JP6386142B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP6386142B2
JP6386142B2 JP2017151214A JP2017151214A JP6386142B2 JP 6386142 B2 JP6386142 B2 JP 6386142B2 JP 2017151214 A JP2017151214 A JP 2017151214A JP 2017151214 A JP2017151214 A JP 2017151214A JP 6386142 B2 JP6386142 B2 JP 6386142B2
Authority
JP
Japan
Prior art keywords
optical member
light
light source
led light
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017151214A
Other languages
Japanese (ja)
Other versions
JP2017216252A (en
Inventor
好文 關口
好文 關口
津村 誠
津村  誠
楠 敏明
敏明 楠
別井 圭一
圭一 別井
誠治 村田
誠治 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Publication of JP2017216252A publication Critical patent/JP2017216252A/en
Application granted granted Critical
Publication of JP6386142B2 publication Critical patent/JP6386142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、照明装置に関するものである。   The present invention relates to a lighting device.

近年、照明装置の光源として、LED(Light Emitting Diode、発光ダイオード)の使用が多くなっている。天井に取り付けるタイプの室内照明器具用の光源としても蛍光管に代わってLEDが使われ始めている。LEDは水銀レスであることが特徴であり、環境を配慮した光源である。   In recent years, LEDs (Light Emitting Diodes) have been increasingly used as light sources for lighting devices. LEDs are beginning to be used in place of fluorescent tubes as light sources for indoor lighting fixtures that are mounted on the ceiling. The LED is characterized by being mercury-free, and is an environmentally friendly light source.

LEDを用いた照明装置は、LEDからの出射光に指向性を付与することがある。特許文献1および特許文献2にLEDからの出射光に指向性を付与した光学系に関して開示されている。   An illuminating device using an LED may impart directivity to light emitted from the LED. Patent Document 1 and Patent Document 2 disclose optical systems in which directivity is imparted to light emitted from an LED.

特開2010−198919号公報JP 2010-198919 A 特開2007−48740号公報JP 2007-48740 A

LEDを光源として例えば天井に取り付けるタイプの室内照明器具は、蛍光管を光源として天井に取り付けるタイプの室内照明器具に比べて、器具からの出射光の配光が狭いという課題がある。とりわけ、天井方向への光が少ないがゆえに間接光が少ないという課題がある。特許文献1および2は、本課題に関して考慮されていないため、十分な配光特性の改善が得られないと考えられる。本願は、LEDを光源として例えば天井に取り付けるタイプの室内照明器具において、間接光を増大させることを目的とする。   For example, a type of indoor lighting fixture in which an LED is used as a light source and attached to the ceiling has a problem that the light distribution of light emitted from the fixture is narrower than a type of indoor lighting fixture in which a fluorescent tube is used as a light source and attached to the ceiling. In particular, there is a problem that there is little indirect light because there is little light toward the ceiling. Since Patent Documents 1 and 2 do not consider this problem, it is considered that sufficient light distribution characteristics cannot be improved. An object of the present application is to increase indirect light in an indoor lighting fixture of a type in which an LED is used as a light source, for example, attached to a ceiling.

本発明の課題を解決するための手段は、例えば以下の通りである。   Means for solving the problems of the present invention are as follows, for example.

基板と、前記基板上の電極に、照明装置の中心を囲うように実装された第1のLED光源および第2のLED光源と、前記第1のLED光源に対応する第1の光学部材と、前記第2のLED光源に対応する第2の光学部材と、前記第1の光学部材と前記第2の光学部材を繋ぐ光学部材接続部と、を有する複合光学部材と、を有する照明装置であって、前記第1の光学部材からの出射光の光度分布と、前記第2の光学部材からの出射光の光度分布とが異なり、前記照明装置が主に光を照射する方向を正面方向とし、前記正面方向と略垂直な方向を側面方向とした場合に、前記第1のLED光源および前記第2のLED光源は、前記基板の法線方向に主に光を出射する正面発光LED光源であり、前記第2のLED光源の方が、前記第1のLED光源よりも、前記照明装置の中心からの距離が遠い位置に配置され、前記第2の光学部材の中心を含む断面における前記第2の光学部材の出射光の光度分布が、前記第1の光学部材の中心を含む断面における前記第1の光学部材の出射光の光度分布よりも広く、前記第2の光学部材はレンズであり、前記複合光学部材における最外側の光学部材の出射光の光度分布は、最内側の光学部材の出射光の光度分布よりも広い照明装置。

A first LED light source and a second LED light source mounted on a substrate, an electrode on the substrate so as to surround a center of a lighting device, and a first optical member corresponding to the first LED light source; A lighting device comprising: a second optical member corresponding to the second LED light source; and a composite optical member having an optical member connecting portion connecting the first optical member and the second optical member. The luminous intensity distribution of the emitted light from the first optical member is different from the luminous intensity distribution of the emitted light from the second optical member, and the direction in which the illumination device mainly emits light is the front direction, The first LED light source and the second LED light source are front-emitting LED light sources that mainly emit light in the normal direction of the substrate when the side direction is substantially perpendicular to the front direction. The second LED light source is the first LED. The light intensity distribution of the emitted light of the second optical member in the cross section including the center of the second optical member is disposed at a position farther from the center of the illumination device than the source. wider than the luminous intensity distribution of the outgoing light of the first optical member in the section including the center member, the second optical member Ri lens der luminous intensity of the light emitted outermost optical member in the composite optical element The illumination device has a wider distribution than the luminous intensity distribution of the emitted light from the innermost optical member .

本発明により照明器具の間接光を増大できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   The indirect light of a lighting fixture can be increased by this invention. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の第1の実施形態に係る照明装置の構成を説明するための正面図。The front view for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るLED光源を説明するための図。The figure for demonstrating the LED light source which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るLED光源を説明するための図。The figure for demonstrating the LED light source which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るLED光源を説明するための図。The figure for demonstrating the LED light source which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るLED光源を説明するための図。The figure for demonstrating the LED light source which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るLED光源を説明するための図。The figure for demonstrating the LED light source which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るLED光源を説明するための図。The figure for demonstrating the LED light source which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置が解決する課題を説明するための図。The figure for demonstrating the subject which the illuminating device which concerns on the 2nd Embodiment of this invention solves. 本発明の第2の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 5th Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第6の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための断面図。Sectional drawing for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係る照明装置の構成を説明するための図。The figure for demonstrating the structure of the illuminating device which concerns on the 7th Embodiment of this invention.

以下、図面等を用いて本発明について説明する。   Hereinafter, the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る照明装置の構成を説明するための正面図であって、LED光源3A、3Bを実装する基板2の法線方向から見た図である。基板2において、LED光源3A、3Bが実装されている面を実装面と呼ぶことにする。図1は、LED光源3A、LED光源3Bの配置および複合光学部材7の概略を説明するための正面図であるため、説明に関係無い部材は省略している。図2は、図1記載のA−A′の断面図である。当該断面は、LED光源3A、LED光源3Bが実装されている基板2の法線と平行な面である。図2においても、主要な部材のみ記載している。   FIG. 1 is a front view for explaining the configuration of the illumination device according to the first embodiment of the present invention, as viewed from the normal direction of the substrate 2 on which the LED light sources 3A and 3B are mounted. In the substrate 2, a surface on which the LED light sources 3A and 3B are mounted is referred to as a mounting surface. FIG. 1 is a front view for explaining the arrangement of the LED light source 3A and the LED light source 3B and the outline of the composite optical member 7, and members not related to the description are omitted. 2 is a cross-sectional view taken along the line AA ′ of FIG. The said cross section is a surface parallel to the normal line of the board | substrate 2 with which LED light source 3A and LED light source 3B are mounted. Also in FIG. 2, only main members are shown.

LED光源3Aは、LED光源3Bよりも内側(中心Cに近い側)に配置され、照明装置1の中心Cから放射状に点在し、中心Cを囲うように配置されている。LED光源3Bは、最外周に配置され中心Cを囲うように配置されている。   The LED light sources 3A are arranged on the inner side (side closer to the center C) than the LED light sources 3B, are scattered radially from the center C of the lighting device 1, and are arranged so as to surround the center C. The LED light source 3 </ b> B is arranged on the outermost periphery so as to surround the center C.

LED光源3Aに関して、図4(a)および図4(b)を用いて詳細に説明する。図4(a)は、基板2の法線方向からLED光源3Aを見た図であり、図4(b)は、図4(a)のC−C′断面図である。LED光源の例として、青色発光のLEDと黄色の蛍光体を用いる白色LEDモジュールを用いる場合を示す。本発明はLEDの発光スペクトル、形状、LED光源に含まれるLED数、種類数などの構成および蛍光体の有無、種類、LED光源に含まれる蛍光体の種類数などの構成に限定されない。   The LED light source 3A will be described in detail with reference to FIGS. 4 (a) and 4 (b). 4A is a view of the LED light source 3A viewed from the normal direction of the substrate 2, and FIG. 4B is a cross-sectional view taken along the line CC ′ of FIG. 4A. As an example of the LED light source, a case where a white LED module using a blue light emitting LED and a yellow phosphor is used will be described. The present invention is not limited to the configurations such as the emission spectrum and shape of the LED, the number of LEDs included in the LED light source, the number of types, and the presence / absence and type of phosphors, the number of types of phosphors included in the LED light source.

LED光源3Aにおいて、LED30は、白色樹脂などを材料とする枠体37の実装面37aに実装される。本例では、枠体の実装面37a上に負電極31を実装し、その上にLED30を実装している。LED30はワイヤ35によって、負電極31と正電極32に電気的に接続される。枠体37の内側では、LED30とともに、LED30からの光の一部を吸収して、吸収した光をより長波長の光に波長変換する蛍光体33が、シリコーンなどの封止樹脂34によって封止されている。   In the LED light source 3A, the LED 30 is mounted on a mounting surface 37a of a frame body 37 made of white resin or the like. In this example, the negative electrode 31 is mounted on the mounting surface 37a of the frame, and the LED 30 is mounted thereon. The LED 30 is electrically connected to the negative electrode 31 and the positive electrode 32 by a wire 35. Inside the frame 37, together with the LED 30, a phosphor 33 that absorbs part of the light from the LED 30 and converts the absorbed light into light having a longer wavelength is sealed with a sealing resin 34 such as silicone. Has been.

発光面3AEは、LED光源3Aにおいて光を出射している面であるから、枠体37の側壁37bが囲う面と定義できる。但し、枠体37は一部の光を透過するため、枠体全体から光が漏れる。しかしながら、大部分の光は発光面3AEから出射する。   Since the light emitting surface 3AE is a surface that emits light in the LED light source 3A, it can be defined as a surface that the side wall 37b of the frame 37 surrounds. However, since the frame 37 transmits part of light, light leaks from the entire frame. However, most of the light is emitted from the light emitting surface 3AE.

発光面3AEを枠体37の側壁37bが囲う面と定義した理由は次の通りである。LED30から発光した光は、一部の光は蛍光体33に吸収・散乱透過・反射され、一部の光は封止樹脂34と空気との界面でフレネル反射して戻り光となり、さらに一部は発光光として封止樹脂34から出射する。LED30からの発光光は反射・散乱を繰り返して、枠体37の側壁37bが囲う領域全体に広がる。当該領域全体に広がったLED30からの発光光は、当該領域全体に分散している蛍光体33を励起して蛍光体を発光させる。このようにして、当該領域全体から光が出射する。それゆえ、発光面3AEを枠体37の側壁37bが囲う面と定義した。但し、発光面3AEにおいて、LED30付近の発光強度が最も大きい。   The reason why the light emitting surface 3AE is defined as the surface surrounded by the side wall 37b of the frame body 37 is as follows. A part of the light emitted from the LED 30 is absorbed / scattered / transmitted / reflected by the phosphor 33, and part of the light is Fresnel-reflected at the interface between the sealing resin 34 and the air to return light, and further part Exits from the sealing resin 34 as emitted light. The emitted light from the LED 30 is repeatedly reflected and scattered, and spreads over the entire region surrounded by the side wall 37b of the frame 37. The emitted light from the LED 30 spreading over the entire region excites the phosphor 33 dispersed throughout the region to cause the phosphor to emit light. In this way, light is emitted from the entire region. Therefore, the light emitting surface 3AE is defined as a surface surrounded by the side wall 37b of the frame body 37. However, the light emission intensity in the vicinity of the LED 30 is the highest on the light emitting surface 3AE.

