JP6390099B2 - Rotary pulse motor - Google Patents

Rotary pulse motor Download PDF

Info

Publication number
JP6390099B2
JP6390099B2 JP2013267779A JP2013267779A JP6390099B2 JP 6390099 B2 JP6390099 B2 JP 6390099B2 JP 2013267779 A JP2013267779 A JP 2013267779A JP 2013267779 A JP2013267779 A JP 2013267779A JP 6390099 B2 JP6390099 B2 JP 6390099B2
Authority
JP
Japan
Prior art keywords
rows
rotor
magnetic poles
magnetic
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013267779A
Other languages
Japanese (ja)
Other versions
JP2015126567A (en
Inventor
守 小▲崎▼
守 小▲崎▼
泰介 石田
泰介 石田
信雄 有賀
信雄 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2013267779A priority Critical patent/JP6390099B2/en
Publication of JP2015126567A publication Critical patent/JP2015126567A/en
Application granted granted Critical
Publication of JP6390099B2 publication Critical patent/JP6390099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、高速回転での使用に好適な回転型パルスモータに関する。   The present invention relates to a rotary pulse motor suitable for use at high speed rotation.

磁束発生部を有する固定子(ステータ)と回転子(ロータ)を同軸上に配置して、これらの固定子と回転子を半径方向に隙間を開けて対向させ、磁束発生部から発生する磁束によって回転子を回転させる回転型パルスモータには、磁性部材で形成した回転子の固定子との対向面に、回転方向に沿って所定のピッチで歯部と溝部を交互に形成して、各歯部の極性が交互に反転するように各溝部に永久磁石を挿入したものがある。固定子は、回転子の回転方向へ歯部のピッチと対応する所定のピッチで配列され、かつ互いに回転方向へ所定の変位を有する2列の磁極を回転子の各歯部の端面と対向させて形成した複数個の鉄心を、回転子の軸方向に沿ってその個数に応じて決定される回転方向への位相差を有するように順次配列したものとされている(例えば、特許文献1、2参照)。   A stator (stator) having a magnetic flux generator and a rotor (rotor) are arranged on the same axis, and the stator and the rotor are opposed to each other with a gap in the radial direction, and the magnetic flux generated from the magnetic flux generator is used. In a rotary pulse motor that rotates a rotor, teeth and grooves are alternately formed at a predetermined pitch along the rotation direction on the surface of the rotor that is formed of a magnetic member and facing the stator. There is one in which a permanent magnet is inserted in each groove so that the polarities of the portions are alternately reversed. The stator is arranged at a predetermined pitch corresponding to the pitch of the teeth in the rotation direction of the rotor, and two rows of magnetic poles having a predetermined displacement in the rotation direction are opposed to the end surfaces of the teeth of the rotor. A plurality of iron cores formed in this manner are sequentially arranged along the axial direction of the rotor so as to have a phase difference in the rotational direction determined according to the number (for example, Patent Document 1, 2).

特許文献1に記載されたものは、各鉄心の磁極にコイルを巻回することにより、特許文献2に記載されたものは、各鉄心の2列の磁極の間に環状のコイルを嵌装することにより、それぞれ鉄心にコイルを装着している。後者は、各鉄心に1つずつのコイルを嵌装すればよいので、コイルの装着を簡素化することができる。   In Patent Document 1, a coil is wound around the magnetic pole of each iron core, and in Patent Document 2, an annular coil is fitted between two rows of magnetic poles of each iron core. Thus, a coil is attached to each iron core. In the latter case, it is only necessary to fit one coil to each iron core, so that the mounting of the coil can be simplified.

特許文献1、2に記載された回転型パルスモータは、いずれかの鉄心のコイルに電流を流すと、固定子の鉄心の一方の列の磁極から回転子のS極側の歯部に流入した磁束が、永久磁石を介して隣合うN極側の歯部に流入したのち、このN極側の歯部から固定子の鉄心の他方の列の磁極へ流入し、さらに鉄心の内部を軸方向に導かれて元の磁極に戻る磁束ループが形成されるので、回転子の歯部と対向する各磁極の端面を広い面積でトルク発生用に活用でき、大きなトルクが得られる利点がある。   In the rotary pulse motors described in Patent Documents 1 and 2, when a current is passed through one of the iron core coils, the magnetic flux in one row of the stator iron core flows into the teeth on the S pole side of the rotor. After the magnetic flux flows into the adjacent N pole side tooth portion through the permanent magnet, it flows from the N pole side tooth portion to the magnetic pole of the other row of the stator core, and further, the inside of the iron core is axially directed. Thus, a magnetic flux loop that returns to the original magnetic pole is formed, so that the end face of each magnetic pole facing the rotor teeth can be utilized for torque generation in a wide area, and there is an advantage that a large torque can be obtained.

特開平4−344161号公報JP-A-4-344161 特開平4−344162号公報JP-A-4-344162

特許文献1、2に記載された回転型パルスモータは、大きなトルクが得られる利点があるが、ダイレクトドライブモータ等に用いて高速回転で使用すると、回転子の溝部に挿入された永久磁石に大きな遠心力が作用する。このため、回転子を内周側に配置するインナロータ形のものとする場合は、永久磁石が遠心力によって外周側へ飛散する恐れがある。また、回転子を外周側に配置するアウタロータ形のものとする場合は、その磁性部材を磁束損の少ない磁性鉄粉の粉末成形品とすると、脆い粉末成形品の磁性部材が永久磁石に作用する遠心力によって破損する恐れがあり、いずれの場合も、高速回転する回転子が遠心力で損傷する恐れがある。   The rotary pulse motors described in Patent Documents 1 and 2 have the advantage that a large torque can be obtained. However, when used at high speeds for direct drive motors, etc., the rotary type pulse motor is large in the permanent magnet inserted in the rotor groove. Centrifugal force acts. For this reason, when it is set as the inner rotor type which arrange | positions a rotor to the inner peripheral side, there exists a possibility that a permanent magnet may be scattered to the outer peripheral side by centrifugal force. Further, when the outer rotor type rotor is arranged on the outer peripheral side, if the magnetic member is a powder molded product of magnetic iron powder with low magnetic flux loss, the magnetic member of the brittle powder molded product acts on the permanent magnet. There is a risk of breakage due to centrifugal force, and in any case, a rotor that rotates at high speed may be damaged by centrifugal force.

そこで、本発明の課題は、大きなトルクが得られ、高速回転で使用しても、回転子が遠心力で損傷する恐れのない回転型パルスモータを提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a rotary pulse motor that can obtain a large torque and does not cause the rotor to be damaged by centrifugal force even when used at a high speed.

