回路電流は閉極している機械式スイッチ2の回路接点21を通じて通流し、半導体スイッチ3の逆阻止型IGBT4−1,4−2はいずれもOFF状態であり、この通電状態では半導体スイッチ3には導通損失,発熱の発生はない。なお、この通電状態は図11に示した従来提案と同様である。   Next, the circuit current cutoff operation by the switch of FIG. 1 will be described. First, FIGS. 2A and 2B show an energized state in which the current of the DC main circuit 1 flows in the forward direction and the reverse direction. In this energized state, the circuit current flows through the circuit contact 21 of the mechanical switch 2 that is closed, and the reverse blocking IGBTs 4-1 and 4-2 of the semiconductor switch 3 are both in the OFF state. Then, there is no conduction loss or heat generation in the semiconductor switch 3. This energization state is the same as that of the conventional proposal shown in FIG.

そして、前記図2(a),(b)の通電状態から開閉器3に開極指令を与えて機械式スイッチ2を開極すると、図3(a),(b)で示すように機械式スイッチ2の開極直後はその回路接点21にアークarcが発生し、このアーク電圧(電圧降下)により先記のゲートドライブ回路9には図示の点線矢印で表す制御電流が流れる。   Then, when a mechanical switch 2 is opened by giving a contact opening command to the switch 3 from the energized state of FIGS. 2 (a) and 2 (b), the mechanical type as shown in FIGS. 3 (a) and 3 (b). Immediately after the switch 2 is opened, an arc arc is generated at the circuit contact 21, and a control current represented by the dotted arrow shown in the figure flows through the gate drive circuit 9 due to the arc voltage (voltage drop).

これにより、従来提案の開閉器で述べた制御動作(図12(a),(b)参照)と同様に、主回路電流(実線矢印)の通流方向に対応して逆阻止型IGBT4−1,4−2のゲート端子に接続したコンデンサ8−1,8−2が分圧抵抗5−1、もしくは5−2を介して順方向に充電される。この際に、分圧抵抗5−1,5−2が充電電流の制限抵抗として機能する。そして、コンデンサ8−1,8−2の充電電圧が上昇してIGBTのゲートに印加される電圧(ゲートの順バイアス電圧)が所定の閾値(ゲート−エミッタ間しきい値電圧)を超えると逆阻止型IGBT4−1、もしくは4−2がターンオンし、主回路1の回路電流が機械式スイッチ2から双方向の半導体スイッチ3に転流し始める。図4(a),(b)は回路電流が半導体スイッチ3に転流した状態を表している。   As a result, in the same manner as the control operation described in the conventionally proposed switch (see FIGS. 12A and 12B), the reverse blocking IGBT 4-1 corresponds to the flow direction of the main circuit current (solid arrow). , 4-2 are connected to the gate terminals of capacitors 8-1 and 8-2 in the forward direction through voltage dividing resistors 5-1 and 5-2. At this time, the voltage dividing resistors 5-1 and 5-2 function as limiting resistors for charging current. When the charging voltage of the capacitors 8-1 and 8-2 rises and the voltage applied to the gate of the IGBT (gate forward bias voltage) exceeds a predetermined threshold (gate-emitter threshold voltage), the reverse occurs. The blocking IGBT 4-1 or 4-2 is turned on, and the circuit current of the main circuit 1 starts to commutate from the mechanical switch 2 to the bidirectional semiconductor switch 3. 4A and 4B show a state where the circuit current is commutated to the semiconductor switch 3. FIG.

なお、前記のコンデンサ8−1,8−2は、逆阻止型IGBT4−1,4−2のゲート/エミッタ間の寄生容量を利用してもよく、この場合には図示のコンデンサ8−1,8−2を省略できる。   The capacitors 8-1 and 8-2 may use the parasitic capacitance between the gates and emitters of the reverse blocking IGBTs 4-1 and 4-2. In this case, the capacitors 8-1 and 8-1 shown in FIG. 8-2 can be omitted.

