JP6395626B2 - Heat exchanger for heating device and single-end radiant tube burner - Google Patents

Heat exchanger for heating device and single-end radiant tube burner Download PDF

Info

Publication number
JP6395626B2
JP6395626B2 JP2015017461A JP2015017461A JP6395626B2 JP 6395626 B2 JP6395626 B2 JP 6395626B2 JP 2015017461 A JP2015017461 A JP 2015017461A JP 2015017461 A JP2015017461 A JP 2015017461A JP 6395626 B2 JP6395626 B2 JP 6395626B2
Authority
JP
Japan
Prior art keywords
end side
combustion
exhaust
rear end
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015017461A
Other languages
Japanese (ja)
Other versions
JP2016142443A (en
Inventor
侑希 柴田
侑希 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015017461A priority Critical patent/JP6395626B2/en
Publication of JP2016142443A publication Critical patent/JP2016142443A/en
Application granted granted Critical
Publication of JP6395626B2 publication Critical patent/JP6395626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、複数の伝熱管部材を用いて、内部に、燃焼用空気が流れる給気流路と、先端側に形成される燃焼領域からの燃焼排ガスが流れる排気流路とが区画されて多重管構造に形成される加熱装置用熱交換体およびシングルエンドラジアントチューブバーナに関する。   In the present invention, a plurality of heat transfer tube members are used to divide an air supply passage through which combustion air flows and an exhaust passage through which combustion exhaust gas from a combustion region formed at the front end side flows. The present invention relates to a heat exchanger for a heating device and a single-end radiant tube burner formed in a structure.

従来より、燃焼排ガスの排熱を回収する加熱装置用熱交換体(レキュペレータ)を有する燃焼装置(レキュペバーナ)が知られている。このような燃焼装置として、シングルエンドラジアントチューブバーナが、浸炭などの工業用間接加熱において用いられている。このシングルエンドラジアントチューブバーナは、燃料導入管より噴出させる燃料ガスに、加熱装置用熱交換体を通過させて噴出させる燃焼用空気を混合させて燃焼を行う。そして、この燃焼により高熱を有する燃焼排ガスを上記加熱装置用熱交換体に連結したシングルエンドラジアントチューブ内を通過させ、シングルエンドラジアントチューブからの放射熱により加熱する。このような構成により、コンパクトで省エネルギーな加熱装置が実現される。   2. Description of the Related Art Conventionally, a combustion apparatus (a recuperator) having a heat exchanger for a heating apparatus (a recuperator) that recovers exhaust heat of combustion exhaust gas is known. As such a combustion apparatus, a single end radiant tube burner is used in industrial indirect heating such as carburizing. This single end radiant tube burner performs combustion by mixing the fuel gas ejected from the fuel introduction pipe with the combustion air that is ejected through the heat exchanger for the heating device. And the combustion exhaust gas which has high heat by this combustion passes the inside of the single end radiant tube connected with the said heat exchanger for heating devices, and it heats with the radiant heat from a single end radiant tube. With such a configuration, a compact and energy-saving heating device is realized.

燃焼用空気と燃焼排ガスとは、加熱装置用熱交換体内部を流れている間に熱交換する。したがって、燃焼排ガスと燃焼用空気とが熱交換可能な領域は加熱装置用熱交換体の長さ範囲に限られる。また、加熱装置用熱交換体自体を長くすることによって熱交換効率の向上を図ることも考えられるが、このようにすると加熱装置用熱交換体の大型化につながるという問題を抱えていた。   The combustion air and the combustion exhaust gas exchange heat while flowing inside the heat exchanger for the heating device. Therefore, the region in which the combustion exhaust gas and combustion air can exchange heat is limited to the length range of the heating device heat exchanger. Although it is conceivable to improve the heat exchange efficiency by lengthening the heat exchanger for the heating device itself, there is a problem in that this leads to an increase in the size of the heat exchanger for the heater.

そこで、特許文献1に記載のように、加熱装置用熱交換体を熱交換壁で区画される多重管構造とすることが考えられている。詳述すると、燃焼用空気が加熱装置用熱交換体の先端側から後端側に至る長さ方向で1.5往復の行程を流れる間に、一往復する燃焼排ガスと熱交換するように給気流路および排気流路を配置することにより、燃焼用空気と燃焼排ガスとの熱交換効率を向上させることが考えられている。   Then, as described in Patent Document 1, it is considered that the heat exchanger for a heating device has a multiple tube structure partitioned by a heat exchange wall. Specifically, while the combustion air flows through a 1.5 reciprocating stroke in the length direction from the front end side to the rear end side of the heat exchanger for the heating device, it is supplied so as to exchange heat with the exhaust gas that reciprocates once. It is considered to improve the heat exchange efficiency between combustion air and combustion exhaust gas by arranging an air flow path and an exhaust flow path.

特開2003−262305号公報JP 2003-262305 A

しかし、上述の構成によっても、加熱装置用熱交換体の構造が複雑になるのに比して熱交換効率の改善が十分とは言えず、さらなる改善が求められていた。   However, even with the above-described configuration, the heat exchange efficiency cannot be improved sufficiently compared with the complicated structure of the heat exchanger for a heating device, and further improvement has been demanded.

また上記構成によると、燃焼排ガスは、先端側から後端側に流れた後、後端側から先端側に折り返して一往復で排気される。すると、燃焼装置の排出口は先端側、すなわち、炉壁に近い側に位置することになる。そのため、炉壁と排出口との干渉を避けるためには排出口を含む加熱装置用熱交換体全体を炉壁から離間させて設ける必要があり、加熱装置用熱交換体は炉壁に対して大きく突出させた状態に取り付けられることになるという問題点があり、加熱装置用熱交換体を用いた加熱装置をコンパクトに形成することも求められていた。   Moreover, according to the said structure, after flue gas flows from the front end side to the rear end side, it turns back from the rear end side to the front end side, and is exhausted by one reciprocation. Then, the discharge port of the combustion apparatus is located on the tip side, that is, the side close to the furnace wall. Therefore, in order to avoid interference between the furnace wall and the discharge port, it is necessary to provide the entire heat exchanger for the heating device including the discharge port so as to be separated from the furnace wall. There is a problem that it is attached in a state of being greatly protruded, and it has also been required to form a heating device using a heat exchanger for a heating device in a compact manner.

したがって、本発明は上記実状に鑑み、小型で熱交換効率の良い簡単な構成の加熱装置用熱交換体を提供することを目的とする。   Therefore, in view of the above situation, an object of the present invention is to provide a heat exchanger for a heating device having a simple configuration with a small size and good heat exchange efficiency.

〔構成1〕
上記目的を達成するための本発明の加熱装置用熱交換体の特徴構成は、
複数の伝熱管部材を用いて、内部に、燃焼用空気が流れる給気流路と、先端側に形成される燃焼領域からの燃焼排ガスが流れる排気流路とを区画して多重管構造に形成される加熱装置用熱交換体であって、
後端側に内部へ前記燃焼用空気の供給を受ける空気導入口を有するとともに、後端側に前記燃焼領域で発生する前記燃焼排ガスを外部へ排出する燃焼排ガス排出口とを有し、
前記給気流路は、
前記空気導入口から供給された前記燃焼用空気が前記後端側から前記先端側の方へ流れる第一給気流路と、
前記第一給気流路を流れた前記燃焼用空気が前記先端側から前記後端側の方へ流れる第二給気流路と、
前記第二給気流路を流れた前記燃焼用空気が前記後端側から前記先端側の方へ流れて前記先端側の前記燃焼領域に至る第三給気流路とを有し、
前記排気流路は、
前記燃焼領域で発生した前記燃焼排ガスが前記先端側から前記後端側の方へ流れる第一排気流路と、
前記第一排気流路を流れた前記燃焼排ガスが前記後端側から前記先端側の方へ流れる第二排気流路と、
前記第二排気流路を流れた前記燃焼排ガスが前記先端側から前記後端側の方へと流れて前記燃焼排ガス排出口に至る第三排気流路とを有し、
前記第三給気流路と前記第一排気流路とは、前記燃焼用空気と前記燃焼排ガスとが対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第一排気流路と前記第二排気流路とは、前記燃焼排ガス同士が対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第二排気流路と前記第二給気流路とは、前記燃焼排ガスと前記燃焼用空気とが対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第二給気流路と前記第三排気流路とは、前記燃焼用空気と前記燃焼排ガスとが並行流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第三排気流路と前記第一給気流路とは、前記燃焼排ガスと前記燃焼用空気とが対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接する点にある。
[Configuration 1]
In order to achieve the above object, the characteristic configuration of the heat exchanger for a heating device of the present invention is:
Using a plurality of heat transfer tube members, a multi-tube structure is formed by partitioning an air supply passage through which combustion air flows and an exhaust passage through which combustion exhaust gas from a combustion region formed at the front end side flows. A heat exchanger for a heating device,
The rear end side has an air introduction port for receiving the supply of combustion air to the inside, and the rear end side has a combustion exhaust gas discharge port for discharging the combustion exhaust gas generated in the combustion region to the outside,
The air supply channel is
A first air supply passage through which the combustion air supplied from the air inlet flows from the rear end side toward the front end side;
A second air supply passage through which the combustion air that has flowed through the first air supply passage flows from the front end side toward the rear end side;
The combustion air that has flowed through the second air supply channel has a third air supply channel that flows from the rear end side toward the front end side and reaches the combustion region on the front end side;
The exhaust passage is
A first exhaust passage through which the flue gas generated in the combustion region flows from the front end side toward the rear end side;
A second exhaust passage through which the flue gas flowing through the first exhaust passage flows from the rear end side toward the front end side;
The combustion exhaust gas that has flowed through the second exhaust flow path has a third exhaust flow path that flows from the front end side toward the rear end side to reach the combustion exhaust gas discharge port,
The third air supply passage and the first exhaust passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion air and the combustion exhaust gas are counterflowed,
The first exhaust flow path and the second exhaust flow path are adjacent to each other with one of the plurality of heat transfer tube members sandwiched between the combustion exhaust gases so as to face each other.
The second exhaust flow path and the second air supply flow path are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion exhaust gas and the combustion air are opposed to each other,
The second air supply passage and the third exhaust passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion air and the combustion exhaust gas are in parallel flow,
The third exhaust passage and the first air supply passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion exhaust gas and the combustion air are opposed to each other. It is in.