上記の課題を解決するために、本発明は、一軸上に固定され、磁束発生部を有する固定子と、前記固定子と同軸上で回転自在に配設され、前記固定子と半径方向に隙間を開けて対向する回転子とからなり、前記磁束発生部から発生する磁束によって、前記回転子を回転させる回転型パルスモータにおいて、前記固定子は、前記回転子と対向する2列の磁極を有し、軸方向に配列された複数個の鉄心と、前記複数個の各鉄心の2列の磁極に、前記回転子の回転方向へ所定のピッチで回転方向へ極性を向けて挿入され、その両側で隣合う前記2列の磁極の極を交互に反転させる永久磁石と、前記複数個の各鉄心の2列の磁極の間に嵌装される環状のコイルとを備え、前記回転子は、磁性部材で形成され、前記複数個の鉄心の2列の各磁極の端面と対向するように、前記回転方向に沿って前記永久磁石の挿入ピッチと対応する所定のピッチで形成された複数個の歯部を備え、前記鉄心の2列の各磁極の端面と対向する歯部同士が、前記2列の磁極が形成された鉄心に挿入された永久磁石の極性が同じ向きの場合は、回転方向へ電気角で180°の位相差を有し、前記永久磁石の極性が逆向きの場合は、回転方向へ同位相とされ、前記軸方向に配列される複数個の各鉄心の2列の磁極の端面と対向する歯部が、前記鉄心の配列個数に応じて決定される回転方向への位相差を順次有する構成を採用した。   In order to solve the above-described problems, the present invention provides a stator fixed on one axis and having a magnetic flux generation unit, and is disposed rotatably on the same axis as the stator, and is spaced apart from the stator in the radial direction. In the rotary pulse motor, which is composed of a rotor facing the rotor and rotates the rotor by the magnetic flux generated from the magnetic flux generator, the stator has two rows of magnetic poles facing the rotor. A plurality of iron cores arranged in the axial direction and two rows of magnetic poles of each of the plurality of iron cores are inserted with a predetermined pitch in the rotation direction of the rotor and with a polarity in the rotation direction. A permanent magnet that alternately inverts the poles of the two rows of magnetic poles adjacent to each other, and an annular coil that is fitted between the two rows of magnetic poles of each of the plurality of iron cores. An end face of each magnetic pole in two rows of the plurality of iron cores, A plurality of tooth portions formed at a predetermined pitch corresponding to the insertion pitch of the permanent magnet along the rotation direction so as to face the tooth portions facing the end faces of the two magnetic poles in the two rows of the iron core When the polarities of the permanent magnets inserted into the iron core on which the two rows of magnetic poles are formed have the same direction, the permanent magnets have a phase difference of 180 ° in electrical direction in the rotation direction, and the polarities of the permanent magnets are reversed. In the case of the orientation, the tooth portions facing the end faces of the two rows of magnetic cores arranged in the axial direction in the same phase in the rotation direction are determined according to the number of the cores arranged. A configuration that sequentially has a phase difference in the rotation direction was adopted.

前記複数個の鉄心の個数に応じて決定される歯部の位相差は、それぞれ電気角で、個数が2個または4個の場合は90°(=360°/4)、個数が3個の場合は120°(=360°/3)、個数が5個の場合は72°(=360°/5)とされる。また、個数が6個の場合は、3個の組合せが2組として120°とするとよい。なお、これよりも多い個数で実用されることはあまりないが、例えば、個数が3の倍数である場合は120°、5の倍数である場合は72°とするとよい。   The phase difference of the tooth portion determined according to the number of the plurality of iron cores is an electrical angle, respectively, 90 ° (= 360 ° / 4) when the number is 2 or 4, and the number is 3 In this case, the angle is 120 ° (= 360 ° / 3), and when the number is 5, the angle is 72 ° (= 360 ° / 5). Further, when the number is six, the combination of three is preferably set to 120 ° as two sets. In addition, although it is not practically used with a larger number than this, for example, when the number is a multiple of 3, 120 ° is preferable when it is a multiple of 5.

上記構成を採用することにより、いずれかの鉄心のコイルに電流を流すと、固定子の鉄心の一方の列のN極の磁極から回転子の対向する歯部に流入する磁束が、回転子の内部を軸方向に導かれて、固定子の鉄心の他方の列の磁極と対向する歯部から他方の列のS極の磁極に流入し、他方の列の永久磁石を介して隣合うN極の磁極に流入したのち、さらに鉄心の内部を軸方向に導かれて元の磁極に戻る磁束ループが形成されるようにし、回転子の歯部と対向する各磁極の端面を広い面積でトルク発生用に活用して大きなトルクが得られるようにするとともに、回転子に永久磁石を挿入しないようにして、高速回転で使用しても、回転子が遠心力で損傷する恐れがないようにした。   By adopting the above configuration, when a current is passed through one of the iron core coils, the magnetic flux flowing from the N pole magnetic poles in one row of the stator core into the teeth facing the rotor The inside is guided in the axial direction, and flows into the S pole magnetic pole of the other row from the tooth portion facing the magnetic pole of the other row of the stator core, and is adjacent to the N pole via the permanent magnet of the other row. Then, a magnetic flux loop is formed in which the inside of the iron core is guided in the axial direction to return to the original magnetic pole, and torque is generated over a wide area at the end face of each magnetic pole facing the rotor teeth. For this purpose, a large torque is obtained and a permanent magnet is not inserted into the rotor so that the rotor is not damaged by a centrifugal force even when used at a high speed.

前記回転子の前記2列の各磁極の端面と対向する歯部を、前記2列の各磁極が存在しない軸方向部位で切り欠くことにより、一方の列の磁極から回転子の歯部に流入する磁束、および回転子の歯部から他方の列の磁極に流入する磁束の一部が、磁極の軸方向端面を通って軸方向に流入するのを防止して、より大きなトルクを得ることができる。固定子の鉄心の磁極から回転子、または回転子から固定子の鉄心の磁極へ軸方向に流入する磁束は、トルクの生成に寄与しないからである。   The tooth portions facing the end faces of the magnetic poles of the two rows of the rotor are cut out in the axial direction where the magnetic poles of the two rows do not exist, so that the flow from the magnetic poles of one row flows into the rotor tooth portions. And a part of the magnetic flux flowing into the magnetic pole of the other row from the teeth of the rotor is prevented from flowing in the axial direction through the axial end face of the magnetic pole, thereby obtaining a larger torque. it can. This is because the magnetic flux that flows in the axial direction from the magnetic pole of the stator core to the rotor or from the rotor to the magnetic pole of the stator core does not contribute to the generation of torque.

前記鉄心の2列の各磁極に挿入された永久磁石を互いに分離した別体とすることにより、個々の鉄心への永久磁石の挿入を容易にして、鉄心の組立て性を向上させることができる。   By making the permanent magnets inserted into the magnetic poles of the two rows of the iron cores separate from each other, the permanent magnets can be easily inserted into the individual iron cores, and the assemblability of the iron cores can be improved.

前記別体とした永久磁石の極性を互いに逆向きとすることにより、軸方向に配列される複数個の鉄心間の磁力による反発をなくして、固定子の組立て性を向上させることができる。   By making the polarities of the separate permanent magnets opposite to each other, repulsion due to the magnetic force between the plurality of iron cores arranged in the axial direction can be eliminated, and the assemblability of the stator can be improved.

上述した各回転型パルスモータは、前記固定子を前記回転子の外周側に配置することができる。   In each of the rotary pulse motors described above, the stator can be disposed on the outer peripheral side of the rotor.

