JP6391149B2 - Radiation shielding composite film - Google Patents

Radiation shielding composite film Download PDF

Info

Publication number
JP6391149B2
JP6391149B2 JP2014110101A JP2014110101A JP6391149B2 JP 6391149 B2 JP6391149 B2 JP 6391149B2 JP 2014110101 A JP2014110101 A JP 2014110101A JP 2014110101 A JP2014110101 A JP 2014110101A JP 6391149 B2 JP6391149 B2 JP 6391149B2
Authority
JP
Japan
Prior art keywords
radiation shielding
resin
fiber
composite film
shielding composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014110101A
Other languages
Japanese (ja)
Other versions
JP2015224967A (en
Inventor
昭次 川口
昭次 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2014110101A priority Critical patent/JP6391149B2/en
Publication of JP2015224967A publication Critical patent/JP2015224967A/en
Application granted granted Critical
Publication of JP6391149B2 publication Critical patent/JP6391149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、例えば、原子力発電所、使用済核燃料再処理設備、陽子加速器等の原子力関連施設、放射線治療を行う医療現場、その他工業用・医療用放射線検査機等の放射線環境下において用いることができる放射線遮蔽複合膜に関し、特に放射線遮蔽水嚢用膜材として好適な放射線遮蔽複合膜に関する。   The present invention can be used in a radiation environment such as a nuclear power plant, a spent nuclear fuel reprocessing facility, a nuclear facility such as a proton accelerator, a medical site for performing radiation therapy, and other industrial / medical radiation inspection machines. More particularly, the present invention relates to a radiation shielding composite film suitable as a film material for radiation shielding water sacs.

近年、原子力発電所等の放射性物質を取り扱う施設においては、放射線遮蔽が行われているが、それらのほとんどはコンクリートや金属が遮蔽材として使用されている。例えばコンクリートの場合は、最低でも数十センチの厚みが必要とされるため、非常に重量が大きく、移動させることが困難であることより、恒久施設に用いられている。金属に関しても同様である。一時的に放射線遮蔽を行う場合や、場所を変更して遮蔽を行う場合は、コンクリートや金属の遮蔽材では、その高重量のため対応が困難である。   In recent years, facilities that handle radioactive materials such as nuclear power plants have been shielded against radiation, but most of them use concrete or metal as a shielding material. For example, in the case of concrete, a thickness of at least several tens of centimeters is required, so it is very heavy and difficult to move, so it is used for permanent facilities. The same applies to metals. When radiation shielding is performed temporarily or when shielding is performed at a different location, it is difficult to deal with concrete or metal shielding materials due to their high weight.

そこで検討されているのが、水を用いた放射線遮蔽である。水を放射線遮蔽材として利用したもので、必要な時は水嚢に水を注入してプール状の遮蔽材とし、不要な時は水を抜き出して軽量化し、移動も可能にする。このためには、大量の水を蓄える水嚢が必要である。   Therefore, radiation shielding using water is being studied. Water is used as a radiation shielding material. When necessary, water is poured into the water sac to form a pool-shaped shielding material, and when it is not necessary, the water is extracted to reduce the weight and enable movement. For this purpose, a water sac for storing a large amount of water is required.

ところが、放射線遮蔽には大量の水が必要とされるため、水嚢に用いる膜材は強力が高く、耐放射線性があり(すなわち、放射線下で劣化しない)、放射線遮蔽性能を備えていることが望ましい。通常、水嚢に用いる膜材としては、ナイロン製布帛の両面にクロロプレンゴムを施したゴム引布が挙げられるが、ナイロン、クロロプレンゴムともに耐放射線性に問題があり、高放射線下では短期間で劣化するので使用に耐えない。   However, since a large amount of water is required for radiation shielding, the membrane material used for the water sac is strong, radiation-resistant (that is, does not deteriorate under radiation), and has radiation shielding performance. Is desirable. Usually, the membrane material used for the water sacs is a rubberized cloth with chloroprene rubber on both sides of a nylon fabric, but both nylon and chloroprene rubber have problems with radiation resistance, and under high radiation, they can be used in a short period of time. Since it deteriorates, it cannot be used.

特許文献1〜5には、ゴムに重金属の粉末を混合した放射線遮蔽材が提案されている。特許文献1は塩素含有ゴムにタングステン粉末が混合され、特許文献2はエチレンプロピレンゴムとイソプレンゴムの重量比が所定の比率に設定されたゴムに酸化鉛粉末が混合され、特許文献3はフッ素ゴムにタングステン粉末が混合され、特許文献4はEPDMにタングステン粉末等が混合され、特許文献5はブチルゴムやポリイソブチレンゴムにタングステン粉末やタングステン化合物粉末が混合されている。   Patent Documents 1 to 5 propose radiation shielding materials in which heavy metal powder is mixed with rubber. Patent Document 1 is a mixture of chlorine-containing rubber with tungsten powder, Patent Document 2 is a mixture of ethylene propylene rubber and isoprene rubber with a predetermined weight ratio of lead oxide powder, and Patent Document 3 is a fluororubber. In Patent Document 4, tungsten powder or the like is mixed in EPDM, and in Patent Document 5, tungsten powder or tungsten compound powder is mixed in butyl rubber or polyisobutylene rubber.

しかしながら、これらの放射線遮蔽材は、放射線遮蔽材としての役割を果たすものの、多量の重金属粉末を含有するため引張強力が低く、満足する引張強力を得るためには厚みを極端に大きくする必要がある。例えば、特許文献1に記載された実施例3のゴム組成物は、引張試験による引張強さが3.13MPaとなっており、大きな水嚢として使用するには強力が低すぎる。水嚢用の膜材として必要な強力を500N/30mmと見積ると、3.13MPaのゴム組成物を用いた場合、その厚みは5mm以上となり、さらに比重が12.8であるので、1m当たりの重さは64kg以上となる。この膜材を用いた場合には水嚢自体が重くなり、移動の容易性が損なわれる。また、ゴム組成物の伸びが85%と低く変形への追随性が乏しいので、水漏れの恐れもある。 However, although these radiation shielding materials play a role as radiation shielding materials, they contain a large amount of heavy metal powder, so the tensile strength is low, and in order to obtain a satisfactory tensile strength, it is necessary to increase the thickness extremely. . For example, the rubber composition of Example 3 described in Patent Document 1 has a tensile strength of 3.13 MPa according to a tensile test and is too low in strength to be used as a large water sacs. Is estimated as 500 N / 30 mm strong need as a membrane material for Suino, when using the rubber composition of 3.13MPa, the thickness becomes more than 5 mm, since more specific gravity is 12.8, 1 m 2 per Will weigh more than 64kg. When this membrane material is used, the water sacs themselves become heavy and the ease of movement is impaired. Further, since the elongation of the rubber composition is as low as 85% and the followability to deformation is poor, there is a risk of water leakage.

また、特許文献6には、繊維布帛の両面に軟質塩ビによる熱可塑性樹脂被覆層を形成した人工堰用複合チューブ材料が提案されているが、このようなチューブ材料は、使用されている樹脂の耐放射線性に問題があるので、高放射線下では使用できない。   Further, Patent Document 6 proposes a composite tube material for artificial weir in which a thermoplastic resin coating layer made of soft vinyl chloride is formed on both surfaces of a fiber fabric. Such a tube material is made of the resin used. There is a problem with radiation resistance, so it cannot be used under high radiation.

