JP6388426B2 - Coil parts manufacturing method - Google Patents

Coil parts manufacturing method Download PDF

Info

Publication number
JP6388426B2
JP6388426B2 JP2016196732A JP2016196732A JP6388426B2 JP 6388426 B2 JP6388426 B2 JP 6388426B2 JP 2016196732 A JP2016196732 A JP 2016196732A JP 2016196732 A JP2016196732 A JP 2016196732A JP 6388426 B2 JP6388426 B2 JP 6388426B2
Authority
JP
Japan
Prior art keywords
magnetic
coil
alloy particles
component
coil component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016196732A
Other languages
Japanese (ja)
Other versions
JP2017073547A (en
Inventor
準 松浦
準 松浦
小林 朋美
朋美 小林
喜和 沖野
喜和 沖野
秀美 岩尾
秀美 岩尾
謙一郎 野木
謙一郎 野木
大竹 健二
健二 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Publication of JP2017073547A publication Critical patent/JP2017073547A/en
Application granted granted Critical
Publication of JP6388426B2 publication Critical patent/JP6388426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、螺旋状のコイル部が磁性体部によって覆われた構造を有するコイル部品の製造方法に関する。   The present invention relates to a method of manufacturing a coil component having a structure in which a spiral coil portion is covered with a magnetic body portion.

インダクタやチョークコイルやトランス等で代表されるコイル部品(俗に言うインダクタンス部品)は、螺旋状のコイル部が磁性体部によって覆われた構造を有している。コイル部を覆う磁性体部には、その材料としてNi−Cu−Zn系フェライト等のフェライト(酸化鉄を主成分とするセラミックスを意味する)が一般に用いられている。   A coil component represented by an inductor, a choke coil, a transformer, etc. (commonly called an inductance component) has a structure in which a spiral coil portion is covered with a magnetic body portion. Ferrite (meaning ceramics mainly composed of iron oxide) such as Ni—Cu—Zn-based ferrite is generally used as the material for the magnetic part covering the coil part.

近年、この種のコイル部品には大電流化(定格電流の高値化を意味する)が求められており、該要求を満足するために、磁性体部の材料を従前のフェライトからFe−Cr−Si合金に切り替えることが検討されている(特許文献1を参照)。   In recent years, this type of coil component has been required to have a large current (meaning a higher rated current), and in order to satisfy this requirement, the material of the magnetic part is changed from conventional ferrite to Fe—Cr—. Switching to a Si alloy has been studied (see Patent Document 1).

このFe−Cr−Si合金は、材料自体の飽和磁束密度が従前のフェライトに比べて高い反面、材料自体の体積抵抗率が従前のフェライトに比べて格段低い。つまり、螺旋状のコイル部が磁性体部と直接接触するタイプのコイル部品、例えば、積層タイプや圧粉タイプ等のコイル部品において、磁性体部の材料を従前のフェライトからFe−Cr−Si合金に切り替えるには、Fe−Cr−Si合金粒子群から成る磁性体部自体の体積抵抗率をフェライト粒子群から成る磁性体部自体の体積抵抗率に近づける工夫、好ましくは該体積抵抗率よりも高める工夫が必要となる。   The Fe—Cr—Si alloy has a higher saturation magnetic flux density than that of the conventional ferrite, but the volume resistivity of the material itself is much lower than that of the conventional ferrite. That is, in a coil component of a type in which the spiral coil portion is in direct contact with the magnetic body portion, for example, a coil component such as a laminated type or a powder type, the material of the magnetic body portion is changed from a conventional ferrite to an Fe—Cr—Si alloy. To switch to the volume resistivity of the magnetic body part itself composed of the Fe-Cr-Si alloy particle group close to the volume resistivity of the magnetic body part itself composed of the ferrite particle group, preferably higher than the volume resistivity. Ingenuity is required.

要するに、Fe−Cr−Si合金粒子群から成る磁性体部自体に高い体積抵抗率を確保できないと、材料自体の飽和磁束密度を有効利用して部品自体の飽和磁束密度を高値化できないし、コイル部から磁性体部に電流が漏れて磁界が乱れる現象を生じるために部品自体のインダクタンスが低下してしまう。   In short, if high volume resistivity cannot be secured in the magnetic body part itself composed of Fe-Cr-Si alloy particles, the saturation flux density of the component itself cannot be increased by effectively utilizing the saturation flux density of the material itself, and the coil Since the current leaks from the part to the magnetic part and the magnetic field is disturbed, the inductance of the component itself decreases.

ところで、先に挙げた特許文献1には、積層タイプのコイル部品における磁性体部の作製方法として、Fe−Cr−Si合金粒子群の他にガラス成分を含む磁性体ペーストにより形成された磁性体層と導体パターンを積層して窒素雰囲気中(=還元性雰囲気中)で焼成した後に、該焼成物に熱硬化性樹脂を含浸させる方法が開示されている。   By the way, in Patent Document 1 mentioned above, as a method for producing a magnetic body part in a laminated type coil component, a magnetic body formed by a magnetic paste containing a glass component in addition to a Fe—Cr—Si alloy particle group. A method is disclosed in which a layer and a conductor pattern are laminated and fired in a nitrogen atmosphere (= in a reducing atmosphere), and then the fired product is impregnated with a thermosetting resin.

しかしながら、この作製方法では、磁性体ペーストに含まれたガラス成分が磁性体部内に残存するため、該磁性体部内に存するガラス成分によってFe−Cr−Si合金粒子の体積率が減少し、該減少を原因として部品自体の飽和磁束密度も低下してしまう。   However, in this manufacturing method, since the glass component contained in the magnetic paste remains in the magnetic body portion, the volume fraction of Fe—Cr—Si alloy particles is reduced by the glass component existing in the magnetic body portion, and the decrease As a result, the saturation magnetic flux density of the component itself also decreases.

特開2007−027354号公報JP 2007-027354 A

本発明の目的は、螺旋状のコイル部が磁性体部と直接接触するタイプでありつつも大電流化の要求を満足できるコイル部品の製造方法を提供することにある。   An object of the present invention is to provide a method of manufacturing a coil component that can satisfy a demand for a large current while being a type in which a spiral coil portion is in direct contact with a magnetic body portion.

前記目的を達成するため、本発明は、磁性体部によって覆われた螺旋状のコイル部が該磁性体部と直接接触するタイプのコイル部品の製造方法において、酸化性雰囲気中で磁性合金粒子を加熱処理することによって前記磁性合金粒子の表面に該磁性合金粒子の酸化物膜を形成せしめるステップを有し、前記ステップにて得られた、表面に前記酸化物膜が存在している磁性合金粒子群が前記磁性体部の主体を成す、ことをその特徴とする。   In order to achieve the above object, the present invention provides a method of manufacturing a coil component in which a spiral coil portion covered with a magnetic body portion is in direct contact with the magnetic body portion, and magnetic alloy particles are produced in an oxidizing atmosphere. A magnetic alloy particle having a step of forming an oxide film of the magnetic alloy particle on the surface of the magnetic alloy particle by heat treatment, and the oxide film existing on the surface obtained in the step; The group is the main body of the magnetic body part.

本発明によれば、磁性体部を構成する磁性合金粒子それぞれの表面には該磁性合金粒子の酸化物膜(=絶縁膜)が存在しており、該磁性体部内の磁性合金粒子は絶縁膜の役目を為す酸化物膜を介して相互結合し、コイル部近傍の磁性合金粒子は絶縁膜の役目を為す酸化物膜を介して該コイル部と密着しているため、磁性合金粒子群をその主体する磁性体部自体に高い体積抵抗率を確保できる。また、好適態様では、磁性体部はガラス成分を含むものではないため、該磁性体部内に存するガラス成分によって磁性合金粒子の体積率が減少することは無く、該減少を原因とした部品自体の飽和磁束密度の低下も回避できる。   According to the present invention, there is an oxide film (= insulating film) of the magnetic alloy particles on the surface of each of the magnetic alloy particles constituting the magnetic body portion, and the magnetic alloy particles in the magnetic body portion are the insulating film. Since the magnetic alloy particles in the vicinity of the coil portion are in close contact with the coil portion through the oxide film serving as an insulating film, the magnetic alloy particle group is A high volume resistivity can be secured in the main magnetic body itself. In the preferred embodiment, since the magnetic body portion does not contain a glass component, the volume fraction of the magnetic alloy particles is not reduced by the glass component existing in the magnetic body portion, and the component itself caused by the reduction is not caused. A decrease in saturation magnetic flux density can also be avoided.

