JP6143615B2 - DC switch - Google Patents

DC switch Download PDF

Info

Publication number
JP6143615B2
JP6143615B2 JP2013181773A JP2013181773A JP6143615B2 JP 6143615 B2 JP6143615 B2 JP 6143615B2 JP 2013181773 A JP2013181773 A JP 2013181773A JP 2013181773 A JP2013181773 A JP 2013181773A JP 6143615 B2 JP6143615 B2 JP 6143615B2
Authority
JP
Japan
Prior art keywords
contact
switch
main circuit
circuit
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013181773A
Other languages
Japanese (ja)
Other versions
JP2015050080A (en
Inventor
芳准 山内
芳准 山内
恩地 俊行
俊行 恩地
磯崎 優
優 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013181773A priority Critical patent/JP6143615B2/en
Publication of JP2015050080A publication Critical patent/JP2015050080A/en
Application granted granted Critical
Publication of JP6143615B2 publication Critical patent/JP6143615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、直流電源回路に適用する双方向の電流遮断機能を備えた直流開閉器に関する。   The present invention relates to a DC switch having a bidirectional current cutoff function applied to a DC power supply circuit.

昨今、太陽光発電システム,蓄電池を用いた非常電源システムなどの普及に伴い、これらシステムに適用する直流に対応する開閉機器の研究,開発が進んでいる。
ところで、従来における直流対応の開閉機器(電磁接触器,配線用遮断器,漏電遮断器などの有接点式スイッチ)は、開閉動作に伴い接点間に発生するアークの影響で接点の消耗が進んで動作不良を引き起こすことから、開閉機器の長寿命化,信頼性を高めるためにもアークの消弧対策が重要課題となっている。
In recent years, with the widespread use of solar power generation systems and emergency power supply systems using storage batteries, research and development of switchgear devices that support direct current applied to these systems are progressing.
By the way, in conventional DC-compatible switchgear devices (contact type switches such as electromagnetic contactors, circuit breakers, and earth leakage circuit breakers), contact wear has progressed due to the influence of an arc generated between the contacts during the switching operation. In order to cause malfunction, arc extinguishing countermeasures are an important issue in order to extend the life and reliability of switchgear.

すなわち、前記の有接点式スイッチを直流回路に適用した場合には、スイッチの開極動作によりその接点間に発生した直流アークが消弧しにくいことから、従来より様々なアークの消弧方式が提案されており、その一つとして、有接点式スイッチの主回路接点に無接点式の半導体スイッチを並列に接続し、有接点式スイッチの開極時に主回路電流を半導体スイッチに転流させて有接点式スイッチの主回路接点間に生じたアークを素早く消滅させた上で、この半導体スイッチをOFF制御して電流を遮断するようにした直流開閉器が知られている(例えば、特許文献1参照)。この直流開閉器は、有接点式スイッチにアーク消滅のための付加的な消弧室(消弧グリッド板)を設ける必要無しに、直流回路に流れる主回路電流を半導体スイッチに転流させて遮断することが可能となる。   That is, when the above-mentioned contact switch is applied to a DC circuit, it is difficult to extinguish a DC arc generated between the contacts due to the opening operation of the switch. As one of them, a contactless semiconductor switch is connected in parallel to the main circuit contact of a contact switch, and the main circuit current is commutated to the semiconductor switch when the contact switch is opened. There is known a DC switch in which an arc generated between main circuit contacts of a contact switch is quickly extinguished and the semiconductor switch is turned off to cut off a current (for example, Patent Document 1). reference). This DC switch breaks off the main circuit current flowing through the DC circuit to the semiconductor switch without having to provide an additional arc extinguishing chamber (arc extinguishing grid plate) for arc extinction in the contact switch. It becomes possible to do.

ところで、特許文献1の直流開閉器では、半導体スイッチをON,OFF制御するゲートドライブ回路に独立した駆動電源が必要である。そこで、発明者等は前記ゲートドライブ回路の独立した駆動電源を省略し、その代わりに有接点式スイッチの開極時にその主回路接点間に発生したアーク電圧を巧みに利用して半導体スイッチをON,OFF制御するようにした直流開閉器を先に提案しており(特許文献2参照)、その構成を図5,図6に示す。   By the way, in the DC switch disclosed in Patent Document 1, an independent driving power source is required for the gate drive circuit that controls the semiconductor switch to be turned on and off. Therefore, the inventors omitted the independent drive power supply for the gate drive circuit, and instead turned on the semiconductor switch by skillfully using the arc voltage generated between the main circuit contacts when the contact switch was opened. , A DC switch that is controlled to be turned off has been previously proposed (see Patent Document 2), and its configuration is shown in FIGS.

図5の回路図において、1は直流電源と負荷(不図示)との間を結ぶ直流回路、2は直流回路1に接続した電磁接触器などの有接点式スイッチ、3は有接点式スイッチ2に並列接続した半導体スイッチ(無接点式の電子スイッチ)であり、図中の(+),(−)は主回路の極性を表している。ここで、有接点式スイッチ2には、一対の固定接点2a,2bと橋絡可動接点2cからなる双接点形の主回路接点21を備え、後記するスイッチの操作器(電磁接触器の操作用電磁石)により主回路接点21の橋絡可動接点2cを開極,閉極位置に駆動する。   In the circuit diagram of FIG. 5, 1 is a DC circuit connecting a DC power source and a load (not shown), 2 is a contact type switch such as an electromagnetic contactor connected to the DC circuit 1, and 3 is a contact type switch 2 Is a semiconductor switch (contactless electronic switch) connected in parallel, and (+) and (-) in the figure represent the polarity of the main circuit. Here, the contact type switch 2 includes a double contact type main circuit contact 21 composed of a pair of fixed contacts 2a and 2b and a bridge movable contact 2c, and a switch operating device (for operating an electromagnetic contactor described later). The bridging movable contact 2c of the main circuit contact 21 is driven to the open and closed positions by the electromagnet).

一方、半導体スイッチ3は、IGBTあるいはMOS−FETなどのスイッチング素子4(図示例ではIGBTを用いており、以下“IGBT”と呼称する)と、抵抗5,6からなる分圧回路、過電圧保護用のツェナーダイオード7、およびコンデンサ8を図示のように組み合わせてIGBT4のゲート−エミッタ間に接続したゲートドライブ回路9とからなり、このゲートドライブ回路9はその信号入力端(ゲート抵抗5)を有接点式スイッチ2の橋絡可動接点2cに接続している。   On the other hand, the semiconductor switch 3 includes a switching element 4 such as an IGBT or a MOS-FET (in the illustrated example, an IGBT is used, hereinafter referred to as “IGBT”), a voltage dividing circuit including resistors 5 and 6, and an overvoltage protection device. The zener diode 7 and the capacitor 8 are combined as shown in the figure, and the gate drive circuit 9 is connected between the gate and emitter of the IGBT 4. The gate drive circuit 9 has a contact point at its signal input terminal (gate resistor 5). It is connected to the bridge movable contact 2c of the type switch 2.