また、回路電流の転流が完了すると、従来提案の開閉器動作(図13参照)で述べたと同様に、機械式スイッチ2の開極動作に伴ってその回路接点間に発生したアークが即時に消滅し、いままで橋絡可動接点2cを通じてゲートドライブ回路9に流れていた制御電流も消滅する。この状態になるとゲートドライブ回路9の分圧回路に印加される電圧は、双方向半導体スイッチ3のON電圧(4V程度)のみとなるので、いままげコンデンサ8−1,8−2に蓄えられていた充電電荷が図中に表した点線矢印のように分圧抵抗6−1,6−2を通じて放電される。そして、コンデンサ8−1,8−2の放電が進んで逆阻止型IGBT4−1,4−2のゲート電圧が所定のしきい値以下に低下すると、逆阻止型IGBTはターンオフしてOFF状態に切り換わり、その結果として図5で表すように直流の主回路1に流れていた主回路電流が完全に遮断される。       When the commutation of the circuit current is completed, the arc generated between the circuit contacts in accordance with the opening operation of the mechanical switch 2 is immediately performed as described in the conventional switch operation (see FIG. 13). The control current that has flowed to the gate drive circuit 9 through the bridge movable contact 2c until now disappears. In this state, the voltage applied to the voltage dividing circuit of the gate drive circuit 9 is only the ON voltage (about 4V) of the bidirectional semiconductor switch 3, and is stored in the Image capacitors 8-1 and 8-2. The charged charge is discharged through the voltage dividing resistors 6-1 and 6-2 as indicated by the dotted arrows shown in the figure. When the discharge of the capacitors 8-1 and 8-2 progresses and the gate voltage of the reverse blocking IGBTs 4-1 and 4-2 falls below a predetermined threshold value, the reverse blocking IGBT is turned off and turned off. As a result, as shown in FIG. 5, the main circuit current flowing in the DC main circuit 1 is completely cut off.

なお、コンデンサ8−1,8−2の放電のタイミングは、コンデンサ8−1,8−2と分圧抵抗6−1,6−2との放電回路の時定数によって決まり、この時定数を調整することで、機械式スイッチ2の回路接点間に発生したアークが消滅してから、逆阻止型IGBT4−1,4−2のOFF制御により半導体スイッチ3に転流した電流が遮断されるまでの時間を調整することが可能である。また、この時定数は逆阻止型IGBTのターンオフ時間を決定することから、例えばmsオーダーの時定数を適正値に選定することにより、逆阻止型IGBTにおける電流減衰時間(di/dt)を制御して回路電流の遮断直後に発生するサージ電圧を効果的に抑制することも可能である。   The discharge timing of the capacitors 8-1 and 8-2 is determined by the time constant of the discharge circuit of the capacitors 8-1 and 8-2 and the voltage dividing resistors 6-1 and 6-2, and this time constant is adjusted. As a result, after the arc generated between the circuit contacts of the mechanical switch 2 disappears, the current commutated to the semiconductor switch 3 is cut off by the OFF control of the reverse blocking IGBTs 4-1 and 4-2. It is possible to adjust the time. Also, since this time constant determines the turn-off time of the reverse blocking IGBT, the current decay time (di / dt) in the reverse blocking IGBT is controlled by selecting an appropriate time constant in the order of ms, for example. Thus, it is possible to effectively suppress the surge voltage generated immediately after the circuit current is cut off.

次に、先記した実施例1におけるゲートドライブ回路9の一部を変更した応用実施例の模式回路を図6に示す。この実施例2では、図1のゲートドライブ回路9における分圧抵抗5−1,5−2に代えて、機械式スイッチ2の橋絡可動接点2cに分圧抵抗5を接続し、この分圧抵抗5に分圧抵抗6−1,6−2をT字接続してゲートドライブ回路の分圧回路を形成しており、このゲートドライブ回路9でも先記実施例1と同様に、機械式スイッチ2の開極動作に同期して回路電流を機械式スイッチ2から半導体スイッチ3に転流させて遮断することができる。   Next, FIG. 6 shows a schematic circuit of an application embodiment in which a part of the gate drive circuit 9 in the first embodiment is changed. In the second embodiment, the voltage dividing resistor 5 is connected to the bridging movable contact 2c of the mechanical switch 2 in place of the voltage dividing resistors 5-1 and 5-2 in the gate drive circuit 9 of FIG. The voltage dividing resistors 6-1 and 6-2 are T-connected to the resistor 5 to form a voltage dividing circuit of the gate drive circuit. The gate drive circuit 9 is also a mechanical switch as in the first embodiment. The circuit current can be commutated from the mechanical switch 2 to the semiconductor switch 3 in synchronism with the opening operation of 2 and cut off.