つまり、コイル部が磁性体部と直接接触するタイプでありつつも、磁性合金の材料自体の飽和磁束密度を有効利用して部品自体の飽和磁束密度を高値化できるために大電流化の要求を満足できるし、コイル部から磁性体部に電流が漏れて磁界が乱れる現象を防止できるために部品自体のインダクタンスの低下も回避できる。   In other words, while the coil part is in direct contact with the magnetic part, the saturation flux density of the part itself can be increased by effectively using the saturation flux density of the magnetic alloy material itself, which requires a higher current. This is satisfactory, and a phenomenon in which current leaks from the coil portion to the magnetic body portion to disturb the magnetic field can be prevented, so that a reduction in inductance of the component itself can be avoided.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

図1は、積層タイプのコイル部品の外観斜視図である。FIG. 1 is an external perspective view of a laminated type coil component. 図2は、図1のS11−S11線に沿う拡大断面図である。2 is an enlarged cross-sectional view taken along line S11-S11 in FIG. 図3は、図1に示した部品本体の分解図である。FIG. 3 is an exploded view of the component main body shown in FIG. 図4は、図2に示した磁性体部を構成する粒子の粒度分布を示す図である。FIG. 4 is a diagram showing the particle size distribution of the particles constituting the magnetic part shown in FIG. 図5は、図2に示した磁性体部を透過型電子顕微鏡で観察したときに得た画像に準じて粒子状態を表した模式図である。FIG. 5 is a schematic diagram showing a particle state according to an image obtained when the magnetic body portion shown in FIG. 2 is observed with a transmission electron microscope. 図6は、脱バインダプロセス実行前の磁性体部を透過型電子顕微鏡で観察したときに得た画像に準じて粒子状態を表した模式図である。FIG. 6 is a schematic diagram showing a particle state according to an image obtained when a magnetic part before execution of the binder removal process is observed with a transmission electron microscope. 図7は、脱バインダプロセス実行後の磁性体部を透過型電子顕微鏡で観察したときに得た画像に準じて粒子状態を表した模式図である。FIG. 7 is a schematic diagram showing the particle state according to an image obtained when the magnetic body portion after execution of the binder removal process is observed with a transmission electron microscope.

[コイル部品の具体構造例]
先ず、本発明の製造方法により得られる積層タイプのコイル部品に適用した具体構造例を、図1〜図5を引用して説明する。
[Specific structure example of coil parts]
First, a specific structural example applied to a laminated type coil component obtained by the manufacturing method of the present invention will be described with reference to FIGS.

図1に示したコイル部品10は、長さLが約3.2mmで、幅Wが約1.6mmで、高さHが約0.8mmで、全体が直方体形状を成している。このコイル部品10は、直方体形状の部品本体11と、該部品本体11の長さ方向の両端部に設けられた1対の外部端子14及び15とを有している。部品本体11は、図2に示したように、直方体形状の磁性体部12と、該磁性体部12によって覆われた螺旋状のコイル部13とを有しており、該コイル部13の一端は外部端子14に接続し他端は外部端子15に接続している。   The coil component 10 shown in FIG. 1 has a length L of about 3.2 mm, a width W of about 1.6 mm, a height H of about 0.8 mm, and has a rectangular parallelepiped shape as a whole. The coil component 10 includes a rectangular parallelepiped component main body 11 and a pair of external terminals 14 and 15 provided at both ends in the length direction of the component main body 11. As shown in FIG. 2, the component main body 11 includes a rectangular parallelepiped magnetic body portion 12 and a spiral coil portion 13 covered with the magnetic body portion 12. Is connected to the external terminal 14 and the other end is connected to the external terminal 15.

磁性体部12は、図3に示したように、計20層の磁性体層ML1〜ML6が一体化した構造を有し、長さが約3.2mmで、幅が約1.6mmで、高さが約0.8mmである。各磁性体層ML1〜ML6の長さは約3.2mmで、幅は約1.6mmで、厚さは約40μmである。この磁性体部12は、Fe−Cr−Si合金粒子群をその主体とし、且つ、ガラス成分を含んでいない。Fe−Cr−Si合金粒子の組成は、Feが88〜96.5wt%で、Crが2〜8wt%で、Siが1.5〜7wt%である。   As shown in FIG. 3, the magnetic body portion 12 has a structure in which a total of 20 magnetic layers ML1 to ML6 are integrated, has a length of about 3.2 mm, a width of about 1.6 mm, The height is about 0.8 mm. Each of the magnetic layers ML1 to ML6 has a length of about 3.2 mm, a width of about 1.6 mm, and a thickness of about 40 μm. The magnetic body 12 is mainly composed of Fe—Cr—Si alloy particles and does not contain a glass component. The composition of the Fe—Cr—Si alloy particles is 88 to 96.5 wt% for Fe, 2 to 8 wt% for Cr, and 1.5 to 7 wt% for Si.

磁性体部12を構成するFe−Cr−Si合金粒子は、図4に示したように、体積基準の粒子径とした見た場合のd50(メディアン径)が10μmで、d10が3μmで、d90が16μmであり、d10/d50が0.3で、d90/d50が1.6である。また、図5に示したように、Fe−Cr−Si合金粒子1それぞれの表面には該Fe−Cr−Si合金粒子の酸化物膜(=絶縁膜)2が存在しており、磁性体部12内のFe−Cr−Si合金粒子1は絶縁膜の役目を為す酸化物膜2を介して相互結合し、コイル部13近傍のFe−Cr−Si合金粒子1は絶縁膜の役目を為す酸化物膜2を介して該コイル部13と密着している。この酸化物膜2は、磁性体に属するFe34と、非磁性体に属するFe23及びCr23を少なくとも含むことが確認されている。 As shown in FIG. 4, the Fe—Cr—Si alloy particles constituting the magnetic body portion 12 have a d50 (median diameter) of 10 μm, a d10 of 3 μm, Is 16 μm, d10 / d50 is 0.3, and d90 / d50 is 1.6. Further, as shown in FIG. 5, an oxide film (= insulating film) 2 of the Fe—Cr—Si alloy particles 2 exists on the surface of each Fe—Cr—Si alloy particle 1, and the magnetic part The Fe—Cr—Si alloy particles 1 in 12 are interconnected via an oxide film 2 that serves as an insulating film, and the Fe—Cr—Si alloy particles 1 in the vicinity of the coil portion 13 are oxidized to serve as an insulating film. The coil portion 13 is in close contact with the material film 2. The oxide film 2 has been confirmed to contain at least Fe 3 O 4 belonging to a magnetic material, and Fe 2 O 3 and Cr 2 O 3 belonging to a non-magnetic material.

因みに、図4は、レーザ回折散乱法を利用した粒子径・粒度分布測定装置(日機装(株)製のマイクロトラック)を用いて測定した粒度分布を表している。また、図5は、磁性体部12を透過型電子顕微鏡で観察したときに得た画像に準じて粒子状態を模式的に表している。磁性体部12を構成するFe−Cr−Si合金粒子1は実際のところ完全な球形を成すものではないが、粒子径が分布を持つことを表現するために粒子全てを球形として描いてある。加えて、粒子それぞれの表面に存在する酸化物膜2の厚さは実際のところ0.05〜0.2μmの範囲でバラツキを有するが、酸化物膜2が粒子表面に存在することを表現するために該酸化物膜2の厚さ全てを均等に描いてある。   Incidentally, FIG. 4 shows the particle size distribution measured using a particle size / particle size distribution measuring apparatus (Microtrack manufactured by Nikkiso Co., Ltd.) using a laser diffraction scattering method. FIG. 5 schematically shows a particle state according to an image obtained when the magnetic body portion 12 is observed with a transmission electron microscope. The Fe—Cr—Si alloy particles 1 constituting the magnetic body portion 12 do not actually form a perfect sphere, but all the particles are drawn as spheres to express that the particle diameter has a distribution. In addition, although the thickness of the oxide film 2 existing on the surface of each particle actually varies in the range of 0.05 to 0.2 μm, it expresses that the oxide film 2 exists on the particle surface. Therefore, all the thicknesses of the oxide film 2 are drawn equally.