また、図6は前記の有接点式スイッチ2に電磁接触器を用いた直流開閉器の組立構成図であり、この電磁接触器の頂部に半導体スイッチ3の組立体を搭載して電磁接触器の主回路に接続している。なお、図中で24は電磁接触器のフレーム、25は操作電磁石、26は可動接点支え、27は主回路端子である。   FIG. 6 is an assembly configuration diagram of a DC switch using an electromagnetic contactor for the contact type switch 2. The assembly of the semiconductor switch 3 is mounted on the top of the electromagnetic contactor. Connected to the main circuit. In the figure, 24 is a frame of an electromagnetic contactor, 25 is an operating electromagnet, 26 is a movable contact support, and 27 is a main circuit terminal.

次に、図5に示した直流開閉器の動作を図7(a)〜(d)に基づき説明する。すなわち、有接点式スイッチ2(電磁接触器)を閉極した通電状態では、図7(a)の実線矢印で示すように直流回路1の主回路電流が(+)極側から有接点式スイッチ2の主回路接点21を通じて(−)極側に流れる。なお、この通電状態ではIGBT4はOFF状態である。この通電状態から有接点式スイッチ2を開極すると、図7(b)で示すように固定接点2a,2bと橋絡可動接点2cとの間にアークが生じてその接点間にアーク電圧が発生する。なお、このアーク電圧は接点材料と接点間のギャップ長により決まるが、開極直後のアーク電圧は約30Vで開極ギャップの拡大に伴ってアーク電圧も増加する。   Next, the operation of the DC switch shown in FIG. 5 will be described with reference to FIGS. That is, in the energized state in which the contact type switch 2 (electromagnetic contactor) is closed, the main circuit current of the DC circuit 1 is switched from the (+) pole side as indicated by the solid line arrow in FIG. It flows to the (−) pole side through the two main circuit contacts 21. In this energized state, the IGBT 4 is in an OFF state. When the contact switch 2 is opened from this energized state, an arc is generated between the fixed contacts 2a, 2b and the bridge movable contact 2c as shown in FIG. 7B, and an arc voltage is generated between the contacts. To do. Although this arc voltage is determined by the gap length between the contact material and the contact, the arc voltage immediately after opening is about 30 V, and the arc voltage increases as the opening gap increases.

そして、この状態になると主回路接点間に発生したアーク電圧により、IGBT4のゲートドライブ回路9を通じて図示点線矢印で示すように制御電流が流れてIGBT4のゲートに接続したコンデンサ8が抵抗5,6により分圧された電圧で充電され、その充電電圧が所定のゲートしきい値を超えるとIGBT4がターンオンしてON状態に切り換わるとともに、いままで有接点式スイッチ2の主回路接点21に流れていた主回路電流は、図7(c)の実線矢印で示すようにIGBT4に転流する。   In this state, the arc voltage generated between the main circuit contacts causes a control current to flow through the gate drive circuit 9 of the IGBT 4 as shown by the dotted arrow in the figure, and the capacitor 8 connected to the gate of the IGBT 4 is connected by the resistors 5 and 6. When charged with the divided voltage and the charge voltage exceeds a predetermined gate threshold value, the IGBT 4 is turned on and switched to the ON state and has been flowing to the main circuit contact 21 of the contact type switch 2 until now. The main circuit current is commutated to the IGBT 4 as shown by the solid line arrow in FIG.

これにより、有接点式スイッチ2の接点間に生じていたアークが瞬時に消滅する。また、アークの消滅に伴い有接点式スイッチ2の接点間のアーク電圧も消失するので、コンデンサ8の充電電荷は図7(c)の点線矢印で表すようにゲートドライブ回路9の抵抗6を通じて放電される。その結果、IGBT4のゲート−エミッタ間のゲート電圧が低下してIGBT4はターンオフしてOFF状態となり、図7(d)で示すように直流回路1の主回路電流が完全に遮断されることになる。   As a result, the arc generated between the contacts of the contact switch 2 disappears instantaneously. As the arc disappears, the arc voltage between the contacts of the contact switch 2 also disappears, so that the charge of the capacitor 8 is discharged through the resistor 6 of the gate drive circuit 9 as shown by the dotted arrow in FIG. Is done. As a result, the gate voltage between the gate and the emitter of the IGBT 4 is lowered, the IGBT 4 is turned off and turned off, and the main circuit current of the DC circuit 1 is completely cut off as shown in FIG. .

この直流開閉器によれば、有接点式スイッチ2の開極動作時に発生する接点間のアーク電圧を利用してIGBT4のゲート制御を行うようにしているので、先記した特許文献1のようにゲートドライブ用の独立した駆動電源、およびその電源制御が不要となって半導体スイッチの制御回路を簡素化できる。   According to this DC switch, since the gate control of the IGBT 4 is performed using the arc voltage between the contacts generated during the opening operation of the contact switch 2, as described in Patent Document 1 described above. An independent drive power supply for the gate drive and its power supply control are unnecessary, and the control circuit of the semiconductor switch can be simplified.

特開平8−106839号公報Japanese Patent Laid-Open No. 8-106839 特開2013−41782号公報JP 2013-41882 A

ところで、前記特許文献2に開示されている直流開閉器は、有接点式スイッチ2に並列接続した半導体スイッチ3として、直流回路1の通電方向に極性を合わせた1個のIGBT4を接続し、有接点式スイッチ2の開極動作時に発生する接点間のアーク電圧を利用して半導体スイッチのゲート制御を行うようにしている。   By the way, the DC switch disclosed in Patent Document 2 is a semiconductor switch 3 connected in parallel to a contact switch 2 and connected to a single IGBT 4 having a polarity matched to the energization direction of the DC circuit 1. The gate control of the semiconductor switch is performed using the arc voltage between the contacts generated during the opening operation of the contact switch 2.

したがって、半導体スイッチ3には独立したゲートドライブ用の駆動電源が不要となってその制御回路を簡素化できるものの、半導体スイッチ3はその通電方向が一方向に限定される。   Therefore, although the semiconductor switch 3 does not require an independent gate drive driving power supply and the control circuit thereof can be simplified, the semiconductor switch 3 is limited in one energization direction.

一方、頭記した非常電源システムに適用する蓄電池の充放電回路のように蓄電池の充電時と放電時とで電流が逆方向に流れる直流回路、あるいは太陽光発電などの分散型直流電源の系統連係で電力の逆潮流を行う直流給電システムに適用する直流開閉器には双方向の電流遮断機能が要求される。しかしながら、このように双方向の電流遮断機能が必要な直流回路には前記した特許文献2の直流開閉器はこのままでは適用できない。   On the other hand, a DC circuit in which current flows in the opposite direction between charging and discharging of a storage battery, such as a charging / discharging circuit of a storage battery applied to the emergency power system described above, or system linkage of a distributed DC power supply such as photovoltaic power generation In a DC switch applied to a DC power supply system that performs reverse power flow, a bidirectional current interruption function is required. However, the DC switch described in Patent Document 2 cannot be applied to a DC circuit that requires a bidirectional current cutoff function.