〔作用効果1〕
上述の構成により、空気導入口に供給された燃焼用空気は、第一給気流路を後端側から先端側に移動し、先端側で折り返し、第二給気流路を先端側から後端側に移動し、さらに後端側で折り返し、第三給気流路を後端側から先端側に移動して燃焼領域に至るように構成されている。
[Operation effect 1]
With the above-described configuration, the combustion air supplied to the air introduction port moves from the rear end side to the front end side of the first air supply flow path, is folded back at the front end side, and the second air supply flow path is changed from the front end side to the rear end side. And further folded back on the rear end side so that the third air supply passage moves from the rear end side to the front end side to reach the combustion region.

一方、燃焼領域で発生した燃焼排ガスは、第一排気流路を先端側から後端側に移動し、後端側で折り返し、第二排気流路を後端側から先端側に移動し、さらに先端側で折り返し、第三排気流路を先端側から後端側に移動し、燃焼排ガス排出口より排出されるように構成されている。   On the other hand, the flue gas generated in the combustion region moves the first exhaust passage from the front end side to the rear end side, turns back at the rear end side, moves the second exhaust passage from the rear end side to the front end side, It is configured to be folded at the front end side, move the third exhaust passage from the front end side to the rear end side, and be discharged from the combustion exhaust gas discharge port.

ここで、第三給気流路と第一排気流路とは、燃焼用空気と燃焼排ガスとが対向流となるように、複数の伝熱管部材のうちの一つを挟んで隣接し、
第一排気流路と第二排気流路とは、燃焼排ガス同士が対向流となるように、複数の伝熱管部材のうちの一つを挟んで隣接し、
第二排気流路と第二給気流路とは、燃焼排ガスと燃焼用空気とが対向流となるように、複数の伝熱管部材のうちの一つを挟んで隣接し、
第二給気流路と第三排気流路とは、燃焼用空気と燃焼排ガスとが並行流となるように、複数の伝熱管部材のうちの一つを挟んで隣接し、
第三排気流路と第一給気流路とは、燃焼排ガスと燃焼用空気とが対向流となるように、複数の伝熱管部材のうちの一つを挟んで隣接するから、燃焼用空気は、先端側から後端側に至る長さ方向で1.5往復の行程を流れる間に、1.5往復の行程を流れる燃焼排ガスと熱交換することになる。
Here, the third air supply passage and the first exhaust passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion air and the combustion exhaust gas are opposed to each other.
The first exhaust passage and the second exhaust passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion exhaust gases are opposed to each other.
The second exhaust flow path and the second air supply flow path are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion exhaust gas and the combustion air are opposed to each other.
The second air supply passage and the third exhaust passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion air and the combustion exhaust gas are in parallel flow,
The third exhaust flow path and the first air supply flow path are adjacent to each other with one of the plurality of heat transfer tube members so that the combustion exhaust gas and the combustion air are opposed to each other. During the flow of 1.5 reciprocating strokes in the length direction from the front end side to the rear end side, heat exchange is performed with the combustion exhaust gas flowing through the 1.5 reciprocating strokes.

すなわち、加熱装置用熱交換体を必要以上に長尺に形成することなく、燃焼用空気と燃焼排ガスとの熱交換を図り、燃焼用空気を予熱するとともに、燃焼排ガスを冷却することができる。   That is, without forming the heat exchanger for the heating device longer than necessary, the heat exchange between the combustion air and the combustion exhaust gas can be achieved, the combustion air can be preheated, and the combustion exhaust gas can be cooled.

また、燃焼用空気と燃焼排ガスとが、対向流で熱交換する領域を十分確保できる点も、高い熱交換効率に寄与している。   Moreover, the point which can fully ensure the area | region where the combustion air and combustion exhaust gas heat-exchange by a counterflow contributes to high heat exchange efficiency.

さらに、燃焼排ガスは、先端側から後端側に達し、さらに先端側に折り返した後、後端側に達する1.5往復により熱交換を行うので、排ガス排出口は後端側に設けられている。そのため、加熱装置用熱交換体を炉壁等に取り付ける場合、排ガス排出口は、炉壁等から離間した位置に設けられることになって、炉壁から離間して設けられる空気導入口と同様に炉壁等と干渉しにくい。したがって、加熱装置用熱交換体は、炉壁等に近接した状態で取り付けることができ、炉壁等から大きく突出しない状態で、コンパクトな加熱装置として利用することができるようになる。   Further, the combustion exhaust gas reaches the rear end side from the front end side, and further returns to the front end side, and then heat exchange is performed by 1.5 reciprocations reaching the rear end side. Therefore, the exhaust gas exhaust port is provided on the rear end side. Yes. Therefore, when the heat exchanger for a heating device is attached to a furnace wall or the like, the exhaust gas discharge port is provided at a position separated from the furnace wall or the like, and is similar to the air inlet provided away from the furnace wall. Less likely to interfere with furnace walls. Therefore, the heat exchanger for a heating device can be attached in a state of being close to the furnace wall or the like, and can be used as a compact heating device in a state where it does not protrude greatly from the furnace wall or the like.

〔構成2〕
上記目的を達成するための本発明の加熱装置用熱交換体の特徴構成は、
複数の伝熱管部材を用いて、内部に、燃焼用空気が流れる給気流路と、先端側に形成される燃焼領域からの燃焼排ガスが流れる排気流路とを区画して多重管構造に形成される加熱装置用熱交換体であって、
内管と、内ガイド管と、筒状本体とを備え、
前記内管の後端側外周面に内管フランジ部を備えるとともに、前記内ガイド管の先端側外周面に内ガイド管フランジ部を備えて、前記筒状本体内面側に、先端側から後端側に前記内ガイド管を挿通するとともに、前記内ガイド管の内面側に、後端側から先端側に前記内管を挿通した状態で、前記内管フランジ部と前記内ガイド管フランジ部との間に前記筒状本体を挟持する姿勢に配置され、
前記内管と内ガイド管との間に、前記燃焼領域で発生した前記燃焼排ガスが前記先端側から前記後端側の方へ流れる第一排気流路を形成し、
前記内ガイド管と前記筒状本体との間に、前記第一排気流路を流れた前記燃焼排ガスが前記後端側から前記先端側の方へ流れる第二排気流路を形成し、
前記筒状本体の内面と外面とに挟まれる厚み内に、前記第二排気流路を流れた前記燃焼排ガスが前記先端側から前記後端側の方へと流れて燃焼排ガス排出口に至る第三排気流路を熱交換壁で区画して形成するとともに、
前記筒状本体の厚み内で前記第三排気流路よりも外面側に、前記空気導入口から供給された前記燃焼用空気が前記後端側から前記先端側の方へ流れる第一給気流路を熱交換壁で区画して形成し、
前記筒状本体の厚み内で前記第三排気流路よりも内面側に、前記第一給気流路を流れた前記燃焼用空気が前記先端側から前記後端側の方へ流れる第二給気流路を熱交換壁で区画して形成し、
前記内管の内側に、前記第二給気流路を流れた前記燃焼用空気が前記後端側から前記先端側の方へ流れて前記先端側の前記燃焼領域に至る第三給気流路を形成してある点にある。
[Configuration 2]
In order to achieve the above object, the characteristic configuration of the heat exchanger for a heating device of the present invention is:
Using a plurality of heat transfer tube members, a multi-tube structure is formed by partitioning an air supply passage through which combustion air flows and an exhaust passage through which combustion exhaust gas from a combustion region formed at the front end side flows. A heat exchanger for a heating device,
An inner tube, an inner guide tube, and a cylindrical body;
An inner tube flange portion is provided on the outer peripheral surface of the rear end side of the inner tube, and an inner guide tube flange portion is provided on the outer peripheral surface of the distal end side of the inner guide tube. The inner guide tube is inserted through the inner guide tube, and the inner tube flange portion and the inner guide tube flange portion are inserted into the inner surface side of the inner guide tube from the rear end side to the distal end side. Arranged in a posture to sandwich the cylindrical body between,
Between the inner pipe and the inner guide pipe, the combustion exhaust gas generated in the combustion region forms a first exhaust passage that flows from the front end side toward the rear end side,
Between the inner guide pipe and the cylindrical body, the combustion exhaust gas that has flowed through the first exhaust flow path forms a second exhaust flow path that flows from the rear end side toward the front end side,
Within the thickness sandwiched between the inner surface and the outer surface of the cylindrical main body, the flue gas flowing through the second exhaust passage flows from the front end side toward the rear end side and reaches the flue gas exhaust port. Three exhaust passages are formed by partitioning with heat exchange walls,
A first air supply passage through which the combustion air supplied from the air inlet flows from the rear end side toward the tip end side on the outer surface side of the third exhaust passage within the thickness of the cylindrical main body. Is formed by partitioning with a heat exchange wall,
A second supply airflow in which the combustion air that has flowed through the first supply air flow path flows from the front end side toward the rear end side closer to the inner surface side than the third exhaust flow path within the thickness of the cylindrical main body The path is partitioned and formed by heat exchange walls,
Formed inside the inner pipe is a third air supply flow path in which the combustion air flowing through the second air supply flow path flows from the rear end side toward the front end side and reaches the combustion region on the front end side. It is in a certain point.