コイル部13は、図3に示したように、計5個のコイルセグメントCS1〜CS5と、該コイルセグメントCS1〜CS5を接続する計4個の中継セグメントIS1〜IS4とが、螺旋状に一体化した構造を有し、その巻き数は約3.5である。このコイル部13は、Ag粒子群をその主体とする。Ag粒子は、体積基準の粒子径とした見た場合のd50(メディアン径)が5μmである。   As shown in FIG. 3, the coil unit 13 includes a total of five coil segments CS1 to CS5 and a total of four relay segments IS1 to IS4 that connect the coil segments CS1 to CS5 in a spiral shape. The number of turns is about 3.5. The coil part 13 is mainly composed of Ag particles. Ag particles have a d50 (median diameter) of 5 μm when viewed as a volume-based particle diameter.

4個のコイルセグメントCS1〜CS4はコ字状を成し、1個のコイルセグメントCS5は帯状を成しており、各コイルセグメントCS1〜CS5の厚さは約20μmで、幅は約0.2mmである。最上位のコイルセグメントCS1は、外部端子14との接続に利用されるL字状の引出部分LS1を連続して有し、最下位のコイルセグメントCS5は、外部端子15との接続に利用されるL字状の引出部分LS2を連続して有している。各中継セグメントIS1〜IS4は磁性体層ML1〜ML4を貫通した柱状を成しており、各々の口径は約15μmである。   The four coil segments CS1 to CS4 have a U shape, and the one coil segment CS5 has a strip shape. Each coil segment CS1 to CS5 has a thickness of about 20 μm and a width of about 0.2 mm. It is. The uppermost coil segment CS1 has a continuous L-shaped lead portion LS1 used for connection to the external terminal 14, and the lowermost coil segment CS5 is used for connection to the external terminal 15. An L-shaped lead portion LS2 is continuously provided. Each relay segment IS1 to IS4 has a columnar shape penetrating the magnetic layers ML1 to ML4, and each aperture is about 15 μm.

各外部端子14及び15は、図1及び図2に示したように、部品本体11の長さ方向の各端面と該端面近傍の4側面に及んでおり、その厚さは約20μmである。一方の外部端子14は最上位のコイルセグメントCS1の引出部分LS1の端縁と接続し、他方の外部端子15は最下位のコイルセグメントCS5の引出部分LS2の端縁と接続している。この各外部端子14及び15は、Ag粒子群をその主体とする。Ag粒子は、体積基準の粒子径とした見た場合のd50(メディアン径)が5μmである。   As shown in FIGS. 1 and 2, each external terminal 14 and 15 extends to each end face in the length direction of the component main body 11 and four side faces in the vicinity of the end face, and the thickness thereof is about 20 μm. One external terminal 14 is connected to the edge of the lead portion LS1 of the uppermost coil segment CS1, and the other external terminal 15 is connected to the edge of the lead portion LS2 of the lowermost coil segment CS5. The external terminals 14 and 15 are mainly composed of Ag particles. Ag particles have a d50 (median diameter) of 5 μm when viewed as a volume-based particle diameter.

[コイル部品の具体製法例]
次に、前記コイル部品10の具体製法例を、図3、図5、図6及び図7を引用して説明する。
[Specific example of coil part manufacturing method]
Next, an example of a specific method for manufacturing the coil component 10 will be described with reference to FIGS. 3, 5, 6 and 7.

前記コイル部品10を製造するに際しては、ドクターブレードやダイコータ等の塗工機(図示省略)を用いて、予め用意した磁性体ペーストをプラスチック製のベースフィルム(図示省略)の表面に塗工し、これを熱風乾燥機等の乾燥機(図示省略)を用いて、約80℃、約5minの条件で乾燥して、磁性体層ML1〜ML6(図3を参照)に対応し、且つ、多数個取りに適合したサイズの第1〜第6シートをそれぞれ作製する。   In producing the coil component 10, using a coating machine (not shown) such as a doctor blade or a die coater, a magnetic paste prepared in advance is applied to the surface of a plastic base film (not shown), This is dried using a dryer (not shown) such as a hot air dryer under conditions of about 80 ° C. and about 5 minutes, corresponding to the magnetic layers ML1 to ML6 (see FIG. 3), and many First to sixth sheets having a size suitable for taking are prepared.

ここで用いた磁性体ペーストの組成は、Fe−Cr−Si合金粒子群が85wt%で、ブチルカルビトール(溶剤)が13wt%で、ポリビニルブチラール(バインダ)が2wt%であり、Fe−Cr−Si合金粒子のd50(メディアン径)、d10及びd90は先に述べた通りである。   The composition of the magnetic paste used here is 85 wt% for Fe-Cr-Si alloy particles, 13 wt% for butyl carbitol (solvent), 2 wt% for polyvinyl butyral (binder), and Fe-Cr- The d50 (median diameter), d10 and d90 of the Si alloy particles are as described above.

続いて、打ち抜き加工機やレーザ加工機等の穿孔機(図示省略)を用いて、磁性体層ML1(図3を参照)に対応する第1シートに穿孔を行い、中継セグメントIS1(図3を参照)に対応する貫通孔を所定配列で形成する。同様に、磁性体層ML2〜ML4(図3を参照)に対応する第2〜第4シートそれぞれに、中継セグメントIS2〜IS4(図3を参照)に対応する貫通孔を所定配列で形成する。   Subsequently, using a punching machine (not shown) such as a punching machine or a laser processing machine, the first sheet corresponding to the magnetic layer ML1 (see FIG. 3) is punched, and the relay segment IS1 (see FIG. 3). Through holes corresponding to the reference) are formed in a predetermined arrangement. Similarly, through holes corresponding to the relay segments IS2 to IS4 (see FIG. 3) are formed in a predetermined arrangement in the second to fourth sheets corresponding to the magnetic layers ML2 to ML4 (see FIG. 3).

続いて、スクリーン印刷機やグラビア印刷機等の印刷機(図示省略)を用いて、予め用意した導体ペーストを磁性体層ML1(図3を参照)に対応する第1シートの表面に印刷し、これを熱風乾燥機等の乾燥機(図示省略)を用いて、約80℃、約5minの条件で乾燥して、コイルセグメントCS1(図3を参照)に対応する第1印刷層を所定配列で作製する。同様に、磁性体層ML2〜ML5(図3を参照)に対応する第2〜第5シートそれぞれの表面に、コイルセグメントCS2〜CS5(図3を参照)に対応する第2〜第5印刷層を所定配列で作製する。   Subsequently, using a printing machine (not shown) such as a screen printing machine or a gravure printing machine, a conductor paste prepared in advance is printed on the surface of the first sheet corresponding to the magnetic layer ML1 (see FIG. 3), This is dried using a dryer (not shown) such as a hot air dryer under conditions of about 80 ° C. and about 5 minutes, and the first printed layer corresponding to the coil segment CS1 (see FIG. 3) is arranged in a predetermined arrangement. Make it. Similarly, the second to fifth printed layers corresponding to the coil segments CS2 to CS5 (see FIG. 3) are formed on the surfaces of the second to fifth sheets corresponding to the magnetic layers ML2 to ML5 (see FIG. 3). In a predetermined arrangement.

ここで用いた導体ペーストの組成は、Ag粒子群が85wt%で、ブチルカルビトール(溶剤)が13wt%で、ポリビニルブチラール(バインダ)が2wt%であり、Ag粒子のd50(メディアン径)は先に述べた通りである。   The composition of the conductive paste used here is 85 wt% for Ag particles, 13 wt% for butyl carbitol (solvent), 2 wt% for polyvinyl butyral (binder), and d50 (median diameter) of Ag particles is first. As described in.

磁性体層ML1〜ML4(図3を参照)に対応する第1〜第4シートそれぞれに形成した所定配列の貫通孔は、所定配列の第1〜第4印刷層それぞれの端部に重なる位置に存するため、第1〜第4印刷層を印刷する際に導体ペーストの一部が各貫通孔に充填されて、中継セグメントIS1〜IS4(図3を参照)に対応する第1〜第4充填部が形成される。   The through holes of a predetermined arrangement formed in each of the first to fourth sheets corresponding to the magnetic layers ML1 to ML4 (see FIG. 3) are positioned so as to overlap the end portions of the first to fourth printing layers of the predetermined arrangement. Therefore, when printing the first to fourth printing layers, a part of the conductor paste is filled in each through hole, and the first to fourth filling portions corresponding to the relay segments IS1 to IS4 (see FIG. 3). Is formed.

