JP6386936B2 - Method of manufacturing electrode member for pressure contact type semiconductor device - Google Patents

Method of manufacturing electrode member for pressure contact type semiconductor device Download PDF

Info

Publication number
JP6386936B2
JP6386936B2 JP2015036214A JP2015036214A JP6386936B2 JP 6386936 B2 JP6386936 B2 JP 6386936B2 JP 2015036214 A JP2015036214 A JP 2015036214A JP 2015036214 A JP2015036214 A JP 2015036214A JP 6386936 B2 JP6386936 B2 JP 6386936B2
Authority
JP
Japan
Prior art keywords
brazing
electrode body
electrode
plate
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015036214A
Other languages
Japanese (ja)
Other versions
JP2016157887A (en
Inventor
直人 西澤
直人 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015036214A priority Critical patent/JP6386936B2/en
Publication of JP2016157887A publication Critical patent/JP2016157887A/en
Application granted granted Critical
Publication of JP6386936B2 publication Critical patent/JP6386936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Die Bonding (AREA)

Description

本発明は、 圧接型半導体装置用電極部材の製造方法に関するものである。   The present invention relates to a method for manufacturing an electrode member for a pressure contact type semiconductor device.

近年、絶縁ゲート・バイポーラ・トランジスタ(IGBT)に代表される電圧駆動型の半導体スイッチング素子が用いられている。電圧駆動型の半導体スイッチング素子は、大容量とするために多数の半導体チップを接続して用いられることが多い。このように多数の半導体チップを接続した圧接型半導体装置として、多数の半導体チップを電気的に接続させるために、半導体チップと板状の電極体とを圧接した状態で接続した圧接型半導体装置が用いられている。多数の半導体チップの駆動状態を均一化するためには、板状の電極体と半導体チップとの圧接状態を、なるべく均一化することが重要である。   In recent years, voltage-driven semiconductor switching elements represented by insulated gate bipolar transistors (IGBTs) have been used. A voltage-driven semiconductor switching element is often used by connecting a large number of semiconductor chips in order to increase the capacity. As such a pressure contact type semiconductor device in which a large number of semiconductor chips are connected, there is a pressure contact type semiconductor device in which a semiconductor chip and a plate-like electrode body are connected in pressure contact in order to electrically connect a large number of semiconductor chips. It is used. In order to make the driving state of a large number of semiconductor chips uniform, it is important to make the pressure contact state between the plate-like electrode body and the semiconductor chip as uniform as possible.

例えば特許文献1には、圧接型半導体装置について、板状の電極体と半導体チップとの圧接状態を均一にするための構造や製造方法が提案されている。特許文献1では、セラミックからなる環状絶縁部材の内側に、銅からなる板状の電極体をろう付けによって固定してなる筐体を準備し、この筐体の電極体の表面に半導体チップを載置し、この半導体チップを筐体(の電極体)と蓋体とで挟むように押圧する。特許文献1では、この押圧力によってろう付け時に生じた電極体の歪みを是正している。   For example, Patent Document 1 proposes a structure and a manufacturing method for making a pressure contact state between a plate-shaped electrode body and a semiconductor chip uniform in a pressure contact type semiconductor device. In Patent Document 1, a case is prepared in which a plate-like electrode body made of copper is fixed by brazing inside an annular insulating member made of ceramic, and a semiconductor chip is mounted on the surface of the electrode body of this housing. The semiconductor chip is pressed so as to be sandwiched between the housing (electrode body) and the lid body. In patent document 1, the distortion of the electrode body produced at the time of brazing by this pressing force is corrected.

特開2014−110298号公報JP, 2014-110298, A

圧接型半導体装置用電極部材の使用時には、使用時の電極体の温度上昇にともなって電極体の内部応力が開放され、この内部応力の開放にともなって電極体が変形(ひずみが発生)することがある。近年の半導体スイッチング素子の大型化や駆動電圧の増加にともない、半導体スイッチング素子の使用時の温度が上昇する傾向にあり、このため、使用時の電極体の温度上昇にともなって起こる電極体の変形(ひずみ)の程度は大きくなる傾向にある。このように近年の使用時の温度上昇にともない、特許文献1記載の方法だけでは、使用時における電極体の変形が充分に抑制できないといった課題があった。本発明が解決しようとする課題は、使用時における電極体の変形が小さい圧接型半導体装置用電極部材の製造方法を提供することを目的とする。   When using electrode members for pressure contact type semiconductor devices, the internal stress of the electrode body is released as the temperature of the electrode body rises during use, and the electrode body is deformed (strained) as the internal stress is released. There is. With the recent increase in the size of semiconductor switching elements and the increase in driving voltage, the temperature during use of the semiconductor switching elements tends to increase. For this reason, deformation of the electrode body that occurs as the temperature of the electrode body during use increases. The degree of (strain) tends to increase. As described above, with the recent increase in temperature during use, there has been a problem that the deformation of the electrode body during use cannot be sufficiently suppressed only by the method described in Patent Document 1. An object of the present invention is to provide a method for manufacturing an electrode member for a pressure contact type semiconductor device in which deformation of an electrode body during use is small.

