WO2020021968A1 - Magnetic paste - Google Patents

Magnetic paste Download PDF

Info

Publication number
WO2020021968A1
WO2020021968A1 PCT/JP2019/025926 JP2019025926W WO2020021968A1 WO 2020021968 A1 WO2020021968 A1 WO 2020021968A1 JP 2019025926 W JP2019025926 W JP 2019025926W WO 2020021968 A1 WO2020021968 A1 WO 2020021968A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
magnetic
magnetic paste
epoxy resin
manufactured
Prior art date
Application number
PCT/JP2019/025926
Other languages
French (fr)
Japanese (ja)
Inventor
達也 本間
一郎 大浦
正応 依田
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201980048539.5A priority Critical patent/CN112470240B/en
Priority to KR1020217001764A priority patent/KR102617523B1/en
Priority to JP2020532241A priority patent/JP6984755B2/en
Priority to PCT/JP2019/029074 priority patent/WO2020022393A1/en
Priority to KR1020217001807A priority patent/KR102597726B1/en
Priority to EP19841929.3A priority patent/EP3828901A4/en
Priority to KR1020237026328A priority patent/KR102617535B1/en
Priority to JP2020532445A priority patent/JP7081667B2/en
Priority to CN201980048580.2A priority patent/CN112424889A/en
Priority to TW108126324A priority patent/TWI847993B/en
Publication of WO2020021968A1 publication Critical patent/WO2020021968A1/en
Priority to JP2022009683A priority patent/JP7392743B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a magnetic paste, an inductor element obtained by using the magnetic paste, and a circuit board.
  • inductor elements are mounted on information terminals such as mobile phones and smartphones.
  • an independent inductor component has been mounted on a substrate, but in recent years, a method of forming a coil using a conductor pattern of the substrate and providing an inductor element inside the substrate has been used.
  • Patent Document 1 Patent Document 1
  • Reference 2 Patent Document 2
  • Patent Literature 1 and Patent Literature 2 describe a method of suppressing resin exudation by improving a screen printing method or improving a structure of an inductor element. The method described in No. 2 was not always satisfactory.
  • the present invention has been made in view of the above circumstances, and provides a magnetic paste capable of obtaining a cured product in which resin exudation is suppressed, and an inductor element and a circuit board using the magnetic paste. With the goal.
  • the present inventors have made intensive studies to achieve the above object, and as a result, have found that the use of a magnetic paste containing an organically modified layered silicate mineral suppresses resin exudation. Was completed.
  • the present invention includes the following contents.
  • the content of the component (B) when the non-volatile component in the magnetic paste is 100% by mass is B1, and the content of the component (C) when the non-volatile component in the magnetic paste is 100% by mass is The magnetic paste according to any one of [1] to [8], wherein C1 / B1 is 1 or more and 30 or less when C1.
  • the present invention it is possible to provide a magnetic paste capable of obtaining a cured product in which resin exudation is suppressed, and an inductor element and a circuit board using the magnetic paste.
  • FIG. 1 is a schematic plan view of an inductor element according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically illustrating an example of a cross section of a magnetic layer formed on a substrate.
  • the magnetic paste of the present invention contains (A) a magnetic powder, (B) an organically modified layered silicate mineral, and (C) a binder resin.
  • the magnetic paste may further contain (D) a curing accelerator, (E) a dispersant, and (F) other additives as necessary.
  • D a curing accelerator
  • E a dispersant
  • F other additives
  • the magnetic paste contains (A) a magnetic powder.
  • A) As the magnetic powder for example, pure iron powder; Mg—Zn ferrite, Fe—Mn ferrite, Mn—Zn ferrite, Mn—Mg ferrite, Cu—Zn ferrite, Mg—Mn—Sr Ferrite, Ni-Zn ferrite, Ba-Zn ferrite, Ba-Mg ferrite, Ba-Ni ferrite, Ba-Co ferrite, Ba-Ni-Co ferrite, Y ferrite, iron oxide powder (III ), Iron oxide powder such as triiron tetroxide; Fe-Si alloy powder, Fe-Si-Al alloy powder, Fe-Cr alloy powder, Fe-Cr-Si alloy powder, Fe-Ni-Cr alloy powder Alloy powder, Fe-Cr-Al alloy powder, Fe-Ni alloy powder, Fe-Ni-Mo alloy powder, Fe-Ni-Mo-Cu alloy powder, Fe-Co alloy
  • the magnetic powder (A) is preferably at least one selected from iron oxide powder and iron alloy-based metal powder.
  • the iron oxide powder is preferably a ferrite containing at least one selected from Ni, Cu, Mn, and Zn.
  • the iron alloy-based metal powder is preferably an iron alloy-based metal powder containing at least one selected from Si, Cr, Al, Ni, and Co.
  • a commercially available magnetic powder can be used as the (A) magnetic powder.
  • Specific examples of commercially available magnetic powders that can be used include “M05S” manufactured by Powdertech; “PST-S” manufactured by Sanyo Special Steel Co., Ltd .; “AW2-08” and “AW2-08PF20F” manufactured by Epson Atmix.
  • the magnetic powder is preferably spherical.
  • the value obtained by dividing the length of the major axis of the magnetic powder by the length of the minor axis (aspect ratio) is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less.
  • the relative magnetic permeability is easily improved.
  • the use of a spherical magnetic powder is particularly preferable from the viewpoints of reducing the magnetic loss and obtaining a paste having a preferable viscosity.
  • the average particle diameter of the magnetic powder is preferably 0.01 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more, from the viewpoint of improving the relative magnetic permeability. Further, it is preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less, and still more preferably 8 ⁇ m or less.
  • the average particle size of the magnetic powder can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, it can be measured by preparing a particle size distribution of a magnetic powder on a volume basis by using a laser diffraction scattering type particle size distribution measuring device, and setting a median diameter to an average particle size.
  • a sample in which magnetic powder is dispersed in water by ultrasonic waves can be preferably used.
  • the laser diffraction / scattering type particle size distribution measuring device “LA-500” manufactured by Horiba, Ltd., “SALD-2200” manufactured by Shimadzu, etc. can be used.
  • the specific surface area of the magnetic powder can be measured by the BET method.
  • the content (volume%) of the magnetic powder is preferably 10 vol% or more when the non-volatile component in the magnetic paste is 100 vol% from the viewpoint of improving the relative magnetic permeability and reducing the magnetic loss. , More preferably at least 20% by volume, still more preferably at least 30% by volume. Further, it is preferably at most 85% by volume, more preferably at most 80% by volume, further preferably at most 75% by volume.
  • the content (% by mass) of the magnetic powder is preferably 60% by mass or more when the nonvolatile component in the magnetic paste is 100% by mass from the viewpoint of improving the relative magnetic permeability and reducing the magnetic loss. , More preferably 65% by mass or more, even more preferably 70% by mass or more. Further, it is preferably at most 98% by mass, more preferably at most 96% by mass, further preferably at most 94% by mass.
  • the content of each component in the magnetic paste is a value when the nonvolatile component in the magnetic paste is 100% by mass, unless otherwise specified.
  • the magnetic paste contains (B) an organized layered silicate mineral.
  • (B) By incorporating the organic layered silicate mineral into the magnetic paste, it becomes possible to obtain a cured product with reduced resin exudation.
  • organized (performed) means “ion-exchanged with an organic onium ion”.
  • Layered silicate minerals are also commonly referred to as phyllosilicate minerals. Layered silicate minerals can be used alone or in combination of two or more. As the layered silicate mineral, a natural product or a synthetic product may be used. As the crystal structure of the layered silicate mineral, it is preferable to use one having a high degree of purity, which is regularly stacked in the c-axis direction, but a so-called mixed layered mineral in which the crystal cycle is disordered and a plurality of types of crystal structures are mixed. May be used.
  • Examples of the layered silicate mineral include smectite, kaolinite, halloysite, talc, and mica. Among these, smectite is preferable from the viewpoint of obtaining a cured product that can effectively suppress resin exudation.
  • Smectite has a general formula: X 0.2 to 0.6 Y 2 to 3 Z 4 O 10 (OH) 2 .nH 2 O (where X is a group consisting of K, Na, 1 / 2Ca, and 1 / 2Mg) Y is one or more selected from the group consisting of Mg, Fe, Mn, Ni, Zn, Li, Al, and Cr; and Z is selected from the group consisting of Si and Al.
  • H 2 O represents a water molecule bonded to an interlayer ion
  • n represents an integer, and may fluctuate significantly depending on the interlayer ion and relative humidity.
  • smectite examples include hectorite, montmorillonite, beidellite, nontronite, saponite, iron saponite, sauconite, stevensite, bentonite, a substituted product thereof, a derivative thereof, and a mixture thereof.
  • hectorite and montmorillonite are preferred from the viewpoint of obtaining a cured product that can effectively suppress resin exudation.
  • the organic onium ion represents an ion having an onium ion structure containing an organic group. This organic onium ion is usually contained in the interlayer portion of the silicate layer of the layered silicate mineral in the component (B).
  • Examples of the organic onium ion include an organic ammonium ion, an organic phosphonium ion, an organic sulfonium ion, and an organic imidazolium ion. Among them, from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed, an organic ammonium ion and an organic phosphonium ion are preferable, and an organic ammonium ion is particularly preferable.
  • Examples of the organic group contained in the organic onium ion include a monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, and an aralkyl group; a hydroxyalkyl group; a carboxyalkyl group; a polyalkylene ether group; .
  • a monovalent hydrocarbon group and a polyalkylene ether group are preferable from the viewpoint of obtaining a cured product in which the resin exudation property is effectively suppressed.
  • a monovalent hydrocarbon group a monovalent aliphatic hydrocarbon group is preferable, a monovalent saturated aliphatic hydrocarbon group is more preferable, and an alkyl group is particularly preferable.
  • the alkyl group may be linear or branched.
  • the number of carbon atoms of the monovalent hydrocarbon group is usually 1 to 40, preferably 1 to 25, and more preferably 1 to 20.
  • Preferred examples of the monovalent hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, isobutyl, n-pentyl, isopentyl Group, neopentyl group, t-pentyl group, n-hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group,
  • the polyalkylene ether group refers to a group represented by the following formula (I). -(RO) m -H (I)
  • R independently represents an alkylene group.
  • the alkylene group preferably has 2 to 20 carbon atoms.
  • Examples of the alkylene group include an ethylene group and a propylene group.
  • m represents an integer of 1 to 20.
  • organic onium ions include organic onium ions represented by the following formula (II).
  • X 1 represents a non-metallic atom belonging to Group 15 of the long-period periodic table. Therefore, X 1 represents a nitrogen atom or a phosphorus atom. Among them, X 1 is preferably a nitrogen atom from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed.
  • R 1 represents the aforementioned organic group.
  • organic groups those selected from the group consisting of monovalent hydrocarbon groups and polyalkylene ether groups are preferable from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed, and an alkyl group or polyalkylene ether is preferred. Groups are more preferred, and alkyl groups are particularly preferred.
  • R 2 , R 3 and R 4 each independently represent a group selected from the group consisting of a hydrogen atom and the organic group.
  • organic groups those selected from the group consisting of monovalent hydrocarbon groups and polyalkylene ether groups are preferable from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed, and an alkyl group or polyalkylene ether is preferred. Groups are more preferred, and alkyl groups are particularly preferred.
  • organic ammonium ions are preferable, secondary to quaternary organic ammonium ions are more preferable, and tertiary to quaternary organic ammonium ions are preferable. Ammonium ions are more preferred, and quaternary organic ammonium ions are particularly preferred. Therefore, in the organic onium ion represented by the formula (II), one or more of R 2 , R 3 and R 4 are preferably an organic group, and more preferably two or more are an organic group. Preferably, all three are organic groups.
  • R 1 , R 2 , R 3 and R 4 is preferably a long-chain organic group. Further, it is more preferable that a part of R 1 , R 2 , R 3 and R 4 is a long-chain organic group, and the rest is a short-chain organic group. Among them, it is particularly preferable that 2 to 3 of R 1 , R 2 , R 3 and R 4 are long-chain organic groups, and the remaining 1 to 2 are short-chain organic groups.
  • the long-chain organic group means an organic group having usually 8 or more, preferably 12 or more carbon atoms.
  • the short-chain organic group refers to an organic group having 1 to 7 carbon atoms.
  • organic onium ion examples include trimethyloctylammonium ion, trimethyldecylammonium ion, trimethyldodecylammonium ion, trimethyltetradecylammonium ion, trimethylhexadecylammonium ion, trimethyloctadecylammonium ion, and trimethyleicosylammonium ion.
  • the component (B) can be produced by ion-exchanging a layered silicate mineral with an organic onium ion.
  • the organic onium ion may be a salt (organic onium salt) between the organic onium ion and an anion.
  • the anion include Cl ⁇ , Br ⁇ , NO 3 ⁇ , OH ⁇ , CH 3 COO ⁇ , CH 3 SO 3 ⁇ and the like.
  • these anions may be used alone or in any combination of two or more.
  • a method for producing the component (B) a method in which an aqueous dispersion of the layered silicate mineral and an aqueous solution of an organic onium salt are mixed at an appropriate temperature (for example, 60 ° C. to 70 ° C.).
  • an appropriate temperature for example, 60 ° C. to 70 ° C.
  • Another specific example is a method of appropriately kneading a layered silicate mineral and an organic onium salt.
  • a commercially available product can be used as the component (B).
  • Commercially available products include, for example, "Smecton STN” and “Smecton SAN” (organized hectorite) manufactured by Kunimine Industries, “Orben M” (organized montmorillonite) manufactured by Shiroishi Kogyo, and “Esven” manufactured by Hojun. NX “(organized montmorillonite),” Shinton Kasei's "Benton series” (organized montmorillonite), and the like.
  • the organized layered silicate mineral may be used alone or in combination of two or more.
  • the average particle size of the organized layered silicate mineral is preferably 1 nm to 100 ⁇ m, more preferably 5 nm to 50 ⁇ m, and further preferably 10 nm to 10 ⁇ m. This average particle size can be measured in the same manner as for the component (A).
  • the content of the organically modified layered silicate mineral is preferably 0.1% when the nonvolatile component in the magnetic paste is set to 100% by mass from the viewpoint of obtaining a cured product in which resin exudation is suppressed. It is at least 1% by mass, more preferably at least 0.3% by mass, further preferably at least 0.5% by mass.
  • the upper limit is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass, from the viewpoint of maintaining good magnetic properties and improving the printability by lowering the paste viscosity. It is as follows.
  • the magnetic paste contains (C) a binder resin.
  • a binder resin for example, epoxy resin, phenol resin, naphthol resin, benzoxazine resin, active ester resin, cyanate ester resin, carbodiimide resin, amine resin, acid anhydride resin, etc.
  • a thermoplastic resin such as a phenoxy resin, an acrylic resin, a polyvinyl acetal resin, a butyral resin, a polyimide resin, a polyamideimide resin, a polyethersulfone resin, and a polysulfone resin.
  • the binder resin (C) it is preferable to use a thermosetting resin used when forming an insulating layer of a wiring board, and an epoxy resin is particularly preferable.
  • the binder resin may be used alone or in combination of two or more. Hereinafter, each resin will be described. Here, it reacts with an epoxy resin, such as a phenolic resin, a naphthol resin, a benzoxazine resin, an active ester resin, a cyanate ester resin, a carbodiimide resin, an amine resin, and an acid anhydride resin.
  • an epoxy resin such as a phenolic resin, a naphthol resin, a benzoxazine resin, an active ester resin, a cyanate ester resin, a carbodiimide resin, an amine resin, and an acid anhydride resin.
  • the components that can cure the magnetic paste are sometimes collectively referred to as “curing agents”.
  • thermosetting resins include, for example, glycylol type epoxy resin; bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; Epoxy resin having a condensed ring structure such as phenol novolak type epoxy resin; tert-butyl-catechol type epoxy resin; naphthol novolak type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin; Amine type epoxy resin; Glycidyl ester type epoxy resin; Cresol novolak type epoxy resin; Biphenyl type epoxy resin; Linear aliphatic epoxy resin; Butadiene structure Alicyclic epoxy resins; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexanedimethanol type epoxy resins; trimethylol type epoxy resin; tetraphenyl ethan
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule.
  • the epoxy resin preferably has an aromatic structure, and when two or more epoxy resins are used, it is more preferable that at least one of the epoxy resins has an aromatic structure.
  • the aromatic structure is a chemical structure generally defined as aromatic, and includes polycyclic aromatic and aromatic heterocyclic rings.
  • the proportion of the epoxy resin having two or more epoxy groups in one molecule is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass with respect to 100% by mass of the nonvolatile component of the epoxy resin. % Or more.
  • the epoxy resin may be a liquid epoxy resin at a temperature of 25 ° C. (hereinafter, sometimes referred to as “liquid epoxy resin”) or a solid epoxy resin at a temperature of 25 ° C. (hereinafter, “solid epoxy resin”). ).
  • the epoxy resin may include only a liquid epoxy resin, or may include only a solid epoxy resin, or may be a combination of a liquid epoxy resin and a solid epoxy resin. Although it may be included, it is preferable to include only the liquid epoxy resin from the viewpoint of reducing the viscosity of the magnetic paste.
  • liquid epoxy resin glycylol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolak type epoxy resin A resin, an alicyclic epoxy resin having an ester skeleton, a cyclohexane dimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferable, and a glycylol type epoxy resin, a bisphenol A type epoxy resin, and a bisphenol F type epoxy resin are more preferable.
  • liquid epoxy resin examples include “HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC; “828US” and “jER828EL” (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation.
  • the solid epoxy resin examples include a naphthalene type tetrafunctional epoxy resin, a cresol novolak type epoxy resin, a dicyclopentadiene type epoxy resin, a trisphenol type epoxy resin, a naphthol type epoxy resin, a biphenyl type epoxy resin, a naphthylene ether type epoxy resin, Anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin are preferred, and naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, and biphenyl type epoxy resin are more preferred.
  • solid epoxy resin examples include “HP4032H” (naphthalene type epoxy resin), “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), and “N-690” (DIC) manufactured by DIC.
  • Cresol novolak type epoxy resin Cresol novolak type epoxy resin
  • N-695" cresol novolak type epoxy resin
  • HP-7200 "HP-7200HH”
  • HP-7200H dicyclopentadiene type epoxy resin
  • EXA-7311 "EXA-7311-G3", "EXA-7311-G4"
  • EXA-7311-G4S "HP6000” (naphthylene ether type epoxy resin”
  • EPPN-502H Nippon Kayaku
  • Trisphenol type epoxy resin Trisphenol type epoxy resin
  • NC7000L naphthol novolak type epoxy) Fat
  • NC3000H "NC3000", “NC3000L”, “NC3100” (biphenyl type epoxy resin
  • ESN475V naphthalene type epoxy resin
  • ESN485" naphthol novolak type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • liquid epoxy resin and a solid epoxy resin are used in combination as the component (C), their quantitative ratio (liquid epoxy resin: solid epoxy resin) is preferably from 1: 0.1 to 1: 4, more preferably 1: 0.3 to 1: 3.5, even more preferably 1: 0.6 to 1: 3.
  • the ratio between the liquid epoxy resin and the solid epoxy resin is within the above range, the desired effects of the present invention can be remarkably obtained.
  • the epoxy equivalent of the epoxy resin as the component (C) is preferably from 50 to 5,000, more preferably from 50 to 3,000, further preferably from 80 to 2,000, and still more preferably from 110 to 1,000. Within this range, the crosslinked density of the cured product becomes sufficient and a magnetic layer having a small surface roughness can be obtained.
  • the epoxy equivalent can be measured according to JIS K7236 and is the mass of a resin containing one equivalent of an epoxy group.
  • the weight average molecular weight of the epoxy resin as the component (C) is preferably from 100 to 5000, more preferably from 250 to 3000, and still more preferably from 400 to 1500.
  • the weight average molecular weight of the epoxy resin is a weight average molecular weight in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
  • active ester resin a resin having one or more active ester groups in one molecule can be used.
  • active ester resins include two or more highly reactive ester groups in one molecule such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. Resins are preferred.
  • the active ester resin is preferably obtained by a condensation reaction of a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound.
  • an active ester resin obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester resin obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • carboxylic acid compound examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compound or naphthol compound examples include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalein, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- Cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, Examples include benzenetriol, dicyclopentadiene-type diphenol compounds, phenol novolak, and the like.
  • the “dicyclopentadiene-type diphenol compound” refers to a diphenol compound obtained by condensing two molecules of phenol with one molecule of dicyclopentadiene
  • the active ester resin examples include an active ester resin containing a dicyclopentadiene-type diphenol structure, an active ester resin containing a naphthalene structure, an active ester resin containing an acetylated phenol novolak, and benzoyl phenol novolak. And an active ester resin containing a compound. Among them, an active ester resin having a naphthalene structure and an active ester resin having a dicyclopentadiene-type diphenol structure are more preferable.
  • the “dicyclopentadiene-type diphenol structure” represents a divalent structural unit composed of phenylene-dicyclopentylene-phenylene.
  • active ester resins include “EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T”, and “HPC-8000H-” as active ester resins having a dicyclopentadiene-type diphenol structure.
  • 65TM "," EXB-8000L-65TM "(manufactured by DIC);”
  • EXB9416-70BK ",” EXB-8150-65T "(manufactured by DIC) as an active ester resin having a naphthalene structure; and acetylated phenol novolak.
  • An active ester-based resin containing “DC808” (manufactured by Mitsubishi Chemical Corporation); an active ester-based resin containing benzoylated phenol novolak “YLH1026” (manufactured by Mitsubishi Chemical Corporation); an active ester-based resin that is an acetylated phenol novolak; "DC808” (manufactured by Mitsubishi Chemical Corporation); "YLH1026” (manufactured by Mitsubishi Chemical Corporation), “YLH1030” (manufactured by Mitsubishi Chemical Corporation), “YLH1048” (manufactured by Mitsubishi Chemical Corporation) as an active ester resin which is a benzoylated phenol novolak. Manufactured).
  • phenol-based resin and the naphthol-based resin those having a novolak structure are preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion to the conductor layer, a nitrogen-containing phenol-based curing agent is preferable, and a triazine skeleton-containing phenolic resin is more preferable.
  • phenolic resin and the naphthol resin include, for example, “MEH-7700”, “MEH-7810”, “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., “NHN”, “CBN” manufactured by Nippon Kayaku Co., Ltd. ",” GPH “,” SN170 “,” SN180 “,” SN190 “,” SN475 “,” SN485 “,” SN495 “,” SN-495V “,” SN375 “,” SN395 “, DIC manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. And “LA-2052”, “LA-7052”, “LA-7054”, “LA-1356”, “LA-3018-50P”, “EXB-9500”, and the like.
  • benzoxazine resin examples include “JBZ-OD100” (benzoxazine ring equivalent 218), “JBZ-OP100D” (benzoxazine ring equivalent 218), and “ODA-BOZ” (benzoxazine ring) manufactured by JFE Chemical Company. Equivalent 218); “Pd” (benzoxazine ring equivalent 217), “Fa” (benzoxazine ring equivalent 217) manufactured by Shikoku Chemicals; “HFB2006M” (benzoxazine ring equivalent) manufactured by Showa Polymer Co., Ltd. 432) and the like.
  • cyanate ester resin examples include bisphenol A dicyanate, polyphenol cyanate, oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), and 4,4 ′.
  • cyanate ester-based resin examples include “PT30” and “PT60” (phenol novolak type polyfunctional cyanate ester resin), “ULL-950S” (polyfunctional cyanate ester resin), “BA230” manufactured by Lonza Japan. "BA230S75” (a prepolymer in which part or all of bisphenol A dicyanate is triazined to be a trimer) and the like.
  • carbodiimide-based resin examples include Carbodilite (registered trademark) V-03 (carbodiimide group equivalent: 216, V-05 (carbodiimide group equivalent: 262), V-07 (carbodiimide group equivalent: 200) manufactured by Nisshinbo Chemical Inc. V-09 (carbodiimide group equivalent: 200); and Stavacol (registered trademark) P (carbodiimide group equivalent: 302) manufactured by Rhein Chemie.
  • the amine-based resin examples include resins having one or more amino groups in one molecule, such as aliphatic amines, polyetheramines, alicyclic amines, and aromatic amines. Among them, aromatic amines are preferred from the viewpoint of achieving the desired effects of the present invention.
  • the amine resin is preferably a primary amine or a secondary amine, and more preferably a primary amine.
  • Specific examples of the amine-based curing agent include 4,4′-methylenebis (2,6-dimethylaniline), diphenyldiaminosulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 3,3 ′.
  • amine resins may be used. For example, “KAYABOND @ C-200S”, “KAYABOND @ C-100”, “Kayahard AA”, “Kayahard AB”, “Kayahard AB” manufactured by Nippon Kayaku Co., Ltd. AS "and” Epicure W “manufactured by Mitsubishi Chemical Corporation.
  • the acid anhydride-based resin examples include resins having one or more acid anhydride groups in one molecule.
  • Specific examples of the acid anhydride resin include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, hydrogenated methylnadic anhydride.
  • the quantitative ratio of the epoxy resin to all the curing agents is represented by [the total number of epoxy groups of the epoxy resin]: [the total number of reactive groups of the curing agent].
  • the ratio is preferably in the range of 1: 0.01 to 1: 5, more preferably 1: 0.5 to 1: 3, and still more preferably 1: 1 to 1: 2.
  • the “number of epoxy groups in the epoxy resin” is a value obtained by summing all values obtained by dividing the mass of the non-volatile component of the epoxy resin present in the first resin composition by the epoxy equivalent.
  • the “number of active groups of the curing agent” is a value obtained by summing all values obtained by dividing the mass of the non-volatile component of the curing agent present in the first resin composition by the equivalent of the active group.