前記固定子を回転子の外周側に配置する場合は、前記固定子の外周側を筒状のケーシングで覆い、前記ケーシングを前記軸方向に配列される複数個の鉄心に対応させて軸方向に分割することにより、分割したケーシングの各分割部に複数個の各鉄心を組み付けたのち、各鉄心を組み付けた各分割部を合体させるようにし、ケーシングへの固定子の組み付けを容易にすることができる。   When the stator is disposed on the outer peripheral side of the rotor, the outer peripheral side of the stator is covered with a cylindrical casing, and the casing is axially associated with a plurality of iron cores arranged in the axial direction. By dividing, after assembling a plurality of iron cores to each divided part of the divided casing, the divided parts assembled with each iron core are combined to facilitate assembly of the stator to the casing. it can.

本発明に係る回転型パルスモータは、固定子が、回転子と対向する2列の磁極を有し、軸方向に配列された複数個の鉄心と、複数個の各鉄心の2列の磁極に、回転子の回転方向へ所定のピッチで回転方向へ極性を向けて挿入され、その両側で隣合う2列の磁極の極を交互に反転させる永久磁石と、複数個の各鉄心の2列の磁極の間に嵌装される環状のコイルとを備え、回転子が、磁性部材で形成され、複数個の鉄心の2列の各磁極の端面と対向するように、回転方向に沿って永久磁石の挿入ピッチと対応する所定のピッチで形成された複数個の歯部を備え、鉄心の2列の各磁極の端面と対向する歯部同士が、2列の磁極が形成された鉄心に挿入された永久磁石の極性が同じ向きの場合は、回転方向へ電気角で180°の位相差を有し、永久磁石の極性が逆向きの場合は、回転方向へ同位相とされ、軸方向に配列される複数個の各鉄心の2列の磁極の端面と対向する歯部が、鉄心の配列個数に応じて決定される回転方向への位相差を順次有する構成を採用したので、大きなトルクが得られ、高速回転で使用しても、回転子が遠心力で損傷する恐れがない。また、この回転型パルスモータは、各鉄心の2列の磁極間に環状のコイルを嵌装しているので、コイルの装着も簡素化することができる。   In the rotary pulse motor according to the present invention, the stator has two rows of magnetic poles facing the rotor, and includes a plurality of iron cores arranged in the axial direction and two rows of magnetic poles of each of the plurality of iron cores. , A permanent magnet that is inserted in the rotational direction at a predetermined pitch in the rotational direction of the rotor, and alternately reverses the poles of two adjacent magnetic poles on both sides thereof, and two rows of each of the plurality of iron cores An annular coil fitted between the magnetic poles, and the rotor is formed of a magnetic member, and the permanent magnets are arranged along the rotation direction so as to face the end faces of the magnetic poles in two rows of the plurality of iron cores. A plurality of tooth portions formed at a predetermined pitch corresponding to the insertion pitch of the cores, and the tooth portions facing the end faces of the two magnetic poles in the two rows of the iron core are inserted into the iron core on which the two rows of magnetic poles are formed. If the permanent magnets have the same polarity, the permanent magnet has a phase difference of 180 ° in electrical direction in the rotation direction. When the polarities of the cores are reversed, the tooth portions facing the end faces of the two magnetic poles of each of the plurality of cores arranged in the axial direction are determined according to the number of the cores arranged. Since the configuration in which the phase difference in the rotation direction is sequentially adopted is adopted, a large torque can be obtained, and the rotor is not damaged by the centrifugal force even when used at high speed rotation. Further, since this rotary pulse motor has an annular coil fitted between two rows of magnetic poles of each iron core, the mounting of the coil can be simplified.

第1の実施形態の回転型パルスモータを示す縦断側面図1 is a longitudinal side view showing a rotary pulse motor according to a first embodiment. (a)、(b)、(c)は、それぞれ図1のケーシングを除いたIIa−IIa線、IIb−IIb線、IIc−IIc線に沿った断面図(A), (b), (c) is sectional drawing along the IIa-IIa line | wire, IIb-IIb line | wire, and IIc-IIc line | wire which respectively removed the casing of FIG. 図1の各鉄心の周方向一部を示す斜視図The perspective view which shows the circumferential direction part of each iron core of FIG. (a)、(b)は、それぞれ図3の変形例を示す斜視図(A), (b) is a perspective view which shows the modification of FIG. 3, respectively. 図1の固定子の1つの鉄心から発生する磁束の流れを説明する断面図Sectional drawing explaining the flow of the magnetic flux generated from one iron core of the stator of FIG. 第2の実施形態の回転型パルスモータを示す縦断側面図Longitudinal side view showing a rotary pulse motor of a second embodiment (a)、(b)、(c)は、それぞれ図6のケーシングを除いたVIIa−VIIa線、VIIb−VIIb線、VIIc−VIIc線に沿った断面図(A), (b), (c) is sectional drawing which followed the VIIa-VIIa line, the VIIb-VIIb line, and the VIIc-VIIc line respectively except the casing of FIG. 図6の各鉄心の周方向一部を示す斜視図The perspective view which shows the circumferential direction part of each iron core of FIG. 図6の固定子の1つの鉄心から発生する磁束の流れを説明する断面図Sectional drawing explaining the flow of the magnetic flux generated from one iron core of the stator of FIG. (a)は図1または図6のケーシングを分割したユニットに1つの鉄心を組み付ける手順を説明する縦断側面図、(b)は(a)の正面図(A) is a longitudinal side view for explaining a procedure for assembling one iron core to a unit obtained by dividing the casing of FIG. 1 or FIG. 6, and (b) is a front view of (a). 図10の鉄心を組み付けたユニットを合体する手順を説明する縦断側面図Longitudinal side view for explaining the procedure for uniting the unit assembled with the iron core of FIG.

以下、図面に基づき、本発明の実施形態を説明する。図1乃至図5は、第1の実施形態を示す。この回転型パルスモータは、図1に示すように、固定子1と回転子11を同軸上に配設し、回転子11を固定子1の内周側に配置したインナロータ形のものであり、固定子1と回転子11は半径方向に隙間を開けて対向し、円筒状とされた固定子1の外周側は円筒状のケーシング21で覆われている。ケーシング21は軸方向に3分割されたユニット21aで形成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 5 show a first embodiment. As shown in FIG. 1, the rotary pulse motor is of an inner rotor type in which a stator 1 and a rotor 11 are coaxially arranged, and the rotor 11 is arranged on the inner peripheral side of the stator 1, The stator 1 and the rotor 11 are opposed to each other with a gap in the radial direction, and the outer peripheral side of the cylindrical stator 1 is covered with a cylindrical casing 21. The casing 21 is formed of a unit 21a that is divided into three in the axial direction.