本願は、圧接型半導体装置用電極部材の製造方法であって、銅を主成分とする柱状体を板状に切断する工程と、前記切断する工程で得られた板状体を、非酸化性雰囲気中で加熱処理する工程と、加熱処理した前記板状体の少なくともいずれか一方の主面を加工して電極体を形成する工程と、前記電極体と前記電極体を囲繞する絶縁性の環状体とを、ろう付けする工程とを有し、前記加熱処理する工程では、前記電極体を前記ろう付けする工程でのろう付け温度と同温度で加熱することを特徴とする圧接型半導体装置用電極部材の製造方法を提供する。   The present application is a method for manufacturing an electrode member for a pressure-contact type semiconductor device, and includes a step of cutting a columnar body containing copper as a main component into a plate shape, and a plate-like body obtained by the cutting step. A step of heat-treating in an atmosphere; a step of processing at least one main surface of the heat-treated plate-like body to form an electrode body; and an insulating ring surrounding the electrode body and the electrode body A pressure welding type semiconductor device, comprising: a step of brazing a body, wherein in the heat treatment step, the electrode body is heated at a temperature equal to a brazing temperature in the brazing step. A method for manufacturing an electrode member is provided.

本発明によれば、使用時における電極体の変形が小さい圧接型半導体装置用電極部材を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode member for press contact type semiconductor devices with a small deformation | transformation of the electrode body at the time of use can be manufactured.

本発明の一実施形態の製造方法を用いて得られる圧接型半導体装置用電極部材の一例を示す、(a)は平面図であり、(b)は、(a)のAA’線における断面図である。An example of the electrode member for press-contact type semiconductor devices obtained using the manufacturing method of one Embodiment of this invention is shown, (a) is a top view, (b) is sectional drawing in the AA 'line of (a). It is. 本発明の一実施形態の製造方法のフローチャート図である。It is a flowchart figure of the manufacturing method of one Embodiment of this invention.

以下、図面を参照して、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の製造方法を用いて得られる圧接型半導体装置用電極部材の一例を示す、(a)は平面図であり、(b)は、(a)のAA’線における断面図である。図1に示す例の圧接型半導体装置用電極部材10は、銅を主成分とする電極体1と、電極体1を囲繞する絶縁性の環状体2を有して構成されており、電極体1と環状体2とがろう付け層4を介して接合されている。本実施形態ではろう付け層4は、環状体2の表面に被着したメタライズ層と、メタライズ層と電極体1と接合したろう材層とを備えている。   1A and 1B show an example of an electrode member for a press contact type semiconductor device obtained by using the manufacturing method of the present embodiment, FIG. 1A is a plan view, and FIG. 1B is a cross section taken along line AA ′ in FIG. FIG. An electrode member 10 for a pressure-contact type semiconductor device shown in FIG. 1 includes an electrode body 1 mainly composed of copper and an insulating annular body 2 surrounding the electrode body 1. 1 and the annular body 2 are joined together via a brazing layer 4. In the present embodiment, the brazing layer 4 includes a metallized layer deposited on the surface of the annular body 2 and a brazing material layer joined to the metallized layer and the electrode body 1.

電極体1は、一方の主面側に、格子状に形成された溝状部を挟んで平面視で互いに間隔を開けて縦横に配置された複数の矩形状の凸部1aを備えてなる。凸部1aの頂面それぞれには半導体素子3(図1で破線で示す)が当接して配置される。半導体素子3は例えば、絶縁ゲート・バイポーラ・トランジスタ(IGBT),サイリスタ(SCR)等の電圧駆動型の半導体素子である。より具体的には、半導体素子3は、電極体1と図示しない板状の上部電極構造体とに挟持されて、上部電極構造体と電極体1とによって強い圧力で押圧された状態で用いられる。   The electrode body 1 includes, on one main surface side, a plurality of rectangular convex portions 1a arranged vertically and horizontally at intervals in a plan view across a groove-like portion formed in a lattice shape. A semiconductor element 3 (indicated by a broken line in FIG. 1) is disposed in contact with each top surface of the convex portion 1a. The semiconductor element 3 is a voltage-driven semiconductor element such as an insulated gate bipolar transistor (IGBT) or a thyristor (SCR). More specifically, the semiconductor element 3 is sandwiched between the electrode body 1 and a plate-like upper electrode structure (not shown), and is used in a state of being pressed by the upper electrode structure and the electrode body 1 with a strong pressure. .

半導体素子3は駆動時に高い電圧が印加され、駆動にともなって大きな熱が発生する。半導体装置用電極部材10は、半導体素子3に電圧を印加するとともに、この熱を放熱する放熱板としても機能する。半導体素子3への電圧の印加の程度や、半導体素子3からの伝熱の程度は、半導体素子3と電極体1との当接状態や押圧力の程度によって変わる。複数の半導体素子3へ印加する電圧のばらつきを抑制するため、また複数の半導体素子3からの熱の放出の程度のばらつきを抑制するためには、使用時においても電極体1の変形が小さいことが重要といえる。   A high voltage is applied to the semiconductor element 3 during driving, and large heat is generated with driving. The electrode member 10 for a semiconductor device applies a voltage to the semiconductor element 3 and also functions as a heat radiating plate that radiates this heat. The degree of voltage application to the semiconductor element 3 and the degree of heat transfer from the semiconductor element 3 vary depending on the contact state between the semiconductor element 3 and the electrode body 1 and the degree of pressing force. In order to suppress variation in the voltage applied to the plurality of semiconductor elements 3 and also to suppress variation in the degree of heat release from the plurality of semiconductor elements 3, the deformation of the electrode body 1 is small even during use. Is important.