特許文献1等に記載された放射線遮蔽ゴム組成物を用いて、繊維布帛のゴム引き布を作製し、放射線遮蔽複合膜とすることも考えられる、しかし、タングステン粉末等を多量に含むゴム組成物は、繊維布帛との接着性が極端に悪いため、水嚢用に好適な機密性がある複合膜が得られない問題がある。   It is also conceivable to produce a rubberized cloth of a fiber fabric by using the radiation shielding rubber composition described in Patent Document 1 and the like to form a radiation shielding composite film, but a rubber composition containing a large amount of tungsten powder or the like. Has an extremely poor adhesive property with a fiber fabric, and there is a problem that a confidential composite film suitable for water sacs cannot be obtained.

特開2003−96240等公報JP 2003-96240 A 特開平8−110393号公報Japanese Patent Laid-Open No. 8-110393 特許第3557864号公報Japanese Patent No. 3555764 特許第3949509号公報Japanese Patent No. 3949509 特開2013−242270号公報JP2013-242270A 特開2004−197552号公報JP 2004-197552 A

本発明は、かかる従来技術の背景に鑑み、放射線環境下において使用する放射遮蔽水嚢用膜材として使用した際に大量の水を保持することができる高強力、軽量、かつ、耐放射線性及び放射線遮蔽性に優れる膜材を提供することを課題とする。   In view of the background of such prior art, the present invention is a high-strength, lightweight, radiation-resistant and capable of retaining a large amount of water when used as a membrane material for radiation shielding water sacs used in a radiation environment. It is an object to provide a film material having excellent radiation shielding properties.

上記課題を解決すべく、高強力かつ耐放射線性及び放射線遮蔽性に優れる膜材を検討した結果、強力の高い繊維布帛の少なくとも片面に樹脂被覆層を形成してゴム引き布とし、さらに該ゴム引き布にタングステン等を含む放射線遮蔽樹脂層を積層し、該放射線遮蔽樹脂層の厚みとゴム引き布との厚み比を特定の範囲にしたところ、意外にもかかる課題を一挙に解決できることを見出し、本発明を完成させるに至った。   As a result of investigating a film material having high strength and excellent radiation resistance and radiation shielding properties in order to solve the above problems, a resin coating layer is formed on at least one surface of a high strength fiber fabric to form a rubberized cloth, and the rubber When a radiation shielding resin layer containing tungsten or the like is laminated on the pulling cloth and the thickness ratio of the radiation shielding resin layer to the rubberized cloth is in a specific range, it has been found that unexpected problems can be solved at once. The present invention has been completed.

すなわち、本発明は、繊維布帛を基布として含み、その少なくとも片面に熱可塑性樹脂及びエラストマーの少なくとも1つを含む樹脂被覆層が形成され、該樹脂被覆層に放射線遮蔽樹脂層が積層されてなる放射線遮蔽複合膜であって、該放射線遮蔽樹脂層の厚みが、1mm〜10mmであり、かつ、樹脂被覆した繊維布帛の厚みの1.2倍〜20倍の範囲であることを特徴とする放射線遮蔽複合膜を提供する。
That is, the present invention includes a fiber fabric as a base fabric, a resin coating layer including at least one of a thermoplastic resin and an elastomer is formed on at least one surface thereof, and a radiation shielding resin layer is laminated on the resin coating layer. A radiation shielding composite film, wherein the radiation shielding resin layer has a thickness of 1 mm to 10 mm and is 1.2 to 20 times the thickness of the resin-coated fiber fabric. A shielding composite membrane is provided.

本発明の放射線遮蔽複合膜は、軽量で高い引張強力を有し、水嚢に用いる際の加工性や成形性が良好であり、放射線で被覆樹脂が劣化したり亀裂が生じたりすることがないので、高放射線下で使用される大型水嚢用の膜材として好適である。特に、原子力発電所の原子炉からの放射線を遮蔽する際に、移動式遮蔽材として使用される放射線遮蔽水嚢用の膜材として好適である。   The radiation shielding composite film of the present invention is lightweight and has high tensile strength, has good workability and moldability when used for a water sacs, and does not cause coating resin deterioration or cracking due to radiation. Therefore, it is suitable as a membrane material for large water sacs used under high radiation. In particular, it is suitable as a film material for radiation shielding water sacs used as a mobile shielding material when shielding radiation from a nuclear power plant reactor.

本発明の放射線遮蔽複合膜の積層構成例を説明する説明図である。It is explanatory drawing explaining the laminated structural example of the radiation shielding composite film of this invention.

本発明の放射線遮蔽複合膜は、繊維布帛、熱可塑性樹脂及びエラストマーの少なくとも1つを含む樹脂被覆層、放射線遮蔽樹脂層が積層されて形成される。図1に、好ましい積層構成例を示す。1は放射線遮蔽複合膜、11は繊維布帛、12は樹脂被覆層、20は放射線遮蔽樹脂層である。   The radiation shielding composite film of the present invention is formed by laminating a fiber coating, a resin coating layer containing at least one of a thermoplastic resin and an elastomer, and a radiation shielding resin layer. FIG. 1 shows a preferred laminated configuration example. 1 is a radiation shielding composite film, 11 is a fiber fabric, 12 is a resin coating layer, and 20 is a radiation shielding resin layer.

本発明の放射線遮蔽複合膜の好ましい用途例として、放射線遮蔽水嚢がある。とりわけ、原子力発電所の原子炉上部の放射線遮蔽コンクリートの代わりに設置する放射線遮蔽用水嚢に好適である。原子力発電所の原子炉は通常格納容器に収められており、放射線が外部に漏れないように2重、3重に遮蔽されている。原子炉格納容器の外側は分厚いコンクリートで囲まれており、建屋の他の部屋への放射線漏洩を防いでいる。とりわけ、格納容器の上部は原子炉内の燃料棒を出し入れするため、分割されたコンクリートが用いられている。しかし、分割されているとは言え、かなりの重量であり、そう簡単に移動できる物ではない。そこで、遮蔽コンクリートの一部を取り外し、そこに放射線遮蔽用水嚢を取り付け、水嚢に水を張ることによって十分な放射線遮蔽を行うことが可能である。原子炉格納容器の内容物を取り出す際は水嚢の水を抜き、空の水嚢を移動させて十分な取り出し用の空間を得ることができる。取り出し終了後は、また、水嚢に水を注入して膨らませればよいので、大きな重機を使用することなく遮蔽、非遮蔽を切り替えることができ、大変有効である。   A preferable application example of the radiation shielding composite film of the present invention is a radiation shielding water sacs. In particular, it is suitable for a radiation shielding water sac installed in place of radiation shielding concrete at the upper part of a nuclear power plant nuclear reactor. A nuclear power plant reactor is usually housed in a containment vessel and is shielded in double and triple so that radiation does not leak outside. The outside of the reactor containment vessel is surrounded by thick concrete to prevent radiation leakage to other rooms in the building. In particular, the upper part of the containment vessel uses divided concrete for taking in and out fuel rods in the reactor. However, even though it is divided, it is quite heavy and not so easy to move. Therefore, it is possible to perform sufficient radiation shielding by removing a part of the shielding concrete, attaching a radiation shielding water sacks thereto, and filling the water sacs with water. When taking out the contents of the reactor containment vessel, the water bladder can be drained and the empty water bladder can be moved to obtain a sufficient space for removal. After the removal is completed, it is sufficient to inject water into the water sac to inflate it, so that shielding and non-shielding can be switched without using a large heavy machine, which is very effective.

