JP6398741B2 - Gas sensor element manufacturing method and active solution dropping device - Google Patents

Gas sensor element manufacturing method and active solution dropping device Download PDF

Info

Publication number
JP6398741B2
JP6398741B2 JP2015008723A JP2015008723A JP6398741B2 JP 6398741 B2 JP6398741 B2 JP 6398741B2 JP 2015008723 A JP2015008723 A JP 2015008723A JP 2015008723 A JP2015008723 A JP 2015008723A JP 6398741 B2 JP6398741 B2 JP 6398741B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte body
active solution
droplet
dropping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015008723A
Other languages
Japanese (ja)
Other versions
JP2016133423A (en
Inventor
元昭 佐藤
元昭 佐藤
健一 松▲崎▼
健一 松▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015008723A priority Critical patent/JP6398741B2/en
Publication of JP2016133423A publication Critical patent/JP2016133423A/en
Application granted granted Critical
Publication of JP6398741B2 publication Critical patent/JP6398741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被測定ガス中の特定ガス成分の濃度を検出するガスセンサ素子の製造方法ならびにその製造に適した活性溶液滴下装置に関するものである。 The present invention relates to active solution dropping device which is suitable for preparation and its production of the gas sensor element for detecting the concentration of a specific gas component in a measurement gas.

従来、自動車エンジン等の内燃機関の燃焼排気流路に、燃焼排気中に含まれる酸素等の特定ガス成分の濃度を検知するガスセンサを配設して、検知された特定ガス成分の濃度によって空燃比制御や排気処理触媒の温度制御等を行っている。   Conventionally, a gas sensor for detecting the concentration of a specific gas component such as oxygen contained in combustion exhaust gas has been provided in a combustion exhaust passage of an internal combustion engine such as an automobile engine, and the air-fuel ratio is determined by the detected concentration of the specific gas component. Control and temperature control of exhaust treatment catalyst are performed.

このようなガスセンサとして、ジルコニア等の酸素イオン伝導性を有する固体電解質材料を有底筒状に形成した固体電解質基体と、その外周面側において被測定ガスに接する外側電極層と、その内周面側において基準ガスとして導入された大気に接する内側電極層とからなるいわゆるコップ型の検出素子を具備し、被測定ガス中の酸素濃度と基準ガス中の酸素濃度との差によって両電極間に発生する電位差を検出して被測定ガス中の酸素濃度を測定する酸素センサ等が広く用いられている。
このようなガスセンサに用いられる内側電極層の製造方法として、固体電解質体の内室内に活性液を注入吸出した後メッキ膜を形成する方法が知られている。
As such a gas sensor, a solid electrolyte substrate in which a solid electrolyte material having oxygen ion conductivity such as zirconia is formed in a bottomed cylindrical shape, an outer electrode layer in contact with a gas to be measured on its outer peripheral surface side, and an inner peripheral surface thereof It has a so-called cup-shaped detection element consisting of an inner electrode layer in contact with the atmosphere introduced as a reference gas on the side, and is generated between both electrodes due to the difference between the oxygen concentration in the gas to be measured and the oxygen concentration in the reference gas An oxygen sensor or the like that detects an electric potential difference to measure an oxygen concentration in a gas to be measured is widely used.
As a method for producing an inner electrode layer used in such a gas sensor, a method is known in which an active liquid is injected and sucked into an inner chamber of a solid electrolyte body and then a plating film is formed.

例えば、特許文献1には、軸方向に伸びる有底筒状の固体電解質体の内周面に核を付着させる核付け工程と、上記核が触媒として作用するメッキ液を用いて、メッキ液中の貴金属膜を固体電解質体の内周面に析出させるメッキ工程とを有するガスセンサ素子の製造方法において、メッキ工程に先立って、予め電極を形成する電極予定部以外の部分を覆うようにレジストを形成し、メッキ後にレジストを焼失させるガスセンサ素子の製造方法が開示されている。   For example, in Patent Document 1, a nucleation step of attaching nuclei to the inner peripheral surface of a bottomed cylindrical solid electrolyte body extending in the axial direction, and a plating solution in which the nuclei act as a catalyst, In the gas sensor element manufacturing method having a plating step for depositing the noble metal film on the inner peripheral surface of the solid electrolyte body, prior to the plating step, a resist is formed so as to cover portions other than the electrode predetermined portion where the electrode is to be formed in advance. A method of manufacturing a gas sensor element is disclosed in which the resist is burned off after plating.

特開2011−247620号公報JP 2011-247620 A

ところが、特許文献1にあるように、メッキを予定していない部分を覆うようにレジストを施しても、核付け工程に際して、焼成工程で素子表面に析出したガラス成分を除去すべく強酸等を用いたエッチングにより、粒界溝部が施され、その粒界溝部の毛管現象によりメッキ液が浸透拡散してレジストで覆われた部分にまでメッキ液のにじみを生じることになる。
さらに、従来の製造方法では、固体電解質体の内周面の全面に亘って核付けがなされているため、レジストで覆われた部分にも貴金属核が析出している。
このため、レジストに覆われた粒界溝に浸透したメッキ液が貴金属核の触媒作用によって析出し、電極予定部以外にも内側電極が形成されてしまうことになる。
However, as disclosed in Patent Document 1, even if a resist is applied so as to cover a portion that is not planned to be plated, a strong acid or the like is used to remove the glass component deposited on the element surface in the firing step during the nucleation step. The grain boundary grooves are formed by the etching, and the plating solution permeates and diffuses due to the capillary phenomenon of the grain boundary grooves, and the plating solution bleeds to the portion covered with the resist.
Furthermore, in the conventional manufacturing method, since nucleation is performed over the entire inner peripheral surface of the solid electrolyte body, noble metal nuclei are also deposited in the portion covered with the resist.
For this reason, the plating solution that has permeated into the grain boundary grooves covered with the resist is precipitated by the catalytic action of the noble metal nuclei, and an inner electrode is formed in addition to the planned electrode portion.

その結果、内側電極の形状や膜厚にバラツキを生じることになる。
特に、リード部の幅のバラツキが大きくなると、インピーダンス特性のバラツキが大きくなり、内側電極の膜厚のバラツキが大きくなると、応答性のバラツキが大きくなる虞がある。
As a result, variations occur in the shape and film thickness of the inner electrode.
In particular, when the variation in the width of the lead portion increases, the variation in the impedance characteristic increases, and when the variation in the film thickness of the inner electrode increases, the variation in the response may increase.

しかも、外部に露出している固体電解質体の外周面に所定の形状の外側電極を形成するのは比較的容易であるが、内径の細い固体電解質体の内周面に所望の形状のレジストを精度よく施すことは必ずしも容易ではない。   Moreover, it is relatively easy to form an outer electrode of a predetermined shape on the outer peripheral surface of the solid electrolyte body exposed to the outside, but a resist of a desired shape is applied to the inner peripheral surface of the solid electrolyte body having a small inner diameter. It is not always easy to apply accurately.

さらに、従来の製造方法では、メッキ後にレジストを焼失させる必要があるため、製造コストの増大を招くのに加え、レジストが完全に焼失せず灰分の残留を招いたり、レジストを焼失させるための加熱により内側電極の凝集が起こり、耐久性の低下を招いたりする虞もある。   Furthermore, in the conventional manufacturing method, it is necessary to burn off the resist after plating, so that in addition to incurring an increase in manufacturing cost, the resist is not completely burned out, resulting in residual ash, or heating to burn out the resist. As a result, aggregation of the inner electrode occurs, which may cause a decrease in durability.

そこで、本発明は、かかる実情に鑑み、有底筒状に形成された固体電解質体の内周面において、電極を形成する必要な範囲にのみ、極めて高い精度で、核付けを行い、内側電極層を所望の形状に精度良く成形するためガスセンサ素子の製造方法を提供することを目的とするものである。   Therefore, in view of such a situation, the present invention performs nucleation with extremely high accuracy only on the inner peripheral surface of the solid electrolyte body formed in a bottomed cylindrical shape within a necessary range for forming the electrode, and the inner electrode. An object of the present invention is to provide a method for manufacturing a gas sensor element in order to accurately form a layer into a desired shape.

図1(a)〜(f)を参照して、本発明は、一端が閉塞し他端が開口する有底筒状に形成した固体電解質体(2)と、その内周面(200)に設けた内側電極(1)と、その外周面(201)に設けた外側電極(3)とを具備するガスセンサ素子(4)の製造方法であって、
少なくとも、前記固体電解質体の粒界相(GBP)を溶出させ前記内周面に粒界溝(CPGB)を形成するエッチング工程(P1;図3A、3B参照)と、前記内周面に前記内側電極の核となる核付用活性溶液(6)を塗布した後、熱処理を行う核付け工程(P2;図4A〜4C参照)と、その後に行うメッキ工程(P3;図5A、5B参照)とを具備し、
前記核付け工程において、
前記固体電解質体の内周面に、前記核付用活性溶液からなる所定量(V)の液滴(DL)を、所定の滴下ピッチ(P)で滴下して、1ドットずつ点描しながら、予定する電極形状となる電極予定範囲(AR1)を区画することを特徴とする。
Referring to FIGS. 1 (a) to 1 (f), the present invention provides a solid electrolyte body (2) formed in a bottomed cylindrical shape with one end closed and the other end opened, and an inner peripheral surface (200) thereof. A method for producing a gas sensor element (4) comprising an inner electrode (1) provided and an outer electrode (3) provided on an outer peripheral surface (201) thereof,
At least an etching step (P1; see FIGS. 3A and 3B) for eluting the grain boundary phase (GBP) of the solid electrolyte body to form a grain boundary groove (CP GB ) on the inner peripheral surface; and A nucleation step (P2; see FIGS. 4A to 4C) in which a heat treatment is performed after applying the nucleation active solution (6) to be the core of the inner electrode, and a plating step (P3; see FIGS. 5A and 5B) to be performed thereafter. And
In the nucleation step,
While dropping a predetermined amount (V) of a liquid (DL) made of the nucleating active solution on the inner peripheral surface of the solid electrolyte body at a predetermined dropping pitch (P), A predetermined electrode range (AR1) having a predetermined electrode shape is defined.