〔作用効果2〕
上記構成によると、伝熱管部材として、内管と、内ガイド管と、筒状本体とを備え、
内管の後端側外周面に内管フランジ部を設けるとともに、内ガイド管の先端側外周面に内ガイド管フランジ部を設けて、筒状本体内面側に、先端側から後端側に内ガイド管を挿通するとともに、内ガイド管内面側に、後端側から先端側に内管を挿通した状態で、内管フランジ部と内ガイド管フランジ部との間に筒状本体を挟持する姿勢に配置されているから、内管と、内ガイド管と、筒状本体とから簡単に組み立て形成される。
[Operation effect 2]
According to the above configuration, the heat transfer tube member includes an inner tube, an inner guide tube, and a cylindrical main body,
An inner tube flange is provided on the outer peripheral surface of the rear end side of the inner tube, and an inner guide tube flange is provided on the outer peripheral surface of the inner guide tube on the front end side. A posture in which the cylindrical body is sandwiched between the inner tube flange portion and the inner guide tube flange portion while the guide tube is inserted and the inner tube is inserted from the rear end side to the front end side on the inner guide tube inner surface side. Therefore, it is easily assembled and formed from the inner tube, the inner guide tube, and the cylindrical main body.

また、内管と内ガイド管との間に、燃焼領域で発生した燃焼排ガスが先端側から後端側の方へ流れる第一排気流路を形成し、
内ガイド管と筒状本体との間に、第一排気流路を流れた燃焼排ガスが後端側から先端側の方へ流れる第二排気流路を形成し、
筒状本体の内面と外面とに挟まれる厚み内に、第二排気流路を流れた燃焼排ガスが先端側から後端側の方へと流れて燃焼排ガス排出口に至る第三排気流路を熱交換壁で区画して形成するとともに、
筒状本体の厚み内で第三排気流路よりも外面側に、空気導入口から供給された燃焼用空気が後端側から先端側の方へ流れる第一給気流路を熱交換壁で区画して形成し、
筒状本体の厚み内で第三排気流路よりも内面側に、第一給気流路を流れた燃焼用空気が先端側から後端側の方へ流れる第二給気流路を熱交換壁で区画して形成し、
内管の内側に第二給気流路を流れた燃焼用空気が後端側から先端側の方へ流れて先端側の燃焼領域に至る第三給気流路を形成してあるから、筒状本体は、熱交換壁で仕切られた複数の伝熱管部材として機能するとともに、第三給気流路と第一排気流路とは、燃焼用空気と燃焼排ガスとが対向流となるように、複数の伝熱管部材のうちの内管を挟んで隣接し、
第一排気流路と第二排気流路とは、燃焼排ガス同士が対向流となるように、複数の伝熱管部材のうちの内ガイド管を挟んで隣接し、
第二排気流路と第二給気流路とは、燃焼排ガスと燃焼用空気とが対向流となるように、複数の伝熱管部材のうちの筒状本体の内壁面を挟んで隣接し、
第二給気流路と第三排気流路とは、燃焼用空気と燃焼排ガスとが並行流となるように、複数の伝熱管部材のうちの筒状本体の厚み方向での内部を区画する熱交換壁を挟んで隣接し、
第三排気流路と第一給気流路とは、燃焼排ガスと燃焼用空気とが対向流となるように、複数の伝熱管部材のうちの筒状本体の厚み方向での内部を区画する熱交換壁を挟んで隣接することになるから、燃焼用空気は、先端側から後端側に至る長さ方向で1.5往復の行程を流れる間に、1.5往復の行程を流れる燃焼排ガスと熱交換することになる。
Further, between the inner pipe and the inner guide pipe, a first exhaust passage in which the combustion exhaust gas generated in the combustion region flows from the front end side toward the rear end side is formed,
Between the inner guide tube and the cylindrical main body, a second exhaust flow path in which the flue gas flowing through the first exhaust flow path flows from the rear end side toward the front end side is formed,
Within the thickness sandwiched between the inner surface and the outer surface of the cylindrical main body, the third exhaust passage that the combustion exhaust gas that has flowed through the second exhaust passage flows from the front end side toward the rear end side and reaches the combustion exhaust gas discharge port. While partitioning with heat exchange walls,
Within the thickness of the cylindrical main body, a first air supply passage through which the combustion air supplied from the air inlet flows from the rear end side toward the front end side is defined by a heat exchange wall on the outer surface side of the third exhaust passage. Formed,
Within the thickness of the cylindrical main body, the second supply air flow path, in which the combustion air that has flowed through the first supply air flow path flows from the front end side toward the rear end side on the inner surface side of the third exhaust flow path, is a heat exchange wall. Partition and form,
Since the combustion air that has flowed through the second air supply passage flows from the rear end side toward the front end side inside the inner pipe and forms a third air supply passage that reaches the combustion region on the front end side, the cylindrical main body Functions as a plurality of heat transfer tube members partitioned by a heat exchange wall, and the third air supply flow path and the first exhaust flow path have a plurality of flows so that the combustion air and the combustion exhaust gas are opposed to each other. Adjacent to the inner pipe of the heat transfer pipe members,
The first exhaust passage and the second exhaust passage are adjacent to each other with the inner guide tube among the plurality of heat transfer tube members so that the combustion exhaust gases are opposed to each other,
The second exhaust flow path and the second air supply flow path are adjacent to each other with the inner wall surface of the cylindrical main body among the plurality of heat transfer tube members so that the combustion exhaust gas and the combustion air are opposed to each other,
The second air supply flow path and the third exhaust flow path are heat that partitions the inside in the thickness direction of the cylindrical body of the plurality of heat transfer tube members so that the combustion air and the combustion exhaust gas are in parallel flow. Adjacent to the exchange wall,
The third exhaust flow path and the first air supply flow path are heat that partitions the inside in the thickness direction of the cylindrical body of the plurality of heat transfer tube members so that the combustion exhaust gas and the combustion air are opposed to each other. Combustion exhaust gas that flows 1.5 reciprocating strokes while the combustion air flows 1.5 reciprocating strokes in the length direction from the front end side to the rear end side because it is adjacent to the exchange wall Heat exchange.

すなわち、加熱装置用熱交換体を必要以上に長尺に形成することなく、燃焼用空気と燃焼排ガスとの熱交換を図り、燃焼用空気を予熱するとともに、燃焼排ガスを冷却することができる。   That is, without forming the heat exchanger for the heating device longer than necessary, the heat exchange between the combustion air and the combustion exhaust gas can be achieved, the combustion air can be preheated, and the combustion exhaust gas can be cooled.

また、燃焼用空気と燃焼排ガスとが、対向流で熱交換する領域を十分確保できる点も、高い熱交換効率に寄与しているものと考えられる。   In addition, it is considered that the fact that a sufficient area for heat exchange between the combustion air and the combustion exhaust gas in the counterflow can be secured contributes to high heat exchange efficiency.

さらに、燃焼排ガスは、先端側から後端側に達し、さらに先端側に折り返した後、後端側に達する1.5往復により熱交換を行うので、排ガス排出口は後端側に設けられている。そのため、加熱装置用熱交換体を炉壁等に取り付ける場合、排ガス排出口は、炉壁等から離間した位置に設けられることになって、その炉壁等と干渉しにくい。したがって、加熱装置用熱交換体は、炉壁等に近接した状態で取り付けることができ、炉壁等から大きく突出しない状態で、コンパクトな加熱装置として利用することができるようになる。   Further, the combustion exhaust gas reaches the rear end side from the front end side, and further returns to the front end side, and then heat exchange is performed by 1.5 reciprocations reaching the rear end side. Therefore, the exhaust gas exhaust port is provided on the rear end side. Yes. Therefore, when the heat exchanger for a heating device is attached to a furnace wall or the like, the exhaust gas discharge port is provided at a position separated from the furnace wall or the like, and hardly interferes with the furnace wall or the like. Therefore, the heat exchanger for a heating device can be attached in a state of being close to the furnace wall or the like, and can be used as a compact heating device in a state where it does not protrude greatly from the furnace wall or the like.