図1および図2(a)、(b)、(c)に示すように、前記固定子1は、ケーシング21に組み付けて軸方向に配列された3個の各鉄心2a、2b、2cに、回転子11と対向する2列の磁極3a、3bが形成されている。各鉄心2a、2b、2cには、周方向で隣合う2列の各磁極3a、3bの極が交互に反転するように、回転子11の回転方向へ所定のピッチpで回転方向へ極性を向けた永久磁石4が挿入され、2列の各磁極3a、3bの間には環状のコイル5が嵌装されている。各鉄心2a、2b、2cは磁性鉄粉の粉末成形で形成されている。   As shown in FIGS. 1 and 2 (a), 2 (b), and 2 (c), the stator 1 is assembled to each of the three iron cores 2a, 2b, and 2c that are assembled to the casing 21 and arranged in the axial direction. Two rows of magnetic poles 3 a and 3 b facing the rotor 11 are formed. Each iron core 2a, 2b, 2c is polarized in the rotational direction at a predetermined pitch p in the rotational direction of the rotor 11 so that the poles of the two magnetic poles 3a, 3b adjacent in the circumferential direction are alternately inverted. An oriented permanent magnet 4 is inserted, and an annular coil 5 is fitted between the two magnetic poles 3a, 3b. Each iron core 2a, 2b, 2c is formed by powder molding of magnetic iron powder.

図3に示すように、前記各鉄心2a、2b、2cは、コイル5の嵌装を容易にするために、2列の各磁極3a、3bが形成される両側部と、コイル5が嵌装される中央部とに軸方向で3分割されている。また、各永久磁石4は、2列の各磁極3a、3bが形成される両側部のみに挿入されるように互いに分離された矩形板状の別体とされている。この実施形態では、各鉄心2a、2b、2cの両側部に挿入された各永久磁石4のN極とS極の極性が互いに同じ向きとされ、軸方向で隣合う2列の各磁極3a、3bが同極となっている。   As shown in FIG. 3, each of the iron cores 2a, 2b, 2c is fitted with the coil 5 on both sides where the magnetic poles 3a, 3b in two rows are formed in order to facilitate the fitting of the coil 5. The center portion is divided into three in the axial direction. Each permanent magnet 4 is a separate rectangular plate-like body that is separated from each other so as to be inserted only into both side portions where the two rows of magnetic poles 3a and 3b are formed. In this embodiment, the polarities of the N pole and the S pole of each permanent magnet 4 inserted on both sides of each iron core 2a, 2b, 2c are the same direction, and two rows of magnetic poles 3a adjacent in the axial direction, 3b has the same polarity.

図4(a)、(b)は、それぞれ図3の変形例を示す。図4(a)の変形例は、前記各鉄心2a、2b、2cを、図3と同様に両側部と中央部に3分割し、各永久磁石4を両側部と中央部の全体に挿入される一体のコ字板状としたもの、図4(b)の変形例は、各鉄心2a、2b、2cを軸方向の中央で2分割し、図3と同様に、2列の各磁極3a、3bが形成される両側部のみに、極性が互いに同じ向きとされた矩形板状の各永久磁石4を挿入したものである。なお、図3および 図4(a)、(b)に示した各永久磁石4は、各鉄心2a、2b、2cの内周側から外周側まで全体に貫通するように挿入されているが、各永久磁石4は、各磁極3a、3bが形成される各鉄心2a、2b、2cの内周側部分のみに挿入してもよい。また、板状の各永久磁石4は、板面内や板厚方向で複数に分割することもでき、板厚方向で分割する場合は、複数枚の永久磁石の間に磁性材料を介在させてもよい。   4 (a) and 4 (b) show modifications of FIG. 4A, the iron cores 2a, 2b, and 2c are divided into three parts on both sides and a central part as in FIG. 3, and each permanent magnet 4 is inserted into both sides and the whole central part. 4 (b), the iron cores 2a, 2b, 2c are divided into two at the center in the axial direction, and the two magnetic poles 3a are arranged in the same manner as in FIG. Each of the permanent magnets 4 having a rectangular plate shape with the same polarity is inserted only in both sides where 3b is formed. In addition, although each permanent magnet 4 shown in FIG. 3 and FIG. 4 (a), (b) is inserted so that it may penetrate from the inner peripheral side to the outer peripheral side of each iron core 2a, 2b, 2c, Each permanent magnet 4 may be inserted only in the inner peripheral side part of each iron core 2a, 2b, 2c where each magnetic pole 3a, 3b is formed. Each plate-like permanent magnet 4 can also be divided into a plurality of pieces in the plate surface or in the plate thickness direction. When dividing in the plate thickness direction, a magnetic material is interposed between the plurality of permanent magnets. Also good.

図1および図2(a)、(b)、(c)に示すように、前記回転子11は、出力軸となる回転軸12に外嵌された円筒状の磁性部材に、3個の鉄心2a、2b、2cの2列の各磁極3a、3bの端面と対向する歯部13a、13bが、回転方向に沿って永久磁石4の挿入ピッチpと対応させた2倍のピッチ2pで形成されている。回転子11の磁性部材も磁性鉄粉の粉末成形で形成されている。   As shown in FIGS. 1 and 2 (a), 2 (b), and 2 (c), the rotor 11 has three iron cores on a cylindrical magnetic member that is externally fitted to a rotary shaft 12 that serves as an output shaft. The tooth portions 13a and 13b facing the end faces of the two magnetic poles 3a and 3b in two rows 2a, 2b and 2c are formed at a pitch 2p which is twice the pitch corresponding to the insertion pitch p of the permanent magnet 4 along the rotation direction. ing. The magnetic member of the rotor 11 is also formed by powder molding of magnetic iron powder.

前記歯部13a、13bは、各鉄心2a、2b、2cの磁極3a、3bが存在しない軸方向部位で直角に切り欠かれている。磁極3a、3bが存在しない歯部13a、13bの間は、V字状や円弧状に切り欠いてもよい。   The tooth portions 13a and 13b are notched at right angles at axial portions where the magnetic poles 3a and 3b of the iron cores 2a, 2b and 2c do not exist. A space between the teeth 13a and 13b where the magnetic poles 3a and 3b are not present may be cut out in a V shape or an arc shape.

前記2列の各磁極3a、3bの端面と対向する2列の歯部13a、13b同士は、回転方向へ電気角で180°の位相差を有している(鉄心2b、2cについては図示省略)。また、軸方向に配列された各鉄心2a、2b、2cに対して、2列ずつの各歯部13a、13bは、回転方向へ電気角で順次120°の位相差を有する(鉄心2b、2c間については図示省略)。   The two rows of teeth 13a, 13b facing the end faces of the two rows of magnetic poles 3a, 3b have a phase difference of 180 ° in electrical direction in the rotational direction (the iron cores 2b, 2c are not shown). ). In addition, with respect to each of the iron cores 2a, 2b, and 2c arranged in the axial direction, each of the tooth portions 13a and 13b in two rows has a phase difference of 120 ° sequentially in terms of electrical angle in the rotation direction (iron cores 2b and 2c). (The space is not shown).