枠体37の外側には、負電極31および正電極32のそれぞれに電気的に接続している当該LED光源3Aの基板2への実装端子36、実装端子36′が存在する。実装端子36、実装端子36′は、基板2上に配線される電極40、電極40′に電気的に接続される。   Outside the frame body 37, there are mounting terminals 36 and mounting terminals 36 ′ on the substrate 2 of the LED light source 3 </ b> A that are electrically connected to the negative electrode 31 and the positive electrode 32, respectively. The mounting terminal 36 and the mounting terminal 36 ′ are electrically connected to the electrode 40 and the electrode 40 ′ wired on the substrate 2.

本実施例におけるLED光源3Aの特徴は、基板2の法線方向に主に光を出射する点である。主に光を出射するとは、基板2の法線を中心として、法線からの角度を極角とした場合、極角±90度以内の方向に多くの光を出射することを意味する。また、多くの場合、LED光源の発光光度が最大となる角度が概ね基板2の法線方向と等しい、または、極角±20度以内と言っても良い。LED光源3Aが実装される基板2と略平行な面にLED30が実装されている。また、LED光源3Aが実装される基板2と略平行な発光面を有している点である。以下、少なくても、これらの特徴の何れかを有するLED光源を正面発光LED光源と呼ぶことにする。本LED光源3Aは所謂トップビューと呼ばれるタイプのLED光源である。   The feature of the LED light source 3 </ b> A in this embodiment is that light is mainly emitted in the normal direction of the substrate 2. To mainly emit light means to emit a large amount of light in a direction within a polar angle of ± 90 degrees when the angle from the normal is a polar angle with the normal of the substrate 2 as the center. In many cases, the angle at which the luminous intensity of the LED light source is maximized may be approximately equal to the normal direction of the substrate 2 or within a polar angle of ± 20 degrees. The LED 30 is mounted on a surface substantially parallel to the substrate 2 on which the LED light source 3A is mounted. Moreover, it has a light emitting surface substantially parallel to the substrate 2 on which the LED light source 3A is mounted. Hereinafter, at least an LED light source having any of these characteristics will be referred to as a front-emitting LED light source. This LED light source 3A is a so-called top view type LED light source.

大抵の場合、正面発光LED光源の発光光の光度分布は、実装面の法線方向を最大とするランバーシアン(法線からの角度θと光度(放射強度)I(θ)と法線方向の光度(放射強度)I(0)との関係が、次の関係にある。I(θ)=I(0)cosθ)である。LED光源3Aには、第1の光学部材5として正面視でLED光源3Aを中心とした等方的なレンズが配置されている(図1参照)。ここで、当該レンズはLED光源3Aの中心に関して等方的であることに限定されない。   In most cases, the luminous intensity distribution of the emitted light from the front-emitting LED light source is Lambertian (the angle θ from the normal, the luminous intensity (radiant intensity) I (θ), and the normal direction in the normal direction of the mounting surface. The relationship with the luminous intensity (radiation intensity) I (0) is as follows: I (θ) = I (0) cos θ). The LED light source 3A is provided with an isotropic lens centered on the LED light source 3A as viewed from the front as the first optical member 5 (see FIG. 1). Here, the lens is not limited to being isotropic with respect to the center of the LED light source 3A.

LED光源3Bに関して、図5(a)から図5(d)を用いて詳細に説明する。図5(a)は、基板2の法線方向からLED光源3Bを見た図であり、図5(b)は、図5(a)の矢印EのようにLED光源3Bを見た図であって、発光面3BEに対向する方向から見た図である。図5(c)は、図5(a)の矢印FのようにLED光源3Bの側面を見た図である。図5(d)は、図5(b)のD−D′断面図である。LED光源の例として、青色発光のLEDと黄色の蛍光体を用いる白色LEDモジュールを用いる場合を示す。本発明はLEDの発光スペクトル、形状、LED光源に含まれるLED数、種類数などの構成および蛍光体の有無、種類、LED光源に含まれる蛍光体の種類数などの構成に限定されない。   The LED light source 3B will be described in detail with reference to FIGS. 5 (a) to 5 (d). 5A is a view of the LED light source 3B viewed from the normal direction of the substrate 2, and FIG. 5B is a view of the LED light source 3B as indicated by an arrow E in FIG. 5A. It is the figure seen from the direction which opposes the light emission surface 3BE. FIG.5 (c) is the figure which looked at the side surface of LED light source 3B like the arrow F of Fig.5 (a). FIG.5 (d) is DD 'sectional drawing of FIG.5 (b). As an example of the LED light source, a case where a white LED module using a blue light emitting LED and a yellow phosphor is used will be described. The present invention is not limited to the configurations such as the emission spectrum and shape of the LED, the number of LEDs included in the LED light source, the number of types, and the presence / absence and type of phosphors, the number of types of phosphors included in the LED light source.

LED光源3Bにおいて、LED30は枠体37の実装面37aに実装される(図5(d)参照)。本例では、枠体の実装面37a上に負電極31を実装し、その上にLED30を実装している。LED30はワイヤ35によって、負電極31と正電極32に電気的に接続される。枠体37の内側では、LED30とともに、LED30からの光の一部を吸収して、吸収した光をより長波長の光に波長変換する蛍光体33が、シリコーンなどの封止樹脂34によって封止されている。   In the LED light source 3B, the LED 30 is mounted on the mounting surface 37a of the frame body 37 (see FIG. 5D). In this example, the negative electrode 31 is mounted on the mounting surface 37a of the frame, and the LED 30 is mounted thereon. The LED 30 is electrically connected to the negative electrode 31 and the positive electrode 32 by a wire 35. Inside the frame 37, together with the LED 30, a phosphor 33 that absorbs part of the light from the LED 30 and converts the absorbed light into light having a longer wavelength is sealed with a sealing resin 34 such as silicone. Has been.

LED光源3Aの発光面3AEと同様に、LED光源3Bの発光面3BEは、LED光源3Bにおいて光を出射している面であるから、枠体37の側壁37bが囲う面と定義できる(図5(b)および図5(d)参照)。定義の理由は、LED光源3Aの発光面3AEの定義時に説明した理由と同じである。但し、枠体37は一部の光を透過するため、枠体全体から光が漏れる。とりわけ、枠体37が薄い部位から光が漏れる。しかしながら、大部分の光は発光面3BEから出射する。   Similar to the light emitting surface 3AE of the LED light source 3A, the light emitting surface 3BE of the LED light source 3B is a surface that emits light in the LED light source 3B, and thus can be defined as a surface surrounded by the side wall 37b of the frame body 37 (FIG. 5). (See (b) and FIG. 5 (d)). The reason for the definition is the same as the reason described when defining the light emitting surface 3AE of the LED light source 3A. However, since the frame 37 transmits part of light, light leaks from the entire frame. In particular, light leaks from a portion where the frame 37 is thin. However, most of the light is emitted from the light emitting surface 3BE.

枠体37の外側には、負電極31および正電極32のそれぞれに電気的に接続している当該LED光源3Bの基板2への実装端子36、実装端子36′が存在する。実装端子36、実装端子36′は、基板2上に配線される電極40、電極40′に電気的に接続される。   Outside the frame body 37, there are mounting terminals 36 and mounting terminals 36 ′ on the substrate 2 of the LED light source 3 </ b> B that are electrically connected to the negative electrode 31 and the positive electrode 32, respectively. The mounting terminal 36 and the mounting terminal 36 ′ are electrically connected to the electrode 40 and the electrode 40 ′ wired on the substrate 2.

本LED光源3Bの特徴は、LED光源3Bが実装される基板2と略垂直な面にLED30が実装されている点である。これは、実装端子36と略垂直な面にLED30が実装されている点と言い換えても良い。また、基板2と平行ではない、つまり、基板2と傾きをもった面にLED30が実装されているとも言える。また、正面発光LED光源3AとはLED30が異なる角度で実装されているとも言える。また別の特徴は、LED光源3Bが実装される基板2と略垂直な発光面を有している点である。これは、実装端子36と略垂直な発光面を有している点と言い換えても良い。また、正面発光LED光源3Aとは発光面が異なる角度で配置されているとも言える。また、基板2と平行ではない、つまり、基板2と傾きをもった発光面を有するとも言える。また、基板2の法線と平行でない方向、つまり、基板2の法線方向と傾きをもった方向(当該方向を側面発光中心方向と呼ぶことにする。)に主に光を出射すると言っても良い。主に光を出射するとは、側面発光中心方向(本例では、基板2の法線と略垂直な方向)を中心として、側面発光中心方向からの角度が±90度以内となる方向に多くの光を出射することを意味する。また、多くの場合、LED光源の発光光度が最大となる角度が、概ね側面発光中心方向と等しい、または、側面発光中心方向からの角度が±20度以内と言っても良い。   The feature of this LED light source 3B is that the LED 30 is mounted on a surface substantially perpendicular to the substrate 2 on which the LED light source 3B is mounted. In other words, the LED 30 is mounted on a surface substantially perpendicular to the mounting terminal 36. It can also be said that the LED 30 is mounted on a surface that is not parallel to the substrate 2, that is, has a tilt with respect to the substrate 2. It can also be said that the LED 30 is mounted at a different angle from the front light emitting LED light source 3A. Another feature is that it has a light emitting surface substantially perpendicular to the substrate 2 on which the LED light source 3B is mounted. This may be paraphrased as having a light emitting surface substantially perpendicular to the mounting terminal 36. It can also be said that the light emitting surface is arranged at a different angle from the front light emitting LED light source 3A. Further, it can be said that the light-emitting surface is not parallel to the substrate 2, that is, has an inclination with respect to the substrate 2. Further, it is said that light is mainly emitted in a direction that is not parallel to the normal line of the substrate 2, that is, a direction that is inclined with respect to the normal direction of the substrate 2 (this direction is referred to as a side emission central direction). Also good. Light is mainly emitted in many directions in which the angle from the side emission center direction is within ± 90 degrees centering on the side emission center direction (in this example, a direction substantially perpendicular to the normal line of the substrate 2). Means emitting light. In many cases, the angle at which the luminous intensity of the LED light source is maximized may be substantially equal to the side emission center direction, or the angle from the side emission center direction may be within ± 20 degrees.

以下、少なくても、これらの特徴の何れかを有するLED光源を側面発光LED光源と呼ぶことにする。本LED光源3Bは所謂サイドビューと呼ばれるタイプのLED光源である。   Hereinafter, at least an LED light source having any of these characteristics will be referred to as a side-emitting LED light source. The LED light source 3B is a so-called side view type LED light source.

但し、当該LED光源は実装条件により、バラツキの範囲で傾くことがある。それゆえ、LED光源3Bが実装される基板2とLED30が実装される面および当該基板2と発光面が成す角度は90度からずれることがある。当該角度の90度からのずれは、±20度以内が望ましく、さらに望ましくは±5度以内になるように実装することが望ましい。   However, the LED light source may be tilted in a range of variation depending on mounting conditions. Therefore, the angle formed by the substrate 2 on which the LED light source 3B is mounted, the surface on which the LED 30 is mounted, and the substrate 2 and the light emitting surface may deviate from 90 degrees. The deviation of the angle from 90 degrees is preferably within ± 20 degrees, and more preferably within ± 5 degrees.