次に、本発明係わる実施例3を図7,図8により説明する。この実施例3の開閉器は、当該開閉器を介して電源に接続した負荷について、機械式スイッチの開極操作により負荷を電源から完全に切り離して負荷の保守,点検作業などが感電の危険なしに安全に行えるようにしたものであり、その開閉器の模式回路を図7に、またこの機械式スイッチの構造を図8に示す。
Next, Embodiment 3 according to the present invention will be described with reference to FIGS. In the switch according to the third embodiment, the load connected to the power supply through the switch is completely disconnected from the power supply by opening the mechanical switch, and there is no risk of electric shock in maintenance and inspection of the load. FIG. 7 shows the schematic circuit of the switch, and FIG. 8 shows the structure of this mechanical switch.

すなわち、図7の模式回路図で示すように、電源10と負荷20との間を繋ぐ配電主回路1に接続した機械式スイッチ2として、該機械式スイッチ2の開極/閉極操作に連動して開閉動作する3組の回路接点21−1,21−2,21−3を備えた3極型の開閉器(例えば電磁接触器)を使用している。ここで、3組の回路接点のうちの1極、例えば中央極の回路接点21−2を主接点として、この回路接点21−2に半導体スイッチ3(逆阻止型IGBT4−1,4−2を逆並列接続した双方向の半導体スイッチ)を並列接続するとともに、残り2極の回路接点21−1,21−3を断路用接点として主回路1の往路,および復路に介挿接続するようにしている。   That is, as shown in the schematic circuit diagram of FIG. 7, the mechanical switch 2 connected to the power distribution main circuit 1 connecting the power source 10 and the load 20 is linked to the opening / closing operation of the mechanical switch 2. Thus, a three-pole type switch (for example, an electromagnetic contactor) having three sets of circuit contacts 21-1, 21-2, and 21-3 that perform switching operation is used. Here, one of the three sets of circuit contacts, for example, the center contact circuit contact 21-2 is used as a main contact, and the semiconductor switch 3 (reverse blocking IGBTs 4-1 and 4-2 is connected to the circuit contact 21-2. Bidirectional semiconductor switches connected in reverse parallel) are connected in parallel, and the remaining two-pole circuit contacts 21-1 and 21-3 are connected to the forward and return paths of the main circuit 1 as disconnecting contacts. Yes.

なお、図中に記した端子25a〜25fは前記した3極の回路接点21−1,21−2,21−3に対応する外部端子(ねじ端子)であり電源10を外部端子25aと25eの間、負荷20を外部端子25dと25fの間に接続するとともに、外部端子25bと25cの相互間を別なリード配線13で接続している。   The terminals 25a to 25f shown in the figure are external terminals (screw terminals) corresponding to the above-mentioned three-pole circuit contacts 21-1, 21-2 and 21-3, and the power supply 10 is connected to the external terminals 25a and 25e. In the meantime, the load 20 is connected between the external terminals 25d and 25f, and the external terminals 25b and 25c are connected by another lead wiring 13.