また、図6A、図8A、8Bを参照して、本発明に係る活性溶液滴下装置(5)は、貴金属核を形成するための核付用活性溶液(6)を有底筒状に形成した固体電解質体(2)の内周面(200)に塗布する活性溶液滴下装置であって、
内側に区画した活性溶液導入孔(500)と該活性溶液導入孔に連通し先端に設けた噴孔(501)とを有する有底筒状のノズル(50)と、該噴孔から前記核付用活性溶液からなる所定量(V)の液滴(DL)を滴下させるための液滴滴下手段(51)と、
該液滴滴下手段に前記核付用活性溶液を供給するための活性溶液供給手段(52)と、
前記固体電解質体を保持する固体電解質体保持手段(54、59)と、
該固体電解質体保持手段を固体電解質体の軸方向に移動可能とする駆動力を生む軸方向駆動手段(55)と、
該軸方向駆動手段の動力を前記固体電解質体保持手段に伝達する軸方向駆動伝達手段(56)と、
前記固体電解質体保持手段を固体電解質体の周方向に移動可能とする駆動力を生む周方向駆動手段(57)と、
該周方向駆動手段の動力を前記固体電解質体保持手段に伝達する周方向駆動伝達手段(58)と、
前記液滴滴下手段と前記軸方向駆動手段と前記周方向駆動手段との駆動と停止とを制御する制御装置(53)とを具備し、
前記固体電解質体を軸方向と周方向とに一定の滴下ピッチで移動と停止とを行いながら前記噴孔から前記核付用活性溶液の液滴を滴下することで、前記固体電解質体の内周面において所定の電極予定範囲(AR1)にのみ活性溶液膜(60)を形成することを特徴とする。
Moreover, with reference to FIG. 6A, FIG. 8A, and 8B, the active solution dripping apparatus (5) which concerns on this invention formed the active solution for nucleation (6) for forming a noble metal nucleus in the shape of a bottomed cylinder. An active solution dropping device applied to the inner peripheral surface (200) of the solid electrolyte body (2),
A bottomed cylindrical nozzle (50) having an active solution introduction hole (500) partitioned on the inside and a nozzle hole (501) provided at the tip thereof in communication with the active solution introduction hole; A droplet dropping means (51) for dropping a predetermined amount (V) of droplets (DL) made of an active solution;
Active solution supply means (52) for supplying the cored active solution to the droplet dropping means;
Solid electrolyte body holding means (54, 59) for holding the solid electrolyte body;
An axial driving means (55) for generating a driving force that enables the solid electrolyte body holding means to move in the axial direction of the solid electrolyte body;
Axial drive transmission means (56) for transmitting the power of the axial drive means to the solid electrolyte body holding means;
A circumferential driving means (57) for generating a driving force that enables the solid electrolyte body holding means to move in the circumferential direction of the solid electrolyte body;
Circumferential drive transmission means (58) for transmitting the power of the circumferential drive means to the solid electrolyte body holding means;
A controller (53) for controlling driving and stopping of the droplet dropping means, the axial driving means, and the circumferential driving means;
While dropping and dropping the cored active solution droplets from the nozzle hole while moving and stopping the solid electrolyte body in the axial direction and the circumferential direction at a constant dropping pitch, the inner periphery of the solid electrolyte body The active solution film (60) is formed only in a predetermined electrode predetermined range (AR1) on the surface.

本発明によれば、従来のように、固体電解質体の内周面の全面に亘って核付けを行うのではなく、必要な範囲のみに極めて精度良く均質な厚みで、核付けを行うことができる。
その結果、極めて高い寸法精度で、しかも、効率よく内側電極を形成することが可能となる。
また、固体電解質体の内周面に部分的に内側電極を形成する際に、メッキ工程において、核付けされていない部分がメッキ液に晒されても、メッキが形成されないため、従来のように、メッキを施さない部分をマスキングする必要がなく、レジストを形成した後、そのレジストを焼失させるという無駄な作業を行う必要もない。
According to the present invention, nucleation is not performed over the entire inner peripheral surface of the solid electrolyte body as in the prior art, but nucleation can be performed with a highly accurate and uniform thickness only in a necessary range. it can.
As a result, the inner electrode can be efficiently formed with extremely high dimensional accuracy.
Further, when the inner electrode is partially formed on the inner peripheral surface of the solid electrolyte body, the plating is not formed even if the non-nucleated portion is exposed to the plating solution in the plating process. Further, it is not necessary to mask a portion not subjected to plating, and it is not necessary to perform a wasteful work of burning the resist after forming the resist.

本発明のガスセンサ素子の製造方法を用いて形成したガスセンサ素子の断面図並びに内側電極の構造を示す展開模式図Sectional drawing of the gas sensor element formed using the manufacturing method of the gas sensor element of this invention, and the expansion | deployment schematic diagram which shows the structure of an inner side electrode 本発明のガスセンサ素子の製造方法の要部である核付用活性溶液からなる液滴の滴下方法を示す模式図The schematic diagram which shows the dripping method of the droplet which consists of an active solution for a nucleus which is the principal part of the manufacturing method of the gas sensor element of this invention 核付け範囲の外周縁における終端処理方法を示す模式図Schematic diagram showing the termination method at the outer periphery of the nucleation range 本発明のガスセンサ素子の製造方法が用いられるガスセンサ素子の組織構造の概要を示す断面図及び平面図Sectional drawing and top view which show the outline | summary of the structure | tissue structure of the gas sensor element in which the manufacturing method of the gas sensor element of this invention is used 本発明のガスセンサ素子の製造方法を工程順を追って示し、図3Aのガスセンサ素子にエッチングを施した後の組織構造の概要を示す断面図及び平面図Sectional drawing and top view which show the manufacturing method of the gas sensor element of this invention later on in order of a process, and show the outline | summary of the structure | tissue structure after etching the gas sensor element of FIG. 3A 図3Bに続き、核付用の活性溶液を滴下する活性溶液滴下工程を示す断面図及び平面図Sectional drawing and top view which show the active solution dripping process which dripping the active solution for a nucleus attached following FIG. 3B 図4Aに続き、滴下された活性溶液が、エッチング溝に拡散した状態を示す断面図及び平面図4A is a cross-sectional view and a plan view showing a state in which the dropped active solution is diffused into the etching groove. 図4Bに続き、液滴を加熱処理して、所定範囲に貴金属核を析出させた状態を示す断面図及び平面図FIG. 4B is a cross-sectional view and a plan view showing a state in which noble metal nuclei are deposited in a predetermined range by subjecting the droplets to heat treatment. 図4Cに続き、メッキ液を注入して核付けされた所定範囲にメッキを施すメッキ工程を示す断面図及び平面図FIG. 4C is a cross-sectional view and a plan view showing a plating process in which a plating solution is injected and plating is applied to a predetermined range that is nucleated. 図5Aに続き、所定範囲に内側電極が形成された状態を示す断面図及び平面図5A is a cross-sectional view and a plan view showing a state in which the inner electrode is formed in a predetermined range. 活性溶液の滴下方法と固体電解質体との接触角と滴下後の液滴の状態との関係を示す断面図Sectional drawing which shows the relationship between the dropping method of an active solution, the contact angle with a solid electrolyte body, and the state of the droplet after dropping 液滴の大きさが固体電解質粒子径よりも小さい場合における滴下後の状態を示す断面図Sectional drawing which shows the state after dripping when the magnitude | size of a droplet is smaller than a solid electrolyte particle diameter 液滴と固体電解質体との接触角が小さい場合における滴下後の状態を示す断面図Sectional drawing which shows the state after dripping when the contact angle of a droplet and a solid electrolyte body is small 液滴の大きさが固体電解質粒子径よりも大きい場合における滴下後の状態を示す断面図Sectional drawing which shows the state after dripping when the magnitude | size of a droplet is larger than a solid electrolyte particle diameter 図6Dの平面図Plan view of FIG. 6D 滴下ピッチと断線の有無の関係を示す特性図Characteristic diagram showing the relationship between the drop pitch and the presence or absence of disconnection 本発明のガスセンサ素子の製造方法を実現するための液滴滴下装置の概要を示し、ガスセンサ素子の軸方向に沿った断面図Sectional drawing along the axial direction of a gas sensor element which shows the outline | summary of the droplet dropping apparatus for implement | achieving the manufacturing method of the gas sensor element of this invention 図8Aの横断面図Cross section of FIG. 8A 比較例として示す従来のガスセンサ素子の製造方法とその問題点について工程順を追って示し、核付用活性液を注入した状態を示す断面図及び平面図Sectional view and plan view showing a state in which a manufacturing method of a conventional gas sensor element shown as a comparative example and its problems are shown in the order of processes and an active liquid for nucleation is injected 図9Aに続き、固体電解質体の内周面の全面に貴金属核を析出させた状態を示す断面図及び平面図9A is a cross-sectional view and a plan view showing a state in which noble metal nuclei are deposited on the entire inner peripheral surface of the solid electrolyte body. 図9Bに続き、内側電極を形成しない部分にメッキレジストを施してメッキ液を注入した状態を示す断面図及び平面図9B is a cross-sectional view and a plan view showing a state in which a plating resist is applied to a portion where the inner electrode is not formed and a plating solution is injected. 図9Cに続き、メッキ液を還元したときに形成される内側電極の状態を示す断面図及び平面図9C is a cross-sectional view and a plan view showing the state of the inner electrode formed when the plating solution is reduced 図9Dに続き、従来の製造方法で形成した内側電極の展開図9D is an exploded view of the inner electrode formed by the conventional manufacturing method, following FIG. 9D.

図1を参照して、本発明のガスセンサ素子の製造方法が適用されるガスセンサ素子4と、本発明のガスセンサ素子の製造方法の概要について説明する。
本発明は、酸素センサ等の被測定ガス中の特定ガス成分を検出するガスセンサに用いられるガスセンサ素子4の製造方法に関するものである。
特に、有底筒状の固体電解質体2の内周面200に所定の形状に区画して部分的に内側電極1を精度良く形成するのに好適なものである。
With reference to FIG. 1, the outline | summary of the gas sensor element 4 with which the manufacturing method of the gas sensor element of this invention is applied, and the manufacturing method of the gas sensor element of this invention is demonstrated.
The present invention relates to a method of manufacturing a gas sensor element 4 used in a gas sensor that detects a specific gas component in a gas to be measured such as an oxygen sensor.
In particular, it is suitable for forming the inner electrode 1 with high accuracy by dividing it into a predetermined shape on the inner peripheral surface 200 of the bottomed cylindrical solid electrolyte body 2.

本発明のガスセンサ素子4の製造方法においては、有機貴金属を溶解した核付用活性溶液6を用いて、固体電解質体2の内周面200に貴金属核Nucを核付けする。
その後、貴金属核Nucを触媒としてメッキ液の還元反応を起こさせ、貴金属核Nuc上に、貴金属メッキ膜を形成するものである。
さらに、固体電解質体2の内周面200において、内部電極1を形成する電極予定範囲AR1にのみに核付けを行うため、所定の滴下ピッチPの間隔で、所定量の有機貴金属を溶剤に溶解させた核付用活性溶液6を一滴ずつ滴下することを最大の特徴とするものである。
In the method for manufacturing the gas sensor element 4 of the present invention, the noble metal nucleus Nuc is nucleated on the inner peripheral surface 200 of the solid electrolyte body 2 using the nucleating active solution 6 in which the organic noble metal is dissolved.
Thereafter, a reduction reaction of the plating solution is caused by using the noble metal nucleus Nuc as a catalyst to form a noble metal plating film on the noble metal nucleus Nuc.
Further, in order to perform nucleation only on the predetermined electrode area AR1 forming the internal electrode 1 on the inner peripheral surface 200 of the solid electrolyte body 2, a predetermined amount of organic noble metal is dissolved in a solvent at a predetermined dropping pitch P interval. The greatest feature is that the active solution for nucleation 6 is dropped.

本発明の製造方法が適用されるガスセンサ素子4は、図1(a)に示すように、一端が閉塞し、他端が開口し、軸方向に伸びる有底筒状の固体電解質体2と、その内周面200に形成され、所定の形状に区画された内側電極1と、その外周面201に形成され、所定の形状に区画された外側電極3とによって構成されている。
固体電解質体2は、酸素イオン等の特定のイオンに対して伝導性を有するイットリア部分安定化ジルコニア等の公知の固体電解質材料を用い、プレス成形等の公知の成形方法によって形成した後、所定の温度で焼成されている。
As shown in FIG. 1 (a), the gas sensor element 4 to which the manufacturing method of the present invention is applied has a bottomed cylindrical solid electrolyte body 2 having one end closed, the other end opened, and extending in the axial direction. The inner electrode 1 is formed on the inner peripheral surface 200 and partitioned into a predetermined shape, and the outer electrode 3 is formed on the outer peripheral surface 201 and partitioned into a predetermined shape.
The solid electrolyte body 2 is formed by a known molding method such as press molding using a known solid electrolyte material such as yttria partially stabilized zirconia having conductivity with respect to specific ions such as oxygen ions. Baked at temperature.