図1において、LED光源3Bの発光面3BEの法線は、実装面内方向外側(中心Cから外に向かう方向)に向いており、主な発光方向は、実装面内方向外側である。大抵の場合、発光光の光度分布は、LED光源3Bの発光面3BEの法線方向を最大とするランバーシアンである。LED光源3Bには、第2の光学部材6が対応して配置されている。LED光源3Bの発光面3BEに対向して、第2の光学部材6の入射面6Aが配置され、実装面内方向外側に向かって第2の光学部材6内を導光した光は、出射面6Bから空気中に出射される。入射面6Aおよび出射面6Bは、基板2に略垂直である。つまり、第2の光学部材6に対応するLED光源が実装されている基板2の法線と平行な断面において、第2の光学部材の入射面と出射面の形状は直線となっている。   In FIG. 1, the normal line of the light emitting surface 3BE of the LED light source 3B is directed to the outside in the mounting surface (the direction from the center C to the outside), and the main light emitting direction is the outside in the mounting surface. In most cases, the luminous intensity distribution of the emitted light is Lambertian that maximizes the normal direction of the light emitting surface 3BE of the LED light source 3B. A second optical member 6 is disposed corresponding to the LED light source 3B. The light incident surface 6BE of the second optical member 6 is disposed so as to face the light emitting surface 3BE of the LED light source 3B, and the light guided through the second optical member 6 toward the outside in the mounting surface is the exit surface. 6B is emitted into the air. The entrance surface 6 </ b> A and the exit surface 6 </ b> B are substantially perpendicular to the substrate 2. That is, in the cross section parallel to the normal line of the substrate 2 on which the LED light source corresponding to the second optical member 6 is mounted, the shapes of the incident surface and the exit surface of the second optical member are linear.

第1の光学部材5と第2の光学部材6は、光学部材接続部4にて接続され、複合光学部材7を形成する。本実施の形態では、全ての光学部材は一括成型され、光学部材接続部4にて接続されている。本例においては、複合光学部材7はポリカーボネート、ポリスチレン、アクリルなどの樹脂を材料としている。   The first optical member 5 and the second optical member 6 are connected by the optical member connecting portion 4 to form a composite optical member 7. In the present embodiment, all the optical members are collectively molded and connected by the optical member connecting portion 4. In this example, the composite optical member 7 is made of a resin such as polycarbonate, polystyrene, or acrylic.

図2の断面形状を用いてより詳しく説明する。図2中に矢印で示すように、照明装置1が主に光を照射する方向を正面方向Zとする。照明装置1が主に光を照射する方向は、例えば天井に設置して室内を照明するタイプの照明装置であれば、天井の法線方向、または天井から床に向かう方向(照明装置1の直下方向)が正面方向Zである。さらに、配光特性(光度分布)が概ね最大となる方向を正面方向Zとしても良い。   This will be described in more detail using the cross-sectional shape of FIG. As indicated by an arrow in FIG. 2, a direction in which the illumination device 1 mainly emits light is a front direction Z. The direction in which the lighting device 1 mainly emits light is, for example, a type of lighting device that is installed on the ceiling and illuminates the interior of the room, or the direction normal to the ceiling or the direction from the ceiling to the floor (directly below the lighting device 1). Direction) is the front direction Z. Furthermore, the direction in which the light distribution characteristic (luminous intensity distribution) is substantially maximum may be the front direction Z.

正面方向Zと略垂直な面内方向を側面方向とする。本実施の形態では、基板2の実装面の法線方向が正面方向Zと平行であるため、実装面内方向と側面方向は同じ方向となる。
基板2の実装面の法線が正面方向Zから傾いている場合は、実装面内方向と側面方向は異なる方向となる。
An in-plane direction substantially perpendicular to the front direction Z is defined as a side surface direction. In the present embodiment, since the normal direction of the mounting surface of the substrate 2 is parallel to the front direction Z, the in-mounting surface direction and the side surface direction are the same direction.
When the normal of the mounting surface of the substrate 2 is inclined from the front direction Z, the mounting surface inward direction and the side surface direction are different directions.

照明装置1は、筐体としてのフレーム11が有り、フレーム11は例えば鉄製である。
フレーム11の一部の平面11Aには基板2がネジ止めなどで取り付けられている。フレーム11は中空部を有し、中空部にはLED光源3A、LED光源3Bを駆動する点灯回路9が設置されている。基板2の端部2E付近でフレーム11は折れ曲がって傾斜し、傾斜部11Bを有する。フレーム11には、拡散カバー8が取り付けられる。
The lighting device 1 has a frame 11 as a housing, and the frame 11 is made of, for example, iron.
The substrate 2 is attached to a part of the flat surface 11A of the frame 11 by screws or the like. The frame 11 has a hollow portion, and a lighting circuit 9 for driving the LED light source 3A and the LED light source 3B is installed in the hollow portion. The frame 11 is bent and inclined near the end 2E of the substrate 2 and has an inclined portion 11B. A diffusion cover 8 is attached to the frame 11.

照明装置1は、固定具51によって天井50に固定される。固定具51があるために、照明装置1の中心にはLED光源3が置けない。固定具51の正面方向側には中心カバー10が設置されており、固定具51が配置している溝に光が入らないようになっている。
当該溝に向かって伝播して来る光は、中心カバー10で正面方向に反射散乱される。中心カバー10は反射率が高い部材が好ましい。さらに、基板2やフレーム11の内側は、白色塗装、白色レジスト、白色シートなどを用いて、白色の物質で覆うので、中心カバー10も白色散乱反射する部材が好ましい。
The lighting device 1 is fixed to the ceiling 50 by a fixture 51. Due to the fixture 51, the LED light source 3 cannot be placed in the center of the lighting device 1. The center cover 10 is installed on the front side of the fixture 51 so that light does not enter the groove where the fixture 51 is arranged.
The light propagating toward the groove is reflected and scattered in the front direction by the center cover 10. The center cover 10 is preferably a member having a high reflectance. Furthermore, since the inside of the substrate 2 and the frame 11 is covered with a white material using white paint, white resist, white sheet, or the like, the center cover 10 is also preferably a member that scatters white.

本例においては、拡散カバー8は全てのLED光源3を覆うような形状であって、LED光源3が発光した光を拡散反射・透過させる。説明のために、拡散カバー8を、拡散カバー8の表面の法線が正面方向Zに凡そ向いている正面部8Aと、拡散カバー8の表面の法線が側面方向に凡そ向いている側面部8Bに大別する。拡散カバー8は、多くの場合、樹脂であって、樹脂内にシリカなどの拡散材を含有している。拡散カバー8の全光線透過率は、拡散材の種類や濃度で制御できる。拡散カバー8に入射した光は、ある散乱角度分布を持って拡散カバー8から照明装置1の外へ出射する。なお、本発明は、拡散カバー8の形状を限定せず、全てのLED光源を覆わない形状であってもよく、拡散カバー全域に拡散性が付与されて無くても良い。   In this example, the diffusion cover 8 has a shape that covers all the LED light sources 3 and diffuses and reflects and transmits light emitted from the LED light sources 3. For the sake of explanation, the diffusion cover 8 is divided into a front part 8A in which the normal line of the surface of the diffusion cover 8 is approximately directed in the front direction Z, and a side part in which the normal line of the surface of the diffusion cover 8 is approximately directed in the lateral direction. Roughly divided into 8B. The diffusion cover 8 is often a resin, and contains a diffusion material such as silica in the resin. The total light transmittance of the diffusion cover 8 can be controlled by the type and concentration of the diffusion material. The light incident on the diffusion cover 8 exits the illumination device 1 from the diffusion cover 8 with a certain scattering angle distribution. In the present invention, the shape of the diffusion cover 8 is not limited and may be a shape that does not cover all the LED light sources, and the diffusion cover may not be provided with the entire area.

散乱角度分布は、一般的には、透過光と反射光で異なる。透過光の散乱角度分布は、照明装置としての配光に直接的に影響を及ぼす。照明装置(照明器具)の配光は光度で表されるのに対して、散乱角度分布は、対象としている面素の輝度を当該面素から出射する全光束で割った値で議論することが多いので、散乱角度分布に関しては、散乱透過輝度分布(BTDF:Bidirectional Transmittance Distribution Function)を用いて説明する。   The scattering angle distribution is generally different between transmitted light and reflected light. The scattering angle distribution of the transmitted light directly affects the light distribution as the illumination device. While the light distribution of the lighting device (lighting fixture) is expressed in terms of luminous intensity, the scattering angle distribution can be discussed by dividing the luminance of the target surface element by the total luminous flux emitted from the surface element. Since there are many, the scattering angle distribution will be described using a scattered transmission distribution (BTDF).

拡散カバー8の透過光の散乱特性に関して、図3を用いて説明する。図3は、拡散カバー8のある面素の入射面8SIに入射角θiで光線RAYIが入射し、出射面8SOからある散乱透過輝度分布で光線RAYOが出射する様子を示している。入射角θiおよび出射角θoは、当該面素の法線8Nを基準とした角度である。   The scattered light scattering characteristics of the diffusion cover 8 will be described with reference to FIG. FIG. 3 shows a state in which the light ray RAYI is incident on the incident surface 8SI of the surface element with the diffusion cover 8 at the incident angle θi, and the light ray RAYO is emitted from the emission surface 8SO with a certain scattered transmission luminance distribution. The incident angle θi and the outgoing angle θo are angles with reference to the normal 8N of the surface element.

拡散カバー8の全光線透過率が低い場合は、拡散カバー8の出射面は、いかなる角度で光が拡散カバー8に入射しようとも散乱透過輝度分布はどの方向に対しても一様な完全拡散面に近い面となる。   When the total light transmittance of the diffusing cover 8 is low, the exit surface of the diffusing cover 8 is a completely diffusing surface where the scattered transmission luminance distribution is uniform in any direction no matter what angle the light enters the diffusing cover 8. It becomes a surface close to.

拡散カバー8の全光線透過率が高くなるにつれて散乱透過輝度分布は出射角θoが入射角θiと等しい角度でピークを持つようになる。   As the total light transmittance of the diffusing cover 8 becomes higher, the scattered transmission luminance distribution has a peak at an exit angle θo equal to the incident angle θi.

図2において、拡散カバーの正面部8Aに入射した光は、正面方向Zからの角度を極角とした場合に、極角0度を中心として±90度の範囲に出射する。拡散カバーの正面部8Aからの出射光度分布は、概ね極角0度にピークを持つ。拡散カバーの側面部8Bに入射した光は、極角90度を中心として±90度の範囲に出射する。拡散カバーの側面部8Bからの出射光度分布は、概ね極角90度にピークを持つ。   In FIG. 2, the light incident on the front portion 8 </ b> A of the diffusion cover is emitted in a range of ± 90 degrees centering on a polar angle of 0 degrees when the angle from the front direction Z is a polar angle. The luminous intensity distribution from the front portion 8A of the diffusion cover has a peak at a polar angle of approximately 0 degrees. The light incident on the side surface portion 8B of the diffusion cover is emitted in a range of ± 90 degrees with a polar angle of 90 degrees as the center. The luminous intensity distribution from the side surface portion 8B of the diffusion cover has a peak at a polar angle of 90 degrees.

大抵の場合、側面部8Bに比べて正面部8Aの方が面積も大きいことから、照明装置1の配光特性の極角0から概ね±70度の範囲は、正面部8Aの出射光度分布に強く依存する。照明装置1の配光特性の概ね極角80度から180度と概ね極角−80度から−180度の範囲は、側面部8Bの出射光度分布に強く依存する。   In most cases, since the front portion 8A has a larger area than the side portion 8B, the range of the light distribution characteristic of the lighting device 1 from the polar angle 0 to approximately ± 70 degrees is the emission intensity distribution of the front portion 8A. Strongly dependent. The range of the light distribution characteristic of the illumination device 1 from approximately 80 to 180 degrees and approximately from −80 to −180 degrees is strongly dependent on the emitted light intensity distribution of the side surface portion 8B.