図5は、前記固定子1の鉄心2aのコイル5に一方向の電流を流したときに発生する磁束φの流れを示す。鉄心2aの一方の列のN極の磁極3aから回転子11の対向する歯部13aに流入する磁束φは、回転子11の磁性部材の内部を軸方向に導かれて、他方の歯部13bから対向する他方の列のS極の磁極3bに流入し、他方の列の永久磁石4を介して隣合うN極の磁極3bに流入したのち、さらに鉄心2aの内部を軸方向に導かれて元の一方の列のN極の磁極3aに戻る。このとき、図2(a)、(b)に示した状態のように、一方の歯部13aが鉄心2aの一方の列のN極の磁極3aと対面し、電気角で180°の位相差を有する他方の歯部13bが他方の列のS極の磁極3bと対面するように、回転子11を回転させるトルクが発生する。したがって、回転子11の各歯部13a、13bと対向する各磁極3a、3bの端面を広い面積でトルク発生用に活用して大きなトルクを得ることができる。なお、鉄心2aのコイル5に逆方向の電流を流したときは、図5の磁束φと逆向きの磁束が発生し、一方の歯部13aが鉄心2aの一方の列のS極の磁極3aと対面し、他方の歯部13bが他方の列のN極の磁極3bと対面するように、回転子11を回転させるトルクが発生する。   FIG. 5 shows the flow of the magnetic flux φ generated when a current in one direction is passed through the coil 5 of the iron core 2a of the stator 1. The magnetic flux φ flowing from the N-pole magnetic pole 3a in one row of the iron core 2a into the tooth portion 13a facing the rotor 11 is guided in the axial direction inside the magnetic member of the rotor 11, and the other tooth portion 13b. Flows into the opposite S pole magnetic pole 3b of the other row and flows into the adjacent N pole magnetic pole 3b via the permanent magnet 4 in the other row, and is further guided in the axial direction inside the iron core 2a. Returning to the N pole magnetic pole 3a of the original one row. At this time, as shown in FIGS. 2 (a) and 2 (b), one tooth portion 13a faces the N pole magnetic pole 3a in one row of the iron core 2a and has a phase difference of 180 ° in electrical angle. Torque that rotates the rotor 11 is generated so that the other tooth portion 13b having the sq. Face the S pole magnetic pole 3b in the other row. Therefore, a large torque can be obtained by utilizing the end surfaces of the magnetic poles 3a and 3b facing the tooth portions 13a and 13b of the rotor 11 in a wide area for generating torque. When a current in the reverse direction is passed through the coil 5 of the iron core 2a, a magnetic flux in the direction opposite to the magnetic flux φ in FIG. 5 is generated, and one tooth portion 13a is the S pole magnetic pole 3a in one row of the iron core 2a. And a torque for rotating the rotor 11 is generated so that the other tooth portion 13b faces the N pole magnetic pole 3b in the other row.

また、前記歯部13a、13bは各磁極3a、3bが存在しない軸方向部位で切り欠かれているので、磁束φの一部が一方の列の磁極3aの軸方向端面から軸方向に回転子11に流入したり、回転子11から軸方向に他方の列の磁極3bの軸方向端面に流入したりするのを防止して、磁束φの大部分をトルク発生用に有効活用することができ、より大きなトルクを得ることができる。   Further, since the tooth portions 13a and 13b are notched in the axial direction portions where the magnetic poles 3a and 3b do not exist, a part of the magnetic flux φ is axially rotated from the axial end surface of the magnetic pole 3a in one row. 11, or from the rotor 11 in the axial direction to the axial end face of the magnetic pole 3 b of the other row, and most of the magnetic flux φ can be effectively used for torque generation. A larger torque can be obtained.

図示は省略するが、他の鉄心2b、2cのコイル5に電流を流したときに発生する磁束φの流れも同様であり、各鉄心2a、2b、2cのコイル5に順次電流を流すと、各鉄心2a、2b、2cの各磁極3a、3bとそれぞれ対向し、電気角で120°ずつの位相差を有する各歯部13a、13bが、順次各鉄心2a、2b、2cの一方の列のN極の磁極3aと他方の列のS極の磁極3bと対面するように、回転子11が電気角で120°ずつ回転する。   Although illustration is omitted, the flow of the magnetic flux φ generated when a current is passed through the coils 5 of the other iron cores 2b, 2c is the same, and when a current is passed through the coils 5 of the iron cores 2a, 2b, 2c sequentially, The tooth portions 13a and 13b that face the magnetic poles 3a and 3b of the iron cores 2a, 2b, and 2c and have a phase difference of 120 ° in electrical angle are sequentially arranged in one row of the iron cores 2a, 2b, and 2c. The rotor 11 rotates by 120 ° in electrical angle so as to face the N-pole magnetic pole 3a and the S-pole magnetic pole 3b in the other row.

この実施形態では、前記各鉄心2a、2b、2cの3つのコイル5に3相交流を流すことにより、回転子11を大きなトルクで高速回転させることができる。回転子11の回転を検出するセンサを設け、サーボモータとして使用することもできる。また、回転子11には永久磁石4が挿入されていないので、高速回転で使用しても、回転子11が損傷する恐れもない。   In this embodiment, the rotor 11 can be rotated at a high speed with a large torque by passing a three-phase alternating current through the three coils 5 of the iron cores 2a, 2b, and 2c. A sensor for detecting the rotation of the rotor 11 may be provided and used as a servo motor. Further, since the permanent magnet 4 is not inserted into the rotor 11, there is no fear that the rotor 11 will be damaged even if it is used at a high speed.

図6乃至図9は、第2の実施形態を示す。この回転型パルスモータもインナロータ形のものであり、図6乃至図8に示すように、前記各鉄心2a、2b、2cに挿入された各永久磁石4のN極とS極の極性が、2列の各磁極3a、3b間で互いに逆向きとされ、軸方向で隣合う2列の各磁極3a、3bが異極となっている点と、2列の各磁極2a、2bと対向する2列の歯部13a、13bが互いに同位相となっている点とが異なる。その他の部分は、第1の実施形態のものと同じであり、軸方向に配列された各鉄心2a、2b、2cに対して、2列ずつの各歯部13a、13bは、回転方向へ電気角で順次120°の位相差を有する。また、ケーシング21は軸方向に3分割されたユニット21aで形成されている。   6 to 9 show a second embodiment. This rotary pulse motor is also of an inner rotor type. As shown in FIGS. 6 to 8, the polarities of the N pole and S pole of each permanent magnet 4 inserted in each iron core 2a, 2b, 2c are 2 The magnetic poles 3a and 3b in the rows are opposite to each other, and the two rows of magnetic poles 3a and 3b adjacent in the axial direction are different from each other, and the two magnetic poles 2a and 2b facing the two rows are opposite to each other. The difference is that the teeth 13a, 13b in the row are in phase with each other. The other parts are the same as those of the first embodiment, and for each iron core 2a, 2b, 2c arranged in the axial direction, each tooth portion 13a, 13b in two rows is electrically connected in the rotational direction. It has a phase difference of 120 ° sequentially at the corners. The casing 21 is formed of a unit 21a that is divided into three in the axial direction.