本発明は上記の点に鑑みなされたものであり、その目的は図5,図6で述べた直流開閉器(特許文献2)の回路構成をベースに、有接点式スイッチに並列接続した半導体スイッチに双方向の通電,遮断機能を付加して蓄電池の充放電回路、太陽光発電システムなどにも適用できるようにし、併せて電流遮断後における半導体スイッチの誤動作防止が図れるように機能を改良した直流開閉器を提供することにある。   The present invention has been made in view of the above points, and its object is to provide a semiconductor switch connected in parallel to a contact switch based on the circuit configuration of the DC switch (Patent Document 2) described in FIGS. Direct current with improved function so that it can be applied to storage battery charge / discharge circuits, solar power generation systems, etc., and to prevent malfunction of semiconductor switches after current interruption. It is to provide a switch.

上記目的を達成するために、本発明によれば、直流回路に接続した有接点式スイッチの主回路接点に無接点式の半導体スイッチを並列接続し、前記有接点式スイッチの開極時に直流回路の主回路電流を半導体スイッチに転流して有接点式スイッチの主接点間に発生したアークを消滅させた上で、半導体スイッチに転流した主回路電流を半導体スイッチのOFF制御により遮断するようにした直流開閉器において、
前記半導体スイッチを、逆直列に接続した2個のスイッチング素子と、各スイッチング素子に逆並列接続したダイオードからなる双方向スイッチとして有接点式スイッチの主接点に並列接続し、かつ前記スイッチング素子のゲートにはゲートドライブ回路を介して有接点式スイッチの開極時にその主接点間に発生するアーク電圧を印加して半導体スイッチの各スイッチング素子をON,OFF制御させるようにするとともに、前記ゲートドライブ回路には有接点式スイッチの主回路接点の開極に遅れて前記スイッチング素子のゲートを主回路から切り離す断路用補助接点を接続するものとし(請求項1)、具体的には次記態様で構成することができる。
(1)前記有接点式スイッチには、主回路接点、および半導体スイッチのゲートドライブ回路に接続した断路用補助接点を搭載し、当該有接点式スイッチの操作器により主回路接点,および断路用補助接点を連動して開極,閉極操作させるようにする(請求項2)。
(2)前項(1)において、前記有接点式スイッチに搭載した断路用補助接点のワイプ量を主回路接点のワイプ量より大に設定し、当該有接点式スイッチの開極時に断路用補助接点を主回路接点の開極より遅れて開極動作させるようにする(請求項3)。
(3)前記有接点式スイッチの主回路接点として、1極当り2個の固定接点と該固定接点に対向する橋絡可動接点からなる双接点形の接点を備え、その橋絡可動接点に半導体スイッチのゲートに通じるゲートドライブ回路の信号入力端を接続する(請求項4)。
(4)前項(3)において、前記有接点式スイッチの主回路接点として、2極に分けて直列に接続した2組の単極単投接点、もしくは橋絡可動接点を備え、その接点相互間の接続部に半導体スイッチのゲートに通じるゲートドライブ回路の信号入力端を接続する(請求項5)。
In order to achieve the above object, according to the present invention, a contactless semiconductor switch is connected in parallel to a main circuit contact of a contact switch connected to a DC circuit, and the DC circuit is opened when the contact switch is opened. The main circuit current commutated to the semiconductor switch is extinguished and the arc generated between the main contacts of the contact switch is extinguished, and then the main circuit current commutated to the semiconductor switch is cut off by the semiconductor switch OFF control. In the DC switch
The semiconductor switch is connected in parallel to the main contact of a contact switch as a bidirectional switch comprising two switching elements connected in anti-series and a diode connected in anti-parallel to each switching element, and the gate of the switching element The gate drive circuit applies an arc voltage generated between the main contacts when the contact-type switch is opened to control each switching element of the semiconductor switch ON and OFF, and the gate drive circuit Is connected to an auxiliary contact for disconnection that disconnects the gate of the switching element from the main circuit behind the opening of the main circuit contact of the contact switch (claim 1). can do.
(1) The contact switch is equipped with a main circuit contact and an auxiliary contact for disconnection connected to the gate drive circuit of the semiconductor switch, and the main circuit contact and the auxiliary for disconnection are operated by the contact switch operating device. The contacts are operated to open and close (claim 2).
(2) In the preceding paragraph (1), the wipe amount of the auxiliary contact for disconnection mounted on the contact type switch is set larger than the wipe amount of the main circuit contact, and the auxiliary contact for disconnection when the contact type switch is opened Is opened after the opening of the main circuit contact (claim 3).
(3) As a main circuit contact of the contact type switch, a double contact type contact having two fixed contacts per one pole and a bridge movable contact facing the fixed contact is provided, and the bridge movable contact is provided with a semiconductor. A signal input terminal of a gate drive circuit leading to the gate of the switch is connected.
(4) In the preceding paragraph (3), as the main circuit contact of the contact type switch, two sets of single pole single throw contacts or bridge movable contacts connected in series divided into two poles are provided. The signal input terminal of the gate drive circuit leading to the gate of the semiconductor switch is connected to the connection portion.