また、図8(a),(b)は図7の機械式スイッチ2と半導体スイッチ3を組み合わせた3極型電磁開閉器の構造図であり、図中の22は電磁開閉器のフレーム(ケース)、23はフレーム22に内蔵した開閉操作用の電磁石、24は電磁石23の可動鉄心に連結した可動接点ホルダー、21a,21bは図7における各極の回路接点(双接点形接点)21−1,21−2,21−3に対応する固定接点、21cは前記可動接点ホルダー24に搭載して固定接点21a,21bに対向させた橋絡可動接点である。そして、この電磁接触器のフレーム頂部に前記半導体スイッチ3のパッケージを搭載した上で、リード配線を介して該電磁開閉器の外部端子25cと25dとの間に並列接続している。   FIGS. 8A and 8B are structural diagrams of a three-pole electromagnetic switch in which the mechanical switch 2 and the semiconductor switch 3 of FIG. 7 are combined. In the figure, reference numeral 22 denotes a frame (case) of the electromagnetic switch. ) 23 is an electromagnet for opening / closing operation built in the frame 22, 24 is a movable contact holder connected to the movable iron core of the electromagnet 23, and 21a and 21b are circuit contacts (double contact type contacts) 21-1 for each pole in FIG. , 21-2, 21-3, 21c, 21c are bridged movable contacts mounted on the movable contact holder 24 and opposed to the fixed contacts 21a, 21b. The package of the semiconductor switch 3 is mounted on the top of the frame of the electromagnetic contactor, and is connected in parallel between the external terminals 25c and 25d of the electromagnetic switch via lead wires.

上記構成によれば、電源10と負荷20の間の主回路に接続した機械式スイッチ(3極型電磁開閉器)2を開極すると、電源10と負荷20との間が完全に切り離されるので、負荷20の点検作業等を感電のおそれなしに安全に行うことができる。また、この機械式スイッチ2に接続した半導体スイッチ3についても、電磁開閉器の開極に伴い前記と同様に電源から断路されるので、半導体スイッチ3の不要な誤動作を防ぐことができる。   According to the above configuration, when the mechanical switch (three-pole electromagnetic switch) 2 connected to the main circuit between the power source 10 and the load 20 is opened, the power source 10 and the load 20 are completely disconnected. In addition, the load 20 can be safely inspected without fear of electric shock. Further, the semiconductor switch 3 connected to the mechanical switch 2 is also disconnected from the power source in the same manner as described above when the electromagnetic switch is opened, so that unnecessary malfunction of the semiconductor switch 3 can be prevented.

なお、回路電流の遮断時に機械式スイッチ2から半導体スイッチ3に転流した回路電流は、半導体スイッチ3の逆阻止型IGBT4−1,4−2をOFF制御して遮断するが、この際にIGBTのスイッチング特性としてターンオフ時にはテール電流による多少の遅れがある。このために、半導体スイッチ3に転流した電流の遮断が完了する以前に図7,図8の回路接点41−1,41−3(断路用接点)が開極すると、この回路接点にアークが発生するおそれがある。   The circuit current commutated from the mechanical switch 2 to the semiconductor switch 3 when the circuit current is cut off is cut off by controlling the reverse blocking IGBTs 4-1 and 4-2 of the semiconductor switch 3 to be turned off. As a switching characteristic, there is some delay due to tail current at turn-off. For this reason, if the circuit contacts 41-1 and 41-3 (contacts for disconnection) in FIGS. 7 and 8 are opened before the interruption of the current commutated to the semiconductor switch 3 is completed, an arc is generated at the circuit contacts. May occur.

そこで、この断路用接点のアーク発生を防ぐには、例えば図8の電磁開閉器における回路接点21−2(主接点)と回路接点21−1,21−3(断路用接点)との間に異なる接点ワイプ量を設定し、電磁開閉器の開極時に断路用接点が主接点より若干遅れて開極動作するように設定すればよい。   Therefore, in order to prevent arcing of the disconnecting contact, for example, between the circuit contact 21-2 (main contact) and the circuit contacts 21-1, 21-3 (disconnecting contact) in the electromagnetic switch of FIG. Different contact wipe amounts may be set so that the disconnecting contact is opened slightly later than the main contact when the electromagnetic switch is opened.

次に、本発明の応用実施例として、実施例4に係る開閉器の模式回路を図9に示す。   Next, as an application example of the present invention, a schematic circuit of a switch according to Example 4 is shown in FIG.