本発明の放射線遮蔽複合膜では、繊維布帛の少なくとも片面に樹脂被覆層を形成し、それに積層する放射線遮蔽樹脂層の厚みを、繊維布帛と樹脂被覆層の合計厚の1.2倍〜20倍にした点に特徴がある。該放射線遮蔽樹脂層の厚みが大きいほど放射線遮蔽効果が向上するが、後記する繊維布帛及び樹脂被覆層の一般的な厚み(約1,000μm以下)を考慮すると、20倍(2cm)を超える場合は、膜材の変形への追随性が乏しくなり水嚢用の膜材として適さなくなる。一方、放射線遮蔽樹脂層による放射線遮蔽能や膜材の使用環境を考慮すると、1.2倍未満では放射線遮蔽効果が不十分となる恐れがある。放射線遮蔽能と変形への追随性のバランスの観点より、放射線遮蔽樹脂層の厚みは、繊維布帛と樹脂被覆層の合計厚に対し、より好ましくは2〜15倍、さらに好ましくは3〜10倍とするのがよい。   In the radiation shielding composite film of the present invention, a resin coating layer is formed on at least one surface of the fiber fabric, and the thickness of the radiation shielding resin layer laminated thereon is 1.2 to 20 times the total thickness of the fiber fabric and the resin coating layer. There is a feature in the point. When the thickness of the radiation shielding resin layer is larger, the radiation shielding effect is improved. However, in consideration of a general thickness (about 1,000 μm or less) of a fiber fabric and a resin coating layer described later, the radiation shielding resin layer exceeds 20 times (2 cm). Is not suitable as a membrane material for water sacs due to poor follow-up to deformation of the membrane material. On the other hand, when considering the radiation shielding ability by the radiation shielding resin layer and the use environment of the film material, the radiation shielding effect may be insufficient when the ratio is less than 1.2 times. From the viewpoint of a balance between radiation shielding ability and followability to deformation, the thickness of the radiation shielding resin layer is more preferably 2 to 15 times, more preferably 3 to 10 times the total thickness of the fiber fabric and the resin coating layer. It is good to do.

次に、本発明の放射線遮蔽複合膜の構成及び製造方法について説明する。   Next, the structure and manufacturing method of the radiation shielding composite film of the present invention will be described.

本発明において、繊維布帛は放射線遮蔽複合膜の基布となることより、JIS L 1096:2010「織物及び編物の生地試験方法」8.14.1 JIS法 A法(ストリップ法)による引張強さが500N/30mm以上の高強力繊維布帛が、好ましく用いられる。繊維布帛の引張強さが前記の値以上であれば、大型水嚢用膜材として十分である。繊維布帛としては、織物、編物、状物、ハニカム状物から選ばれた少なくとも1種の組織で構成されたものが好ましく、特に強度の点より織物やハニカム状物が好ましく用いられる。織組織は特に限定されないが、平織、斜文織、朱子織等が好ましい。
In the present invention, the fiber fabric serves as the base fabric of the radiation shielding composite film, so that the tensile strength according to JIS L 1096: 2010 “Fabric and knitted fabric test method” 8.14.1 JIS method A method (strip method). Is preferably a high-strength fiber fabric having 500 N / 30 mm or more. If the tensile strength of the fiber fabric is not less than the above value, it is sufficient as a membrane material for a large water sacs. The fiber fabrics, woven, knitted, mesh-like material are preferably those composed of at least one tissue selected from the honeycomb-like material, textile or honeycomb-like material is preferably used from the particular intensity points. The weaving structure is not particularly limited, but plain weaving, oblique weaving, satin weaving and the like are preferable.

繊維布帛を構成する繊維としては、強力の高い繊維布帛を形成できる繊維が好ましく、ナイロン繊維、ポリエステル繊維等の汎用繊維や、高強度繊維等を挙げることができる。できるだけ大きな水嚢として使用するためには、JIS L 1013:2010「化学繊維フィラメント糸試験方法」に基づく引張強さが15cN/dtex以上の高強度繊維が含まれていることが好ましい。   The fiber constituting the fiber fabric is preferably a fiber capable of forming a fiber fabric having high strength, and examples thereof include general-purpose fibers such as nylon fibers and polyester fibers, and high-strength fibers. In order to use as a water sac as large as possible, it is preferable that high strength fibers having a tensile strength of 15 cN / dtex or more based on JIS L 1013: 2010 “Chemical Fiber Filament Yarn Test Method” are included.

上記の高強度繊維としては、例えば、アラミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、ポリケトン繊維、ポリパラフェニレンベンズビスオキサゾール繊維、高強度ポリエチレン繊維、全芳香族ポリエステル繊維が挙げられ、これらの高強度繊維からなる群より選ばれた少なくとも1種を用いることができる。耐放射線性に優れる点より、特に好ましいのはアラミド繊維である。アラミド繊維は、メタ系アラミド繊維とパラ系アラミド繊維のいずれも使用できるが、引張強さに優れる点よりパラ系アラミド繊維が好ましい。かかるパラ系アラミド繊維としては、ポリパラフェニレンテレフタルアミド繊維(東レ・デュポン社製、商品名「ケブラー」(登録商標))、コポリパラフェニレン−3,4’−ジフェニルエーテルテレフタルアミド繊維(帝人テクノプロダクツ社製、商品名「テクノーラ」)等がある。   Examples of the high-strength fibers include aramid fibers, carbon fibers, glass fibers, boron fibers, ceramic fibers, polyketone fibers, polyparaphenylenebenzbisoxazole fibers, high-strength polyethylene fibers, and wholly aromatic polyester fibers. At least one selected from the group consisting of these high-strength fibers can be used. Aramid fibers are particularly preferred from the viewpoint of excellent radiation resistance. As the aramid fiber, either a meta-aramid fiber or a para-aramid fiber can be used, but para-aramid fibers are preferred from the viewpoint of excellent tensile strength. Examples of such para-aramid fibers include polyparaphenylene terephthalamide fiber (manufactured by Toray DuPont, trade name “Kevlar” (registered trademark)), copolyparaphenylene-3,4′-diphenyl ether terephthalamide fiber (Teijin Techno Products) Product name "Technora").

特に好ましい繊維布帛として、パラ系アラミド繊維(商品名ケブラー)を用いた織物を挙げることができる。所定の引張強さを得るには、織物の目付は100g/m以上の品番が望ましく、例えば、品番732(目付109g/m)、品番728(目付224g/m)、品番710(目付314g/m)等が好適である。軽量性の点で、織物の目付は500g/m以下が望ましい。 As a particularly preferable fiber fabric, a fabric using para-aramid fiber (trade name: Kevlar) can be exemplified. To obtain a predetermined tensile strength, basis weight of the fabric 100 g / m 2 or more part is desirable, for example, part number 732 (basis weight 109 g / m 2), No. 728 (basis weight 224 g / m 2), No. 710 (basis weight 314 g / m 2 ) and the like are preferable. In terms of lightness, the fabric weight is preferably 500 g / m 2 or less.