〔構成3〕
また、本発明のシングルエンドラジアントチューブバーナの特徴構成は、
上記加熱装置用熱交換体を備え、前記燃焼領域を囲繞して先端側に突出し、前記燃焼領域からの前記燃焼排ガスを前記第一排気流路に導く外管を設けてあるとともに、前記燃焼領域に燃料ガスを供給する燃料導入管を設けてある点にある。
[Configuration 3]
The characteristic configuration of the single-ended radiant tube burner of the present invention is as follows:
A heat exchanger for the heating device, surrounding the combustion region and projecting to the front end side, provided with an outer pipe for guiding the combustion exhaust gas from the combustion region to the first exhaust passage, and the combustion region A fuel introduction pipe for supplying fuel gas is provided.

〔作用効果3〕
上記構成によると、燃焼領域で燃料ガスを燃焼する場合に、加熱装置用熱交換体から排出される十分に予熱された燃焼用空気を燃焼領域における燃焼に供給することができるとともに、外管を介して燃焼熱を外部に放射させることができるので、効率の良い燃焼が行えるシングルエンドラジアントチューブバーナを構成することができる。また外管は、燃焼排ガスを第一排気流路に導くので、燃焼排ガスを燃焼用空気との熱交換により十分冷却することができ、エネルギー効率の良い運転を実現できる。
[Operation effect 3]
According to the above configuration, when the fuel gas is combusted in the combustion region, the sufficiently preheated combustion air discharged from the heat exchanger for the heating device can be supplied to the combustion in the combustion region, and the outer tube Since the combustion heat can be radiated to the outside, a single end radiant tube burner capable of performing efficient combustion can be configured. Further, the outer pipe guides the combustion exhaust gas to the first exhaust passage, so that the combustion exhaust gas can be sufficiently cooled by heat exchange with the combustion air, and an energy efficient operation can be realized.

シングルエンドラジアントチューブバーナの概略図Schematic of single-ended radiant tube burner

以下に、本発明の実施形態にかかる加熱装置用熱交換体およびシングルエンドラジアントチューブバーナを説明する。なお、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the heat exchanger for heating devices and the single end radiant tube burner concerning the embodiment of the present invention are explained. In addition, although suitable examples are described below, these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

なお、本願において、加熱装置用熱交換体の先端、後端という場合、加熱装置用熱交換体の外管1の接続される側を先端とし、先端から離間した側を後端として表記する。また、多重管構造の先端側と後端側とを結ぶ方向を軸心方向(図中Xで示す方向)とし、対応する径方向(図中Yで示す方向)における軸心側を内面、外周面側を外面と表記する。これらの表記は、加熱装置用熱交換体の配置姿勢等によらない相対的な位置関係を示すものである。   In addition, in this application, when calling the front-end | tip and rear end of the heat exchanger for heating apparatuses, the side to which the outer tube | pipe 1 of the heat-exchange body for heating apparatuses is connected is set as a front end, and the side away from the front end is described as a rear end. Also, the direction connecting the front end side and the rear end side of the multi-tube structure is the axial direction (direction indicated by X in the figure), and the axial center side in the corresponding radial direction (direction indicated by Y in the figure) is the inner surface and outer circumference The surface side is referred to as the outer surface. These notations indicate relative positional relationships that do not depend on the arrangement posture or the like of the heat exchanger for the heating device.

〔シングルエンドラジアントチューブバーナ〕
シングルエンドラジアントチューブバーナは、図1に示すように、
先端側が閉塞された外管1と、外管1内に挿通されて燃焼用空気を供給する内管2と、内管2内に燃料ガスを導入する燃料導入管3とを備え、燃料導入管3の先端側に火炎を発する燃焼領域31を形成するとともに、外管1と内管2との間に先端排気流路Laを形成してあり、
外管1の後端側外周面側に設けられる外管フランジ部11と、内管2の後端側部外周面側に設けられる内管フランジ部21との間に挟持される筒状本体4を備え、
外管1の後端側から筒状本体4内部に延設される内ガイド管5を備え、
筒状本体4の後端側で内管フランジ部21を覆う外箱6を備えてなる。
[Single End Radiant Tube Burner]
Single-end radiant tube burner, as shown in Figure 1,
A fuel introduction pipe comprising an outer pipe 1 whose front end is blocked, an inner pipe 2 that is inserted into the outer pipe 1 and supplies combustion air, and a fuel introduction pipe 3 that introduces fuel gas into the inner pipe 2. 3 is formed with a combustion region 31 that emits a flame at the tip end side, and a tip exhaust passage La is formed between the outer tube 1 and the inner tube 2;
A cylindrical main body 4 sandwiched between an outer tube flange portion 11 provided on the outer peripheral surface side of the rear end side of the outer tube 1 and an inner tube flange portion 21 provided on the outer peripheral surface side of the rear end side portion of the inner tube 2. With
An inner guide tube 5 extending from the rear end side of the outer tube 1 to the inside of the cylindrical body 4;
An outer box 6 that covers the inner pipe flange portion 21 on the rear end side of the cylindrical main body 4 is provided.

このような構成により、伝熱管部材としての外管1、内管2、筒状本体4、内ガイド管5を用いて、内部に、燃焼用空気が流れる給気流路A0と、先端側に形成される燃焼領域からの燃焼排ガスが流れる排気流路L0とを区画して多重管構造に形成される加熱装置用熱交換体を構成し、
後端側に内部への燃焼用空気の供給を受ける空気導入口41と、燃焼領域31で発生する燃焼排ガスを外部へ排出する燃焼排ガス排出口42とを有し、
給気流路A0は、
空気導入口41から供給された燃焼用空気が後端側から先端側へ軸心方向に流れる第一給気流路A1と、
第一給気流路A1を流れた燃焼用空気が先端側から後端側へ軸心方向に流れる第二給気流路A2と、
第二給気流路A2を流れた燃焼用空気が後端側から先端側へ軸心方向に流れて先端側の燃焼領域31に至る第三給気流路A3とを有し、
排気流路L0は、
燃焼領域31で発生した燃焼排ガスが先端側から後端側へ軸心方向に流れる第一排気流路L1と、
第一排気流路L1を流れた燃焼排ガスが後端側から先端側へ軸心方向に流れる第二排気流路L2と、
第二排気流路L2を流れた燃焼排ガスが先端側から後端側へ軸心方向に流れて燃焼排ガス排出口42に至る第三排気流路L3とを有し、
第三給気流路A3と第一排気流路L1とは、燃焼用空気と燃焼排ガスとが対向流となるように、伝熱管部材としての内管2を挟んで隣接し、内管2と内ガイド管5との間に筒状の第一排気流路L1を形成する。
第一排気流路L1と第二排気流路L2とは、燃焼排ガス同士が対向流となるように、伝熱管部材としての内ガイド管5を挟んで隣接し、内ガイド管5と内面熱交換壁45との間に筒状の第二排気流路L2を形成する。
第二排気流路L2と第二給気流路A2とは、燃焼排ガスと燃焼用空気とが対向流となるように、伝熱管部材としての筒状本体4の内面熱交換壁45を挟んで隣接し、内面熱交換壁45と第一熱交換壁46とに囲まれた筒状の第二給気流路A2を形成する。
第二給気流路A2と第三排気流路L3とは、燃焼用空気と燃焼排ガスとが並行流となるように、伝熱管部材としての第一熱交換壁46を挟んで隣接し、第一熱交換壁46と第二熱交換壁47とに囲まれた筒状の第三排気流路L3を形成する。
第三排気流路L3と第一給気流路A1とは、燃焼排ガスと燃焼用空気とが対向流となるように、伝熱管部材としての第二熱交換壁47を挟んで隣接し、第二熱交換壁47と外面熱交換壁48とに囲まれた筒状の第一給気流路A1を形成する構成としてある。
With such a configuration, the outer tube 1, the inner tube 2, the cylindrical main body 4, and the inner guide tube 5 as heat transfer tube members are used, and an air supply passage A 0 through which combustion air flows and a tip end side are formed. A heat exchanger for a heating device that is formed in a multi-pipe structure by dividing an exhaust passage L0 through which combustion exhaust gas from a combustion region to be flowed flows,
On the rear end side, it has an air introduction port 41 that receives supply of combustion air to the inside, and a combustion exhaust gas discharge port 42 that discharges combustion exhaust gas generated in the combustion region 31 to the outside,
The air supply channel A0 is
A first air supply passage A1 in which combustion air supplied from the air inlet 41 flows in the axial direction from the rear end side to the front end side;
A second air supply passage A2 in which the combustion air flowing through the first air supply passage A1 flows in the axial direction from the front end side to the rear end side;
The combustion air that has flowed through the second air supply passage A2 has a third air supply passage A3 that flows in the axial direction from the rear end side to the front end side and reaches the combustion region 31 on the front end side,
The exhaust passage L0 is
A first exhaust passage L1 in which the combustion exhaust gas generated in the combustion region 31 flows in the axial direction from the front end side to the rear end side;
A second exhaust passage L2 in which the flue gas flowing through the first exhaust passage L1 flows in the axial direction from the rear end side to the front end side;
A combustion exhaust gas flowing through the second exhaust flow path L2 flows in the axial direction from the front end side to the rear end side and has a third exhaust flow path L3 reaching the combustion exhaust gas discharge port 42;
The third air supply passage A3 and the first exhaust passage L1 are adjacent to each other with the inner tube 2 serving as a heat transfer tube member interposed therebetween so that the combustion air and the combustion exhaust gas are opposed to each other. A cylindrical first exhaust flow path L <b> 1 is formed between the guide pipe 5.
The first exhaust flow path L1 and the second exhaust flow path L2 are adjacent to each other with the inner guide pipe 5 serving as a heat transfer pipe member interposed therebetween so that the combustion exhaust gases are opposed to each other. A cylindrical second exhaust flow path L <b> 2 is formed between the wall 45.
The second exhaust flow path L2 and the second air supply flow path A2 are adjacent to each other with the inner surface heat exchange wall 45 of the tubular body 4 serving as the heat transfer tube member so that the combustion exhaust gas and the combustion air are opposed to each other. Then, a cylindrical second air supply channel A2 surrounded by the inner surface heat exchange wall 45 and the first heat exchange wall 46 is formed.
The second air supply passage A2 and the third exhaust passage L3 are adjacent to each other with the first heat exchange wall 46 serving as a heat transfer tube member interposed therebetween so that the combustion air and the combustion exhaust gas flow in parallel. A cylindrical third exhaust flow path L3 surrounded by the heat exchange wall 46 and the second heat exchange wall 47 is formed.
The third exhaust flow path L3 and the first air supply flow path A1 are adjacent to each other with the second heat exchange wall 47 serving as a heat transfer tube member interposed therebetween so that the combustion exhaust gas and the combustion air are opposed to each other. A cylindrical first air supply passage A1 surrounded by the heat exchange wall 47 and the outer heat exchange wall 48 is formed.