  • the weight average molecular weight of the thermoplastic resin in terms of polystyrene is preferably 30,000 or more, more preferably 50,000 or more, and further preferably 100,000 or more. Further, it is preferably 1,000,000 or less, more preferably 750,000 or less, and further preferably 500,000 or less.
  • the weight average molecular weight in terms of polystyrene of the thermoplastic resin is measured by a gel permeation chromatography (GPC) method.
  • the polystyrene-equivalent weight average molecular weight of the thermoplastic resin is determined by using “LC-9A / RID-6A” manufactured by Shimadzu Corporation as a measuring device and “Shodex K-800P / K-804L” manufactured by Showa Denko as a column. / K-804L "can be calculated using a calibration curve of standard polystyrene by measuring the column temperature at 40 ° C. using chloroform or the like as a mobile phase.
  • phenoxy resin examples include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolak skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene Phenoxy resins having a skeleton and at least one skeleton selected from the group consisting of a trimethylcyclohexane skeleton.
  • the terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group and an epoxy group.
  • One phenoxy resin may be used alone, or two or more phenoxy resins may be used in combination.
  • Specific examples of the phenoxy resin include “1256” and “4250” (both phenoloxy resins containing a bisphenol A skeleton), “YX8100” (a phenoxy resin containing a bisphenol S skeleton), and “YX6954” (bisphenol acetophenone) manufactured by Mitsubishi Chemical Corporation. Skeleton-containing phenoxy resin), and “FX280” and “FX293” manufactured by Nippon Steel & Sumitomo Metal Corporation, “YL7500BH30”, “YX6954BH30”, “YX7553”, “YX7553BH30”, “YL7769BH30” manufactured by Mitsubishi Chemical Corporation. , “YL6794", "YL7213", “YL7290”, and "YL7482".
  • the acrylic resin is preferably a functional group-containing acrylic resin, and more preferably an epoxy group-containing acrylic resin having a glass transition temperature of 25 ° C. or lower.
  • the number average molecular weight (Mn) of the functional group-containing acrylic resin is preferably from 10,000 to 1,000,000, more preferably from 30,000 to 900,000.
  • the functional group equivalent of the functional group-containing acrylic resin is preferably from 1,000 to 50,000, more preferably from 2,500 to 30,000.
  • an epoxy group-containing acrylate copolymer resin having a glass transition temperature of 25 ° C. or lower is preferable, and specific examples thereof include “SG” manufactured by Nagase ChemteX Corporation.
  • polyvinyl acetal resin and butyral resin examples include electrified butyral “4000-2”, “5000-A”, “6000-C”, “6000-EP” manufactured by Denki Kagaku Kogyo Co., Ltd., and Sekisui Chemical Co., Ltd.
  • Examples include the LES series such as the ESREC BH series, the BX series and the “KS-1”, the BL series such as the “BL-1”, and the BM series.
  • polyimide resin examples include “Likacoat SN20” and “Likacoat PN20” manufactured by Shin Nippon Rika Co., Ltd.
  • polyimide resin examples include a linear polyimide (polyimide described in JP-A-2006-37083) obtained by reacting a bifunctional hydroxyl-terminated polybutadiene, a diisocyanate compound and a tetrabasic anhydride, and a polysiloxane skeleton. And modified polyimides such as polyimides contained therein (polyimides described in JP-A-2002-12667 and JP-A-2000-319386).
  • polyamideimide resin examples include “Viromax HR11NN” and “Viromax HR16NN” manufactured by Toyobo.
  • polyamideimide resin also include modified polyamideimides such as "KS9100” and “KS9300” (polysiloxane skeleton-containing polyamideimide) manufactured by Hitachi Chemical Co., Ltd.
  • polyether sulfone resin examples include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
  • polyphenylene ether resin include an oligophenylene ether / styrene resin having a vinyl group “OPE-2St @ 1200” manufactured by Mitsubishi Gas Chemical Company.
  • polysulfone resin examples include polysulfone “P1700” and “P3500” manufactured by Solvay Advanced Polymers.
  • thermoplastic resin is preferably one or more selected from phenoxy resin, polyvinyl acetal resin, butyral resin, and acrylic resin having a weight average molecular weight of 30,000 to 1,000,000.
  • the content of the binder resin is preferably 1% by mass or more, more preferably 1% by mass or more, when the nonvolatile component in the magnetic paste is 100% by mass, from the viewpoint of obtaining a magnetic layer exhibiting good mechanical strength and insulation reliability. Is at least 3% by mass, more preferably at least 5% by mass.
  • the upper limit is not particularly limited as long as the effects of the present invention are exerted, but is preferably 30% by mass or less, more preferably 25% by mass or less, and further preferably 20% by mass or less.
  • the magnetic paste of the present invention contains (B) an organically modified layered silicate mineral, whereby the resin exuding property of (C) the binder resin is suppressed.
  • the content of the component (B) when the nonvolatile component in the magnetic paste was 100% by mass was B1, and the content of the component (C) when the nonvolatile component in the magnetic paste was 100% by mass was C1.
  • C1 / B1 is preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more, from the viewpoints of shape maintenance and handling after printing.
  • the upper limit is preferably 30 or less, more preferably 25 or less, and even more preferably 20 or less.
  • the magnetic paste may further contain (D) a curing accelerator as an optional component.
  • the curing accelerator examples include an amine-based curing accelerator, an imidazole-based curing accelerator, a phosphorus-based curing accelerator, a guanidine-based curing accelerator, and a metal-based curing accelerator.
  • an amine-based curing accelerator and an imidazole-based curing accelerator are preferable from the viewpoint of reducing the viscosity of the magnetic paste.
  • the curing accelerator may be used alone or in combination of two or more.
  • amine-based curing accelerator examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5,4,0) -undecene and the like are preferable, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,0) -undecene are preferable.
  • amine-based curing accelerator a commercially available product may be used, and examples thereof include “PN-50”, “PN-23”, and “MY-25” manufactured by Ajinomoto Fine-Techno.
  • imidazole-based curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- -Phenylimidazolium trimellitate, 1-
  • imidazole-based curing accelerator commercially available products may be used, and examples thereof include “2PHZ-PW” manufactured by Shikoku Chemicals, and “P200-H50” manufactured by Mitsubishi Chemical Corporation.
  • Examples of the phosphorus-based curing accelerator include triphenylphosphine, a phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate , Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like, and triphenylphosphine and tetrabutylphosphonium decanoate are preferred.
  • guanidine-based curing accelerator examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -Allyl biguanide, 1-phenyl biguanide, 1- o- tolyl) bigu
  • the metal-based curing accelerator examples include an organic metal complex or an organic metal salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex examples include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • an organic iron complex such as iron (III) acetylacetonate, an organic nickel complex such as nickel (II) acetylacetonate, and an organic manganese complex such as manganese (II) acetylacetonate.
  • the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
  • the curing accelerator is at least one selected from acid anhydride epoxy resin curing agents, amine curing accelerators, and imidazole curing accelerators. Is preferred, and more preferably at least one selected from an amine-based curing accelerator and an imidazole-based curing accelerator.
  • the content of the curing accelerator is preferably 0.1% by mass or more, more preferably 0.3% by mass, when the nonvolatile component in the magnetic paste is 100% by mass. %, More preferably 0.5% by mass or more, and the upper limit is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the magnetic paste may further contain (E) a dispersant as an optional component.
  • dispersant examples include phosphate ester dispersants such as polyoxyethylene alkyl ether phosphoric acid; and anionic dispersants such as sodium dodecylbenzenesulfonate, sodium laurate, and ammonium salts of polyoxyethylene alkyl ether sulfate.
  • Dispersant organosiloxane dispersant, acetylene glycol, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene alkylamide, etc. And the like. Of these, anionic dispersants are preferred.
  • One type of dispersant may be used alone, or two or more types may be used in combination.
  • a commercial product can be used as the phosphate ester-based dispersant.
  • Examples of commercially available products include “RS-410”, “RS-610”, and “RS-710” of the “Phosphanol” series manufactured by Toho Chemical Industry Co., Ltd.
  • organosiloxane dispersant commercially available products include “BYK347” and “BYK348” manufactured by BYK Chemie.
  • the content of the dispersant is preferably 0.1% by mass or more, more preferably 0.1% by mass, when the nonvolatile component in the magnetic paste is 100% by mass, from the viewpoint of remarkably exhibiting the effects of the present invention. It is at least 3% by mass, more preferably at least 0.5% by mass, and the upper limit is preferably at most 5% by mass, more preferably at most 3% by mass, further preferably at most 1% by mass.
  • the magnetic paste may further contain (F) other additives as needed.
  • other additives include a curing retarder such as triethyl borate for improving pot life; Inorganic fillers (excluding those that correspond to magnetic powders or organically modified layered silicate minerals), flame retardants, organic fillers, organometallic compounds such as organocopper compounds, organozinc compounds and organocobalt compounds And a resin additive such as a thickener, an antifoaming agent, a leveling agent, an adhesion-imparting agent, and a coloring agent.
  • a curing retarder such as triethyl borate for improving pot life
  • Inorganic fillers excluding those that correspond to magnetic powders or organically modified layered silicate minerals
  • flame retardants organic fillers
  • organometallic compounds such as organocopper compounds, organozinc compounds and organocobalt compounds
  • a resin additive such as a thickener, an antifoaming agent, a leveling agent, an adhesion
  • the content of the solvent contained in the magnetic paste described above is preferably less than 1.0% by mass, more preferably 0.8% by mass or less, and still more preferably 0.5% by mass, based on the total mass of the magnetic paste. Or less, particularly preferably 0.1% by mass or less.
  • the lower limit is not particularly limited, but is 0.001% by mass or more, or is not contained.
  • the viscosity of the magnetic paste can be reduced without containing a solvent. When the amount of the solvent in the magnetic paste is small, generation of voids due to volatilization of the solvent can be suppressed, and application to vacuum printing becomes possible.
  • the magnetic paste can be produced, for example, by a method of stirring the compounding components using a stirring device such as a three-roll or rotary mixer.
  • FIG. 2 is a cross-sectional view schematically illustrating an example of a cross section of the magnetic layer 120 formed on the substrate 110.
  • a magnetic paste (not shown) is printed on the substrate 110 and cured to form the magnetic layer 120
  • a part of the resin exudes from the edge 120 ⁇ / b> E of the magnetic layer 120.
  • the protrusion 130 may be formed.
  • the exudation of the resin can be suppressed. Therefore, the flow distance L of the exuded resin can be shortened.
  • a cured product obtained by thermally curing a magnetic paste exhibits a property that the resin exudation after screen printing is suppressed.
  • the magnetic paste is screen-printed on a printed board, and after printing, thermally cured at 150 ° C. for 60 minutes to obtain an evaluation board.
  • the maximum distance among the flow distances of the resin exuding from the printed pattern edge of the evaluation board is preferably 500 ⁇ m or less, more preferably 480 ⁇ m or less, and further preferably 450 ⁇ m or less.
  • the lower limit may be 0.001 ⁇ m or more. Since a cured product having such a high relative magnetic permeability can be obtained, the above-mentioned magnetic paste can be used as a magnetic paste for forming an inductor element.
  • the magnetic paste may contain a solvent, but preferably contains no solvent and is a paste at an appropriate temperature.
  • the viscosity of the magnetic paste is, specifically, from the viewpoint of printability, at 25 ° C., usually at least 20 Pa ⁇ s, preferably at least 30 Pa ⁇ s, more preferably at least 50 Pa ⁇ s, even more preferably at least 60 Pa ⁇ s, particularly It is preferably at least 70 Pa ⁇ s, and is usually at most 200 Pa ⁇ s, preferably at most 190 Pa ⁇ s, more preferably at most 180 Pa ⁇ s, from the viewpoint of printability and the ease with which bubbles can be removed during printing.
  • the viscosity can be measured using an E-type viscometer while maintaining the temperature of the magnetic paste at 25 ⁇ 2 ° C.
  • a cured product obtained by thermally curing a magnetic paste (for example, a cured product obtained by thermally curing at 180 ° C. for 90 minutes) generally has a characteristic of high relative permeability at a frequency of 100 MHz.
  • a sheet-like magnetic paste is thermally cured at 180 ° C. for 90 minutes to obtain a sheet-like cured product.
  • the relative permeability of the cured product at a frequency of 100 MHz is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more.
  • the upper limit can be usually 20 or less.
  • a cured product obtained by thermally curing a magnetic paste (for example, a cured product obtained by thermally curing at 180 ° C. for 90 minutes) generally has a characteristic of low magnetic loss at a frequency of 100 MHz.
  • a sheet-like magnetic paste is thermally cured at 180 ° C. for 90 minutes to obtain a sheet-like cured product.
  • the magnetic loss of this cured product at a frequency of 100 MHz is preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less.
  • the lower limit can be usually 0.001 or more.
  • the inductor element of the present invention includes a magnetic layer that is a cured product of the magnetic paste of the present invention.
  • the inductor element includes not only an inductor element as an electronic component but also an inductor element included in a circuit board.
  • FIG. 1 is a schematic plan view of an inductor element according to one embodiment of the present invention.
  • the inductor element 1 includes a substrate 11, a magnetic layer 12, and a wiring 13 formed of a conductor.
  • the wiring 13 is covered with the magnetic layer 12, and the wiring 13 is formed in a spiral shape around a core portion 14. Have been. Further, the magnetic layer 12 is embedded in the core portion 14.
  • the magnetic layer 12 is a cured product of the magnetic paste of the present invention. Since the magnetic layer 12 is a cured product of a magnetic paste, the magnetic layer 12 is suppressed from exuding resin. Thus, the distance between the wirings 13 can be reduced.
  • the inductor element and its manufacturing method will be described through the method for manufacturing the inductor element.
  • the manufacturing method of the inductor element (1) printing a magnetic paste on a substrate, thermally curing the magnetic paste, and forming a first magnetic layer; (2) forming a wiring on the first magnetic layer; (3) printing a magnetic paste on the first magnetic layer, the core portion, and the wiring, thermally curing the magnetic paste, and forming a second magnetic layer; including.
  • the magnetic layer 12 includes the first and second magnetic layers.
  • Step (1) a magnetic paste is printed on a substrate, and the magnetic paste is thermally cured to form a first magnetic layer.
  • a step of preparing a magnetic paste may be included.
  • the magnetic paste is as described above.
  • the substrate is usually an insulating substrate.
  • the material of the substrate include an insulating substrate such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • the substrate may be an inner-layer circuit board in which wiring and the like are formed within its thickness.
  • a wiring board which is a conductor layer formed by etching a copper layer using “R1515E” manufactured by Panasonic Corporation, which is a glass cloth base epoxy resin double-sided copper-clad laminate.
  • the magnetic paste is applied on the substrate by printing on the entire surface or by pattern printing.
  • a printing method screen printing is usually performed, but other printing methods may be adopted.
  • the composition is thermally cured to obtain a first magnetic layer.
  • thermosetting conditions of the magnetic paste vary depending on the composition and type of the magnetic paste, but the curing temperature is preferably 120 ° C or higher, more preferably 130 ° C or higher, even more preferably 150 ° C or higher, preferably 240 ° C or lower, The temperature is more preferably 220 ° C or lower, and further preferably 200 ° C or lower.
  • the hardening time of the magnetic paste is preferably 5 minutes or more, more preferably 10 minutes or more, even more preferably 15 minutes or more, preferably 120 minutes or less, more preferably 100 minutes or less, and even more preferably 90 minutes or less. .
  • the magnetic paste Before heat-curing the magnetic paste, the magnetic paste may be subjected to a preliminary heat treatment of heating at a temperature lower than the curing temperature.
  • the temperature of the preheating treatment is preferably 50 ° C. or higher, preferably 60 ° C., more preferably 70 ° C. or higher, preferably less than 120 ° C., preferably 110 ° C. or lower, more preferably 100 ° C. or lower.
  • the time of the preheating treatment is usually preferably 5 minutes or more, more preferably 15 minutes or more, preferably 150 minutes or less, more preferably 120 minutes or less.
  • step (2) a wiring is formed on the first magnetic layer formed in step (1).
  • the method for forming the wiring include a plating method, a sputtering method, and a vapor deposition method. Among them, the plating method is preferable.
  • the surface of the first magnetic layer is plated by a suitable method such as a semi-additive method or a full-additive method to form a wiring having a spiral wiring pattern.
  • Examples of the wiring material include single metals such as gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin, and indium; gold, platinum, palladium, silver, Examples include alloys of two or more metals selected from the group consisting of copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin, and indium. Among them, from the viewpoints of versatility, cost, ease of patterning, and the like, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel-chromium alloy, a copper-nickel alloy, or a copper-titanium alloy may be used. Preferably, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel-chromium alloy is more preferably used, and copper is more preferably used.
  • a plating seed layer is formed on the surface of the first magnetic layer by electroless plating.
  • an electrolytic plating layer is formed on the formed plating seed layer by electrolytic plating, and if necessary, unnecessary plating seed layers are removed by a process such as etching to form a wiring having a desired wiring pattern. it can.
  • an annealing treatment may be performed as necessary for the purpose of improving the peel strength of the wiring. The annealing treatment can be performed, for example, by heating the substrate at 150 to 200 ° C. for 20 to 90 minutes.
  • a mask pattern for exposing a part of the plating seed layer is formed on the formed plating seed layer corresponding to the spiral pattern.
  • the mask pattern is removed. Thereafter, the unnecessary plating seed layer is removed by a process such as etching to form a wiring having a desired pattern.
  • the thickness of the wiring is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, further preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, particularly preferably 30 ⁇ m or less, 20 ⁇ m or less, and 15 ⁇ m from the viewpoint of thinning. Or 10 ⁇ m or less.
  • the lower limit is preferably at least 1 ⁇ m, more preferably at least 3 ⁇ m, even more preferably at least 5 ⁇ m.
  • Step (3) a magnetic paste is printed on the first magnetic layer, the core, and the wiring, and the magnetic paste is cured by heat to form a second magnetic layer.
  • the method for forming the second magnetic layer is the same as that for the first magnetic layer.
  • the magnetic paste forming the first magnetic layer and the magnetic paste forming the second magnetic layer may be the same or different.
  • a step of forming an insulating layer on the first magnetic layer may be provided.
  • a step of forming an insulating layer on the wiring may be provided.
  • the insulating layer may be formed in the same manner as the insulating layer of the printed wiring board, or may be made of the same material as the insulating layer of the printed wiring board.
  • the circuit board includes the inductor element of the present invention.
  • the circuit board can be used as a wiring board on which electronic components such as semiconductor chips are mounted, and can also be used as a (multi-layer) printed wiring board using such a wiring board as an inner layer board. Further, such a wiring board can be used as a chip inductor component which is divided into individual pieces, and can also be used as a printed wiring board on which the chip inductor component is surface-mounted.
  • various types of semiconductor devices can be manufactured using the wiring board.
  • the semiconductor device including such a wiring board can be suitably used for electric products (for example, computers, mobile phones, digital cameras, televisions, and the like) and vehicles (for example, motorcycles, automobiles, trains, ships, and aircrafts). .
  • Epoxy resin (“ZX-1059”, mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 10 parts by mass, epoxy resin (“ED-523T”, low viscosity epoxy resin, ADEKA Corporation) 5 parts, dispersant (“RS-710”, polymer anionic dispersant, manufactured by Toho Chemical Co., Ltd.) 1 part by mass, curing accelerator (“2P4MZ”, imidazole-based curing accelerator, manufactured by Shikoku Chemicals) 1 Parts by mass, 100 parts by mass of magnetic powder (“M05S”, Fe—Mn-based ferrite, average particle size 3 ⁇ m, manufactured by Powdertech), organized smectite (“Smecton STN”, trioctylmethylammonium-treated hectorite, Kunimine Industries) 2 parts by mass) and uniformly dispersed with a three-roll mill to prepare a magnetic paste.
  • M05S magnetic powder
  • Example 2 In Example 1, the amount of the organized smectite ("Smecton STN", hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries) was changed from 2 parts by mass to 1.5 parts by mass. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • Example 3 In Example 1, the amount of the organized smectite ("Smecton STN", hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries) was changed from 2 parts by mass to 1 part by mass. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • Example 4 In Example 1, 100 parts by mass of a magnetic powder (“M05S”, Fe—Mn-based ferrite, average particle diameter 3 ⁇ m, manufactured by Powder Tech) was mixed with a magnetic powder (“AW2-08PF3F”, Fe—Cr—Si-based). Alloy (amorphous), average particle size 3.0 ⁇ m, manufactured by Epson Atmix Co.) (100 parts by mass). A magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • M05S Fe—Mn-based ferrite, average particle diameter 3 ⁇ m, manufactured by Powder Tech
  • AW2-08PF3F Fe—Cr—Si-based
  • Alloy (amorphous), average particle size 3.0 ⁇ m, manufactured by Epson Atmix Co.) 100 parts by mass.
  • Example 5 In Example 1, 2 parts by mass of an organized smectite ("Smecton STN”, a hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries Co., Ltd.) was added to 2 parts by mass of an organized smectite ("Smecton SAN", a hectorite treated with dimethyldistearylammonium, kunimine). (Manufactured by Kogyo Co., Ltd.). A magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • STN organized smectite
  • Smecton SAN an organized smectite treated with dimethyldistearylammonium, kunimine
  • Example 6 In Example 1, 2 parts by mass of organic smectite (“Smecton STN”, trioctylmethylammonium-treated hectorite, manufactured by Kunimine Industries Co., Ltd.) was treated with organically treated montmorillonite (“Orben M”, dimethyldioctadecyl ammonium-treated montmorillonite, Shiraishi Kogyo). 2 parts by mass. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • organic smectite (“Smecton STN”, trioctylmethylammonium-treated hectorite, manufactured by Kunimine Industries Co., Ltd.) was treated with organically treated montmorillonite (“Orben M”, dimethyldioctadecyl ammonium-treated montmorillonite, Shiraishi Kogyo). 2 parts by mass.
  • a magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • Example 1 ⁇ Comparative Example 1>
  • 2 parts by mass of organic smectite (“Smecton STN", a hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries) was not used.
  • a magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • Example 2 ⁇ Comparative Example 2>
  • 2 parts by mass of organic smectite (“Smecton STN”, trioctylmethylammonium-treated hectorite, manufactured by Kunimine Industries Co., Ltd.) was mixed with unorganized smectite (“Smecton SWN”, hectorite, Kunimine Industries Co., Ltd.). 1 part by mass.
  • a magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • Example 3 In Example 1, 2 parts by mass of organized smectite ("Smecton STN", trioctylmethylammonium-treated hectorite, manufactured by Kunimine Industries) was added to 1 part by mass of hydrophobic fumed silica (AEROSIL RY200, manufactured by Nippon Aerosil Co., Ltd.). changed. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
  • a metal mask (plate material SUS304, opening method laser, no surface treatment, mask thickness 40 ⁇ m, opening pattern 1 mm ⁇ 3 mm rectangle, manufactured by Process Lab Micron) was prepared, and a metal squeegee (plate material SUS304, squeegee) was prepared. 0.25 mm in thickness, no surface treatment, manufactured by Taku Giken Co., Ltd.).
  • the printed substrate and the printing member are closely adhered and fixed, and a metal squeegee is swept at an angle of 45 deg, a speed of 10 mm / sec, and a linear pressure of 6.5 N / cm over the magnetic paste produced in each of the examples and comparative examples. I went in.
  • the printing member was removed, and the magnetic paste was cured under the curing conditions of 150 ° C. for 60 minutes to produce a print evaluation substrate.
  • a polyethylene terephthalate (PET) film (“PET501010" manufactured by Lintec Corporation, thickness: 50 ⁇ m) treated with a silicone-based release agent was prepared.
  • PET polyethylene terephthalate
  • the magnetic paste prepared in each example and each comparative example was uniformly applied on a release surface of the PET film by a doctor blade so that the thickness of the dried paste layer was 100 ⁇ m, to obtain a resin sheet. .
  • the resulting resin sheet was heated at 180 ° C. for 90 minutes to thermally cure the magnetic paste layer, and the support was peeled off to obtain a sheet-like cured product.
  • the obtained cured product was cut into a test piece having a width of 5 mm and a length of 18 mm to obtain an evaluation sample.
  • the relative permeability ( ⁇ ′) and the magnetic loss ( ⁇ ) were measured at room temperature 23 ° C. using Agilent Technologies (“HP8362B” manufactured by Agilent Technologies). '') was measured.
  • Table 1 shows the results of Examples 1 to 6 and Comparative Examples 1 to 3. From Examples 1 to 6, it was found that the magnetic paste containing the organic smectite of the present invention greatly improved the resin exudation property. On the other hand, Comparative Example 1 contained no organic smectite, and large resin seepage was observed. Moreover, as can be seen from Comparative Example 2, when smectite that was not organized was used, the resin exudation property was not improved.
  • Comparative Example 3 Although hydrophobic fumed silica, which is widely used as a thixotropic agent, was added, the resin exudation property was not improved, and the viscosity was increased, and from the viewpoint of printability and air bubble removal, It has fallen out of the preferred range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A magnetic paste that includes (A) a magnetic powder, (B) an organified layered silicate mineral, and (C) a binder resin.