固体電解質体2は、筒状の脚部20と、その先端側で閉塞する底部21と、基端側で開口する頭部22と、脚部20と頭部22との間で径大となるように拡径する大径部23とからなる。
本発明の製造方法が適用される内側電極1は、白金等の公知の貴金属が用いられ、本図(b)に示すように、固体電解質体2の内周面200に形成されており、内側電極検出部10と内側電極リード部11と内側電極端子部12とによって構成されている。
内側電極検出部10は、固体電解質体2の閉塞端側において、軸方向に一定の幅を有し、周方向の全周に亘って形成されている。
The solid electrolyte body 2 has a large diameter between the cylindrical leg portion 20, a bottom portion 21 closed at the distal end side thereof, a head portion 22 opened at the proximal end side, and the leg portion 20 and the head portion 22. The large-diameter portion 23 that expands as described above.
The inner electrode 1 to which the manufacturing method of the present invention is applied uses a known noble metal such as platinum, and is formed on the inner peripheral surface 200 of the solid electrolyte body 2 as shown in FIG. The electrode detection part 10, the inner electrode lead part 11, and the inner electrode terminal part 12 are comprised.
The inner electrode detection unit 10 has a certain width in the axial direction on the closed end side of the solid electrolyte body 2 and is formed over the entire circumference in the circumferential direction.

内側電極リード部11は、内側電極検出部10の基端側から内側電極端子部12との間を接続するように、一定の幅W11で軸方向に伸びるように形成されている。
後述する製造方法によって、内側電極リード部11の幅W11は、0.5mm以上、3.0mm以下の設定値に対して、バラツキが200μm以下、好適には100μm以下の極めて高い精度で形成されている。
内側電極端子部12は、内側電極リード部11の基端側に設けられ、開口端側となる頭部22の内周面において、軸方向に一定の幅を有し、内周面200の全周に亘って形成されている。
The inner electrode lead portion 11 is formed to extend in the axial direction with a constant width W11 so as to connect the inner electrode lead portion 11 to the inner electrode terminal portion 12 from the proximal end side of the inner electrode detection portion 10.
By the manufacturing method described later, the width W11 of the inner electrode lead portion 11 is formed with extremely high accuracy with a variation of 200 μm or less, preferably 100 μm or less, with respect to a set value of 0.5 mm or more and 3.0 mm or less. Yes.
The inner electrode terminal portion 12 is provided on the proximal end side of the inner electrode lead portion 11, and has a certain width in the axial direction on the inner peripheral surface of the head portion 22 on the opening end side. It is formed over the circumference.

外側電極3は、白金等の公知の貴金属が用いられ、固体電解質体2の外周面201に形成されており、外側電極検出部30と外側電極リード部31と外側電極端子部32とによって構成されている。
外側電極検出部30は、脚部20の先端側であって、脚部20を介して内側電極検出部20に対向する位置において、軸方向に一定の幅を有し、外周面201の全周に亘って形成されている。
The outer electrode 3 is made of a known noble metal such as platinum, and is formed on the outer peripheral surface 201 of the solid electrolyte body 2. The outer electrode 3 includes an outer electrode detection unit 30, an outer electrode lead unit 31, and an outer electrode terminal unit 32. ing.
The outer electrode detection unit 30 has a certain width in the axial direction at the front end side of the leg portion 20 and faces the inner electrode detection unit 20 via the leg portion 20, and the entire circumference of the outer peripheral surface 201. It is formed over.

外側電極リード部31は、外側電極検出部30の基端側から外側電極端子部32との間を接続するように、一定の幅で軸方向に伸びるように形成されている。
外側電極端子部32は、外側電極リード部31の基端側に設けられ、頭部22の外周面201において、軸方向に一定の幅を有し、外周面201の全周に亘って形成されている。本発明のガスセンサ素子の製造方法においては、内側電極1を形成するにあたり、本図(c)に示すように、予め定めた内側電極1を形成する電極予定範囲AR1にのみ、触媒となる貴金属核Nucを析出させている。
The outer electrode lead portion 31 is formed to extend in the axial direction with a certain width so as to connect the outer electrode terminal portion 32 to the outer electrode terminal portion 32 from the proximal end side of the outer electrode detection portion 30.
The outer electrode terminal portion 32 is provided on the base end side of the outer electrode lead portion 31, has a constant width in the axial direction on the outer peripheral surface 201 of the head portion 22, and is formed over the entire periphery of the outer peripheral surface 201. ing. In the method for manufacturing a gas sensor element of the present invention, when forming the inner electrode 1, as shown in FIG. 5C, the noble metal nucleus that serves as a catalyst is provided only in the predetermined electrode area AR1 where the inner electrode 1 is to be formed. Nuc is precipitated.

本発明においては、本図(d)に示すように、電極予定範囲AR1にのみ、有機貴金属を溶解した核付用活性溶液6の膜(活性溶液膜60)を形成し、これを400℃以上、600℃以下の熱処理温度で、加熱処理することで、貴金属核Nucを電極予定範囲AR1にのみに析出させることを可能にしている。
さらに、電極予定範囲AR1にのみ、有機貴金属を溶解した核付用活性溶液6の膜を形成するために、本図(e)、(f)に示すように、固体電解質体2の軸方向と周方向とに所定の滴下ピッチPの間隔で、所定量の有機貴金属を溶剤に溶解させた核付用活性溶液6を一滴ずつ滴下することで、所定の拡散直径Dを有する拡散液滴DLDFの集合体によって電極予定範囲AR1をまんべんなく埋め尽くしている。
In the present invention, as shown in FIG. 4 (d), a film of the active solution 6 for nucleation (active solution film 60) in which the organic noble metal is dissolved is formed only in the predetermined electrode area AR1, and this is formed at 400 ° C. By performing the heat treatment at a heat treatment temperature of 600 ° C. or less, it is possible to deposit the noble metal nucleus Nuc only in the predetermined electrode area AR1.
Further, in order to form a film of the active solution 6 for nucleation in which the organic noble metal is dissolved only in the predetermined electrode area AR1, as shown in FIGS. (E) and (f), the axial direction of the solid electrolyte body 2 and at intervals of a predetermined dropping pitch P in the circumferential direction, a predetermined amount of nucleation for the active solution 6 where the organic noble metal is dissolved in a solvent by dropwise addition dropwise, spreading droplets DL having a predetermined diffusion diameter D 2 The electrode planned area AR1 is completely filled with the aggregate of DF .

図2A、図2Bを参照して、核付用活性溶液6の滴下方法についてさらに詳細に説明する。
所定量の液滴DLは、所定の液滴直径φDを有した略球体状をしている。
このような液滴DLが固体電解質体2の内周面200に滴下されると、所定の接触直径φDを有する半球状ないし凸レンズ状の接触液滴DLCNとなる。
With reference to FIG. 2A and FIG. 2B, the dripping method of the active solution 6 with a nucleus is demonstrated still in detail.
Droplet DL predetermined amount has a substantially spherical shape having a predetermined droplet diameter [phi] D 1.
When such droplets DL is dropped to the inner peripheral surface 200 of the solid electrolyte body 2, a hemispherical or convex shaped contact droplet DL CN with a predetermined contact diameter [phi] D.

また、接触液滴DLCNは、毛管現象により、固体電解質体2の表面に形成された粒界溝に拡散し、所定の拡散直径φDを有する拡散液滴DLDFとなる。
このとき、滴下された液滴DLが一定量であるのに加え、核付用活性溶液6には、揮発性を有する溶剤が用いられているため、拡散と同時に溶剤の揮発が起こるため拡散直径φDは一定の範囲に抑制される。
Further, the contact droplet DL CN diffuses into a grain boundary groove formed on the surface of the solid electrolyte body 2 by capillary action, and becomes a diffusion droplet DL DF having a predetermined diffusion diameter φD 2 .
At this time, in addition to a constant amount of the dropped droplets DL, since the nucleating active solution 6 uses a volatile solvent, the solvent volatilizes at the same time as the diffusion. [phi] D 2 is suppressed within a predetermined range.

そこで、予定する電極形状となるように予め設定した電極予定範囲AR1に沿って、一定量の液滴DLを固体電解質体2の軸方向と周方向とに所定の滴下ピッチPの間隔で移動させながら一滴ずつ滴下することで、液滴の過剰な拡散を抑制しつつ、電極予定範囲AR1にまんべんなく核付用活性溶液6の液滴膜を形成することができる。滴下に際して、固体電解質体2を予熱しておくこともできる。
このとき、一定の滴下ピッチPで滴下を続けると、電極予定範囲AR1の端縁において、滴下ピッチPで割り切れない場合があるため、図2Bに示すように、滴下ピッチを調整した終端滴下ピッチPENDに変更して拡散液滴DLDFの外周縁が電極予定範囲AR1の端縁と一致させる。
なお、周方向と軸方向とで、終端滴下ピッチPENDは適宜変更可能である。
Therefore, a predetermined amount of the liquid droplet DL is moved in the axial direction and the circumferential direction of the solid electrolyte body 2 at intervals of a predetermined dropping pitch P along the predetermined electrode range AR1 set in advance so as to have a predetermined electrode shape. However, by dropping one drop at a time, it is possible to form a droplet film of the nucleating active solution 6 evenly in the planned electrode area AR1 while suppressing excessive diffusion of the droplets. At the time of dropping, the solid electrolyte body 2 can be preheated.
At this time, if dripping is continued at a constant dripping pitch P, it may not be divisible by the dripping pitch P at the edge of the planned electrode area AR1, so the terminal dropping pitch P with the dripping pitch adjusted is shown in FIG. 2B. the outer peripheral edge of the spread droplets DL DF is to match the edge of the electrode will range AR1 is changed to END.
Note that the terminal dropping pitch PEND can be appropriately changed between the circumferential direction and the axial direction.

また、核付用活性溶液6には、有機白金やハロゲン化白金等、有機溶剤に可溶な有機貴金属又はハロゲン化貴金属を、ジクロロエタン、クロロホルム、メチルエチルケトン、シクロヘキサン、イソプロピルアルコール、イソブチルアルコール、ジペンテン、テレピネオール等の有機溶剤に溶解したものを用いることができる。好適には、粘性調整しやすい有機白金錯体を含む化合物を、揮発性の高い(沸点の低い)溶剤に溶解した溶液とすると、拡散直径φDの制御が容易であり、バラツキも小さくなる。 The active solution 6 for nucleation includes organic noble metal or noble metal halide soluble in an organic solvent such as organic platinum or platinum halide, such as dichloroethane, chloroform, methyl ethyl ketone, cyclohexane, isopropyl alcohol, isobutyl alcohol, dipentene, terpineol. What was melt | dissolved in organic solvents, such as, can be used. Preferably, when a compound containing an organoplatinum complex that is easy to adjust the viscosity is dissolved in a highly volatile (low boiling point) solvent, the control of the diffusion diameter φD 2 is easy and the variation is small.

本発明において、1ドット当たりの液滴量Vを少なくするほど、接触直径φD、さらには拡散直径φDが小さくなり、電極予定範囲AR1に形成される活性溶液膜60の寸法精度が高くなる。必然的に内側電極1の寸法精度も高くなるが、その反面、生産性は低くなる。
同様に、滴下ピッチPが小さいほど、内側電極1の寸法精度も高くなるが、その反面、一定の範囲を滴下するための滴下回数が増えるので、生産性は低くなる。
In the present invention, as to reduce the droplet volume V per 1 dot, the contact diameter [phi] D, more diffuse diameter [phi] D 2 decreases, the dimensional accuracy of the active solution film 60 is formed on the electrode will range AR1 is higher. Inevitably, the dimensional accuracy of the inner electrode 1 also increases, but on the other hand, the productivity decreases.
Similarly, the smaller the dropping pitch P is, the higher the dimensional accuracy of the inner electrode 1 is. On the other hand, the number of times of dropping for dropping a certain range increases, so the productivity is lowered.