正面発光LED光源だけを用いた場合、多くの光が正面部8Aに入射するため、照明装置1直下の床が明るくなり、側面部8Bへの入射光が少ないがゆえに照明装置1の直下方向以外の床面や壁や天井方向への光が少ない。それゆえ、部屋の隅が十分に明るくなく、間接光が少ないという課題がある。   When only the front light emitting LED light source is used, a lot of light is incident on the front portion 8A, so that the floor directly under the lighting device 1 becomes brighter and the incident light on the side surface portion 8B is less. There is little light on the floor, walls and ceiling. Therefore, there is a problem that the corner of the room is not sufficiently bright and there is little indirect light.

この課題を解決するためには、LED光源から側面部8Bへ向かって出射する光束を多くすることが考えられるが、側面部8Bは、面積が小さいという点と照明装置の最も外側に位置する点があるため、基板2上のLED光源は、正面部8Aに比べて小さく、距離のある位置にある的に向けて光を照射しなければならない。この側面部8Bに入射する光束を増大させるのが本発明の具体的な目的の一つである。   In order to solve this problem, it is conceivable to increase the amount of light emitted from the LED light source toward the side surface portion 8B. However, the side surface portion 8B has a small area and is positioned on the outermost side of the illumination device. Therefore, the LED light source on the substrate 2 is smaller than the front portion 8A and must irradiate light toward a certain distance. Increasing the luminous flux incident on the side surface 8B is one of the specific objects of the present invention.

正面発光LED光源からの光を、広角レンズを用いて広げることでも、側面部8Bに入射する光束を多くするという効果は得られる。しかしながら、基板2の面内方向内側にあるLED光源からの光は、側面部8Bに光が到達するまでに広がってしまい、十分には光を照射できない。それゆえ、側面部8Bに最も近いLED光源で側面部8Bを照射するようにすることでより大きな効果が得られる。   The effect of increasing the amount of light incident on the side surface portion 8B can also be obtained by spreading the light from the front light emitting LED light source using a wide-angle lens. However, the light from the LED light source located on the inner side in the in-plane direction of the substrate 2 spreads until the light reaches the side surface portion 8B, and the light cannot be sufficiently irradiated. Therefore, a greater effect can be obtained by irradiating the side surface portion 8B with the LED light source closest to the side surface portion 8B.

この場合でも、正面発光LED光源からの光の大部分の光を、側面部8Bに向けるのは難しく光損失などを伴う場合が多い。なぜならば、正面発光LEDの光度分布は発光面内方向で概ね等方的であるため、約半分の光は側面部8Bと反対方向に発光する。それゆえ、多くの光を側面部8Bに向けて、90度以上反射・屈折させなければならない。そのような光学部材は、複雑・大規模の上、多くの損失を伴うことが多いためである。側面部8Bに最も近いLED光源だけを増やして対応することも考えられるが、十分な数のLEDを配置するスペースを取れないことが多い。   Even in this case, it is difficult to direct most of the light from the front light-emitting LED light source to the side surface portion 8B, and often involves light loss. This is because the luminous intensity distribution of the front light emitting LED is approximately isotropic in the direction of the light emitting surface, and about half of the light is emitted in the direction opposite to the side surface portion 8B. Therefore, much light must be reflected and refracted by 90 degrees or more toward the side surface portion 8B. This is because such an optical member is often complicated and large-scale and often involves many losses. Although it is conceivable to increase only the LED light source closest to the side surface portion 8B, it is often impossible to take a space for arranging a sufficient number of LEDs.

そこで、本実施の形態における照明装置1は、側面部8Bに最も近いLED光源3Bとして側面発光LED光源を用い、当該側面発光LED光源3Bからの光を、さらに側面部8Bの近くまで導光させる第2の光学部材6を有する。側面部8Bに最も近いLED光源3Bとして側面発光LED光源を用いることで、大部分の光は側面方向に発光する。さらに、面積の小さい側面部8Bを直接照射するために、導光部を有する第2の光学部材6を用いて側面発光LED光源の発光光を導光して側面部8B近くで光を出射する構成とした。   Therefore, the lighting device 1 in the present embodiment uses a side-emitting LED light source as the LED light source 3B closest to the side surface 8B, and guides light from the side-emitting LED light source 3B to the vicinity of the side surface 8B. A second optical member 6 is provided. By using a side-emitting LED light source as the LED light source 3B closest to the side surface portion 8B, most of the light is emitted in the side surface direction. Further, in order to directly irradiate the side surface portion 8B having a small area, the second optical member 6 having the light guide portion is used to guide the light emitted from the side light emitting LED light source and emit light near the side surface portion 8B. The configuration.

図6を用いて光学系に関して詳細に説明する。図6(a)は、図1のA−A′断面の一部の拡大図、図6(b)は、図1のB−B′断面図である。第1の光学部材5と第2の光学部材6は、光学部材接続部4にて接続されている。光学部材接続部の高さ4Hは、第1の光学部材の高さ5Hと第2の光学部材の高さ6Hよりも小さい。第1の光学部材5および第2の光学部材6は、LED光源3A、3Bよりは高くなくてはならない。光学部材接続部の高さ4Hは、各光学部材からの出射光を遮らないように低くしてある。また、光学部材接続部の高さ4Hを、第1の光学部材5または第2の光学部材6より低くすることで、複合光学部材7の軽量化ができる。例えば、正面発光LED光源3Aの高さが1mm程度であって、側面発光LED光源3Bの高さは1.5mm程度である場合、第1の光学部材の高さ5Hは5mm程度であって、と第2の光学部材の高さ6Hは3mm程度であって、光学部材接続部の高さ4Hは1.5mm程度とする。   The optical system will be described in detail with reference to FIG. 6A is an enlarged view of a part of the AA ′ cross section in FIG. 1, and FIG. 6B is a cross sectional view along the BB ′ line in FIG. The first optical member 5 and the second optical member 6 are connected by the optical member connecting portion 4. The height 4H of the optical member connecting portion is smaller than the height 5H of the first optical member and the height 6H of the second optical member. The first optical member 5 and the second optical member 6 must be higher than the LED light sources 3A and 3B. The height 4H of the optical member connecting portion is set low so as not to block the emitted light from each optical member. Moreover, the composite optical member 7 can be reduced in weight by making the height 4H of the optical member connecting portion lower than that of the first optical member 5 or the second optical member 6. For example, when the height of the front light emitting LED light source 3A is about 1 mm and the height of the side light emitting LED light source 3B is about 1.5 mm, the height 5H of the first optical member is about 5 mm, The height 6H of the second optical member is about 3 mm, and the height 4H of the optical member connecting portion is about 1.5 mm.

第1の光学部材5のレンズは、球面の入射面5Aから光を入射し、非球面の出射面5Bから光を出射する広角レンズ(球面レンズよりも広角に光を広げるレンズ)である。第1の光学部材5のレンズとして広角レンズを用いる理由は、2点ある。第1には、拡散カバー8の全光線透過率が高い場合に(例えば50%より大きい場合)、拡散カバー8の正面部8Aへの入射角が大きければ、正面部8Aの透過光も入射角にピークを持つ散乱透過輝度分布であるために、照明装置1としての配光も広くなるためである。第2には、広角に光を出射して拡散カバー8の照度が均一になると、拡散カバー8からの光出射位置分布も均一になるためである。拡散カバー8が均一に光っている場合、照明装置1の見た目もソフトな明かりに見えて綺麗な印象を使用者に与え、さらには、局所的に明るくないので眩しさも低減される。それゆえ、拡散カバー8の照度を均一にすることは照明装置の光学設計の一つ課題である。   The lens of the first optical member 5 is a wide-angle lens (a lens that spreads light at a wider angle than a spherical lens) that receives light from a spherical incident surface 5A and emits light from an aspherical emission surface 5B. There are two reasons why the wide-angle lens is used as the lens of the first optical member 5. First, when the total light transmittance of the diffusion cover 8 is high (for example, greater than 50%), if the incident angle to the front portion 8A of the diffusion cover 8 is large, the transmitted light of the front portion 8A is also incident. This is because the light distribution as the illuminating device 1 becomes wide because of the scattered transmission luminance distribution having a peak at. Second, when light is emitted at a wide angle and the illuminance of the diffusion cover 8 becomes uniform, the light emission position distribution from the diffusion cover 8 also becomes uniform. When the diffusing cover 8 is shining uniformly, the appearance of the lighting device 1 also looks soft and gives a beautiful impression to the user. Further, since it is not bright locally, the glare is reduced. Therefore, making the illuminance of the diffusing cover 8 uniform is one problem in the optical design of the illumination device.

光線追跡例として光線RAY20を記載した。レンズの中心から入射面5Aに入射した光は、屈折を受けず出射面5Bに直進し、出射面5Bで広角(レンズ実装面の法線からの角度が大きい角度方向(この場合、側面方向))に屈折を受けて出射する。実際には、発光面3AEには幅があるため、レンズ中心以外からの発光光が存在し、当該発光光が入射面5Aでも多少の屈折を受ける。入射面5Aが球面ゆえに、非球面の出射面5Bの設計は、光はレンズの中心から伝播していると仮定して設計することが可能となる。入射面5Aでの屈折を考慮しないで済むだけ、光線の屈折方向を容易に設計し、精度よく制御することが可能となる。   The ray RAY20 is described as an example of ray tracing. The light incident on the incident surface 5A from the center of the lens travels straight to the exit surface 5B without being refracted, and has a wide angle at the exit surface 5B (in this case, an angle direction with a large angle from the normal of the lens mounting surface (in this case, the side surface direction)). ) Is refracted and emitted. Actually, since the light emitting surface 3AE has a width, there is emitted light from other than the center of the lens, and the emitted light undergoes some refraction at the incident surface 5A. Since the entrance surface 5A is spherical, the aspheric exit surface 5B can be designed on the assumption that light propagates from the center of the lens. As long as the refraction at the incident surface 5A is not considered, the refraction direction of the light beam can be easily designed and controlled with high accuracy.

また、上述した発光面3AEに幅があるために入射面5Aで生じる屈折の影響を低減するためには、入射面5Aをできる限り大きな球面とすることが好ましく、発光面3AEの幅の半分よりは大きい半径の球面とする方が良い。球面の場合、大きくする分には光学系に影響しないので、入射面5Aをできる限り大きな球面としてレンズの肉厚を薄くすることで、軽量化することが好ましい。成型性の観点からは、レンズの肉厚は1.0mm程度までを薄さの下限とすることが望ましい。つまり、球面の半径は発光面3AEの幅の半分よりは大きくし、レンズの肉厚が1.0mmよりは大きくなるような半径とすることが好ましい。   In addition, since the light emitting surface 3AE described above has a width, in order to reduce the influence of refraction generated on the incident surface 5A, it is preferable that the incident surface 5A has a spherical surface as large as possible, and more than half the width of the light emitting surface 3AE. Should be a spherical surface with a large radius. In the case of a spherical surface, it does not affect the optical system as much as it is increased. Therefore, it is preferable to reduce the weight by making the entrance surface 5A as large a spherical surface as possible and reducing the thickness of the lens. From the viewpoint of moldability, it is desirable that the lens thickness is about 1.0 mm or less. That is, it is preferable that the radius of the spherical surface is larger than half of the width of the light emitting surface 3AE and the radius of the lens is larger than 1.0 mm.