電極体1は銅を主成分とする。電極体1は銅を主成分とする合金等であってもよいが、例えば、無酸素銅,タフピッチ銅またはりん脱酸銅等の銅を99質量%以上含む高純度の銅からなることが好適である。電極体1が高純度の銅からなる場合、電極体1の熱伝導性が比較的高いので、半導体素子3が発生した熱を速やかに逃がすことができる。   The electrode body 1 contains copper as a main component. The electrode body 1 may be an alloy containing copper as a main component, but is preferably made of high-purity copper containing 99% by mass or more of copper such as oxygen-free copper, tough pitch copper, or phosphorus deoxidized copper. It is. When the electrode body 1 is made of high-purity copper, the heat conductivity of the electrode body 1 is relatively high, so that the heat generated by the semiconductor element 3 can be quickly released.

環状体2は、例えば、酸化アルミニウム,炭化ケイ素,窒化ケイ素または窒化アルミニウムを主成分とするセラミック焼結体からなる。これらのセラミック焼結体を用いた場合、機械的強度が強く、耐熱性も高いので、比較的長い期間にわたって安定した性能で圧接型半導体装置用電極部材10を使用することができる。   The annular body 2 is made of, for example, a ceramic sintered body mainly composed of aluminum oxide, silicon carbide, silicon nitride, or aluminum nitride. When these ceramic sintered bodies are used, since the mechanical strength is high and the heat resistance is also high, the electrode member 10 for a pressure contact type semiconductor device can be used with a stable performance over a relatively long period.

ろう付け層4におけるろう材の材質は特に限定されないが、耐熱性が高く、電極体1と環状体2との接合強度が高い点で、例えばいわゆる銀−銅ろう等を用いることが好ましい。例えば圧接型半導体装置用電極部材10は、使用時(半導体素子3の駆動時)には200℃〜500℃程度まで昇温することがある。ろう付け層4におけるろう材はこの程度の高温に対する耐熱性が高いことが必要であり、ろう付け温度が200〜500℃に比べて高いことが必要である。例えば銀-銅ろうとしては、銀および銅の比率がそれぞれ72質量%,28質量%であるろう材(いわゆるBAg−8銀ろう)等を用いることが好ましい。   Although the material of the brazing material in the brazing layer 4 is not particularly limited, it is preferable to use, for example, a so-called silver-copper brazing or the like in view of high heat resistance and high bonding strength between the electrode body 1 and the annular body 2. For example, the electrode member 10 for a press contact type semiconductor device may be heated to about 200 ° C. to 500 ° C. during use (when the semiconductor element 3 is driven). The brazing material in the brazing layer 4 needs to have high heat resistance against such a high temperature, and the brazing temperature needs to be higher than 200 to 500 ° C. For example, as the silver-copper brazing, it is preferable to use a brazing material (so-called BAg-8 silver brazing) having a silver and copper ratio of 72 mass% and 28 mass%, respectively.

なお主成分とは、着目する部材を構成する成分の合計100質量%に対して、70質量%以上を占める成分である。部材が金属からなる場合には、ICP発光分光分析装置または蛍光X線分析装置を用いて各金属の含有量を求め、その部材を構成する成分の合計100質量%に対して、70質量%以上を占める成分が主成分である。また、部材がセラミックス焼結体からなる場合には、X線回折装置(XRD)を用いてそのセラミック焼結体を構成する化合物を同定した上で、ICP発光分光分析装置または蛍光X線分析装置を用いて化合物を構成する金属の含有量を求め、同定された化合物に換算すればよい。   In addition, a main component is a component which occupies 70 mass% or more with respect to the total 100 mass% of the component which comprises the member to which its attention is paid. When the member is made of metal, the content of each metal is determined using an ICP emission spectroscopic analyzer or a fluorescent X-ray analyzer, and 70% by mass or more with respect to the total of 100% by mass of the components constituting the member. Is the main component. Further, when the member is made of a ceramic sintered body, an ICP emission spectroscopic analysis apparatus or a fluorescent X-ray analysis apparatus is identified after identifying a compound constituting the ceramic sintered body using an X-ray diffractometer (XRD). What is necessary is just to obtain | require content of the metal which comprises a compound using, and to convert into the identified compound.

なお、図1に示す実施形態では、環状体2の内周面の形状が平面視において円形状であるが、この内周面の形状は例えば四角形や六角形など多角形状であってもよい。また、電極体1の外周面の形状も、平面視において例えば四角形や六角形など多角形状であってもよい。環状体2や電極体1の形状は特に限定されない。環状体2の内周と電極体1の外周とが接合されるので、環状体2の内周の形状と電極体1の外周の形状とは相似形で、電極体1の外周の方が環状体2の内周よりろう付層4の分だけ小さいと、環状体2の内周と電極体1の外周とろう付層4の厚みを均一にすることができ、変形の小さいものとすることができる。   In the embodiment shown in FIG. 1, the shape of the inner peripheral surface of the annular body 2 is circular in plan view, but the shape of the inner peripheral surface may be a polygonal shape such as a quadrangle or a hexagon. Further, the shape of the outer peripheral surface of the electrode body 1 may be a polygonal shape such as a quadrangle or a hexagon in a plan view. The shapes of the annular body 2 and the electrode body 1 are not particularly limited. Since the inner periphery of the annular body 2 and the outer periphery of the electrode body 1 are joined, the shape of the inner periphery of the annular body 2 and the shape of the outer periphery of the electrode body 1 are similar, and the outer periphery of the electrode body 1 is annular. If the brazing layer 4 is smaller than the inner circumference of the body 2, the inner circumference of the annular body 2, the outer circumference of the electrode body 1, and the thickness of the brazing layer 4 can be made uniform, and the deformation should be small. Can do.