具体的には、内管2と、内ガイド管5と、筒状本体4とを備え、
内管2の後端側外周面に内管フランジ部21を備えるとともに、内ガイド管5の先端側外周面に内ガイド管フランジ部51を備えて、筒状本体4の内面熱交換壁45側に、先端側から後端側に内ガイド管5を挿通するとともに、内ガイド管5の内面側に、後端側から先端側に内管2を挿通した状態で、内管フランジ部21と内ガイド管フランジ部51との間に筒状本体4を挟持する姿勢に配置され、
内管2と内ガイド管5との間に、燃焼領域31で発生した燃焼排ガスが先端側から後端側の方へ軸心方向に流れる内管2と内ガイド管5との間に筒状の第一排気流路L1を形成し、
内ガイド管5と筒状本体4との間に、第一排気流路L1を流れた燃焼排ガスが後端側から先端側の方へ軸心方向に流れる内ガイド管5と内面熱交換壁45との間に筒状の第二排気流路L2を形成し、
内面熱交換壁45と外面熱交換壁48とに挟まれる厚み内に、第二排気流路L2を流れた燃焼排ガスが先端側から後端側へ軸心方向に流れて燃焼排ガス排出口42に至る第一熱交換壁46と第二熱交換壁47とに囲まれた筒状の第三排気流路L3を形成するとともに、
筒状本体4の厚み内で第三排気流路L3よりも外面側に、空気導入口41から供給された燃焼用空気が後端側から先端側へ軸心方向に流れる第二熱交換壁47と外面熱交換壁48とに囲まれた筒状の第一給気流路A1を形成し、
筒状本体4の厚み内で第三排気流路L3よりも内面側に、第一給気流路A1を流れた燃焼用空気が先端側から後端側へ軸心方向に流れる内面熱交換壁45と第一熱交換壁46とに囲まれた筒状の第二給気流路A2を形成し、
内管2の内側に第二給気流路A2を流れた燃焼用空気が後端側から先端側へ軸心方向に流れて先端側の燃焼領域31に至る第三給気流路A3を形成してある。
Specifically, the inner tube 2, the inner guide tube 5, and the cylindrical body 4 are provided,
The inner pipe 2 is provided with an inner pipe flange portion 21 on the outer peripheral surface of the rear end side of the inner tube 2, and an inner guide tube flange portion 51 is provided on the outer peripheral surface of the inner guide tube 5. In addition, the inner guide tube 5 is inserted from the front end side to the rear end side, and the inner tube flange 21 and the inner tube flange 21 are inserted into the inner surface side of the inner guide tube 5 from the rear end side to the front end side. Arranged in a posture to sandwich the tubular body 4 between the guide tube flange portion 51,
Between the inner tube 2 and the inner guide tube 5, the combustion exhaust gas generated in the combustion region 31 flows between the inner tube 2 and the inner guide tube 5 in the axial direction from the front end side toward the rear end side. Forming a first exhaust flow path L1 of
Between the inner guide tube 5 and the cylindrical main body 4, the combustion exhaust gas flowing through the first exhaust passage L <b> 1 flows in the axial direction from the rear end side toward the front end side and the inner guide tube 5 and the inner surface heat exchange wall 45. A cylindrical second exhaust flow path L2 is formed between the
Within the thickness sandwiched between the inner surface heat exchange wall 45 and the outer surface heat exchange wall 48, the flue gas flowing through the second exhaust passage L2 flows in the axial direction from the front end side to the rear end side to the flue gas exhaust port 42. Forming a cylindrical third exhaust flow path L3 surrounded by the first heat exchange wall 46 and the second heat exchange wall 47,
The second heat exchange wall 47 in which the combustion air supplied from the air inlet 41 flows in the axial direction from the rear end side to the front end side on the outer surface side of the third exhaust flow path L3 within the thickness of the cylindrical main body 4. And a cylindrical first air supply passage A1 surrounded by the outer surface heat exchange wall 48,
Within the thickness of the cylindrical body 4, the inner surface heat exchange wall 45 in which the combustion air that has flowed through the first air supply passage A1 flows in the axial direction from the front end side to the rear end side, closer to the inner surface side than the third exhaust passage L3. And a cylindrical second air supply passage A2 surrounded by the first heat exchange wall 46,
The combustion air that has flowed through the second air supply passage A2 inside the inner pipe 2 flows in the axial direction from the rear end side to the front end side to form a third air supply passage A3 that reaches the combustion region 31 on the front end side. is there.

以下、各部材の構成を詳述する。   Hereinafter, the configuration of each member will be described in detail.

〔外管〕
外管1は、先端側が閉塞された円筒形状で、内部に内管2の先端側部分を収容するとともに、内管2と外管1との軸心方向および径方向における空間に先端排気流路Laを形成するものである。外管1の後端部の外周面側には外管フランジ部11を備え、その外管フランジ部11に加熱装置用熱交換体における内ガイド管フランジ部51および筒状本体4の先端側に設けられるフランジ部を接続可能に構成してある。
[Outer tube]
The outer tube 1 has a cylindrical shape with the distal end closed, and accommodates the distal end portion of the inner tube 2 therein, and the distal exhaust passage in the space between the inner tube 2 and the outer tube 1 in the axial direction and the radial direction. La is formed. An outer tube flange portion 11 is provided on the outer peripheral surface side of the rear end portion of the outer tube 1, and the outer tube flange portion 11 is provided on the inner guide tube flange portion 51 and the distal end side of the tubular body 4 in the heat exchanger for the heating device. The flange part provided is comprised so that connection is possible.

外管1は、内部に形成される燃焼領域31が炉内に位置する状態で、炉壁Wの貫通孔W1に挿通され、外管フランジ部11が内ガイド管フランジ部51、筒状本体4とともに、外面側より炉壁Wに装着固定された状態で使用される。燃料導入管3より供給された燃料ガスが、第三給気流路A3から供給される燃焼用空気により、パイロットバーナ(不図示)等で燃焼領域31において着火燃焼され、炉内に熱を供給するとともに、燃焼排ガスが先端排気流路Laを通って第一排気流路L1に流通させられる構成となっている。   The outer tube 1 is inserted into the through hole W1 of the furnace wall W in a state where the combustion region 31 formed inside is positioned in the furnace, the outer tube flange portion 11 is the inner guide tube flange portion 51, and the cylindrical main body 4 At the same time, it is used in a state of being fixedly attached to the furnace wall W from the outer surface side. The fuel gas supplied from the fuel introduction pipe 3 is ignited and combusted in the combustion region 31 by a pilot burner (not shown) or the like by the combustion air supplied from the third air supply passage A3, and supplies heat into the furnace. At the same time, the combustion exhaust gas is circulated to the first exhaust passage L1 through the tip exhaust passage La.