上記構成の直流開閉器によれば、次記の効果を奏することができる。
(1)直流回路に接続した有接点式スイッチの主回路接点に並列接続した半導体スイッチを、逆直列に接続した2個のスイッチング素子(IGBT)と、各スイッチング素子に逆並列接続したダイオードからなる双方向スイッチとしたことにより、直流回路に流れる主回路電流の通電方向に左右されず、かつ半導体スイッチのゲート制御には独立した駆動電源を設ける必要なしに、有接点式スイッチの開極動作に同期して直流回路の主回路電流を有接点式スイッチから双方向半導体スイッチに転流させて遮断することができる。
(2)ここで、前記半導体スイッチのゲートドライブ回路に機械式の断路用補助接点を接続し、主回路電流の遮断完了後に半導体スイッチング素子のゲートを主回路から切り離すようにすることで、電流遮断後における半導体スイッチング素子の誤動作を防いで信頼性を高めることができる。
(3)そして、この断路用補助接点を有接点式スイッチに搭載して主回路接点と連動操作するようにした上で、その断路用補助接点のワイプ量を主回路接点のワイプ量より大に設定することにより、有接点式スイッチの開極時には主回路接点の開極動作に遅れて断路用補助接点を開極動作させることができる。
(4)さらに、有接点式スイッチに搭載した主回路接点には、1極当り2個の固定接点と該固定接点に対向する橋絡可動接点からなる双接点形の主回路接点を備えてその橋絡可動接点に半導体スイッチのゲートに通じるゲートドライブ回路の信号入力端を接続するか、もしくは2極に分けて直列に接続した2組の単極単投接点、あるいは橋絡可動接点を備えてその接点相互間の接続部に半導体スイッチのゲートに通じるゲートドライブ回路の信号入力端を接続する構造が採用でき、特に後者の構造を採用することによりゲート信号の接続線が主回路接点の開極,閉極動作の動きを妨げるおそれなしに、有接点式スイッチから外部に引き出した主回路接点の接続端子を使って配線が簡単に行える。
According to the DC switch having the above-described configuration, the following effects can be obtained.
(1) Consists of two switching elements (IGBTs) connected in parallel to a main circuit contact of a contact point switch connected to a DC circuit in reverse series and diodes connected in antiparallel to each switching element. By adopting a bidirectional switch, it is possible to open the contact type switch without affecting the direction of energization of the main circuit current flowing in the DC circuit, and without having to provide an independent drive power supply for gate control of the semiconductor switch. Synchronously, the main circuit current of the DC circuit can be commutated from the contact point switch to the bidirectional semiconductor switch and cut off.
(2) Here, by connecting an auxiliary contact for mechanical disconnection to the gate drive circuit of the semiconductor switch and disconnecting the gate of the semiconductor switching element from the main circuit after completion of the cutoff of the main circuit current, It is possible to prevent malfunction of the semiconductor switching element later and improve reliability.
(3) And after mounting the auxiliary contact for disconnection on the contact type switch to operate in conjunction with the main circuit contact, the wipe amount of the auxiliary contact for disconnection is made larger than the wipe amount of the main circuit contact. By setting, when the contact switch is opened, the auxiliary contact for disconnection can be opened after the opening operation of the main circuit contact.
(4) Further, the main circuit contact mounted on the contact switch is provided with a double contact type main circuit contact comprising two fixed contacts per pole and a bridge movable contact facing the fixed contact. Connect the signal input terminal of the gate drive circuit leading to the gate of the semiconductor switch to the bridge movable contact, or provide two sets of single pole single throw contacts connected in series divided into two poles, or the bridge movable contact It is possible to adopt a structure in which the signal input terminal of the gate drive circuit leading to the gate of the semiconductor switch is connected to the connection part between the contacts, and in particular, by adopting the latter structure, the gate signal connection line opens the main circuit contact. , Wiring can be easily performed using the connection terminal of the main circuit contact drawn out from the contact type switch without disturbing the movement of the closing operation.

本発明の実施例1に係わる直流開閉器の回路図である。It is a circuit diagram of the direct-current switch concerning Example 1 of the present invention. 図1の開極時における動作説明図であって、(a),(b),(c),(d)はそれぞれ有接点式スイッチの閉極通電状態、開極動作開始直後の状態、半導体スイッチへの転流状態、および主回路電流遮断後の各状態の通電経路を表す図である。FIG. 2 is an operation explanatory diagram at the time of opening in FIG. 1, wherein (a), (b), (c), and (d) are the closed energization state of the contact type switch, the state immediately after the opening operation starts, the semiconductor It is a figure showing the energization path | route of each state after the commutation state to a switch and main circuit current interruption | blocking. 図1の有接点式スイッチに搭載した主回路接点、および断路用補助接点の動作説明図であって、(a),(b),(c)はそれぞれ閉極状態、開極動作の途中状態、開極終了状態に対応する各接点の開極,閉極状態を表す図である。It is operation | movement explanatory drawing of the main circuit contact mounted in the contact type switch of FIG. 1, and the auxiliary contact for disconnection, Comprising: (a), (b), (c) is a closing state and the state of opening operation, respectively It is a figure showing the opening and closing state of each contact corresponding to an opening completion state. 本発明の応用実施例に対応する直流開閉器の回路図である。It is a circuit diagram of a DC switch corresponding to an application example of the present invention. 特許文献2に開示されている従来の直流開閉器の回路図である。FIG. 10 is a circuit diagram of a conventional DC switch disclosed in Patent Document 2. 図5の有接点式スイッチに電磁接触器を採用して半導体スイッチを搭載した直流開閉器の組立構成図である。It is an assembly block diagram of the DC switch which employ | adopted the electromagnetic contactor as the contact type switch of FIG. 5, and mounted the semiconductor switch. 図5の動作説明図であって、(a),(b),(c)、(d)はそれぞれ有接点式スイッチの閉極通電、開極動作開始直後、半導体スイッチへの転流、開極終了後の各状態における主回路電流,半導体スイッチの制御電流の通電経路を表す図である。FIG. 6 is an explanatory diagram of the operation of FIG. 5, (a), (b), (c), and (d) are each a contact-type switch for closing energization and immediately after the opening operation starts, commutation to the semiconductor switch, opening It is a figure showing the energization course of the main circuit current in each state after a pole end, and the control current of a semiconductor switch.

以下、本発明による直流回路遮断装置の実施の形態を図1〜図4に基づいて説明する。なお、図示実施例の図中で図5〜図7に対応する同一部品には同じ符号を付してその説明は省略する。   Embodiments of a DC circuit breaker according to the present invention will be described below with reference to FIGS. In the drawings of the illustrated embodiment, the same parts corresponding to those in FIGS.

まず、本発明の実施例1に対応する直流開閉器の回路構成を図1に示す。図1において直流回路1に接続する有接点式スイッチ2は例えば電磁接触器であり、図5,図6と同様に固定接点2a,2bと橋絡可動接点2cからなる双接点形の主回路接点21を搭載し、操作器により主回路接点21を閉極,開極位置に切り換え操作する。   First, FIG. 1 shows a circuit configuration of a DC switch corresponding to the first embodiment of the present invention. A contact switch 2 connected to the DC circuit 1 in FIG. 1 is, for example, an electromagnetic contactor, and is a double contact main circuit contact comprising fixed contacts 2a and 2b and a bridge movable contact 2c as in FIGS. 21 is mounted, and the main circuit contact 21 is switched between a closed position and an open position by an operating device.

一方、有接点式スイッチ2の主回路接点21を挟んで主回路端子11と12の間に並列接続した半導体スイッチ3は、図示のように通電方向が逆向きとなるようコレクタ端子同士を接続して逆直列接続した2個のIGBT(半導体スイッチング素子)4−1,4−2と、各IGBT4−1,4−2にそれぞれ逆並列接続したダイオード(FWD)10−1,10−2とからなる双方向スイッチで構成している。   On the other hand, the semiconductor switch 3 connected in parallel between the main circuit terminals 11 and 12 across the main circuit contact 21 of the contact switch 2 connects the collector terminals so that the energization direction is reversed as shown in the figure. Two IGBTs (semiconductor switching elements) 4-1 and 4-2 connected in reverse series and diodes (FWD) 10-1 and 10-2 connected in reverse parallel to the IGBTs 4-1 and 4-2, respectively. It consists of a bidirectional switch.

また、IGBT4−1,4−2の各ゲート−エミッタ間と有接点式スイッチ2の橋絡可動接点2cとの間には、抵抗5,6−1,6−2からなる分圧回路、およびツェナーダイオード7を図示のように接続してゲートドライブ回路9を構成し、後記のように有接点式スイッチ2の開極時にその固定,可動接点間に発生したアーク電圧を前記のゲートドライブ回路9を通じてIGBT4−1,4−2の各ゲート−エミッタ間に印加するようにしている。   Further, a voltage dividing circuit composed of resistors 5, 6-1, 6-2 between each gate-emitter of the IGBTs 4-1 and 4-2 and the bridge movable contact 2c of the contact switch 2; A zener diode 7 is connected as shown in the figure to form a gate drive circuit 9, and an arc voltage generated between the fixed and movable contacts when the contact switch 2 is opened as described below is used as the gate drive circuit 9. Through the gates and emitters of the IGBTs 4-1 and 4-2.