次に、本発明の一実施形態について、圧接型半導体装置用電極部材10の製造方法を例に説明する。図2は圧接型半導体装置用電極部材10の製造方法のフろうチャート図である。本実施形態の製造方法は、銅を主成分とする柱状体を板状に切断する工程(ステップS102)と、切断する工程で得られた板状体を非酸化性雰囲気中で加熱処理する工程(ステップS104)と、加熱処理した板状体の少なくともいずれか一方の主面を加工して電極体1を形成する工程(ステップS106)と、電極体1と電極体1を囲繞する絶縁性の環状体2とをろう付けする工程(ステップS108)とを有し、加熱処理する工程(ステップS104)では、電極体1をろう付けする工程(ステップS108)でのろう付け温度と同温度で加熱する。以下、各工程について説明する。   Next, an embodiment of the present invention will be described by taking as an example a method for manufacturing the electrode member 10 for a pressure contact type semiconductor device. FIG. 2 is a flow chart of a method for manufacturing the electrode member 10 for a pressure contact type semiconductor device. The manufacturing method of this embodiment includes a step of cutting a columnar body containing copper as a main component into a plate shape (step S102), and a step of heat-treating the plate-like body obtained in the cutting step in a non-oxidizing atmosphere. (Step S104), a step (Step S106) of forming the electrode body 1 by processing at least one main surface of the heat-treated plate-like body, and an insulating material surrounding the electrode body 1 and the electrode body 1 And brazing the annular body 2 (step S108), and in the heating process (step S104), heating is performed at the same temperature as the brazing temperature in the brazing process of the electrode body 1 (step S108). To do. Hereinafter, each step will be described.

まず、銅を主成分とする柱状体を準備し、この銅を主成分とする柱状体を板状に切断する(ステップS102)。具体的には、例えば直径が約125〜135mm、高さが約450〜550mmの円柱体を、マルチワイヤソーやバンドソーあるいはダイシングソー等の装置を用いて、長さ方向に沿って複数部分に分割するように切断することで、例えば直径が約125〜135mm、厚み(高さ)が16〜18mmの板状体を複数得る。銅を主成分とする柱状体は、その製造過程において外形状が円柱状に成型されているが、この成型過程やその後の温度履歴等に応じて、内部応力(当初残存引張応力)の大きさが部分的にばらついており、そのばらつきの程度は比較的大きい。この柱状体を切断して得られた板状体にも、この当初残存引張応力が残っており、そのばらつきの程度は同様に大きい。またこの切断する工程では板状体の双方の主面に、加工にともなう残存圧縮応力(加工残存圧縮応力)が生じている。   First, a columnar body mainly composed of copper is prepared, and the columnar body mainly composed of copper is cut into a plate shape (step S102). Specifically, for example, a cylindrical body having a diameter of about 125 to 135 mm and a height of about 450 to 550 mm is divided into a plurality of parts along the length direction using an apparatus such as a multi-wire saw, a band saw, or a dicing saw. By cutting in this way, for example, a plurality of plate-like bodies having a diameter of about 125 to 135 mm and a thickness (height) of 16 to 18 mm are obtained. The columnar body mainly composed of copper is formed in a cylindrical shape in the manufacturing process, but the magnitude of internal stress (initial residual tensile stress) depends on the molding process and subsequent temperature history. Vary partially, and the degree of variation is relatively large. The plate-like body obtained by cutting the columnar body also retains this initially residual tensile stress, and the degree of variation thereof is similarly large. Further, in this cutting step, residual compressive stress (processing residual compressive stress) accompanying processing is generated on both main surfaces of the plate-like body.

次に、切断する工程で得られた板状体を非酸化性雰囲気中で加熱処理する(ステップS104)。この加熱処理する工程では、後述する、電極体1(板状体が加工されたもの)と環状体2とをろう付けする工程(ステップS108)でのろう付け温度と同温度で加熱する。ろう付け温度と同温度とは、厳密に同じ温度でなく同程度の温度範囲をいい、具体的にはろう付け温度と±50℃の温度範囲のことをいう。   Next, the plate-like body obtained in the cutting step is heat-treated in a non-oxidizing atmosphere (step S104). In the heat treatment step, heating is performed at the same temperature as the brazing temperature in the step (step S108) of brazing the electrode body 1 (the processed plate-like body) and the annular body 2 described later. The same temperature as the brazing temperature is not exactly the same temperature but a temperature range of the same degree, specifically, a brazing temperature and a temperature range of ± 50 ° C.

上述したように、ろう付け層4におけるろう材として、いわゆるBAg−8銀ろうを用いる場合は、ろう付け層4におけるろう材層の形成工程(後述するステップS108)におけるろう付け温度は例えば820℃であるので、この加熱処理する工程(ステップS1
04)では、770℃〜870℃の温度まで板状体を加熱する。すなわち、この加熱処理では、ろう付け工程(ステップS108)の際の加熱温度と同程度の温度まで、主面の加工(ステップS106)に先がけて板状体を加熱処理している。なお、この加熱処理する工程(ステップS104)での加熱温度は、使用するろう材に応じて(使用するろう材のろう付け温度に応じて)設定すればよく、特に限定されない。
As described above, when so-called BAg-8 silver brazing is used as the brazing material in the brazing layer 4, the brazing temperature in the brazing material layer forming step (step S108 described later) is 820 ° C., for example. Therefore, this heating process (step S1
In 04), the plate-like body is heated to a temperature of 770 ° C. to 870 ° C. That is, in this heat treatment, the plate-like body is heat-treated prior to the main surface processing (step S106) to a temperature similar to the heating temperature in the brazing step (step S108). The heating temperature in the heat treatment step (step S104) may be set according to the brazing material to be used (in accordance with the brazing temperature of the brazing material to be used), and is not particularly limited.