図6(a)に示すように、第2の光学部材6は、入射面6Aおよび入射面6A′から光を入射し、入射光は導光部6Lを導光して出射面6Bから光を出射する。光線追跡例としてRAY2、RAY3、RAY4を図中に示してある。RAY2は、入射面6A′から入射した光が後述するプリズム面6Cで反射して出射面6Bから出射する光線を示している。RAY3、RAY4は入射面6Aから入射した光が出射面6Bから出射する光線であって、両光線ともに主たる伝播方向は側面外側方向Xであるが、RAY3は正面方向Zに向いて出射する光線を示しており、RAY4は正面方向Zとは反対方向であって天井がある方向に向いて出射する光線を示している。図2にも示したように、出射面6Bから出射した光は、拡散カバー8の側面部8Bを直接照射する。それゆえ、側面発光LED光源3Bに対応して導光部6Lを有する第2の光学部材6を用いることで、側面部8Bの直接照射が可能となり、照明装置1の間接光を増大することが可能となる。さらに、本構成は、導光部6Lでの損失はほとんどないので、本構成と異なる方式でLED光源で発光した後で基板2や拡散カバー8で複数回の反射散乱を繰り返して伝播して側面部8Bを照射する場合に比べて、光損失を低減した構成である。   As shown in FIG. 6A, the second optical member 6 receives light from the incident surface 6A and the incident surface 6A ′, and the incident light guides the light from the light guide portion 6L and transmits light from the output surface 6B. Exit. As an example of ray tracing, RAY2, RAY3, and RAY4 are shown in the figure. RAY2 indicates a light beam that is incident from the incident surface 6A 'and reflected from the prism surface 6C described later and emitted from the output surface 6B. RAY3 and RAY4 are light beams that are incident from the incident surface 6A and are emitted from the output surface 6B. The main propagation direction of both the light beams is the lateral outer side direction X, but RAY3 is a light beam that is emitted toward the front direction Z. RAY4 indicates a light beam that is emitted in a direction opposite to the front direction Z and in a direction with the ceiling. As shown in FIG. 2, the light emitted from the emission surface 6 </ b> B directly illuminates the side surface portion 8 </ b> B of the diffusion cover 8. Therefore, by using the second optical member 6 having the light guide portion 6L corresponding to the side-emitting LED light source 3B, the side portion 8B can be directly irradiated, and the indirect light of the lighting device 1 can be increased. It becomes possible. Furthermore, since the present configuration has almost no loss in the light guide section 6L, the light is emitted from the LED light source in a different manner from the present configuration, and then repeatedly reflected and scattered by the substrate 2 and the diffusion cover 8 to propagate the side surface. Compared with the case of irradiating the part 8B, the optical loss is reduced.

本実施形態における第2の光学部材6の特徴に関して順次説明する。第1に、側面発光LED光源3Bに対応して、正面発光LED光源3Aに対応する第1の光学部材5とは、異なる形状の第2の光学部材6が配置されている。また、第2の光学部材6からの出射光の光度分布は第1の光学部材5からの出射光のそれとは異なる構成である。   The features of the second optical member 6 in this embodiment will be sequentially described. First, a second optical member 6 having a shape different from that of the first optical member 5 corresponding to the front light emitting LED light source 3A is arranged corresponding to the side light emitting LED light source 3B. Further, the luminous intensity distribution of the outgoing light from the second optical member 6 is different from that of the outgoing light from the first optical member 5.

正面発光LED光源3Aに対応する第1の光学部材5からの出射光の方が、側面発光LED光源3Bに対応する第2の光学部材6からの出射光よりも正面方向Zへの光束が多くなるように光学部材を構成している。また、第2の光学部材6からの出射光の方が、第1の光学部材5からの出射光よりも側面方向への光束が多くなるように光学部材を構成している。   The light emitted from the first optical member 5 corresponding to the front light emitting LED light source 3A has more light flux in the front direction Z than the light emitted from the second optical member 6 corresponding to the side light emitting LED light source 3B. The optical member is configured as described above. Further, the optical member is configured such that the light emitted from the second optical member 6 has more light flux in the side surface direction than the light emitted from the first optical member 5.

これは、正面方向Zに発光光度の最大値を持つ正面発光LED光源3Aで拡散カバーの正面部8aを広範囲に照射し、側面方向に発光光度の最大値を持つ側面発光LED光源3Bで拡散カバーの側面部8bを集中的に照射する光学系を実現するための構成であって、各LED光源からの光を屈折させる角度を小さくすることで、反射散乱回数を減らし、拡散カバー8を直接照射することで光損失を低減する構成である。   This is because the front light emitting LED light source 3A having the maximum value of emitted light intensity in the front direction Z irradiates the front part 8a of the diffusion cover over a wide range, and the side light emitting LED light source 3B having the maximum value of emitted light intensity in the side surface direction is diffused cover. This is a configuration for realizing an optical system that irradiates the side surface portion 8b of the light source intensively, and by reducing the angle at which light from each LED light source is refracted, the number of times of reflection / scattering is reduced and the diffusion cover 8 is directly irradiated. By doing so, the optical loss is reduced.

第2の光学部材6は、導光部6Lを有する。拡散カバーの側面部8Bに入射する光束を増やす最も効果的な方法は、LED光源を拡散カバーの側面部8Bに近づけることである。基板2の端部2Eと拡散カバーの側面部8Bとの間には、拡散カバー8をフレーム11に固定するための固定具(図示なし)を設置するために、一定のスペースが必要になる(図2参照)。それゆえに、LED光源は近づけるのに限界が生じる。とりわけ、基板の端部2Eを拡散カバーの側面部8Bに近づける場合には、基板2を広げなくてはならない。
基板2を広げることは、材料コストが上がるとともに産業廃棄物が増える。また、基板2の下には放熱経路としてのフレーム11が無くてはならない。それゆえ、基板を拡大する場合は、それに付随して、フレーム11の平面11Aを広げ、傾斜部11Bを拡散カバー8に近づける必要が生じる。この場合は、上述した固定具を設置するためのスペースを確保するのがとりわけ困難になる。
The second optical member 6 has a light guide 6L. The most effective method of increasing the luminous flux incident on the side surface portion 8B of the diffusion cover is to bring the LED light source closer to the side surface portion 8B of the diffusion cover. In order to install a fixture (not shown) for fixing the diffusion cover 8 to the frame 11 between the end portion 2E of the substrate 2 and the side surface portion 8B of the diffusion cover, a certain space is required ( (See FIG. 2). Therefore, the LED light source has a limit in approaching it. In particular, when the end portion 2E of the substrate is brought close to the side surface portion 8B of the diffusion cover, the substrate 2 must be expanded.
Spreading the substrate 2 increases material costs and industrial waste. Further, a frame 11 as a heat dissipation path must be provided under the substrate 2. Therefore, when enlarging the substrate, it is necessary to expand the plane 11A of the frame 11 and bring the inclined portion 11B closer to the diffusion cover 8 along with it. In this case, it becomes particularly difficult to secure a space for installing the above-described fixture.

そこで、導光部6Lを有する本構成は、側面部8Bと離れた位置にあるLED光源からの光を、導光部6Lによって側面部8Bの近くまで導光して側面部8に向けて出射面から光を出射することで、拡散カバーの側面部8Bに入射する光束を効果的に増大させる効果を奏する。また、導光部6Lを導光しても光損失はほとんど無いので、光損失を伴わずに、拡散カバーの側面部8Bに入射する光束を効果的に増大させる効果を奏する。   Therefore, in this configuration having the light guide portion 6L, the light from the LED light source located at a position apart from the side surface portion 8B is guided to the vicinity of the side surface portion 8B by the light guide portion 6L and emitted toward the side surface portion 8. By emitting light from the surface, there is an effect of effectively increasing the light flux incident on the side surface portion 8B of the diffusion cover. Moreover, since there is almost no light loss even if it guides the light guide part 6L, there exists an effect which increases effectively the light beam which injects into the side part 8B of a diffusion cover, without accompanying a light loss.

本構成は、あるLED光源に対応する光学部材は導光部を有し、導光部6Lは光を側面方向の外側に導光し、光が出射面6Bから側面方向外側Xに出射する構成である。以下、側面方向の外側(方向)を、側面外側方向や側面方向外側と呼ぶこともある。何れも図中に側面外側方向Xとして記載した方向である。   In this configuration, an optical member corresponding to a certain LED light source has a light guide portion, and the light guide portion 6L guides light to the outside in the side surface direction, and the light is emitted from the emission surface 6B to the outside X in the side surface direction. It is. Hereinafter, the outer side (direction) of the side surface direction may be referred to as a side surface outer side direction or a side surface direction outer side. All are the directions described as the lateral side direction X in the drawing.

出射面6Bは入射面6Aとは対向する面であって、入射面6Aと略平行な面である。入射面6Aと対向する面であって、光が導光する方向に垂直な面であるがゆえに、光取り出し手段が無くても出射面6Bから光が出射する。例えば、入射面6Aと垂直な面であって、光が導光する方向と水平な面からは、光取り出し手段がないと、光は出射しない。   The exit surface 6B is a surface facing the entrance surface 6A and is substantially parallel to the entrance surface 6A. Since the surface is opposed to the incident surface 6A and is perpendicular to the direction in which light is guided, light is emitted from the emission surface 6B even without the light extraction means. For example, light is not emitted from a surface that is perpendicular to the incident surface 6A and that is parallel to the direction in which light is guided without the light extraction means.

図6(a)に示すように、第2の光学部材6に対応するLED光源3Bが実装されている基板の法線と平行な断面において、第2の光学部材6の出射面形状は直線であって、入射面6Aと平行な直線である。出射面の厚さを導光部6Lの厚さ6Hと等しくする場合においては、当該出射面形状が直線である場合に出射面6Bで反射して入射面6Aに戻る光が少なくなり、さらに、当該出射面形状が入射面6Aと平行な直線の場合に最も少なくなる。当該出射面形状を、円や楕円にすると出射面で反射して入射面6Aに戻る光が多くなる。戻り光が再度出射面から出射して側面部8Bを照射する確率は低い。それゆえ、拡散カバーの側面部8Bへの光束を効果的に増大させるには、当該出射面形状は直線とすることが望ましい。とりわけ、入射面6Aと平行な直線の場合に最も戻り光が少なくなる構成であって、入射面6Aと平行な直線とすることがより望ましい。   As shown in FIG. 6A, in the cross section parallel to the normal line of the substrate on which the LED light source 3B corresponding to the second optical member 6 is mounted, the emission surface shape of the second optical member 6 is a straight line. Thus, it is a straight line parallel to the incident surface 6A. In the case where the thickness of the exit surface is made equal to the thickness 6H of the light guide 6L, when the exit surface shape is a straight line, less light is reflected by the exit surface 6B and returns to the entrance surface 6A. This is the smallest when the shape of the exit surface is a straight line parallel to the entrance surface 6A. If the shape of the exit surface is a circle or an ellipse, more light is reflected from the exit surface and returns to the entrance surface 6A. The probability that the return light is emitted again from the emission surface and irradiates the side surface portion 8B is low. Therefore, in order to effectively increase the light flux to the side surface portion 8B of the diffusion cover, it is desirable that the shape of the emission surface is a straight line. In particular, in the case of a straight line parallel to the incident surface 6A, the return light is minimized, and it is more preferable to use a straight line parallel to the incident surface 6A.

第2の光学部材6の出射面6Bは、基板2の端部2Eよりも側面方向外側に位置している。このように出射面6Bを配置することで、さらに拡散カバーの側面部8Bへの照射光束を効果的に増大させることが可能となる。なぜならば、出射面6Bが基板2の端部2Eの内側にある場合は、出射面6Bから出射した光の略半分は、基板2で反射してしまうためである。基板2で反射した光は正面方向Zに向かって伝播し、正面方向Zと反対方向には伝播しない。さらに、反射光は拡散しながら伝播するため、拡散カバーの正面部8Aに向かっても多くの光が伝播する。それゆえ、拡散カバーの側面部8Bへの光束を効果的に増大させるには、出射面6Bを基板2の端部2Eよりも側面方向の外側に配置することによって、出射光が基板2で反射して側面部8Bへの光束が低減するのを抑制することが効果的である。   The exit surface 6 </ b> B of the second optical member 6 is located on the outer side in the lateral direction than the end 2 </ b> E of the substrate 2. By disposing the emission surface 6B in this manner, it is possible to effectively increase the luminous flux applied to the side surface portion 8B of the diffusion cover. This is because when the exit surface 6B is inside the end 2E of the substrate 2, approximately half of the light emitted from the exit surface 6B is reflected by the substrate 2. The light reflected by the substrate 2 propagates in the front direction Z and does not propagate in the direction opposite to the front direction Z. Further, since the reflected light propagates while diffusing, a lot of light propagates toward the front portion 8A of the diffusing cover. Therefore, in order to effectively increase the luminous flux to the side surface portion 8B of the diffusion cover, the outgoing light is reflected by the substrate 2 by disposing the outgoing surface 6B outside the end portion 2E of the substrate 2 in the side surface direction. Thus, it is effective to suppress the reduction of the light flux to the side surface portion 8B.