Description

磁性ペーストMagnetic paste
 本発明は、磁性ペースト、及び磁性ペーストを用いて得られるインダクタ素子、回路基板に関する。 The present invention relates to a magnetic paste, an inductor element obtained by using the magnetic paste, and a circuit board.
 インダクタ素子は、携帯電話機、スマートフォンなどの情報端末に数多く搭載されている。従来は独立したインダクタ部品が基板上に実装されていたが、近年は基板の導体パターンによりコイルを形成し、インダクタ素子を基板の内部に設ける手法が行われるようになってきている。 Numerous inductor elements are mounted on information terminals such as mobile phones and smartphones. Conventionally, an independent inductor component has been mounted on a substrate, but in recent years, a method of forming a coil using a conductor pattern of the substrate and providing an inductor element inside the substrate has been used.
 インダクタ素子を基板の内部に設ける手法としては、例えば、磁性材料を含有するペースト材料を、配線を含む基板上にスクリーン印刷して磁性層を形成する方法が知られている(特許文献1、特許文献2参照)。 As a method of providing an inductor element inside a substrate, for example, a method of screen-printing a paste material containing a magnetic material on a substrate including wiring to form a magnetic layer is known (Patent Document 1, Patent Document 1). Reference 2).
特開平6-69058号公報JP-A-6-69058 特開2017-63100号公報JP-A-2017-63100
 従来のペースト材料は、樹脂染み出し性が大きい。よって、ペースト材料を用いてスクリーン印刷を行い、硬化させて磁性層を形成した場合、ペースト材料を構成する樹脂成分及び磁性粉体の一部が磁性層の縁部から染み出してしまう。染み出した成分がある基板上の部分には、導体層の形成及び部品の設置が困難であるので、回路設計の自由度を下げたり、回路の微細化の妨げになったりする。特許文献1及び特許文献2には、スクリーン印刷方法を改良したり、インダクタ素子の構造を改良したりすることで樹脂染み出し性を抑制する方法が記載されているが、特許文献1及び特許文献2に記載の方法では必ずしも満足いくものではなかった。 Conventional paste material has high resin seeping property. Therefore, when screen printing is performed using the paste material and the magnetic layer is formed by curing, a part of the resin component and the magnetic powder constituting the paste material exude from the edge of the magnetic layer. Since it is difficult to form a conductor layer and install components on the portion of the substrate where the exuded components are present, the degree of freedom in circuit design is reduced, and miniaturization of the circuit is hindered. Patent Literature 1 and Patent Literature 2 describe a method of suppressing resin exudation by improving a screen printing method or improving a structure of an inductor element. The method described in No. 2 was not always satisfactory.
 本発明は、上記の事情に鑑みてなされたものであり、樹脂染み出し性が抑制された硬化物を得ることができる磁性ペースト、及び当該磁性ペーストを使用したインダクタ素子、回路基板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a magnetic paste capable of obtaining a cured product in which resin exudation is suppressed, and an inductor element and a circuit board using the magnetic paste. With the goal.
 本発明者は、上記目的を達成すべく鋭意研究をした結果、有機化された層状ケイ酸塩鉱物を含有させた磁性ペーストを用いることにより樹脂染み出し性が抑制されることを見出し、本発明を完成するに至った。 The present inventors have made intensive studies to achieve the above object, and as a result, have found that the use of a magnetic paste containing an organically modified layered silicate mineral suppresses resin exudation. Was completed.
 すなわち、本発明は以下の内容を含む。
[1] (A)磁性粉体、
 (B)有機化された層状ケイ酸塩鉱物、及び
 (C)バインダー樹脂、を含む磁性ペースト。
[2] (B)成分が、有機化されたスメクタイトを含む、[1]に記載の磁性ペースト。
[3] (B)成分が、第4級アンモニウムイオンでイオン交換されたスメクタイトを含む、[2]に記載の磁性ペースト。
[4] (B)成分が、有機化されたヘクトライト、及び有機化されたモンモリロナイトから選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の磁性ペースト。
[5] (B)成分が、第4級アンモニウムイオンでイオン交換されたヘクトライト、及び第4級アンモニウムイオンでイオン交換されたモンモリロナイトから選ばれる少なくとも1種である、[4]に記載の磁性ペースト。
[6] (C)成分が、熱硬化性樹脂を含む、[1]~[5]のいずれかに記載の磁性ペースト。
[7] (C)成分が、エポキシ樹脂を含む、[1]~[6]のいずれかに記載の磁性ペースト。
[8] (A)成分が、酸化鉄粉及び鉄合金系金属粉から選ばれる少なくとも1種である、[1]~[7]のいずれかに記載の磁性ペースト。
[9] 磁性ペースト中の不揮発成分を100質量%とした場合の(B)成分の含有量をB1とし、磁性ペースト中の不揮発成分を100質量%とした場合の(C)成分の含有量をC1とした場合、C1/B1が1以上30以下である、[1]~[8]のいずれかに記載の磁性ペースト。
[10] インダクタ素子形成用である、[1]~[9]のいずれかに記載の磁性ペースト。
[11] [1]~[10]のいずれかに記載の磁性ペーストの硬化物である磁性層を含む、インダクタ素子。
[12] [11]に記載のインダクタ素子を含む、回路基板。
That is, the present invention includes the following contents.
[1] (A) magnetic powder,
A magnetic paste comprising (B) an organically modified layered silicate mineral, and (C) a binder resin.
[2] The magnetic paste according to [1], wherein the component (B) contains organic smectite.
[3] The magnetic paste according to [2], wherein the component (B) includes smectite ion-exchanged with a quaternary ammonium ion.
[4] The magnetic paste according to any one of [1] to [3], wherein the component (B) is at least one selected from organized hectorite and organized montmorillonite.
[5] The magnetism according to [4], wherein the component (B) is at least one selected from hectorite ion-exchanged with quaternary ammonium ions and montmorillonite ion-exchanged with quaternary ammonium ions. paste.
[6] The magnetic paste according to any one of [1] to [5], wherein the component (C) contains a thermosetting resin.
[7] The magnetic paste according to any one of [1] to [6], wherein the component (C) contains an epoxy resin.
[8] The magnetic paste according to any one of [1] to [7], wherein the component (A) is at least one selected from iron oxide powder and iron alloy-based metal powder.
[9] The content of the component (B) when the non-volatile component in the magnetic paste is 100% by mass is B1, and the content of the component (C) when the non-volatile component in the magnetic paste is 100% by mass is The magnetic paste according to any one of [1] to [8], wherein C1 / B1 is 1 or more and 30 or less when C1.
[10] The magnetic paste according to any one of [1] to [9], which is for forming an inductor element.
[11] An inductor element including a magnetic layer which is a cured product of the magnetic paste according to any one of [1] to [10].
[12] A circuit board including the inductor element according to [11].
 本発明によれば、樹脂染み出し性が抑制された硬化物を得ることができる磁性ペースト、及び当該磁性ペーストを使用したインダクタ素子、回路基板を提供することができる。 According to the present invention, it is possible to provide a magnetic paste capable of obtaining a cured product in which resin exudation is suppressed, and an inductor element and a circuit board using the magnetic paste.
図1は、本発明の一実施形態に係るインダクタ素子の模式的な平面図である。FIG. 1 is a schematic plan view of an inductor element according to one embodiment of the present invention. 図2は、基板上に形成された磁性層の断面の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically illustrating an example of a cross section of a magnetic layer formed on a substrate.
 以下、図面を参照して、本発明の実施形態について説明する。なお、各図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の実施形態によって限定されるものではなく、各構成要素は適宜変更可能である。また、本発明の実施形態にかかる構成は、必ずしも図示例の配置により、製造されたり、使用されたりするとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, the shape, size, and arrangement of the components are only schematically shown so that the invention can be understood. The present invention is not limited by the following embodiments, and each component can be appropriately changed. Further, the configuration according to the embodiment of the present invention is not necessarily manufactured or used according to the arrangement of the illustrated example.
[磁性ペースト]
 本発明の磁性ペーストは、(A)磁性粉体、(B)有機化された層状ケイ酸塩鉱物、及び(C)バインダー樹脂を含む。
[Magnetic paste]
The magnetic paste of the present invention contains (A) a magnetic powder, (B) an organically modified layered silicate mineral, and (C) a binder resin.
 本発明では、(B)有機化された層状ケイ酸塩鉱物を含有させることにより、樹脂染み出し性が抑制された硬化物を得ることができる。さらには、得られた硬化物は、通常、周波数が10~200MHzの範囲で比透磁率の向上、及び磁性損失の低減が可能である。 で は In the present invention, by containing (B) an organically modified layered silicate mineral, it is possible to obtain a cured product in which resin exudation is suppressed. Further, the obtained cured product can improve the relative magnetic permeability and reduce the magnetic loss when the frequency is usually in the range of 10 to 200 MHz.
 磁性ペーストは、必要に応じて、さらに(D)硬化促進剤、(E)分散剤、(F)その他の添加剤を含み得る。以下、本発明の磁性ペーストに含まれる各成分について詳細に説明する。 The magnetic paste may further contain (D) a curing accelerator, (E) a dispersant, and (F) other additives as necessary. Hereinafter, each component contained in the magnetic paste of the present invention will be described in detail.
<(A)磁性粉体>
 磁性ペーストは、(A)磁性粉体を含有する。(A)磁性粉体としては、例えば、純鉄粉末;Mg-Zn系フェライト、Fe-Mn系フェライト、Mn-Zn系フェライト、Mn-Mg系フェライト、Cu-Zn系フェライト、Mg-Mn-Sr系フェライト、Ni-Zn系フェライト、Ba-Zn系フェライト、Ba-Mg系フェライト、Ba-Ni系フェライト、Ba-Co系フェライト、Ba-Ni-Co系フェライト、Y系フェライト、酸化鉄粉(III)、四酸化三鉄などの酸化鉄粉;Fe-Si系合金粉末、Fe-Si-Al系合金粉末、Fe-Cr系合金粉末、Fe-Cr-Si系合金粉末、Fe-Ni-Cr系合金粉末、Fe-Cr-Al系合金粉末、Fe-Ni系合金粉末、Fe-Ni-Mo系合金粉末、Fe-Ni-Mo-Cu系合金粉末、Fe-Co系合金粉末、あるいはFe-Ni-Co系合金粉末などの鉄合金系金属粉;Co基アモルファスなどのアモルファス合金類、が挙げられる。
<(A) Magnetic powder>
The magnetic paste contains (A) a magnetic powder. (A) As the magnetic powder, for example, pure iron powder; Mg—Zn ferrite, Fe—Mn ferrite, Mn—Zn ferrite, Mn—Mg ferrite, Cu—Zn ferrite, Mg—Mn—Sr Ferrite, Ni-Zn ferrite, Ba-Zn ferrite, Ba-Mg ferrite, Ba-Ni ferrite, Ba-Co ferrite, Ba-Ni-Co ferrite, Y ferrite, iron oxide powder (III ), Iron oxide powder such as triiron tetroxide; Fe-Si alloy powder, Fe-Si-Al alloy powder, Fe-Cr alloy powder, Fe-Cr-Si alloy powder, Fe-Ni-Cr alloy powder Alloy powder, Fe-Cr-Al alloy powder, Fe-Ni alloy powder, Fe-Ni-Mo alloy powder, Fe-Ni-Mo-Cu alloy powder, Fe-Co alloy powder, Rui iron alloy-based metal powders such as Fe-Ni-Co alloy powders; amorphous alloy such as Co-based amorphous, and the like.
 中でも、(A)磁性粉体としては、酸化鉄粉及び鉄合金系金属粉から選ばれる少なくとも1種であることが好ましい。酸化鉄粉としては、Ni、Cu、Mn、及びZnから選ばれる少なくとも1種を含むフェライトであることが好ましい。また、鉄合金系金属粉としては、Si、Cr、Al、Ni、及びCoから選ばれる少なくとも1種を含む鉄合金系金属粉であることが好ましい。 Above all, the magnetic powder (A) is preferably at least one selected from iron oxide powder and iron alloy-based metal powder. The iron oxide powder is preferably a ferrite containing at least one selected from Ni, Cu, Mn, and Zn. The iron alloy-based metal powder is preferably an iron alloy-based metal powder containing at least one selected from Si, Cr, Al, Ni, and Co.
 (A)磁性粉体としては、市販の磁性粉体を用いることができる。用いられ得る市販の磁性粉体の具体例としては、パウダーテック社製「M05S」;山陽特殊製鋼社製「PST-S」;エプソンアトミックス社製「AW2-08」、「AW2-08PF20F」、「AW2-08PF10F」、「AW2-08PF3F」、「Fe-3.5Si-4.5CrPF20F」、「Fe-50NiPF20F」、「Fe-80Ni-4MoPF20F」;JFEケミカル社製「LD-M」、「LD-MH」、「KNI-106」、「KNI-106GSM」、「KNI-106GS」、「KNI-109」、「KNI-109GSM」、「KNI-109GS」;戸田工業社製「KNS-415」、「BSF-547」、「BSF-029」、「BSN-125」、「BSN-125」、「BSN-714」、「BSN-828」、「S-1281」、「S-1641」、「S-1651」、「S-1470」、「S-1511」、「S-2430」;日本重化学工業社製「JR09P2」;CIKナノテック社製「Nanotek」;キンセイマテック社製「JEMK-S」、「JEMK-H」:ALDRICH社製「Yttrium iron oxide」等が挙げられる。磁性粉体は1種単独で用いてもよく、又は2種以上を併用してもよい。 市 販 A commercially available magnetic powder can be used as the (A) magnetic powder. Specific examples of commercially available magnetic powders that can be used include "M05S" manufactured by Powdertech; "PST-S" manufactured by Sanyo Special Steel Co., Ltd .; "AW2-08" and "AW2-08PF20F" manufactured by Epson Atmix. “AW2-08PF10F”, “AW2-08PF3F”, “Fe-3.5Si-4.5CrPF20F”, “Fe-50NiPF20F”, “Fe-80Ni-4MoPF20F”; “LD-M”, “LD” manufactured by JFE Chemical Corporation -MH "," KNI-106 "," KNI-106GSM "," KNI-106GS "," KNI-109 "," KNI-109GSM "," KNI-109GS ";" KNS-415 "manufactured by Toda Kogyo, “BSF-547”, “BSF-029”, “BSN-125”, “BSN-125”, “BSN-714”, “ SN-828 "," S1281 "," S-1641 "," S-1651 "," S-1470 "," S-1511 "," S-2430 ";" JR09P2 "manufactured by Nippon Heavy Chemical Industry; "Nanotek" manufactured by CIK Nanotech; "JEMK-S" manufactured by Kinsei Matech, "JEMK-H": "Yttrium \ iron \ oxide" manufactured by ALDRICH. One type of magnetic powder may be used alone, or two or more types may be used in combination.
 (A)磁性粉体は、球状であることが好ましい。磁性粉体の長軸の長さを短軸の長さで除した値(アスペクト比)としては、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。一般に、磁性粉体は球状ではない扁平な形状であるほうが、比透磁率を向上させやすい。しかし、特に球状の磁性粉体を用いる方が、通常、磁気損失を低くでき、また好ましい粘度を有するペーストを得る観点から好ましい。 (A) The magnetic powder is preferably spherical. The value obtained by dividing the length of the major axis of the magnetic powder by the length of the minor axis (aspect ratio) is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less. Generally, when the magnetic powder has a flat shape that is not spherical, the relative magnetic permeability is easily improved. However, the use of a spherical magnetic powder is particularly preferable from the viewpoints of reducing the magnetic loss and obtaining a paste having a preferable viscosity.
 (A)磁性粉体の平均粒径は、比透磁率を向上させる観点から、好ましくは0.01μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。また、好ましくは10μm以下、より好ましくは9μm以下、さらに好ましくは8μm以下である。 (A) The average particle diameter of the magnetic powder is preferably 0.01 μm or more, more preferably 0.5 μm or more, and still more preferably 1 μm or more, from the viewpoint of improving the relative magnetic permeability. Further, it is preferably 10 μm or less, more preferably 9 μm or less, and still more preferably 8 μm or less.
 (A)磁性粉体の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒径分布測定装置により、磁性粉体の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、磁性粉体を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒径分布測定装置としては、堀場製作所社製「LA-500」、島津製作所社製「SALD-2200」等を使用することができる。 (A) The average particle size of the magnetic powder can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, it can be measured by preparing a particle size distribution of a magnetic powder on a volume basis by using a laser diffraction scattering type particle size distribution measuring device, and setting a median diameter to an average particle size. As the measurement sample, a sample in which magnetic powder is dispersed in water by ultrasonic waves can be preferably used. As the laser diffraction / scattering type particle size distribution measuring device, “LA-500” manufactured by Horiba, Ltd., “SALD-2200” manufactured by Shimadzu, etc. can be used.
 (A)磁性粉体の比表面積は、比透磁率を向上させる観点から、好ましくは0.05m/g以上、より好ましくは0.1m/g以上、さらに好ましくは0.3m/g以上である。また、好ましくは10m/g以下、より好ましくは8m/g以下、さらに好ましくは5m/g以下である。(A)磁性粉体の比表面積は、BET法によって測定できる。 (A) a specific surface area of the magnetic powder, from the viewpoint of improving the relative permeability, preferably 0.05 m 2 / g or more, more preferably 0.1 m 2 / g or more, more preferably 0.3 m 2 / g That is all. Further, it is preferably 10 m 2 / g or less, more preferably 8 m 2 / g or less, and still more preferably 5 m 2 / g or less. (A) The specific surface area of the magnetic powder can be measured by the BET method.
 (A)磁性粉体の含有量(体積%)は、比透磁率を向上させ及び磁性損失を低減させる観点から、磁性ペースト中の不揮発成分を100体積%とした場合、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上である。また、好ましくは85体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下である。 (A) The content (volume%) of the magnetic powder is preferably 10 vol% or more when the non-volatile component in the magnetic paste is 100 vol% from the viewpoint of improving the relative magnetic permeability and reducing the magnetic loss. , More preferably at least 20% by volume, still more preferably at least 30% by volume. Further, it is preferably at most 85% by volume, more preferably at most 80% by volume, further preferably at most 75% by volume.
 (A)磁性粉体の含有量(質量%)は、比透磁率を向上させ及び磁性損失を低減させる観点から、磁性ペースト中の不揮発成分を100質量%とした場合、好ましくは60質量%以上、より好ましくは65質量%以上、さらに好ましくは70質量%以上である。また、好ましくは98質量%以下、より好ましくは96質量%以下、さらに好ましくは94質量%以下である。
 なお、本発明において、磁性ペースト中の各成分の含有量は、別途明示のない限り、磁性ペースト中の不揮発成分を100質量%としたときの値である。
(A) The content (% by mass) of the magnetic powder is preferably 60% by mass or more when the nonvolatile component in the magnetic paste is 100% by mass from the viewpoint of improving the relative magnetic permeability and reducing the magnetic loss. , More preferably 65% by mass or more, even more preferably 70% by mass or more. Further, it is preferably at most 98% by mass, more preferably at most 96% by mass, further preferably at most 94% by mass.
In the present invention, the content of each component in the magnetic paste is a value when the nonvolatile component in the magnetic paste is 100% by mass, unless otherwise specified.
<(B)有機化された層状ケイ酸塩鉱物>
 磁性ペーストは、(B)有機化された層状ケイ酸塩鉱物を含有する。(B)有機化された層状ケイ酸塩鉱物を磁性ペーストに含有させることで、樹脂染み出し性が抑制された硬化物を得ることが可能となる。ここで、「有機化(された)」とは、「有機オニウムイオンでイオン交換された」ことを意味する。
<(B) Organized layered silicate mineral>
The magnetic paste contains (B) an organized layered silicate mineral. (B) By incorporating the organic layered silicate mineral into the magnetic paste, it becomes possible to obtain a cured product with reduced resin exudation. Here, “organized (performed)” means “ion-exchanged with an organic onium ion”.
 層状ケイ酸塩鉱物は、一般に、フィロケイ酸塩鉱物とも呼ばれる。層状ケイ酸塩鉱物は、単独または2種以上組み合わせて使用することができる。また、層状ケイ酸塩鉱物としては、天然物を用いてもよく、合成物を用いてもよい。層状ケイ酸塩鉱物の結晶構造としては、c軸方向に規則正しく積み重なった純粋度が高いものを用いることが好ましいが、結晶周期が乱れ、複数種の結晶構造が混じり合った、いわゆる混合層状鉱物を用いてもよい。 Layered silicate minerals are also commonly referred to as phyllosilicate minerals. Layered silicate minerals can be used alone or in combination of two or more. As the layered silicate mineral, a natural product or a synthetic product may be used. As the crystal structure of the layered silicate mineral, it is preferable to use one having a high degree of purity, which is regularly stacked in the c-axis direction, but a so-called mixed layered mineral in which the crystal cycle is disordered and a plurality of types of crystal structures are mixed. May be used.
 層状ケイ酸塩鉱物としては、例えば、スメクタイト、カオリナイト、ハロイサイト、タルク、マイカなどが挙げられる。これらの中でも、樹脂染み出し性を効果的に抑制できる硬化物を得る観点からスメクタイトが好ましい。 Examples of the layered silicate mineral include smectite, kaolinite, halloysite, talc, and mica. Among these, smectite is preferable from the viewpoint of obtaining a cured product that can effectively suppress resin exudation.
 スメクタイトは、一般式:X0.2~0.62~310(OH)・nHO(ただし、XはK、Na、1/2Ca、及び1/2Mgから成る群より選ばれる1種以上であり、YはMg、Fe、Mn、Ni、Zn、Li、Al、及びCrから成る群より選ばれる1種以上であり、ZはSi、及びAlから成る群より選ばれる1種以上である。なお、HOは層間イオンと結合している水分子を表す。nは整数を表し、層間イオンおよび相対湿度に応じて著しく変動しうる。)で表され、天然または合成されたものである。スメクタイトとしては、例えば、ヘクトライト、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ソーコナイト、スチブンサイト、ベントナイト、またはこれらの置換体、誘導体、あるいはこれらの混合物が挙げられる。これらの中でも、樹脂染み出し性を効果的に抑制できる硬化物を得る観点から、ヘクトライト、モンモリロナイトが好ましい。 Smectite has a general formula: X 0.2 to 0.6 Y 2 to 3 Z 4 O 10 (OH) 2 .nH 2 O (where X is a group consisting of K, Na, 1 / 2Ca, and 1 / 2Mg) Y is one or more selected from the group consisting of Mg, Fe, Mn, Ni, Zn, Li, Al, and Cr; and Z is selected from the group consisting of Si and Al. Wherein H 2 O represents a water molecule bonded to an interlayer ion, n represents an integer, and may fluctuate significantly depending on the interlayer ion and relative humidity.) Or they are synthesized. Examples of the smectite include hectorite, montmorillonite, beidellite, nontronite, saponite, iron saponite, sauconite, stevensite, bentonite, a substituted product thereof, a derivative thereof, and a mixture thereof. Among these, hectorite and montmorillonite are preferred from the viewpoint of obtaining a cured product that can effectively suppress resin exudation.
 有機オニウムイオンは、有機基を含むオニウムイオン構造を有するイオンを表す。この有機オニウムイオンは、通常、(B)成分において、層状ケイ酸塩鉱物のケイ酸塩層の層間部分に含まれる。 The organic onium ion represents an ion having an onium ion structure containing an organic group. This organic onium ion is usually contained in the interlayer portion of the silicate layer of the layered silicate mineral in the component (B).
 有機オニウムイオンとしては、例えば、有機アンモニウムイオン、有機ホスホニウムイオン、有機スルホニウムイオン、有機イミダゾリウムイオンなどが挙げられる。中でも、樹脂染み出し性が効果的に抑制された硬化物を得る観点から、有機アンモニウムイオン及び有機ホスホニウムイオンが好ましく、有機アンモニウムイオンが特に好ましい。 Examples of the organic onium ion include an organic ammonium ion, an organic phosphonium ion, an organic sulfonium ion, and an organic imidazolium ion. Among them, from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed, an organic ammonium ion and an organic phosphonium ion are preferable, and an organic ammonium ion is particularly preferable.
 有機オニウムイオンが含む有機基としては、例えば、アルキル基、アルケニル基、アリール基、アラルキル基等の、1価の炭化水素基;ヒドロキシアルキル基;カルボキシアルキル基;ポリアルキレンエーテル基;などが挙げられる。これらの有機基は、1種類を用いてもよく、2種類以上を組み合わせて用いてもよい。中でも、樹脂染み出し性が効果的に抑制された硬化物を得る観点から、1価の炭化水素基及びポリアルキレンエーテル基が好ましい。 Examples of the organic group contained in the organic onium ion include a monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, and an aralkyl group; a hydroxyalkyl group; a carboxyalkyl group; a polyalkylene ether group; . One of these organic groups may be used, or two or more thereof may be used in combination. Among them, a monovalent hydrocarbon group and a polyalkylene ether group are preferable from the viewpoint of obtaining a cured product in which the resin exudation property is effectively suppressed.