繊維布帛を構成する繊維の繊度は、強力の観点からはできるだけ太いものが良いが、太すぎると布帛への加工性に劣るのであまりに太い繊維は適さない。一方、経済的な観点から、繊維の繊度は220dtex以上が好適である。好ましい繊度は220〜8,000dtex、より好ましい繊度は、220〜6,300dtexである。   The fineness of the fibers constituting the fiber fabric is preferably as thick as possible from the viewpoint of strength, but if it is too thick, the processability into the fabric is inferior, so that too thick fibers are not suitable. On the other hand, the fiber fineness is preferably 220 dtex or more from the economical viewpoint. A preferred fineness is 220 to 8,000 dtex, and a more preferred fineness is 220 to 6,300 dtex.

本発明の放射線遮蔽複合膜では、基布となる繊維布帛の少なくとも片面に、熱可塑性樹脂及びエラストマーの少なくとも1つを含む樹脂被覆層を形成し、樹脂被覆した繊維布帛を得る。気密性(水漏れ防止)の観点より繊維布帛の両面を被覆するのがよい。熱可塑性樹脂やエラストマーで繊維布帛の片面もしくは両面を被覆することにより、放射線遮蔽樹脂層と樹脂被覆した繊維布帛との積層で高強力の膜材が得られるだけでなく、当該膜材の気密性が高まり、変形への追随性も向上する。繊維布帛に樹脂被覆層を形成し、樹脂被覆布帛を得る方法として、例えば、以下のような方法を挙げることができる   In the radiation shielding composite film of the present invention, a resin coating layer containing at least one of a thermoplastic resin and an elastomer is formed on at least one surface of a fiber fabric serving as a base fabric to obtain a resin-coated fiber fabric. It is preferable to cover both sides of the fiber fabric from the viewpoint of airtightness (preventing water leakage). By coating one or both sides of the fiber fabric with a thermoplastic resin or elastomer, not only a high strength membrane material can be obtained by laminating the radiation shielding resin layer and the resin-coated fiber fabric, but also the airtightness of the membrane material. And follow-up to deformation is improved. Examples of a method for forming a resin coating layer on a fiber fabric to obtain a resin coated fabric include the following methods.

すなわち、一般的なゴム引き布作製方法を適用して、繊維布帛の片面もしくは両面にペースト状塩ビ組成物ゾルをコーティングして付着させ、これを加熱ゲル化して樹脂被覆層を形成する。あるいは、エラストマーを溶剤に溶かして布帛に塗布し、カレンダーロールでトッピング加工(シート状に圧延)し、その後に加熱して加硫させ、製造する方法でもよい。また、繊維布帛の少なくとも片面、好ましくは両面に伸縮性のある熱可塑性樹脂もしくは熱可塑性エラストマーのフィルム・シートを重ね合わせ、それらを熱可塑性樹脂もしくは熱可塑性エラストマーの融点以上の温度で、熱プレスロール等を使用して熱融着させて複合化する方式、あるいは、高周波ウェルダーを使用して融着させて複合化する方式等でもよい。   That is, a general rubberized cloth manufacturing method is applied to coat and adhere a paste-like vinyl chloride composition sol on one or both sides of a fiber cloth, and this is heated and gelled to form a resin coating layer. Alternatively, a method may be used in which an elastomer is dissolved in a solvent, applied to a fabric, topped with a calender roll (rolled into a sheet), and then heated for vulcanization to produce. Further, a stretchable thermoplastic resin or thermoplastic elastomer film or sheet is superposed on at least one surface, preferably both surfaces, of the fiber fabric, and they are heated at a temperature equal to or higher than the melting point of the thermoplastic resin or thermoplastic elastomer. Or the like may be combined by thermal fusion using a high-frequency welder, or may be combined by fusion using a high-frequency welder.

熱可塑性樹脂及びエラストマーとしては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、塩化ビニル樹脂、ナイロン6樹脂、ナイロン6−6樹脂、ナイロン6−10樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、フッ素樹脂、ポリウレタン樹脂、アイオノマー樹脂及びこれらの樹脂の変性樹脂等の熱可塑性樹脂;ポリウレタン系エラストマー、ポリエステル系エラストマー、スチレン系エラストマー、オレフィン系エラストマー、ナイロン系エラストマー、塩ビ系エラストマー、ブタジエン系エラストマー、天然ゴム、合成ゴム等のエラストマーが挙げられる。これらの熱可塑性樹脂やエラストマーは、それぞれ1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the thermoplastic resin and elastomer include polyethylene resin, polypropylene resin, polystyrene resin, vinyl chloride resin, nylon 6 resin, nylon 6-6 resin, nylon 6-10 resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, poly Thermoplastic resins such as butylene terephthalate resin, polyphenylene ether resin, polyether ether ketone resin, polyetherimide resin, polysulfone resin, fluororesin, polyurethane resin, ionomer resin and modified resins of these resins; polyurethane elastomers, polyester elastomers , Styrene elastomer, olefin elastomer, nylon elastomer, vinyl chloride elastomer, butadiene elastomer, natural rubber, synthetic rubber Elastomers and the like. Each of these thermoplastic resins and elastomers may be used alone or in combination of two or more.

上記の熱可塑性樹脂及びエラストマーのうち、JIS K 7127:1999「プラスチック−引張特性の試験方法」に準じて測定した破断時の伸び率が、100%以上のものが好ましく、より好ましくは150%以上、さらに好ましくは300%以上の材料である。伸縮性の高い材料を用いることにより、水の注入や移動によって水嚢の形状が変形した際に樹脂被覆層に亀裂が発生し、膜材の気密性が低下することを防止できる。好ましい材料は、塩化ビニル、エラストマーであり、特に好ましい材料は、塩化ビニル、クロロスルホン化ポリエチレン(商品名ハイパロン)、ポリクロロプレン(商品名ネオプレン)、EPDMゴム、ポリウレタン系エラストマー等である。   Among the thermoplastic resins and elastomers described above, those having an elongation at break of 100% or more measured according to JIS K 7127: 1999 “Plastics—Test Method for Tensile Properties” are preferred, more preferably 150% or more. More preferably, the material is 300% or more. By using a highly stretchable material, it is possible to prevent the resin coating layer from cracking when the shape of the water sac is deformed by water injection or movement, thereby reducing the airtightness of the membrane material. Preferred materials are vinyl chloride and elastomer, and particularly preferred materials are vinyl chloride, chlorosulfonated polyethylene (trade name Hypalon), polychloroprene (trade name Neoprene), EPDM rubber, polyurethane elastomer and the like.

樹脂被覆層の厚みは、水嚢としての機密性を確保するためには片面が200μm以上必要であるが、一方で軽量化のためには、片面が1,000μm以下が良い。好ましい厚みは、300μm〜800μmの範囲である。樹脂被覆布帛の厚みは、400μm〜2mmが好ましく、より好ましくは400μm〜1.5mmである。厚みが400μm未満の場合は基布となる繊維布帛の樹脂被覆率が低下する恐れがあり、一方、2mmを超える場合は、樹脂やエラストマーの種類にもよるが、膜材の変形に対する追随性及び加工性・成形性が低下する恐れがある。   As for the thickness of the resin coating layer, one side is required to be 200 μm or more in order to secure confidentiality as a water sac, but on the other hand, one side is preferably 1,000 μm or less for weight reduction. A preferred thickness is in the range of 300 μm to 800 μm. The thickness of the resin-coated fabric is preferably 400 μm to 2 mm, more preferably 400 μm to 1.5 mm. If the thickness is less than 400 μm, the resin coverage of the fiber fabric serving as the base fabric may be reduced. On the other hand, if the thickness exceeds 2 mm, depending on the type of resin or elastomer, There is a risk that processability and formability will be reduced.