加熱処理の雰囲気は非酸化性雰囲気であり、例えば、水素,窒素またはアルゴン雰囲気である。また、加熱温度の保持時間は、例えば、3分以上15分以下であり、特に、4分以上10分以下であることが好適である。本実施形態では、ろう付け工程(S108)の加熱より前に、このろう付けする工程(ステップS108)でのろう付け温度と同程度まで板状体を加熱しておくことで、切断前の円柱体の状態から内部に存在していた内部の引張応力(当初残存引張応力)を、ろう付け工程(S108)の前に、予め低減しておくとともに部分的なばらつきを抑制しておくことができる。加えて、ろう付け工程(S108)の前に、ステップS102の切断の際に生じた板状体の表面の圧縮応力(加工残存圧縮応力)も低減しておくことができる。この加熱処理によって、板状体は、内部にある程度の大きさの引張応力は残っているがそのばらつきは小さく、かつ表面の圧縮応力は比較的小さい状態となる。   The atmosphere of the heat treatment is a non-oxidizing atmosphere, for example, a hydrogen, nitrogen or argon atmosphere. The holding time of the heating temperature is, for example, 3 minutes or more and 15 minutes or less, and particularly preferably 4 minutes or more and 10 minutes or less. In the present embodiment, before heating in the brazing step (S108), the plate-like body is heated to the same level as the brazing temperature in the brazing step (step S108), so that the cylinder before cutting. Prior to the brazing step (S108), the internal tensile stress (initial residual tensile stress) existing inside the body from the state can be reduced in advance and partial variations can be suppressed. . In addition, before the brazing step (S108), the compressive stress (processing residual compressive stress) on the surface of the plate-like body generated at the time of cutting in step S102 can also be reduced. By this heat treatment, a certain amount of tensile stress remains in the plate-like body, but its variation is small and the surface compressive stress is relatively small.

仮にこのステップS104の加熱処理を行わない場合、ステップS108のろう付け工程において加熱を行う段階で、ステップS102の切断前の円柱体の状態から内部に存在していた電極体1の内部の引張応力(当初残存引張応力)と、ステップS102の切断と後述するステップ106の加工とでさらに大きくなった電極体1の表面の圧縮応力(加工残存圧縮応力)との双方が大きく、また双方とも部分的なばらつきが大きくなっている。すなわちこの場合、ステップS108のろう付け工程において加熱を行う段階で、板状体1の内部の引張応力(当初残存引張応力)と、表面の圧縮応力(加工残存圧縮応力)との双方が比較的大きく、かつ双方がバランス悪く残存している。このためこの場合、ステップS108のろう付け工程における加熱によって応力が開放されたとしても、内部の引張応力(当初残存引張応力)と圧縮応力(加工残存圧縮応力)とがバランス悪く解消し、部分的に一方の応力のみが強く残留することがあり、この部分的に残留した応力によって電極体1が部分的に変形することがあった。   If the heat treatment in step S104 is not performed, the tensile stress inside the electrode body 1 existing inside the cylindrical body before cutting in step S102 at the stage of heating in the brazing step in step S108. Both the (initial residual tensile stress) and the compressive stress (process residual compressive stress) on the surface of the electrode body 1 that has been further increased by the cutting in step S102 and the processing in step 106 described later are large, and both are partial. The variation is large. That is, in this case, at the stage of heating in the brazing process of step S108, both the internal tensile stress (initial residual tensile stress) of the plate-like body 1 and the surface compressive stress (working residual compressive stress) are relatively low. It is large and both of them remain unbalanced. For this reason, in this case, even if the stress is released by heating in the brazing process in step S108, the internal tensile stress (initial residual tensile stress) and the compressive stress (working residual compressive stress) are eliminated in an unbalanced manner, and partially In some cases, only one of the stresses remains strongly, and the electrode body 1 may be partially deformed by the partially remaining stress.

また、本実施形態では、板状体を加工して電極体1を形成する工程(ステップS106)の前にこの加熱処理をすることで、柱状体を板状に切断する工程(ステップS102)によって板状体に残存した応力および応力のばらつきが低減された状態で電極体1を形成することとなる。そのため、寸法精度の高い電極体1を形成することができる。   Further, in the present embodiment, by performing the heat treatment before the step of forming the electrode body 1 by processing the plate body (step S106), the step of cutting the columnar body into a plate shape (step S102). The electrode body 1 is formed in a state where stress remaining in the plate-like body and variations in stress are reduced. Therefore, the electrode body 1 with high dimensional accuracy can be formed.