続いて、吸着搬送機とプレス機(何れも図示省略)を用いて、印刷層及び充填部が設けられた第1〜第4シート(磁性体層ML1〜ML4に対応)と、印刷層のみが設けられた第5シート(磁性体層ML5に対応)と、印刷層及び充填部が設けられていない第6シート(磁性体層ML6に対応)を、図3に示した順序で積み重ねて熱圧着して積層体を作製する。   Subsequently, using a suction conveyance machine and a press machine (both not shown), only the first to fourth sheets (corresponding to the magnetic layers ML1 to ML4) provided with the printing layer and the filling portion and the printing layer are provided. The fifth sheet (corresponding to the magnetic layer ML5) provided and the sixth sheet (corresponding to the magnetic layer ML6) not provided with the printing layer and the filling portion are stacked in the order shown in FIG. To produce a laminate.

続いて、ダイシング機やレーザ加工機等の切断機(図示省略)を用いて、積層体を部品本体サイズに切断して、加熱処理前チップ(加熱処理前の磁性体部及びコイル部を含む)を作製する。   Subsequently, using a cutting machine (not shown) such as a dicing machine or a laser processing machine, the laminated body is cut into a component body size, and a chip before heat treatment (including a magnetic body portion and a coil portion before heat treatment). Is made.

続いて、焼成炉等の加熱処理機(図示省略)を用いて、大気等の酸化性雰囲気中で、加熱処理前チップを多数個一括で加熱処理する。この加熱処理は脱バインダプロセスと酸化物膜形成プロセスとを含み、脱バインダプロセスは約300℃、約1hrの条件で実行され、酸化物膜形成プロセスは約750℃、約2hrの条件で実行される。   Subsequently, using a heat treatment machine (not shown) such as a firing furnace, a large number of pre-heat treatment chips are heat-treated in a batch in an oxidizing atmosphere such as air. This heat treatment includes a binder removal process and an oxide film formation process. The binder removal process is performed under conditions of about 300 ° C. and about 1 hour, and the oxide film formation process is performed under conditions of about 750 ° C. and about 2 hours. The

脱バインダプロセスを実行する前の加熱処理前チップにあっては、図6に示したように、加熱処理前の磁性体部内のFe−Cr−Si合金粒子1の間に多数の微細間隙が存在し、該微細間隙は溶剤とバインダの混合物4で満たされているが、これらは脱バインダプロセスにおいて消失するため、脱バインダプロセスが完了した後は、図7に示したように、該微細間隙はポア3に変わる。また、加熱処理前のコイル部内のAg粒子の間にも多数の微細隙間が存在し、該微細間隙は溶剤とバインダの混合物で満たされているが、これらは脱バインダプロセスにおいて消失する。   In the pre-heat-treatment chip before performing the binder removal process, as shown in FIG. 6, there are many fine gaps between the Fe—Cr—Si alloy particles 1 in the magnetic body part before the heat treatment. However, the fine gap is filled with the mixture 4 of the solvent and the binder, but these disappear in the binder removal process. Therefore, after the binder removal process is completed, as shown in FIG. Change to pore 3. In addition, a large number of fine gaps exist between Ag particles in the coil part before the heat treatment, and the fine gaps are filled with the mixture of the solvent and the binder, but these disappear in the binder removal process.

脱バインダプロセスに続く酸化物膜形成プロセスでは、図5に示したように、加熱処理前の磁性体部内のFe−Cr−Si合金粒子1が密集して磁性体部12(図1及び図2を参照)が作製されると同時に、該Fe−Cr−Si合金粒子1それぞれの表面に該粒子1の酸化物膜2が形成される。また、加熱処理前のコイル部内のAg粒子群が焼結してコイル部13(図1及び図2を参照)が作製され、これにより部品本体11(図1及び図2を参照)が作製される。   In the oxide film formation process subsequent to the binder removal process, as shown in FIG. 5, the Fe—Cr—Si alloy particles 1 in the magnetic body portion before the heat treatment are densely packed to form the magnetic body portion 12 (FIGS. 1 and 2). At the same time, the oxide film 2 of the particles 1 is formed on the surfaces of the Fe—Cr—Si alloy particles 1. Further, the Ag particle group in the coil part before the heat treatment is sintered to produce the coil part 13 (see FIGS. 1 and 2), and thereby the component main body 11 (see FIGS. 1 and 2) is produced. The

因みに、図6及び図7は、脱バインダプロセス実行前後の磁性体部を透過型電子顕微鏡で観察したときに得た画像に準じて粒子状態を模式的に表している。加熱処理前の磁性体部を構成するFe−Cr−Si合金粒子1は実際のところ完全な球形を成すものではないが、図5との整合を図るために粒子全てを球形として描いてある。   Incidentally, FIG. 6 and FIG. 7 schematically show the particle state according to images obtained when the magnetic body part before and after execution of the binder removal process is observed with a transmission electron microscope. Although the Fe—Cr—Si alloy particles 1 constituting the magnetic body part before the heat treatment are not actually perfect spheres, all the particles are drawn as spheres for matching with FIG.

続いて、ディップ塗布機やローラ塗布機等の塗布機(図示省略)を用いて、予め用意した導体ペーストを部品本体11の長さ方向両端部に塗布し、これを焼成炉等の加熱処理機(図示省略)を用いて、約600℃、約1hrの条件で焼付け処理を行い、該焼付け処理によって溶剤及びバインダの消失とAg粒子群の焼結を行って、外部端子14及び15(図1及び図2を参照)を作製する。   Subsequently, using a coating machine (not shown) such as a dip coating machine or a roller coating machine, a conductor paste prepared in advance is applied to both ends in the length direction of the component main body 11, and this is applied to a heat treatment machine such as a firing furnace. (Not shown), a baking process is performed under conditions of about 600 ° C. and about 1 hour, and by the baking process, the disappearance of the solvent and the binder and the sintering of the Ag particles are performed, and the external terminals 14 and 15 (FIG. 1). And FIG. 2).

ここで用いた導体ペーストの組成は、Ag粒子群が85wt%で、ブチルカルビトール(溶剤)が13wt%で、ポリビニルブチラール(バインダ)が2wt%であり、Ag粒子のd50(メディアン径)は先に述べた通りである。   The composition of the conductive paste used here is 85 wt% for Ag particles, 13 wt% for butyl carbitol (solvent), 2 wt% for polyvinyl butyral (binder), and d50 (median diameter) of Ag particles is first. As described in.

[効果]
次に、前記コイル部品10によって得られる効果について、表1のサンプルNo.4を引用して説明する。

Figure 0006388426
[effect]
Next, regarding the effects obtained by the coil component 10, the sample No. 4 will be described.
Figure 0006388426

前記コイル部品10にあっては、磁性体部12を構成するFe−Cr−Si合金粒子それぞれの表面には該Fe−Cr−Si合金粒子の酸化物膜(=絶縁膜)が存在しており、該磁性体部12内のFe−Cr−Si合金粒子は絶縁膜の役目を為す酸化物膜を介して相互結合し、コイル部13近傍のFe−Cr−Si合金粒子は絶縁膜の役目を為す酸化物膜を介して該コイル部13と密着しているため、Fe−Cr−Si合金粒子群をその主体する磁性体部自体に高い体積抵抗率を確保できる。また、磁性体部12はガラス成分を含むものではないため、該磁性体部12内に存するガラス成分によってFe−Cr−Si合金粒子の体積率が減少することは無く、該減少を原因とした部品自体の飽和磁束密度の低下も回避できる。   In the coil component 10, an oxide film (= insulating film) of the Fe—Cr—Si alloy particles exists on the surface of each Fe—Cr—Si alloy particle constituting the magnetic body portion 12. The Fe—Cr—Si alloy particles in the magnetic part 12 are mutually coupled through an oxide film serving as an insulating film, and the Fe—Cr—Si alloy particles near the coil part 13 serve as an insulating film. Since the coil portion 13 is in close contact with the oxide film thus formed, a high volume resistivity can be ensured in the magnetic body portion itself mainly composed of the Fe—Cr—Si alloy particle group. Further, since the magnetic body portion 12 does not contain a glass component, the volume fraction of the Fe—Cr—Si alloy particles is not reduced by the glass component existing in the magnetic body portion 12, and this reduction is the cause. A decrease in the saturation magnetic flux density of the component itself can be avoided.