例えば、図6(a)に示す光線RAY4は側面部8Bに向かっているが、もしも、出射面6Bが基板2上にあった場合、光線RAY4は基板2で反射して、側面部8Bではなく正面部8Aに向かう可能性がある。基板2表面が白色レジストなど、白色の光学系で覆われている場合は、正面部8Aに向かう可能性がさらに高くなる。   For example, although the ray RAY4 shown in FIG. 6A is directed to the side surface portion 8B, if the exit surface 6B is on the substrate 2, the ray RAY4 is reflected by the substrate 2 and not the side surface portion 8B. There is a possibility of going to the front part 8A. When the surface of the substrate 2 is covered with a white optical system such as a white resist, the possibility of going to the front portion 8A is further increased.

それゆえ、出射面6Bを基板2の端部2Eよりも側面方向外側に配置することによって、基板2での反射を抜本的に無くせるので、拡散カバーの側面部8Bへの光束を効果的に増大させるという効果が得られる。   Therefore, by disposing the emission surface 6B on the outer side in the side surface direction from the end 2E of the substrate 2, the reflection on the substrate 2 can be drastically eliminated, so that the light flux to the side surface portion 8B of the diffusion cover is effectively reduced. The effect of increasing is obtained.

出射面6Bを基板2の外側に出す場合、上述した固定具を設置するためのスペースを確保するという課題があるが、フレーム11の平面11Aの外側に出射面6Bをだけを配置すればよいので、フレーム11の形状を変更する必要が無い。その上に、固定具に合わせて、導光部6Lの長さを調整すれば良いので問題ない。   When projecting the exit surface 6B to the outside of the substrate 2, there is a problem of securing a space for installing the fixture described above, but it is only necessary to arrange the exit surface 6B outside the plane 11A of the frame 11. There is no need to change the shape of the frame 11. In addition, there is no problem because the length of the light guide portion 6L may be adjusted according to the fixture.

次に、入射面6A′から入射した光を効果的に導光させる方法に関して説明する。入射面6Aは、側面発光LED光源3Bの発光面3BEに対向しており、発光光の大部分は入射面6Aから光を入射する。一方、入射面6A′は、発光面3BEと垂直な面であって、発光面3BEの法線方向からの角度が大きい出射光が入射する面である。入射面6A′から入射する光束は全体から見れば少ないが、全体の20%程度の光束となる場合がある。
それゆえ、側面方向に導光させる光学手段を設ける。
Next, a method for effectively guiding the light incident from the incident surface 6A ′ will be described. The incident surface 6A faces the light emitting surface 3BE of the side-emitting LED light source 3B, and most of the emitted light enters the light from the incident surface 6A. On the other hand, the incident surface 6A ′ is a surface perpendicular to the light emitting surface 3BE, and is a surface on which outgoing light having a large angle from the normal direction of the light emitting surface 3BE is incident. Although the light beam incident from the incident surface 6A ′ is small as viewed from the whole, it may be about 20% of the total light beam.
Therefore, an optical means for guiding light in the lateral direction is provided.

発光面3BEの法線方向と略45度の角度を成すプリズム面6Cが発光面3BEに対応して存在する。プリズム面6Cは、入射面6A′から入射した光を出射面6B方向に全反射する光学的な形状である。プリズム面6Cは、発光面3BEの法線方向に対して傾いてれば効果を奏するが、当該法線との成す角度は、20度以上、70度未満が好ましく、略45度が最も良い。当該法線との成す角度が小さすぎるとプリズム面6Cで反射せずに正面方向Zに透過する光が多くなる。当該法線との成す角度が大きい程、プリズム面6Cは正面方向に大きくなるので、導光部6Lの厚さ6Hは大きくなる。著しく厚くなると重くなるので、当該法線との成す角度は70度程度未満が好ましい。   A prism surface 6C that forms an angle of approximately 45 degrees with the normal direction of the light emitting surface 3BE is present corresponding to the light emitting surface 3BE. The prism surface 6C has an optical shape that totally reflects the light incident from the incident surface 6A ′ in the direction of the exit surface 6B. The prism surface 6C is effective as long as it is inclined with respect to the normal direction of the light emitting surface 3BE, but the angle formed with the normal line is preferably 20 degrees or more and less than 70 degrees, and most preferably about 45 degrees. If the angle formed with the normal line is too small, more light is transmitted in the front direction Z without being reflected by the prism surface 6C. As the angle formed with the normal line increases, the prism surface 6C increases in the front direction, and thus the thickness 6H of the light guide 6L increases. Since it becomes heavier when it becomes extremely thick, the angle formed with the normal line is preferably less than about 70 degrees.

入射面6A′から入射する光の多くを出射面6B方向に全反射したいので、プリズム面6Cは入射面6A′と重なるようにしたい。発光面3BEと入射面6Aとの距離をG0とした場合に、プリズム面6Cの発光面3BEの法線への射影が距離G0よりも大きくなるようにすることが好ましい。   Since most of the light incident from the incident surface 6A ′ is to be totally reflected in the direction of the exit surface 6B, the prism surface 6C is desired to overlap the incident surface 6A ′. When the distance between the light emitting surface 3BE and the incident surface 6A is G0, it is preferable that the projection of the prism surface 6C onto the normal line of the light emitting surface 3BE is larger than the distance G0.

図5のLED光源の説明で前述したように、大部分の光は発光面3BEから出射するが、枠体37は一部の光を透過するため、枠体37全体から光が漏れる。とりわけ、枠体37が薄い部位から光が漏れる。側面発光LED光源3Bの正面方向の面からも光が漏れる。この漏れ光を反射して導光させるためには、側面発光LED光源3Bの正面方向の面の側面方向の幅をWLGとした場合に、プリズム面6Cの発光面3BEの法線への射影が(距離G0+幅WLG)よりも大きくなるようにすることが好ましい。   As described above in the description of the LED light source in FIG. 5, most of the light is emitted from the light emitting surface 3BE, but the frame 37 transmits part of the light, so that light leaks from the entire frame 37. In particular, light leaks from a portion where the frame 37 is thin. Light also leaks from the front surface of the side-emitting LED light source 3B. In order to reflect and guide this leaked light, when the width of the side surface direction of the side light emitting LED light source 3B is set to WLG, projection onto the normal line of the light emitting surface 3BE of the prism surface 6C is performed. It is preferable to be larger than (distance G0 + width WLG).

次に、第1の光学部材5と第2の光学部材6が光学部材接続部4で繋がって構成される複合光学部材7に関して説明する。第1の光学部材5と第2の光学部材6を光学部材接続部4で繋げることで複数の効果を奏するので、順次説明する。   Next, the composite optical member 7 configured by connecting the first optical member 5 and the second optical member 6 by the optical member connecting portion 4 will be described. Since the first optical member 5 and the second optical member 6 are connected by the optical member connecting portion 4, a plurality of effects can be obtained.

図6(b)は、図1のB−B′断面図であり、正面発光LED光源3A、第1の光学部材5である広角レンズ、光学部材接続部4、第2の光学部材6が主に表されている。但し、第2の光学部材6に対応するLED光源3Bが無い箇所であるため、第2の光学部材6には入射面6A、6A′が存在せず、出射面6Bが存在する。また、光線追跡の例として、光線RAY5、光線RAY6を示す。途中より点線で示される光線RAY6′は、光学部材接続部4が無かった場合に、光線RAY6が伝播する方向を表す光線である。   FIG. 6B is a cross-sectional view taken along the line BB ′ of FIG. 1. The front light emitting LED light source 3A, the wide-angle lens that is the first optical member 5, the optical member connecting portion 4, and the second optical member 6 are mainly used. It is expressed in However, since there is no LED light source 3B corresponding to the second optical member 6, the second optical member 6 does not have the incident surfaces 6A and 6A 'but has the emission surface 6B. As examples of ray tracing, rays RAY5 and RAY6 are shown. A ray RAY6 ′ indicated by a dotted line from the middle is a ray representing a direction in which the ray RAY6 propagates when the optical member connecting portion 4 is not provided.

本構成においては、光線RAY5、光線RAY6が示すように、第2の光学部材6の出射面は、正面発光LED3Aから第1の光学部材5に入射して光学部材接続部4を導光して伝播してくる光も出射する面となる。もしも、光学部材接続部4が無かった場合には、光線RAY6′のように、基板2の内側に位置する第1の光学部材5から出射して拡散するため、拡散カバーの側面部8Bを直接照射する光束は少ない。   In this configuration, as indicated by the light ray RAY5 and the light ray RAY6, the exit surface of the second optical member 6 enters the first optical member 5 from the front light emitting LED 3A and guides the optical member connecting portion 4. The propagating light also becomes the outgoing surface. If there is no optical member connecting portion 4, the light is emitted from the first optical member 5 located inside the substrate 2 and diffused like the ray RAY 6 ′. There is little light flux to irradiate.

したがって、第1の光学部材5と第2の光学部材6が光学部材接続部4によって接続されていることにより、第1の光学部材5に対応するLED光源3Aの発光光の一部を第2の光学部材6の出射面6Bまで伝播させ、側面部8Bを直接照射することが可能となり、照明装置1の間接光を増大するという効果を奏する。また、導光により伝播するので、光損失を抑制して側面部8Bを直接照射する効果も奏する。   Therefore, when the first optical member 5 and the second optical member 6 are connected by the optical member connecting portion 4, a part of the light emitted from the LED light source 3 </ b> A corresponding to the first optical member 5 is second. It is possible to propagate to the exit surface 6B of the optical member 6 and directly irradiate the side surface portion 8B, and there is an effect that the indirect light of the illumination device 1 is increased. Moreover, since it propagates by light guide, the effect of suppressing light loss and directly irradiating the side surface portion 8B is also achieved.

光学部材接続部の高さ4Hは、第1の光学部材の高さ5Hよりも小さい。これは、光学部材接続部4の軽量化の効果もあるが、他にも光学的な意味がある。光学部材接続部4を光が導光するには、光学部材接続部の反射面4Cに伝播する光は、スネルの法則から導かれる全反射条件を満たさなければならない。光学部材接続部4の屈折率をnmとし、反射面4Cの法線からの角度を入射角度とした場合には、導光するためには、入射角はsin-1(1/nm)で得られる臨界角よりも大きな角度でなくてはならない。 The height 4H of the optical member connecting portion is smaller than the height 5H of the first optical member. This has the effect of reducing the weight of the optical member connecting portion 4, but has other optical meanings. In order for light to be guided through the optical member connecting portion 4, the light propagating to the reflecting surface 4 </ b> C of the optical member connecting portion must satisfy the total reflection condition derived from Snell's law. When the refractive index of the optical member connecting portion 4 is nm and the angle from the normal line of the reflecting surface 4C is the incident angle, the incident angle is sin −1 (1 / n m ) in order to guide light. The angle must be larger than the critical angle obtained in.

例えば、ポリカーボネートやアクリルなどの樹脂は、臨界角が40度前後であるため、第1の光学部材5に対応するLED光源3Aの発光光の内、LED光源3Aが実装されている基板2の法線からの角度を光源配光角とした場合に、少なくても光源配光角0度から40度の光は導光しないので第1の光学部材5から出射させるべきである。望ましくは、光源配光角0度から60度の光は第1の光学部材5から出射させて拡散カバーの正面部8Aを照射し、それ以上の角度の光線を導光させて側面部8Bを照射するのが望ましい。ある角度より小さい光源配光角の光線が光学部材接続部4に入射しないようにするには、光学部材接続部の高さ4Hを第1の光学部材の高さ5Hよりも小さくする必要がある。   For example, a resin such as polycarbonate or acrylic has a critical angle of about 40 degrees, and therefore the method of the substrate 2 on which the LED light source 3A is mounted among the light emitted from the LED light source 3A corresponding to the first optical member 5. When the angle from the line is the light source light distribution angle, at least light with a light source light distribution angle of 0 to 40 degrees is not guided and should be emitted from the first optical member 5. Desirably, light having a light source distribution angle of 0 to 60 degrees is emitted from the first optical member 5 to irradiate the front surface portion 8A of the diffusion cover, and guides the light beam having an angle larger than that to guide the side surface portion 8B. It is desirable to irradiate. In order to prevent a light beam having a light source distribution angle smaller than a certain angle from entering the optical member connecting portion 4, the height 4H of the optical member connecting portion needs to be smaller than the height 5H of the first optical member. .