次に、加熱処理した板状体の少なくともいずれか一方の主面を加工して電極体1を形成する(ステップS106)。本実施形態では、板状体の双方の主面をそれぞれ加工して電極体1を形成する。まず、マシニングセンタ装置等を用いて、板状体の一方の主面に機械的加工を施して、この一方主面に複数の溝部を形成することで、溝部に囲まれた複数の凸部1a(図1参照)を形成する。本実施形態では、例えば溝部の深さ(凸部1aの高さ、溝部の底から凸部1aの頂面までの高さ)は例えば5mm〜50mm、凸部の頂面の各辺の長さを例えば5mm〜50mmとしている。この後、凸部1aが形成された一方主面と他方主面との双方の主面を研削して、双方の主面を平滑化する。板状体の双方の主面を研削することで、板状体の外表面である主面には、ある程度の大きさの圧縮応力が加わることになる。双方の主面は平滑化されており、双方の主面での加工残存圧縮応力のばらつきは小さい状態となっている。   Next, the electrode body 1 is formed by processing at least one main surface of the heat-treated plate-like body (step S106). In the present embodiment, the electrode body 1 is formed by processing both main surfaces of the plate-like body. First, by using a machining center apparatus or the like, mechanical processing is performed on one main surface of the plate-like body, and a plurality of groove portions are formed on the one main surface, whereby a plurality of convex portions 1a ( 1). In the present embodiment, for example, the depth of the groove (the height of the protrusion 1a, the height from the bottom of the groove to the top surface of the protrusion 1a) is, for example, 5 mm to 50 mm, and the length of each side of the top surface of the protrusion For example, 5 mm to 50 mm. Thereafter, both main surfaces of the one main surface and the other main surface on which the convex portion 1a is formed are ground to smooth both main surfaces. By grinding both main surfaces of the plate-like body, a certain amount of compressive stress is applied to the main surface, which is the outer surface of the plate-like body. Both main surfaces are smoothed, and the variation in processing residual compressive stress on both main surfaces is small.

すなわち、この電極体を形成するステップを経た後の板状体(電極体1)は、内部にある程度の大きさの引張応力(当初残存引張応力)は残っているがそのばらつきは小さく、
かつ表面の圧縮応力(加工残存圧縮応力)もある程度の大きさで残っているがそのばらつきは小さい状態となっている。
That is, the plate-like body (electrode body 1) after undergoing the step of forming this electrode body has a certain amount of tensile stress (initial residual tensile stress) inside, but its variation is small,
In addition, the surface compressive stress (working residual compressive stress) remains to some extent, but the variation is small.

次に、電極体1と電極体1を囲繞する絶縁性の環状体2とをろう付けする(ステップS108)。本実施形態では、ろう付け層4におけるろう材として、いわゆるBAg−8銀ろうを用いており、ろう付け層4の形成工程(後述するステップS108)におけるろう付け温度は、820℃となっている。   Next, the electrode body 1 and the insulating annular body 2 surrounding the electrode body 1 are brazed (step S108). In the present embodiment, so-called BAg-8 silver brazing is used as the brazing material in the brazing layer 4, and the brazing temperature in the brazing layer 4 forming step (step S108 described later) is 820 ° C. .

なお、電極体1と環状体2との接合強度をより高くする点で、ろう付けに先がけて、環状体2の内周面にメタライズ層を形成しておくことが好ましい。例えば、モリブデンを主成分としマンガンを含む中間層と、中間層の表面に被着した、ニッケルを主成分としリンまたは硼素を含む第1金属層とを、環状体2の内周面に予め形成しておくことが好ましい。また、ニッケルを主成分とし、リンまたは硼素を含む第2金属層を環状体2の内周面に予め形成しておくことが好ましい。具体的にはステップS108では、まずモリブデンを主成分としマンガンを含む中間層と、中間層の表面に被着した、ニッケルを主成分としリンまたは硼素を含む第1金属層とを、環状体2の内周面に形成し、ニッケルを主成分とし、リンまたは硼素を含む第2金属層を環状体2の内周面に形成する。その後、銀および銅の各粉末の比率がそれぞれ72質量%,28質量%となるように秤量して混合した後、樹脂または無機化合物フラックスと有機溶媒とを添加し混練することによってペースト状のろう材を作製し、このろう材を第1金属層および第2金属層の少なくともいずれか一方の表面にスクリーン印刷法、加圧印刷法および刷毛塗り等のいずれかの方法で塗布した後、120℃以上150℃以下で乾燥する。そして、ろう材を乾燥させた後、例えば820℃の設定温度で熱処理してろう材を溶融させた後に降温させ、電極体1と環状体2とを接合するろう付け層4を形成する。本実施形態では、このようにして圧接型半導体装置用電極部材10を得ることができる。   In addition, it is preferable to form a metallized layer on the inner peripheral surface of the annular body 2 prior to brazing in that the bonding strength between the electrode body 1 and the annular body 2 is further increased. For example, an intermediate layer containing molybdenum as a main component and containing manganese, and a first metal layer containing nickel as a main component and containing phosphorus or boron deposited on the surface of the intermediate layer are formed in advance on the inner peripheral surface of the annular body 2. It is preferable to keep it. Further, it is preferable that a second metal layer containing nickel as a main component and containing phosphorus or boron is formed in advance on the inner peripheral surface of the annular body 2. Specifically, in step S108, first, an intermediate layer containing molybdenum as a main component and containing manganese, and a first metal layer containing nickel as a main component and containing phosphorus or boron deposited on the surface of the intermediate layer are formed into an annular body 2. A second metal layer containing nickel as a main component and containing phosphorus or boron is formed on the inner peripheral surface of the annular body 2. Then, after weighing and mixing so that the ratios of the silver and copper powders are 72% by mass and 28% by mass, respectively, a resin or inorganic compound flux and an organic solvent are added and kneaded to form a paste-like wax After preparing a material and applying this brazing material to the surface of at least one of the first metal layer and the second metal layer by any method such as a screen printing method, a pressure printing method, and a brush coating method, 120 ° C. Dry at 150 ° C. or lower. Then, after the brazing material is dried, the brazing material is melted by heat treatment at a set temperature of 820 ° C., for example, and then the temperature is lowered to form the brazing layer 4 that joins the electrode body 1 and the annular body 2. In this embodiment, the electrode member 10 for pressure contact type semiconductor devices can be obtained in this way.