つまり、コイル部13が磁性体部12と直接接触するタイプでありつつも、Fe−Cr−Si合金の材料自体の飽和磁束密度を有効利用して部品自体の飽和磁束密度を高値化できるために大電流化の要求を満足できるし、コイル部13から磁性体部12に電流が漏れて磁界が乱れる現象を防止できるために部品自体のインダクタンスの低下も回避できる。   That is, since the coil portion 13 is of a type in which the coil portion 13 is in direct contact with the magnetic body portion 12, the saturation magnetic flux density of the component itself can be increased by effectively utilizing the saturation magnetic flux density of the Fe—Cr—Si alloy material itself. The demand for a large current can be satisfied, and since a phenomenon in which a current leaks from the coil portion 13 to the magnetic body portion 12 and the magnetic field is disturbed can be prevented, a decrease in inductance of the component itself can be avoided.

この効果は、前記コイル部品10に該当する表1のサンプルNo.4の体積抵抗率とL×Idc1からも立証できる。表1に示した体積抵抗率(Ω・cm)は、磁性体部12自体の体積抵抗率を示もので、市販のLCRメータを用いて測定したものである。一方、表1に示したL×Idc1(μH・A)は、初期インダクタンス(L)と該初期インダクタンス(L)が20%低下したときの直流重畳電流(Idc1)との積を示すもので、市販のLCRメータを用いて測定周波数100kHzで測定したものである。   This effect is obtained by the sample No. in Table 1 corresponding to the coil component 10. It can be proved from a volume resistivity of 4 and L × Idc1. The volume resistivity (Ω · cm) shown in Table 1 indicates the volume resistivity of the magnetic part 12 itself, and is measured using a commercially available LCR meter. On the other hand, L × Idc1 (μH · A) shown in Table 1 represents the product of the initial inductance (L) and the DC superimposed current (Idc1) when the initial inductance (L) is reduced by 20%. It is measured at a measurement frequency of 100 kHz using a commercially available LCR meter.

ここで、体積抵抗率とL×Idc1の良否判断基準について説明する。従前のコイル部品の磁性体部にはフェライトの中でもNi−Cu−Zn系フェライトが汎用されていることを踏まえて、比較のために、「Fe−Cr−Si合金粒子に代えて、体積基準の粒子径とした見た場合のd50(メディアン径)が10μmのNi−Cu−Znフェライト粒子を用いた点」と「酸化物膜形成プロセスに代えて、約900℃、約2hrの条件の焼成プロセスを採用した点」以外は、前記コイル部品10と構造及び製法が同じコイル部品(以下、比較コイル部品と言う)を作製した。   Here, the pass / fail judgment criteria of volume resistivity and L × Idc1 will be described. Based on the fact that Ni-Cu-Zn based ferrite is widely used among the magnetic parts of the conventional coil parts, for comparison, "in place of Fe-Cr-Si alloy particles, volume-based “The point of using Ni—Cu—Zn ferrite particles having a d50 (median diameter) of 10 μm in terms of the particle diameter” and “a firing process under conditions of about 900 ° C. and about 2 hours instead of the oxide film formation process” A coil component (hereinafter referred to as a comparative coil component) having the same structure and manufacturing method as those of the coil component 10 was manufactured except for the point that “is adopted”.

この比較コイル部品の磁性体部の体積抵抗率とL×Idc1を前記同様に測定したところ、該体積抵抗率は5.0×10Ω・cmであり、L×Idc1は5.2μH・Aであったが、Ni−Cu−Znフェライト粒子を用いた従前のコイル部品にあっては該粒子組成操作や樹脂含浸等の手法によって磁性体部の体積抵抗率を1.0×10Ω・cm以上に高めている状況を考慮した上で、体積抵抗率の良否判断基準を「1.0×10Ω・cm」とし、該基準値以上のものを「良(○)」と判断し該基準値よりも低いものを「不良(×)」と判断した。また、L×Idc1の良否判断基準を比較コイル部品のL×Idc1の測定値、即ち、「5.2μH・A」とし、該基準値よりも高いものを「良(○)」と判断し該基準値以下のものを「不良」と判断した。 When the volume resistivity and L × Idc1 of the magnetic part of the comparative coil component were measured in the same manner as described above, the volume resistivity was 5.0 × 10 6 Ω · cm, and L × Idc1 was 5.2 μH · A. However, in a conventional coil component using Ni—Cu—Zn ferrite particles, the volume resistivity of the magnetic body portion is set to 1.0 × 10 7 Ω · Taking into account the situation where it is higher than cm, the standard for judging volume resistivity is “1.0 × 10 7 Ω · cm”, and those above this standard value are judged as “good (○)” A value lower than the reference value was judged as “bad” (x). Also, the L × Idc1 pass / fail judgment criterion is set to the measured value of L × Idc1 of the comparison coil part, that is, “5.2 μH · A”, and a value higher than the reference value is judged as “good (◯)”. Those below the reference value were judged as “bad”.

サンプルNo.4の体積抵抗率とL×Idc1から分かるように、前記コイル部品10に該当するサンプルNo.4の体積抵抗率は5.2×10Ω・cmで、先に述べた体積抵抗率の良否判断基準(1.0×10Ω・cm)よりも高く、また、前記コイル部品10に該当するサンプルNo.4のL×Idc1は8.3μH・Aで、先に述べたL×Idc1の良否判断基準(5.2μH・A)よりも高いことから、これら数値により前記効果が立証されている。 Sample No. As can be seen from the volume resistivity of 4 and L × Idc1, the sample No. 4 has a volume resistivity of 5.2 × 10 8 Ω · cm, which is higher than the volume resistivity determination criteria (1.0 × 10 7 Ω · cm) described above. Applicable sample No. Since L × Idc1 of 4 is 8.3 μH · A, which is higher than the above-mentioned pass / fail judgment criterion (5.2 μH · A) of L × Idc1, the above-mentioned effect is proved by these numerical values.

[最適な粒度分布の検証]
次に、前記コイル部品10(サンプルNo.4)の磁性体部12を構成するFe−Cr−Si合金粒子の最適な粒度分布(d10/d50とd90/d50)を検証した結果について、表1を引用して説明する。
[Verification of optimal particle size distribution]
Next, Table 1 shows the result of verifying the optimum particle size distribution (d10 / d50 and d90 / d50) of the Fe—Cr—Si alloy particles constituting the magnetic part 12 of the coil component 10 (sample No. 4). Will be explained with reference to.

前記コイル部品10(サンプルNo.4)では、磁性体部12を構成するFe−Cr−Si合金粒子として、体積基準の粒子径とした見た場合のd50(メディアン径)が10μmで、d10が3μmで、d90が16μmのものを用いたが、粒度分布(d10/d50とd90/d50)が異なる粒子を用いた場合でも前記同様の効果が得られるか否かを確認した。   In the coil component 10 (sample No. 4), the d50 (median diameter) of the Fe—Cr—Si alloy particles constituting the magnetic body portion 12 when viewed as a volume-based particle diameter is 10 μm, and d10 is 3 μm and d90 of 16 μm were used, but it was confirmed whether the same effect as described above was obtained even when particles having different particle size distributions (d10 / d50 and d90 / d50) were used.

表1に示したサンプルNo.1〜3及び5〜10は、「d10の値が前記コイル部品10(サンプルNo.4)と異なるFe−Cr−Si合金粒子を用いた点」以外は、前記コイル部品10と構造及び製法が同じコイル部品である。また、表1に示したサンプルNo.11〜22は、「d90の値が前記コイル部品10(サンプルNo.4)と異なるFe−Cr−Si合金粒子を用いた点」以外は、前記コイル部品10と構造及び製法が同じコイル部品である。   Sample No. shown in Table 1 1 to 3 and 5 to 10 have the same structure and manufacturing method as the coil component 10 except that "the Fe-Cr-Si alloy particles having a different d10 value from the coil component 10 (sample No. 4) are used". The same coil component. In addition, the sample No. shown in Table 1 was used. 11 to 22 are coil components having the same structure and manufacturing method as those of the coil component 10 except that "the Fe-Cr-Si alloy particles having a d90 value different from that of the coil component 10 (sample No. 4) are used". is there.