さらに、前記ゲートドライブ回路9には、抵抗6−1と6−2との間に機械式の断路用補助接点22,23を図示のように直列に接続し、半導体スイッチ3に転流した主回路電流の遮断後にこの断路用補助接点22,23を開極することで、IGBT4−1,4−2の各ゲートを主回路から切り離すようにしている。   Further, in the gate drive circuit 9, mechanical disconnection auxiliary contacts 22 and 23 are connected in series between the resistors 6-1 and 6-2 as shown in the figure, and the main switch commutated to the semiconductor switch 3 is connected. The gates of the IGBTs 4-1 and 4-2 are disconnected from the main circuit by opening the auxiliary contacts 22 and 23 for disconnection after the circuit current is interrupted.

そして、前記の断路用補助接点22,23は、電磁接触器(図6参照)に付属するオプションの補助接点ユニット(不図示)を利用して電磁接触器に組み付け、電磁接触器の操作器(図6における操作用電磁石25)の駆動により主回路接点21と連動して断路用補助接点22,23を開極操作させるようにするとともに、断路用補助接点22,23は主回路接点21の開極動作より遅れて開極するように設定しており、その遅延開極動作の原理を図3の模式図で説明する。   The disconnecting auxiliary contacts 22 and 23 are assembled to the electromagnetic contactor by using an optional auxiliary contact unit (not shown) attached to the electromagnetic contactor (see FIG. 6). 6, the disconnection auxiliary contacts 22 and 23 are operated to open in conjunction with the main circuit contact 21 by driving the operation electromagnet 25), and the disconnection auxiliary contacts 22 and 23 open the main circuit contact 21. The opening is set to be delayed from the pole operation, and the principle of the delayed opening operation will be described with reference to the schematic diagram of FIG.

すなわち、図3(a)〜(c)において、主回路接点21と断路用補助接点22,23との間には、固定接点の取付高さに段差Δhを設けて接点が接触し始めてから完全に閉極するまでの移動量であるワイプ量を、断路用補助接点22,23の方が主回路接点21よりも大きくなるように設定している。   That is, in FIGS. 3A to 3C, a step Δh is provided in the mounting height of the fixed contact between the main circuit contact 21 and the auxiliary contacts 22 and 23 for disconnection, and after the contact begins to contact, The wipe amount, which is the amount of movement until the contact is closed, is set so that the disconnecting auxiliary contacts 22 and 23 are larger than the main circuit contact 21.

これにより、図3(a)の閉極位置から有接点式スイッチ2を開極操作すると、主回路接点21の固定/可動接点が先に開離し(図3(b)参照)、これに遅れて断路用補助接点22,23の固定/可動接点が開離する。   Accordingly, when the contact type switch 2 is opened from the closed position shown in FIG. 3A, the fixed / movable contact of the main circuit contact 21 is first opened (see FIG. 3B), and this is delayed. Thus, the fixed / movable contacts of the auxiliary contacts 22 and 23 for disconnection are separated.

次に、図1に示した直流開閉器の開極時における電流遮断の動作経緯を図2(a)〜(d)により説明する。なお、図示例は主回路端子11を(+)極(電源側)、主回路端子12を(−)極(負荷側)として通電している場合を示している。   Next, the operation of current interruption when the DC switch shown in FIG. 1 is opened will be described with reference to FIGS. The illustrated example shows a case where the main circuit terminal 11 is energized with the (+) pole (power supply side) and the main circuit terminal 12 as the (−) pole (load side).

まず、図2(a)は有接点式スイッチ2を閉極した直流回路1の通電状態を表し、この状態では直流回路1に流れる主回路電流が(+)極側から(−)極側に向けて実線矢印のように有接点式スイッチ2の主回路接点21を通じて流れる。なお、この状態では半導体スイッチ3の各IGBT4−1,4−2はいずれもOFF状態である。   First, FIG. 2A shows the energized state of the DC circuit 1 with the contact switch 2 closed. In this state, the main circuit current flowing in the DC circuit 1 is changed from the (+) pole side to the (−) pole side. It flows through the main circuit contact 21 of the contact switch 2 as indicated by a solid arrow. In this state, each of the IGBTs 4-1 and 4-2 of the semiconductor switch 3 is in an OFF state.

図2(a)の通電状態から有接点式スイッチ2を開極操作すると、その固定/可動接点の開離に伴い図2(b)で示すように主回路接点21の固定接点2a,2bと橋絡可動接点2cとの間にはアークarcが生じて接点間にアーク電圧が発生する。これにより前記アーク電圧、抵抗5と抵抗6−2との分圧比に対応する電圧、および抵抗6−2とIGBT4−2の入力容量(ゲート−エミッタ間のキャパシタンス)との関係による時定数にしたがい、IGBT4−2のゲート−エミッタ間の電圧がツェナーダイオード7で制限される電圧値(ツェナーダイオード7の制限電圧はIGBTのゲートしきい値電圧に合わせて15〜18Vに設定)まで上昇し、IGBT4−2はターンオンしてON状態に切り換わる。   When the contact type switch 2 is opened from the energized state of FIG. 2A, the fixed contacts 2a and 2b of the main circuit contact 21 and the fixed / movable contacts are opened as shown in FIG. An arc arc is generated between the bridge movable contact 2c and an arc voltage is generated between the contacts. As a result, the arc voltage, the voltage corresponding to the voltage dividing ratio between the resistor 5 and the resistor 6-2, and the time constant according to the relationship between the resistor 6-2 and the input capacitance (capacitance between the gate and the emitter) of the IGBT 4-2 are used. The voltage between the gate and emitter of the IGBT 4-2 rises to a voltage value limited by the Zener diode 7 (the limit voltage of the Zener diode 7 is set to 15 to 18 V in accordance with the gate threshold voltage of the IGBT), and IGBT4 -2 turns on and switches to the ON state.

そして、IGBT4−2がON状態になると、図3(c)で示すようにいままで有接点式スイッチ2の主回路接点21を流れていた主回路電流は、半導体スイッチ3の回路に転流し、図示のように主回路電流が主回路1の分岐点AからIGBT4−1に逆並列接続したダイオード10−1、IGBT4−2のコレクタ−エミッタを通じて主回路の分岐点Bに戻るように流れるとともに、いままで有接点式スイッチ2の主回路接点21に生じていたアークは瞬時に消滅する。   When the IGBT 4-2 is turned on, as shown in FIG. 3C, the main circuit current that has been flowing through the main circuit contact 21 of the contact switch 2 until now is commutated to the circuit of the semiconductor switch 3, As shown in the figure, the main circuit current flows from the branch point A of the main circuit 1 so as to return to the branch point B of the main circuit through the diode 10-1 connected in reverse parallel to the IGBT 4-1, the collector-emitter of the IGBT 4-2, The arc generated at the main circuit contact 21 of the contact switch 2 until now disappears instantaneously.