放射線遮蔽樹脂層に用いる樹脂は、上記の樹脂被覆層と同じ種類のものでも異なった種類のものでもよい。樹脂層同士の接着性の観点からは、同種の樹脂を使用する方がよい。また、放射線遮蔽材としては、公知のタングステン粉末、タングステン化合物粉末、酸化鉛粉末等が挙げられるが、これらの中でも加工性が良好な点より、タングステン粉末が好適である。   The resin used for the radiation shielding resin layer may be the same type as that of the resin coating layer or a different type. From the viewpoint of adhesion between the resin layers, it is better to use the same kind of resin. Examples of the radiation shielding material include known tungsten powders, tungsten compound powders, lead oxide powders, and the like. Among these, tungsten powders are preferable from the viewpoint of good workability.

放射線遮蔽樹脂層は、特許文献1〜5等に記載されている公知の方法で得ることができる。例えば、適度の径のロールにクロロスルホン化ポリエチレン(商品名ハイパロン)等を巻き付け、徐々にタングステン粉末を加えて十分に混合し、これに加硫剤、活性剤、及び加硫促進剤を加えて混合して放射線遮蔽樹脂とし、加熱プレスを用いて適度の厚みに調整することができる。   The radiation shielding resin layer can be obtained by a known method described in Patent Documents 1 to 5 and the like. For example, chlorosulfonated polyethylene (trade name Hypalon) or the like is wrapped around a roll of moderate diameter, and tungsten powder is gradually added and mixed thoroughly, and then a vulcanizing agent, an activator, and a vulcanization accelerator are added. It can be mixed to obtain a radiation shielding resin and adjusted to an appropriate thickness using a heating press.

放射線遮蔽樹脂層の厚みは、使用環境の放射線照射量によって異なってくるが、放射線遮蔽複合膜を使用した水嚢の取り扱い易さを勘案すると、mm〜10mmが好ましく、より好ましくは1mm〜5mmである。 The thickness of the radiation shielding resin layer varies depending on the radiation dose in the usage environment, but taking into account the ease of handling a water sac using a radiation shielding composite film, 1 mm to 10 mm is preferable, more preferably 1 mm to 5 mm. It is.

また、樹脂被覆層を形成した繊維布帛と放射線遮蔽樹脂層との積層は、種々の方法で実施でき、例えば、ゴム用の接着剤を用いて接着する方法、強度の高い糸を用いて縫い合わせる方法等が挙げられる。縫い目はシール材で水漏れ防止処理をしておくことが望ましい。   In addition, the fiber cloth formed with the resin coating layer and the radiation shielding resin layer can be laminated by various methods, for example, a method of bonding using a rubber adhesive, a method of sewing using a high-strength thread. Etc. It is desirable that the seam be treated to prevent water leakage with a sealing material.

以下実施例および比較例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。放射線遮蔽複合膜の評価は以下の方法によった。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples. The radiation shielding composite film was evaluated by the following method.

(目付)
JIS K 6404−2−2「ゴム引布・プラスチック引布試験方法」に基づいて、1m当たりの複合膜の質量を測定した。
(Weight)
Based on JIS K 6404-2-2 “Testing method for rubber and plastics”, the mass of the composite film per 1 m 2 was measured.

(厚み)
JIS K 6404−2−3「ゴム引布・プラスチック引布試験方法」に基づいて、厚さを測定した。
(Thickness)
The thickness was measured based on JIS K 6404-2-3 “Testing Method for Rubber and Plastic”.

(耐放射線性の評価)
耐放射線性の評価については、シート状の放射線遮蔽複合膜に放射線を照射した後、放射線遮蔽樹脂層を除去して、樹脂被覆された繊維布帛の引張試験を行って、放射線照射前後の引張強力を比較評価した。放射線照射は室温(空気中)にてγ線(Co 60)を照射し、累積吸収線量10kGyで照射完了とした。
照射後の強力が照射前の半分以下であれば×、50%〜70%の強力を保持していれば△、70%以上であれば○とランク付けした。
(Evaluation of radiation resistance)
Regarding the evaluation of radiation resistance, after irradiating the sheet-shaped radiation shielding composite film with radiation, the radiation shielding resin layer is removed, and a tensile test of the resin-coated fiber fabric is performed to determine the tensile strength before and after the radiation irradiation. Were comparatively evaluated. The irradiation was performed by irradiating γ rays (Co 60) at room temperature (in the air) and completing the irradiation with a cumulative absorbed dose of 10 kGy.
If the strength after irradiation was less than half that before irradiation, it was rated as x, if it was holding 50% to 70% strength, Δ, and if it was 70% or more, it was rated as ○.

[実施例1]
繊維布帛として、ケブラー繊維織物 品番710(繊維:ケブラーK29、繊度:1670dtex、織り密度:24本/インチ×24本/インチ、目付:319g/m、厚さ:0.43mm)を用いた。
この繊維布帛の両面に、ペースト塩ビ組成物ゾル(組成:ペースト塩ビ100質量部、フタル酸エステル系可塑剤60質量部、Ba−Zn系複合安定剤2質量部、エポキシ大豆油3重量部、Ca系充填剤10質量部、架橋剤2質量部、白顔料2質量部)を均一にナイフコーティングし、これを170℃で加熱ゲル化して両面樹脂被覆した繊維強化布帛を得た。
この樹脂被覆布帛の目付は770g/m、厚さが0.7mm、引張強力はタテ方向が4,900N/インチ、ヨコ方向が5,300N/インチであった。
[Example 1]
As the fiber fabric, Kevlar fiber fabric No. 710 (fiber: Kevlar K29, fineness: 1670 dtex, weaving density: 24 / inch × 24 / inch, basis weight: 319 g / m 2 , thickness: 0.43 mm) was used.
On both sides of this fiber fabric, paste vinyl chloride composition sol (composition: paste vinyl chloride 100 parts by mass, phthalate ester plasticizer 60 parts by mass, Ba-Zn composite stabilizer 2 parts by mass, epoxy soybean oil 3 parts by mass, Ca 10 parts by mass of a system filler, 2 parts by mass of a crosslinking agent, and 2 parts by mass of a white pigment) were uniformly coated with a knife and gelled by heating at 170 ° C. to obtain a fiber-reinforced fabric coated with a double-sided resin.
The basis weight of this resin-coated fabric was 770 g / m 2 , the thickness was 0.7 mm, and the tensile strength was 4,900 N / inch in the vertical direction and 5,300 N / inch in the horizontal direction.