図1に示した先記実施例1の開閉器では、機械式スイッチ2の回路接点21が固定接点2a,2bと、橋絡可動接点2cからなり、この橋絡可動接点2cにゲートドライブ回路9の分圧回路に通じるリード線を接続して、機械式スイッチ2の開極動作時にその回路接点間に発生したアーク電圧をゲートドライブ回路9に取り出すようにしている。そのために、機械式スイッチ2(例えば、小形の電磁接触器)の構造制約からリード線の配線作業が困難となるほか、リード線が干渉して橋絡可動接点2cの開極,閉極動作の動きを阻害するおそれがある。   In the switch according to the first embodiment shown in FIG. 1, the circuit contact 21 of the mechanical switch 2 is composed of fixed contacts 2a and 2b and a bridge movable contact 2c, and the gate movable circuit 9 is connected to the bridge movable contact 2c. A lead wire that leads to the voltage dividing circuit is connected, and the arc voltage generated between the circuit contacts during the opening operation of the mechanical switch 2 is taken out to the gate drive circuit 9. For this reason, the wiring work of the lead wire becomes difficult due to the structural constraints of the mechanical switch 2 (for example, a small electromagnetic contactor), and the lead wire interferes to open and close the bridge movable contact 2c. May interfere with movement.

これに対して、図9の実施例4では、機械式スイッチ2の回路接点を2極に分けてその接点相互間の接続部(図中のA点)にゲートドライブ回路の分圧回路に通じるリード線91を接続するようにしている。これにより、機械式スイッチ2(例えば、2極の電磁接触器)の各極接点毎に設けた外部接続端子(ねじ端子)に前記リード線91を配線接続することが可能で、リード線91と機械式スイッチ2の可動接点との間の不要な干渉を防ぐことができる。   On the other hand, in Example 4 of FIG. 9, the circuit contact of the mechanical switch 2 is divided into two poles, and the connection part (point A in the figure) between the contacts is connected to the voltage dividing circuit of the gate drive circuit. The lead wire 91 is connected. Thereby, it is possible to wire-connect the lead wire 91 to an external connection terminal (screw terminal) provided for each pole contact of the mechanical switch 2 (for example, a two-pole electromagnetic contactor). Unnecessary interference with the movable contact of the mechanical switch 2 can be prevented.

1 直流主回路
2 機械式スイッチ
21 回路接点
21−1〜21−3 3極型電磁開閉器の回路接点
3 半導体スイッチ(双方向スイッチ)
4−1,4−2 逆阻止型IGBT
7−1,7−2 過電圧抑制素子
8−1,8−2 コンデンサ
9 ゲートドライブ回路
DESCRIPTION OF SYMBOLS 1 DC main circuit 2 Mechanical switch 21 Circuit contact 21-1 to 21-3 Circuit contact of 3 pole type electromagnetic switch 3 Semiconductor switch (bidirectional switch)
4-1, 4-2 Reverse blocking IGBT
7-1, 7-2 Overvoltage suppression element 8-1, 8-2 Capacitor 9 Gate drive circuit

Claims (1)