このため、1ドット当たりの拡散直径φDの最適範囲及び液滴ピッチPの最適範囲が存在する。本発明においては、1ドット当たりに滴下する核付用活性溶液6の液滴DLの滴下量Vによって液滴直径φD1が決まり、溶剤の種類を変えることで、拡散直径φDが変わる。これは溶剤によって、接触直径φDとその広がりが変化するからで、寸法精度と生産性が所望の範囲となるように、拡散直径φDは、通常1〜250μm、好ましくは10〜150μmの範囲で適宜設定することができる。拡散直径φDが1μmより小さいと、生産性が著しく低下し、250μmより大きいと、バラツキが大きくなって寸法精度が低下する。
このとき、溶剤の種類に応じて、所望の拡散直径φDとなる液滴直径φD1は、通常1μm前後〜200μm程度、好ましくは10μm前後〜100μm程度の範囲で適宜設定することができる。
For this reason, there exists an optimum range of the diffusion diameter φD 2 per dot and an optimum range of the droplet pitch P. In the present invention, the droplet diameter φD 1 is determined by the drop amount V of the droplet DL of the cored active solution 6 dropped per dot, and the diffusion diameter φD 2 is changed by changing the type of solvent. This by the solvent, since a change in the spread between the contact diameter [phi] D, as the dimensional accuracy and productivity becomes a desired range, the diffusion diameter [phi] D 2 is normally 1~250Myuemu, preferably in the range of 10~150μm It can be set appropriately. Diffusion diameter [phi] D 2 is 1μm less, productivity is significantly reduced, and 250μm greater than the variation in dimensional accuracy decreases increases.
At this time, the droplet diameter φD 1 that becomes the desired diffusion diameter φD 2 can be appropriately set in the range of usually about 1 μm to about 200 μm, preferably about 10 μm to about 100 μm, depending on the type of solvent.

さらに、滴下ピッチPは、拡散直径φDの3/4倍以下の範囲で適宜設定することができる。好適には1/4倍以上、3/4倍以下の範囲とすると、溶剤の種類によらず良好な結果が得られる。
特に、拡散直径φDが10μmより小さい場合は、滴下ピッチPを、拡散直径φDの1/4倍よりも小さくすると生産性が著しく低下する。滴下ピッチPを拡散直径φDの3/4倍よりも大きくすると、内側電極1の寸法精度が低下するだけでなく、電極予定範囲AR1内に核付けされていない部分が点在することになり、内部電極1の断線を招く虞がある。
Further, dropping the pitch P can be set appropriately 3/4 times or less of the range of spread diameter [phi] D 2. When the range is preferably 1/4 times or more and 3/4 times or less, good results can be obtained regardless of the type of solvent.
In particular, when the diffusion diameter φD 2 is smaller than 10 μm, if the dropping pitch P is made smaller than ¼ times the diffusion diameter φD 2 , the productivity is remarkably lowered. When the dropping pitch P larger than 3/4 times the diffusion diameter [phi] D 2, will be not only the dimensional accuracy of the inner electrode 1 drops, the nucleation that are not part electrode will range AR1 interspersed There is a risk of disconnection of the internal electrode 1.

図3A、図3Bを参照して、エッチング工程P1について説明する。
図3Aに示すように、固体電解質体2は、一定の粒度分布をもって並んだジルコニア及びイットリアからなる固体電解質粒子Gの間に粒界相GBPが形成されている。
図中の平面図に点線で区画した範囲が電極形成予定範囲AR1となっており、この範囲に精度良く内側電極1を形成する例について説明する。
With reference to FIG. 3A and FIG. 3B, the etching process P1 will be described.
As shown in FIG. 3A, in the solid electrolyte body 2, a grain boundary phase GBP is formed between solid electrolyte particles G made of zirconia and yttria arranged with a certain particle size distribution.
A range defined by dotted lines in the plan view in the figure is an electrode formation scheduled range AR1, and an example in which the inner electrode 1 is formed with high accuracy in this range will be described.

次いで、図3Bに示すように、公知の強酸を用いたエッチングにより、固体電解質体2の内周面200に存在する粒界相GBPの一部を溶出させる。この処理により、白金等の貴金属と固体電解質、排気ガスが接する3相境界点が増えて出力向上と抵抗値低減に寄与するが、粒界溝CPGBを形成することで、溶液の拡散によるバラツキが生じやすくなる。そこで、本発明では、次工程において、活性溶液6の拡散直径φDと滴下ピッチPを制御し、電極形成を容易にする。 Next, as shown in FIG. 3B, a part of the grain boundary phase GBP existing on the inner peripheral surface 200 of the solid electrolyte body 2 is eluted by etching using a known strong acid. This treatment increases the three-phase boundary point where the noble metal such as platinum contacts with the solid electrolyte and the exhaust gas, thereby contributing to an improvement in output and a reduction in resistance value. However, by forming the grain boundary groove CP GB , variation due to diffusion of the solution is caused. Is likely to occur. Therefore, in the present invention, in the next step, the diffusion diameter φD 2 and the dropping pitch P of the active solution 6 are controlled to facilitate electrode formation.

図4A〜図5Bを参照して、核付け工程P2について説明する。
図4Aに示すように、所定の滴下ピッチで固体電解質体2を相対移動させながらノズル50から核付用活性溶液6の液滴DLを1ドットずつ滴下し、点描画を画くように、所定の電極形成予定範囲AR1に活性溶液6の液滴DLを塗布する。
次いで図4Bに示すように、一定の滴下ピッチで滴下された液滴が、エッチングにより固体電解質体2の内周面に形成された粒界溝CPGBに拡散、浸透する。
With reference to FIG. 4A-FIG. 5B, the nucleation process P2 is demonstrated.
As shown in FIG. 4A, while the solid electrolyte body 2 is relatively moved at a predetermined dropping pitch, the droplet DL of the nucleating active solution 6 is dropped from the nozzle 50 one dot at a time so as to draw a point drawing. The droplet DL of the active solution 6 is applied to the electrode formation scheduled area AR1.
Next, as shown in FIG. 4B, the droplets dropped at a constant dropping pitch diffuse and penetrate into the grain boundary grooves CP GB formed on the inner peripheral surface of the solid electrolyte body 2 by etching.

このとき、滴下された液適量Vが一定であるため、拡散液滴DLDFの大きさは、溶剤の種類に応じて決まり必要以上に大きくなることはない。
さらに、溶剤として揮発性のある有機溶剤が用いられているため、溶剤が揮発しながら拡散して、一粒一粒の液滴がそれぞれ一定の範囲の大きさに維持される。その結果、略一定の拡散直径Dをもった拡散液滴DLDFが所定の滴下ピッチPで並び、所定の電極形成予定範囲AR1に亘って均一に分布することになる。
At this time, since droplet volume V dripped is constant, the magnitude of the diffusion droplet DL DF is larger it is not more than necessary depends on the type of solvent.
Furthermore, since a volatile organic solvent is used as the solvent, the solvent diffuses while volatilizing, and each droplet is maintained in a certain size range. As a result, sequence spreading droplets DL DF having a substantially constant diffusion diameter D 2 is in a predetermined dropping pitch P, will be distributed uniformly over a predetermined electrode formation planned range AR1.

このとき前述のように、滴下ピッチPは、1〜250μmの範囲で設定される拡散直径Dに対して1/4〜3/4倍の範囲に設定するのが望ましい。
隣接する液滴DLの拡散液滴DLDFが一定の割合で重なり合うことで、核付けされていない部分が発生するのを防ぎ、内側電極1の内部断線の防止を図ることができる。
また、予め固体電解質体2を、常温より高い適当な温度に予熱しておくことで、活性溶液6中の溶剤成分の揮発を促進し、毛管現象による広がりを小さくしてバラツキを抑制する効果が向上する。
As described above this time, dropping the pitch P is preferably set in a range of 1 / 4-3 / 4 times the diffusion diameter D 2 that is set in the range of 1~250Myuemu.
By spreading droplets DL DF of adjacent droplets DL overlap at a constant rate, it prevents the portion not nucleation occurs, it is possible to prevent the internal breakage of the inner electrode 1.
In addition, by preheating the solid electrolyte body 2 to an appropriate temperature higher than room temperature in advance, the volatilization of the solvent component in the active solution 6 is promoted, and the spread due to the capillary phenomenon is reduced, thereby suppressing variation. improves.

次いで、図5Aに示すように、所定の熱処理温度で加熱することで、溶剤を除去すると共に、活性溶液中に溶解していた有機貴金属を分解しつつ、有機成分を除去し、核となる貴金属のみを析出させる。
このとき、熱処理温度の範囲を350℃以上、600℃以下に制限することで、析出した貴金属核Nucの凝集による触媒作用の低下を抑制することができる。
Next, as shown in FIG. 5A, by heating at a predetermined heat treatment temperature, the solvent is removed and the organic noble metal dissolved in the active solution is decomposed while the organic components are removed to form a noble metal as a nucleus. Only precipitate.
At this time, by limiting the range of the heat treatment temperature to 350 ° C. or more and 600 ° C. or less, it is possible to suppress a decrease in catalytic action due to aggregation of the deposited noble metal nuclei Nuc.

図5Bを参照してメッキ工程P3について説明する。
所定の範囲AR1のみに核付けされた状態で固体電解質体2の内側空間内にメッキ液と還元剤とを注入すると、図5Bに示すように、特定の範囲AR1においてのみ、貴金属核Nucが触媒として作用し、貴金属核Nucを起点としてメッキ液の還元反応が進行し、メッキ膜が形成され、予め設定した形状に精度良く内側電極1を形成することができる。
本発明によれば、所定の範囲AR1以外の部分には、貴金属核Nucが核付けされていないため、エッチングの施された固体電解質体2の内周面200とメッキ液とが接しても、還元反応は進行せず、固体電解質体2の内周面200の不要な部分に内側電極1が形成されることはない。
従来のようにレジストによるマスキングやレジストの除去も不要であり、製造コストの低減を図ることもできる。
The plating step P3 will be described with reference to FIG. 5B.
When the plating solution and the reducing agent are injected into the inner space of the solid electrolyte body 2 while being nucleated only in the predetermined range AR1, as shown in FIG. 5B, the noble metal nucleus Nuc is catalyst only in the specific range AR1. The reduction reaction of the plating solution proceeds from the noble metal nucleus Nuc as a starting point, and a plating film is formed, so that the inner electrode 1 can be accurately formed in a preset shape.
According to the present invention, since the noble metal nucleus Nuc is not nucleated in a portion other than the predetermined range AR1, even if the inner peripheral surface 200 of the etched solid electrolyte body 2 is in contact with the plating solution, The reduction reaction does not proceed, and the inner electrode 1 is not formed on an unnecessary portion of the inner peripheral surface 200 of the solid electrolyte body 2.
Masking with a resist and removal of the resist are not required as in the prior art, and the manufacturing cost can be reduced.

図6A、図6B、図6C、図6D、図6E、図6Fを参照して、核付用活性溶液6の液滴DLが固体電解質体2の内周面200に滴下された後の液滴の広がりについて順を追って説明する。
ノズル50の内側に区画した活性溶液導入空間500に導入した核付用活性溶液6が所定の圧力Prで繰り返し加圧されると、先端に設けた噴孔501から所定の液適量Vの液滴DLが吐出される。
6A, FIG. 6B, FIG. 6C, FIG. 6D, FIG. 6E, and FIG. 6F, the droplet after the droplet DL of the nucleus-attached active solution 6 is dropped on the inner peripheral surface 200 of the solid electrolyte body 2 I will explain the spread of the process step by step.
When the core-attached active solution 6 introduced into the active solution introduction space 500 partitioned inside the nozzle 50 is repeatedly pressurized at a predetermined pressure Pr, a predetermined amount V of liquid droplets from the nozzle hole 501 provided at the tip. DL is discharged.