また、アークが消滅した状態になると、IGBT4−2のゲートに印加される電圧は、図中のC1−C2間に断路用補助接点22,23を挟んで直列接続した抵抗6−1と6−2とにより分圧されて抵抗6−2の両端(図中のC2−C3間)に発生する電圧のみとなる。なお、この状態で抵抗6−1と6−2の両端(図中のC1−C2間)に発生する電圧は、IGBT4−1に並列接続したダイオード10−1の順方向電圧と、IGBT4−2の飽和電圧との和で、約2〜4Vの低い電圧である。     In addition, when the arc is extinguished, the voltage applied to the gate of the IGBT 4-2 is the resistances 6-1 and 6 connected in series with the disconnecting auxiliary contacts 22 and 23 between C1 and C2 in the figure. 2 and only the voltage generated at both ends (between C2 and C3 in the figure) of the resistor 6-2. In this state, the voltages generated at both ends of the resistors 6-1 and 6-2 (between C1 and C2 in the figure) are the forward voltage of the diode 10-1 connected in parallel to the IGBT 4-1, and the IGBT 4-2. Is a low voltage of about 2 to 4 V.

このために、いままでIGBT4−2の入力容量(ゲート−エミッタ間のキャパシタンス)に蓄えられていた電荷は抵抗6−2に放電されてゲート電圧は減少し、それに伴いIGBT4−2はターンオフしてOFF状態に切り替わる。また、有接点式スイッチ2の開極動作が進むと、図3で述べたように開極ストロークの終端で断路用補助接点22,23が主回路接点21より遅れて開極し、IGBT4−2のゲートを主回路から切り離す。   For this reason, the electric charge stored in the input capacitance (gate-emitter capacitance) of the IGBT 4-2 until now is discharged to the resistor 6-2, the gate voltage is reduced, and the IGBT 4-2 is turned off accordingly. Switch to OFF state. Further, when the opening operation of the contact switch 2 proceeds, the auxiliary contacts 22 and 23 for disconnection are opened later than the main circuit contact 21 at the end of the opening stroke as described in FIG. Disconnect the gate from the main circuit.

これにより、直流回路1の電流遮断後はIGBT4−1,4−2のゲートに電源電圧が印加されることが無く、IGBT4−2はその入力容量に残存している電荷の放電を続けてゲート電圧は0Vとなる。したがって、図2(d)で示すようにIGBT4−2が完全なOFF状態となって主回路に流れる電流の遮断が完了する。   As a result, the power source voltage is not applied to the gates of the IGBTs 4-1 and 4-2 after the current interruption of the DC circuit 1, and the IGBTs 4-2 continue to discharge the charges remaining in their input capacitances. The voltage is 0V. Therefore, as shown in FIG. 2D, the IGBT 4-2 is completely turned off, and the interruption of the current flowing through the main circuit is completed.

次に、前記した半導体スイッチ3のゲートドライブ回路9についての設定について補足説明する。まず、有接点式スイッチ2の開極動作に連係してIGBTをターンオンさせてON状態に切り換える際に、そのゲートに印加される電圧は有接点式スイッチ2の主回路接点21の接点間に発生するアーク電圧と、ゲートドライブ回路9における抵抗5,6−1,6−2の抵抗値およびその分圧比により決まる。そこで、この抵抗5,6−1,6−2の抵抗値,およびその分圧比は、接点間のアーク電圧を受けてIGBTのゲート電圧が所定のゲートしきい値電圧に上昇するような値に設定する。具体的な例として、有接点式スイッチ2の主回路接点21間に発生するアーク電圧が30Vの場合、抵抗5と抵抗6−1,6−2の抵抗値が大凡1:1か、抵抗6−1,6−2がそれ以上となるように設定することで、IGBTのゲート−エミッタ間に15V以上のゲート電圧を加えてIGBTをターンオンさせることができる。   Next, a supplementary description will be given of the setting for the gate drive circuit 9 of the semiconductor switch 3 described above. First, when the IGBT is turned on and switched to the ON state in conjunction with the opening operation of the contact switch 2, the voltage applied to the gate is generated between the contacts of the main circuit contact 21 of the contact switch 2. The arc voltage to be generated, the resistance values of the resistors 5, 6-1, 6-2 in the gate drive circuit 9, and the voltage dividing ratio thereof are determined. Therefore, the resistance values of the resistors 5, 6-1 and 6-2, and the voltage dividing ratio thereof are set to values that increase the gate voltage of the IGBT to a predetermined gate threshold voltage upon receiving the arc voltage between the contacts. Set. As a specific example, when the arc voltage generated between the main circuit contacts 21 of the contact switch 2 is 30 V, the resistance value of the resistor 5 and the resistors 6-1 and 6-2 is approximately 1: 1 or the resistor 6 By setting −1, 6-2 to be more than that, it is possible to turn on the IGBT by applying a gate voltage of 15 V or more between the gate and the emitter of the IGBT.

また、IGBTがOFF状態からON状態に移るターンオン時間は数十μsecから数百μsec程度の範囲として、有接点式スイッチ2の開極動作開始から数百μsec以内にIGBTのターンオンが完了するように設定する。   The turn-on time for the IGBT to transition from the OFF state to the ON state is in the range of several tens of microseconds to several hundreds of microseconds, and the IGBT turn-on is completed within several hundreds of microseconds from the start of the opening operation of the contact switch 2 Set.

さらに、有接点式スイッチ2に搭載して主回路接点21と連動する断路用補助接点22,23は、IGBTがターンオンして主回路電流が半導体スイッチ3に転流した後に開極させるために、図3で述べたように主回路接点21の開極動作開始から数msec遅れて断路用補助接点22,23が開極動作するように設定する。   Furthermore, the auxiliary contacts 22 and 23 for disconnection, which are mounted on the contact switch 2 and interlocked with the main circuit contact 21, are opened after the IGBT is turned on and the main circuit current is commutated to the semiconductor switch 3. As described with reference to FIG. 3, the disconnecting auxiliary contacts 22 and 23 are set to perform the opening operation with a delay of several milliseconds from the start of the opening operation of the main circuit contact 21.