電流方向が順逆両方向に反転する回路に適用する開閉器であって、前記回路に接続した機械式スイッチの回路接点に双方向の半導体スイッチを並列接続し、前記機械式スイッチの開極時に回路電流を半導体スイッチに転流して機械式スイッチの接点間に発生したアークを消滅させ、その後に前記半導体スイッチをOFF制御して電流を遮断するようにした開閉器において、
前記の半導体スイッチとして、逆方向の耐圧性能を有する2個の逆阻止型IGBT(RB−IGBT:Reverse Blocking Insulated Gate Bipolar Transistor)を逆並列接続してなる双方向スイッチを前記機械式スイッチに並列接続した上で、機械式スイッチの開極動作時には、その回路接点間に発生したアーク電圧を前記逆阻止型IGBTのゲートに印加して主回路電流を半導体スイッチに転流させ、その後に半導体スイッチをOFF制御して回路電流を遮断するとともに、前記機械式スイッチとして3組の回路接点を備えた3極型スイッチを使用し、その1極を主接点として該回路接点に前記双方向スイッチを並列接続し、残り2極の回路接点を断路用接点として主回路の往路,および復路に介挿接続したことを特徴とする開閉器。
A switch applied to a circuit in which the current direction is reversed in both forward and reverse directions, wherein a bidirectional semiconductor switch is connected in parallel to a circuit contact of a mechanical switch connected to the circuit, and a circuit current is generated when the mechanical switch is opened. In a switch that commutates the current to the semiconductor switch and extinguishes the arc generated between the contacts of the mechanical switch, and then shuts off the current by controlling the semiconductor switch to be OFF,
As the semiconductor switch, a bidirectional switch formed by connecting two reverse blocking IGBTs (RB-IGBT: Reverse Blocking Insulated Gate Bipolar Transistors) having reverse withstand voltage performance in reverse parallel is connected in parallel to the mechanical switch. Then, during the opening operation of the mechanical switch, the arc voltage generated between the circuit contacts is applied to the gate of the reverse blocking IGBT to commutate the main circuit current to the semiconductor switch, and then the semiconductor switch is turned on. The circuit current is cut off by OFF control, and a three-pole switch with three sets of circuit contacts is used as the mechanical switch, and the bidirectional switch is connected in parallel to the circuit contact with one of the main contacts as the main contact. The switch is characterized in that the remaining two-pole circuit contacts are inserted and connected to the forward and return paths of the main circuit as disconnecting contacts .
JP2014156176A 2014-07-31 2014-07-31 Switch Active JP6399848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156176A JP6399848B2 (en) 2014-07-31 2014-07-31 Switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156176A JP6399848B2 (en) 2014-07-31 2014-07-31 Switch

Publications (2)

Publication Number Publication Date
JP2016033871A JP2016033871A (en) 2016-03-10
JP6399848B2 true JP6399848B2 (en) 2018-10-03

Family

ID=55452697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156176A Active JP6399848B2 (en) 2014-07-31 2014-07-31 Switch

Country Status (1)

Country Link
JP (1) JP6399848B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441813B2 (en) * 1994-10-05 2003-09-02 アルプス電気株式会社 Device for eliminating arc between contacts of mechanical switch
TWM349544U (en) * 2008-07-11 2009-01-21 Goodwell Electric Corp Electronic switch structure capable of eliminating electric arc
JP2012248445A (en) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd Circuit breaker
JP5793019B2 (en) * 2011-08-19 2015-10-14 富士電機株式会社 Arc extinguishing device and switch

Also Published As

Publication number Publication date
JP2016033871A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
KR101521545B1 (en) Device and method to interrupt high voltage direct current
EP3242310B1 (en) Dc circuit breaker
DK3082208T3 (en) DIRECT SWITCH
CN106663557B (en) For interrupting the separating switch of DC current
EP3242309B1 (en) High voltage dc circuit breaker
CN109997208B (en) Low-voltage circuit breaker device
JPH11297170A (en) Dc arc-extinguishing method and device
US11108228B2 (en) Electrical protective circuit arrangement
EP3242367B1 (en) Dc circuit breaker
KR102298006B1 (en) Method and voltage multiplier for converting input voltage, and blocking circuit
JP7200528B2 (en) current breaker
JP6352745B2 (en) Hybrid type switch
JP6202871B2 (en) DC circuit breaker
JP6143615B2 (en) DC switch
JP6386955B2 (en) DC cutoff device and DC cutoff method
JP6399848B2 (en) Switch
JP6327991B2 (en) Switch
JP2015230849A (en) Switch
JP6284827B2 (en) Switch
JP7250266B1 (en) DC current interrupter
KR102609928B1 (en) direct current power supply
JP2023053591A (en) composite switch circuit
CN114430877A (en) Current breaking device and current breaking method
JP2016163528A (en) Inrush current prevention circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250