放射線遮蔽樹脂層を以下の方法で作製した。8インチロールにクロロスルホン化エチレン(商品名ハイパロン40)300質量部を巻き付け、徐々にタングステン粉末(タングステンD100、粒度7.6〜12μm)を9,000質量部加えて十分に混合し、加硫剤としてペンタエリスリトール7重量部、活性剤である酸化マグネシウム9質量部、および加硫促進剤であるジペンタメチレンチウラムテトラスルフィド4質量部を加え、十分に混合した。この組成物をロールよりシート状にして取り出し、温度:160℃、圧力:20MPaで20分間プレスし、厚さ1mmのシート状成形体を得た。放射線遮蔽樹脂層の目付は1,270g/mであった。 A radiation shielding resin layer was produced by the following method. Wrap 300 parts by mass of chlorosulfonated ethylene (trade name Hypalon 40) on an 8-inch roll, gradually add 9,000 parts by mass of tungsten powder (tungsten D100, particle size 7.6 to 12 μm), and mix well, then vulcanize As an agent, 7 parts by weight of pentaerythritol, 9 parts by weight of magnesium oxide as an activator, and 4 parts by weight of dipentamethylene thiuram tetrasulfide as a vulcanization accelerator were added and mixed thoroughly. This composition was taken out from the roll in the form of a sheet and pressed at a temperature of 160 ° C. and a pressure of 20 MPa for 20 minutes to obtain a sheet-like molded body having a thickness of 1 mm. The basis weight of the radiation shielding resin layer was 1,270 g / m 2 .

最後に放射線遮蔽樹脂層と樹脂被覆布帛とを積層した。積層はゴム用接着剤を用いて貼り合わせ、さらにケブラー繊維製の縫い糸で縫製して行った。縫い目には水漏れしないよう、シールテープを貼っておいた。このようにして得られた放射線遮蔽複合膜は、厚さ:1.7mm、目付:2,040g/mであった。 Finally, a radiation shielding resin layer and a resin-coated fabric were laminated. Lamination was carried out by laminating with a rubber adhesive and further sewing with a kevlar fiber sewing thread. Sealing tape was put on the seams to prevent water leakage. The radiation shielding composite film thus obtained had a thickness of 1.7 mm and a basis weight of 2,040 g / m 2 .

[実施例2]
繊維布帛として、ケブラー繊維織物 品番732(繊維:ケブラーK29、繊度440dtex、織り密度:32本/インチ×32本/インチ、目付:109g/m、厚さ:0.15mm)を用いた。
この繊維布帛の両面を、実施例1と同様の条件で樹脂被覆し、両面樹脂被覆した繊維強化布帛を得た。この樹脂被覆布帛の目付は560g/m、厚さが0.42mm、引張強力はタテ方向が2,000N/インチ、ヨコ方向が2,000N/インチであった。
実施例1と同様にして作製した放射線遮蔽樹脂層を、実施例1と同様の方法で、樹脂被覆布帛と積層した。
このようにして得られた放射線遮蔽複合膜は、厚さ:1.42mm、目付:1,830g/mであった。
[Example 2]
As the fiber fabric, Kevlar fiber woven product No. 732 (fiber: Kevlar K29, fineness 440 dtex, weaving density: 32 / inch × 32 / inch, basis weight: 109 g / m 2 , thickness: 0.15 mm) was used.
Both sides of this fiber fabric were resin-coated under the same conditions as in Example 1 to obtain a fiber-reinforced fabric coated with both sides of the resin. The basis weight of this resin-coated fabric was 560 g / m 2 , the thickness was 0.42 mm, and the tensile strength was 2,000 N / inch in the vertical direction and 2,000 N / inch in the horizontal direction.
A radiation shielding resin layer produced in the same manner as in Example 1 was laminated with a resin-coated fabric in the same manner as in Example 1.
The radiation shielding composite film thus obtained had a thickness of 1.42 mm and a basis weight of 1,830 g / m 2 .

[実施例3]
繊維布帛として、ポリエステル(PET)フィラメント使いの織物(繊度:1,660dtex、織り密度:タテ21本/インチ、ヨコ19本/インチ、目付:215g/m)を用いた。
この繊維布帛の両面を、実施例1と同様の条件で樹脂被覆し、両面樹脂被覆した繊維布帛を得た。この樹脂被覆布帛の目付は670g/m、厚さが0.6 mm、引張強力はタテ方向が2,370N/インチ、ヨコ方向が2,120N/インチであった。
実施例1と同様にして作製した放射線遮蔽樹脂層を、実施例1と同様の方法で、樹脂被覆布帛と積層した。
このようにして得られた放射線遮蔽複合膜は、厚さ:1.67mm、目付:1,940g/mであった。
[Example 3]
A woven fabric (fineness: 1,660 dtex, weaving density: vertical 21 pieces / inch, horizontal 19 pieces / inch, basis weight: 215 g / m 2 ) using polyester (PET) filaments was used as the fiber fabric.
Both surfaces of this fiber fabric were resin-coated under the same conditions as in Example 1 to obtain a fiber fabric coated with both surfaces of the resin. The basis weight of this resin-coated fabric was 670 g / m 2 , the thickness was 0.6 mm, and the tensile strength was 2,370 N / inch in the vertical direction and 2,120 N / inch in the horizontal direction.
A radiation shielding resin layer produced in the same manner as in Example 1 was laminated with a resin-coated fabric in the same manner as in Example 1.
The radiation shielding composite film thus obtained had a thickness of 1.67 mm and a basis weight of 1,940 g / m 2 .

[比較例1]
繊維布帛として、ケブラー繊維織物 品番710(繊維:ケブラーK29,繊度:1,670dtex、織り密度:24本/インチ×24本/インチ、目付:319g/m、厚さ:0.43mm)を用いた。
この繊維布帛の両面を、実施例1と同様の条件で樹脂被覆し、両面樹脂被覆した繊維布帛を得た。この樹脂被覆布帛の目付は770g/m、厚さが0.7mm、引張強力はタテ方向が4,900N/インチ、ヨコ方向が5,300N/インチであった。
実施例1とは異なり、放射線遮蔽樹脂層との積層を行わず、樹脂被覆布帛として評価に供した。
[Comparative Example 1]
As the fiber fabric, Kevlar fiber fabric No. 710 (fiber: Kevlar K29, fineness: 1,670 dtex, weaving density: 24 / inch × 24 / inch, basis weight: 319 g / m 2 , thickness: 0.43 mm) is used. It was.
Both surfaces of this fiber fabric were resin-coated under the same conditions as in Example 1 to obtain a fiber fabric coated with both surfaces of the resin. The basis weight of this resin-coated fabric was 770 g / m 2 , the thickness was 0.7 mm, and the tensile strength was 4,900 N / inch in the vertical direction and 5,300 N / inch in the horizontal direction.
Unlike Example 1, it laminated | stacked with the radiation shielding resin layer, and it used for evaluation as a resin coating fabric.

[比較例2]
繊維布帛として、ポリエステル(PET)フィラメント使いの織物(繊度:1,660dtex、織り密度:タテ21本/インチ、ヨコ19本/インチ、目付:200g/m)を用いた。
この繊維布帛の両面を、実施例1と同様の条件で樹脂被覆し、両面樹脂被覆した繊維布帛を得た。この樹脂被覆布帛の目付は670g/m、厚さが0.6mm、引張強力はタテ方向が2,370N/インチ、ヨコ方向が2,120N/インチであった。
実施例1とは異なり、放射線遮蔽樹脂層との積層を行わず、樹脂被覆布帛として評価に供した。
[Comparative Example 2]
As the fiber fabric, a woven fabric using polyester (PET) filaments (fineness: 1,660 dtex, weave density: vertical 21 pieces / inch, horizontal 19 pieces / inch, basis weight: 200 g / m 2 ) was used.
Both surfaces of this fiber fabric were resin-coated under the same conditions as in Example 1 to obtain a fiber fabric coated with both surfaces of the resin. The basis weight of this resin-coated fabric was 670 g / m 2 , the thickness was 0.6 mm, and the tensile strength was 2,370 N / inch in the vertical direction and 2,120 N / inch in the horizontal direction.
Unlike Example 1, it laminated | stacked with the radiation shielding resin layer, and it used for evaluation as a resin coating fabric.