本発明に用いられる核付用活性溶液6は、有機貴金属等の核発生源が溶剤に完全に溶解している溶液であるため、貴金属粉末を溶剤に分散させた分散系スラリーとは異なり、固形分を含まないので、液滴DLの挙動は、溶剤の性質に依存し、比較的均一な液膜を形成することができる。
液滴DLは、略球状で、1粒当たりの液滴量Vと液滴直径Dとの間には、
V=4/3・π・(D/2)の関係が成り立つ。
The active solution for nucleation 6 used in the present invention is a solution in which a nucleation source such as an organic noble metal is completely dissolved in a solvent, so that it is different from a dispersion slurry in which noble metal powder is dispersed in a solvent. Therefore, the behavior of the droplet DL depends on the nature of the solvent, and a relatively uniform liquid film can be formed.
Droplet DL is a substantially spherical, between the liquid droplet amount per grain V and the droplet diameter D 1,
V = 4/3 · π · (D 1/2) 3 relation holds.

液滴DLが固体電解質体2の内周面200に接した瞬間の接触液滴DLCNは、半径Rのレンズ状となり、仮想球の一部(球冠)とみなすことができる。そのときの固体電解質体2の内周面200と接する底面の直径を接触直径Dとし、固体電解質体2の内周面200との間の接触角θ、接触液滴DLCNの高さをHとすると、液滴量V、接触直径Dとの間に、
V=π・R・H−π・H/3
D=R・cos(θ/2)=2√H・(2R−H)
H=(1−cosθ)・D/2の関係が成り立つ。これら関係より、液滴量Vと接触角度θから接触直径Dが算出可能となる。
The contact droplet DL CN at the moment when the droplet DL is in contact with the inner peripheral surface 200 of the solid electrolyte body 2 has a lens shape with a radius R, and can be regarded as a part of the phantom sphere (spherical crown). At this time, the diameter of the bottom surface in contact with the inner peripheral surface 200 of the solid electrolyte body 2 is defined as the contact diameter D, the contact angle θ between the solid electrolyte body 2 and the inner peripheral surface 200, and the height of the contact droplet DL CN are represented as H. Then, between the droplet volume V and the contact diameter D,
V = π · R · H 2 -π · H 3/3
D = R · cos (θ / 2) = 2√H · (2R−H)
A relationship of H = (1-cos θ) · D / 2 is established. From these relationships, the contact diameter D can be calculated from the droplet amount V and the contact angle θ.

接触角度θが比較的小さいとき(例えば、0<θ≦45°のとき)、液滴DLは、固体電解質体2の内周面200に比較的濡れやすく、接触角θに応じた接触直径Dとなる。
液滴DLの接触角θは、有機貴金属錯体を溶解する溶剤を選択することで任意に設定することができる。
When the contact angle θ is relatively small (for example, when 0 <θ ≦ 45 °), the droplet DL is relatively easily wetted with the inner peripheral surface 200 of the solid electrolyte body 2 and the contact diameter D corresponding to the contact angle θ. It becomes.
The contact angle θ of the droplet DL can be arbitrarily set by selecting a solvent that dissolves the organic noble metal complex.

ただし本発明では、エッチング工程P1で形成される粒界溝CPGBの存在により、前述の球冠モデルのまま接触液滴DLCNが固定されるとは限らない。粒界溝CPGBに対する液滴DLの浸透の有無、溶剤の乾燥性、予熱の有無によって、拡散液滴DLDFの広がりとそのバラツキに差異が生じ、特に液滴量Vがごく小さいかまたは大きいとき、その影響が大きくなると考えられる。これについて、次に検討する。 However, in the present invention, the presence of the grain boundary groove CP GB formed in the etching step P1, not necessarily remain in contact droplet DL CN of the aforementioned spherical crown model are fixed. Depending on whether or not the droplet DL penetrates into the grain boundary groove CP GB , the drying property of the solvent, and the presence or absence of preheating, there is a difference in the spread and variation of the diffusion droplet DL DF , and the droplet volume V is particularly small or large. Sometimes the effect is thought to increase. This will be discussed next.

液滴DLが固体電解質体2の内周面200に接触した後、どのように拡散するかは、接触直径Dと固体電解質体2を構成するジルコニア等の固体電解質粒子Gの粒子直径GS及びエッチングにより粒界GBに形成した粒界溝CPGBとの関係によって変化する。
図6Bに示すように、粒子直径GS>接触直径Dで、かつ、液滴DLが粒界溝CPGBの上に滴下された場合、毛管現象により液滴のほとんどが粒界溝CPGB中に吸い込まれることになり、拡散直径Dは小さくなる。
How the droplet DL diffuses after contacting the inner peripheral surface 200 of the solid electrolyte body 2 depends on the contact diameter D, the particle diameter GS of the solid electrolyte particles G such as zirconia constituting the solid electrolyte body 2, and etching. Therefore, it varies depending on the relationship with the grain boundary groove CP GB formed in the grain boundary GB .
As shown in FIG. 6B, a particle diameter GS> contact diameter D, and, if the droplet DL is dropped on the grain boundary groove CP GB, the most of the droplets in the grain boundary groove CP GB by capillarity becomes sucked by it, diffusion diameter D 2 is smaller.

また、粒子直径GS>接触直径Dで、かつ、液滴DLが粒子G上に滴下された場合には、拡散直径Dは、接触直径Dからあまり変化しない。
液滴DLが粒界溝CPGBの上に滴下されるか粒子Gの上に滴下されるかはランダムに現れるため、拡散液滴DLDFの拡散直径Dは、平均化され、一定の拡散直径Dを有し、平均液膜厚ATDSで一定の滴下ピッチPで塗布された状態と近似できる。
Further, the particle diameter GS> contact diameter D, and, when a droplet DL is dropped on the particles G, the diffusion diameter D 2 do not change much from the contact diameter D.
Whether the droplet DL is dropped on the grain boundary groove CP GB or the particle G appears randomly, so that the diffusion diameter D 2 of the diffusion droplet DL DF is averaged and constant diffusion has a diameter D 2, it can be approximated as a constant state of dropping pitch coated with P at an average liquid film thickness aT DS.

一方、液滴直径Dが一定であっても、溶剤の濡れ性に違いがある場合、図6Cに示すように、接触角θが比較的小さいときには(例えば、θ=20°)、拡散直径Dは比較的大きくなる。このように、粒子直径GSに対して液滴DLが小さい場合は、粒界溝CPGBへの吸い込みによってバラツキが増加するので、粒界溝CPGB(直径2r)に対して、拡散液滴DLDFが十分大きくなるように液滴量Vを設定するとよい。 On the other hand, even in droplet diameter D 1 is constant, if there is a difference in wettability of the solvent, as shown in FIG. 6C, when the contact angle theta is relatively small (e.g., θ = 20 °), the diffusion diameter D 2 is relatively large. Thus, when the droplet DL is smaller than the particle diameter GS, the dispersion increases due to suction into the grain boundary groove CP GB , so that the diffusion droplet DL is smaller than the grain boundary groove CP GB (diameter 2r). The droplet amount V may be set so that the DF becomes sufficiently large.

さらに、図6D、図6Eに示すように、液滴量Vが多い場合や、接触直径Dが、粒子直径GSよりも大きく、多数の粒界溝CPGBをまたぐように接触液滴DLCNが広がった場合に、複数の粒界溝CPGBに同時多発的に液滴が吸い込まれ、外径方向に拡散するため、比較的大きな拡散直径Dとなる。
また、このような場合、拡散と同時に溶媒の蒸発も起こり易くなるため、拡散直径Dが過剰に拡大されることはないが、広がりにムラが生じやすい。このため、粒子直径GSに対して液滴DLが著しく大きくならないように、液滴量Vを設定するとよい。
溶剤の違いによって、一定の液適量Vに対してどの程度の広がりをもって拡散直径Dが決定されるかについては、以下の実施例により、図表を参照して説明する。
Furthermore, as shown in FIG. 6D, FIG. 6E, and when droplet volume V is large, the contact diameter D is larger than the particle diameter GS, contact droplet DL CN so as to straddle the large number of grain boundaries groove CP GB When spreading, droplets are simultaneously sucked into the plurality of grain boundary grooves CP GB and diffused in the outer diameter direction, so that the diffusion diameter D 2 becomes relatively large.
Further, in such a case, it becomes easy to occur at the same time evaporation of the solvent and diffusion, but is never excessively enlarged diffusion diameter D 2, unevenness is likely to occur in the spread. For this reason, it is preferable to set the droplet amount V so that the droplet DL does not become significantly larger than the particle diameter GS.
The difference in the solvent, for either diffusion diameter D 2 is determined by a degree of divergence for a constant droplet volume V, by the following examples, it will be described with reference to the drawings.

ここで、表1〜9を参照して、本発明のガスセンサ素子の製造方法において、核付用活性溶液6に用いる有機溶剤に応じて、内側電極リード部11の幅のバラツキ(μm)を小さくしつつ、生産性を高くするのに最適な、拡散直径D(μm)、滴下ピッチ(μm)について説明する。
上述した製造方法に従い、核付用活性溶液6の溶媒として、ジクロロエタン、クロロホルム、メチルエチルケトン、シクロヘキサン、イソプロピルアルコール、イソブチルアルコール、ジペンテン、テレピネオールを用いて、試験用の固体電解質体2に対し各工程P1〜P3を実施し、有機溶剤の違い及び液滴量の違いによる、拡散直径(滴下痕直径)D、生産性、内側電極リード部11の幅のバラツキ、リード部11の断線の有無について試験調査を行った。結果を表2〜9にそれぞれ示す。拡散直径Dは、固体電解質体2に滴下された液滴を脱脂した後にメッキ膜を形成したときの直径を測定し、滴下痕直径Dとして表中に記した。同様に、リード部11についても、メッキした後の最大幅−最小幅を測定し、幅バラツキとした。
Here, referring to Tables 1 to 9, in the gas sensor element manufacturing method of the present invention, the width variation (μm) of the inner electrode lead portion 11 is reduced in accordance with the organic solvent used for the cored active solution 6. However, the optimum diffusion diameter D 2 (μm) and dropping pitch (μm) for increasing productivity will be described.
In accordance with the production method described above, each of the steps P1 to P1 was performed on the test solid electrolyte 2 using dichloroethane, chloroform, methyl ethyl ketone, cyclohexane, isopropyl alcohol, isobutyl alcohol, dipentene, terpineol as the solvent for the nucleating active solution 6. Conduct P3 and test investigation on diffusion diameter (drop mark diameter) D 2 , productivity, inner electrode lead part 11 width variation, and lead part 11 breakage due to difference in organic solvent and drop volume Went. The results are shown in Tables 2 to 9, respectively. Diffusion diameter D 2 is the diameter when forming a plating film after degreasing liquid droplets dropped on the solid electrolyte body 2 was measured and noted in the table as a drop mark diameter D 2. Similarly, the lead portion 11 was also measured for the maximum width-minimum width after plating to obtain width variation.