ろう材として、銀および銅の各粉末の合計100質量部に、チタン,ハフニウム,ジルコニウム,ニオブまたはその水素化物等を2質量部以上5質量部以下添加混合した、いわゆる活性ろう材を用いてもよい。この場合は、環状体2の内周面にメタライズ層を形成しなくても高い接合強度を得ることができる。   As the brazing material, a so-called active brazing material in which 2 parts by mass or more and 5 parts by mass or less of titanium, hafnium, zirconium, niobium, or a hydride thereof is added to and mixed with 100 parts by mass of the silver and copper powders may be used. Good. In this case, high bonding strength can be obtained without forming a metallized layer on the inner peripheral surface of the annular body 2.

また、銀および銅の各粉末の合計100質量部に、インジウムまたはスズを1質量部以上10質量部以下添加混合することでろう材の融点を低下させたり、ろう付層4における硬度を低下させたりすることができる。   Moreover, the melting point of the brazing material is lowered by adding 1 to 10 parts by mass of indium or tin to 100 parts by mass of the silver and copper powders, and the hardness of the brazing layer 4 is lowered. Can be.

このろう付け時の熱処理によっても、ステップS106の後に電極体1の内部に残っていた、内部の引張応力(当初残存引張応力)と、表面の圧縮応力(加工残存圧縮応力)とが開放される。   Also by this heat treatment during brazing, the internal tensile stress (initial residual tensile stress) and the surface compressive stress (working residual compressive stress) remaining inside the electrode body 1 after step S106 are released. .

上述のように、このステップS108のろう付け工程およびステップS106の加工工程の前に、ろう付け温度と同温度で加熱するアニール工程(ステップS104)を経ている本実施形態では、このステップS108のろう付け工程を行う段階で、電極体1は、内部にある程度の大きさの引張応力(当初残存引張応力)は残っているがそのばらつきは小さく、かつ表面の圧縮応力(加工残存圧縮応力)もある程度の大きさで残っているがそのばらつきは小さい状態となっている。このため、このステップS108のろう付け工程における加熱によって応力が開放されることで、内部の引張応力(当初残存引張応力)と圧縮応力(加工残存圧縮応力)とがそれぞれバランス良く解消し、部分的に一方の応力のみが強く残留することが抑制されているので、残留した応力によって電極体1が部分的に変形することが抑制されている。   As described above, in this embodiment in which the annealing process (step S104) is performed at the same temperature as the brazing temperature before the brazing process of step S108 and the processing process of step S106, the brazing process of step S108 is performed. At the stage of performing the attaching process, the electrode body 1 has a certain amount of tensile stress (initial residual tensile stress) inside, but the variation is small, and the surface compressive stress (working residual compressive stress) is also to some extent. However, the variation is small. For this reason, the internal tensile stress (initial residual tensile stress) and the compressive stress (working residual compressive stress) are eliminated in a well-balanced manner by releasing the stress by heating in the brazing process of step S108. Therefore, it is suppressed that only one stress remains strongly, and thus the electrode body 1 is suppressed from being partially deformed by the remaining stress.

このような製造方法によって得られる圧接型半導体装置用電極部材10は、ろう付けする工程(ステップS108)で生じる部分的変形が少なく、高い形状精度を有している。また、電極体1に残存している内部応力が小さく、その内部応力の大きさの部分的なばらつきも非常に小さい。このため、電極体や環状体の温度上昇にともなって起こる内部応力の開放に応じた電極体の変形(ひずみ)が充分に抑制できている。このように圧接型半導体装置用電極部材10は、温度上昇にともなう電極体1の変形が抑制されており、半導体素子3と電極体1との接触状態や接触圧力のばらつきが小さいので、複数の半導体素子3の動作特性のばらつきの程度を抑制することができる。   The electrode member 10 for a pressure-contact type semiconductor device obtained by such a manufacturing method has little shape deformation in the brazing step (step S108), and has high shape accuracy. Further, the internal stress remaining in the electrode body 1 is small, and the partial variation in the magnitude of the internal stress is very small. For this reason, the deformation (strain) of the electrode body according to the release of the internal stress caused by the temperature rise of the electrode body or the annular body can be sufficiently suppressed. As described above, the electrode member 10 for a pressure contact type semiconductor device suppresses deformation of the electrode body 1 due to a temperature rise, and a variation in contact state and contact pressure between the semiconductor element 3 and the electrode body 1 is small. The degree of variation in the operating characteristics of the semiconductor element 3 can be suppressed.

以上、本発明の実施形態および実施例について説明したが、本発明は上述の実施形態や実施例に限定されるものでない。本発明は、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよいのはもちろんである。   While the embodiments and examples of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples. It goes without saying that various improvements and modifications may be made to the present invention without departing from the gist of the present invention.