[比較例3]
実施例1と同様の方法で、厚さ0.5mmのシート状成形体からなる放射線遮蔽樹脂層を得た。この放射線遮蔽樹脂層と、実施例1で得た厚さ0.7mmの樹脂被覆布帛とを、実施例1と同様の方法で積層して放射線遮蔽複合膜を得た。
[Comparative Example 3]
In the same manner as in Example 1, a radiation shielding resin layer made of a sheet-like molded body having a thickness of 0.5 mm was obtained. This radiation shielding resin layer and the 0.7 mm thick resin-coated fabric obtained in Example 1 were laminated in the same manner as in Example 1 to obtain a radiation shielding composite film.

[比較例4]
実施例2で得た樹脂被覆布帛(厚さ0.42mm)と、実施例1と同様にして作製した厚さ10mmのシート状成形体からなる放射線遮蔽樹脂層を、実施例1と同様の方法で積層して放射線遮蔽複合膜を得た。しかし、加工性が悪く、水嚢に用いるには不適なものとなった。
[Comparative Example 4]
A radiation shielding resin layer comprising a resin-coated fabric (thickness: 0.42 mm) obtained in Example 2 and a sheet-like molded body having a thickness of 10 mm produced in the same manner as in Example 1 was used in the same manner as in Example 1. Was laminated to obtain a radiation shielding composite film. However, the processability was poor, making it unsuitable for use in a water sacs.

上記した実施例1〜3および比較例1〜4について耐放射線性を評価した。耐放射線性は前出の方法に加えて、放射線照射後の被覆ゴムの外観(亀裂、破損、硬化等)についても評価に加えた。外観に変化がなければ○、若干の変化があれば△、おおきな変化があれば×と評価した。総合判定では、膜材の軽量性及び耐放射線性の評価結果より、実用性があるものを○、無いものを×と評価した。   The above-mentioned Examples 1 to 3 and Comparative Examples 1 to 4 were evaluated for radiation resistance. In addition to the method described above, the radiation resistance was also evaluated for the appearance (crack, breakage, curing, etc.) of the coated rubber after irradiation. If there was no change in the appearance, it was evaluated as ◯, if there was a slight change, Δ, and if there was a large change, it was evaluated as x. In the comprehensive judgment, from the evaluation results of the lightness and radiation resistance of the film material, a practical one was evaluated as “good”, and a thin one was evaluated as “poor”.

評価結果を表1に示す。   The evaluation results are shown in Table 1.

Figure 0006391149
Figure 0006391149

表1に示すとおり、本発明の放射線遮蔽複合膜は比較例1,2に比べて、耐放射線性に優れるものが得られている。実施例1,2および比較例1はケブラー繊維を布帛に使用しているので、放射線照射後の引っ張り強力保持率が高く、ケブラーの耐放射線性の良さが確認できた。しかし、比較例1は被覆樹脂が放射線で劣化し、亀裂等が見られ、水嚢として使用した場合に水漏れ等の問題が考えられる。比較例1〜3と実施例を比べれば、放射線遮蔽樹脂層の放射線遮蔽効果が認められる。実施例の放射線遮蔽複合膜は、引張強力も高く、被覆樹脂層の亀裂等もないことから、放射線遮蔽水嚢として好適である。   As shown in Table 1, the radiation shielding composite film of the present invention has excellent radiation resistance as compared with Comparative Examples 1 and 2. In Examples 1 and 2 and Comparative Example 1, Kevlar fibers were used for the fabric, so the tensile strength retention after irradiation was high and the radiation resistance of Kevlar was confirmed to be good. However, in Comparative Example 1, the coating resin is deteriorated by radiation, cracks and the like are observed, and problems such as water leakage are considered when used as a water pouch. Comparing Comparative Examples 1 to 3 with Examples, the radiation shielding effect of the radiation shielding resin layer is recognized. The radiation shielding composite films of the examples have high tensile strength and are free from cracks in the coating resin layer, and are therefore suitable as radiation shielding water sacs.

以上、本発明について説明したが、本発明は特許請求の範囲に記載した範囲内で適宜変更できることは言うまでもない。   Although the present invention has been described above, it goes without saying that the present invention can be modified as appropriate within the scope of the claims.

本発明の放射線遮蔽複合膜は耐放射線性に優れ、引張強力も高いので、原子力発電所、使用済核燃料再処理設備、陽子加速器等の原子力関連施設、放射線治療を行う医療現場、その他工業用・医療用放射線検査機等に用いることができ、特に高放射線下での簡易放射線遮蔽水嚢の膜材として好適に使用できる。   Since the radiation shielding composite film of the present invention has excellent radiation resistance and high tensile strength, nuclear power plants, spent nuclear fuel reprocessing equipment, nuclear accelerator-related facilities such as proton accelerators, medical sites for radiation therapy, and other industrial / It can be used for a medical radiation inspection machine or the like, and can be suitably used as a membrane material for a simple radiation shielding water sacs particularly under high radiation.

1 放射線遮蔽複合膜
11 繊維布帛
12 樹脂被覆層
20 放射線遮蔽樹脂層
DESCRIPTION OF SYMBOLS 1 Radiation shielding composite film 11 Fiber fabric 12 Resin coating layer 20 Radiation shielding resin layer

Claims (8)