図9は、前記固定子1の鉄心2aのコイル5に一方向の電流を流したときに発生する磁束φの流れを示す。第1の実施形態のものと同様に、鉄心2aの一方の列のN極の磁極3aから回転子11の歯部13aに流入した磁束φは、回転子11の磁性部材の内部を軸方向に導かれて、他方の歯部13bから他方の列のS極の磁極3bに流入し、他方の列の永久磁石4を介して隣合うN極の磁極3bに流入したのち、さらに鉄心2aの内部を軸方向に導かれて元の一方の列のN極の磁極3aに戻る。このとき、図7(a)、(b)に示した状態のように、一方の歯部13aが鉄心2aの一方の列のN極の磁極3aと対面し、これと同位相の他方の歯部13bが、磁極3aと軸方向で隣合う他方の列のS極の磁極3bと対面するように、回転子11を回転させるトルクが発生する。また、鉄心2aのコイル5に逆方向の電流を流したときは、図5の磁束φと逆向きの磁束が発生し、一方の歯部13aが鉄心2aの一方の列のS極の磁極3aと対面し、他方の歯部13bが他方の列のN極の磁極3bと対面するように、回転子11を回転させるトルクが発生する。   FIG. 9 shows the flow of the magnetic flux φ generated when a current in one direction flows through the coil 5 of the iron core 2a of the stator 1. As in the first embodiment, the magnetic flux φ flowing into the tooth portion 13a of the rotor 11 from the N-pole magnetic pole 3a in one row of the iron core 2a is axially directed inside the magnetic member of the rotor 11. After being guided to flow into the S pole magnetic pole 3b in the other row from the other tooth portion 13b and into the adjacent N pole magnetic pole 3b through the permanent magnet 4 in the other row, the inside of the iron core 2a is further increased. Is guided in the axial direction to return to the N pole magnetic pole 3a of the original one row. At this time, as shown in FIGS. 7 (a) and 7 (b), one tooth portion 13a faces the N pole magnetic pole 3a in one row of the iron core 2a, and the other tooth in the same phase as this. Torque that rotates the rotor 11 is generated so that the portion 13b faces the magnetic pole 3b of the S pole in the other row adjacent to the magnetic pole 3a in the axial direction. When a current in the reverse direction is passed through the coil 5 of the iron core 2a, a magnetic flux in the direction opposite to the magnetic flux φ in FIG. 5 is generated, and one tooth portion 13a is the S pole magnetic pole 3a in one row of the iron core 2a. And a torque for rotating the rotor 11 is generated so that the other tooth portion 13b faces the N pole magnetic pole 3b in the other row.

図示は省略するが、他の鉄心2b、2cのコイル5に電流を流したときに発生する磁束φの流れも同様であり、各鉄心2a、2b、2cのコイル5に順次電流を流すと、第1の実施形態のものと同様に、各鉄心2a、2b、2cに対して電気角で120°ずつの位相差を有する各歯部13a、13bが、順次各鉄心2a、2b、2cの一方の列のN極の磁極3aと他方の列のS極の磁極3bと対面するように、回転子11が電気角で120°ずつ回転する。この実施形態でも、各鉄心2a、2b、2cの3つのコイル5に3相交流を流すことにより、回転子11を大きなトルクで高速回転させることができる。   Although illustration is omitted, the flow of the magnetic flux φ generated when a current is passed through the coils 5 of the other iron cores 2b, 2c is the same, and when a current is passed through the coils 5 of the iron cores 2a, 2b, 2c sequentially, As in the first embodiment, each tooth portion 13a, 13b having a phase difference of 120 ° in electrical angle with respect to each iron core 2a, 2b, 2c is sequentially connected to one of the iron cores 2a, 2b, 2c. The rotor 11 rotates by an electrical angle of 120 ° so as to face the N pole magnetic pole 3a in this row and the S pole magnetic pole 3b in the other row. Also in this embodiment, the rotor 11 can be rotated at a high speed with a large torque by flowing a three-phase alternating current through the three coils 5 of the iron cores 2a, 2b, and 2c.

図1および図6に示したように、各実施形態のケーシング21は、各鉄心2a、2b、2cに対応させて軸方向に3つのユニット21aに分割されている。以下に、図10および図11に基づいて、分割された1つのユニット21aに固定子1の1つの鉄心2aを組み付けて、各鉄心2a、2b、2cを組み付けたユニット21aを合体する手順を説明する。   As shown in FIGS. 1 and 6, the casing 21 of each embodiment is divided into three units 21 a in the axial direction so as to correspond to the iron cores 2 a, 2 b, and 2 c. Below, based on FIG. 10 and FIG. 11, the procedure for assembling the unit 21a in which each iron core 2a, 2b, 2c is assembled by assembling one iron core 2a of the stator 1 to one divided unit 21a will be described. To do.

まず、図10(a)、(b)に示すように、1つのユニット21aに芯出し部材31を取り付ける。芯出し部材31は一端側のフランジ部31aを、ユニット21aの内周面の一端側に設けられた環状突条22に押し当てて取り付けられる。こののち、永久磁石4とコイル5が装着された1つの鉄心2aを、芯出し部材31で案内して、ユニット21aに挿入し、環状突条22に押し当てる。なお、鉄心2aのユニット21aへの挿入は、磁極3b、コイル5および磁極3aを個別に芯出し部材31で案内して順々に挿入してもよい。つぎに、ユニット21aに環状突条22と反対側から環状リング23を嵌入して、鉄心2aを軸方向に固定するとともに、ボルト24で鉄心2aと環状リング23を環状突条22に締め付けて、ユニット21aに対して周方向位置を位置決め固定する。最後に、芯出し部材31を抜き取って、1つの鉄心2aのユニット21aへの組み付けが終了する。   First, as shown in FIGS. 10A and 10B, the centering member 31 is attached to one unit 21a. The centering member 31 is attached by pressing the flange portion 31a on one end side against an annular ridge 22 provided on one end side of the inner peripheral surface of the unit 21a. After that, one iron core 2 a on which the permanent magnet 4 and the coil 5 are mounted is guided by the centering member 31, inserted into the unit 21 a, and pressed against the annular ridge 22. The iron core 2a may be inserted into the unit 21a by sequentially guiding the magnetic pole 3b, the coil 5, and the magnetic pole 3a with the centering member 31 and inserting them in sequence. Next, the annular ring 23 is fitted into the unit 21a from the opposite side to the annular ridge 22 to fix the iron core 2a in the axial direction, and the iron core 2a and the annular ring 23 are fastened to the annular ridge 22 with bolts 24. The circumferential position is positioned and fixed with respect to the unit 21a. Finally, the centering member 31 is extracted, and the assembly of one iron core 2a to the unit 21a is completed.

図示は省略するが、他の鉄心2b、2cも同様の手順で各ユニット21aに組み付けられる。なお、ユニット21aには、後述するように、3つのユニット21aを合体させるためのボルト孔25と、各ユニット21a間の周方向位置を合せるための長円形状のピン穴26が設けられている。コイル5のケーブルを通すケーブル孔27も設けられている。   Although illustration is omitted, the other iron cores 2b and 2c are assembled to each unit 21a in the same procedure. As will be described later, the unit 21a is provided with a bolt hole 25 for combining the three units 21a and an oval pin hole 26 for aligning the circumferential position between the units 21a. . A cable hole 27 through which the coil 5 cable passes is also provided.