なお、半導体スイッチ3のゲートドライブ回路9に前記した断路用補助接点22,23を設けない場合は、IGBT4−2がONからOFF状態に切り換わると、図2(c)のC1−C2間には直流回路1の電源電圧が印加されることになるため、IGBT4−2のゲート電圧が再び高まり、IGBT4−2が再点弧して主回路電流が断路できなくなるおそれがあるが、図示実施例のように断路用補助接点22,23を設けることにより、このような誤動作の発生を確実に防ぐことができる。また、図示実施例ではゲートドライブ回路9に2組の断路用補助接点22と23を設けているが、この断路用補助接点はIGBTのOFF状態で図2(c)の図中におけるC1−C2間に電源電圧が発生するのを防ぐためのものであり、断路用補助接点22,23のいずれか一方だけでも同様な誤動作防止機能を果たすことができる。   In the case where the gate drive circuit 9 of the semiconductor switch 3 is not provided with the auxiliary contacts 22 and 23 for disconnection described above, when the IGBT 4-2 is switched from the ON state to the OFF state, between C1 and C2 in FIG. Since the power supply voltage of the DC circuit 1 is applied, the gate voltage of the IGBT 4-2 increases again, and the IGBT 4-2 may be re-ignited and the main circuit current cannot be disconnected. By providing the disconnecting auxiliary contacts 22 and 23 as described above, it is possible to reliably prevent such malfunction. In the illustrated embodiment, the gate drive circuit 9 is provided with two sets of disconnecting auxiliary contacts 22 and 23. These auxiliary disconnecting contacts are in the OFF state of the IGBT and are C1-C2 in FIG. 2C. This is intended to prevent the occurrence of a power supply voltage between them, and the same malfunction prevention function can be achieved with only one of the auxiliary contacts 22 and 23 for disconnection.

また、図2の動作説明では直流回路1の主回路端子11を(+)極、端子12を(−)極として通電する場合について述べたが、これとは逆に主回路電流の通電方向を主回路端子12から11に向けて通電する場合には、前記と逆に有接点式スイッチ2の開極動作過程でIGBT4−1をON状態に切り換えて主回路電流の転流,遮断する一連の動作を行うことにより、主回路電流の通電方向に左右されることなく双方向の電流を遮断することができる。   In the operation description of FIG. 2, the case where the main circuit terminal 11 of the DC circuit 1 is energized with the (+) pole and the terminal 12 as the (−) pole has been described. When energizing from the main circuit terminals 12 to 11, a series of operations for switching and shutting off the main circuit current by switching the IGBT 4-1 to the ON state during the opening operation of the contact switch 2 in the reverse manner. By performing the operation, the bidirectional current can be cut off without being influenced by the energization direction of the main circuit current.

次に、本発明の応用実施例を図4(a),(b)に示す。すなわち、先記した実施例1で直流回路1に接続した有接点式スイッチ2(図1参照)は、その主回路接点21が1極あたり固定接点2a,2bと橋絡可動接点2cからなる双接点として、その橋絡可動接点2cに半導体スイッチ3のゲート信号の入力端を接続して開極動作に発生する接点間のアーク電圧を取り出すようにしている。   Next, application examples of the present invention are shown in FIGS. That is, the contact type switch 2 (see FIG. 1) connected to the DC circuit 1 in the first embodiment described above is a dual circuit in which the main circuit contact 21 is composed of the fixed contacts 2a and 2b and the bridge movable contact 2c per pole. As a contact, an input terminal of the gate signal of the semiconductor switch 3 is connected to the bridge movable contact 2c so that an arc voltage between the contacts generated in the opening operation is taken out.

これに対して、図4(a),(b)の応用実施例では、有接点式スイッチ2に搭載した主回路接点として、2極に分けてその相互間を直列接続した2組の単極単投接点21−1と21−2を備え、その接点相互間の接続部(図中のD点)にIGBT4−1,4−2のゲートに通じるドライブ信号入力端を接続するようにしている。ここで、図4(a)では接点21−1,21−2が片切接点であり、1極当り固定接点と可動接点からなる1接点を有するものである。また、図4(b)では双接点であり、1極当り橋絡可動接点と固定接点からなる2接点を有するものである。   4 (a) and 4 (b), on the other hand, as a main circuit contact mounted on the contact switch 2, two sets of single poles are divided into two poles and connected in series with each other. Single throw contacts 21-1 and 21-2 are provided, and a drive signal input terminal leading to the gates of the IGBTs 4-1 and 4-2 is connected to a connection portion (point D in the figure) between the contacts. . Here, in FIG. 4A, the contacts 21-1, 21-2 are one-sided contacts, and each contact has one contact composed of a fixed contact and a movable contact. Moreover, in FIG.4 (b), it is a double contact, and has 2 contacts which consist of a bridge movable contact and a fixed contact per pole.

すなわち、図1の実施例では、主回路接点21の橋絡可動接点2c(可動部材)にゲートドライブ信号の入力端子をダイレクトに接続する必要があることから、有接点式スイッチ2として小形の電磁接触器などを採用した場合は、そのスイッチ構造の制約から橋絡可動接点にゲートドライブ信号の入力端子を接続配線することが困難であるほか、その接続リード線が可動接点の開極,閉極動作の動きを妨げるおそれがある。これに対して、図4(a),(b)の有接点式スイッチ2では、2極に分けて2組の単極単投接点21−1と21−2を設ける必要があるが、該スイッチから外部に引き出した各極の接続端子を介してゲート信号入力端子のリード線を簡単に接続することが可能であり、かつ接続リード線がスイッチの接点開閉動作の動きを妨げるおそれもない。   That is, in the embodiment of FIG. 1, since it is necessary to directly connect the gate drive signal input terminal to the bridging movable contact 2c (movable member) of the main circuit contact 21, a small electromagnetic switch is used as the contact switch 2. When using a contactor, etc., it is difficult to connect and wire the gate drive signal input terminal to the bridged movable contact due to restrictions on the switch structure, and the connection lead wire opens and closes the movable contact. There is a risk of hindering movement. On the other hand, in the contact type switch 2 of FIGS. 4A and 4B, it is necessary to provide two sets of single-pole single-throw contacts 21-1 and 21-2 in two poles. It is possible to easily connect the lead wire of the gate signal input terminal via the connection terminal of each pole drawn out from the switch, and there is no possibility that the connection lead wire hinders the movement of the contact opening / closing operation of the switch.

1 直流回路
11,12 主回路端子
2 有接点式スイッチ
21,21−1,21−2 主回路接点
22,23 断路用補助接点
3 半導体スイッチ
4−1,4−2 IGBT(スイッチング素子)
5,6−1,6−2 抵抗
7 ツェナーダイオード
10−1,10−2 ダイオード
arc アーク
DESCRIPTION OF SYMBOLS 1 DC circuit 11,12 Main circuit terminal 2 Reed switch 21, 21-1, 21-2 Main circuit contact 22, 23 Auxiliary contact for disconnection 3 Semiconductor switch 4-1, 4-2 IGBT (switching element)
5,6-1,6-2 Resistance 7 Zener diode 10-1, 10-2 Diode arc Arc

Claims (5)