繊維布帛を基布として含み、その少なくとも片面に熱可塑性樹脂及びエラストマーの少なくとも1つを含む樹脂被覆層が形成され、該樹脂被覆層に放射線遮蔽樹脂層が積層されてなる放射線遮蔽複合膜であって、該放射線遮蔽樹脂層の厚みが、1mm〜10mmであり、かつ、樹脂被覆した繊維布帛の厚みの1.2倍〜20倍の範囲であることを特徴とする放射線遮蔽複合膜。 A radiation shielding composite film comprising a fiber fabric as a base fabric, a resin coating layer containing at least one of a thermoplastic resin and an elastomer formed on at least one surface thereof, and a radiation shielding resin layer laminated on the resin coating layer. The radiation shielding composite film is characterized in that the thickness of the radiation shielding resin layer is 1 mm to 10 mm and is 1.2 to 20 times the thickness of the resin-coated fiber fabric. 繊維布帛が、織物、編物、状物及びハニカム状物から選ばれた少なくとも1種の組織で構成されたものであることを特徴とする請求項1に記載の放射線遮蔽複合膜。 Fiber fabric, woven, knitted, radiation shielding composite membrane according to claim 1, characterized in that composed of at least one tissue selected from the network-like material and the honeycomb-like material. 熱可塑性樹脂及びエラストマーが、塩化ビニル樹脂、ポリウレタン系エラストマー樹脂、ポリエステル系エラストマー樹脂、スチレン系エラストマー樹脂、オレフィン系エラストマー樹脂、ポリアミド系エラストマー樹脂、ブタジエン系エラストマー樹脂、天然ゴム及び合成ゴムからなる群より選ばれたものであることを特徴とする請求項1又は2に記載の放射線遮蔽複合膜。   The thermoplastic resin and elastomer are selected from the group consisting of vinyl chloride resin, polyurethane elastomer resin, polyester elastomer resin, styrene elastomer resin, olefin elastomer resin, polyamide elastomer resin, butadiene elastomer resin, natural rubber and synthetic rubber. The radiation shielding composite film according to claim 1, wherein the radiation shielding composite film is selected. 繊維が高強度繊維であり、その引張強度が15cN/dtex以上であり、かつ、アラミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、ポリケトン繊維、ポリパラフェニレンベンズビスオキサゾール繊維、高強度ポリエチレン繊維及び全芳香族ポリエステル繊維からなる群より選ばれた少なくとも1種の繊維が含まれていることを特徴とする請求項1〜3のいずれかに記載の放射線遮蔽複合膜。   The fiber is a high strength fiber, the tensile strength is 15 cN / dtex or more, and an aramid fiber, carbon fiber, glass fiber, boron fiber, ceramic fiber, polyketone fiber, polyparaphenylene benzbisoxazole fiber, high strength polyethylene The radiation shielding composite film according to claim 1, comprising at least one fiber selected from the group consisting of fibers and wholly aromatic polyester fibers. 高強度繊維が、アラミド繊維であることを特徴とする請求項4に記載の放射線遮蔽複合膜。   The radiation shielding composite film according to claim 4, wherein the high-strength fiber is an aramid fiber. 放射線遮蔽樹脂が、タングステン粉末、タングステン化合物粉末及び酸化鉛粉末からなる群より選ばれた少なくとも1種を含むことを特徴とする請求項1〜5のいずれかに記載の放射線遮蔽複合膜。   The radiation shielding composite film according to any one of claims 1 to 5, wherein the radiation shielding resin contains at least one selected from the group consisting of tungsten powder, tungsten compound powder, and lead oxide powder. 繊維布帛の引張強力が500N/30mm以上であることを特徴とする請求項1〜6のいずれかに記載の放射線遮蔽複合膜。   The radiation shielding composite film according to claim 1, wherein the fiber fabric has a tensile strength of 500 N / 30 mm or more. 放射線遮蔽水嚢用であることを特徴とする請求項1〜7のいずれかに記載の放射線遮蔽複合膜。
The radiation shielding composite film according to claim 1, wherein the radiation shielding composite film is used for a radiation shielding water sacs.
JP2014110101A 2014-05-28 2014-05-28 Radiation shielding composite film Active JP6391149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014110101A JP6391149B2 (en) 2014-05-28 2014-05-28 Radiation shielding composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014110101A JP6391149B2 (en) 2014-05-28 2014-05-28 Radiation shielding composite film

Publications (2)

Publication Number Publication Date
JP2015224967A JP2015224967A (en) 2015-12-14
JP6391149B2 true JP6391149B2 (en) 2018-09-19

Family

ID=54841818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110101A Active JP6391149B2 (en) 2014-05-28 2014-05-28 Radiation shielding composite film

Country Status (1)

Country Link
JP (1) JP6391149B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11152128B2 (en) 2019-01-02 2021-10-19 Radiaction Ltd Radiation protection apparatus and materials therefor
US11937957B2 (en) 2015-11-09 2024-03-26 Radiaction Ltd. Radiation shielding apparatuses and applications thereof
US12011306B2 (en) 2019-01-02 2024-06-18 Radiaction Ltd Patient head protection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114999B2 (en) * 2018-04-04 2022-08-09 横浜ゴム株式会社 underground nuclear shelter
FR3087099B1 (en) * 2018-10-15 2021-10-22 Oreal COSMETIC DEVICE
KR102318127B1 (en) * 2019-11-11 2021-10-28 (주)동원엔텍 Hybrid lead-free radiation shielding material and radiation shielding suit using the same
KR102392678B1 (en) * 2020-04-21 2022-04-28 최성혜 Radiation shielding material and fabricating method of the same
CN113306239A (en) * 2021-04-25 2021-08-27 郑州大学 Ultrahigh molecular weight polyethylene fiber/boron nitride composite material for neutron radiation protection and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311864A (en) * 2002-04-23 2003-11-06 Toray Ind Inc Composite film
JP4152299B2 (en) * 2002-11-06 2008-09-17 平岡織染株式会社 Composite tube material for water expansion body continuous artificial weir and watertight long tube composite containing the same
US6858855B2 (en) * 2002-12-23 2005-02-22 Ever Gonanza Co. Ltd. Radiation shield sheet
JP6058883B2 (en) * 2011-11-14 2017-01-11 恵和株式会社 Radioactivity protection sheet and method for producing radioactivity protection sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11937957B2 (en) 2015-11-09 2024-03-26 Radiaction Ltd. Radiation shielding apparatuses and applications thereof
US11152128B2 (en) 2019-01-02 2021-10-19 Radiaction Ltd Radiation protection apparatus and materials therefor
US11621096B2 (en) 2019-01-02 2023-04-04 Radiaction Ltd. Radiation protection apparatus and materials therefor
US12011306B2 (en) 2019-01-02 2024-06-18 Radiaction Ltd Patient head protection device

Also Published As

Publication number Publication date
JP2015224967A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6391149B2 (en) Radiation shielding composite film
AU2013333797B8 (en) Lining tube, renovated pressure pipe and method for renovating a pressure pipe
EP0320258A1 (en) Composite fabric structures
JP4206454B2 (en) Multi-axis reinforced laminated molded product and manufacturing method thereof
JP6920565B1 (en) Composite pressure vessel with reinforced inner liner and process for manufacturing it
CN103774330B (en) Nuclear radiation protection fabric
US20100251466A1 (en) Selectively permeable chemical protective films and composite fabrics
CN106280039B (en) A kind of anti-tritium gloves and preparation method thereof
CA2548390A1 (en) Fire-retardant composite material
JP6091109B2 (en) Radiation shielding sheet
CN109228596B (en) Air storage bag body
CN104361919A (en) Pipeline nuclear radiation shielding bandage
KR101397973B1 (en) Textiles for friendly environmental high-tension hose and friendly environmental hightension hose using the same
CN113429643B (en) Multi-material composite rubber product and preparation method thereof
RU2492055C1 (en) Heat-reflecting fireproof laminar rubber-fabric protective material with barrier layer
CN104010804A (en) Laminated polyethylene woven fabric pipes
JP2006328292A (en) Prepreg for honeycomb cocuring and its manufacturing method
JP6426231B1 (en) Composite membrane
JP3210080U (en) Mat material for field container bags
US20170050801A1 (en) Waste and water tank
CA3149950C (en) Embossed release film, vacuum bagging system, and methods of fabricating composite parts using the same
JP2017223601A (en) Radiation shield sheet
JPH0641199Y2 (en) Radiation protection mat
JP6739092B2 (en) Gas shielding film material with excellent bending resistance
US20220152944A1 (en) Embossed vacuum bag film, vacuum bagging system including an embossed vacuum bag film, and methods of fabricating a composite part using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6391149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250