サンプルNo.1〜10の体積抵抗率とL×Idc1から分かるように、d10が7μm以下であれば、先に述べた体積抵抗率の良否判断基準(1.0×10Ω・cm)よりも高い体積抵抗率を得ることができ、また、d10の値が1μm以上であれば、先に述べたL×Idc1の良否判断基準(5.2μH・A)よりも高いL×Idc1を得ることができる。即ち、d10が1〜7.0μmの範囲内(d10/d50が0.1〜0.7の範囲内)であれば、優れた体積抵抗率とL×Idc1が得られる。 Sample No. As can be seen from the volume resistivity of 1 to 10 and L × Idc1, if d10 is 7 μm or less, the volume is higher than the above-described volume resistivity determination criteria (1.0 × 10 7 Ω · cm). Resistivity can be obtained, and if the value of d10 is 1 μm or more, it is possible to obtain L × Idc1 higher than the L × Idc1 quality criterion (5.2 μH · A) described above. That is, if d10 is in the range of 1 to 7.0 μm (d10 / d50 is in the range of 0.1 to 0.7), excellent volume resistivity and L × Idc1 are obtained.

また、サンプルNo.11〜22の体積抵抗率とL×Idc1から分かるように、d90が50μm以下であれば、先に述べた体積抵抗率の良否判断基準(1.0×10Ω・cm)よりも高い体積抵抗率を得ることができ、また、d90の値が14μm以上であれば、先に述べたL×Idc1の良否判断基準(5.2μH・A)よりも高いL×Idc1を得ることができる。即ち、d90が14〜50μmの範囲内(d90/d50が1.4〜5.0の範囲内)であれば、優れた体積抵抗率とL×Idc1が得られる。 Sample No. As can be seen from the volume resistivity of 11 to 22 and L × Idc1, when d90 is 50 μm or less, the volume is higher than the above-described volume resistivity determination criteria (1.0 × 10 7 Ω · cm). Resistivity can be obtained, and if the value of d90 is 14 μm or more, it is possible to obtain L × Idc1 that is higher than the above-mentioned criteria for determining the quality of L × Idc1 (5.2 μH · A). That is, if d90 is in the range of 14 to 50 μm (d90 / d50 is in the range of 1.4 to 5.0), excellent volume resistivity and L × Idc1 are obtained.

要するに、体積基準の粒子径として見た場合のd10/d50が0.1〜0.7の範囲内にあり、且つ、d90/d50が1.4〜5.0の範囲内にあれば、粒度分布(d10/d50とd90/d50)が異なるFe−Cr−Si合金粒子を用いた場合でも前記同様の効果が得られることが確認できた。   In short, if d10 / d50 is in the range of 0.1 to 0.7 and d90 / d50 is in the range of 1.4 to 5.0 when viewed as the volume-based particle diameter, the particle size It was confirmed that the same effect as described above was obtained even when Fe—Cr—Si alloy particles having different distributions (d10 / d50 and d90 / d50) were used.

[最適なメディアン径の検証]
次に、前記コイル部品10(サンプルNo.4)の磁性体部12を構成するFe−Cr−Si合金粒子の最適なメディアン径(d50)を検証した結果について、表2を引用して説明する。

Figure 0006388426
[Verification of optimal median diameter]
Next, the results of verifying the optimum median diameter (d50) of the Fe—Cr—Si alloy particles constituting the magnetic part 12 of the coil component 10 (sample No. 4) will be described with reference to Table 2. .
Figure 0006388426

前記コイル部品10(サンプルNo.4)では、磁性体部12を構成するFe−Cr−Si合金粒子として、体積基準の粒子径とした見た場合のd50(メディアン径)が10μmで、d10が3μmで、d90が16μmのものを用いたが、d50(メディアン径)が異なる粒子を用いた場合でも前記同様の効果が得られるか否かを確認した。   In the coil component 10 (sample No. 4), the d50 (median diameter) of the Fe—Cr—Si alloy particles constituting the magnetic body portion 12 when viewed as a volume-based particle diameter is 10 μm, and d10 is 3 μm and d90 of 16 μm were used, but it was confirmed whether the same effect as described above was obtained even when particles having different d50 (median diameter) were used.

表2に示したサンプルNo.23〜31は、「d50(メディアン径)の値が前記コイル部品10(サンプルNo.4)と異なるFe−Cr−Si合金粒子を用いた点」以外は、前記コイル部品10と構造及び製法が同じコイル部品である。   Sample No. shown in Table 2 Nos. 23 to 31 have the same structure and manufacturing method as the coil component 10 except that “a value of d50 (median diameter) is different from that of the coil component 10 (sample No. 4) using Fe—Cr—Si alloy particles”. The same coil component.

サンプルNo.23〜31の体積抵抗率とL×Idc1から分かるように、d50が20μm以下であれば、先に述べた体積抵抗率の良否判断基準(1.0×10Ω・cm)よりも高い体積抵抗率を得ることができ、また、d50が3μm以上であれば、先に述べたL×Idc1の良否判断基準(5.2μH・A)よりも高いL×Idc1を得ることができる。即ち、d50(メディアン径)が3〜20μmの範囲内であれば、優れた体積抵抗率とL×Idc1が得られる。 Sample No. As can be seen from the volume resistivity of 23 to 31 and L × Idc1, when d50 is 20 μm or less, the volume is higher than the above-described criterion for determining the volume resistivity (1.0 × 10 7 Ω · cm). Resistivity can be obtained, and if d50 is 3 μm or more, L × Idc1 higher than the above-mentioned quality judgment criterion (5.2 μH · A) of L × Idc1 can be obtained. That is, if d50 (median diameter) is in the range of 3 to 20 μm, excellent volume resistivity and L × Idc1 can be obtained.

要するに、体積基準の粒子径として見た場合のd50(メディアン径)が3.0〜20.0μmの範囲内にあれば、d50(メディアン径)が異なるFe−Cr−Si合金粒子を用いた場合でも前記同様の効果が得られることが確認できた。   In short, when the d50 (median diameter) when viewed as a volume-based particle diameter is in the range of 3.0 to 20.0 μm, Fe—Cr—Si alloy particles having different d50 (median diameter) are used. However, it was confirmed that the same effect as described above was obtained.

[他のコイル部品への適用]
次に、前記[最適な粒度分布の検証]欄と前記[最適なメディアン径の検証]欄で述べた数値範囲が、(1)前記コイル部品10(サンプルNo.4)と具体製法が異なる場合に適用できるか否か、(2)前記コイル部品10(サンプルNo.4)と具体構造が異なる同タイプのコイル部品に適用できるか否か、(3)前記コイル部品10(サンプルNo.4)と異なる粒子を磁性体部12に用いた場合に適用できるか否か、(4)前記コイル部品10(サンプルNo.4)と異なるタイプのコイル部品に適用できるか否か、について説明する。
[Application to other coil parts]
Next, the numerical range described in the [Verification of optimal particle size distribution] column and the [Verification of optimal median diameter] column is different from (1) the coil component 10 (sample No. 4) and the specific manufacturing method. (2) whether it can be applied to the same type of coil component having a specific structure different from that of the coil component 10 (sample No. 4), or (3) the coil component 10 (sample No. 4). It will be described whether (4) it can be applied to a coil component of a different type from the coil component 10 (sample No. 4).

(1)前記[コイル部品の具体製法例]欄では、磁性体ペーストの組成として、Fe−Cr−Si合金の粒子が85wt%で、ブチルカルビトール(溶剤)が13wt%で、ポリビニルブチラール(バインダ)が2wt%のものを示したが、溶剤及びバインダの百分率質量は脱バインダプロセスで消失する範囲内のものであれば問題無く変更できるし、前記コイル部品10(サンプルNo.4)と同じコイル部品を製造できる。導体ペーストの組成に関しても同様である。   (1) In the [Specific Example of Coil Parts Production] column, the composition of the magnetic paste is 85 wt% Fe—Cr—Si alloy particles, 13 wt% butyl carbitol (solvent), polyvinyl butyral (binder) ) Is 2 wt%, but the percentage mass of the solvent and binder can be changed without any problem as long as it is within the range that disappears in the binder removal process, and the same coil as the coil component 10 (sample No. 4). Parts can be manufactured. The same applies to the composition of the conductor paste.

また、各ペーストの溶剤としてブチルカルビトールを示したが、Fe−Cr−Si合金粒子とAg粒子に化学的に反応しない溶剤であれば、ブチルカルビトール以外のエーテル類は勿論のこと、アルコール類やケトン類やエステル類等に属するものを問題無く使用できるし、Ag粒子に代えてPt粒子やPd粒子を用いても前記コイル部品10(サンプルNo.4)と同じコイル部品を製造できる。   Moreover, although butyl carbitol was shown as a solvent of each paste, as long as it is a solvent which does not react chemically with Fe-Cr-Si alloy particles and Ag particles, ethers other than butyl carbitol as well as alcohols And those belonging to ketones, esters and the like can be used without problems, and the same coil component as the coil component 10 (sample No. 4) can be manufactured by using Pt particles or Pd particles instead of Ag particles.