直流回路に接続した有接点式スイッチの主回路接点に無接点式の半導体スイッチを並列接続し、前記有接点式スイッチの開極時に直流回路の主回路電流を半導体スイッチに転流して有接点式スイッチの主接点間に発生したアークを消滅させた上で、半導体スイッチに転流した主回路電流を半導体スイッチのOFF制御により遮断するようにした直流開閉器において、
前記半導体スイッチを、逆直列に接続した2個のスイッチング素子と、各スイッチング素子に逆並列接続したダイオードからなる双方向スイッチとして有接点式スイッチの主接点に並列接続し、かつ前記スイッチング素子のゲートにはゲートドライブ回路を介して有接点式スイッチの開極時にその主接点間に発生するアーク電圧を印加して半導体スイッチの各スイッチング素子をON,OFF制御させるようにするとともに、前記ゲートドライブ回路には有接点式スイッチの主回路接点の開極に遅れて前記スイッチング素子のゲートを主回路から切り離す断路用補助接点を接続したことを特徴とする直流開閉器。
A contactless semiconductor switch is connected in parallel to the main circuit contact of the contact switch connected to the DC circuit, and the main circuit current of the DC circuit is commutated to the semiconductor switch when the contact switch is opened. In a DC switch that extinguishes the arc generated between the main contacts of the switch and cuts off the main circuit current commutated to the semiconductor switch by the OFF control of the semiconductor switch.
The semiconductor switch is connected in parallel to the main contact of a contact switch as a bidirectional switch comprising two switching elements connected in anti-series and a diode connected in anti-parallel to each switching element, and the gate of the switching element The gate drive circuit applies an arc voltage generated between the main contacts when the contact-type switch is opened to control each switching element of the semiconductor switch ON and OFF, and the gate drive circuit The DC switch is characterized in that an auxiliary contact for disconnection for disconnecting the gate of the switching element from the main circuit is connected with delay after the opening of the main circuit contact of the contact switch.
請求項1に記載の直流開閉器において、有接点式スイッチには主回路接点、および半導体スイッチのゲートドライブ回路に接続した断路用補助接点を搭載し、当該有接点式スイッチの操作器により主回路接点,および断路用補助接点を連動して開極,閉極操作するようにしたことを特徴とする直流開閉器。   2. The DC switch according to claim 1, wherein the contact type switch is equipped with a main circuit contact and an auxiliary contact for disconnection connected to the gate drive circuit of the semiconductor switch, and the main circuit is operated by the operating device of the contact type switch. A DC switch characterized in that the contact and the auxiliary contact for disconnection are operated to open and close. 請求項2に記載の直流開閉器において、有接点式スイッチに搭載した断路用補助接点のワイプ量を主回路接点のワイプ量より大に設定し、当該有接点式スイッチの開極時に断路用補助接点を主回路接点の開極より遅れて開極動作させるようにしたことを特徴とする直流開閉器。   3. The DC switch according to claim 2, wherein the wiping amount of the auxiliary contact for disconnection mounted on the contact type switch is set larger than the wiping amount of the main circuit contact, and the auxiliary for disconnection is opened when the contact type switch is opened. A DC switch characterized in that the contact is opened after the opening of the main circuit contact. 請求項1ないし3のいずれかの項に記載の直流開閉器において、有接点式スイッチの主回路接点として、1極当り2個の固定接点と該固定接点に対向する橋絡可動接点からなる双接点形の接点を備え、その橋絡可動接点に半導体スイッチのゲートに通じるゲートドライブ回路の信号入力端を接続したことを特徴とする直流開閉器。   The DC switch according to any one of claims 1 to 3, wherein the main circuit contact of the contact switch is a dual switch comprising two fixed contacts per pole and a bridge movable contact facing the fixed contact. A DC switch comprising a contact-type contact, and a signal input end of a gate drive circuit connected to a gate of a semiconductor switch connected to the bridge movable contact. 請求項1ないし3のいずれかの項に記載の直流開閉器において、有接点式スイッチの主回路接点として、2極に分けて直列に接続した2組の単極単投接点、もしくは橋絡可動接点を備え、その接点相互間の接続部に半導体スイッチのゲートに通じるゲートドライブ回路の信号入力端を接続したことを特徴とする直流開閉器。   4. The DC switch according to any one of claims 1 to 3, wherein two sets of single-pole single-throw contacts connected in series divided into two poles or movable as a bridge as a main circuit contact of a contact switch A DC switch comprising a contact and a signal input terminal of a gate drive circuit connected to a gate of a semiconductor switch connected to a connection portion between the contacts.
JP2013181773A 2013-09-03 2013-09-03 DC switch Active JP6143615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181773A JP6143615B2 (en) 2013-09-03 2013-09-03 DC switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181773A JP6143615B2 (en) 2013-09-03 2013-09-03 DC switch

Publications (2)

Publication Number Publication Date
JP2015050080A JP2015050080A (en) 2015-03-16
JP6143615B2 true JP6143615B2 (en) 2017-06-07

Family

ID=52699927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181773A Active JP6143615B2 (en) 2013-09-03 2013-09-03 DC switch

Country Status (1)

Country Link
JP (1) JP6143615B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112487A1 (en) * 2012-12-18 2014-06-18 Thermik Gerätebau GmbH Temperature protection circuit
DE102015212802A1 (en) * 2015-07-08 2017-01-12 Ellenberger & Poensgen Gmbh Separating device for DC interruption
JP6919486B2 (en) * 2017-10-11 2021-08-18 株式会社明電舎 DC cutoff device
WO2020003596A1 (en) * 2018-06-27 2020-01-02 ウチヤ・サーモスタット株式会社 Electronic apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184225A (en) * 1987-01-27 1988-07-29 富士電機株式会社 Electromagnetic contactor
KR100434153B1 (en) * 2002-04-12 2004-06-04 엘지산전 주식회사 Hybrid dc electromagnetic contactor
JP2009158112A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Switch device
JP2012248445A (en) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd Circuit breaker
JP5793019B2 (en) * 2011-08-19 2015-10-14 富士電機株式会社 Arc extinguishing device and switch
US8638531B2 (en) * 2011-12-14 2014-01-28 Eaton Corporation Hybrid bi-directional DC contactor and method of controlling thereof

Also Published As

Publication number Publication date
JP2015050080A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
KR101521545B1 (en) Device and method to interrupt high voltage direct current
JP5124637B2 (en) Microelectromechanical system based switching
CN106663557B (en) For interrupting the separating switch of DC current
US10483072B2 (en) Interrupter device for interrupting a direct current
JP6143615B2 (en) DC switch
JP2013214406A (en) Circuit cut-off switch for dc circuit
JP6352745B2 (en) Hybrid type switch
JP2014038775A (en) Circuit breaking switch for dc circuit
JP2013041782A (en) Arc extinguishing device and switch
JP2014120364A (en) Circuit breaker switch for dc circuit
JP6713660B2 (en) Arc-free current switchgear
JP6202871B2 (en) DC circuit breaker
US20220139644A1 (en) Circuit breaker
US3389301A (en) Arc suppressing circuit
CN110651348B (en) Electrical DC switching system
JP6284827B2 (en) Switch
JP2018125270A (en) DC power system safety switchgear
JP2008104276A (en) Inverter device
JP2021034124A (en) DC current switchgear
CN106328439A (en) Relay module
JP6327991B2 (en) Switch
JP2016181382A (en) Dc cutoff device and dc cutoff method
CN111433875B (en) Low-voltage protection switch device
JP2015230849A (en) Switch
CN110875159B (en) Composite direct current switch capable of being physically disconnected and switching method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6143615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250