 1価の炭化水素基としては、1価の脂肪族炭化水素基が好ましく、1価の飽和脂肪族炭化水素基がより好ましく、アルキル基が特に好ましい。アルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。また、1価の炭化水素基の炭素原子数は、通常1~40、好ましくは1~25、より好ましくは1~20である。1価の炭化水素基が前記の好ましい要件を満たすことにより、樹脂染み出し性が特に小さい硬化物を得ることができる。 As the monovalent hydrocarbon group, a monovalent aliphatic hydrocarbon group is preferable, a monovalent saturated aliphatic hydrocarbon group is more preferable, and an alkyl group is particularly preferable. The alkyl group may be linear or branched. The number of carbon atoms of the monovalent hydrocarbon group is usually 1 to 40, preferably 1 to 25, and more preferably 1 to 20. When the monovalent hydrocarbon group satisfies the above preferable requirements, a cured product having particularly low resin exudation properties can be obtained.
 1価の炭化水素基の好ましい例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、n-ヘキシル基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基などが挙げられる。 Preferred examples of the monovalent hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, isobutyl, n-pentyl, isopentyl Group, neopentyl group, t-pentyl group, n-hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, etc. Is mentioned.
 ポリアルキレンエーテル基とは、下記式(I)で表される基を示す。
 -(RO)-H    (I)
The polyalkylene ether group refers to a group represented by the following formula (I).
-(RO) m -H (I)
 式(I)において、Rは、それぞれ独立に、アルキレン基を表す。アルキレン基の炭素原子数は、2~20が好ましい。アルキレン基としては、例えば、エチレン基、プロピレン基等が挙げられる。
 式(I)において、mは、1~20の整数を表す。
In the formula (I), R independently represents an alkylene group. The alkylene group preferably has 2 to 20 carbon atoms. Examples of the alkylene group include an ethylene group and a propylene group.
In the formula (I), m represents an integer of 1 to 20.
 特に好ましい有機オニウムイオンとしては、下記式(II)で表される有機オニウムイオンが挙げられる。 Particularly preferred organic onium ions include organic onium ions represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(II)において、Xは、長周期型周期表の15族に属する非金属原子を表す。よって、Xは、窒素原子又はリン原子を表す。中でも、樹脂染み出し性が効果的に抑制された硬化物を得る観点から、Xは、窒素原子が好ましい。 In the formula (II), X 1 represents a non-metallic atom belonging to Group 15 of the long-period periodic table. Therefore, X 1 represents a nitrogen atom or a phosphorus atom. Among them, X 1 is preferably a nitrogen atom from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed.
 式(II)において、Rは、前記の有機基を表す。有機基の中でも、樹脂染み出し性が効果的に抑制された硬化物を得る観点から、1価の炭化水素基及びポリアルキレンエーテル基からなる群より選ばれるものが好ましく、アルキル基又はポリアルキレンエーテル基がより好ましく、アルキル基が特に好ましい。 In the formula (II), R 1 represents the aforementioned organic group. Among the organic groups, those selected from the group consisting of monovalent hydrocarbon groups and polyalkylene ether groups are preferable from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed, and an alkyl group or polyalkylene ether is preferred. Groups are more preferred, and alkyl groups are particularly preferred.
 式(II)において、R、R及びRは、それぞれ独立に、水素原子及び前記有機基からなる群より選ばれる基を表す。有機基の中でも、樹脂染み出し性が効果的に抑制された硬化物を得る観点から、1価の炭化水素基及びポリアルキレンエーテル基からなる群より選ばれるものが好ましく、アルキル基又はポリアルキレンエーテル基がより好ましく、アルキル基が特に好ましい。 In the formula (II), R 2 , R 3 and R 4 each independently represent a group selected from the group consisting of a hydrogen atom and the organic group. Among the organic groups, those selected from the group consisting of monovalent hydrocarbon groups and polyalkylene ether groups are preferable from the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed, and an alkyl group or polyalkylene ether is preferred. Groups are more preferred, and alkyl groups are particularly preferred.
 樹脂染み出し性が効果的に抑制された硬化物を得る観点から、有機オニウムイオンの中でも、有機アンモニウムイオンが好ましく、第2~第4級有機アンモニウムイオンがより好ましく、第3~第4級有機アンモニウムイオンが更に好ましく、第4級有機アンモニウムイオンが特に好ましい。よって、式(II)で表される有機オニウムイオンにおいては、R、R及びRのうち、1つ以上が有機基であることが好ましく、2つ以上が有機基であることがより好ましく、3つとも有機基であることが特に好ましい。 From the viewpoint of obtaining a cured product in which resin exudation is effectively suppressed, among the organic onium ions, organic ammonium ions are preferable, secondary to quaternary organic ammonium ions are more preferable, and tertiary to quaternary organic ammonium ions are preferable. Ammonium ions are more preferred, and quaternary organic ammonium ions are particularly preferred. Therefore, in the organic onium ion represented by the formula (II), one or more of R 2 , R 3 and R 4 are preferably an organic group, and more preferably two or more are an organic group. Preferably, all three are organic groups.
 式(II)で表される第4級アンモニウムイオンの中でも、R、R、R及びRの少なくとも一部が長鎖有機基であることが好ましい。更には、R、R、R及びRのうち、一部が長鎖有機基であり、且つ、残りが短鎖有機基であることがより好ましい。中でも、R、R、R及びRのうち、2~3個が長鎖有機基であり、且つ、残りの1~2個が短鎖有機基であることが特に好ましい。長鎖有機基とは、炭素原子数が通常8以上、好ましくは12以上の有機基を表す。また、短鎖有機基とは、炭素原子数が1~7の有機基を表す。このような要件を満たす第4級アンモニウムイオンを用いることにより、樹脂染み出し性が特に小さい硬化物を得ることができ、特に、有機基がアルキル基である場合に効果が顕著である。 Among the quaternary ammonium ions represented by the formula (II), at least a part of R 1 , R 2 , R 3 and R 4 is preferably a long-chain organic group. Further, it is more preferable that a part of R 1 , R 2 , R 3 and R 4 is a long-chain organic group, and the rest is a short-chain organic group. Among them, it is particularly preferable that 2 to 3 of R 1 , R 2 , R 3 and R 4 are long-chain organic groups, and the remaining 1 to 2 are short-chain organic groups. The long-chain organic group means an organic group having usually 8 or more, preferably 12 or more carbon atoms. The short-chain organic group refers to an organic group having 1 to 7 carbon atoms. By using a quaternary ammonium ion that satisfies such requirements, a cured product having particularly low resin exudation properties can be obtained, and the effect is particularly remarkable when the organic group is an alkyl group.
 有機オニウムイオンの好ましい具体例としては、トリメチルオクチルアンモニウムイオン、トリメチルデシルアンモニウムイオン、トリメチルドデシルアンモニウムイオン、トリメチルテトラデシルアンモニウムイオン、トリメチルヘキサデシルアンモニウムイオン、トリメチルオクタデシルアンモニウムイオン、トリメチルイコシルアンモニウムイオン等の、トリメチルアルキルアンモニウムイオン;トリエチルドデシルアンモニウムイオン、トリエチルテトラデシルアンモニウムイオン、トリエチルヘキサデシルアンモニウムイオン、トリエチルオクタデシルアンモニウムイオン等の、トリエチルアルキルアンモニウムイオン;トリブチルドデシルアンモニウムイオン、トリブチルテトラデシルアンモニウムイオン、トリブチルヘキサデシルアンモニウムイオン、トリブチルオクタデシルアンモニウムイオン等の、トリブチルアルキルアンモニウムイオン;ジメチルジオクチルアンモニウムイオン、ジメチルジデシルアンモニウムイオン、ジメチルジテトラデシルアンモニウムイオン、ジメチルジヘキサデシルアンモニウムイオン、ジメチルジオクタデシルアンモニウムイオン(ジメチルジステアリルアンモニウムイオン)、ジメチルジドデシルアンモニウムイオン等の、ジメチルジアルキルアンモニウムイオン;ジエチルジドデシルアンモニウムイオン、ジエチルジテトラデシルアンモニウムイオン、ジエチルジヘキサデシルアンモニウムイオン、ジエチルジオクタデシルアンモニウムイオン等の、ジエチルジアルキルアンモニウムイオン;ジブチルジオクチルアンモニウムイオン、ジブチルジデシルアンモニウムイオン、ジブチルジドデシルアンモニウムイオン、ジブチルジテトラデシルアンモニウムイオン、ジブチルジヘキサデシルアンモニウムイオン、ジブチルジオクタデシルアンモニウムイオン等の、ジブチルジアルキルアンモニウムイオン;トリオクチルメチルアンモニウムイオン、トリドデシルメチルアンモニウムイオン、トリテトラデシルメチルアンモニウムイオン等の、トリアルキルメチルアンモニウムイオン;トリオクチルエチルアンモニウムイオン、トリドデシルエチルアンモニウムイオン等の、トリアルキルエチルアンモニウムイオン;トリオクチルブチルアンモニウムイオン、トリデシルブチルアンモニウムイオン等の、トリアルキルブチルアンモニウムイオン;などの有機アンモニウムイオンが挙げられる。 Preferred specific examples of the organic onium ion include trimethyloctylammonium ion, trimethyldecylammonium ion, trimethyldodecylammonium ion, trimethyltetradecylammonium ion, trimethylhexadecylammonium ion, trimethyloctadecylammonium ion, and trimethyleicosylammonium ion. Trimethylalkylammonium ion; triethylalkylammonium ion such as triethyldodecylammonium ion, triethyltetradecylammonium ion, triethylhexadecylammonium ion, and triethyloctadecylammonium ion; tributyldodecylammonium ion, tributyltetradecylammonium ion, tributylhexa Tributyl alkyl ammonium ions such as silammonium ion and tributyl octadecyl ammonium ion; dimethyl dioctyl ammonium ion, dimethyl didecyl ammonium ion, dimethyl ditetradecyl ammonium ion, dimethyl dihexadecyl ammonium ion, dimethyl dioctadecyl ammonium ion (dimethyl distearyl) Dimethyldialkylammonium ion such as ammonium ion) and dimethyldidodecylammonium ion; diethyldialkylammonium ion such as diethyldidodecylammonium ion, diethylditetradecylammonium ion, diethyldihexadecylammonium ion and diethyldioctadecylammonium ion; Dibutyl dioctyl ammonium Ion, dibutyldidecylammonium ion, dibutyldidodecylammonium ion, dibutylditetradecylammonium ion, dibutyldihexadecylammonium ion, dibutyldioctadecylammonium ion, etc., dibutyldialkylammonium ion; trioctylmethylammonium ion, tridodecylmethyl Trialkylmethylammonium ion such as ammonium ion and tritetradecylmethylammonium ion; trialkylethylammonium ion such as trioctylethylammonium ion and tridodecylethylammonium ion; trioctylbutylammonium ion and tridecylbutylammonium ion Organic ammonium such as trialkylbutylammonium ion; Ions.
 (B)成分は、層状ケイ酸塩鉱物を有機オニウムイオンでイオン交換することによって、製造できる。イオン交換の際、有機オニウムイオンは、当該有機オニウムイオンとアニオンとの塩(有機オニウム塩)となっていてもよい。前記のアニオンとしては、例えば、Cl、Br、NO 、OH、CHCOO、CHSO 等が挙げられる。また、これらのアニオンは、1種類を単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。 The component (B) can be produced by ion-exchanging a layered silicate mineral with an organic onium ion. At the time of ion exchange, the organic onium ion may be a salt (organic onium salt) between the organic onium ion and an anion. Examples of the anion include Cl , Br , NO 3 , OH , CH 3 COO , CH 3 SO 3 − and the like. In addition, these anions may be used alone or in any combination of two or more.
 (B)成分の製造方法の具体例としては、層状ケイ酸塩鉱物の水分散液と、有機オニウム塩水溶液とを、適切な温度(例えば、60℃~70℃)で混合する方法が挙げられる。また、別の具体例としては、層状ケイ酸塩鉱物と有機オニウム塩とを適切に混練する方法が挙げられる。 As a specific example of the method for producing the component (B), a method in which an aqueous dispersion of the layered silicate mineral and an aqueous solution of an organic onium salt are mixed at an appropriate temperature (for example, 60 ° C. to 70 ° C.). . Another specific example is a method of appropriately kneading a layered silicate mineral and an organic onium salt.
 (B)成分は市販品を用いることができる。市販品としては、例えば、クニミネ工業社製「スメクトンSTN」、「スメクトンSAN」(有機化されたヘクトライト)、白石工業社製「オルベンM」(有機化されたモンモリロナイト)、ホージュン社製「エスベン NX」(有機化されたモンモリロナイト)、東新化成社製「ベントンシリーズ」(有機化されたモンモリロナイト)等が挙げられる。 市 販 A commercially available product can be used as the component (B). Commercially available products include, for example, "Smecton STN" and "Smecton SAN" (organized hectorite) manufactured by Kunimine Industries, "Orben M" (organized montmorillonite) manufactured by Shiroishi Kogyo, and "Esven" manufactured by Hojun. NX "(organized montmorillonite)," Shinton Kasei's "Benton series" (organized montmorillonite), and the like.
 (B)有機化された層状ケイ酸塩鉱物は、1種単独で用いてもよく、又は2種以上を併用してもよい。 (B) The organized layered silicate mineral may be used alone or in combination of two or more.
 (B)有機化された層状ケイ酸塩鉱物の平均粒径は、好ましくは1nm~100μm、より好ましくは5nm~50μm、さらに好ましくは10nm~10μmである。この平均粒径は、(A)成分と同様の方法にて測定することができる。 (B) The average particle size of the organized layered silicate mineral is preferably 1 nm to 100 μm, more preferably 5 nm to 50 μm, and further preferably 10 nm to 10 μm. This average particle size can be measured in the same manner as for the component (A).
 (B)有機化された層状ケイ酸塩鉱物の含有量は、樹脂染み出し性が抑制された硬化物を得る観点から、磁性ペースト中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上である。上限は、磁気特性維持を良好にする観点、および、ペースト粘度を低くして印刷性を良好にする観点から、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。 (B) The content of the organically modified layered silicate mineral is preferably 0.1% when the nonvolatile component in the magnetic paste is set to 100% by mass from the viewpoint of obtaining a cured product in which resin exudation is suppressed. It is at least 1% by mass, more preferably at least 0.3% by mass, further preferably at least 0.5% by mass. The upper limit is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass, from the viewpoint of maintaining good magnetic properties and improving the printability by lowering the paste viscosity. It is as follows.
<(C)バインダー樹脂>
 磁性ペーストは、(C)バインダー樹脂を含有する。(C)バインダー樹脂としては、例えば、エポキシ樹脂、フェノール系樹脂、ナフトール系樹脂、ベンゾオキサジン系樹脂、活性エステル系樹脂、シアネートエステル系樹脂、カルボジイミド系樹脂、アミン系樹脂、酸無水物系樹脂等の熱硬化性樹脂;フェノキシ樹脂、アクリル樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、及びポリスルホン樹脂等の熱可塑性樹脂が挙げられる。(C)バインダー樹脂としては、配線板の絶縁層を形成する際に使用される熱硬化性樹脂を用いることが好ましく、中でもエポキシ樹脂が好ましい。(C)バインダー樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。以下、各樹脂について説明する。ここで、フェノール系樹脂、ナフトール系樹脂、ベンゾオキサジン系樹脂、活性エステル系樹脂、シアネートエステル系樹脂、カルボジイミド系樹脂、アミン系樹脂、及び酸無水物系樹脂のように、エポキシ樹脂と反応して磁性ペーストを硬化させられる成分をまとめて「硬化剤」ということがある。
<(C) Binder resin>
The magnetic paste contains (C) a binder resin. (C) As the binder resin, for example, epoxy resin, phenol resin, naphthol resin, benzoxazine resin, active ester resin, cyanate ester resin, carbodiimide resin, amine resin, acid anhydride resin, etc. And a thermoplastic resin such as a phenoxy resin, an acrylic resin, a polyvinyl acetal resin, a butyral resin, a polyimide resin, a polyamideimide resin, a polyethersulfone resin, and a polysulfone resin. As the binder resin (C), it is preferable to use a thermosetting resin used when forming an insulating layer of a wiring board, and an epoxy resin is particularly preferable. (C) The binder resin may be used alone or in combination of two or more. Hereinafter, each resin will be described. Here, it reacts with an epoxy resin, such as a phenolic resin, a naphthol resin, a benzoxazine resin, an active ester resin, a cyanate ester resin, a carbodiimide resin, an amine resin, and an acid anhydride resin. The components that can cure the magnetic paste are sometimes collectively referred to as “curing agents”.
-熱硬化性樹脂-
 熱硬化性樹脂としてのエポキシ樹脂は、例えば、グリシロール型エポキシ樹脂;ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAF型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;トリスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;tert-ブチル-カテコール型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂等の縮合環構造を有するエポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;線状脂肪族エポキシ樹脂;ブタジエン構造を有するエポキシ樹脂;脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂から選ばれる1種以上であることが好ましい。
-Thermosetting resin-
Epoxy resins as thermosetting resins include, for example, glycylol type epoxy resin; bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; Epoxy resin having a condensed ring structure such as phenol novolak type epoxy resin; tert-butyl-catechol type epoxy resin; naphthol novolak type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin; Amine type epoxy resin; Glycidyl ester type epoxy resin; Cresol novolak type epoxy resin; Biphenyl type epoxy resin; Linear aliphatic epoxy resin; Butadiene structure Alicyclic epoxy resins; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexanedimethanol type epoxy resins; trimethylol type epoxy resin; tetraphenyl ethane epoxy resins Epoxy resins having. One epoxy resin may be used alone, or two or more epoxy resins may be used in combination. The epoxy resin is preferably at least one selected from a bisphenol A epoxy resin and a bisphenol F epoxy resin.
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。また、エポキシ樹脂は、芳香族構造を有することが好ましく、2種以上のエポキシ樹脂を用いる場合は少なくとも1種が芳香族構造を有することがより好ましい。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。 The epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. The epoxy resin preferably has an aromatic structure, and when two or more epoxy resins are used, it is more preferable that at least one of the epoxy resins has an aromatic structure. The aromatic structure is a chemical structure generally defined as aromatic, and includes polycyclic aromatic and aromatic heterocyclic rings. The proportion of the epoxy resin having two or more epoxy groups in one molecule is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass with respect to 100% by mass of the nonvolatile component of the epoxy resin. % Or more.
 エポキシ樹脂には、温度25℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度25℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。(C)成分としてエポキシ樹脂を含有する場合、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、固体状エポキシ樹脂のみを含んでいてもよく、液状エポキシ樹脂及び固体状エポキシ樹脂を組み合わせて含んでいてもよいが、磁性ペーストの粘度を低下させる観点から、液状エポキシ樹脂のみを含むことが好ましい。 The epoxy resin may be a liquid epoxy resin at a temperature of 25 ° C. (hereinafter, sometimes referred to as “liquid epoxy resin”) or a solid epoxy resin at a temperature of 25 ° C. (hereinafter, “solid epoxy resin”). ). When the epoxy resin is contained as the component (C), the epoxy resin may include only a liquid epoxy resin, or may include only a solid epoxy resin, or may be a combination of a liquid epoxy resin and a solid epoxy resin. Although it may be included, it is preferable to include only the liquid epoxy resin from the viewpoint of reducing the viscosity of the magnetic paste.
 液状エポキシ樹脂としては、グリシロール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましく、グリシロール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂がより好ましい。液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「jER828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂(アデカグリシロール))、「EP-3980S」(グリシジルアミン型エポキシ樹脂)、「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ブタジエン構造を有するエポキシ樹脂);新日鉄化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the liquid epoxy resin, glycylol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolak type epoxy resin A resin, an alicyclic epoxy resin having an ester skeleton, a cyclohexane dimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferable, and a glycylol type epoxy resin, a bisphenol A type epoxy resin, and a bisphenol F type epoxy resin are more preferable. Specific examples of the liquid epoxy resin include “HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC; “828US” and “jER828EL” (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation. "JER807" (bisphenol F type epoxy resin), "jER152" (phenol novolak type epoxy resin); "630" and "630LSD" manufactured by Mitsubishi Chemical Corporation, "ED-523T" (glycylol type epoxy resin manufactured by ADEKA Corporation) (Adecaglycylol)), "EP-3980S" (glycidylamine type epoxy resin), "EP-4088S" (dicyclopentadiene type epoxy resin); "ZX1059" (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Bisphenol "EX-721" (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX Corporation; "Celoxide 2021P" (alicyclic epoxy resin having an ester skeleton) manufactured by Daicel, "PB" -3600 "(epoxy resin having a butadiene structure);" ZX1658 "and" ZX1658GS "(liquid 1,4-glycidylcyclohexane) manufactured by Nippon Steel Chemical Co., Ltd., and the like. These may be used alone or in combination of two or more.
 固体状エポキシ樹脂としては、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、及びビフェニル型エポキシ樹脂がより好ましい。固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂)、「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂)、「N-690」(クレゾールノボラック型エポキシ樹脂)、「N-695」(クレゾールノボラック型エポキシ樹脂)、「HP-7200」、「HP-7200HH」、「HP-7200H」(ジシクロペンタジエン型エポキシ樹脂)、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂);新日鉄住金化学社製の「ESN475V」(ナフタレン型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」、三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂)、「YL7800」(フルオレン型エポキシ樹脂)、「jER1010」(固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the solid epoxy resin include a naphthalene type tetrafunctional epoxy resin, a cresol novolak type epoxy resin, a dicyclopentadiene type epoxy resin, a trisphenol type epoxy resin, a naphthol type epoxy resin, a biphenyl type epoxy resin, a naphthylene ether type epoxy resin, Anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin are preferred, and naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, and biphenyl type epoxy resin are more preferred. Specific examples of the solid epoxy resin include “HP4032H” (naphthalene type epoxy resin), “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), and “N-690” (DIC) manufactured by DIC. Cresol novolak type epoxy resin), "N-695" (cresol novolak type epoxy resin), "HP-7200", "HP-7200HH", "HP-7200H" (dicyclopentadiene type epoxy resin), "EXA-7311" "EXA-7311-G3", "EXA-7311-G4", "EXA-7311-G4S", "HP6000" (naphthylene ether type epoxy resin); "EPPN-502H" (Nippon Kayaku) Trisphenol type epoxy resin), "NC7000L" (naphthol novolak type epoxy) Fat), "NC3000H", "NC3000", "NC3000L", "NC3100" (biphenyl type epoxy resin); "ESN475V" (naphthalene type epoxy resin), "ESN485" (naphthol novolak type epoxy resin) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. ); "YX4000H", "YL6121" (biphenyl type epoxy resin), "YX4000HK" (bixylenol type epoxy resin), "YX8800" (anthracene type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "PG manufactured by Osaka Gas Chemical Company" "-100", "CG-500", "YL7760" (bisphenol AF type epoxy resin), "YL7800" (fluorene type epoxy resin), "jER1010" (solid bisphenol A type epoxy resin) and "YLER6010" manufactured by Mitsubishi Chemical Corporation. jER 031S "(tetraphenyl ethane epoxy resin) and the like. These may be used alone or in combination of two or more.