つぎに、図11に示すように、前記各鉄心2a、2b、2cを組み付けた3つの円筒状のユニット21aを軸方向に重ねて、ピン穴26に嵌入されるピン28で互いの周方向位置を位置決めするとともに、各ユニット21aのボルト孔25を貫通して嵌挿されるボルト29をナット30で締め付けて、3つのユニット21aを合体する。このように合体したユニット21aに組み付けられた各鉄心2a、2b、2cの内周側に、回転子11が半径方向に隙間を開けて組み込まれる。   Next, as shown in FIG. 11, the three cylindrical units 21 a assembled with the iron cores 2 a, 2 b, 2 c are overlapped in the axial direction, and the circumferential positions of the pins 28 are inserted into the pin holes 26. And the bolts 29 inserted through the bolt holes 25 of the respective units 21a are tightened with the nuts 30 to unite the three units 21a. On the inner peripheral side of each of the iron cores 2a, 2b, 2c assembled in the unit 21a combined in this way, the rotor 11 is incorporated with a gap in the radial direction.

このようにケーシング21を分割することにより、固定子1を容易にケーシング21に組み付けることができるとともに、配列される各鉄心2a、2b、2c間の周方向位置を精度よく合わせることができる。特に、図1の第1の実施形態の場合は、一体のケーシング21に固定子1を組み付けようとすると、軸方向で隣合う各鉄心2a、2b、2cの磁極3a、3bが同極となるので、これらが互いに磁力で反発し合って組み付けが困難となるが、このように分割したユニット21a毎に各鉄心2a、2b、2cを組み付けたのち合体させることにより、固定子1を容易に、かつ精度よく組み付けることができる。   By dividing the casing 21 in this way, the stator 1 can be easily assembled to the casing 21 and the circumferential positions between the arranged iron cores 2a, 2b, 2c can be accurately matched. In particular, in the case of the first embodiment shown in FIG. 1, when the stator 1 is assembled to the integral casing 21, the magnetic poles 3a and 3b of the iron cores 2a, 2b, and 2c adjacent in the axial direction have the same polarity. Therefore, they repel each other by magnetic force and it is difficult to assemble them. By assembling the iron cores 2a, 2b, 2c for each unit 21a thus divided, the stator 1 can be easily assembled. And it can be assembled with high accuracy.

上述した各実施形態では、軸方向に配列される鉄心の個数を3個としたが、配列される鉄心の個数は2個以上であればよく、その個数に応じて、配列される鉄心の2列の磁極と対向する回転子の各歯部の回転方向への位相差を決めることができる。   In each embodiment described above, the number of iron cores arranged in the axial direction is three, but the number of iron cores arranged may be two or more, and the number of iron cores arranged is two according to the number. The phase difference in the rotation direction of each tooth portion of the rotor facing the magnetic poles in the row can be determined.

上述した各実施形態では、回転子を内周側に配置したインナロータ形のものとし、固定子の外周側をケーシングで覆ったが、本発明に係る回転型パルスモータは、回転子を外周側に配置するアウタロータ形のものとすることもできる。なお、ケーシングは省略することもできる。   In each of the above-described embodiments, the rotor is of the inner rotor type arranged on the inner peripheral side, and the outer peripheral side of the stator is covered with the casing. However, the rotary pulse motor according to the present invention has the rotor on the outer peripheral side. It can also be of the outer rotor type to be arranged. The casing can be omitted.

上述した各実施形態では、固定子の鉄心と回転子の磁性部材を磁性鉄粉の粉末成形で形成したが、鉄心は磁性鋼板等を積層して形成することもでき、磁性部材は磁性鋼材等で形成することもできる。   In each of the embodiments described above, the stator iron core and the rotor magnetic member are formed by powder molding of magnetic iron powder, but the iron core can also be formed by laminating magnetic steel plates, etc. It can also be formed.

1 固定子
2a、2b、2c 鉄心
3a、3b 磁極
4 永久磁石
5 コイル
11 回転子
12 回転軸
13a、13b 歯部
21 ケーシング
21a ユニット
22 環状突条
23 環状リング
24 ボルト
25 ボルト孔
26 ピン穴
27 ケーブル孔
28 ピン
29 ボルト
30 ナット
31 芯出し部材
31a フランジ部
DESCRIPTION OF SYMBOLS 1 Stator 2a, 2b, 2c Iron core 3a, 3b Magnetic pole 4 Permanent magnet 5 Coil 11 Rotor 12 Rotating shaft 13a, 13b Tooth part 21 Casing 21a Unit 22 Annular protrusion 23 Annular ring 24 Bolt 25 Bolt hole 26 Pin hole 27 Cable Hole 28 Pin 29 Bolt 30 Nut 31 Centering member 31a Flange

Claims (5)