〔内管〕
内管2は、先端側が外管1および加熱装置用熱交換体内部に挿通される管状に形成され、内管2の後端側外周面側に内管フランジ部21を備える。内管2の先端側の先端部は、外管1内に挿通される。外管1に挿通された内管2の内部の領域に火炎を発する燃焼領域31を形成するように、内部に燃焼用空気を流通可能な第三給気流路A3を形成するとともに、燃料ガスを導入する燃料導入管3を内挿してある。
[Inner pipe]
The inner tube 2 is formed in a tubular shape whose front end is inserted into the outer tube 1 and the heat exchanger for a heating device, and includes an inner tube flange portion 21 on the outer peripheral surface side of the rear end side of the inner tube 2. The distal end portion on the distal end side of the inner tube 2 is inserted into the outer tube 1. A third air supply passage A3 through which combustion air can be circulated is formed so as to form a combustion region 31 that emits a flame in an inner region of the inner tube 2 inserted through the outer tube 1, and fuel gas is supplied. The fuel introduction pipe 3 to be introduced is inserted.

燃料導入管3は、内管2内部に挿通され、外管1内に先端のノズル部分32が位置するように内管2の軸心に固定されており、燃料導入管3内より供給されるLNGに代表される燃料ガスをノズル部分32より噴出する。また、燃料導入管3と内管2との間に形成される第三給気流路A3から供給される燃焼用空気により燃焼させられる構成としてある。加熱装置用熱交換体の後端側に位置する燃料導入管3の基端部側には、燃料混合部33を備え、複数の燃料ガスや燃焼用一次空気を混合して熱量調整可能にしてある。また、燃料導入管3のノズル部分32は先広がり形状に形成されており、発生した火炎を内管内の広い領域で安定的に保持し、外管1内にむらなく燃焼熱を供給可能に構成してある。   The fuel introduction pipe 3 is inserted into the inner pipe 2 and is fixed to the axial center of the inner pipe 2 so that the nozzle portion 32 at the tip is located in the outer pipe 1 and is supplied from within the fuel introduction pipe 3. A fuel gas typified by LNG is ejected from the nozzle portion 32. The combustion air supplied from a third air supply passage A3 formed between the fuel introduction pipe 3 and the inner pipe 2 is used for combustion. A fuel mixing section 33 is provided on the base end side of the fuel introduction pipe 3 located on the rear end side of the heat exchanger for the heating device, and a plurality of fuel gases and primary combustion air are mixed so that the amount of heat can be adjusted. is there. In addition, the nozzle portion 32 of the fuel introduction pipe 3 is formed in a divergent shape, so that the generated flame can be stably held in a wide area in the inner pipe, and combustion heat can be supplied uniformly in the outer pipe 1. It is.

〔筒状本体〕
筒状本体4は、熱交換壁となる複数の鋼板を成形、溶接して伝熱管部材を同心筒状に形成してある多重管構造としてある。筒状本体4は、径方向で外面側から内面側に向かう厚さ方向で、供給される燃焼用空気を先端側に導く第一給気流路A1と、先端側に供給される燃焼排ガスを後端側に導き排出する第三排気流路L3と、第一給気流路A1から先端側より供給される燃焼用空気を後端側に導き、外箱6内部に供給する第二給気流路A2とを、各熱交換壁を挟んでこの順に積層してなる。また、筒状本体4には、後端側側壁部分に第一給気流路A1に接続される空気導入口41および第三排気流路L3に接続される燃焼排ガス排出口42を設ける。また、後端側端面側に第二給気流路A2から燃焼用空気を放出する放出口43を形成し、先端側端部に第三排気流路L3に排気ガスを導入する導入口44を形成してある。また、筒状本体4は、外管フランジ部11と内管フランジ部21との間に挟持されており、外管フランジ部11と筒状本体4の先端側のフランジ部との間には、さらに後述の内ガイド管フランジ部51を挟持する形態でボルト連結固定されている。
(Cylindrical body)
The cylindrical main body 4 has a multiple tube structure in which a plurality of steel plates serving as heat exchange walls are formed and welded to form a heat transfer tube member in a concentric cylindrical shape. The cylindrical main body 4 has a first air supply passage A1 that guides the combustion air supplied to the tip side in the thickness direction from the outer surface side to the inner surface side in the radial direction, and the combustion exhaust gas supplied to the tip side. A third exhaust flow path L3 that leads to the end side and discharges, and a second air supply flow path A2 that guides the combustion air supplied from the front end side from the first air supply path A1 to the rear end side and supplies it to the inside of the outer box 6 Are stacked in this order across the heat exchange walls. Further, the cylindrical main body 4 is provided with an air introduction port 41 connected to the first air supply flow path A1 and a combustion exhaust gas discharge port 42 connected to the third exhaust flow path L3 in the rear end side wall portion. Further, a discharge port 43 for discharging combustion air from the second air supply flow path A2 is formed on the rear end side end face side, and an introduction port 44 for introducing exhaust gas into the third exhaust flow path L3 is formed at the front end side end. It is. The tubular body 4 is sandwiched between the outer tube flange portion 11 and the inner tube flange portion 21, and between the outer tube flange portion 11 and the flange portion on the distal end side of the tubular body 4, Further, the bolts are connected and fixed in such a manner as to sandwich an inner guide pipe flange portion 51 described later.

〔内ガイド管〕
内ガイド管5は、先端側外周面に内ガイド管フランジ部51を備えて、外管フランジ部11に接合され、後端側が内管を内挿するとともに、内管フランジ部21よりも先端側の近傍にて開口する管状に形成される。これにより、筒状本体4の内側で、内管2の外側の空間を、内管2と内ガイド管5との間に形成され先端排気流路Laからの燃焼排ガスを直接受け入れる第一排気流路L1と、内ガイド管5と筒状本体4との間に形成され、第一排気流路L1に流れる燃焼排ガスを折り返して第三排気流路L3に導く第二排気流路L2とに分割形成するように配置してある。
[Inner guide tube]
The inner guide tube 5 is provided with an inner guide tube flange portion 51 on the outer peripheral surface on the front end side, and is joined to the outer tube flange portion 11. The rear end side inserts the inner tube, and the front end side of the inner tube flange portion 21. It is formed in a tubular shape opening in the vicinity. Thus, the first exhaust flow that is formed inside the tubular body 4 and outside the inner tube 2 between the inner tube 2 and the inner guide tube 5 and directly receives the combustion exhaust gas from the tip exhaust passage La. Divided into a path L1 and a second exhaust flow path L2 formed between the inner guide pipe 5 and the cylindrical main body 4 and leading to the third exhaust flow path L3 by folding the combustion exhaust gas flowing in the first exhaust flow path L1 It is arranged to form.

尚、このような多重管構造は複雑な構造になり、製造困難になるようにも思われるが、実際には、筒状本体4の厚さ方向内部には、第一、第二給気流路A1,A2と第三排気流路L3を形成してあるのみであるから、一対の有底二重筒を溶接等により一体化するだけの簡単な工程で製造でき、これに内ガイド管5を別途設けることによりさらに多層を実現する構成としたから、簡単な構成の追加でさらに熱交換効率を高めることができた。   In addition, although such a multi-pipe structure has a complicated structure and seems to be difficult to manufacture, in reality, the first and second air supply channels are disposed in the thickness direction of the cylindrical body 4. Since only A1 and A2 and the third exhaust flow path L3 are formed, a pair of bottomed double cylinders can be manufactured by a simple process such as integration by welding or the like, and the inner guide pipe 5 is attached thereto. Since it was configured to realize a further multilayer by providing separately, the heat exchange efficiency could be further increased by adding a simple configuration.

〔外箱〕
外箱6は、内管フランジ部21および放出口43を囲繞して、第二給気流路A2から放出された燃焼用空気を第三給気流路A3に導入する外箱内空間61を形成するように筒状本体4の後端側のフランジ部に接続される。
〔Outer case〕
The outer box 6 surrounds the inner pipe flange portion 21 and the discharge port 43, and forms an outer box inner space 61 for introducing the combustion air discharged from the second air supply passage A2 into the third air supply passage A3. In this way, it is connected to the flange portion on the rear end side of the cylindrical main body 4.

〔燃焼用空気および燃焼排ガスの流通路〕
上述の構成により、燃焼領域31で発生した燃焼排ガスは、外管1と内管2の先端側に形成される隙間を通って、先端排気流路L0を先端側から後端側に流れ、内ガイド管5と内管2の間に形成される第一排気流路L1から筒状本体4後端側に導かれ、内管フランジ部21近傍まで達して内ガイド管5と筒状本体4との間に形成される第二排気流路L2に流通するように流通させられる。このように第二排気流路L2に流れる燃焼排ガスは、後端側から先端側に向かって第二排気流路L2を流れて、内ガイド管5の先端側に達する。第二排気流路L2に流れる燃焼排ガスは第三排気流路L3に流入して筒状本体4先端側から後端側に流れ、筒状本体4外面における後端側に設けられる燃焼排ガス放出口42より排出される。
[Flow passage of combustion air and combustion exhaust gas]
With the configuration described above, the combustion exhaust gas generated in the combustion region 31 flows through the clearance formed at the distal end side of the outer tube 1 and the inner tube 2 through the distal exhaust passage L0 from the distal end side to the rear end side, Guided from the first exhaust flow path L1 formed between the guide tube 5 and the inner tube 2 to the rear end side of the cylindrical main body 4, reaches the vicinity of the inner tube flange portion 21, and reaches the inner guide tube 5 and the cylindrical main body 4 Is circulated so as to circulate in the second exhaust flow path L2 formed between the two. The combustion exhaust gas flowing in the second exhaust flow path L2 in this way flows through the second exhaust flow path L2 from the rear end side toward the front end side and reaches the front end side of the inner guide pipe 5. The combustion exhaust gas flowing in the second exhaust flow path L2 flows into the third exhaust flow path L3 and flows from the front end side to the rear end side of the cylindrical main body 4 and is provided on the rear end side on the outer surface of the cylindrical main body 4 42 is discharged.