1 電極体
2 環状体
3 半導体素子
4 ろう付け層
10 圧接型半導体装置用電極部材
DESCRIPTION OF SYMBOLS 1 Electrode body 2 Ring body 3 Semiconductor element 4 Brazing layer 10 Electrode member for press-contact type semiconductor devices

Claims (3)

圧接型半導体装置用電極部材の製造方法であって、
銅を主成分とする柱状体を板状に切断する工程と、
前記切断する工程で得られた板状体を、非酸化性雰囲気中で加熱処理する工程と、
加熱処理した前記板状体の少なくともいずれか一方の主面を加工して電極体を形成する工程と、
前記電極体と前記電極体を囲繞する絶縁性の環状体とを、ろう付けする工程とを有し、
前記加熱処理する工程では、前記電極体を前記ろう付けする工程でのろう付け温度と同温度で加熱することを特徴とする圧接型半導体装置用電極部材の製造方法。
A manufacturing method of an electrode member for a pressure contact type semiconductor device,
Cutting the columnar body mainly composed of copper into a plate shape;
A step of heat-treating the plate-like body obtained in the cutting step in a non-oxidizing atmosphere;
A step of forming an electrode body by processing at least one main surface of the heat-treated plate-like body;
Brazing the electrode body and an insulating annular body surrounding the electrode body,
In the heat treatment step, the electrode member is heated at the same temperature as the brazing temperature in the brazing step.
前記加熱処理する工程では、前記板状体を770℃以上870℃以下の温度まで加熱することを特徴とする請求項1記載の圧接型半導体装置用電極部材の製造方法。   2. The method for manufacturing an electrode member for a pressure contact type semiconductor device according to claim 1, wherein, in the heat treatment step, the plate-like body is heated to a temperature of 770 ° C. or more and 870 ° C. or less. 前記板状体は、無酸素銅,タフピッチ銅またはりん脱酸銅からなることを特徴とする請求項1または2に記載の圧接型半導体装置用電極部材の製造方法。   The method for manufacturing an electrode member for a pressure contact type semiconductor device according to claim 1, wherein the plate-like body is made of oxygen-free copper, tough pitch copper, or phosphorus deoxidized copper.
JP2015036214A 2015-02-26 2015-02-26 Method of manufacturing electrode member for pressure contact type semiconductor device Active JP6386936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036214A JP6386936B2 (en) 2015-02-26 2015-02-26 Method of manufacturing electrode member for pressure contact type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036214A JP6386936B2 (en) 2015-02-26 2015-02-26 Method of manufacturing electrode member for pressure contact type semiconductor device

Publications (2)

Publication Number Publication Date
JP2016157887A JP2016157887A (en) 2016-09-01
JP6386936B2 true JP6386936B2 (en) 2018-09-05

Family

ID=56826835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036214A Active JP6386936B2 (en) 2015-02-26 2015-02-26 Method of manufacturing electrode member for pressure contact type semiconductor device

Country Status (1)

Country Link
JP (1) JP6386936B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303639B2 (en) * 1995-12-12 2002-07-22 古河電気工業株式会社 Method for producing copper-based lead material for semiconductor
JP2004023083A (en) * 2002-06-20 2004-01-22 Toshiba Corp Pressure-welded semiconductor device
JP5055991B2 (en) * 2006-12-11 2012-10-24 株式会社デンソー Electrode machining electrode fabrication method
JP5312920B2 (en) * 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 Copper alloy plate or strip for electronic materials
JP5036090B2 (en) * 2010-11-02 2012-09-26 三菱伸銅株式会社 Copper alloy hot forged product and method for producing copper alloy hot forged product
JP2014110298A (en) * 2012-11-30 2014-06-12 Toshiba Corp Method of manufacturing pressure-welded semiconductor device

Also Published As

Publication number Publication date
JP2016157887A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6430007B2 (en) Semiconductor device and manufacturing method of semiconductor device
Rudzki et al. Power modules with increased power density and reliability using Cu wire bonds on sintered metal buffer layers
US20170309544A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP5675525B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6336138B2 (en) Semiconductor device
US20210151365A1 (en) Double Side Heat Dissipation for Silicon Chip Package
EP2159837B1 (en) Electronic component storing package and electronic device
JP6011066B2 (en) Manufacturing method of semiconductor device
US20220230905A1 (en) Wafer placement table and method of manufacturing the same
JP6386936B2 (en) Method of manufacturing electrode member for pressure contact type semiconductor device
JPWO2015137109A1 (en) Semiconductor device manufacturing method and semiconductor device
WO2021040030A1 (en) Heat dissipation plate, semiconductor package and semiconductor module
JP2004253736A (en) Heat spreader module
JP2010278171A (en) Power semiconductor and manufacturing method of the same
JP5954374B2 (en) Insulating substrate, manufacturing method thereof, semiconductor module, and semiconductor device
JP6259625B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP2015072957A (en) Junction structure of insulation substrate and cooler, manufacturing method thereof, power semiconductor module and manufacturing method thereof
US20190295981A1 (en) Silicon Carbide Devices and Methods for Manufacturing the Same
JP6574234B2 (en) Semiconductor device
JP2013105789A (en) Wiring body with wiring sheet, semiconductor device, and method for manufacturing semiconductor device
JP6848493B2 (en) Semiconductor module and its manufacturing method
US20140077388A1 (en) Semiconductor device and method of manufacturing the same
CN110246814B (en) Power chip pre-packaging method, power chip pre-packaging structure, power chip pre-packaging method, power chip pre-packaging structure and wafer pre-packaging structure
JP2017157776A (en) Electrode film, semiconductor device having the same, and method of manufacturing semiconductor device
WO2020240866A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R150 Certificate of patent or registration of utility model

Ref document number: 6386936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150