さらに、各ペーストのバインダとしてポリビニルブチラールを示したが、Fe−Cr−Si合金粒子とAg粒子に化学的に反応しないバインダであれば、ポリビニルブチラール以外のセルロース系樹脂は勿論のこと、ポリビニルアセタール系樹脂やアクリル樹脂等に属するものを問題無く使用できるし、前記コイル部品10(サンプルNo.4)と同じコイル部品を製造できる。   Furthermore, although polyvinyl butyral was shown as a binder of each paste, as long as it is a binder that does not chemically react with Fe—Cr—Si alloy particles and Ag particles, cellulose-based resins other than polyvinyl butyral, polyvinyl acetal type Those belonging to resin or acrylic resin can be used without any problem, and the same coil component as the coil component 10 (sample No. 4) can be manufactured.

さらに、各ペーストに、分散剤としてノニオン系界面活性剤やアニオン系界面活性剤等に属するものを適量添加しても特段問題は生じないし、前記コイル部品10(サンプルNo.4)と同じコイル部品を製造できる。   Furthermore, even if an appropriate amount of a nonionic surfactant, an anionic surfactant, or the like as a dispersant is added to each paste, no particular problem occurs, and the same coil component as the coil component 10 (sample No. 4). Can be manufactured.

さらに、脱バインダプロセスとして約300℃、約1hrの条件を示したが、溶剤とバインダを消失できる条件であれば、他の条件を設定しても前記コイル部品10(サンプルNo.4)と同じコイル部品を製造できる。   Furthermore, the conditions of about 300 ° C. and about 1 hr were shown as the binder removal process. However, as long as the solvent and the binder can be eliminated, the same conditions as the coil component 10 (sample No. 4) are set even if other conditions are set. Coil parts can be manufactured.

さらに、酸化物膜形成プロセスとして約750℃、約2hrの条件を示したが、Fe−Cr−Si合金粒子それぞれの表面に該粒子の酸化物膜が形成でき、且つ、Fe−Cr−Si合金粒子に物性変化を生じない条件であれば、他の条件を設定しても前記コイル部品10(サンプルNo.4)と同じコイル部品を製造できる。   Furthermore, although the oxide film formation process showed conditions of about 750 ° C. and about 2 hours, the oxide film of the particles could be formed on the surface of each Fe—Cr—Si alloy particle, and the Fe—Cr—Si alloy As long as the conditions do not change the physical properties of the particles, the same coil component as the coil component 10 (sample No. 4) can be manufactured even if other conditions are set.

さらに、焼付け処理として約600℃、約1hrの条件を示したが、導体ペーストの焼付けが問題無く行える条件であれば、他の条件を設定しても前記コイル部品10(サンプルNo.4)と同じコイル部品を製造できる。   Furthermore, although the conditions of about 600 ° C. and about 1 hr were shown as the baking treatment, the coil component 10 (sample No. 4) can be used even if other conditions are set as long as the conductor paste can be baked without problems. The same coil component can be manufactured.

要するに、前記[最適な粒度分布の検証]欄と前記[最適なメディアン径の検証]欄で述べた数値範囲は、前記コイル部品10(サンプルNo.4)と具体製法が異なる場合にも適用できる。   In short, the numerical ranges described in the [Verification of optimal particle size distribution] column and the [Verification of optimal median diameter] column are applicable even when the specific manufacturing method is different from that of the coil component 10 (sample No. 4). .

(2)前記[コイル部品の具体構造例]欄では、磁性体部12として長さが約3.2mmで、幅が約1.6mmで、高さが約0.8mmのものを示したが、該磁性体部12のサイズは基本的には部品自体の飽和磁束密度の基準値に関与するだけであるから、磁性体部12のサイズを変更しても前記[効果]欄で述べた効果と同等の効果が得られる。   (2) In the above [Specific structural example of coil component] column, the magnetic part 12 has a length of about 3.2 mm, a width of about 1.6 mm, and a height of about 0.8 mm. The size of the magnetic body portion 12 is basically only related to the reference value of the saturation magnetic flux density of the component itself. Therefore, even if the size of the magnetic body portion 12 is changed, the effects described in the [Effect] column are provided. Equivalent effect is obtained.

また、コイル部13として巻き数が約3.5のものを示したが、該コイル部13の巻き数は基本的には部品自体のインダクタンスの基準値に関与するだけであるから、コイル部13の巻き数を変更しても前記[効果]欄で述べた効果と同等の効果が得られるし、コイル部13を構成する各セグメントCS1〜CS5及びIS1〜IS4の寸法や形状を変更した場合でも前記[効果]欄で述べた効果と同等の効果が得られる。   Further, although the coil portion 13 has a winding number of about 3.5, the number of turns of the coil portion 13 is basically only related to the reference value of the inductance of the component itself. Even if the number of turns is changed, an effect equivalent to the effect described in the [Effect] column can be obtained, and even when the dimensions and shapes of the segments CS1 to CS5 and IS1 to IS4 constituting the coil unit 13 are changed. An effect equivalent to the effect described in the [Effect] column can be obtained.

要するに、前記[最適な粒度分布の検証]欄と前記[最適なメディアン径の検証]欄で述べた数値範囲は、前記コイル部品10(サンプルNo.4)と具体構造が異なる同タイプのコイル部品にも適用できる。   In short, the numerical ranges described in the [Verification of optimal particle size distribution] column and [Verification of optimal median diameter] column are the same type of coil component having a specific structure different from that of the coil component 10 (sample No. 4). It can also be applied to.

(3)前記[コイル部品の具体構造例]欄では、磁性体部12を構成する粒子としてFe−Cr−Si合金粒子を示したが、材料自体の飽和磁束密度が従前のフェライトよりも高く、且つ、酸化性雰囲気中の熱処理によってその表面に酸化物膜(=絶縁膜)が形成される磁性合金粒子であれば、例えば、Fe−Si−Al合金粒子やFe−Ni−Cr合金粒子を代わりに用いた場合でも前記[効果]欄で述べた効果と同等の効果が得られる。   (3) In the [specific structural example of the coil component] column, Fe—Cr—Si alloy particles are shown as particles constituting the magnetic body portion 12, but the saturation magnetic flux density of the material itself is higher than the conventional ferrite, In addition, if the magnetic alloy particles have an oxide film (= insulating film) formed on the surface by heat treatment in an oxidizing atmosphere, for example, Fe—Si—Al alloy particles or Fe—Ni—Cr alloy particles are substituted. Even when used in the above, an effect equivalent to the effect described in the [Effect] column can be obtained.

要するに、前記[最適な粒度分布の検証]欄と前記[最適なメディアン径の検証]欄で述べた数値範囲は、前記コイル部品10(サンプルNo.4)と異なる磁性合金粒子を磁性体部12に用いた場合でも適用できる。   In short, the numerical ranges described in the [Verification of Optimal Particle Size Distribution] column and the [Verification of Optimal Median Diameter] column indicate that magnetic alloy particles different from those of the coil component 10 (sample No. 4) are magnetic parts 12. It can be applied even when used for.

(4)前記[コイル部品の具体構造例]欄では、積層タイプのコイル部品10を示したが、螺旋状のコイル部が磁性体部と直接接触するタイプのコイル部品であれば、例えば、圧粉タイプのコイル部品に本発明を採用した場合でも前記[効果]欄で述べた効果と同等の効果が得られる。ここで言う圧粉タイプのコイル部品とは、予め用意した螺旋状のコイル線をプレス機を用いて磁性体粉から成る磁性体部に埋設した構造を有するものであり、該磁性体部を構成する磁性体粉にFe−Cr−Si合金粒子を用いてプレス後の磁性体部を前記酸化物膜形成プロセスと同様の条件で加熱処理すれば、前記[効果]欄で述べた効果と同等の効果が得られる。   (4) In the [specific structural example of the coil component] column, the laminated type coil component 10 is shown. However, if the spiral coil portion is a type of coil component in direct contact with the magnetic body portion, for example, pressure Even when the present invention is applied to a powder-type coil component, an effect equivalent to the effect described in the [Effect] column can be obtained. The powder-type coil component mentioned here has a structure in which a spiral coil wire prepared in advance is embedded in a magnetic part made of magnetic powder using a press, and the magnetic part is configured. If the magnetic part after pressing is heat-treated under the same conditions as in the oxide film forming process using Fe—Cr—Si alloy particles in the magnetic powder, the same effect as described in the above [Effect] column is obtained. An effect is obtained.