また、各溶剤には、溶質として核となる有機貴金属錯体が所定の濃度で溶解されている。
なお、核付用活性溶液6の溶質となる貴金属は、有機貴金属錯体の他、ハロゲン化貴金属等の溶剤に可溶なものが用いられ、溶剤を揮発させたときに残渣が残らないものを適宜用いることができる。
なお、好適には、有機白金錯体、ハロゲン化白金等を用いることができるが、メッキ層と異なる貴金属を核とすることも可能である。
表1に各溶剤の代表的な物性を示す。なお、これらの有機溶剤は、表1に示すように10mN/m以上、40mN/m以下の表面張力を有するものであり、接触角θはいずれも45°以下である。
In each solvent, an organic noble metal complex serving as a nucleus as a solute is dissolved at a predetermined concentration.
In addition, the noble metal used as the solute of the nucleation-use active solution 6 is not only an organic noble metal complex but also a solvent that is soluble in a solvent such as a halogenated noble metal. Can be used.
Preferably, an organic platinum complex, platinum halide or the like can be used, but a noble metal different from the plating layer can be used as a nucleus.
Table 1 shows typical physical properties of each solvent. In addition, as shown in Table 1, these organic solvents have a surface tension of 10 mN / m or more and 40 mN / m or less, and the contact angle θ is 45 ° or less.

表2〜9において、内側電極リード部11の幅のバラツキ(μm)が、100μm以下となる条件を十分効果有りと判定し、200μm以下となる条件を効果有りと判定し、200μmを超える場合を効果なしと判定した。
また、表2〜9において、生産性が、1mmの距離を覆うのに必要な滴下回数が100回以下の場合を十分効果有りと判定し、200回以下を効果有りと判定し、1000回を超える場合を効果なしと判定した。判定欄には、2つの条件がいずれも十分効果有りであるときに、二重丸印を付し、いずれも効果有りであるときに、丸印を付し、それ以外は、バツ印を付してある。
表に明らかなように、溶剤の種類によらず、滴下痕直径φDが10〜150μmの範囲で二重丸判定、1〜250μmで丸判定となっている。滴下痕直径φDが1μmを下回ると生産性が悪化し、幅バラツキも増加するので好ましくない。滴下痕直径φDは、溶剤に応じて液滴量を調整することで、所望の直径に制御可能であり、寸法精度と生産性を両立可能であることがわかる。
なお、表2〜9の試験では、固体電解質体2は常温であり、予熱を行っていない。また、滴下ピッチPが拡散直径(滴下痕直径)Dの3/4となるように設定した条件で比較を行っており、いずれの試験でもリード部11の断線は発生していない。
In Tables 2 to 9, when the variation (μm) in the width of the inner electrode lead portion 11 is 100 μm or less, it is determined that the effect is sufficient, and the condition where the variation is 200 μm or less is determined to be effective. It was judged that there was no effect.
In Tables 2 to 9, the productivity is determined to be sufficiently effective when the number of drops required to cover a distance of 1 mm is 100 times or less, and 200 times or less is determined to be effective, and 1000 times. When it exceeded, it was determined that there was no effect. The judgment column is marked with a double circle when both conditions are sufficiently effective, with a circle when both are effective, and otherwise marked with a cross. It is.
As is apparent from the table, regardless of the type of solvent, the drop marks diameter [phi] D 2 double circle determined in the range of 10 to 150 m, and has a round determination in 1~250Myuemu. If the drop mark diameter φD 2 is less than 1 μm, the productivity deteriorates and the width variation increases, which is not preferable. It can be seen that the drop mark diameter φD 2 can be controlled to a desired diameter by adjusting the amount of liquid droplets according to the solvent, and it is possible to achieve both dimensional accuracy and productivity.
In the tests shown in Tables 2 to 9, the solid electrolyte body 2 is at room temperature and is not preheated. Also, dropping the pitch P has been compared with conditions set to be 3/4 of the diffusion diameter (drop mark diameter) D 2, also disconnection of the lead portions 11 in any of the test has not occurred.

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

表10、11、図7を参照して、滴下ピッチと断線の有無との関係について説明する。表10、11は、メチルエチルケトン(滴下痕直径D50μm)とテレピネオール(滴下痕直径D5.5μm)について、それぞれ滴下ピッチPを、滴下痕直径Dの1/10、1/8、1/4、1/2、3/4、1、5/4となるように設定し、同様の試験を行った結果を示すとともに、メッキ後に抵抗を測定し、断線の有無を評価したものである(抵抗∞を断線有としてバツ印を付した)。
図7に示すように、滴下ピッチPを広げれば生産性が向上する反面、滴下ピッチPを広げすぎるとリード部11の断線を招くことが判明した。
具体的には、滴下ピッチPが滴下痕直径(拡散直径)D以上になると、拡散液滴間に隙間が生じ、核付けがなされない部分が発生し、その部分にはメッキされず、内側電極1(特にリード部11)に断線を生じる虞があることが判明した。
液滴の大小によらず一定の生産性を維持しつつ、断線を防止するためには、核付用活性溶液6を滴下したときの拡散直径Dを基準として、滴下ピッチPを拡散直径Dの1/4以上、3/4以下とするのが望ましいことが判明した。
滴下ピッチPが、3/4Dを超える場合には、いずれの溶剤も核付けがされず、メッキできない部分が発生するからである。一方、滴下ピッチPが1/4より小さくなると生産性が低下する傾向にあり、特に拡散直径Dが10μmより小さくなると(表11参照)、生産性が著しく低下するからである。
With reference to Tables 10 and 11 and FIG. 7, the relationship between the dropping pitch and the presence or absence of disconnection will be described. Tables 10 and 11 show that for methyl ethyl ketone (droplet diameter D 2 50 μm) and terpineol (droplet diameter D 2 5.5 μm), the drop pitch P is 1/10, 1/8, 1 and 1 of the drop mark diameter D 2 , respectively. / 4, 1/2, 3/4, 1, 5/4 are set and the results of similar tests are shown, the resistance is measured after plating, and the presence or absence of disconnection is evaluated. (The resistance ∞ is marked as having a break and marked with a cross).
As shown in FIG. 7, it has been found that if the dropping pitch P is widened, the productivity is improved, but if the dropping pitch P is too wide, the lead portion 11 is disconnected.
Specifically, when dropping the pitch P is drop marks diameter (diffusion diameter) D 2 or more, a gap is formed between the diffusion droplets part nucleation is not performed occurs not plated on its part, the inner It has been found that there is a possibility of disconnection in the electrode 1 (particularly the lead portion 11).
While maintaining a constant productivity irrespective of the size of the droplets, in order to prevent disconnection, based on the spread diameter D 2 at the time of dropwise for active solution 6 with nuclei, dropping the pitch P diffusion diameter D It was found that it is desirable to set it to 1/4 or more and 2/4 or less of 2 .
This is because when the dropping pitch P exceeds 3 / 4D 3 , none of the solvents are nucleated and a portion that cannot be plated is generated. On the other hand, since dropping pitch P tends to decrease the productivity and smaller than 1/4, especially when the spread diameter D 2 is smaller than 10 [mu] m (see Table 11), it is significantly reduced productivity.

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

表12〜18を参照して、固体電解質体2を予め加熱する予熱工程を設けたときの影響について説明する。
核付け工程P2に先立ち、予め固体電解質体2の温度を80℃に加熱して、核付け用活性溶液6を滴下し、滴下ピッチPを拡散直径(滴下痕直径)Dの3/4となるように設定して、同様の条件で試験を行った。表12〜18に結果を示すように、いずれの溶剤においても、同一の液適量を常温で滴下した場合に対して、拡散直径(滴下痕直径)Dが小さくなり、相対的に内側電極リード部11の幅のバラツキが小さくなっている。
これは、素子の温度を高くすると溶剤が揮発しやすくなって、毛管現象による粒界溝CPGBへの浸透深さは浅くなり、また、予熱により乾燥速度が速くなるので、結果的に、固体電解質体2の内周面200に形成される活性溶液膜の毛細管現象による拡散が小さくなるためと考えられる。
With reference to Tables 12-18, the influence at the time of providing the pre-heating process which heats the solid electrolyte body 2 previously is demonstrated.
Prior to the nucleation step P2, the temperature of the solid electrolyte body 2 is preliminarily heated to 80 ° C., the nucleation active solution 6 is dropped, and the dropping pitch P is set to 3/4 of the diffusion diameter (droplet mark diameter) D 2 . The test was performed under the same conditions. As the results shown in Table 12 to 18, in any of the solvents, for the case was dropped the same droplet amount at ordinary temperature, the diffusion diameter (drop mark diameter) D 2 is reduced, relatively inner electrode lead The variation in the width of the portion 11 is small.
This is because when the temperature of the element is increased, the solvent is likely to volatilize, the penetration depth into the grain boundary groove CP GB due to capillary action becomes shallow, and the drying speed increases due to preheating. It is considered that diffusion due to capillary action of the active solution film formed on the inner peripheral surface 200 of the electrolyte body 2 is reduced.

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

Figure 0006398741
Figure 0006398741

図8A、図8Bを参照して、本発明のガスセンサ素子の製造方法を実現するための、核付用活性溶液滴下装置5の一例について説明する。
なお、ノズル50の詳細は図6Aを参照する。
核付用活性溶液滴下装置5は、ノズル50と、液滴滴下手段51と、活性溶液供給手段52と制御装置53と、固体電解質体保持手段54と、軸方向駆動手段55と、軸方向駆動伝達手段56と、周方向回転手段57と、周方向駆動伝達手段58とによって構成されている。
With reference to FIG. 8A and FIG. 8B, an example of the active solution dripping apparatus 5 with a nucleus for implement | achieving the manufacturing method of the gas sensor element of this invention is demonstrated.
For details of the nozzle 50, refer to FIG. 6A.
The nucleus-attached active solution dropping device 5 includes a nozzle 50, a droplet dropping means 51, an active solution supplying means 52, a control device 53, a solid electrolyte body holding means 54, an axial driving means 55, and an axial driving. The transmission means 56, the circumferential direction rotation means 57, and the circumferential direction drive transmission means 58 are comprised.

ノズル50は、内側に核付用活性溶液6を導入する活性溶液導入空間500が区画され、先端側に活性溶液導入空間500に連通して所定の開口径を有する開孔501が穿設されている。   The nozzle 50 has an active solution introduction space 500 for introducing the nucleus-attached active solution 6 inside, and an opening 501 having a predetermined opening diameter communicating with the active solution introduction space 500 on the tip side. Yes.

液滴滴下手段51は、ピエゾアクチュエータ、ソレノイドアクチュエータ、ヒータ等を用いて、ノズル50の活性溶液導入空間500内に導入された核付用活性溶液6の内圧を高くし、ノズル50の先端に設けた噴孔501から所定量の活性溶液6を一滴づつ滴下するようになっている。   The droplet dropping means 51 is provided at the tip of the nozzle 50 by using a piezo actuator, a solenoid actuator, a heater or the like to increase the internal pressure of the nucleus-attached active solution 6 introduced into the active solution introduction space 500 of the nozzle 50. A predetermined amount of the active solution 6 is dropped from the nozzle hole 501 one by one.

このとき、液滴DLを重力によって自然落下させても良いし、噴射圧力を高くして固体電解質体2の内周面200に一定の速度をもって衝突させるようにしても良い。
衝突エネルギを利用して、液滴中の溶剤の乾燥速度をあげ、拡散直径Dの広がりを抑制することも可能である。
活性溶液供給手段52は、核付用活性溶液6を液滴滴下手段51に供給する。
At this time, the droplet DL may be naturally dropped by gravity, or may be caused to collide with the inner peripheral surface 200 of the solid electrolyte body 2 at a constant speed by increasing the injection pressure.
Using the collision energy, increase the drying rate of the solvent in the droplets, it is possible to suppress the spread of the diffusion diameter D 2.
The active solution supply means 52 supplies the nucleus-attached active solution 6 to the droplet dropping means 51.