 (C)成分として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、好ましくは1:0.1~1:4、より好ましくは1:0.3~1:3.5、さらに好ましくは1:0.6~1:3である。液状エポキシ樹脂と固体状エポキシ樹脂との量比が斯かる範囲にあることにより、本発明の所望の効果を顕著に得ることができる。 When a liquid epoxy resin and a solid epoxy resin are used in combination as the component (C), their quantitative ratio (liquid epoxy resin: solid epoxy resin) is preferably from 1: 0.1 to 1: 4, more preferably 1: 0.3 to 1: 3.5, even more preferably 1: 0.6 to 1: 3. When the ratio between the liquid epoxy resin and the solid epoxy resin is within the above range, the desired effects of the present invention can be remarkably obtained.
 (C)成分としてのエポキシ樹脂のエポキシ当量は、好ましくは50~5000、より好ましくは50~3000、さらに好ましくは80~2000、さらにより好ましくは110~1000である。この範囲となることで、硬化物の架橋密度が十分となり表面粗さの小さい磁性層をもたらすことができる。なお、エポキシ当量は、JIS K7236に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。 エ ポ キ シ The epoxy equivalent of the epoxy resin as the component (C) is preferably from 50 to 5,000, more preferably from 50 to 3,000, further preferably from 80 to 2,000, and still more preferably from 110 to 1,000. Within this range, the crosslinked density of the cured product becomes sufficient and a magnetic layer having a small surface roughness can be obtained. The epoxy equivalent can be measured according to JIS K7236 and is the mass of a resin containing one equivalent of an epoxy group.
 (C)成分としてのエポキシ樹脂の重量平均分子量は、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。 エ ポ キ シ The weight average molecular weight of the epoxy resin as the component (C) is preferably from 100 to 5000, more preferably from 250 to 3000, and still more preferably from 400 to 1500. Here, the weight average molecular weight of the epoxy resin is a weight average molecular weight in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
 活性エステル系樹脂としては、1分子中に1個以上の活性エステル基を有する樹脂を用いることができる。中でも、活性エステル系樹脂としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する樹脂が好ましい。当該活性エステル系樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系樹脂が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系樹脂がより好ましい。 樹脂 As the active ester resin, a resin having one or more active ester groups in one molecule can be used. Among them, active ester resins include two or more highly reactive ester groups in one molecule such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. Resins are preferred. The active ester resin is preferably obtained by a condensation reaction of a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester resin obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester resin obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
 カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。 Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
 フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 Examples of the phenol compound or naphthol compound include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalein, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, Examples include benzenetriol, dicyclopentadiene-type diphenol compounds, phenol novolak, and the like. Here, the “dicyclopentadiene-type diphenol compound” refers to a diphenol compound obtained by condensing two molecules of phenol with one molecule of dicyclopentadiene.
 活性エステル系樹脂の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂、ナフタレン構造を含む活性エステル系樹脂、フェノールノボラックのアセチル化物を含む活性エステル系樹脂、フェノールノボラックのベンゾイル化物を含む活性エステル系樹脂が挙げられる。中でも、ナフタレン構造を含む活性エステル系樹脂、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。 Preferred specific examples of the active ester resin include an active ester resin containing a dicyclopentadiene-type diphenol structure, an active ester resin containing a naphthalene structure, an active ester resin containing an acetylated phenol novolak, and benzoyl phenol novolak. And an active ester resin containing a compound. Among them, an active ester resin having a naphthalene structure and an active ester resin having a dicyclopentadiene-type diphenol structure are more preferable. The “dicyclopentadiene-type diphenol structure” represents a divalent structural unit composed of phenylene-dicyclopentylene-phenylene.
 活性エステル系樹脂の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」(DIC社製);ナフタレン構造を含む活性エステル系樹脂として「EXB9416-70BK」、「EXB-8150-65T」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル系樹脂として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物を含む活性エステル系樹脂として「YLH1026」(三菱ケミカル社製);フェノールノボラックのアセチル化物である活性エステル系樹脂として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系樹脂として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製);等が挙げられる。 Commercially available active ester resins include “EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T”, and “HPC-8000H-” as active ester resins having a dicyclopentadiene-type diphenol structure. 65TM "," EXB-8000L-65TM "(manufactured by DIC);" EXB9416-70BK "," EXB-8150-65T "(manufactured by DIC) as an active ester resin having a naphthalene structure; and acetylated phenol novolak. An active ester-based resin containing “DC808” (manufactured by Mitsubishi Chemical Corporation); an active ester-based resin containing benzoylated phenol novolak “YLH1026” (manufactured by Mitsubishi Chemical Corporation); an active ester-based resin that is an acetylated phenol novolak; "DC808" (manufactured by Mitsubishi Chemical Corporation); "YLH1026" (manufactured by Mitsubishi Chemical Corporation), "YLH1030" (manufactured by Mitsubishi Chemical Corporation), "YLH1048" (manufactured by Mitsubishi Chemical Corporation) as an active ester resin which is a benzoylated phenol novolak. Manufactured).
 フェノール系樹脂及びナフトール系樹脂としては、耐熱性及び耐水性の観点から、ノボラック構造を有するものが好ましい。また、導体層との密着性の観点から、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系樹脂がより好ましい。 As the phenol-based resin and the naphthol-based resin, those having a novolak structure are preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion to the conductor layer, a nitrogen-containing phenol-based curing agent is preferable, and a triazine skeleton-containing phenolic resin is more preferable.
 フェノール系樹脂及びナフトール系樹脂の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN-495V」「SN375」、「SN395」、DIC社製の「TD-2090」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018-50P」、「EXB-9500」等が挙げられる。 Specific examples of the phenolic resin and the naphthol resin include, for example, “MEH-7700”, “MEH-7810”, “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., “NHN”, “CBN” manufactured by Nippon Kayaku Co., Ltd. "," GPH "," SN170 "," SN180 "," SN190 "," SN475 "," SN485 "," SN495 "," SN-495V "," SN375 "," SN395 ", DIC manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. And “LA-2052”, “LA-7052”, “LA-7054”, “LA-1356”, “LA-3018-50P”, “EXB-9500”, and the like.
 ベンゾオキサジン系樹脂の具体例としては、JFEケミカル社製の「JBZ-OD100」(ベンゾオキサジン環当量218)、「JBZ-OP100D」(ベンゾオキサジン環当量218)、「ODA-BOZ」(ベンゾオキサジン環当量218);四国化成工業社製の「P-d」(ベンゾオキサジン環当量217)、「F-a」(ベンゾオキサジン環当量217);昭和高分子社製の「HFB2006M」(ベンゾオキサジン環当量432)等が挙げられる。 Specific examples of the benzoxazine resin include “JBZ-OD100” (benzoxazine ring equivalent 218), “JBZ-OP100D” (benzoxazine ring equivalent 218), and “ODA-BOZ” (benzoxazine ring) manufactured by JFE Chemical Company. Equivalent 218); "Pd" (benzoxazine ring equivalent 217), "Fa" (benzoxazine ring equivalent 217) manufactured by Shikoku Chemicals; "HFB2006M" (benzoxazine ring equivalent) manufactured by Showa Polymer Co., Ltd. 432) and the like.
 シアネートエステル系樹脂としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート、オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル、等の2官能シアネート樹脂;フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂;これらシアネート樹脂が一部トリアジン化したプレポリマー;などが挙げられる。シアネートエステル系樹脂の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(フェノールノボラック型多官能シアネートエステル樹脂)、「ULL-950S」(多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。 Examples of the cyanate ester resin include bisphenol A dicyanate, polyphenol cyanate, oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), and 4,4 ′. -Ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3,5-dimethylphenyl) ) Bifunctional cyanate resins such as methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether; phenol Novolak and Polyfunctional cyanate resin derived from resol novolac; prepolymer these cyanate resin is partially triazine of; and the like. Specific examples of the cyanate ester-based resin include “PT30” and “PT60” (phenol novolak type polyfunctional cyanate ester resin), “ULL-950S” (polyfunctional cyanate ester resin), “BA230” manufactured by Lonza Japan. "BA230S75" (a prepolymer in which part or all of bisphenol A dicyanate is triazined to be a trimer) and the like.
 カルボジイミド系樹脂の具体例としては、日清紡ケミカル社製のカルボジライト(登録商標)V-03(カルボジイミド基当量:216、V-05(カルボジイミド基当量:262)、V-07(カルボジイミド基当量:200);V-09(カルボジイミド基当量:200);ラインケミー社製のスタバクゾール(登録商標)P(カルボジイミド基当量:302)が挙げられる。 Specific examples of the carbodiimide-based resin include Carbodilite (registered trademark) V-03 (carbodiimide group equivalent: 216, V-05 (carbodiimide group equivalent: 262), V-07 (carbodiimide group equivalent: 200) manufactured by Nisshinbo Chemical Inc. V-09 (carbodiimide group equivalent: 200); and Stavacol (registered trademark) P (carbodiimide group equivalent: 302) manufactured by Rhein Chemie.
 アミン系樹脂としては、1分子内中に1個以上のアミノ基を有する樹脂が挙げられ、例えば、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられ、中でも、本発明の所望の効果を奏する観点から、芳香族アミン類が好ましい。アミン系樹脂は、第1級アミン又は第2級アミンが好ましく、第1級アミンがより好ましい。アミン系硬化剤の具体例としては、4,4’-メチレンビス(2,6-ジメチルアニリン)、ジフェニルジアミノスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、等が挙げられる。アミン系樹脂は市販品を用いてもよく、例えば、日本化薬社製の「KAYABOND C-200S」、「KAYABOND C-100」、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」、三菱ケミカル社製の「エピキュアW」等が挙げられる。 Examples of the amine-based resin include resins having one or more amino groups in one molecule, such as aliphatic amines, polyetheramines, alicyclic amines, and aromatic amines. Among them, aromatic amines are preferred from the viewpoint of achieving the desired effects of the present invention. The amine resin is preferably a primary amine or a secondary amine, and more preferably a primary amine. Specific examples of the amine-based curing agent include 4,4′-methylenebis (2,6-dimethylaniline), diphenyldiaminosulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 3,3 ′. -Diaminodiphenyl sulfone, m-phenylenediamine, m-xylylenediamine, diethyltoluenediamine, 4,4'-diaminodiphenylether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane Diamine, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4- (4 (Aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4 ′ -Bis (4-aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, and the like. Commercially available amine resins may be used. For example, “KAYABOND @ C-200S”, “KAYABOND @ C-100”, “Kayahard AA”, “Kayahard AB”, “Kayahard AB” manufactured by Nippon Kayaku Co., Ltd. AS "and" Epicure W "manufactured by Mitsubishi Chemical Corporation.
 酸無水物系樹脂としては、1分子内中に1個以上の酸無水物基を有する樹脂が挙げられる。酸無水物系樹脂の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。 Examples of the acid anhydride-based resin include resins having one or more acid anhydride groups in one molecule. Specific examples of the acid anhydride resin include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, hydrogenated methylnadic anhydride. , Trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3'-4,4'-diphenyl Sulfonetetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexa Dro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-C] furan-1,3-dione, ethylene glycol bis (anhydrotrimellitate), styrene and maleic acid And a polymer type acid anhydride such as styrene / maleic acid resin copolymerized with
 (C)成分としてエポキシ樹脂及び硬化剤を含有する場合、エポキシ樹脂とすべての硬化剤との量比は、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.01~1:5の範囲が好ましく、1:0.5~1:3がより好ましく、1:1~1:2がさらに好ましい。ここで、「エポキシ樹脂のエポキシ基数」とは、第1の樹脂組成物中に存在するエポキシ樹脂の不揮発成分の質量をエポキシ当量で除した値を全て合計した値である。また、「硬化剤の活性基数」とは、第1の樹脂組成物中に存在する硬化剤の不揮発成分の質量を活性基当量で除した値を全て合計した値である。 When the epoxy resin and the curing agent are contained as the component (C), the quantitative ratio of the epoxy resin to all the curing agents is represented by [the total number of epoxy groups of the epoxy resin]: [the total number of reactive groups of the curing agent]. The ratio is preferably in the range of 1: 0.01 to 1: 5, more preferably 1: 0.5 to 1: 3, and still more preferably 1: 1 to 1: 2. Here, the “number of epoxy groups in the epoxy resin” is a value obtained by summing all values obtained by dividing the mass of the non-volatile component of the epoxy resin present in the first resin composition by the epoxy equivalent. Further, the “number of active groups of the curing agent” is a value obtained by summing all values obtained by dividing the mass of the non-volatile component of the curing agent present in the first resin composition by the equivalent of the active group.
-熱可塑性樹脂-
 熱可塑性樹脂のポリスチレン換算の重量平均分子量は、好ましくは3万以上、より好ましくは5万以上、さらに好ましくは10万以上である。また、好ましくは100万以下、より好ましくは75万以下、さらに好ましくは50万以下である。熱可塑性樹脂のポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される。具体的には、熱可塑性樹脂のポリスチレン換算の重量平均分子量は、測定装置として島津製作所社製「LC-9A/RID-6A」を、カラムとして昭和電工社製「Shodex K-800P/K-804L/K-804L」を、移動相としてクロロホルム等を用いて、カラム温度を40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
-Thermoplastic resin-
The weight average molecular weight of the thermoplastic resin in terms of polystyrene is preferably 30,000 or more, more preferably 50,000 or more, and further preferably 100,000 or more. Further, it is preferably 1,000,000 or less, more preferably 750,000 or less, and further preferably 500,000 or less. The weight average molecular weight in terms of polystyrene of the thermoplastic resin is measured by a gel permeation chromatography (GPC) method. Specifically, the polystyrene-equivalent weight average molecular weight of the thermoplastic resin is determined by using “LC-9A / RID-6A” manufactured by Shimadzu Corporation as a measuring device and “Shodex K-800P / K-804L” manufactured by Showa Denko as a column. / K-804L "can be calculated using a calibration curve of standard polystyrene by measuring the column temperature at 40 ° C. using chloroform or the like as a mobile phase.
 フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、およびトリメチルシクロヘキサン骨格からなる群から選択される1種以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂は1種単独で用いてもよく、又は2種以上を併用してもよい。フェノキシ樹脂の具体例としては、三菱化学社製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)が挙げられ、その他にも、新日鉄住金化学社製の「FX280」及び「FX293」、三菱化学社製の「YL7500BH30」、「YX6954BH30」、「YX7553」、「YX7553BH30」、「YL7769BH30」、「YL6794」、「YL7213」、「YL7290」及び「YL7482」等が挙げられる。 Examples of the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolak skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene Phenoxy resins having a skeleton and at least one skeleton selected from the group consisting of a trimethylcyclohexane skeleton. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group and an epoxy group. One phenoxy resin may be used alone, or two or more phenoxy resins may be used in combination. Specific examples of the phenoxy resin include “1256” and “4250” (both phenoloxy resins containing a bisphenol A skeleton), “YX8100” (a phenoxy resin containing a bisphenol S skeleton), and “YX6954” (bisphenol acetophenone) manufactured by Mitsubishi Chemical Corporation. Skeleton-containing phenoxy resin), and “FX280” and “FX293” manufactured by Nippon Steel & Sumitomo Metal Corporation, “YL7500BH30”, “YX6954BH30”, “YX7553”, “YX7553BH30”, “YL7769BH30” manufactured by Mitsubishi Chemical Corporation. , "YL6794", "YL7213", "YL7290", and "YL7482".
 アクリル樹脂としては、熱膨張率および弾性率をより低下させる観点から、官能基含有アクリル樹脂が好ましく、ガラス転移温度が25℃以下のエポキシ基含有アクリル樹脂がより好ましい。 From the viewpoint of further reducing the coefficient of thermal expansion and the modulus of elasticity, the acrylic resin is preferably a functional group-containing acrylic resin, and more preferably an epoxy group-containing acrylic resin having a glass transition temperature of 25 ° C. or lower.
 官能基含有アクリル樹脂の数平均分子量(Mn)は、好ましくは10000~1000000であり、より好ましくは30000~900000である。 (4) The number average molecular weight (Mn) of the functional group-containing acrylic resin is preferably from 10,000 to 1,000,000, more preferably from 30,000 to 900,000.
 官能基含有アクリル樹脂の官能基当量は、好ましくは1000~50000であり、より好ましくは2500~30000である。 官能 The functional group equivalent of the functional group-containing acrylic resin is preferably from 1,000 to 50,000, more preferably from 2,500 to 30,000.
 ガラス転移温度が25℃以下のエポキシ基含有アクリル樹脂としては、ガラス転移温度が25℃以下のエポキシ基含有アクリル酸エステル共重合体樹脂が好ましく、その具体例としては、ナガセケムテックス社製「SG-80H」(エポキシ基含有アクリル酸エステル共重合体樹脂(数平均分子量Mn:350000g/mol、エポキシ価0.07eq/kg、ガラス転移温度11℃))、ナガセケムテックス社製「SG-P3」(エポキシ基含有アクリル酸エステル共重合体樹脂(数平均分子量Mn:850000g/mol、エポキシ価0.21eq/kg、ガラス転移温度12℃))が挙げられる。 As the epoxy group-containing acrylic resin having a glass transition temperature of 25 ° C. or lower, an epoxy group-containing acrylate copolymer resin having a glass transition temperature of 25 ° C. or lower is preferable, and specific examples thereof include “SG” manufactured by Nagase ChemteX Corporation. -80H "(epoxy group-containing acrylate copolymer resin (number average molecular weight Mn: 350,000 g / mol, epoxy value 0.07 eq / kg, glass transition temperature 11 ° C))," SG-P3 "manufactured by Nagase ChemteX Corporation (Epoxy group-containing acrylate copolymer resin (number average molecular weight Mn: 850000 g / mol, epoxy value 0.21 eq / kg, glass transition temperature 12 ° C.)).
 ポリビニルアセタール樹脂、ブチラール樹脂の具体例としては、電気化学工業社製の電化ブチラール「4000-2」、「5000-A」、「6000-C」、「6000-EP」、積水化学工業社製のエスレックBHシリーズ、BXシリーズ、「KS-1」などのKSシリーズ、「BL-1」などのBLシリーズ、BMシリーズ等が挙げられる。 Specific examples of the polyvinyl acetal resin and butyral resin include electrified butyral “4000-2”, “5000-A”, “6000-C”, “6000-EP” manufactured by Denki Kagaku Kogyo Co., Ltd., and Sekisui Chemical Co., Ltd. Examples include the LES series such as the ESREC BH series, the BX series and the “KS-1”, the BL series such as the “BL-1”, and the BM series.
 ポリイミド樹脂の具体例としては、新日本理化社製の「リカコートSN20」及び「リカコートPN20」が挙げられる。ポリイミド樹脂の具体例としてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006-37083号公報記載のポリイミド)、ポリシロキサン骨格含有ポリイミド(特開2002-12667号公報及び特開2000-319386号公報等に記載のポリイミド)等の変性ポリイミドが挙げられる。 具体 Specific examples of the polyimide resin include “Likacoat SN20” and “Likacoat PN20” manufactured by Shin Nippon Rika Co., Ltd. Specific examples of the polyimide resin include a linear polyimide (polyimide described in JP-A-2006-37083) obtained by reacting a bifunctional hydroxyl-terminated polybutadiene, a diisocyanate compound and a tetrabasic anhydride, and a polysiloxane skeleton. And modified polyimides such as polyimides contained therein (polyimides described in JP-A-2002-12667 and JP-A-2000-319386).
 ポリアミドイミド樹脂の具体例としては、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成工業社製の「KS9100」、「KS9300」(ポリシロキサン骨格含有ポリアミドイミド)等の変性ポリアミドイミドが挙げられる。 具体 Specific examples of the polyamideimide resin include “Viromax HR11NN” and “Viromax HR16NN” manufactured by Toyobo. Specific examples of the polyamideimide resin also include modified polyamideimides such as "KS9100" and "KS9300" (polysiloxane skeleton-containing polyamideimide) manufactured by Hitachi Chemical Co., Ltd.
 ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。ポリフェニレンエーテル樹脂の具体例としては、三菱ガス化学社製のビニル基を有するオリゴフェニレンエーテル・スチレン樹脂「OPE-2St 1200」等が挙げられる。 具体 Specific examples of the polyether sulfone resin include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd. Specific examples of the polyphenylene ether resin include an oligophenylene ether / styrene resin having a vinyl group “OPE-2St @ 1200” manufactured by Mitsubishi Gas Chemical Company.
 ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」、「P3500」等が挙げられる。 具体 Specific examples of the polysulfone resin include polysulfone “P1700” and “P3500” manufactured by Solvay Advanced Polymers.
 中でも、熱可塑性樹脂としては、重量平均分子量が3万以上100万以下の、フェノキシ樹脂、ポリビニルアセタール樹脂、ブチラール樹脂、及びアクリル樹脂から選ばれる1種以上であることが好ましい。 Among them, the thermoplastic resin is preferably one or more selected from phenoxy resin, polyvinyl acetal resin, butyral resin, and acrylic resin having a weight average molecular weight of 30,000 to 1,000,000.
 (C)バインダー樹脂の含有量は、良好な機械強度、絶縁信頼性を示す磁性層を得る観点から、磁性ペースト中の不揮発成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。上限は、本発明の効果が奏される限りにおいて特に限定されないが、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。 (C) The content of the binder resin is preferably 1% by mass or more, more preferably 1% by mass or more, when the nonvolatile component in the magnetic paste is 100% by mass, from the viewpoint of obtaining a magnetic layer exhibiting good mechanical strength and insulation reliability. Is at least 3% by mass, more preferably at least 5% by mass. The upper limit is not particularly limited as long as the effects of the present invention are exerted, but is preferably 30% by mass or less, more preferably 25% by mass or less, and further preferably 20% by mass or less.
 本発明の磁性ペーストは、(B)有機化された層状ケイ酸塩鉱物を含有させることで、(C)バインダー樹脂の樹脂染み出し性が抑制される。磁性ペースト中の不揮発成分を100質量%とした場合の(B)成分の含有量をB1とし、磁性ペースト中の不揮発成分を100質量%とした場合の(C)成分の含有量をC1とした場合、印刷後の形状維持および取扱い性の観点から、C1/B1が好ましくは1以上、より好ましくは3以上、さらに好ましくは5以上である。上限は好ましくは30以下、より好ましくは25以下、さらに好ましくは20以下である。 磁性 The magnetic paste of the present invention contains (B) an organically modified layered silicate mineral, whereby the resin exuding property of (C) the binder resin is suppressed. The content of the component (B) when the nonvolatile component in the magnetic paste was 100% by mass was B1, and the content of the component (C) when the nonvolatile component in the magnetic paste was 100% by mass was C1. In this case, C1 / B1 is preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more, from the viewpoints of shape maintenance and handling after printing. The upper limit is preferably 30 or less, more preferably 25 or less, and even more preferably 20 or less.
<(D)硬化促進剤>
 磁性ペーストは、任意の成分として、さらに(D)硬化促進剤を含んでいてもよい。
<(D) Curing accelerator>
The magnetic paste may further contain (D) a curing accelerator as an optional component.
 硬化促進剤としては、例えば、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。硬化促進剤は、磁性ペーストの粘度を低下させる観点から、アミン系硬化促進剤、イミダゾール系硬化促進剤が好ましい。硬化促進剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the curing accelerator include an amine-based curing accelerator, an imidazole-based curing accelerator, a phosphorus-based curing accelerator, a guanidine-based curing accelerator, and a metal-based curing accelerator. As the curing accelerator, an amine-based curing accelerator and an imidazole-based curing accelerator are preferable from the viewpoint of reducing the viscosity of the magnetic paste. The curing accelerator may be used alone or in combination of two or more.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。 Examples of the amine-based curing accelerator include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5,4,0) -undecene and the like are preferable, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,0) -undecene are preferable.
 アミン系硬化促進剤としては、市販品を用いてもよく、例えば、味の素ファインテクノ社製の「PN-50」、「PN-23」、「MY-25」等が挙げられる。 As the amine-based curing accelerator, a commercially available product may be used, and examples thereof include "PN-50", "PN-23", and "MY-25" manufactured by Ajinomoto Fine-Techno.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましい。 Examples of the imidazole-based curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- -Phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl -(1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino -6- [2'-Methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl -4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2- Imidazole compounds such as tyl-3-benzylimidazolium chloride, 2-methylimidazoline and 2-phenylimidazoline, and adducts of imidazole compounds and epoxy resins; 2-ethyl-4-methylimidazole, 1-benzyl-2; -Phenylimidazole is preferred.
 イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、四国化成工業社製の「2PHZ-PW」、三菱ケミカル社製の「P200-H50」等が挙げられる。 As the imidazole-based curing accelerator, commercially available products may be used, and examples thereof include “2PHZ-PW” manufactured by Shikoku Chemicals, and “P200-H50” manufactured by Mitsubishi Chemical Corporation.
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。 Examples of the phosphorus-based curing accelerator include triphenylphosphine, a phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate , Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like, and triphenylphosphine and tetrabutylphosphonium decanoate are preferred.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。 Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -Allyl biguanide, 1-phenyl biguanide, 1- o- tolyl) biguanide, and the like, dicyandiamide, 1,5,7-triazabicyclo [4.4.0] dec-5-ene are preferred.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of the metal-based curing accelerator include an organic metal complex or an organic metal salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. And the like, an organic iron complex such as iron (III) acetylacetonate, an organic nickel complex such as nickel (II) acetylacetonate, and an organic manganese complex such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
 (D)硬化促進剤としては、本発明の所望の効果を得る観点から、酸無水物系エポキシ樹脂硬化剤、アミン系硬化促進剤、及びイミダゾール系硬化促進剤から選ばれる少なくとも1種であることが好ましく、アミン系硬化促進剤、及びイミダゾール系硬化促進剤から選ばれる少なくとも1種であることがより好ましい。 (D) From the viewpoint of obtaining the desired effects of the present invention, the curing accelerator is at least one selected from acid anhydride epoxy resin curing agents, amine curing accelerators, and imidazole curing accelerators. Is preferred, and more preferably at least one selected from an amine-based curing accelerator and an imidazole-based curing accelerator.
 (D)硬化促進剤の含有量は、磁性ペーストの粘度を下げる観点から、磁性ペースト中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、上限は、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。 (D) From the viewpoint of lowering the viscosity of the magnetic paste, the content of the curing accelerator is preferably 0.1% by mass or more, more preferably 0.3% by mass, when the nonvolatile component in the magnetic paste is 100% by mass. %, More preferably 0.5% by mass or more, and the upper limit is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
<(E)分散剤>
 磁性ペーストは、任意の成分として、さらに(E)分散剤を含んでいてもよい。
<(E) Dispersant>
The magnetic paste may further contain (E) a dispersant as an optional component.
 (E)分散剤としては、例えば、ポリオキシエチレンアルキルエーテルリン酸等のリン酸エステル系分散剤;ドデシルベンゼルスルホン酸ナトリウム、ラウリル酸ナトリウム、ポリオキシエチレンアルキルエーテルサルフェートのアンモニウム塩等のアニオン性分散剤;オルガノシロキサン系分散剤、アセチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミド等の非イオン性分散剤等が挙げられる。これらの中でも、アニオン性分散剤が好ましい。分散剤は1種単独で用いてもよく、又は2種以上を併用してもよい。 (E) Examples of the dispersant include phosphate ester dispersants such as polyoxyethylene alkyl ether phosphoric acid; and anionic dispersants such as sodium dodecylbenzenesulfonate, sodium laurate, and ammonium salts of polyoxyethylene alkyl ether sulfate. Dispersant: organosiloxane dispersant, acetylene glycol, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene alkylamide, etc. And the like. Of these, anionic dispersants are preferred. One type of dispersant may be used alone, or two or more types may be used in combination.
 リン酸エステル系分散剤は、市販品を用いることができる。市販品として、例えば東邦化学工業社製「フォスファノール」シリーズの「RS-410」、「RS-610」、「RS-710」等が挙げられる。 市 販 A commercial product can be used as the phosphate ester-based dispersant. Examples of commercially available products include “RS-410”, “RS-610”, and “RS-710” of the “Phosphanol” series manufactured by Toho Chemical Industry Co., Ltd.
 オルガノシロキサン系分散剤としては、市販品として、ビックケミー社製「BYK347」、「BYK348」等が挙げられる。 As the organosiloxane dispersant, commercially available products include "BYK347" and "BYK348" manufactured by BYK Chemie.
 ポリオキシアルキレン系分散剤としては、市販品として、日油社製「マリアリム」シリーズの「AKM-0531」、「AFB-1521」、「SC-0505K」、「SC-1015F」及び「SC-0708A」、並びに「HKM-50A」等が挙げられる。 As polyoxyalkylene-based dispersants, as commercial products, "AKM-0531", "AFB-1521", "SC-0505K", "SC-1015F" and "SC-0708A" of the "Mariarim" series manufactured by NOF Corporation And "HKM-50A".
 アセチレングリコールとしては、市販品として、Air Products and Chemicals Inc.製「サーフィノール」シリーズの「82」、「104」、「440」、「465」及び「485」、並びに「オレフィンY」等が挙げられる。 As acetylene glycol, as a commercial product, Air Products and Chemicals Inc. "82", "104", "440", "465" and "485" of "Surfinol" series, and "Olefin Y".
 (E)分散剤の含有量は、本発明の効果を顕著に発揮させる観点から、磁性ペースト中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、上限は、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。 (E) The content of the dispersant is preferably 0.1% by mass or more, more preferably 0.1% by mass, when the nonvolatile component in the magnetic paste is 100% by mass, from the viewpoint of remarkably exhibiting the effects of the present invention. It is at least 3% by mass, more preferably at least 0.5% by mass, and the upper limit is preferably at most 5% by mass, more preferably at most 3% by mass, further preferably at most 1% by mass.
<(F)その他の添加剤>
 磁性ペーストは、さらに必要に応じて、(F)その他の添加剤を含んでいてもよく、斯かる他の添加剤としては、例えば、ポットライフ向上のためのホウ酸トリエチル等の硬化遅延剤、無機充填材(但し、磁性粉体又は有機化された層状ケイ酸塩鉱物に該当するものは除く)、難燃剤、有機充填材、有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物、並びに増粘剤、消泡剤、レベリング剤、密着性付与剤、及び着色剤等の樹脂添加剤等が挙げられる。
<(F) Other additives>
The magnetic paste may further contain (F) other additives as needed. Examples of such other additives include a curing retarder such as triethyl borate for improving pot life; Inorganic fillers (excluding those that correspond to magnetic powders or organically modified layered silicate minerals), flame retardants, organic fillers, organometallic compounds such as organocopper compounds, organozinc compounds and organocobalt compounds And a resin additive such as a thickener, an antifoaming agent, a leveling agent, an adhesion-imparting agent, and a coloring agent.
 上述した磁性ペースト中に含まれる溶剤の含有量は、磁性ペーストの全質量に対して、好ましくは1.0質量%未満、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。下限は、特に制限はないが0.001質量%以上、又は含有しないことである。磁性ペーストは、溶剤を含まなくてもその粘度を低くすることができる。磁性ペースト中の溶剤の量が少ないことにより、溶剤の揮発によるボイドの発生を抑制することができるうえに、真空印刷への適応も可能となる。 The content of the solvent contained in the magnetic paste described above is preferably less than 1.0% by mass, more preferably 0.8% by mass or less, and still more preferably 0.5% by mass, based on the total mass of the magnetic paste. Or less, particularly preferably 0.1% by mass or less. The lower limit is not particularly limited, but is 0.001% by mass or more, or is not contained. The viscosity of the magnetic paste can be reduced without containing a solvent. When the amount of the solvent in the magnetic paste is small, generation of voids due to volatilization of the solvent can be suppressed, and application to vacuum printing becomes possible.
<磁性ペーストの製造方法>
 磁性ペーストは、例えば、配合成分を、3本ロール、回転ミキサーなどの撹拌装置を用いて撹拌する方法によって製造できる。
<Production method of magnetic paste>
The magnetic paste can be produced, for example, by a method of stirring the compounding components using a stirring device such as a three-roll or rotary mixer.
<磁性ペーストの物性等>
 図2は、基板110上に形成された磁性層120の断面の一例を模式的に示す断面図である。図2に示すように、基板110上に磁性ペースト(図示せず)を印刷し、硬化させて磁性層120を形成した場合、磁性層120の縁部120Eから樹脂の一部が染み出し、染み出し部130が形成されることがある。上述した磁性ペーストを用いた場合、樹脂の染み出しを抑制できる。よって、染み出した樹脂の流動距離Lを短くすることができる。例えば、磁性ペーストを熱硬化させた硬化物(例えば150℃で60分間熱硬化させた硬化物)は、スクリーン印刷後の樹脂染み出し性が抑制されるという特性を示す。具体的に、磁性ペーストを、印刷基板上にスクリーン印刷し、印刷後150℃で60分間熱硬化し、評価基板を得る。この評価基板の印刷パターン端部から染み出た樹脂の流動距離のうち最大距離が、好ましくは500μm以下、より好ましくは480μm以下、さらに好ましくは450μm以下である。また、下限は0.001μm以上等とし得る。このように高い比透磁率を有する硬化物を得ることができるので、上述した磁性ペーストは、インダクタ素子形成用の磁性ペーストとして使用できる。
<Physical properties of magnetic paste>
FIG. 2 is a cross-sectional view schematically illustrating an example of a cross section of the magnetic layer 120 formed on the substrate 110. As shown in FIG. 2, when a magnetic paste (not shown) is printed on the substrate 110 and cured to form the magnetic layer 120, a part of the resin exudes from the edge 120 </ b> E of the magnetic layer 120. The protrusion 130 may be formed. When the above-mentioned magnetic paste is used, the exudation of the resin can be suppressed. Therefore, the flow distance L of the exuded resin can be shortened. For example, a cured product obtained by thermally curing a magnetic paste (for example, a cured product obtained by thermally curing at 150 ° C. for 60 minutes) exhibits a property that the resin exudation after screen printing is suppressed. Specifically, the magnetic paste is screen-printed on a printed board, and after printing, thermally cured at 150 ° C. for 60 minutes to obtain an evaluation board. The maximum distance among the flow distances of the resin exuding from the printed pattern edge of the evaluation board is preferably 500 μm or less, more preferably 480 μm or less, and further preferably 450 μm or less. The lower limit may be 0.001 μm or more. Since a cured product having such a high relative magnetic permeability can be obtained, the above-mentioned magnetic paste can be used as a magnetic paste for forming an inductor element.
 磁性ペーストは、溶剤を含んでいてもよいが、溶剤を含まなくても適切な温度においてペースト状であるものが好ましい。磁性ペーストの粘度は、具体的には、印刷性の観点から、25℃で通常20Pa・s以上、好ましくは30Pa・s以上、より好ましくは50Pa・s以上、さらに好ましくは60Pa・s以上、特に好ましくは70Pa・s以上であり、印刷性の観点および印刷時の気泡の抜けやすさの観点から通常200Pa・s以下、好ましくは190Pa・s以下、より好ましくは180Pa・s以下である。粘度は、磁性ペーストの温度を25±2℃に保ち、E型粘度計を用いて測定することができる。 The magnetic paste may contain a solvent, but preferably contains no solvent and is a paste at an appropriate temperature. The viscosity of the magnetic paste is, specifically, from the viewpoint of printability, at 25 ° C., usually at least 20 Pa · s, preferably at least 30 Pa · s, more preferably at least 50 Pa · s, even more preferably at least 60 Pa · s, particularly It is preferably at least 70 Pa · s, and is usually at most 200 Pa · s, preferably at most 190 Pa · s, more preferably at most 180 Pa · s, from the viewpoint of printability and the ease with which bubbles can be removed during printing. The viscosity can be measured using an E-type viscometer while maintaining the temperature of the magnetic paste at 25 ± 2 ° C.
 磁性ペーストを熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、通常周波数100MHzにおける比透磁率が高いという特性を示す。例えば、シート状の磁性ペーストを180℃で90分間熱硬化し、シート状の硬化物を得る。この硬化物の周波数100MHzにおける比透磁率は、好ましくは3以上、より好ましくは4以上、さらに好ましくは5以上である。また、上限は通常20以下等とし得る。 (4) A cured product obtained by thermally curing a magnetic paste (for example, a cured product obtained by thermally curing at 180 ° C. for 90 minutes) generally has a characteristic of high relative permeability at a frequency of 100 MHz. For example, a sheet-like magnetic paste is thermally cured at 180 ° C. for 90 minutes to obtain a sheet-like cured product. The relative permeability of the cured product at a frequency of 100 MHz is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. In addition, the upper limit can be usually 20 or less.
 磁性ペーストを熱硬化させた硬化物(例えば180℃で90分間熱硬化させた硬化物)は、通常周波数100MHzにおける磁性損失が低いという特性を示す。例えば、シート状の磁性ペーストを180℃で90分間熱硬化し、シート状の硬化物を得る。この硬化物の周波数100MHzにおける磁性損失は、好ましくは0.5以下、より好ましくは0.4以下、さらに好ましくは0.3以下である。また、下限は通常0.001以上等とし得る。 (4) A cured product obtained by thermally curing a magnetic paste (for example, a cured product obtained by thermally curing at 180 ° C. for 90 minutes) generally has a characteristic of low magnetic loss at a frequency of 100 MHz. For example, a sheet-like magnetic paste is thermally cured at 180 ° C. for 90 minutes to obtain a sheet-like cured product. The magnetic loss of this cured product at a frequency of 100 MHz is preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less. In addition, the lower limit can be usually 0.001 or more.
[インダクタ素子]
 本発明のインダクタ素子は、本発明の磁性ペーストの硬化物である磁性層を含む。ここで、インダクタ素子には、電子部品としてのインダクタ素子だけでなく、回路基板に含まれるインダクタ素子が包含される。図1は、本発明の一実施形態に係るインダクタ素子の模式的な平面図である。インダクタ素子1は、基板11と、磁性層12と、導体で形成された配線13とを備え、配線13は、磁性層12に覆われるとともに、配線13はコア部14を中心として渦巻状に形成されている。また、コア部14は、磁性層12が埋め込まれている。
[Inductor element]
The inductor element of the present invention includes a magnetic layer that is a cured product of the magnetic paste of the present invention. Here, the inductor element includes not only an inductor element as an electronic component but also an inductor element included in a circuit board. FIG. 1 is a schematic plan view of an inductor element according to one embodiment of the present invention. The inductor element 1 includes a substrate 11, a magnetic layer 12, and a wiring 13 formed of a conductor. The wiring 13 is covered with the magnetic layer 12, and the wiring 13 is formed in a spiral shape around a core portion 14. Have been. Further, the magnetic layer 12 is embedded in the core portion 14.
 磁性層12は、本発明の磁性ペーストの硬化物である。磁性層12は磁性ペーストの硬化物であるので、磁性層12は、樹脂染み出し性が抑制される。このため、配線13を配線間の距離を短く形成できる。以下、インダクタ素子の製造方法を通してインダクタ素子及びその製造方法について説明する。 The magnetic layer 12 is a cured product of the magnetic paste of the present invention. Since the magnetic layer 12 is a cured product of a magnetic paste, the magnetic layer 12 is suppressed from exuding resin. Thus, the distance between the wirings 13 can be reduced. Hereinafter, the inductor element and its manufacturing method will be described through the method for manufacturing the inductor element.
 インダクタ素子の製造方法は、
 (1)磁性ペーストを基板上に印刷し、該磁性ペーストを熱硬化させ、第1の磁性層を形成する工程、
 (2)第1の磁性層上に配線を形成する工程、
 (3)第1の磁性層、コア部及び配線上に磁性ペーストを印刷し、該磁性ペーストを熱硬化させ、第2の磁性層を形成する工程、
を含む。ここで、磁性層12は、第1及び第2の磁性層を含めたものである。
The manufacturing method of the inductor element
(1) printing a magnetic paste on a substrate, thermally curing the magnetic paste, and forming a first magnetic layer;
(2) forming a wiring on the first magnetic layer;
(3) printing a magnetic paste on the first magnetic layer, the core portion, and the wiring, thermally curing the magnetic paste, and forming a second magnetic layer;
including. Here, the magnetic layer 12 includes the first and second magnetic layers.
<工程(1)>
 工程(1)は、磁性ペーストを基板上に印刷し、該磁性ペーストを熱硬化させ、第1の磁性層を形成する。工程(1)を行うにあたって、磁性ペーストを準備する工程を含んでいてもよい。磁性ペーストは、上記において説明したとおりである。
<Step (1)>
In the step (1), a magnetic paste is printed on a substrate, and the magnetic paste is thermally cured to form a first magnetic layer. In performing the step (1), a step of preparing a magnetic paste may be included. The magnetic paste is as described above.
 基板は、通常、絶縁性の基板である。基板の材料としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の絶縁性基材が挙げられる。基板は、その厚さ内に配線等が作り込まれた内層回路基板であってもよい。 The substrate is usually an insulating substrate. Examples of the material of the substrate include an insulating substrate such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. The substrate may be an inner-layer circuit board in which wiring and the like are formed within its thickness.
 基板としては、例えば、ガラス布基材エポキシ樹脂両面銅張積層板であるパナソニック社製「R1515E」を用い、銅層をエッチングすることにより導体層とした配線板が挙げられる。 As the substrate, for example, a wiring board which is a conductor layer formed by etching a copper layer using “R1515E” manufactured by Panasonic Corporation, which is a glass cloth base epoxy resin double-sided copper-clad laminate.
 磁性ペーストは、印刷による全面印刷又はパターン印刷により、基板上に塗布される。印刷方法としては、通常、スクリーン印刷を行うが、それ以外の印刷方法を採用してもよい。塗布後に熱硬化され、第1の磁性層が得られる。 The magnetic paste is applied on the substrate by printing on the entire surface or by pattern printing. As a printing method, screen printing is usually performed, but other printing methods may be adopted. After application, the composition is thermally cured to obtain a first magnetic layer.
 磁性ペーストの熱硬化条件は、磁性ペーストの組成や種類によっても異なるが、硬化温度は好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。磁性ペーストの硬化時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは120分以下、より好ましくは100分以下、さらに好ましくは90分以下である。 The thermosetting conditions of the magnetic paste vary depending on the composition and type of the magnetic paste, but the curing temperature is preferably 120 ° C or higher, more preferably 130 ° C or higher, even more preferably 150 ° C or higher, preferably 240 ° C or lower, The temperature is more preferably 220 ° C or lower, and further preferably 200 ° C or lower. The hardening time of the magnetic paste is preferably 5 minutes or more, more preferably 10 minutes or more, even more preferably 15 minutes or more, preferably 120 minutes or less, more preferably 100 minutes or less, and even more preferably 90 minutes or less. .
 磁性ペーストを熱硬化させる前に、磁性ペーストに対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。予備加熱処理の温度は、好ましくは50℃以上、好ましくは60℃、より好ましくは70℃以上、好ましくは120℃未満、好ましくは110℃以下、より好ましくは100℃以である。予備加熱処理の時間は、通常好ましくは5分以上、より好ましくは15分以上であり、好ましくは150分以下、より好ましくは120分以下である。 前 Before heat-curing the magnetic paste, the magnetic paste may be subjected to a preliminary heat treatment of heating at a temperature lower than the curing temperature. The temperature of the preheating treatment is preferably 50 ° C. or higher, preferably 60 ° C., more preferably 70 ° C. or higher, preferably less than 120 ° C., preferably 110 ° C. or lower, more preferably 100 ° C. or lower. The time of the preheating treatment is usually preferably 5 minutes or more, more preferably 15 minutes or more, preferably 150 minutes or less, more preferably 120 minutes or less.
<工程(2)>
 工程(2)では、工程(1)で形成した第1の磁性層上に配線を形成する。配線の形成方法は、例えば、めっき法、スパッタ法、蒸着法などが挙げられ、中でもめっき法が好ましい。好適な実施形態では、セミアディティブ法、フルアディティブ法等の適切な方法によって第1の磁性層の表面にめっきして、渦巻状の配線パターンを有する配線を形成する。
<Step (2)>
In step (2), a wiring is formed on the first magnetic layer formed in step (1). Examples of the method for forming the wiring include a plating method, a sputtering method, and a vapor deposition method. Among them, the plating method is preferable. In a preferred embodiment, the surface of the first magnetic layer is plated by a suitable method such as a semi-additive method or a full-additive method to form a wiring having a spiral wiring pattern.
 配線の材料としては、例えば、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ、インジウム等の単金属;金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムの群から選択される2種以上の金属の合金が挙げられる。中でも、汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金、銅ニッケル合金、銅チタン合金を用いることが好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金を用いることがより好ましく、銅を用いることがさらに好ましい。 Examples of the wiring material include single metals such as gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin, and indium; gold, platinum, palladium, silver, Examples include alloys of two or more metals selected from the group consisting of copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin, and indium. Among them, from the viewpoints of versatility, cost, ease of patterning, and the like, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel-chromium alloy, a copper-nickel alloy, or a copper-titanium alloy may be used. Preferably, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel-chromium alloy is more preferably used, and copper is more preferably used.
 ここで、第1の磁性層上に配線を形成する実施形態の例を、詳細に説明する。第1の磁性層の面に、無電解めっきにより、めっきシード層を形成する。次いで、形成されためっきシード層上に、電解めっきにより電解めっき層を形成し、必要に応じて、不要なめっきシード層をエッチング等の処理により除去して、所望の配線パターンを有する配線を形成できる。配線を形成後、配線のピール強度を向上させる等の目的で、必要によりアニール処理を行ってもよい。アニール処理は、例えば、基板を150~200℃で20~90分間加熱することにより行うことができる。 Here, an example of an embodiment in which a wiring is formed on the first magnetic layer will be described in detail. A plating seed layer is formed on the surface of the first magnetic layer by electroless plating. Next, an electrolytic plating layer is formed on the formed plating seed layer by electrolytic plating, and if necessary, unnecessary plating seed layers are removed by a process such as etching to form a wiring having a desired wiring pattern. it can. After forming the wiring, an annealing treatment may be performed as necessary for the purpose of improving the peel strength of the wiring. The annealing treatment can be performed, for example, by heating the substrate at 150 to 200 ° C. for 20 to 90 minutes.
 配線を形成後、形成されためっきシード層上に、渦巻状のパターンに対応して、めっきシード層の一部を露出させるマスクパターンを形成する。この場合、露出しためっきシード層上に、電解めっきにより電解めっき層を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等の処理により除去して、所望のパターンを有する配線を形成する。 After forming the wiring, a mask pattern for exposing a part of the plating seed layer is formed on the formed plating seed layer corresponding to the spiral pattern. In this case, after the electrolytic plating layer is formed on the exposed plating seed layer by electrolytic plating, the mask pattern is removed. Thereafter, the unnecessary plating seed layer is removed by a process such as etching to form a wiring having a desired pattern.
 配線の厚さは、薄型化の観点から、好ましくは70μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下、さらにより好ましくは40μm以下、特に好ましくは30μm以下、20μm以下、15μm以下又は10μm以下である。下限は好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上である。 The thickness of the wiring is preferably 70 μm or less, more preferably 60 μm or less, further preferably 50 μm or less, still more preferably 40 μm or less, particularly preferably 30 μm or less, 20 μm or less, and 15 μm from the viewpoint of thinning. Or 10 μm or less. The lower limit is preferably at least 1 μm, more preferably at least 3 μm, even more preferably at least 5 μm.
<工程(3)>
 工程(3)は、第1の磁性層、コア部及び配線上に磁性ペーストを印刷し、該磁性ペーストを熱硬化させ、第2の磁性層を形成する。第2の磁性層の形成方法は、第1の磁性層と同様である。第1の磁性層を形成する磁性ペーストと、第2の磁性層を形成する磁性ペーストとは、同一でも相異なっていてもよい。
<Step (3)>
In the step (3), a magnetic paste is printed on the first magnetic layer, the core, and the wiring, and the magnetic paste is cured by heat to form a second magnetic layer. The method for forming the second magnetic layer is the same as that for the first magnetic layer. The magnetic paste forming the first magnetic layer and the magnetic paste forming the second magnetic layer may be the same or different.
 工程(1)後、第1の磁性層上に絶縁層を形成する工程を設けてもよい。また、工程(2)後、配線上に絶縁層を形成する工程を設けてもよい。絶縁層は、プリント配線板の絶縁層と同様に形成してもよく、該プリント配線板の絶縁層と同様の材料を用いてもよい。 (4) After the step (1), a step of forming an insulating layer on the first magnetic layer may be provided. After the step (2), a step of forming an insulating layer on the wiring may be provided. The insulating layer may be formed in the same manner as the insulating layer of the printed wiring board, or may be made of the same material as the insulating layer of the printed wiring board.
[回路基板]
 回路基板は、本発明のインダクタ素子を含む。回路基板は、半導体チップ等の電子部品を搭載するための配線板として用いることができ、かかる配線板を内層基板として使用した(多層)プリント配線板として用いることもできる。また、かかる配線板を個片化したチップインダクタ部品として用いることもでき、該チップインダクタ部品を表面実装したプリント配線板として用いることもできる。
[Circuit board]
The circuit board includes the inductor element of the present invention. The circuit board can be used as a wiring board on which electronic components such as semiconductor chips are mounted, and can also be used as a (multi-layer) printed wiring board using such a wiring board as an inner layer board. Further, such a wiring board can be used as a chip inductor component which is divided into individual pieces, and can also be used as a printed wiring board on which the chip inductor component is surface-mounted.
 またかかる配線板を用いて、種々の態様の半導体装置を製造することができる。かかる配線板を含む半導体装置は、電気製品(例えば、コンピューター、携帯電話、デジタルカメラおよびテレビ等)および乗物(例えば、自動二輪車、自動車、電車、船舶および航空機等)等に好適に用いることができる。 半導体 Further, various types of semiconductor devices can be manufactured using the wiring board. The semiconductor device including such a wiring board can be suitably used for electric products (for example, computers, mobile phones, digital cameras, televisions, and the like) and vehicles (for example, motorcycles, automobiles, trains, ships, and aircrafts). .
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。 Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. In the following description, “parts” and “%” representing amounts mean “parts by mass” and “% by mass”, respectively, unless otherwise specified.
<実施例1>
 エポキシ樹脂(「ZX-1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、新日鉄住金化学社製)10質量部、エポキシ樹脂(「ED-523T」、低粘度エポキシ樹脂、ADEKA社製)5部、分散剤(「RS-710」、高分子アニオン系分散剤、東邦化学社製)1質量部、硬化促進剤(「2P4MZ」、イミダゾール系硬化促進剤、四国化成社製)1質量部、磁性粉体(「M05S」、Fe-Mn系フェライト、平均粒径3μm、パウダーテック社製)100質量部、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部を混合し、3本ロールで均一に分散して、磁性ペーストを調製した。
<Example 1>
Epoxy resin (“ZX-1059”, mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 10 parts by mass, epoxy resin (“ED-523T”, low viscosity epoxy resin, ADEKA Corporation) 5 parts, dispersant (“RS-710”, polymer anionic dispersant, manufactured by Toho Chemical Co., Ltd.) 1 part by mass, curing accelerator (“2P4MZ”, imidazole-based curing accelerator, manufactured by Shikoku Chemicals) 1 Parts by mass, 100 parts by mass of magnetic powder (“M05S”, Fe—Mn-based ferrite, average particle size 3 μm, manufactured by Powdertech), organized smectite (“Smecton STN”, trioctylmethylammonium-treated hectorite, Kunimine Industries) 2 parts by mass) and uniformly dispersed with a three-roll mill to prepare a magnetic paste.
<実施例2>
 実施例1において、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)の量を2質量部から1.5質量部に変えた。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Example 2>
In Example 1, the amount of the organized smectite ("Smecton STN", hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries) was changed from 2 parts by mass to 1.5 parts by mass. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<実施例3>
 実施例1において、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)の量を2質量部から1質量部に変えた。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Example 3>
In Example 1, the amount of the organized smectite ("Smecton STN", hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries) was changed from 2 parts by mass to 1 part by mass. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<実施例4>
 実施例1において、磁性粉体(「M05S」、Fe-Mn系フェライト、平均粒径3μm、パウダーテック社製)100質量部を、磁性粉体(「AW2-08PF3F」、Fe-Cr-Si系合金(アモルファス)、平均粒径3.0μm、エプソンアトミックス社製)100質量部に変えた。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Example 4>
In Example 1, 100 parts by mass of a magnetic powder (“M05S”, Fe—Mn-based ferrite, average particle diameter 3 μm, manufactured by Powder Tech) was mixed with a magnetic powder (“AW2-08PF3F”, Fe—Cr—Si-based). Alloy (amorphous), average particle size 3.0 μm, manufactured by Epson Atmix Co.) (100 parts by mass). A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<実施例5>
 実施例1において、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部を、有機化スメクタイト(「スメクトンSAN」、ジメチルジステアリルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部に変えた。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Example 5>
In Example 1, 2 parts by mass of an organized smectite ("Smecton STN", a hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries Co., Ltd.) was added to 2 parts by mass of an organized smectite ("Smecton SAN", a hectorite treated with dimethyldistearylammonium, kunimine). (Manufactured by Kogyo Co., Ltd.). A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<実施例6>
 実施例1において、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部を、有機化モンモリロナイト(「オルベンM」、ジメチルジオクタデシルアンモニウム処理モンモリロナイト、白石工業社製)2質量部に変えた。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Example 6>
In Example 1, 2 parts by mass of organic smectite (“Smecton STN”, trioctylmethylammonium-treated hectorite, manufactured by Kunimine Industries Co., Ltd.) was treated with organically treated montmorillonite (“Orben M”, dimethyldioctadecyl ammonium-treated montmorillonite, Shiraishi Kogyo). 2 parts by mass. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<比較例1>
 実施例1において、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部を用いなかった。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Comparative Example 1>
In Example 1, 2 parts by mass of organic smectite ("Smecton STN", a hectorite treated with trioctylmethylammonium, manufactured by Kunimine Industries) was not used. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<比較例2>
 実施例1において、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部を、有機化されていないスメクタイト(「スメクトンSWN」、ヘクトライト、クニミネ工業社製)1質量部に変えた。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Comparative Example 2>
In Example 1, 2 parts by mass of organic smectite (“Smecton STN”, trioctylmethylammonium-treated hectorite, manufactured by Kunimine Industries Co., Ltd.) was mixed with unorganized smectite (“Smecton SWN”, hectorite, Kunimine Industries Co., Ltd.). 1 part by mass. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<比較例3>
 実施例1において、有機化スメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部を、疎水性フュームドシリカ(AEROSIL RY200、日本アエロジル社製)1質量部に変えた。以上の事項以外は実施例1と同様にして磁性ペーストを調製した。
<Comparative Example 3>
In Example 1, 2 parts by mass of organized smectite ("Smecton STN", trioctylmethylammonium-treated hectorite, manufactured by Kunimine Industries) was added to 1 part by mass of hydrophobic fumed silica (AEROSIL RY200, manufactured by Nippon Aerosil Co., Ltd.). changed. A magnetic paste was prepared in the same manner as in Example 1 except for the above.
<磁性ペーストの粘度の測定>
 各実施例及び各比較例の磁性ペーストの温度を25±2℃に保ち、E型粘度計(東機産業社製「RE-80U」、3°×R9.7コーン、回転数は5rpm)を用いて粘度測定した。また、測定した粘度を印刷性および気泡の抜けやすさの観点から以下の基準で評価した。
○:20Pa・s以上200Pa・s未満
×:20Pa・s未満もしくは200Pa・s以上
<Measurement of viscosity of magnetic paste>
The temperature of the magnetic paste of each Example and each Comparative Example was kept at 25 ± 2 ° C., and an E-type viscometer (“RE-80U” manufactured by Toki Sangyo Co., Ltd., 3 ° × R9.7 cone, rotation speed was 5 rpm) was used. And the viscosity was measured. The measured viscosity was evaluated based on the following criteria from the viewpoint of printability and ease of air bubble removal.
○: 20 Pa · s or more and less than 200 Pa · s ×: less than 20 Pa · s or 200 Pa · s or more
<スクリーン印刷後の樹脂染み出し性の測定>
(1)印刷評価基板の作製
 印刷基板として、ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.8mm、松下電工社製R5715E)の両面をマイクロエッチング剤(メック社製CZ8100)にて1μmエッチングして銅表面の粗化処理を行ったものを用意した。印刷部材として、メタルマスク(板材SUS304、開口方法レーザー、表面処理なし、マスク厚み40μm、開口パターン1mm×3mmの長方形、プロセス・ラボ・ミクロン社製)を用意し、さらにメタルスキージ(板材SUS304、スキージ厚み0.25mm、表面処理なし、タク技研社製)を用意した。
<Measurement of resin exudation after screen printing>
(1) Production of Print Evaluation Board As a print board, both sides of a glass cloth base epoxy resin double-sided copper-clad laminate (copper foil thickness 18 μm, board thickness 0.8 mm, R5715E manufactured by Matsushita Electric Works, Ltd.) are micro-etched ( A copper surface roughened by etching at 1 μm using CZ8100 manufactured by Mec Corporation was prepared. As a printing member, a metal mask (plate material SUS304, opening method laser, no surface treatment, mask thickness 40 μm, opening pattern 1 mm × 3 mm rectangle, manufactured by Process Lab Micron) was prepared, and a metal squeegee (plate material SUS304, squeegee) was prepared. 0.25 mm in thickness, no surface treatment, manufactured by Taku Giken Co., Ltd.).
 印刷は印刷基板と印刷部材とを密着固定させ、メタルスキージを角度45deg、速度10mm/sec、線圧6.5N/cmにて、各実施例及び各比較例で作製した磁性ペーストを掃引させることで行った。印刷後、印刷部材を取り外し、150℃、60分の硬化条件で磁性ペーストを硬化させることで、印刷評価基板を作製した。 For printing, the printed substrate and the printing member are closely adhered and fixed, and a metal squeegee is swept at an angle of 45 deg, a speed of 10 mm / sec, and a linear pressure of 6.5 N / cm over the magnetic paste produced in each of the examples and comparative examples. I went in. After printing, the printing member was removed, and the magnetic paste was cured under the curing conditions of 150 ° C. for 60 minutes to produce a print evaluation substrate.
(2)樹脂染み出し性(樹脂染み出し量)の評価
 作製した印刷評価基板の、1mm×3mm長方形の印刷パターンの縁部を、デジタルマイクロスコープ(キーエンス社製、VHX-900)を用いて撮影し、印刷評価基板から染み出た樹脂を観察した。印刷パターンの縁部から染み出た樹脂の流動距離のうち、最大距離を樹脂染み出し性(樹脂染み出し量)とし測定した。また、樹脂染み出し性を以下の基準で評価した。
○:樹脂染み出し量が500μm未満
×:樹脂染み出し量が500μm以上
(2) Evaluation of resin exudation property (resin exudation amount) The edge of a 1 mm × 3 mm rectangular print pattern of the produced print evaluation board was photographed using a digital microscope (VHX-900, manufactured by KEYENCE CORPORATION). Then, the resin exuding from the printing evaluation substrate was observed. Among the flow distances of the resin exuded from the edge of the print pattern, the maximum distance was measured as the resin exudation property (resin exudation amount). The resin exudation was evaluated according to the following criteria.
:: Resin exudation amount is less than 500 μm ×: Resin exudation amount is 500 μm or more
<比透磁率、磁性損失の測定>
 支持体として、シリコン系離型剤処理を施したポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET501010」、厚さ50μm)を用意した。各実施例及び各比較例で作製した磁性ペーストを上記PETフィルムの離型面上に、乾燥後のペースト層の厚みが100μmとなるよう、ドクターブレードにて均一に塗布し、樹脂シートを得た。得られた樹脂シートを180℃で90分間加熱することにより磁性ペースト層を熱硬化し、支持体を剥離することによりシート状の硬化物を得た。得られた硬化物を、幅5mm、長さ18mmの試験片に切断し、評価サンプルとした。この評価サンプルを、アジレントテクノロジーズ(Agilent Technologies社製、「HP8362B」)を用いて、3ターンコイル法にて測定周波数を100MHzとし、室温23℃にて比透磁率(μ’)及び磁性損失(μ’’)を測定した。
<Measurement of relative permeability and magnetic loss>
As a support, a polyethylene terephthalate (PET) film ("PET501010" manufactured by Lintec Corporation, thickness: 50 µm) treated with a silicone-based release agent was prepared. The magnetic paste prepared in each example and each comparative example was uniformly applied on a release surface of the PET film by a doctor blade so that the thickness of the dried paste layer was 100 μm, to obtain a resin sheet. . The resulting resin sheet was heated at 180 ° C. for 90 minutes to thermally cure the magnetic paste layer, and the support was peeled off to obtain a sheet-like cured product. The obtained cured product was cut into a test piece having a width of 5 mm and a length of 18 mm to obtain an evaluation sample. Using a 3-turn coil method at a measurement frequency of 100 MHz, the relative permeability (μ ′) and the magnetic loss (μ) were measured at room temperature 23 ° C. using Agilent Technologies (“HP8362B” manufactured by Agilent Technologies). '') Was measured.
 実施例1~6及び比較例1~3の結果を表1に示す。実施例1~6より、有機化スメクタイトを含む本発明の磁性ペーストは樹脂しみ出し性が大幅に改善されることがわかった。一方、比較例1は有機化スメクタイトを含まず、大きな樹脂しみ出しが観察された。また、比較例2から分かるように、有機化されていないスメクタイトを使用した場合は、樹脂しみ出し性は改善されなかった。さらに比較例3では、チキソトロピー性付与剤として汎用されている疎水性フュームドシリカが添加されているが、やはり樹脂しみ出し性は改善されず、また粘度が上昇し印刷性や気泡抜けの観点から好ましい範囲から外れてしまった。 Table 1 shows the results of Examples 1 to 6 and Comparative Examples 1 to 3. From Examples 1 to 6, it was found that the magnetic paste containing the organic smectite of the present invention greatly improved the resin exudation property. On the other hand, Comparative Example 1 contained no organic smectite, and large resin seepage was observed. Moreover, as can be seen from Comparative Example 2, when smectite that was not organized was used, the resin exudation property was not improved. Further, in Comparative Example 3, although hydrophobic fumed silica, which is widely used as a thixotropic agent, was added, the resin exudation property was not improved, and the viscosity was increased, and from the viewpoint of printability and air bubble removal, It has fallen out of the preferred range.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1    インダクタ素子
 11   基板
 12   磁性層
 13   配線層
 14   コア部
 110  基板
 120  磁性層
 120E 磁性層の縁部
 130  染み出し部
 L    流動距離
DESCRIPTION OF SYMBOLS 1 Inductor element 11 Substrate 12 Magnetic layer 13 Wiring layer 14 Core part 110 Substrate 120 Magnetic layer 120E Edge of magnetic layer 130 Seepage part L Flow distance