一方、空気導入口41から第一給気流路A1に供給された燃焼用空気は、第三排気流路L3に流通される燃焼排ガスからの熱を受け予熱されつつ、筒状本体4後端側から先端側に流れる。また、筒状本体4先端側に達した燃焼用空気は、第二給気流路A2に流入してさらに第三排気流路L3および第二排気流路L2の両方から熱を受け予熱される。このように予熱された燃焼用空気は、筒状本体4後端部側の放出口43から排出される。   On the other hand, the combustion air supplied from the air inlet 41 to the first air supply passage A1 is preheated by receiving heat from the combustion exhaust gas flowing through the third exhaust passage L3, while being on the rear end side of the cylindrical body 4 Flows from the tip to the tip. Further, the combustion air that has reached the distal end side of the cylindrical main body 4 flows into the second air supply passage A2 and is preheated by receiving heat from both the third exhaust passage L3 and the second exhaust passage L2. The combustion air thus preheated is discharged from the discharge port 43 on the rear end side of the cylindrical main body 4.

筒状本体4後端部側から排出された燃焼用空気は外箱6内を通過して内管2内の第三給気流路A3に流入する。ここで、第三給気流路A3は、内管2を介して先端排気流路La、第一排気流路L1と隣接するから、さらに燃焼排ガスから熱を受け、十分予熱されながら筒状本体4後端側から先端側に向かい、さらに外管1の内部に向かって流れる。内管2内には燃料導入管3が設けられ、外管1内の延設された内管2内部で、燃料導入管3の先端側に火炎を発する燃焼領域31に達する。燃焼領域31では、燃焼用空気により燃料ガスが燃焼されて発熱するとともに、熱を持った燃焼排ガスが、外管1と内管2との間に形成される先端排気流路Laから再び筒状本体4内に流入する。燃焼排ガスはその後熱交換しつつ、前述の先端排気流路Laから第一排気流路L1、第二排気流路L2、第三排気流路L3を経て燃焼用空気を予熱した後、筒状本体4外部に排出される。   Combustion air discharged from the rear end side of the cylindrical main body 4 passes through the outer casing 6 and flows into the third air supply passage A3 in the inner pipe 2. Here, since the third air supply passage A3 is adjacent to the tip exhaust passage La and the first exhaust passage L1 through the inner pipe 2, the cylindrical body 4 is further preheated while receiving heat from the combustion exhaust gas. It flows from the rear end side toward the front end side and further toward the inside of the outer tube 1. A fuel introduction pipe 3 is provided in the inner pipe 2, and reaches a combustion region 31 in which a flame is emitted on the tip side of the fuel introduction pipe 3 inside the extended inner pipe 2 in the outer pipe 1. In the combustion region 31, the fuel gas is burned by the combustion air to generate heat, and the combustion exhaust gas having heat is again cylindrical from the tip exhaust passage La formed between the outer tube 1 and the inner tube 2. It flows into the main body 4. The combustion exhaust gas is then heat-exchanged, and after preheating the combustion air from the above-described tip exhaust passage La through the first exhaust passage L1, the second exhaust passage L2, and the third exhaust passage L3, the cylindrical body 4 It is discharged outside.

したがって、燃焼用空気は、筒状本体4の先端側から後端側に至る長さのほぼ3倍の行程(1往復半)で燃焼排ガスと熱交換することができるので、熱交換効率を大きく高めることができ、簡単な構成の追加でさらに熱交換効率を高めることができた。   Therefore, the combustion air can exchange heat with the combustion exhaust gas in a stroke (one reciprocal half) of the length from the front end side to the rear end side of the cylindrical main body 4, so that the heat exchange efficiency is increased. The heat exchange efficiency could be further increased by adding a simple configuration.

なお、上述の実施形態ではラジアントチューブバーナに用いられる加熱装置用熱交換体を例に説明したが、外管1を備えず加熱炉等の炉内に直接臨むレキュペバーナの形態で用いることもできる。   In the above-described embodiment, the heat exchanger for a heating device used for the radiant tube burner has been described as an example.

本発明の加熱装置用熱交換体は、たとえば、浸炭などの工業用間接加熱において用いられるシングルエンドラジアントチューブバーナとして利用することができる。   The heat exchanger for a heating device of the present invention can be used as, for example, a single end radiant tube burner used in industrial indirect heating such as carburizing.

1 :外管
2 :内管
3 :燃料導入管
4 :筒状本体
5 :内ガイド管
6 :外箱
11 :外管フランジ部
21 :内管フランジ部
31 :燃焼領域
32 :ノズル部分
33 :燃料混合部
41 :空気導入口
42 :燃焼排ガス排出口
43 :放出口
44 :導入口
45 :筒状本体内壁
46 :第一熱交換壁
47 :第二熱交換壁
51 :内ガイド管フランジ部
61 :外箱内空間
A0 :給気流路
A1 :第一給気流路
A2 :第二給気流路
A3 :第三給気流路
L0 :排気流路
L1 :第一排気流路
L2 :第二排気流路
L3 :第三排気流路
W :炉壁
W1 :貫通孔
1: Outer pipe 2: Inner pipe 3: Fuel introduction pipe 4: Cylindrical body 5: Inner guide pipe 6: Outer box 11: Outer pipe flange part 21: Inner pipe flange part 31: Combustion region 32: Nozzle part 33: Fuel Mixing part 41: Air inlet 42: Combustion exhaust gas outlet 43: Release port 44: Inlet 45: Cylindrical main body inner wall 46: First heat exchange wall 47: Second heat exchange wall 51: Inner guide pipe flange part 61: Outer box inner space A0: Air supply flow path A1: First air supply flow path A2: Second air supply flow path A3: Third air supply flow path L0: Exhaust flow path L1: First exhaust flow path L2: Second exhaust flow path L3 : Third exhaust flow path W: Furnace wall W1: Through hole

Claims (3)