制御装置53は、所定のタイミングで滴下信号Drop、軸方向移動信号MO、周方向移動信号ROTを発信して、液滴滴下手段51の駆動と停止を制御し、軸方向駆動手段55の駆動と停止、周方向駆動手段57の駆動と停止とを制御し、ノズル50から固体電解質体2の内周面に所定量の活性溶液6を所定の滴下間隔でする。
固体電解質体保持手段54は、固体電解質体2を軸方向と周方向とに移動可能に保持している。
The control device 53 transmits a drop signal Drop, an axial movement signal MO, and a circumferential movement signal ROT at a predetermined timing to control the driving and stopping of the droplet dropping means 51, and to drive the axial driving means 55. The stop and the drive and stop of the circumferential driving means 57 are controlled, and a predetermined amount of the active solution 6 is made from the nozzle 50 to the inner peripheral surface of the solid electrolyte body 2 at a predetermined dropping interval.
The solid electrolyte body holding means 54 holds the solid electrolyte body 2 so as to be movable in the axial direction and the circumferential direction.

軸方向駆動手段55には、駆動力を発生するものであれば、如何なるものでも良く、サーボモータ等の公知の駆動手段を用いることができる。
軸方向駆動伝達手段56には、発生した駆動力を固体電解質体保持手段54に伝達できるものであれば如何なるものでも良く、リニアガイド等の公知の駆動伝達手段を用いることができる。
軸方向駆動手段55の駆動と停止により、軸方向駆動伝達手段56に固定された固体電解質保持手段54を所定の滴下間隔で軸方向に移動させることができる。
The axial direction drive means 55 may be anything as long as it generates a driving force, and a known drive means such as a servo motor can be used.
The axial direction drive transmission means 56 may be anything as long as it can transmit the generated driving force to the solid electrolyte body holding means 54, and a known drive transmission means such as a linear guide can be used.
By driving and stopping the axial drive means 55, the solid electrolyte holding means 54 fixed to the axial drive transmission means 56 can be moved in the axial direction at a predetermined dropping interval.

周方向回転手段57には、サーボモータ等の公知の駆動手段を用いることができ、周方向駆動伝達手段58には、ギア等の公知の駆動伝達手段を用いることができる。
周方向回転手段57の駆動と停止により、周方向駆動伝達手段58を所定の回転角度で回転させ、固体電解質体保持手段54を連動させることで、固体電解質体2を所定の回転角度で回転させることができる。
固体電解質体保持手段54には、押さえ部59が設けられ、固体電解質体2の着脱を可能としている。
A known drive means such as a servomotor can be used for the circumferential direction rotation means 57, and a known drive transmission means such as a gear can be used for the circumferential direction drive transmission means 58.
By driving and stopping the circumferential rotation means 57, the circumferential drive transmission means 58 is rotated at a predetermined rotation angle, and the solid electrolyte body holding means 54 is interlocked to rotate the solid electrolyte body 2 at a predetermined rotation angle. be able to.
The solid electrolyte body holding means 54 is provided with a pressing portion 59 so that the solid electrolyte body 2 can be attached and detached.

ここで、図9Aから図9Eを参照して、比較例として示す、固体電解質体2の内側に、レジスト8を設けて、メッキすることにより、内側電極を所定の形状に形成する従来のガスセンサ素子の製造方法とその問題点について説明する。
比較例においては、図4A、図4Bに示したのと同様に、エッチング工程を経て、表面に粒界溝CPGBが形成された固体電解質体2の内側に区画された空間内に、図9Aに示すように、核付用活性溶液6を注入して、所定の温度に加熱することで、貴金属核を析出させている。
Here, with reference to FIGS. 9A to 9E, a conventional gas sensor element, which is shown as a comparative example, is provided with a resist 8 inside the solid electrolyte body 2 and plated to form an inner electrode in a predetermined shape. The manufacturing method and its problems will be described.
In the comparative example, in the same manner as shown in FIGS. 4A and 4B, through the etching process, in the space partitioned inside the solid electrolyte body 2 in which the grain boundary grooves CP GB are formed on the surface, FIG. As shown in FIG. 3, the noble metal nuclei are precipitated by injecting the nucleus-attached active solution 6 and heating to a predetermined temperature.

その結果、比較例においては、図9Bに示すように、固体電解質体2の内周面の全面に亘って、貴金属核Nucが析出している。
特に、エッチングにより形成された粒界溝部CPGBは、粒子表面に比べて活性が高く、貴金属核Nucが析出し易く、粒界溝部CPGBは貴金属核の濃度分布が高くなっている。
As a result, in the comparative example, as shown in FIG. 9B, the noble metal nucleus Nuc is deposited over the entire inner peripheral surface of the solid electrolyte body 2.
In particular, the grain boundary groove portion CP GB formed by etching has higher activity than the particle surface, the noble metal nucleus Nuc is likely to precipitate, and the grain boundary groove portion CP GB has a high concentration distribution of the noble metal nucleus.

図9Cに示すように、内側電極の形成を予定していない部分をレジスト8で覆って状態としても、メッキ液を注入すると、レジスト8と固体電解質体の表面との間に形成された粒界溝部CPGB内に毛管現象によってメッキ液吸い込まれることになる。
図9Dに示すように、粒界溝部CPGBを介してレジスト8に下側に浸透したメッキ液が粒界溝部CPGBに存在する貴金属核Nucの触媒作用によってメッキ液が還元され、メッキ液が浸透した分だけ、にじみ部14が形成される。
As shown in FIG. 9C, even if the portion where the inner electrode is not planned to be formed is covered with the resist 8, the grain boundary formed between the resist 8 and the surface of the solid electrolyte body when the plating solution is injected. The plating solution is sucked into the groove CP GB by capillary action.
As shown in FIG. 9D, the plating liquid is reduced by the catalytic action of the noble metal nuclei Nuc the plating solution penetrates into the lower side is present in the grain boundary groove CP GB to resist 8 through the grain boundary groove CP GB, plating solution The bleeding part 14 is formed by the amount of penetration.

その結果、図9Eに示すように、従来の製造方法で形成した内側電極1zの周囲には、100μm以上の幅で広がるにじみ部14が形成される。
このため、内側電極リード部11zの幅がにじみ部14分だけ大きくなり、内側電極リード部11zの直流抵抗成分RIが小さくなる。
また、内側電極1zのバラツキが大きくなるため、内側電極1zと外側電極3との間の交流インピーダンスZACにもバラツキを生じることになる。
As a result, as shown in FIG. 9E, a bleed portion 14 that spreads with a width of 100 μm or more is formed around the inner electrode 1z formed by the conventional manufacturing method.
For this reason, the width of the inner electrode lead portion 11z is increased by the blur portion 14, and the DC resistance component RI of the inner electrode lead portion 11z is reduced.
Further, since the variation of the inner electrode 1z increases will result in a variation in the AC impedance Z AC between the inner electrode 1z and the outer electrode 3.

1 内側電極
10 内側電極検出部
11 内側電極リード部
12 内側電極端子部
2 固体電解質体
20 固体電解質体脚部
21 固体電解質体底部(閉塞端)
200 内周面
201 外周面
22 固体電解質体頭部(開口端)
23 固体電解質体大径部
3 外側電極
30 外側電極検出部
31 外側電極リード部
32 外側電極端子部
4 ガスセンサ素子
5 活性溶液滴下装置
50 ノズル
51 液滴滴下手段(ピエゾアクチュエータ、ソレノイドアクチュエータ、ヒータ)
52 活性溶液供給手段
53 制御装置
54、59 固体電解質体保持手段
55 軸方向駆動手段(サーボモータ)
56 軸方向駆動伝達手段(リニアガイド)
57 周方向回転手段(サーボモータ)
58 周方向駆動伝達手段(ギア)
6 核付用活性溶液
7 メッキ液
AR1 電極予定範囲
CPGB 粒界溝
DL 活性溶液液滴
DLCN 接触液滴
DLDF 拡散液滴
液滴直径
拡散直径
GBP 粒界相
Nuc 貴金属核
P1 エッチング工程
P2 核付け工程
P3 メッキ工程
DESCRIPTION OF SYMBOLS 1 Inner electrode 10 Inner electrode detection part 11 Inner electrode lead part 12 Inner electrode terminal part 2 Solid electrolyte body 20 Solid electrolyte body leg part 21 Solid electrolyte body bottom part (closed end)
200 Inner peripheral surface 201 Outer peripheral surface 22 Solid electrolyte body head (open end)
23 Solid Electrode Large Diameter Part 3 Outer Electrode 30 Outer Electrode Detection Part 31 Outer Electrode Lead Part 32 Outer Electrode Terminal Part 4 Gas Sensor Element 5 Active Solution Drop Device 50 Nozzle 51 Droplet Dropping Unit (Piezo Actuator, Solenoid Actuator, Heater)
52 Active solution supply means 53 Control devices 54 and 59 Solid electrolyte body holding means 55 Axial direction drive means (servo motor)
56 Axial direction drive transmission means (linear guide)
57 Circumferential rotation means (servo motor)
58 Circumferential drive transmission means (gear)
6 Active solution for nucleation 7 Plating solution AR1 Electrode planned range CP GB grain boundary groove DL active solution droplet DL CN contact droplet DL DF diffusion droplet D 1 droplet diameter D 2 diffusion diameter GBP Grain boundary phase Nuc Noble metal nucleus P1 Etching process P2 Nucleation process P3 Plating process

Claims (12)