一軸上に固定され、磁束発生部を有する固定子と、
前記固定子と同軸上で回転自在に配設され、前記固定子と半径方向に隙間を開けて対向する回転子とからなり、
前記磁束発生部から発生する磁束によって、前記回転子を回転させる回転型パルスモータにおいて、
前記固定子は、
前記回転子と対向する2列の磁極を有し、軸方向に配列された複数個の鉄心と、
前記複数個の各鉄心の2列の磁極に、前記回転子の回転方向へ所定のピッチで回転方向へ極性を向けて挿入され、その両側で隣合う前記2列の磁極の極を交互に反転させる永久磁石と、
前記複数個の各鉄心の2列の磁極の間に嵌装される環状のコイルとを備え、
前記2列の磁極が形成された鉄心に挿入された永久磁石の極性が同じ向きであり、
前記回転子は、磁性部材で形成され、
前記複数個の鉄心の2列の各磁極の端面と対向するように、前記回転方向に沿って前記永久磁石の挿入ピッチと対応する所定のピッチで形成された複数個の歯部を備え、
前記鉄心の2列の各磁極の端面と対向する歯部同士が、回転方向へ電気角で180°の位相差を有し、
前記軸方向に配列される複数個の各鉄心の2列の磁極の端面と対向する歯部が、前記鉄心の配列個数に応じて決定される回転方向への位相差を順次有しており、
前記鉄心の2列の各磁極に挿入された永久磁石が一体に形成されていることを特徴とする回転型パルスモータ。
A stator fixed on one axis and having a magnetic flux generator;
The stator is arranged coaxially and rotatably, and consists of a rotor facing the stator with a gap in the radial direction,
In the rotary pulse motor that rotates the rotor by the magnetic flux generated from the magnetic flux generator,
The stator is
A plurality of iron cores having two rows of magnetic poles facing the rotor and arranged in an axial direction;
The magnetic poles of the two rows of each of the plurality of iron cores are inserted with a predetermined pitch in the rotation direction of the rotor with the polarity in the rotation direction, and the poles of the two rows of magnetic poles adjacent on both sides thereof are alternately inverted. With permanent magnets,
An annular coil fitted between two rows of magnetic poles of each of the plurality of iron cores,
The polarities of the permanent magnets inserted in the iron core on which the two rows of magnetic poles are formed are in the same direction,
The rotor is formed of a magnetic member,
A plurality of teeth formed at a predetermined pitch corresponding to the insertion pitch of the permanent magnet along the rotational direction so as to face the end faces of the magnetic poles in two rows of the plurality of iron cores;
The tooth portions opposed to the end faces of the two magnetic poles in the two rows of the iron core have a phase difference of 180 ° in electrical direction in the rotation direction,
The tooth portions facing the end faces of two rows of magnetic poles of each of the plurality of iron cores arranged in the axial direction sequentially have a phase difference in the rotational direction determined according to the number of the iron cores arranged,
A rotary pulse motor characterized in that a permanent magnet inserted into each of the two magnetic poles of the iron core is integrally formed.
一軸上に固定され、磁束発生部を有する固定子と、
前記固定子と同軸上で回転自在に配設され、前記固定子と半径方向に隙間を開けて対向する回転子とからなり、
前記磁束発生部から発生する磁束によって、前記回転子を回転させる回転型パルスモータにおいて、
前記固定子は、
前記回転子と対向する2列の磁極を有し、軸方向に配列された複数個の鉄心と、
前記複数個の各鉄心の2列の磁極に、前記回転子の回転方向へ所定のピッチで回転方向へ極性を向けて挿入され、その両側で隣合う前記2列の磁極の極を交互に反転させる永久磁石と、
前記複数個の各鉄心の2列の磁極の間に嵌装される環状のコイルとを備え、
前記2列の磁極が形成された鉄心に挿入された永久磁石の極性が逆向きであり、
前記回転子は、磁性部材で形成され、
前記複数個の鉄心の2列の各磁極の端面と対向するように、前記回転方向に沿って前記永久磁石の挿入ピッチと対応する所定のピッチで形成された複数個の歯部を備え、
前記鉄心の2列の各磁極の端面と対向する歯部同士が、回転方向へ同位相とされ、
前記軸方向に配列される複数個の各鉄心の2列の磁極の端面と対向する歯部が、前記鉄心の配列個数に応じて決定される回転方向への位相差を順次有しており、
前記回転子の前記2列の各磁極の端面と対向する歯部を、前記2列の各磁極が存在しない軸方向部位で切り欠いていることを特徴とする回転型パルスモータ。
A stator fixed on one axis and having a magnetic flux generator;
The stator is arranged coaxially and rotatably, and consists of a rotor facing the stator with a gap in the radial direction,
In the rotary pulse motor that rotates the rotor by the magnetic flux generated from the magnetic flux generator,
The stator is
A plurality of iron cores having two rows of magnetic poles facing the rotor and arranged in an axial direction;
The magnetic poles of the two rows of each of the plurality of iron cores are inserted with a predetermined pitch in the rotation direction of the rotor with the polarity in the rotation direction, and the poles of the two rows of magnetic poles adjacent on both sides thereof are alternately inverted. With permanent magnets,
An annular coil fitted between two rows of magnetic poles of each of the plurality of iron cores,
The polarity of the permanent magnet inserted into the iron core on which the two rows of magnetic poles are formed is reverse,
The rotor is formed of a magnetic member,
A plurality of teeth formed at a predetermined pitch corresponding to the insertion pitch of the permanent magnet along the rotational direction so as to face the end faces of the magnetic poles in two rows of the plurality of iron cores;
The tooth portions facing the end faces of the two magnetic poles in the two rows of the iron core are in phase in the rotational direction,
The tooth portions facing the end faces of two rows of magnetic poles of each of the plurality of iron cores arranged in the axial direction sequentially have a phase difference in the rotational direction determined according to the number of the iron cores arranged,
A rotary pulse motor, wherein a tooth portion facing the end face of each magnetic pole of the two rows of the rotor is cut out in an axial direction where the magnetic poles of the two rows do not exist.
前記歯部の前記軸方向における両端面が、前記磁極の前記軸方向における両端面と面一である請求項1又は2に記載の回転型パルスモータ。 The axial end surfaces in the direction, rotary pulse motor according to claim 1 or 2 end surfaces flush is in the axial direction of the magnetic poles of the teeth. 前記固定子を前記回転子の外周側に配置した請求項1乃至3のいずれかに記載の回転型パルスモータ。 Rotary pulse motor according to any one of claims 1 to 3 was placed the stator on the outer circumferential side of the rotor. 前記固定子の外周側を筒状のケーシングで覆い、前記ケーシングを前記軸方向に配列される複数個の鉄心に対応させて軸方向に分割した請求項に記載の回転型パルスモータ。 The rotary pulse motor according to claim 4 , wherein the outer peripheral side of the stator is covered with a cylindrical casing, and the casing is divided in the axial direction so as to correspond to the plurality of cores arranged in the axial direction.
JP2013267779A 2013-12-25 2013-12-25 Rotary pulse motor Expired - Fee Related JP6390099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267779A JP6390099B2 (en) 2013-12-25 2013-12-25 Rotary pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267779A JP6390099B2 (en) 2013-12-25 2013-12-25 Rotary pulse motor

Publications (2)

Publication Number Publication Date
JP2015126567A JP2015126567A (en) 2015-07-06
JP6390099B2 true JP6390099B2 (en) 2018-09-19

Family

ID=53536926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267779A Expired - Fee Related JP6390099B2 (en) 2013-12-25 2013-12-25 Rotary pulse motor

Country Status (1)

Country Link
JP (1) JP6390099B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2727450A1 (en) * 1976-07-05 1978-01-12 Philips Nv SYNCHRONOUS MOTOR
JPS5944181U (en) * 1982-09-10 1984-03-23 富士通株式会社 Polar pulse motor
JP2566791Y2 (en) * 1991-05-20 1998-03-30 神鋼電機株式会社 Rotary pulse motor
JP4450235B2 (en) * 2006-05-25 2010-04-14 株式会社デンソー AC generator
WO2009069383A1 (en) * 2007-11-29 2009-06-04 Tokyo Micro Inc. Motor
CN102290945B (en) * 2011-08-25 2013-08-28 哈尔滨工业大学 Transverse magnetic flux multi-phase reluctance motor

Also Published As

Publication number Publication date
JP2015126567A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5739651B2 (en) Rotor and motor
JP5796569B2 (en) Rotor and rotating electric machine using the same
US8933610B2 (en) Rotor and motor
RU2641722C1 (en) Rotating electrical machine and stator of rotating electrical machine
US20060022553A1 (en) Rotating electric machine
US20140285049A1 (en) Magnet-embedded rotor, method for manufacturing magnet-embedded rotor, and orientation and magnetization device
JP5672507B2 (en) Rotating electric machine
US20210218301A1 (en) Rotating electric machine
JP5726386B1 (en) Permanent magnet motor rotor
JP2018082600A (en) Double-rotor dynamoelectric machine
JP4640373B2 (en) Rotating electric machine
JP5869306B2 (en) Rotor and motor
US20220060070A1 (en) Rotating electric machine
JP6974036B2 (en) Bicycle power generator
JP6390099B2 (en) Rotary pulse motor
JP2005045978A (en) Motor
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
JP6824032B2 (en) How to assemble a reluctance rotary electric machine and a reluctance rotary electric machine
JP5731055B1 (en) Outer rotor generator
JP2012019605A (en) Permanent magnet rotating electrical machine
JP4859751B2 (en) Rotating electric machine
JP6745212B2 (en) Rotor and reluctance rotating electric machine
JP2010259309A (en) Electromagnetic unit and ring coil motor
JP5126585B2 (en) Axial gap type motor
JP2008086176A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6390099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees