JP6387337B2 - Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment - Google Patents

Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment Download PDF

Info

Publication number
JP6387337B2
JP6387337B2 JP2015238937A JP2015238937A JP6387337B2 JP 6387337 B2 JP6387337 B2 JP 6387337B2 JP 2015238937 A JP2015238937 A JP 2015238937A JP 2015238937 A JP2015238937 A JP 2015238937A JP 6387337 B2 JP6387337 B2 JP 6387337B2
Authority
JP
Japan
Prior art keywords
water
suspended
coarse
suspended substance
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015238937A
Other languages
Japanese (ja)
Other versions
JP2017104774A (en
JP2017104774A5 (en
Inventor
慎吾 盛一
慎吾 盛一
康平 市川
康平 市川
愛美 笹崎
愛美 笹崎
上野 聡
聡 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel and Sumikin Eco Tech Corp
Priority to JP2015238937A priority Critical patent/JP6387337B2/en
Publication of JP2017104774A publication Critical patent/JP2017104774A/en
Publication of JP2017104774A5 publication Critical patent/JP2017104774A5/en
Application granted granted Critical
Publication of JP6387337B2 publication Critical patent/JP6387337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、架橋構造を有するカチオン性又は両性の高分子凝集剤を用いた水中の懸濁物質の除去処理方法及び該高分子凝集剤に関し、より詳しくは、例えば、製鐵工場等で生ずる粒径が50μm以上の粗大な懸濁物質と50μm未満の微細な懸濁物質とを含む廃水中から、より効果的に、これらの懸濁物質が併存している状態で懸濁物質を一挙に除去処理することができる水中の懸濁物質の除去処理方法、及び該方法に用いるための該高分子凝集剤に関する。   The present invention relates to a method for removing suspended substances in water using a cationic or amphoteric polymer flocculant having a cross-linked structure and the polymer flocculant. From waste water containing coarse suspended solids with a diameter of 50 μm or more and fine suspended solids less than 50 μm, the suspended solids are more effectively removed in a state where these suspended solids coexist. The present invention relates to a method for removing suspended substances in water that can be treated, and the polymer flocculant for use in the method.

例えば、製鐵工場等からの廃水(原水)には、金属粉や石炭・コークス粉や油分等の粒径が50μm以上の粗大な懸濁物質(以下、粗大SSとも呼ぶ)が含まれているが、これらの廃水に対する処理は、通常、上記した粗大な懸濁物質を沈降分離等の方法で予め除去し、除去後の廃水を更に処理することで、粒径が50μmに満たない微細な懸濁物質(以下、微細SSとも呼ぶ)を除去して、懸濁物質を取り除いた処理水を得ている。   For example, waste water (raw water) from a steel mill or the like contains coarse suspended solids (hereinafter also referred to as coarse SS) having a particle size of 50 μm or more such as metal powder, coal / coke powder, and oil. However, these wastewaters are usually treated in advance by removing the coarse suspended substances in advance by a method such as sedimentation separation, and further treating the wastewater after the removal, whereby fine suspensions having a particle size of less than 50 μm are obtained. Turbid substances (hereinafter also referred to as fine SS) are removed to obtain treated water from which suspended substances have been removed.

これに対し、本発明者らは、既に、流れの速い乱流状態の廃水等の中に高分子凝集剤を添加する、といった極めて簡便な方法で、上記粗大SSと微細SSを含んだ状態のままの原水から、粗大SSと微細SSとを一緒に凝集沈降させ、粗大SSと微細SSとを一挙に除去処理することができ、処理設備の簡略化も可能にできる画期的な水中の懸濁物質の除去処理方法を提案している(特許文献1、特許文献2参照)。そして、その中で、特有の化合物を原料モノマーとしたカチオン性又は両性の共重合体を主成分とした高分子凝集剤を用いることが好適であるとしている。   In contrast, the present inventors have already included the coarse SS and the fine SS by a very simple method such as adding a polymer flocculant to wastewater or the like in a turbulent flow state having a fast flow. Coarse SS and fine SS can be coagulated and settled together from raw raw water, and the coarse SS and fine SS can be removed at once, and the processing facilities can be simplified. A method for removing turbid substances has been proposed (see Patent Document 1 and Patent Document 2). Among them, it is preferable to use a polymer flocculant mainly composed of a cationic or amphoteric copolymer having a specific compound as a raw material monomer.

上記従来技術によれば、下記の効果が得られる。例えば、製鐵所等において発生する、粗大SSと微細SSとが併存している各種廃水中の懸濁物質を分離除去する際に、例えば、Over Flow Rateが10m/hr以上の比較的小さな槽のみで、粗大SSと微細SSとを同一の処理で、従来技術で処理した場合と比べてSSをより速やかに沈降させることができ、しかも、得られる処理水を、これらの懸濁物質を別々に処理していた従来の処理方法で達成していたのと同等以上の清澄な水質のものにできる。より具体的には、粗大SSと微細SSとを同一の処理で、従来技術と比べて迅速に凝集沈降することが可能になったことで、凝集剤の総使用量を従来よりも低減することが可能になり、更に設備を大幅に簡略化することもできる。また、これらに加えて、発生する凝集沈降した沈殿物のリサイクル費の低減、従来、無機凝集剤を使用することに起因して処理水に混入される配管の腐食を促進する物質の低減をも達成できる。更に得られる処理水は、従来の処理方法で達成していたのと同等以上の清澄な水質を示すので、そのまま循環使用することが可能で、しかも、発生する凝集沈降した沈殿物は、水離れのよい取り扱い易いものになるといった利点もある。   According to the above prior art, the following effects can be obtained. For example, when separating and removing suspended substances in various wastewaters in which coarse SS and fine SS coexist, which occur in a steelworks, for example, a relatively small tank having an Over Flow Rate of 10 m / hr or more As a result, it is possible to settle SS more rapidly than in the case where the coarse SS and the fine SS are treated in the same process as in the case of the conventional technique, and the obtained treated water is separated from these suspended substances. The water quality can be as high as or better than that achieved by the conventional treatment method. More specifically, the coarse SS and the fine SS can be coagulated and settled faster than in the conventional technology by the same treatment, thereby reducing the total amount of the flocculant used than before. And the equipment can be greatly simplified. In addition to these, it is possible to reduce the recycling cost of the generated aggregated sediment, and to reduce the substances that promote the corrosion of piping mixed into the treated water due to the use of inorganic flocculants. Can be achieved. Furthermore, since the treated water obtained shows a clear water quality equivalent to or higher than that achieved by the conventional treatment method, it can be circulated as it is, and the generated aggregated sedimented sediment is separated from the water. There is also an advantage that it is easy to handle and easy to handle.

一方、カチオン性高分子は、古くより、脱水剤としての有用性が着目されており、汚泥の脱水剤等として使用されており、脱水性を向上させるために、カチオン性高分子の改質も行われている(特許文献3〜5参照)。   On the other hand, cationic polymers have been attracting attention for their usefulness as dehydrating agents for a long time, and they have been used as sludge dehydrating agents. In order to improve dehydrating properties, cationic polymers can also be modified. (See Patent Documents 3 to 5).

特開2014−108394号公報JP 2014-108394 A 特開2014−133229号公報JP 2014-133229 A 特公平7−71678号公報Japanese Patent Publication No. 7-71678 特許第2779732号公報Japanese Patent No. 2777732 特許第5692910号公報Japanese Patent No. 5692910

上記したように、本発明者らが開発した上記従来技術は、粗大SSと微細SSを含んだ状態のままの原水から、粗大SSと微細SSとを一緒に凝集沈降させ、粗大SSと微細SSとを一挙に除去処理することを可能にした画期的なものである。しかしながら、製鐵工場等で生ずる廃水に対する処理は、先に述べたように、粗大SSを沈降分離等の方法で予め除去し、除去後の廃水を更に処理することで微細SSを除去して懸濁物質のない処理水を得るとした構成の処理フローが確立しており、これまで実際の廃水に対して、粗大SSと微細SSとを一緒に凝集沈降させることは行われていなかった。このため、実廃水に対して、粗大SSと微細SSとを一緒に凝集沈降させる方法を適用する際には、安定して、より高い効果を実現できる処理フローを確立することが重要になる。具体的には、粗大SSと微細SSとを一緒に凝集沈降させた場合に、更に効率よく、効果的にSSを除去処理することが可能になる条件等を見出すことができれば、上記した従来技術は、より有効なSSの処理手段となり得る。   As described above, the above-described conventional technology developed by the present inventors coagulates and settles the coarse SS and the fine SS together from the raw water containing the coarse SS and the fine SS, thereby obtaining the coarse SS and the fine SS. It is an epoch-making thing that can be removed at once. However, as described above, the treatment of wastewater generated at a steel mill or the like is performed by removing coarse SS in advance by a method such as sedimentation separation and further treating the wastewater after removal to remove fine SS. A treatment flow has been established in which treated water free from turbid substances is obtained, and until now, coarse SS and fine SS have not been coagulated and settled together with actual wastewater. For this reason, when applying the method of coagulating and sedimenting coarse SS and fine SS together with actual wastewater, it is important to establish a treatment flow that can stably achieve higher effects. Specifically, if the conditions that allow the SS to be removed more efficiently and effectively when the coarse SS and the fine SS are coagulated and settled together, the above-described conventional technology can be found. Can be a more effective SS processing means.

したがって、本発明の目的は、本発明者らが既に提案している、水中の粗大SSと微細SSとを一緒に凝集沈降させ、これらのSSを一緒に取り除く処理をした場合に、より効率よく処理する方法を提供することにあり、最終的には、実際の廃水に対して適用した際に重要な、処理効率の向上、処理の迅速さ、凝集沈降させた沈殿物の二次処理をより容易にすることができるといったことを達成できる水中の懸濁物質の除去処理方法を提供することにある。   Therefore, the object of the present invention is more efficient when the coarse SS and fine SS in water that have already been proposed by the present inventors are coagulated and settled together, and these SS are removed together. The goal is to provide a method of treatment, and ultimately improve the efficiency of treatment, speed of treatment, and secondary treatment of coagulated sediment precipitates, which are important when applied to actual wastewater. It is an object of the present invention to provide a method for removing suspended substances in water that can achieve the above.

上記の目的は、下記の本発明によって達成される。すなわち、本発明は、粗大な懸濁物質と微細な懸濁物質とが併存している状態の廃水や取水等の水中に高分子凝集剤を添加し、これらの懸濁物質を同一の処理によって凝集沈降させて一緒に取り除く水中の懸濁物質の除去処理方法であって、前記粗大な懸濁物質が、少なくとも粒径が50μm以上のものであり、少なくとも、前記粗大な懸濁物質と前記微細な懸濁物質とが併存する乱流状態の水の中に高分子凝集剤が共存する状態を生じさせて、前記懸濁物質を同一の処理で凝集沈降させる際に、前記高分子凝集剤として、下記一般式(1)、下記一般式(2)で表されるモノマーのいずれか一方又は両方を必須成分として5モル%以上を含む原料モノマーの総量に対して、質量で0.5〜300ppmの架橋性単量体を共存させて重合してなる、架橋構造を有するカチオン性又は両性の架橋型水溶性高分子を用い、且つ、該架橋型水溶性高分子が、その架橋度を、純水中に添加し、純水で200倍に希釈した状態の水溶液とした時の水溶液粘度を、4%食塩水中に添加し、4%食塩水で80倍に希釈した状態の水溶液とした時の塩水溶液粘度で除した、水溶液の粘性の測定により得た値で表した場合に、該値が、5以上200以下のものであることを特徴とする水中の懸濁物質の除去処理方法を提供する。

Figure 0006387337
(上記式(1)及び(2)中の、R1は、H又はCH3、R2又はR3は、それぞれ独立にCH3又はC25を表し、R4は、H、CH3又はC25のいずれかを表す。X-は、アニオン性対イオンを表す。) The above object is achieved by the present invention described below. That is, the present invention adds a polymer flocculant to waste water or water taken in a state where a coarse suspended substance and a fine suspended substance coexist, and these suspended substances are subjected to the same treatment. A method for removing suspended matter in water that is coagulated and settled and removed together, wherein the coarse suspended substance has a particle size of at least 50 μm, and includes at least the coarse suspended substance and the fine substance. When the suspension material is coagulated and settled by the same treatment by causing a state in which the polymer flocculant coexists in turbulent water coexisting with a suspended solid, , 0.5 to 300 ppm by mass relative to the total amount of raw material monomers containing 5 mol% or more of any one or both of the monomers represented by the following general formula (1) and the following general formula (2) as essential components Polymerization in the presence of crosslinkable monomers A cross-linked cationic or amphoteric cross-linked water-soluble polymer is used, and the cross-linked water-soluble polymer is added to the degree of cross-linking in pure water and diluted 200 times with pure water. By measuring the viscosity of the aqueous solution by adding the aqueous solution viscosity in 4% saline solution and dividing by 80% diluted aqueous solution in 4% saline solution. Provided is a method for removing suspended substances in water, characterized in that, when expressed by the obtained value, the value is 5 or more and 200 or less.
Figure 0006387337
(In the above formulas (1) and (2), R 1 represents H or CH 3 , R 2 or R 3 each independently represents CH 3 or C 2 H 5 , and R 4 represents H, CH 3 Or C 2 H 5 , X represents an anionic counter ion.)

本発明の水中の懸濁物質の除去処理方法の好ましい形態としては、下記のことが挙げられる。前記架橋性単量体が、原料モノマーの総量に対して、質量で0.5〜50ppmであること;前記粗大な懸濁物質の水中における存在量が130mg/L以上であること;前記粗大な懸濁物質の存在量が130mg/L以上であり、且つ、前記微細な懸濁物質濃度に対する粗大な懸濁物質濃度の比(粗/微)が、その質量比で3以上であること;前記水が、製鐵所において発生する廃水であり、前記高分子凝集剤を前記廃水に添加する位置が、前記粗大な懸濁物質と前記微細な懸濁物質とが併存している廃水が発生する地点から水処理設備の入口付近に至るまでのいずれかの地点であり、且つ、該地点における廃水は、流速が0.5m/秒以上で乱流状態にあること;前記水が、水中に粗大な前記懸濁物質をほとんど含まない水に予め粗大な懸濁物質を添加して、該粗大な懸濁物質の存在量が130mg/L以上となるようにして、粗大な懸濁物質と微細な懸濁物質とが併存した状態とした水であることが挙げられる。   The following is mentioned as a preferable form of the removal processing method of the suspended matter in water of this invention. The crosslinkable monomer is 0.5 to 50 ppm by mass with respect to the total amount of raw material monomers; the abundance of the coarse suspended substance in water is 130 mg / L or more; The amount of suspended solids is 130 mg / L or more, and the ratio of the coarse suspended solid concentration to the fine suspended solid concentration (rough / fine) is 3 or more in terms of its mass ratio; Water is wastewater generated in a steelworks, and the position where the polymer flocculant is added to the wastewater generates wastewater in which the coarse suspended substance and the fine suspended substance coexist. Any point from the point to the vicinity of the entrance of the water treatment facility, and the waste water at the point is in a turbulent state at a flow velocity of 0.5 m / second or more; the water is coarse in the water Preliminarily coarse in water containing almost no suspended matter It is water in which a suspended substance is added so that the amount of the coarse suspended substance is 130 mg / L or more and the coarse suspended substance and the fine suspended substance coexist. Can be mentioned.

本発明は、別の実施形態として、少なくとも粒径が50μm以上の粗大な懸濁物質と、粒径が50μmに満たない微細な懸濁物質とが併存している乱流状態の廃水や取水等の水中に高分子凝集剤を添加し、これらの懸濁物質を同一の処理によって凝集沈降させて一緒に取り除く水中の懸濁物質の除去処理方法で使用するための高分子凝集剤であって、下記一般式(1)、下記一般式(2)で表されるモノマーのいずれか一方又は両方を必須成分として5モル%以上を含む原料モノマーの総量に対して、質量で0.5〜300ppmの架橋性単量体を共存させて重合してなる、架橋構造を有するカチオン性又は両性の架橋型水溶性高分子であり、且つ、該架橋型水溶性高分子の架橋度を、純水中に添加し、純水で200倍に希釈した状態の水溶液とした時の水溶液粘度を、4%食塩水中に添加し、4%食塩水で80倍に希釈した状態の水溶液とした時の塩水溶液粘度で除した、水溶液の粘性の測定により得た値で表した場合に、該値が5以上200以下であることを特徴とする懸濁物質除去処理用の高分子凝集剤を提供する。

Figure 0006387337
(上記式(1)及び(2)中の、R1は、H又はCH3、R2又はR3は、それぞれ独立にCH3又はC25を表し、R4は、H、CH3又はC25のいずれかを表す。X-は、アニオン性対イオンを表す。) As another embodiment of the present invention, turbulent waste water or water intake in which coarse suspended substances having a particle diameter of 50 μm or more and fine suspended substances having a particle diameter of less than 50 μm coexist are provided. A polymer flocculant for use in a method for removing suspended solids in water by adding a polymeric flocculant to the water and removing the suspended solids by coagulation sedimentation by the same treatment, 0.5 to 300 ppm by mass with respect to the total amount of raw material monomers containing 5 mol% or more with either one or both of the monomers represented by the following general formula (1) and the following general formula (2) as essential components A cationic or amphoteric crosslinked water-soluble polymer having a crosslinked structure obtained by polymerization in the presence of a crosslinking monomer, and the degree of crosslinking of the crosslinked water-soluble polymer in pure water Aqueous solution added and diluted 200 times with pure water The value obtained by measuring the viscosity of the aqueous solution, divided by the viscosity of the aqueous salt solution when the aqueous solution was added to 4% saline and diluted 80 times with 4% saline. When expressed, the present invention provides a polymer flocculant for suspension substance removal treatment, wherein the value is 5 or more and 200 or less.
Figure 0006387337
(In the above formulas (1) and (2), R 1 represents H or CH 3 , R 2 or R 3 each independently represents CH 3 or C 2 H 5 , and R 4 represents H, CH 3 Or C 2 H 5 , X represents an anionic counter ion.)

本発明の懸濁物質除去処理用の高分子凝集剤の好ましい形態としては、前記架橋性単量体が、原料モノマーの総量に対して、質量で0.5〜50ppmであることが挙げられる。   A preferred form of the polymer flocculant for the suspended matter removal treatment of the present invention is that the crosslinkable monomer is 0.5 to 50 ppm by mass with respect to the total amount of raw material monomers.

本発明によれば、本発明者らが既に提案している、水中の粗大SSと微細SSとを一緒に凝集沈降させ、これらのSSを一緒に取り除く処理をした場合に、より効率よく処理する方法の提供が可能になり、最終的には、実際の廃水に対して適用した際に重要な、処理効率の向上、処理の迅速さ、凝集沈降させた沈殿物の二次処理をより容易にすることができる水中の懸濁物質の除去処理方法が提供される。   According to the present invention, when the present inventors have already proposed a method of coagulating and sedimenting coarse SS and fine SS in water together and removing these SS together, the processing is performed more efficiently. It is possible to provide a method, and ultimately, it is easier to improve the processing efficiency, speed of processing, and secondary treatment of coagulated sediment precipitate, which are important when applied to actual wastewater. A method for removing suspended matter in water is provided.

構造の異なる高分子凝集剤を使用した場合の、高分子凝集剤の添加量と廃水中の粗大SS量と、処理水中のSSとの関係を示すグラフである。It is a graph which shows the relationship between the addition amount of a polymer flocculant, the amount of coarse SS in wastewater, and SS in treated water when polymer flocculants having different structures are used.

以下、好ましい実施の形態を挙げて本発明をさらに詳細に説明する。本発明者らは、本発明者らが既に提案している前記した技術を、実際の廃水に適用し、より効率よくより確実な処理を行うことを可能にするためには、従来、全く行われていない処理方法であることから、より詳細な検討が必要であることを認識した。具体的には、上記認識の下、検討を進める中で、下記の点について検討する必要があることを認識した。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. In order to make it possible to apply the above-described technology already proposed by the present inventors to actual wastewater and to perform more efficient and more reliable treatment, the present inventors have not performed at all. It was recognized that a more detailed study was necessary because of the unclear processing method. Specifically, based on the above recognition, it was recognized that the following points should be considered during the study.

本発明者らが既に提案している方法では、粗大SSを予め分離処理せずに、粗大SSと微細SSとを含んだままの廃水(原水)中にカチオン性或いは両性の高分子凝集剤(以下、単に高分子凝集剤とも呼ぶ)を添加して処理し、その際に、上記高分子凝集剤の添加を、乱流状態である廃水中に行って、粗大SSと微細SSと高分子凝集剤を乱流状態で共存させることを要する。本発明者らは、これら各要件についての検討を行う過程で、下記の知見を得た。まず、高分子凝集剤の添加量について、添加量が多い方が必ずしも処理効率が向上するわけではなく、添加量が過剰になるとSS処理性が悪化する傾向があることがわかった。したがって、本発明の高い効果がより確実に得られる高分子凝集剤の添加量の上限値を見出すことは、良好な処理を確実に行うためには、極めて有用である。   In the method already proposed by the present inventors, the coarse SS is not separated in advance, and the cationic or amphoteric polymer flocculant (raw water) containing the coarse SS and the fine SS is contained in the waste water (raw water). In the process, the polymer flocculant is added to the wastewater in a turbulent state, and coarse SS, fine SS, and polymer flocculence are added. It is necessary for the agent to coexist in a turbulent state. The present inventors have obtained the following knowledge in the process of studying these requirements. First, regarding the addition amount of the polymer flocculant, it was found that the treatment amount does not necessarily improve when the addition amount is large, and that the SS processability tends to deteriorate when the addition amount is excessive. Therefore, finding the upper limit of the amount of the polymer flocculant to be added that can reliably obtain the high effect of the present invention is extremely useful for reliably performing good treatment.

上記したように、本発明では、高分子凝集剤の添加を、少なくとも乱流状態にある廃水中に行う必要があり、また、より良好な凝集沈降・沈殿処理を行うためには、速度の速い強い乱流状態にある廃水中に行うことが好ましい。このため、例えば、廃水を処理する設備内に、強い乱流状態となる場所がないような場合には、撹拌機を増設するなどの対策をする必要があった。これに対し、本発明者らは、高分子凝集剤の種類によっては、比較的に穏やかな乱流状態であっても高い効果がみられる場合があることを見出した。換言すれば、粗大SSと微細SSと高分子凝集剤とが併存する状態において、弱い撹拌力や、短い撹拌時間でも優れた凝集沈降性が得られる種類の高分子凝集剤があることを見出した。このことは、このような高分子凝集剤を用いれば、廃水を処理する設備内における高分子凝集剤の添加位置の選択の範囲が拡がることを意味しており、また、先に述べた、廃水が強い乱流状態になるように撹拌機を増設するなどの対策を不要にできる可能性があり、極めて有用である。   As described above, in the present invention, it is necessary to add the polymer flocculant at least to the wastewater in a turbulent state, and in order to perform a better flocculation sedimentation / precipitation treatment, the speed is high. It is preferable to carry out in wastewater in a strong turbulent state. For this reason, for example, when there is no place in a facility for treating wastewater that is in a strong turbulent state, it is necessary to take measures such as adding an agitator. In contrast, the present inventors have found that depending on the type of the polymer flocculant, a high effect may be observed even in a relatively gentle turbulent state. In other words, in the state where coarse SS, fine SS and polymer flocculant coexist, it has been found that there is a kind of polymer flocculant which can provide excellent agglomeration sedimentation even with a weak stirring force and a short stirring time. . This means that if such a polymer flocculant is used, the selection range of the addition position of the polymer flocculant in the facility for treating wastewater is expanded. This is extremely useful because there is a possibility that measures such as adding a stirrer can be eliminated so that a strong turbulent state can be obtained.

更に、先に述べたように、本発明の処理方法によって、粗大SSと微細SSと高分子凝集剤とを乱流状態で併存させることで発生する凝集沈降した沈殿物は、水離れのよい取り扱い易いものになる。本発明者らは、この点について更に検討した結果、凝集沈降して得られる沈殿物の中に、再分散がしにくい、その後の処理がより容易になる特性を有するものがあり、この沈殿物の特性の違いが、使用した高分子凝集剤の種類によって生じていることを見出した。   Furthermore, as described above, the precipitate that has been aggregated and settled by coexisting coarse SS, fine SS, and polymer flocculant in a turbulent state by the treatment method of the present invention is handled with good water separation. It becomes easy. As a result of further study on this point, the present inventors have found that some precipitates obtained by coagulation sedimentation have characteristics that are difficult to redisperse and that facilitate subsequent processing. It was found that the difference in characteristics was caused by the type of polymer flocculant used.

より具体的には、下記に述べる本発明で規定する架橋構造を有する特定の高分子凝集剤をSSの処理に用いた場合、この高分子凝集剤は、弱い撹拌力や、短い撹拌時間でも、併存している粗大SSと微細SSに対して優れた凝集沈降性を示し、比較的に穏やかな乱流状態であっても本発明の顕著な効果が得られ、また、この架橋構造を有する特定の高分子凝集剤を用いたことで凝集沈降して得られる沈殿物は、再分散がしにくい、その後の処理が容易なものになることもわかった。   More specifically, when a specific polymer flocculant having a cross-linked structure defined in the present invention described below is used for the treatment of SS, the polymer flocculant can be used even with a weak stirring force or a short stirring time. Excellent cohesive sedimentation properties for the coexisting coarse SS and fine SS, and the remarkable effect of the present invention can be obtained even in a relatively mild turbulent state. It was also found that the precipitate obtained by agglomeration and sedimentation by using the above polymer flocculant is difficult to redisperse and can be easily processed thereafter.

本発明を特徴づける架橋構造を有する特定の高分子凝集剤は、下記一般式(1)、下記一般式(2)で表されるモノマーのいずれか一方又は両方を必須成分として5モル%以上を含む原料モノマーに対して、質量で0.5〜300ppmの架橋性単量体を共存させて重合してなる、架橋構造を有するカチオン性又は両性の架橋型水溶性高分子であり、且つ、該架橋型水溶性高分子の架橋度を、純水中に添加し、純水で200倍に希釈した状態の水溶液とした時の水溶液粘度を、4%食塩水中に添加し、4%食塩水で80倍に希釈した状態の水溶液とした時の塩水溶液粘度で除した、水溶液の粘性の測定により得た値で表した場合に、該値が5以上200以下のものである。

Figure 0006387337
(上記式(1)及び(2)中の、R1は、H又はCH3、R2又はR3は、それぞれ独立にCH3又はC25を表し、R4は、H、CH3又はC25のいずれかを表す。X-は、アニオン性対イオンを表す。) The specific polymer flocculant having a crosslinked structure that characterizes the present invention contains 5 mol% or more of any one or both of the monomers represented by the following general formula (1) and the following general formula (2) as essential components. A cationic or amphoteric cross-linked water-soluble polymer having a cross-linked structure obtained by polymerization in the presence of 0.5 to 300 ppm of a cross-linkable monomer by mass with respect to the raw material monomer to be contained, and The cross-linking degree of the cross-linking water-soluble polymer is added to pure water, and the aqueous solution viscosity when diluted to 200 times with pure water is added to 4% saline. When expressed as a value obtained by measuring the viscosity of the aqueous solution divided by the viscosity of the aqueous salt solution when the aqueous solution is diluted 80 times, the value is 5 or more and 200 or less.
Figure 0006387337
(In the above formulas (1) and (2), R 1 represents H or CH 3 , R 2 or R 3 each independently represents CH 3 or C 2 H 5 , and R 4 represents H, CH 3 Or C 2 H 5 , X represents an anionic counter ion.)

本発明で用いる架橋型の高分子凝集剤のより好ましいものとしては、前記架橋性単量体が、原料モノマーの総量に対して、質量で0.5〜50ppmであるものが挙げられる。0.5ppmよりも少ないと、配合量が少な過ぎて、確実に共重合している(架橋構造を有する)とみなすことができない。本発明を特徴づける架橋型の高分子凝集剤は、先に従来技術として挙げた特許文献5(特許第5692910号公報)に記載の方法で容易に製造することができる。また、市販のものとしては、日鉄住金環境社製のNCS−1530、NCS−1540、NCS−1649(いずれも商品名)等が挙げられ、いずれも使用することができる。   As a more preferable thing of the bridge | crosslinking type polymer flocculent used by this invention, what the said crosslinkable monomer is 0.5-50 ppm by mass with respect to the total amount of a raw material monomer is mentioned. If the amount is less than 0.5 ppm, the blending amount is too small and it cannot be regarded as being surely copolymerized (having a crosslinked structure). The crosslinkable polymer flocculent that characterizes the present invention can be easily produced by the method described in Patent Document 5 (Japanese Patent No. 5692910) cited as the prior art. Examples of commercially available products include NCS-1530, NCS-1540, NCS-1649 (all trade names) manufactured by Nippon Steel & Sumikin Environment Co., Ltd., and any of them can be used.

上記式(1)で示されるモノマーの代表的なものとしては、例えば、アクリロイルオキシエチルトリメチルアンモニウムクロリド、ジメチルアミノエチルアクリレートの塩酸塩等が挙げられる。また、式(2)で示されるモノマーの代表例としては、例えば、アクリロイルオキシエチルジメチルベンジルアンモニウムクロリドが挙げられる。また、これらのモノマーと共重合可能な他のモノマーとしては、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド等が挙げられる。   Typical examples of the monomer represented by the formula (1) include acryloyloxyethyltrimethylammonium chloride, hydrochloride of dimethylaminoethyl acrylate, and the like. A typical example of the monomer represented by the formula (2) is acryloyloxyethyldimethylbenzylammonium chloride. Examples of other monomers copolymerizable with these monomers include (meth) acrylamide, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like.

また、本発明で使用する架橋性単量体は、高分子の分子構造を改質する目的で添加するため構造改質剤とも呼ばれているが、以下のようなものが使用される。例えば、N,N−メチレンビス(メタ)アクリルアミド、トリアリルアミン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸−1,3−ブチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール、N−ビニル(メタ)アクリルアミド、N−メチルアリルアクリルアミド、アクリル酸グリシジル、ポリエチレングリコールジグリシジルエーテル、アクロレイン、グリオキザール、ビニルトリメトキシシラン等があるが、この場合の架橋剤としては、水溶性ポリビニル化合物がより好ましく、最も好ましいのはN,N−メチレンビス(メタ)アクリルアミドである。また、ギ酸ナトリウム、イソプロピルアルコール等の連鎖移動剤を併用して使用することも架橋性を調節する手法として効果的である。   The crosslinkable monomer used in the present invention is also referred to as a structural modifier because it is added for the purpose of modifying the molecular structure of the polymer, and the following are used. For example, N, N-methylenebis (meth) acrylamide, triallylamine, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate , Polyethylene glycol di (meth) acrylate, N-vinyl (meth) acrylamide, N-methylallylacrylamide, glycidyl acrylate, polyethylene glycol diglycidyl ether, acrolein, glyoxal, vinyltrimethoxysilane, etc. As a crosslinking agent, a water-soluble polyvinyl compound is more preferable, and the most preferable is N, N-methylenebis (meth) acrylamide. Also, using a chain transfer agent such as sodium formate and isopropyl alcohol in combination is also effective as a method for adjusting the cross-linking property.

架橋性高分子の架橋の度合いを表示する方法は、現在のところまだ一般的な表示はない。本発明では、特許文献5(特許第5692910号公報)に記載されている方法に準じ、その水溶液の粘性の測定によって架橋度を表す方法を採用した。具体的には、本発明で規定したように、本発明では、水溶性高分子を純水中に添加し、純水で200倍に希釈した状態の水溶液とした時の水溶液粘度をAQVとし、水溶性高分子を4%食塩水中に添加し、4%食塩水で80倍に希釈した状態の水溶液とした時の塩水溶液粘度をSLVとした場合に、下記の式を満足する架橋度を示す水溶性高分子を凝集剤として使用する。
5≦AQV/SLV≦200(25℃において)
At present, there is no general method for displaying the degree of crosslinking of the crosslinkable polymer. In the present invention, in accordance with the method described in Patent Document 5 (Japanese Patent No. 5629910), a method of expressing the degree of crosslinking by measuring the viscosity of the aqueous solution was adopted. Specifically, as defined in the present invention, in the present invention, the aqueous solution viscosity when the water-soluble polymer is added to pure water and diluted 200-fold with pure water is defined as AQV, When a water-soluble polymer is added to 4% saline and the aqueous solution is diluted 80-fold with 4% saline to give an aqueous solution with a salt solution viscosity of SLV, the degree of cross-linking satisfies the following formula: A water-soluble polymer is used as a flocculant.
5 ≦ AQV / SLV ≦ 200 (at 25 ° C.)

本発明で規定する上記した架橋構造を有する特定の高分子凝集剤は、先に述べたように、添加量が過剰になるとSS処理性が悪化する傾向がある。本発明者らの検討によれば、この点は、架橋構造を有さない直鎖型の高分子凝集剤においても同様である。   As described above, the specific polymer flocculant having the above-mentioned cross-linking structure defined in the present invention tends to deteriorate SS processability when the addition amount is excessive. According to the study by the present inventors, this point is the same for the linear polymer flocculant having no cross-linked structure.

また、本発明者らが詳細な検討を行った結果、本発明で規定する上記した架橋構造を有する特定の高分子凝集剤を用いることで、高分子凝集剤の添加量を少なく抑えることが可能になることを見出した。   In addition, as a result of detailed investigations by the present inventors, it is possible to suppress the addition amount of the polymer flocculant by using the specific polymer flocculant having the above-described cross-linking structure defined in the present invention. I found out that

更に、本発明者らの詳細な検討によれば、本発明の処理方法で、良好で確実な処理を行う場合の要件として、粗大SSと微細SSと高分子凝集剤とを乱流状態で併存させて、粗大SSと微細SSとを同一の処理で凝集沈降させる際における、これらの物質の併存状態を規定することが有効である。その際に、特に処理する廃水中における粗大SSの存在量を規定することが有効である。そして、その場合に、直鎖型の高分子凝集剤を用いた場合には、粗大SSの存在量が250mg/L以上とすることが有効であったのに対し、架橋型の高分子凝集剤を用いた場合は、粗大SSの存在量を130mg/L以上と低減できることがわかった。このことは、処理する廃水の性状に応じて使用する高分子凝集剤の種類を変更することで、より効果的な処理が可能になることを意味している。   Further, according to the detailed examination by the present inventors, the coarse SS, the fine SS, and the polymer flocculant coexist in a turbulent state as requirements for performing good and reliable treatment with the treatment method of the present invention. Thus, it is effective to define the coexistence state of these substances when the coarse SS and the fine SS are coagulated and settled by the same treatment. At that time, it is particularly effective to define the abundance of coarse SS in the wastewater to be treated. In this case, when a linear polymer flocculant is used, it is effective that the abundance of coarse SS is 250 mg / L or more, whereas a cross-linked polymer flocculant is used. It was found that the abundance of coarse SS can be reduced to 130 mg / L or more. This means that more effective treatment becomes possible by changing the type of the polymer flocculant used according to the properties of the wastewater to be treated.

次に、実施例及び比較例を挙げて本発明をさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples and comparative examples.

<模擬廃水>
検討試験用として、粗大SSと微細SSが、それぞれの存在量で混在している各模擬廃水を、下記のようにして調製した。具体的には、水道水に、微細SSとして、粒度分布の中央値が2μmであるカオリンを100mg/L程度含有させ、且つ、粗大SSとして、平均粒径が150μm程度であるケイ砂を用い、粗大SSの濃度が下記となるようにそれぞれ調整して模擬廃水を得た。すなわち、上記ケイ砂を用い、模擬廃水中における粗大SSの存在量が、それぞれ、500mg/L、1000mg/L、2000mg/L、5000mg/L、10000mg/L、20000mg/Lとなるようにした。
<Simulated wastewater>
For the examination test, each simulated wastewater in which coarse SS and fine SS are mixed in the respective abundances was prepared as follows. Specifically, in tap water, kaolin having a median particle size distribution of about 2 μm is contained as fine SS as about 100 mg / L, and silica sand having an average particle size of about 150 μm is used as coarse SS. Simulated wastewater was obtained by adjusting the concentration of coarse SS to be as follows. That is, the above-mentioned silica sand was used so that the abundance of coarse SS in the simulated waste water was 500 mg / L, 1000 mg / L, 2000 mg / L, 5000 mg / L, 10000 mg / L, and 20000 mg / L, respectively.

<高分子凝集剤>
比較用の高分子凝集剤として、一般式(1)及び(2)で表される2種類のモノマーを必須成分として、それぞれ20モル%ずつ含む原料モノマーから誘導した、アクリルアミド/[2−(アクリロイルオキシ)エチル]ベンジルジメチルアンモニウム・クロリド/[2−(アクリロイルオキシ)エチル]トリメチルアンモニウム・クロリド共重合体(モル比=60/20/20)を主成分とするカチオン性の水溶性高分子を用いた。その重量平均分子量は300万であり、pH7におけるカチオンコロイド当量が2.0meq/gである。得られた水溶性高分子について、後述する、架橋度を水溶液の粘性の測定によって得る方法で求めた値は4であった。この水溶性高分子を、直鎖型の高分子凝集剤と呼ぶ。
<Polymer flocculant>
As a comparative polymer flocculant, acrylamide / [2- (acryloyl) derived from raw material monomers each containing 20 mol% each of two types of monomers represented by the general formulas (1) and (2) as essential components Oxy) ethyl] benzyldimethylammonium chloride / [2- (acryloyloxy) ethyl] trimethylammonium chloride copolymer (molar ratio = 60/20/20) is used as a cationic water-soluble polymer. It was. Its weight average molecular weight is 3 million, and the cation colloid equivalent at pH 7 is 2.0 meq / g. About the obtained water-soluble polymer, the value calculated | required by the method of obtaining the crosslinking degree by the viscosity measurement of aqueous solution mentioned later was 4. This water-soluble polymer is called a linear polymer flocculant.

また、上記の原料モノマーに、架橋性単量体としてメチレンビスアクリルアミドを、原料モノマーの総量に対して質量で30ppmとなるように配合して重合することで、架橋型の水溶性高分子を得た。得られた架橋型の水溶性高分子は、水溶液の粘性の測定により得た値で表わした架橋度が48であった。架橋度の具体的な測定及び算出は、下記のようにして行った。得られた水溶性高分子を純水中に添加し、純水で200倍に希釈した状態の水溶液とした時の水溶液の粘度を測定し、この測定値を、別に、得られた水溶性高分子を4%食塩水中に添加し、4%食塩水で80倍に希釈した状態の水溶液とした時の塩水溶液の粘度を測定して得た測定値で除した値で、その架橋度を求めた。本発明では、上記で得た値が5以上200以下であった水溶性高分子を、架橋型高分子凝集剤として用いた。   In addition, a crosslinkable water-soluble polymer can be obtained by blending methylenebisacrylamide as a crosslinkable monomer with the above raw material monomer so as to have a mass of 30 ppm with respect to the total amount of the raw material monomer. It was. The obtained cross-linked water-soluble polymer had a degree of cross-linking of 48 expressed by a value obtained by measuring the viscosity of an aqueous solution. The specific measurement and calculation of the degree of crosslinking were performed as follows. The obtained water-soluble polymer was added to pure water, and the viscosity of the aqueous solution was measured when it was diluted 200-fold with pure water. The degree of cross-linking is obtained by dividing the molecule by the measured value obtained by measuring the viscosity of the salt aqueous solution when the molecule is added to 4% saline and diluted to 80 times with 4% saline. It was. In the present invention, a water-soluble polymer having a value obtained above of 5 or more and 200 or less was used as a crosslinkable polymer flocculant.

(高分子凝集剤の添加量についての検討1−廃水中の粗大SS量が500〜20000mg/Lの場合)
先に調製した粗大SSの存在量が異なる各模擬廃水を用い、上記で得た直鎖型の高分子凝集剤と、架橋型の高分子凝集剤をそれぞれ用い、更に、高分子凝集剤の添加量を、粗大SSと微細SSと共存させた場合の高分子凝集剤濃度が、0.25mg/L、0.5mg/L、0.75mg/L(直鎖型の場合のみ)になるようにして凝集沈降処理を行った。具体的には、撹拌機で強く撹拌して容器内の模擬廃水を乱流状態にし、この状態の廃水中に高分子凝集剤を添加し、その後に静置し、得られた上澄水(処理水)中における粗大SSを測定した。この際、撹拌及び静置する条件は同じにした。表1に得られた結果を示した。図1に、添加した高分子凝集剤濃度を0.25mg/Lとした場合の結果をグラフ化して示した。
(Examination of addition amount of polymer flocculant 1-when coarse SS amount in wastewater is 500 to 20000 mg / L)
Using each of the simulated wastewaters with different abundance of coarse SS prepared earlier, the linear polymer flocculant obtained above and the cross-linked polymer flocculant were used, respectively, and addition of the polymer flocculant The amount of the polymer flocculant when coexisting with the coarse SS and the fine SS is 0.25 mg / L, 0.5 mg / L, and 0.75 mg / L (only in the case of the linear type). Then, the coagulation sedimentation treatment was performed. Specifically, the simulated wastewater in the vessel is turbulently stirred with a stirrer, a polymer flocculant is added to the wastewater in this state, and then left to stand, and the resulting supernatant water (treatment) Coarse SS in water) was measured. At this time, the conditions for stirring and standing were the same. Table 1 shows the results obtained. FIG. 1 is a graph showing the results when the concentration of the added polymer flocculant is 0.25 mg / L.

Figure 0006387337
Figure 0006387337

表1及び図1に示したように、架橋型の高分子凝集剤を用いることで、直鎖型の高分子凝集剤を用いた場合よりも薬剤の添加量を少なく抑えることができることを確認した。更に、表1から、いずれの高分子凝集剤を用いた場合も、過剰に添加すると、得られる処理水の性状が悪化する傾向があることがわかった。   As shown in Table 1 and FIG. 1, it was confirmed that the use of a cross-linked polymer flocculant can reduce the amount of the drug added compared to the case of using a linear polymer flocculant. . Furthermore, it can be seen from Table 1 that when any polymer flocculant is used, when it is added excessively, the properties of the resulting treated water tend to deteriorate.

(高分子凝集剤の添加量についての検討2−粗大SS量が13〜2000mg/Lの実廃水の場合)
粗大SSの存在量が異なる熱延廃水をそれぞれ用意した。参考に、微細SSに対する粗大SSの比(粗大SS/微細SS)の値を表中に示した。これらの廃水について、先に得た直鎖型の高分子凝集剤と、架橋型の高分子凝集剤とをそれぞれ用い、更に、高分子凝集剤の添加量を、粗大SSと微細SSと共存させた場合の高分子凝集剤濃度が、0.5mg/L、0.75mg/L、1mg/Lになるようにそれぞれ調整して凝集沈降処理を行った。具体的な処理方法は、先の検討で行ったと同様にした。表2に得られた結果を示した。なお、目標とする処理水中の粗大SSは、20mg/Lである。
(Study on addition amount of polymer flocculant 2-in case of actual waste water with coarse SS amount of 13-2000 mg / L)
Hot rolled wastewaters with different abundances of SS were prepared. For reference, the ratio of coarse SS to fine SS (coarse SS / fine SS) is shown in the table. For these wastewaters, the previously obtained linear polymer flocculant and cross-linked polymer flocculant are used, respectively, and the addition amount of the polymer flocculant is allowed to coexist with coarse SS and fine SS. In this case, the concentration of the polymer flocculant was adjusted to 0.5 mg / L, 0.75 mg / L, and 1 mg / L, respectively, and the aggregation and sedimentation treatment was performed. The specific processing method was the same as that performed in the previous study. Table 2 shows the results obtained. The target coarse SS in the treated water is 20 mg / L.

Figure 0006387337
Figure 0006387337

表2に示したように、架橋型の高分子凝集剤を用いることで、直鎖型の高分子凝集剤を用いた場合よりも添加量を少なく抑えることができることに加えて、更に、高分子凝集剤濃度を1mg/Lとすれば、粗大SS量が130mg/Lと少ない廃水であっても、良好な凝集沈降沈殿処理ができることがわかった。これに対し、従来の直鎖型の高分子凝集剤を使用した場合は、同様に高分子凝集剤濃度が1mg/Lであると、粗大SS量が250mg/L以上必要になり、廃水の性状によっても、架橋型の高分子凝集剤を使用することによる優位性があることが確認された。   As shown in Table 2, in addition to using a cross-linked polymer flocculant, the amount of addition can be reduced as compared with the case of using a linear polymer flocculant. It was found that if the coagulant concentration is 1 mg / L, a good coagulation sedimentation treatment can be performed even with wastewater having a coarse SS amount of 130 mg / L. On the other hand, when a conventional linear polymer flocculant is used, if the polymer flocculant concentration is 1 mg / L, a coarse SS amount of 250 mg / L or more is required. Also, it was confirmed that there is an advantage by using a cross-linked polymer flocculant.

(架橋型と直鎖型の高分子凝集剤を使用した場合の凝集沈降性の相違についての検討)
先に調製した粗大SSが2000mg/L存在している模擬廃水を用い、撹拌機で強く撹拌して容器内の模擬廃水を乱流状態にし、この状態の廃水中に高分子凝集剤を0.5mg/L添加し、その後に静置し、得られた上澄水(処理水)中におけるSS(mg/L)を測定した。その際、撹拌機による撹拌条件を変えて、高分子凝集剤を添加する際の模擬廃水の乱流状態を変化させた。この試験の結果を表3に示した。
(Examination of the difference in coagulation sedimentation when using cross-linked and linear polymer flocculants)
Using the simulated wastewater containing 2000 mg / L of the coarse SS prepared previously, the simulated wastewater in the vessel is turbulently stirred with a stirrer, and the polymer flocculant is added to the wastewater in this state by 0.00. 5 mg / L was added, and then allowed to stand, and SS (mg / L) in the obtained supernatant water (treated water) was measured. At that time, the turbulent flow state of the simulated wastewater when the polymer flocculant was added was changed by changing the stirring conditions by the stirrer. The results of this test are shown in Table 3.

Figure 0006387337
Figure 0006387337

本発明の処理方法では、処理対象である水がある程度以上の乱流状態になっていることが重要であり、そのような状態の廃水中に高分子凝集剤を添加して併存させることで本発明の顕著な効果を得ている。これに対し、表3に示したように、架橋型の高分子凝集剤を用いた場合の方が、直鎖型の高分子凝集剤を用いた場合よりも、弱い撹拌力、短い撹拌時間で、凝集沈降反応が終了することが見出された。この結果、乱流が弱い設備において、直鎖型の高分子凝集剤を用いた従来の方法では、撹拌機を増設するなどの対策が必要な場合があったが、架橋型の高分子凝集剤を用いればその必要がなくなることが期待される。また、直鎖型の高分子凝集剤を用いた従来の方法では、ポリマーの添加位置は沈殿させる設備のより上流で添加する方が好ましかったが、架橋型であれば、添加位置を、乱流の程度がこれよりも弱い、例えば、沈殿させる設備へ流入する付近に設定できることが期待される。このため、本発明の処理方法の場合は、高分子凝集剤を添加する位置を選択する場合の自由度が大きくなるので、従来の方法に比べて、より広範な利用が期待される。   In the treatment method of the present invention, it is important that the water to be treated is in a turbulent state of a certain level or more. By adding a polymer flocculant to the waste water in such a state, The remarkable effect of the invention is obtained. On the other hand, as shown in Table 3, the case of using the cross-linked polymer flocculant is weaker in stirring force and the time of stirring than the case of using the linear polymer flocculant. It was found that the coagulation sedimentation reaction was completed. As a result, in the conventional method using a linear polymer flocculant in facilities with weak turbulent flow, there were cases where measures such as adding an agitator were necessary. It is expected that this will not be necessary. In addition, in the conventional method using a linear polymer flocculant, the addition position of the polymer was preferably added upstream of the equipment for precipitation. It is expected that the degree of turbulence is weaker than this, for example, it can be set in the vicinity of flowing into the facility for precipitation. For this reason, in the case of the treatment method of the present invention, the degree of freedom in selecting the position where the polymer flocculant is added is increased.

(架橋型と直鎖型の高分子凝集剤を使用した場合の凝集沈殿物の性状の違いの検討)
水道水をベースとして、粒度分布の中央値が2μmであるカオリンを用いて微細SS濃度が100mg/Lとなるようにし、且つ、平均粒径が150μm程度であるケイ砂を用いて粗大SS濃度が2000mg/Lとなるように調整して模擬廃水を作製した。そして、この模擬廃水を撹拌して乱流状態とした中に、先に使用したと同様の架橋型の高分子凝集剤と、直鎖型の高分子凝集剤とを、廃水中における高分子凝集剤の濃度が1.0mg/Lとなるように添加して、下記の一連の処理を行った。すなわち、高分子凝集剤が共存している状態で1分間撹拌し、その後、静置して沈殿物を得、上澄水(処理水)中におけるSS(mg/L)を測定した。その後、先に行ったと同様に、15分間再撹拌し、その後、静置して再度沈殿物を得、上澄水(処理水)中におけるSS(mg/L)を再測定した。表4に、得られた結果を示した。
(Examination of the difference in properties of aggregated precipitates when cross-linked and linear polymer flocculants are used)
Based on tap water, the fine SS concentration is adjusted to 100 mg / L using kaolin having a median particle size distribution of 2 μm, and the coarse SS concentration is set using silica sand having an average particle size of about 150 μm. A simulated wastewater was prepared by adjusting to 2000 mg / L. Then, while this simulated wastewater was stirred to be in a turbulent state, the same cross-linked polymer flocculant and linear polymer flocculant as previously used were combined with the polymer flocculant in the wastewater. The agent was added to a concentration of 1.0 mg / L, and the following series of treatments were performed. That is, the mixture was stirred for 1 minute in the presence of the polymer flocculant, and then allowed to stand to obtain a precipitate, and SS (mg / L) in the supernatant water (treated water) was measured. Thereafter, in the same manner as previously performed, the mixture was stirred again for 15 minutes, and then left to stand to obtain a precipitate again, and SS (mg / L) in the supernatant water (treated water) was measured again. Table 4 shows the results obtained.

Figure 0006387337
Figure 0006387337

表4に示した結果からわかるように、本発明の除去処理方法によって凝集沈降して形成される沈殿物は、直鎖型の高分子凝集剤を用いた場合と比較して、再分散して再び懸濁物質に戻ることが抑制された強固な凝集物となるという新たな事実が確認された。この事実は、下記に述べるように、架橋型の高分子凝集剤を用いることによって、実際の廃水処理を行った場合に、極めて有用な新たな効果が得られることを意味している。本発明において、特有の高分子凝集剤によって一緒に凝集沈降して沈殿させられた粗大SSと微細SSの凝集・沈殿物は、水中ポンプによって汚泥貯留槽へ送られたり、クラムシェル型と呼ばれるバケットを持つクレーンにより浚渫され、汚泥貯留槽へ運ばれる。この操作の過程において、凝集・沈殿物を構成している粗大SSから微細SSが剥がれてしまうと、汚泥貯留槽で分離される上澄水に微細SSが含まれてしまって濁るため、再度処理が必要となる。これに対し、本発明で規定する架橋型の高分子凝集剤を用いれば、粗大SSと微細SSの凝集・沈殿物は、結合力が強いものになり、粗大SSから微細SSが剥がれて微細SSが粗大SSから分離されることがないため、再分散した微細SSを再度処理することが不要となるという、SSの処理上、極めて有効な利点がある。   As can be seen from the results shown in Table 4, the precipitate formed by agglomeration and sedimentation by the removal treatment method of the present invention is redispersed as compared with the case of using a linear polymer flocculant. A new fact was confirmed that it was a strong agglomerate that was again prevented from returning to suspended matter. This fact means that a very useful new effect can be obtained when an actual wastewater treatment is performed by using a cross-linked polymer flocculant as described below. In the present invention, coarse SS and fine SS agglomerated and sedimented together by a specific polymer flocculant are sent to a sludge storage tank by a submersible pump, or a bucket called a clamshell type. It is dredged by a crane with a sword and transported to a sludge storage tank. In the course of this operation, if the fine SS is peeled off from the coarse SS constituting the agglomeration / precipitate, the fine SS is contained in the supernatant water separated in the sludge storage tank and becomes turbid. Necessary. On the other hand, when the crosslinkable polymer flocculant specified in the present invention is used, the aggregate and precipitate of the coarse SS and the fine SS have a strong bonding force, and the fine SS is peeled off from the coarse SS. Is not separated from the coarse SS, so that it is not necessary to process the re-dispersed fine SS again.

Claims (7)

粗大な懸濁物質と微細な懸濁物質とが併存している状態の廃水や取水等の水中に、前記懸濁物質の凝集・沈降剤を添加し、これらの懸濁物質を同一の処理によって凝集沈降させて一緒に取り除く水中の懸濁物質の除去処理方法であって、
前記粗大な懸濁物質が、少なくとも粒径が50μm以上のものであり、且つ、粒径が50μm以上の金属粉、石炭粉又はコークス粉の少なくともいずれかを含み、前記微細な懸濁物質が、粒径が50μmに満たないものであり、少なくとも、前記粗大な懸濁物質の存在量が130mg/L以上である状態で、前記粗大な懸濁物質と前記微細な懸濁物質とが併存する乱流状態の水の中に懸濁物質の凝集・沈降剤が共存する状態を生じさせて、前記懸濁物質を同一の処理で凝集沈降させる際に、
前記懸濁物質の凝集・沈降剤として、
下記一般式(1)、下記一般式(2)で表されるモノマーのいずれか一方又は両方を必須成分として5モル%以上を含む原料モノマーの総量に対して、質量で0.5〜300ppmの架橋性単量体を共存させて重合してなる、架橋構造を有するカチオン性又は両性の架橋型水溶性高分子を用い、且つ、該架橋型水溶性高分子が、その架橋度を、純水中に添加し、純水で200倍に希釈した状態の水溶液とした時の水溶液粘度を、4%食塩水中に添加し、4%食塩水で80倍に希釈した状態の水溶液とした時の塩水溶液粘度で除した、水溶液の粘性の測定により得た値で表した場合に、該値が5以上200以下のものであることを特徴とする水中の懸濁物質の除去処理方法。
Figure 0006387337
(上記式(1)及び(2)中の、R1は、H又はCH3、R2又はR3は、それぞれ独立にCH3又はC25を表し、R4は、H、CH3又はC25のいずれかを表す。X-は、アニオン性対イオンを表す。)
The agglomeration / sedimentation agent for the suspended solids is added to the water such as waste water or water intake in which coarse suspended solids and fine suspended solids coexist, and these suspended solids are subjected to the same treatment. A method for removing suspended matter in water that is coagulated and settled and removed together,
The coarse suspended substance has at least a particle size of 50 μm or more, and contains at least one of metal powder, coal powder, or coke powder having a particle size of 50 μm or more, and the fine suspended substance includes: Disturbance in which the coarse suspended substance and the fine suspended substance coexist in a state where the particle size is less than 50 μm and at least the abundance of the coarse suspended substance is 130 mg / L or more. When the coagulation / sedimentation agent of the suspended substance coexists in the flowing water, and the suspended substance is coagulated and settled by the same treatment,
As a coagulation / sedimentation agent for the suspended matter
0.5 to 300 ppm by mass with respect to the total amount of raw material monomers containing 5 mol% or more with either one or both of the monomers represented by the following general formula (1) and the following general formula (2) as essential components A cationic or amphoteric crosslinked water-soluble polymer having a crosslinked structure obtained by polymerization in the presence of a crosslinking monomer is used, and the crosslinked water-soluble polymer has a degree of crosslinking of pure water. The aqueous solution viscosity when added to the inside and diluted to 200 times with pure water is added to the 4% saline solution, and the salt when the aqueous solution is diluted 80 times with 4% saline solution. A method for removing suspended substances in water, characterized in that when expressed by a value obtained by measuring the viscosity of an aqueous solution divided by the viscosity of an aqueous solution, the value is 5 or more and 200 or less.
Figure 0006387337
(In the above formulas (1) and (2), R 1 represents H or CH 3 , R 2 or R 3 each independently represents CH 3 or C 2 H 5 , and R 4 represents H, CH 3 Or C 2 H 5 , X represents an anionic counter ion.)
前記架橋性単量体が、原料モノマーの総量に対して、質量で0.5〜50ppmである請求項1に記載の水中の懸濁物質の除去処理方法。   The method for removing suspended substances in water according to claim 1, wherein the crosslinkable monomer is 0.5 to 50 ppm by mass with respect to the total amount of raw material monomers. 前記粗大な懸濁物質の存在量が130mg/L以上であり、且つ、前記微細な懸濁物質濃度に対する粗大な懸濁物質濃度の比(粗/微)が、その質量比で3以上である請求項1又は2に記載の水中の懸濁物質の除去処理方法。   The abundance of the coarse suspended substance is 130 mg / L or more, and the ratio of the coarse suspended substance concentration to the fine suspended substance concentration (rough / fine) is 3 or more by mass ratio. The method for removing suspended substances in water according to claim 1 or 2. 前記水が、製鐵所において発生する廃水であり、
前記懸濁物質の凝集・沈降剤を前記廃水に添加する位置が、前記粗大な懸濁物質と前記微細な懸濁物質とが併存している廃水が発生する地点から水処理設備の入口付近に至るまでのいずれかの地点であり、且つ、該地点における廃水は、流速が0.5m/秒以上で乱流状態にある請求項1〜のいずれか1項に記載の水中の懸濁物質の除去処理方法。
The water is wastewater generated in a steelworks;
The position at which the suspending material coagulation / sedimentation agent is added to the wastewater is located near the entrance of the water treatment facility from the point where the wastewater where the coarse suspended material and the fine suspended material coexist is generated. The suspended matter in water according to any one of claims 1 to 3 , wherein the wastewater at any point is in a turbulent state at a flow velocity of 0.5 m / sec or more. Removal processing method.
前記水が、前記粗大な懸濁物質の水中における存在量が130mg/Lに満たない、水中に粗大な前記懸濁物質をほとんど含まない水である場合に、予め前記粗大な懸濁物質として機能するケイ砂を添加して、該粗大な懸濁物質の存在量が130mg/L以上となるようにして、粗大な懸濁物質と微細な懸濁物質とが併存した状態とした水である請求項1〜3のいずれか1項に記載の水中の懸濁物質の除去処理方法。 When the water is water having an abundance of the coarse suspended substance in water of less than 130 mg / L and hardly containing the coarse suspended substance in water, it functions as the coarse suspended substance in advance. Silica sand is added so that the amount of the coarse suspended substance is 130 mg / L or more, and the water is a state in which the coarse suspended substance and the fine suspended substance coexist. Item 4. The method for removing suspended substances in water according to any one of Items 1 to 3 . 少なくとも粒径が50μm以上の金属粉、石炭粉又はコークス粉の少なくともいずれかを含む粗大な懸濁物質或いは添加した前記粗大な懸濁物質として機能するケイ砂と、粒径が50μmに満たない微細な懸濁物質とが併存している乱流状態の廃水や取水等の水中に懸濁物質の凝集・沈降剤を添加し、これらの懸濁物質を同一の処理によって凝集沈降させて一緒に取り除く水中の懸濁物質の除去処理方法で使用するための懸濁物質の凝集・沈降剤であって、
下記一般式(1)、下記一般式(2)で表されるモノマーのいずれか一方又は両方を必須成分として5モル%以上を含む原料モノマーの総量に対して、質量で0.5〜300ppmの架橋性単量体を共存させて重合してなる、架橋構造を有するカチオン性又は両性の架橋型水溶性高分子であり、且つ、該架橋型水溶性高分子の架橋度を、純水中に添加し、純水で200倍に希釈した状態の水溶液とした時の水溶液粘度を、4%食塩水中に添加し、4%食塩水で80倍に希釈した状態の水溶液とした時の塩水溶液粘度で除した、水溶液の粘性の測定により得た値で表した場合に、該値が5以上200以下であることを特徴とする懸濁物質除去処理用の懸濁物質の凝集・沈降剤。
Figure 0006387337
(上記式(1)及び(2)中の、R1は、H又はCH3、R2又はR3は、それぞれ独立にCH3又はC25を表し、R4は、H、CH3又はC25のいずれかを表す。X-は、アニオン性対イオンを表す。)
A coarse suspended substance containing at least one of metal powder, coal powder or coke powder having a particle diameter of 50 μm or more, or silica sand functioning as the added coarse suspended substance, and a fine particle diameter less than 50 μm Suspended material coagulation / sedimentation agent is added to water such as turbulent waste water and water intake that coexist with various suspended materials, and these suspended materials are coagulated and settled by the same treatment and removed together. A suspension substance agglomeration / sedimentation agent for use in a method for removing suspended matter in water,
0.5 to 300 ppm by mass with respect to the total amount of raw material monomers containing 5 mol% or more with either one or both of the monomers represented by the following general formula (1) and the following general formula (2) as essential components A cationic or amphoteric crosslinked water-soluble polymer having a crosslinked structure obtained by polymerization in the presence of a crosslinking monomer, and the degree of crosslinking of the crosslinked water-soluble polymer in pure water Addition and viscosity of aqueous solution when diluted to 200 times with pure water is added to 4% saline and then diluted to 80 times with 4% saline to obtain aqueous solution viscosity of salt solution A suspended substance aggregating / sedimenting agent for suspended substance removal treatment, wherein the value is 5 or more and 200 or less when expressed by a value obtained by measuring the viscosity of an aqueous solution divided by 1.
Figure 0006387337
(In the above formulas (1) and (2), R 1 represents H or CH 3 , R 2 or R 3 each independently represents CH 3 or C 2 H 5 , and R 4 represents H, CH 3 Or C 2 H 5 , X represents an anionic counter ion.)
前記架橋性単量体が、原料モノマーの総量に対して、質量で0.5〜50ppmである請求項に記載の懸濁物質除去処理用の懸濁物質の凝集・沈降剤。 The flocculating substance coagulation / sedimentation agent for suspended substance removal treatment according to claim 6 , wherein the crosslinkable monomer is 0.5 to 50 ppm by mass with respect to the total amount of raw material monomers.
JP2015238937A 2015-12-07 2015-12-07 Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment Active JP6387337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015238937A JP6387337B2 (en) 2015-12-07 2015-12-07 Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238937A JP6387337B2 (en) 2015-12-07 2015-12-07 Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment

Publications (3)

Publication Number Publication Date
JP2017104774A JP2017104774A (en) 2017-06-15
JP2017104774A5 JP2017104774A5 (en) 2017-07-27
JP6387337B2 true JP6387337B2 (en) 2018-09-05

Family

ID=59060416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238937A Active JP6387337B2 (en) 2015-12-07 2015-12-07 Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment

Country Status (1)

Country Link
JP (1) JP6387337B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839619B2 (en) * 2017-06-14 2021-03-10 日鉄環境株式会社 Manufacturing method of granulated slag

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178563A (en) * 1974-12-28 1976-07-08 Kurita Water Ind Ltd
DE19502939A1 (en) * 1995-01-31 1996-08-01 Basf Ag Process for the production of high molecular weight polymers
JP2003245504A (en) * 2002-02-21 2003-09-02 Ebara Corp Method and device for treating wastewater
JP5692910B2 (en) * 2011-02-24 2015-04-01 ハイモ株式会社 Sludge dewatering agent and sludge dewatering treatment method
JP6068112B2 (en) * 2012-12-03 2017-01-25 日鉄住金環境株式会社 Aggregation / sedimentation agent for suspended matter and method for removing suspended matter from wastewater using the same
WO2014091819A1 (en) * 2012-12-10 2014-06-19 日鉄住金環境株式会社 Method for removing suspended solids from wastewater
JP6283865B2 (en) * 2013-09-30 2018-02-28 株式会社片山化学工業研究所 Water treatment method

Also Published As

Publication number Publication date
JP2017104774A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5907273B2 (en) Water treatment method and apparatus
JP6068112B2 (en) Aggregation / sedimentation agent for suspended matter and method for removing suspended matter from wastewater using the same
JP2009297600A (en) Method for treating dispersant-containing water
Dryabina et al. The flocculation of kaolin aqueous dispersion by two cationic polyelectrolytes
JP2013248584A (en) Method for treating drainage
JP2018153729A (en) Water treatment agent, water treatment method, and water treatment device
JP2011131167A (en) Flocculation treatment method of waste water
JP2016013540A5 (en)
JP5589430B2 (en) Treatment method of inorganic waste water
JP6374352B2 (en) Suspended matter polymer coagulation / sedimentation agent and suspended matter removal method
JP6374351B2 (en) Method for removing suspended matter in water
JP6387337B2 (en) Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment
JP5145823B2 (en) Organic flocculant and wastewater flocculation treatment method using the chemical
JP6287009B2 (en) Method and apparatus for treating wastewater containing inorganic ions
JP2008006382A (en) Method of treating oil-containing waste water
JP7083274B2 (en) Water treatment method and water treatment equipment
JP5967705B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5995534B2 (en) Aggregation treatment agent and waste water treatment method
JP2011062634A (en) Flocculant for service water and method for treating raw water for service water
JP4923834B2 (en) Method and apparatus for treating water containing soluble COD component
JP3740423B2 (en) Method for treating waste liquid containing emulsion polymerization polymer
JP4828152B2 (en) Sewage treatment method
JP6919116B2 (en) How to treat rice-washed wastewater
JP2002205074A (en) Treatment method for inorganic particle suspension
JP2017104774A5 (en) Method for removing suspended matter in water using a flocculating / flocculating material for cross-linked suspension material, and flocculating / flocculating agent for suspended material for suspension material removal treatment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170606

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6387337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250