光学部材接続部の高さ4Hを、第1の光学部材の高さ5Hより小さい高さとすることは、光学部材接続部4に入射する光線の角度を制御するという効果を奏し、光学部材接続部4を導光する光のみを入射させることが可能であるため、光学部材接続部4に入射後に迷光となって損失する光を低減するという効果を奏する。   Making the height 4H of the optical member connection portion smaller than the height 5H of the first optical member has an effect of controlling the angle of the light beam incident on the optical member connection portion 4, and the optical member connection portion. Since only the light that guides light 4 can be incident, there is an effect of reducing the light lost as stray light after entering the optical member connecting portion 4.

次に、複合光学部材7は電極40を覆っているため、拡散カバー8を取り外されたときに、人が電極40に触れて感電することを防止する保護カバーの効果も得られている点に関して説明する。図6(a)に示されるように、複合光学部材7は、第1の光学部材5からの光を第2の光学部材の出射面6Bに光を導くために、第1の光学部材5から出射面6Bまでを複合光学部材7が覆っている。その際に電極40も人が触れないように覆っている。   Next, since the composite optical member 7 covers the electrode 40, when the diffusion cover 8 is removed, an effect of a protective cover that prevents a person from touching the electrode 40 and receiving an electric shock is also obtained. explain. As shown in FIG. 6 (a), the composite optical member 7 is arranged so that the light from the first optical member 5 is guided from the first optical member 5 in order to guide the light to the emission surface 6B of the second optical member. The composite optical member 7 covers up to the emission surface 6B. At that time, the electrode 40 is also covered so as not to be touched by a person.

複合光学部材7が電極40を覆っていない場合は、電極40を覆うために別の部材が必要となり、当該別の部材が複合光学部材7の影になったりして光学的な干渉が起こるという問題が発生するので、複合光学部材7が電極40を覆うことは上記問題を発生させないという効果を奏する。   When the composite optical member 7 does not cover the electrode 40, another member is required to cover the electrode 40, and the other member becomes a shadow of the composite optical member 7 and optical interference occurs. Since a problem occurs, covering the electrode 40 with the composite optical member 7 has an effect of not causing the problem.

図7は電極40、電極40′と複合光学部材7に関して詳細に説明するための図で、図7(a)は正面図で、図7(b)は、図7(a)中のG−G′断面図である。G−G′断面は、光線追跡例RAY7の複合光学部材7内の軌跡に沿った断面である。図7(a)において、電極40、電極40′は、LED光源の実装端子に対応して形状が決まり、LED光源より外側にも配置されている。電極40を覆うように複合光学部材7は配置されている。また、電極40と対向する面にも複合光学部材の裏面7Rが存在するので、LED光源3Aから導光された光は、図7(b)に示すように、電極40で反射・損失せずに、電極40と対向する位置7Rを通過することが可能である。電極40を複合光学部材7で覆うことで、感電防止の保護カバーだけではなく、電極40で反射・散乱する光も低減できるという効果を奏する。   7A and 7B are diagrams for explaining the electrode 40, the electrode 40 'and the composite optical member 7 in detail. FIG. 7A is a front view, and FIG. 7B is a cross-sectional view taken along line G- in FIG. It is G 'sectional drawing. The GG ′ cross section is a cross section along the locus in the composite optical member 7 of the ray tracing example RAY7. In FIG. 7A, the shape of the electrode 40 and the electrode 40 'is determined corresponding to the mounting terminal of the LED light source, and is also arranged outside the LED light source. The composite optical member 7 is disposed so as to cover the electrode 40. Further, since the rear surface 7R of the composite optical member is also present on the surface facing the electrode 40, the light guided from the LED light source 3A is not reflected or lost by the electrode 40 as shown in FIG. In addition, it is possible to pass through the position 7 </ b> R facing the electrode 40. Covering the electrode 40 with the composite optical member 7 produces an effect that not only the protective cover for preventing electric shock but also the light reflected and scattered by the electrode 40 can be reduced.

さらに、照明装置1に含まれるLED光源の数が数十個を超えるような場合は、光学部材の取り付け、位置あわせを行うことは、時間がかかり省電力および作業コストの観点で望ましくない。ちなみに、天井に取り付ける照明装置でリビングよりも広い部屋用途の場合、大抵、数十個以上のLED光源が必要となる。   Furthermore, when the number of LED light sources included in the illumination device 1 exceeds several tens, it is time consuming to attach and align the optical member, which is not desirable from the viewpoint of power saving and work cost. Incidentally, in the case of a room application wider than a living room with a lighting device attached to the ceiling, usually several tens or more LED light sources are required.

しかしながら、複数の光学部材をまとめた複合光学部材の場合、取り付け作業回数が減るという効果を奏する。さらに、本実施の形態のように、全ての光学部材を一括成型で作る場合、取り付けに要する時間は著しく改善される。また、光学部材が複数種ある場合に、一括成型の複合光学部材を取り付ける場合には、対応するLED光源への光学部材の取り付け間違いが無くなるという効果を奏する。   However, in the case of a composite optical member in which a plurality of optical members are gathered, there is an effect that the number of mounting operations is reduced. Further, when all the optical members are made by batch molding as in the present embodiment, the time required for attachment is remarkably improved. Further, when there are a plurality of types of optical members, when a batch-molded composite optical member is attached, there is an effect that there is no mistake in attaching the optical member to the corresponding LED light source.

次に、正面発光LED光源3Aと側面発光LED光源3Bが存在する光学系における、LED光源の配置に関して説明する。前述したように、側面発光LED光源3Bは側面部8Bを直接照射するために、最も外側に配置されることが好ましい。また、別の表現では、基板2の端部2E付近に存在することが好ましい。より直接的には、出射面6Bと側面部8Bの間に障害物がなく、出射光は伝搬途中で反射・散乱を受けずに側面部8Bに到達することが可能となる配置が好ましい。その上で、正面発光LED光源3Aの配置に関して図1を用いて説明する。   Next, the arrangement of the LED light sources in the optical system including the front light emitting LED light source 3A and the side light emitting LED light source 3B will be described. As described above, the side-emitting LED light source 3B is preferably disposed on the outermost side in order to directly irradiate the side surface portion 8B. In another expression, it is preferably present in the vicinity of the end 2E of the substrate 2. More directly, it is preferable that there is no obstacle between the exit surface 6B and the side surface portion 8B, and the emitted light can reach the side surface portion 8B without being reflected or scattered during propagation. The arrangement of the front light emitting LED light source 3A will be described with reference to FIG.

図1中に記載の距離D3Lは、中心Cから側面発光LED光源3Bまでの距離である。
距離D2Lは、側面発光LED光源3Bに最も近い最近接正面発光LED光源3Aの中心Cからの距離である。距離D1Lは、当該最近接正面発光LED光源3Aの内側にある正面発光LED光源3Aの中心Cからの距離である。但し、何れのLED光源も色が概ね等しいLED光源間で距離を規定している。
A distance D3L described in FIG. 1 is a distance from the center C to the side-emitting LED light source 3B.
The distance D2L is a distance from the center C of the closest front light emitting LED light source 3A closest to the side light emitting LED light source 3B. The distance D1L is a distance from the center C of the front light emitting LED light source 3A inside the nearest front light emitting LED light source 3A. However, any LED light source defines a distance between LED light sources having substantially the same color.

前述したが、拡散カバー8の照度を均一にして、綺麗でムラのない発光面とし、眩しさを低減することは重要な課題である。側面発光LED光源3Bの正面方向は発光光束が少ないために、側面発光LED光源3Bの正面方向の拡散カバー正面部8Bの照度は低くなり暗くなるという課題が発生する。それゆえ、照度の均一性を向上させるために、側面発光LED光源3Bの近くに正面発光LED光源3Aを配置する。したがって、側面発光LED光源3Bとそれに最も近い最近接正面発光LED光源3A間の距離は、当該最近接正面発光LED光源3Aとそれより内側にあるLED光源3Aとの距離よりも小さくなる。
但し、色違いのLED光源が複数ある場合、同じ色で均一化を図るので、距離の規定は概ね同じ色のLED光源間で行う。また、その様な配置は、(D3L−D2L)<(D2L−D1L)を満たす。
As described above, it is an important issue to reduce the glare by making the illuminance of the diffusion cover 8 uniform, making the light emitting surface clean and uniform. Since the emitted light flux is small in the front direction of the side light emitting LED light source 3B, there arises a problem that the illuminance of the diffusion cover front surface portion 8B in the front direction of the side light emitting LED light source 3B becomes low and dark. Therefore, in order to improve the illuminance uniformity, the front light emitting LED light source 3A is disposed near the side light emitting LED light source 3B. Therefore, the distance between the side-emitting LED light source 3B and the closest front-emitting LED light source 3A closest thereto is smaller than the distance between the closest front-emitting LED light source 3A and the LED light source 3A located inside thereof.
However, when there are a plurality of LED light sources of different colors, the same color is used for uniformization. Therefore, the distance is defined between LED light sources of the same color. Further, such an arrangement satisfies (D3L-D2L) <(D2L-D1L).

また、正面発光LED光源3Aに対応して配置する広角レンズの例として、LED光源3Aの実装面内において、等方的なレンズの説明をしたが、より効果的に均一化をするために、実装面内で非等方的なレンズに関して説明する。例えば、円形状の照明装置の場合、中心Cを原点とした極座標系を考えた場合、動径方向より方位角方向の方が、LED光源が密(略同色のLED光源間隔が小さい)に配置されるので、正面から見た場合に、動径方向と方位角方向でレンズ幅を異ならせてレンズからの発光光の出射分布を変えて均一化を図ることが考えられる。その場合、一般には、レンズ幅が大きい方がより広角に光を出射できるので、動径方向のレンズ幅の方が方位角方向のレンズ幅よりも大きくなる。   In addition, as an example of a wide-angle lens disposed corresponding to the front-emitting LED light source 3A, an isotropic lens has been described in the mounting surface of the LED light source 3A. The lens that is anisotropic in the mounting surface will be described. For example, in the case of a circular illumination device, when a polar coordinate system with the center C as the origin is considered, the LED light sources are arranged more densely in the azimuth direction than the radial direction (the interval between the LED light sources of substantially the same color is small). Therefore, when viewed from the front, it is conceivable to make the lens width different in the radial direction and the azimuth direction to change the emission distribution of the emitted light from the lens to make it uniform. In that case, generally, the larger the lens width, the more light can be emitted at a wider angle, so the lens width in the radial direction is larger than the lens width in the azimuth direction.

より一般化した場合、LED光源が密(略同色のLED光源間隔が小さい)の方向のレンズ幅は、LED光源が粗(略同色のLED光源間隔が大きい)の方向のレンズ幅よりも大きくなる。   When generalized, the lens width in the direction where the LED light sources are dense (the interval between the LED light sources of substantially the same color is small) is larger than the lens width in the direction where the LED light sources are coarse (the interval between the LED light sources of approximately the same color is large). .

図16に、第1の光学部材5と第2の光学部材6の様々な例を示す。   FIG. 16 shows various examples of the first optical member 5 and the second optical member 6.