一端が閉塞し他端が開口する有底筒状に形成した固体電解質体(2)と、その内周面(200)に設けた内側電極(1)と、その外周面(201)に設けた外側電極(3)とを具備するガスセンサ素子(4)の製造方法であって、
少なくとも、前記固体電解質体の粒界相(GBP)を溶出させ前記内周面に粒界溝(CPGB)を形成するエッチング工程(P1)と、前記内周面に前記内側電極の核となる核付用活性溶液(6)を塗布した後、熱処理を行う核付け工程(P2)と、その後に行うメッキ工程(P3)とを具備し、
前記核付け工程において、
前記固体電解質体の内周面に、前記核付用活性溶液からなる所定量(V)の液滴(DL)を、所定の滴下ピッチ(P)で滴下して、1ドットずつ点描しながら、予定する電極形状となる電極予定範囲(AR1)を区画することを特徴とするガスセンサ素子の製造方法。
A solid electrolyte body (2) formed in a bottomed cylindrical shape with one end closed and the other end opened, an inner electrode (1) provided on the inner peripheral surface (200), and an outer peripheral surface (201) A method for producing a gas sensor element (4) comprising an outer electrode (3),
At least an etching step (P1) for eluting the grain boundary phase (GBP) of the solid electrolyte body to form a grain boundary groove (CPGB) on the inner peripheral surface, and a nucleus serving as a core of the inner electrode on the inner peripheral surface After applying the attachment active solution (6), it comprises a nucleation step (P2) in which heat treatment is performed, and a plating step (P3) to be performed thereafter,
In the nucleation step,
While dropping a predetermined amount (V) of a liquid (DL) made of the nucleating active solution on the inner peripheral surface of the solid electrolyte body at a predetermined dropping pitch (P), A method for manufacturing a gas sensor element, wherein a predetermined electrode range (AR1) having a predetermined electrode shape is defined.
前記液滴が前記固体電解質体の内周面に接触した後、前記固体電解質体の表面に存在する粒界溝に拡散して拡散液滴(DLDF)となったときに、隣り合う前記拡散液滴と重なるように前記滴下ピッチを設定した請求項1記載のガスセンサ素子の製造方法。   When the droplet contacts the inner peripheral surface of the solid electrolyte body and then diffuses into a grain boundary groove existing on the surface of the solid electrolyte body to form a diffusion droplet (DLDF), the adjacent diffusion liquid The method for manufacturing a gas sensor element according to claim 1, wherein the dropping pitch is set so as to overlap with a droplet. 前記液滴の滴下ピッチが、前記拡散液滴の直径を拡散直径(φD2)としたとき、拡散直径の1/4倍以上、3/4倍以下である請求項2記載のガスセンサ素子の製造方法。   3. The method of manufacturing a gas sensor element according to claim 2, wherein a drop pitch of the droplets is not less than 1/4 times and not more than 3/4 times the diffusion diameter when the diameter of the diffusion droplet is a diffusion diameter (φD2). . 前記拡散直径が1μm以上、250μm以下である請求項3記載のガスセンサ素子の製造方法。   The method for manufacturing a gas sensor element according to claim 3, wherein the diffusion diameter is 1 μm or more and 250 μm or less. 前記拡散直径が10μm以上、150μm以下である請求項3記載のガスセンサ素子の製造方法。   The method for manufacturing a gas sensor element according to claim 3, wherein the diffusion diameter is 10 μm or more and 150 μm or less. 前記液滴が前記固体電解質体の内周面に接触して接触液滴(DLCN)となったときの接触角(θ)と前記粒界溝の大きさに基づいて、前記拡散液滴の大きさとこれに対応する前記液滴の量を設定する請求項2ないし5のいずれかに記載のガスセンサ素子の製造方法。   Based on the contact angle (θ) when the droplet contacts the inner peripheral surface of the solid electrolyte body and becomes a contact droplet (DLCN), and the size of the grain boundary groove, the size of the diffusion droplet 6. The method of manufacturing a gas sensor element according to claim 2, wherein the amount of the droplet corresponding to the same is set. 前記核付用活性溶液が、有機貴金属錯体、ハロゲン化貴金属を溶質とし、前記熱処理によって揮発し、前記内周面に残渣が残らないものを溶媒とする請求項1ないし6のいずれかに記載のガスセンサ素子の製造方法。   7. The active solution for nucleation according to any one of claims 1 to 6, wherein an organic noble metal complex and a halogenated noble metal are used as a solute, volatilized by the heat treatment, and no residue remains on the inner peripheral surface. A method for manufacturing a gas sensor element. 前記核付用活性溶液が、10mN/m以上、40mN/m以下の表面張力を有する有機溶剤を溶媒とする請求項1ないし7のいずれかに記載のガスセンサ素子の製造方法。   The method for producing a gas sensor element according to any one of claims 1 to 7, wherein the nucleating active solution uses an organic solvent having a surface tension of 10 mN / m or more and 40 mN / m or less as a solvent. 前記核付用活性溶液が、ジクロロエタン、クロロホルム、メチルエチルケトン、シクロヘキサン、イソプロピルアルコール、イソブチルアルコール、ジペンテン、テレピネオールのいずれかから選択した有機溶剤を溶媒とする請求項1ないし8のいずれかに記載のガスセンサ素子の製造方法。   The gas sensor element according to any one of claims 1 to 8, wherein the active solution for nucleation uses an organic solvent selected from dichloroethane, chloroform, methyl ethyl ketone, cyclohexane, isopropyl alcohol, isobutyl alcohol, dipentene, and terpineol as a solvent. Manufacturing method. 前記熱処理温度が、400℃以上、600℃以下である請求項1ないし9のいずれかに記載のガスセンサ素子の製造方法。   The method for manufacturing a gas sensor element according to any one of claims 1 to 9, wherein the heat treatment temperature is 400 ° C or higher and 600 ° C or lower. 前記核付用活性溶液を滴下する際に、予め前記固体電解質体を所定の温度に加熱する予熱工程を有する請求項1ないし10のいずれかに記載のガスセンサ素子の製造方法。   The method of manufacturing a gas sensor element according to any one of claims 1 to 10, further comprising a preheating step of heating the solid electrolyte body to a predetermined temperature in advance when dropping the cored active solution. 貴金属核を形成するための核付用活性溶液(6)を有底筒状に形成した固体電解質体(2)の内周面(200)に塗布する活性溶液滴下装置であって、
内側に区画した活性溶液導入空間(500)と該活性溶液導入空間に連通し先端に設けた噴孔(501)とを有する有底筒状のノズル(50)と、
該噴孔から前記核付用活性溶液からなる所定量(V)の液滴(DL)を滴下させるための液滴滴下手段(51)と、
該液滴滴下手段に前記核付用活性溶液を供給するための活性溶液供給手段(52)と、
前記固体電解質体を保持する固体電解質体保持手段(54、59)と、
該固体電解質体保持手段を固体電解質体の軸方向に移動可能とする駆動力を生む軸方向駆動手段(55)と、
該軸方向駆動手段の動力を前記固体電解質体保持手段に伝達する軸方向駆動伝達手段(56)と、
前記固体電解質体保持手段を固体電解質体の周方向に移動可能とする駆動力を生む周方向駆動手段(57)と、
該周方向駆動手段の動力を前記固体電解質体保持手段に伝達する周方向駆動伝達手段(58)と、
前記液滴滴下手段と前記軸方向駆動手段と前記周方向駆動手段との駆動と停止とを制御する制御装置(53)とを具備し、
前記固体電解質体を軸方向と周方向とに一定の滴下ピッチで移動と停止とを行いながら前記噴孔から前記核付用活性溶液の液滴を滴下することで、前記固体電解質体の内周面において所定の電極予定範囲(AR1)にのみ活性溶液膜(60)を形成することを特徴とする活性溶液滴下装置(5)。
An active solution dropping device for applying an active solution for nucleation (6) for forming a noble metal nucleus to an inner peripheral surface (200) of a solid electrolyte body (2) formed into a bottomed cylindrical shape,
A bottomed cylindrical nozzle (50) having an active solution introduction space (500) partitioned inward and a nozzle hole (501) provided at the tip thereof in communication with the active solution introduction space;
A droplet dropping means (51) for dropping a predetermined amount (V) of a droplet (DL) made of the cored active solution from the nozzle hole;
Active solution supply means (52) for supplying the cored active solution to the droplet dropping means;
Solid electrolyte body holding means (54, 59) for holding the solid electrolyte body;
An axial driving means (55) for generating a driving force that enables the solid electrolyte body holding means to move in the axial direction of the solid electrolyte body;
Axial drive transmission means (56) for transmitting the power of the axial drive means to the solid electrolyte body holding means;
A circumferential driving means (57) for generating a driving force that enables the solid electrolyte body holding means to move in the circumferential direction of the solid electrolyte body;
Circumferential drive transmission means (58) for transmitting the power of the circumferential drive means to the solid electrolyte body holding means;
A controller (53) for controlling driving and stopping of the droplet dropping means, the axial driving means, and the circumferential driving means;
While dropping and dropping the cored active solution droplets from the nozzle hole while moving and stopping the solid electrolyte body in the axial direction and the circumferential direction at a constant dropping pitch, the inner periphery of the solid electrolyte body An active solution dropping device (5) characterized in that an active solution film (60) is formed only in a predetermined electrode predetermined range (AR1) on the surface.
JP2015008723A 2015-01-20 2015-01-20 Gas sensor element manufacturing method and active solution dropping device Active JP6398741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008723A JP6398741B2 (en) 2015-01-20 2015-01-20 Gas sensor element manufacturing method and active solution dropping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008723A JP6398741B2 (en) 2015-01-20 2015-01-20 Gas sensor element manufacturing method and active solution dropping device

Publications (2)

Publication Number Publication Date
JP2016133423A JP2016133423A (en) 2016-07-25
JP6398741B2 true JP6398741B2 (en) 2018-10-03

Family

ID=56426151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008723A Active JP6398741B2 (en) 2015-01-20 2015-01-20 Gas sensor element manufacturing method and active solution dropping device

Country Status (1)

Country Link
JP (1) JP6398741B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811991B2 (en) * 1996-05-21 2006-08-23 株式会社デンソー Oxygen sensor element manufacturing method and oxygen sensor element
JP3605984B2 (en) * 1997-01-23 2004-12-22 株式会社デンソー Method and apparatus for manufacturing oxygen sensor element
JP3956435B2 (en) * 1997-08-07 2007-08-08 株式会社デンソー Oxygen sensor element
JP3670846B2 (en) * 1998-03-11 2005-07-13 日本特殊陶業株式会社 Method for forming conductive film of ceramic body
JP4250135B2 (en) * 2004-11-19 2009-04-08 日本特殊陶業株式会社 Gas sensor and gas sensor manufacturing method
JP2009212249A (en) * 2008-03-03 2009-09-17 Digital Powder Systems Inc Apparatus and method for forming wiring pattern
JP2008286810A (en) * 2008-08-25 2008-11-27 Denso Corp Oxygen sensor element
JP5216046B2 (en) * 2010-05-24 2013-06-19 日本特殊陶業株式会社 Gas sensor element manufacturing method and gas sensor manufacturing method
CN102918386B (en) * 2010-05-24 2015-01-07 日本特殊陶业株式会社 Gas sensor
JP5450570B2 (en) * 2010-12-03 2014-03-26 日本特殊陶業株式会社 Method for forming conductor pattern
JP6104137B2 (en) * 2013-02-14 2017-03-29 日本特殊陶業株式会社 Method for manufacturing gas sensor element

Also Published As

Publication number Publication date
JP2016133423A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JPWO2002086924A1 (en) Electronic component manufacturing method and member for manufacturing the same
JP6398741B2 (en) Gas sensor element manufacturing method and active solution dropping device
JP2010131123A (en) Method of carrying medicament to microneedle array
TWI569883B (en) Electrostatic coating method and electrostatic coating device
JP3605984B2 (en) Method and apparatus for manufacturing oxygen sensor element
FR3109672B1 (en) METHOD FOR MANUFACTURING A POROUS ELECTRODE, AND MICROBATTERY CONTAINING SUCH ELECTRODE
JP2007115532A (en) Manufacturing method of membrane electrode assembly for fuel cell
JP6104137B2 (en) Method for manufacturing gas sensor element
JP2009301787A (en) Catalyst ink coating device, catalyst ink coating method, and manufacturing method of membrane electrode assembly for fuel cell
CN111093531A (en) Coated surgical needles
JP2009031266A (en) Oxygen sensor, manufacturing method of oxygen sensor, and oxygen sensor manufacturing device
JP4353681B2 (en) Die head for coating
JP2004216290A (en) Nozzle for paste application and apparatus and method for paste application
WO2018138084A1 (en) Component or retaining element which is usable for the plasma processing of workpieces, and method for the production thereof
JP2012204467A (en) Formation method of copper wiring, manufacturing method of wiring board, and wiring board
CN112034147B (en) Method for detecting weldability of silver paste of ceramic filter
KR102102660B1 (en) Coating method and manufacture of coating formulation for peripheral stent
CN218073520U (en) Electronic atomization device
WO2021163962A1 (en) Manufacturing method for electronic cigarette atomizing assembly
JP2006130471A (en) Liquid droplet spraying and applying method and manufacturing method for displaying device
CN103738075B (en) A kind of pressure auxiliary cartridge device
WO2018194584A1 (en) Method for applying a coating onto a surface of an inner diameter of a conduit
CN105118760B (en) The method for preparing W-Re base barium-tungsten dispense cathode
CN114983031A (en) Groove annular heating type atomizing core and preparation method thereof
JP4236601B2 (en) Manufacturing method and manufacturing apparatus for solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R151 Written notification of patent or utility model registration

Ref document number: 6398741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250