Claims (12)

  1.  (A)磁性粉体、
     (B)有機化された層状ケイ酸塩鉱物、及び
     (C)バインダー樹脂、を含む磁性ペースト。
    (A) magnetic powder,
    A magnetic paste comprising (B) an organically modified layered silicate mineral, and (C) a binder resin.
  2.  (B)成分が、有機化されたスメクタイトを含む、請求項1に記載の磁性ペースト。 The magnetic paste according to claim 1, wherein the component (B) contains organic smectite.
  3.  (B)成分が、第4級アンモニウムイオンでイオン交換されたスメクタイトを含む、請求項2に記載の磁性ペースト。 The magnetic paste according to claim 2, wherein the component (B) includes smectite ion-exchanged with a quaternary ammonium ion.
  4.  (B)成分が、有機化されたヘクトライト、及び有機化されたモンモリロナイトから選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の磁性ペースト。 磁性 The magnetic paste according to any one of claims 1 to 3, wherein the component (B) is at least one selected from organized hectorite and organized montmorillonite.
  5.  (B)成分が、第4級アンモニウムイオンでイオン交換されたヘクトライト、及び第4級アンモニウムイオンでイオン交換されたモンモリロナイトから選ばれる少なくとも1種である、請求項4に記載の磁性ペースト。 The magnetic paste according to claim 4, wherein the component (B) is at least one selected from hectorite ion-exchanged with quaternary ammonium ions and montmorillonite ion-exchanged with quaternary ammonium ions.
  6.  (C)成分が、熱硬化性樹脂を含む、請求項1~5のいずれか1項に記載の磁性ペースト。 6. The magnetic paste according to claim 1, wherein the component (C) contains a thermosetting resin.
  7.  (C)成分が、エポキシ樹脂を含む、請求項1~6のいずれか1項に記載の磁性ペースト。 The magnetic paste according to any one of claims 1 to 6, wherein the component (C) contains an epoxy resin.
  8.  (A)成分が、酸化鉄粉及び鉄合金系金属粉から選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の磁性ペースト。 The magnetic paste according to any one of claims 1 to 7, wherein the component (A) is at least one selected from iron oxide powder and iron alloy-based metal powder.
  9.  磁性ペースト中の不揮発成分を100質量%とした場合の(B)成分の含有量をB1とし、磁性ペースト中の不揮発成分を100質量%とした場合の(C)成分の含有量をC1とした場合、C1/B1が1以上30以下である、請求項1~8のいずれか1項に記載の磁性ペースト。 The content of the component (B) when the nonvolatile component in the magnetic paste was 100% by mass was B1, and the content of the component (C) when the nonvolatile component in the magnetic paste was 100% by mass was C1. The magnetic paste according to any one of claims 1 to 8, wherein C1 / B1 is 1 or more and 30 or less.
  10.  インダクタ素子形成用である、請求項1~9のいずれか1項に記載の磁性ペースト。 10. The magnetic paste according to claim 1, which is for forming an inductor element.
  11.  請求項1~10のいずれか1項に記載の磁性ペーストの硬化物である磁性層を含む、インダクタ素子。 An inductor element comprising a magnetic layer which is a cured product of the magnetic paste according to any one of claims 1 to 10.
  12.  請求項11に記載のインダクタ素子を含む、回路基板。 A circuit board comprising the inductor element according to claim 11.
PCT/JP2019/025926 2018-07-25 2019-06-28 Magnetic paste WO2020021968A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201980048539.5A CN112470240B (en) 2018-07-25 2019-06-28 Magnetic paste
KR1020217001764A KR102617523B1 (en) 2018-07-25 2019-06-28 magnetic paste
JP2020532241A JP6984755B2 (en) 2018-07-25 2019-06-28 Magnetic paste
EP19841929.3A EP3828901A4 (en) 2018-07-25 2019-07-24 Magnetic paste
KR1020217001807A KR102597726B1 (en) 2018-07-25 2019-07-24 magnetic paste
PCT/JP2019/029074 WO2020022393A1 (en) 2018-07-25 2019-07-24 Magnetic paste
KR1020237026328A KR102617535B1 (en) 2018-07-25 2019-07-24 Magnetic paste
JP2020532445A JP7081667B2 (en) 2018-07-25 2019-07-24 Magnetic paste
CN201980048580.2A CN112424889A (en) 2018-07-25 2019-07-24 Magnetic paste
TW108126324A TWI847993B (en) 2018-07-25 2019-07-25 Magnetic paste, circuit board and inductor parts
JP2022009683A JP7392743B2 (en) 2018-07-25 2022-01-25 magnetic paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139537 2018-07-25
JP2018139537 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020021968A1 true WO2020021968A1 (en) 2020-01-30

Family

ID=69181655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025926 WO2020021968A1 (en) 2018-07-25 2019-06-28 Magnetic paste

Country Status (4)

Country Link
KR (1) KR102617523B1 (en)
CN (1) CN112470240B (en)
TW (1) TW202022899A (en)
WO (1) WO2020021968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190745A1 (en) * 2021-03-08 2022-09-15 株式会社Adeka Curable resin composition, cured product, and adhesive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262956A (en) * 2003-01-30 2004-09-24 Taiyo Yuden Co Ltd Electronic material composition, electronic article and method of using electronic material composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975221A (en) * 1989-05-12 1990-12-04 National Starch And Chemical Investment Holding Corporation High purity epoxy formulations for use as die attach adhesives
JPH0669058A (en) 1992-08-19 1994-03-11 Tdk Corp Manufacture of coil component
KR100611878B1 (en) * 1999-06-30 2006-08-11 다이요 유덴 가부시키가이샤 Electronic material composition, electronic apparatus and a method of using the electronic material composition
JP5980493B2 (en) * 2011-01-20 2016-08-31 太陽誘電株式会社 Coil parts
TWI586736B (en) * 2012-09-18 2017-06-11 日產化學工業股份有限公司 Hydrogel forming composition and hydrogel formed from the composition
JP2017063100A (en) 2015-09-24 2017-03-30 株式会社デンソー Manufacturing method for structure and inductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262956A (en) * 2003-01-30 2004-09-24 Taiyo Yuden Co Ltd Electronic material composition, electronic article and method of using electronic material composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190745A1 (en) * 2021-03-08 2022-09-15 株式会社Adeka Curable resin composition, cured product, and adhesive

Also Published As

Publication number Publication date
KR102617523B1 (en) 2023-12-27
CN112470240A (en) 2021-03-09
KR20210036918A (en) 2021-04-05
CN112470240B (en) 2022-12-16
TW202022899A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
JP7235081B2 (en) Through-hole filling paste
JP7392743B2 (en) magnetic paste
JP6969692B2 (en) Magnetic paste
US12014854B2 (en) Magnetic paste
JP7230447B2 (en) magnetic paste
JP2023164858A (en) magnetic composition
JP7552583B2 (en) Resin composition
JP7338443B2 (en) magnetic paste
WO2020021968A1 (en) Magnetic paste
JP7463736B2 (en) Resin composition
JP6984755B2 (en) Magnetic paste
TWI850353B (en) Resin composition
WO2023068032A1 (en) Resin composition
TW202346481A (en) magnetic paste
TW202423683A (en) Magnetic board manufacturing method and magnetic board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840004

Country of ref document: EP

Kind code of ref document: A1