複数の伝熱管部材を用いて、内部に、燃焼用空気が流れる給気流路と、先端側に形成される燃焼領域からの燃焼排ガスが流れる排気流路とを区画して多重管構造に形成される加熱装置用熱交換体であって、
後端側に内部へ前記燃焼用空気の供給を受ける空気導入口を有するとともに、後端側に前記燃焼領域で発生する前記燃焼排ガスを外部へ排出する燃焼排ガス排出口とを有し、
前記給気流路は、
前記空気導入口から供給された前記燃焼用空気が前記後端側から前記先端側の方へ流れる第一給気流路と、
前記第一給気流路を流れた前記燃焼用空気が前記先端側から前記後端側の方へ流れる第二給気流路と、
前記第二給気流路を流れた前記燃焼用空気が前記後端側から前記先端側の方へ流れて前記先端側の前記燃焼領域に至る第三給気流路とを有し、
前記排気流路は、
前記燃焼領域で発生した前記燃焼排ガスが前記先端側から前記後端側の方へ流れる第一排気流路と、
前記第一排気流路を流れた前記燃焼排ガスが前記後端側から前記先端側の方へ流れる第二排気流路と、
前記第二排気流路を流れた前記燃焼排ガスが前記先端側から前記後端側の方へと流れて前記燃焼排ガス排出口に至る第三排気流路とを有し、
前記第三給気流路と前記第一排気流路とは、前記燃焼用空気と前記燃焼排ガスとが対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第一排気流路と前記第二排気流路とは、前記燃焼排ガス同士が対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第二排気流路と前記第二給気流路とは、前記燃焼排ガスと前記燃焼用空気とが対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第二給気流路と前記第三排気流路とは、前記燃焼用空気と前記燃焼排ガスとが並行流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接し、
前記第三排気流路と前記第一給気流路とは、前記燃焼排ガスと前記燃焼用空気とが対向流となるように、前記複数の伝熱管部材のうちの一つを挟んで隣接する加熱装置用熱交換体。
Using a plurality of heat transfer tube members, a multi-tube structure is formed by partitioning an air supply passage through which combustion air flows and an exhaust passage through which combustion exhaust gas from a combustion region formed at the front end side flows. A heat exchanger for a heating device,
The rear end side has an air introduction port for receiving the supply of combustion air to the inside, and the rear end side has a combustion exhaust gas discharge port for discharging the combustion exhaust gas generated in the combustion region to the outside,
The air supply channel is
A first air supply passage through which the combustion air supplied from the air inlet flows from the rear end side toward the front end side;
A second air supply passage through which the combustion air that has flowed through the first air supply passage flows from the front end side toward the rear end side;
The combustion air that has flowed through the second air supply channel has a third air supply channel that flows from the rear end side toward the front end side and reaches the combustion region on the front end side;
The exhaust passage is
A first exhaust passage through which the flue gas generated in the combustion region flows from the front end side toward the rear end side;
A second exhaust passage through which the flue gas flowing through the first exhaust passage flows from the rear end side toward the front end side;
The combustion exhaust gas that has flowed through the second exhaust flow path has a third exhaust flow path that flows from the front end side toward the rear end side to reach the combustion exhaust gas discharge port,
The third air supply passage and the first exhaust passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion air and the combustion exhaust gas are counterflowed,
The first exhaust flow path and the second exhaust flow path are adjacent to each other with one of the plurality of heat transfer tube members sandwiched between the combustion exhaust gases so as to face each other.
The second exhaust flow path and the second air supply flow path are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion exhaust gas and the combustion air are opposed to each other,
The second air supply passage and the third exhaust passage are adjacent to each other with one of the plurality of heat transfer tube members interposed therebetween so that the combustion air and the combustion exhaust gas are in parallel flow,
The third exhaust passage and the first air supply passage are adjacent to each other with one of the plurality of heat transfer tube members sandwiched so that the combustion exhaust gas and the combustion air are opposed to each other. Heat exchanger for equipment.
複数の伝熱管部材を用いて、内部に、燃焼用空気が流れる給気流路と、先端側に形成される燃焼領域からの燃焼排ガスが流れる排気流路とを区画して多重管構造に形成される加熱装置用熱交換体であって、
内管と、内ガイド管と、筒状本体とを備え、
前記内管の後端側外周面に内管フランジ部を備えるとともに、前記内ガイド管の先端側外周面に内ガイド管フランジ部を備えて、前記筒状本体内面側に、先端側から後端側に前記内ガイド管を挿通するとともに、前記内ガイド管の内面側に、後端側から先端側に前記内管を挿通した状態で、前記内管フランジ部と前記内ガイド管フランジ部との間に前記筒状本体を挟持する姿勢に配置され、
前記内管と内ガイド管との間に、前記燃焼領域で発生した前記燃焼排ガスが前記先端側から前記後端側の方へ流れる第一排気流路を形成し、
前記内ガイド管と前記筒状本体との間に、前記第一排気流路を流れた前記燃焼排ガスが前記後端側から前記先端側の方へ流れる第二排気流路を形成し、
前記筒状本体の内面と外面とに挟まれる厚み内に、前記第二排気流路を流れた前記燃焼排ガスが前記先端側から前記後端側の方へと流れて燃焼排ガス排出口に至る第三排気流路を熱交換壁で区画して形成するとともに、
前記筒状本体の厚み内で前記第三排気流路よりも外面側に、前記空気導入口から供給された前記燃焼用空気が前記後端側から前記先端側の方へ流れる第一給気流路を熱交換壁で区画して形成し、
前記筒状本体の厚み内で前記第三排気流路よりも内面側に、前記第一給気流路を流れた前記燃焼用空気が前記先端側から前記後端側の方へ流れる第二給気流路を熱交換壁で区画して形成し、
前記内管の内側に、前記第二給気流路を流れた前記燃焼用空気が前記後端側から前記先端側の方へ流れて前記先端側の前記燃焼領域に至る第三給気流路を形成してある加熱装置用熱交換体。
Using a plurality of heat transfer tube members, a multi-tube structure is formed by partitioning an air supply passage through which combustion air flows and an exhaust passage through which combustion exhaust gas from a combustion region formed at the front end side flows. A heat exchanger for a heating device,
An inner tube, an inner guide tube, and a cylindrical body;
An inner tube flange portion is provided on the outer peripheral surface of the rear end side of the inner tube, and an inner guide tube flange portion is provided on the outer peripheral surface of the distal end side of the inner guide tube. The inner guide tube is inserted through the inner guide tube, and the inner tube flange portion and the inner guide tube flange portion are inserted into the inner surface side of the inner guide tube from the rear end side to the distal end side. Arranged in a posture to sandwich the cylindrical body between,
Between the inner pipe and the inner guide pipe, the combustion exhaust gas generated in the combustion region forms a first exhaust passage that flows from the front end side toward the rear end side,
Between the inner guide pipe and the cylindrical body, the combustion exhaust gas that has flowed through the first exhaust flow path forms a second exhaust flow path that flows from the rear end side toward the front end side,
Within the thickness sandwiched between the inner surface and the outer surface of the cylindrical main body, the flue gas flowing through the second exhaust passage flows from the front end side toward the rear end side and reaches the flue gas exhaust port. Three exhaust passages are formed by partitioning with heat exchange walls,
A first air supply passage through which the combustion air supplied from the air inlet flows from the rear end side toward the tip end side on the outer surface side of the third exhaust passage within the thickness of the cylindrical main body. Is formed by partitioning with a heat exchange wall,
A second supply airflow in which the combustion air that has flowed through the first supply air flow path flows from the front end side toward the rear end side closer to the inner surface side than the third exhaust flow path within the thickness of the cylindrical main body The path is partitioned and formed by heat exchange walls,
Formed inside the inner pipe is a third air supply flow path in which the combustion air flowing through the second air supply flow path flows from the rear end side toward the front end side and reaches the combustion region on the front end side. Heat exchanger for heating device.
請求項1または2に記載の加熱装置用熱交換体を備え、前記燃焼領域を囲繞して先端側に突出し、前記燃焼領域からの前記燃焼排ガスを前記第一排気流路に導く外管を設けてあるとともに、前記燃焼領域に燃料ガスを供給する燃料導入管を設けてあるシングルエンドラジアントチューブバーナ。   A heat exchanger for a heating device according to claim 1 or 2, comprising an outer pipe that surrounds the combustion region and projects toward the front end side and guides the combustion exhaust gas from the combustion region to the first exhaust passage. And a single-end radiant tube burner provided with a fuel introduction pipe for supplying fuel gas to the combustion region.
JP2015017461A 2015-01-30 2015-01-30 Heat exchanger for heating device and single-end radiant tube burner Active JP6395626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015017461A JP6395626B2 (en) 2015-01-30 2015-01-30 Heat exchanger for heating device and single-end radiant tube burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017461A JP6395626B2 (en) 2015-01-30 2015-01-30 Heat exchanger for heating device and single-end radiant tube burner

Publications (2)

Publication Number Publication Date
JP2016142443A JP2016142443A (en) 2016-08-08
JP6395626B2 true JP6395626B2 (en) 2018-09-26

Family

ID=56570179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017461A Active JP6395626B2 (en) 2015-01-30 2015-01-30 Heat exchanger for heating device and single-end radiant tube burner

Country Status (1)

Country Link
JP (1) JP6395626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285418A (en) * 2019-07-26 2019-09-27 佛山市科皓燃烧设备制造有限公司 A kind of high efficency low NOx compact self preheating burner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208709A (en) * 1994-01-20 1995-08-11 Osaka Gas Co Ltd Heat exchanger for gas burner
JP2003307301A (en) * 2002-04-16 2003-10-31 Toho Gas Co Ltd Radiant tube burner
JP2005055083A (en) * 2003-08-05 2005-03-03 Osaka Gas Co Ltd Heat exchanger and combustion device provided with the same
JP2005326123A (en) * 2004-05-17 2005-11-24 Toho Gas Co Ltd Radiant tube burner
JP2006029638A (en) * 2004-07-13 2006-02-02 Toho Gas Co Ltd Radiant tube burner

Also Published As

Publication number Publication date
JP2016142443A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
KR101717097B1 (en) Heat exchanger
US20150204579A1 (en) Heat exchanger for use in a condensing gas-fired hvac appliance
CN107923653B (en) Heat exchanger
JP6395626B2 (en) Heat exchanger for heating device and single-end radiant tube burner
JP5164227B2 (en) burner
JP6725644B2 (en) Heat exchanger
JP2002021581A (en) Gas turbine device equipped with heat exchanger
KR101717092B1 (en) Heat exchanger
JP6821274B2 (en) Recuperator and radiant tube type heating device
JP2019128056A (en) Cylindrical heat exchanger
JP4961925B2 (en) Water heater
CN108518855B (en) Heat exchanger
US11454421B2 (en) Heat exchanger and water heating apparatus
KR101717093B1 (en) Heat exchanger
JP2019196855A5 (en)
JP5744672B2 (en) Steam superheater
KR101490975B1 (en) Heat exchanger of convection oven
RU2710884C1 (en) Mixing head of slot-type steam-gas generator
JP2012122706A (en) Single end type radiant tube burner
RU2698948C1 (en) Mixing head of slot-type steam and gas generator
JP4984782B2 (en) Water heater
JP2009041877A (en) Combustor piping, and combustor and gas appliance using the same
JP2004347230A (en) Combustion chamber of gas boiler
KR101532746B1 (en) A heat exchanging apparatus of pre-heater for vehicle
JP2000130981A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R150 Certificate of patent or registration of utility model

Ref document number: 6395626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150