要するに、前記[最適な粒度分布の検証]欄と前記[最適なメディアン径の検証]欄で述べた数値範囲は、前記コイル部品10(サンプルNo.4)と異なるタイプのコイル部品にも適用できる。   In short, the numerical ranges described in the [Verification of optimal particle size distribution] column and the [Verification of optimal median diameter] column can be applied to a coil component of a type different from that of the coil component 10 (sample No. 4). .

1…磁性合金粒子、2…酸化物膜、3…ポア、4…溶剤とバインダの混合物、10…コイル部品、11…部品本体、12…磁性体部、13…コイル部、14,15…外部端子   DESCRIPTION OF SYMBOLS 1 ... Magnetic alloy particle, 2 ... Oxide film, 3 ... Pore, 4 ... Mixture of solvent and binder, 10 ... Coil component, 11 ... Component main body, 12 ... Magnetic body part, 13 ... Coil part, 14, 15 ... External Terminal

Claims (5)

磁性体部によって覆われた螺旋状のコイル部が前記磁性体部と直接接触するタイプのコイル部品の製造方法であって、
表面に酸化処理のされていない磁性合金粒子を用いて加熱処理前チップを作成するステップと、
酸化性雰囲気中で前記チップを加熱処理することによって、前記磁性合金粒子の表面に前記磁性合金粒子の酸化物膜を形成せしめ、形成された前記酸化物膜を介して前記磁性合金粒子が前記コイル部と密着するステップと、
を有することを特徴とする前記製造方法。
A method of manufacturing a coil component in which a spiral coil portion covered with a magnetic body portion is in direct contact with the magnetic body portion,
Creating a pre-heat treatment tip using magnetic alloy particles that are not oxidized on the surface;
By heat-treating the chip in an oxidizing atmosphere, an oxide film of the magnetic alloy particles is formed on the surface of the magnetic alloy particles, and the magnetic alloy particles are transferred to the coil through the formed oxide film. A step of closely contacting the part,
The said manufacturing method characterized by having.
前記磁性体部がガラス成分を含まぬことを特徴とする請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the magnetic part does not contain a glass component. 前記磁性合金粒子がFe−Cr−Si合金粒子であることを特徴とする請求項1又は2記載の製造方法。   The method according to claim 1 or 2, wherein the magnetic alloy particles are Fe-Cr-Si alloy particles. 前記磁性合金粒子は、体積基準の粒子径として見た場合のd10/d50が0.1〜0.7の範囲内にあり、且つ、d90/d50が1.4〜5.0の範囲内にある、
ことを特徴とする請求項1〜3の何れか1項に記載の製造方法。
The magnetic alloy particles have a d10 / d50 in the range of 0.1 to 0.7 and a d90 / d50 in the range of 1.4 to 5.0 when viewed as a volume-based particle diameter. is there,
The manufacturing method of any one of Claims 1-3 characterized by the above-mentioned.
前記磁性合金粒子は、体積基準の粒子径として見た場合のd50が3.0〜20.0μmの範囲内にある、
ことを特徴とする請求項1〜4の何れか1項に記載の製造方法。
The magnetic alloy particles have a d50 in the range of 3.0 to 20.0 μm when viewed as a volume-based particle diameter.
The manufacturing method of any one of Claims 1-4 characterized by the above-mentioned.
JP2016196732A 2011-01-20 2016-10-04 Coil parts manufacturing method Active JP6388426B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011009886 2011-01-20
JP2011009886 2011-01-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011232371A Division JP6081051B2 (en) 2011-01-20 2011-10-24 Coil parts

Publications (2)

Publication Number Publication Date
JP2017073547A JP2017073547A (en) 2017-04-13
JP6388426B2 true JP6388426B2 (en) 2018-09-12

Family

ID=46844013

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011236738A Active JP5980493B2 (en) 2011-01-20 2011-10-28 Coil parts
JP2016196732A Active JP6388426B2 (en) 2011-01-20 2016-10-04 Coil parts manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011236738A Active JP5980493B2 (en) 2011-01-20 2011-10-28 Coil parts

Country Status (1)

Country Link
JP (2) JP5980493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11769624B2 (en) 2018-12-20 2023-09-26 Samsung Electro-Mechanics Co., Ltd. Coil electronic component

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913246B2 (en) * 2013-09-26 2016-04-27 東光株式会社 Metal magnetic materials, electronic components
KR101994722B1 (en) * 2013-10-14 2019-07-01 삼성전기주식회사 Multilayered electronic component
JP6493778B2 (en) * 2014-07-17 2019-04-03 日立金属株式会社 Laminated component and manufacturing method thereof
EP3300089B1 (en) * 2015-05-19 2020-05-06 Alps Alpine Co., Ltd. Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
JP6613998B2 (en) * 2016-04-06 2019-12-04 株式会社村田製作所 Coil parts
JP2020123598A (en) * 2017-05-31 2020-08-13 アルプスアルパイン株式会社 Inductance element and electronic and electrical equipment
JP7266963B2 (en) * 2017-08-09 2023-05-01 太陽誘電株式会社 coil parts
JP7145610B2 (en) 2017-12-27 2022-10-03 Tdk株式会社 Laminated coil type electronic component
WO2020021968A1 (en) * 2018-07-25 2020-01-30 味の素株式会社 Magnetic paste
CN112805795A (en) * 2018-10-10 2021-05-14 味之素株式会社 Magnetic paste
JP7281319B2 (en) 2019-03-28 2023-05-25 太陽誘電株式会社 LAMINATED COIL COMPONENTS, MANUFACTURING METHOD THEREOF, AND CIRCUIT BOARD WITH LAMINATED COIL COMPONENTS
JP7413127B2 (en) * 2020-03-31 2024-01-15 太陽誘電株式会社 Coil parts and electronic equipment
JP7464029B2 (en) 2021-09-17 2024-04-09 株式会社村田製作所 Inductor Components

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021208B2 (en) * 1992-09-29 2000-03-15 松下電器産業株式会社 Winding integrated magnetic element and method of manufacturing the same
JPH0837107A (en) * 1994-07-22 1996-02-06 Tdk Corp Dust core
JP2001011563A (en) * 1999-06-29 2001-01-16 Matsushita Electric Ind Co Ltd Manufacture of composite magnetic material
JP2001118725A (en) * 1999-10-21 2001-04-27 Denso Corp Soft magnetic material and electromagnetic actuator using it
JP2002313620A (en) * 2001-04-13 2002-10-25 Toyota Motor Corp Soft magnetic powder with insulating film, soft magnetic molded body using the same, and their manufacturing method
JP2007299871A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP4782058B2 (en) * 2007-03-28 2011-09-28 株式会社ダイヤメット Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
JP5093008B2 (en) * 2007-09-12 2012-12-05 セイコーエプソン株式会社 Method for producing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11769624B2 (en) 2018-12-20 2023-09-26 Samsung Electro-Mechanics Co., Ltd. Coil electronic component

Also Published As

Publication number Publication date
JP5980493B2 (en) 2016-08-31
JP2012164959A (en) 2012-08-30
JP2017073547A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6388426B2 (en) Coil parts manufacturing method
JP6081051B2 (en) Coil parts
JP5960971B2 (en) Multilayer inductor
JP5881992B2 (en) Multilayer inductor and manufacturing method thereof
JP5048155B1 (en) Multilayer inductor
JP6166021B2 (en) Multilayer inductor
JP5883437B2 (en) Magnetic material and coil component using the same
JP5082002B1 (en) Magnetic materials and coil parts
US8362866B2 (en) Coil component
JP5048156B1 (en) Multilayer inductor
JP2012238840A (en) Multilayer inductor
JP6453370B2 (en) Multilayer inductor
JP5940465B2 (en) Multilayer electronic component and manufacturing method thereof
JP2015142074A (en) laminated coil component
JP2015070172A (en) Electronic component and manufacturing method therefor
JP5129893B1 (en) Magnetic materials and coil parts
JP2020161718A (en) Coil component
JP6553279B2 (en) Multilayer inductor
JPH08236354A (en) Laminated inductor
JP2019192934A (en) Inductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180811

R150 Certificate of patent or registration of utility model

Ref document number: 6388426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250