図16(a)は、第1の光学部材5は入射面5Aと出射面5Bの断面形状が略相似形状で、第2の光学部材6は導光部を有する形状である。第1の光学部材5は、部材の中心にLED光源を置いた場合に、当該LED光源からの出射光をほとんど屈折させずに出射させる形状である(光線追跡例RAY21参照)。LED光源からの出射光の配光分布を、そのまま光学部材からの出射光としたい場合に有効な形状である。当該部材を広角レンズとした場合には、出射面5Bで一部の光がフレネル反射により、レンズ内に反射され、基板などで吸収損失されることがある。一方で、入射面5Aと出射面5Bの断面形状が略相似形状である場合は、出射面5Bでのフレネル反射が最も少なくなる形状である。それゆえ、当該光学部材の影響による光の損失が最も少なくなる形状である。また、本形状の光学部材を側面発光LED光源近くに置くことで、広角レンズを置く場合に比べて発光面の法線方向の光度が大きいので、側面発光LED光源の正面方向の均一性を向上させることができる。   In FIG. 16A, the first optical member 5 has an incident surface 5A and an exit surface 5B having substantially similar cross-sectional shapes, and the second optical member 6 has a light guide portion. When the LED light source is placed at the center of the member, the first optical member 5 has a shape that emits light emitted from the LED light source with almost no refraction (see ray tracing example RAY21). This shape is effective when the light distribution of the emitted light from the LED light source is desired to be the emitted light from the optical member as it is. When the member is a wide-angle lens, a part of the light is reflected by the Fresnel reflection on the emission surface 5B and may be absorbed by the substrate or the like. On the other hand, when the cross-sectional shapes of the entrance surface 5A and the exit surface 5B are substantially similar, the Fresnel reflection at the exit surface 5B is minimized. Therefore, the light loss due to the influence of the optical member is the smallest. In addition, by placing the optical member of this shape near the side-emitting LED light source, the luminous intensity in the normal direction of the light-emitting surface is greater than when placing a wide-angle lens, improving the front-side uniformity of the side-emitting LED light source Can be made.

図16(b)は別の例の正面図で、図16(c)は図16(b)中のA−A′断面図である。本例は出射面6Bが基板2の端部2Eの外側にあるが、LED光源3Bと当該出射面6Bを含む断面において空隙6ARがある構成である。光線追跡例RAY22に示したように、LED光源3Bから出射した光は、入射面6Aに入射し、空隙6ARへの出射面6B0から出射して空気中を伝播して、第2の光学部材6の最も外側にある部分の入射面6B1に入射し、当該部分の出射面6Bから側面部8Bに向かって出射する。本例では、導光部は無いが空気中を光が伝播して、基板2の端部2Eの外側にある出射面6Bから光が出射する構成である。   FIG. 16B is a front view of another example, and FIG. 16C is a cross-sectional view taken along the line AA ′ in FIG. In this example, the exit surface 6B is outside the end 2E of the substrate 2, but there is a gap 6AR in the cross section including the LED light source 3B and the exit surface 6B. As shown in the ray tracing example RAY22, the light emitted from the LED light source 3B is incident on the incident surface 6A, is emitted from the emission surface 6B0 to the gap 6AR, propagates in the air, and is transmitted to the second optical member 6. Is incident on the incident surface 6B1 of the outermost portion of the light, and exits from the exit surface 6B of the portion toward the side surface portion 8B. In this example, although there is no light guide part, light propagates in the air and light is emitted from the emission surface 6B outside the end 2E of the substrate 2.

なお、出射面6Bを有する部位と入射面6Aを有する部位は適宜固定されている。本例では、棒状の部位6Fで繋がっている。   The part having the exit surface 6B and the part having the entrance surface 6A are fixed as appropriate. In this example, they are connected by a rod-shaped portion 6F.

また、側面発光LED光源から第2の光学部材6の最も外側にある部分の入射面6B1に直接光が入射する構成としても良い。その場合、入射面6B1が入射面6Aの役割を果たすことになる。   Moreover, it is good also as a structure into which light injects directly into the entrance plane 6B1 of the outermost part of the 2nd optical member 6 from a side light emission LED light source. In that case, the incident surface 6B1 serves as the incident surface 6A.

また、空隙6ARへの出射面6B0の断面形状は直線に限らず、曲線などのレンズ形状で有っても良い。また、入射面6B1および出射面6Bの断面形状は、それぞれは直線であっても良く、曲線のレンズ形状であっても良い。両者の組み合わせで、効率良く拡散カバーの側面部8Bを照射できれば良い。   Further, the cross-sectional shape of the exit surface 6B0 to the gap 6AR is not limited to a straight line, but may be a lens shape such as a curve. Further, the cross-sectional shapes of the incident surface 6B1 and the exit surface 6B may each be a straight line or a curved lens shape. It is only necessary to irradiate the side surface portion 8B of the diffusion cover with a combination of both.

本構成は、出射面6Bを基板2の端部2Eの外側に配置し、側面部8Bを効率よく照射するための形状をしている。出射面6Bは概ねLED光源3Bに対して対称的に配置されている。また、出射面6Bの断面の大きさ6Hは、空隙6ARへの出射面6B0の断面よりも大きい。これらの特徴は、出射面6Bを基板2の端部2Eの外側に配置することで、出射面6Bなどの光学部材が基板2と干渉しないので、得られている。それゆえ、出射面6Bを基板2の端部2Eの外側に配置することで側面部8Bを効率よく照射するという効果を奏する。   In this configuration, the emission surface 6B is disposed outside the end portion 2E of the substrate 2 and has a shape for efficiently irradiating the side surface portion 8B. The emission surface 6B is generally arranged symmetrically with respect to the LED light source 3B. The size 6H of the cross section of the exit surface 6B is larger than the cross section of the exit surface 6B0 to the gap 6AR. These features are obtained because the optical surface such as the output surface 6B does not interfere with the substrate 2 by disposing the output surface 6B outside the end 2E of the substrate 2. Therefore, by arranging the emission surface 6B outside the end portion 2E of the substrate 2, there is an effect that the side surface portion 8B is efficiently irradiated.

図8は、本発明の第2の実施形態に係る照明装置の構成を説明するための図である。第1の実施の形態と同じ個所に関しては説明を省略する。図8において、第1の実施の形態と異なる個所は、第2の光学部材6の出射面6Bの形状である。導光部を有する第2の光学部材6の出射面形状は直線ではなく、曲線である。第2の光学部材6の出射面形状は円弧状の形状をしている。第2の光学部材6の出射面6Bの断面形状は、次に説明する課題を解決するための形状である。   FIG. 8 is a diagram for explaining the configuration of the illumination device according to the second embodiment of the present invention. Description of the same parts as those in the first embodiment is omitted. In FIG. 8, the part different from the first embodiment is the shape of the emission surface 6 </ b> B of the second optical member 6. The shape of the emission surface of the second optical member 6 having the light guide portion is not a straight line but a curve. The exit surface shape of the second optical member 6 has an arc shape. The cross-sectional shape of the emission surface 6B of the second optical member 6 is a shape for solving the problem described below.

図9(a)から(d)を用いて、本実施の形態で解決する課題に関して説明する。図9(a)から(c)は、LED光源3B、導光部6L、スクリーンSCNからなる系であって、現象を説明するための光学系である。   A problem to be solved in the present embodiment will be described with reference to FIGS. FIGS. 9A to 9C are systems including the LED light source 3B, the light guide 6L, and the screen SCN, and are optical systems for explaining the phenomenon.

図9(a)は、LED光源3Bからの発光光の内、導光部6Lの上面6LAおよび下面6LBで反射しないで、入射面6Aから出射面6Bに直接伝搬して空気中に出射した光線RAY8と、当該光線がスクリーンSCNに映し出す放射照度分布I0を模式的に表した図である。本例は、LED光源3Bと導光部6Lの中心軸6LCが一致している例なので、当該中心軸上に放射照度分布I0のピークがある。説明のために、中心軸6LCと原点を等しくした、スクリーン上のx座標軸XCDを図中に記す。   FIG. 9 (a) shows a ray of light emitted from the LED light source 3B that is not reflected by the upper surface 6LA and the lower surface 6LB of the light guide 6L but directly propagates from the incident surface 6A to the emission surface 6B and is emitted into the air. It is the figure which represented RAY8 and the irradiance distribution I0 which the said light ray reflects on the screen SCN typically. Since this example is an example in which the center axis 6LC of the LED light source 3B and the light guide 6L coincides, there is a peak of the irradiance distribution I0 on the center axis. For the sake of explanation, the x-coordinate axis XCD on the screen having the same origin as the central axis 6LC is shown in the figure.

図9(b)は、LED光源3Bからの発光光の内、入射面6Aから入射後に上面6LAで1回だけ反射して、出射面6Bに伝搬して空気中に出射した光線RAY9と、当該光線がスクリーンSCNに映し出す放射照度分布I1を模式的に表した図である。当該放射照度分布I1は、中心軸6LCとずれた位置にピークを持ち、x座標軸XCD方向にピークがずれる。   FIG. 9B shows a ray RAY9 of light emitted from the LED light source 3B, which is reflected only once by the upper surface 6LA after being incident from the incident surface 6A, propagates to the emission surface 6B, and is emitted into the air. It is the figure which represented typically the irradiance distribution I1 which a light ray reflects on the screen SCN. The irradiance distribution I1 has a peak at a position shifted from the central axis 6LC, and the peak deviates in the x coordinate axis XCD direction.

図9(c)は、図9(a)と図9(b)の光線を重ね合わせた例である。放射照度分布I0とI1の重ね合わせがスクリーンの放射照度分布となる。ピークを持つ放射照度分布がある間隔を持って重ね合わせされるため、スクリーンには明暗のムラが縞状に発生する。図9(c)は、2通りの導光経路に関して考慮しただけであるが、実際には幾多の経路の結果が重ね合わせされ、明暗のムラが広範囲に発生する。入射面から出射面に到達するまでの反射回数によって導光経路を分類した場合に、各導光経路毎にピークが存在し、それら全ての重ね合わせがスクリーンに明暗の連続的に繰り返されるムラを発生させるということである。   FIG. 9C is an example in which the light rays in FIGS. 9A and 9B are superimposed. The superposition of the irradiance distributions I0 and I1 is the irradiance distribution of the screen. Since the irradiance distribution having a peak is overlaid with a certain interval, light and dark unevenness occurs in a stripe pattern on the screen. In FIG. 9C, only two light guide paths are considered, but in actuality, the results of many paths are superimposed, and light and dark unevenness occurs in a wide range. When the light guide path is classified according to the number of reflections from the incident surface to the output surface, there is a peak for each light guide path, and all of these overlaps are unevenly repeated on the screen in light and dark. It is to generate.

図9(d)にシミュレーションで計算した結果を示す。計算時の導光部の長さは50mmで、200mm角のスクリーンを導光部の出射面から150mm離して配置し、x軸と平行方向における導光板の厚さを3mm、LED光源の幅を1mmとした場合の結果である。縦軸は放射照度(W/mm2)を表し、横軸はスクリーン上のx座標を表す。中心軸6LC上である0mm付近で放射照度は最大となり、位置が離れるにつれて明暗を繰り返しながら暗くなる。 FIG. 9D shows the result calculated by simulation. The length of the light guide at the time of calculation is 50 mm, a 200 mm square screen is placed 150 mm away from the exit surface of the light guide, the thickness of the light guide plate in the direction parallel to the x axis is 3 mm, and the width of the LED light source is The result is 1 mm. The vertical axis represents irradiance (W / mm 2 ), and the horizontal axis represents the x coordinate on the screen. The irradiance is maximized around 0 mm on the central axis 6LC, and becomes darker while repeating the brightness as the position increases.

本現象は、導光部を有する部材を用いる場合に発生する現象である。導光部は5mmから数百mm程度の透明な樹脂、ガラス、セラミックなどであって、光を当該距離伝播する部材である。照明装置によっては1mよりも長い導光部を有する場合がある。照明装置の場合、スクリーンが拡散カバー8に対応していて、拡散カバー8上に明暗が発生する。照明装置に発生する当該明暗のムラは、発光面の均一性を著しく劣化させ、拡散カバー8のデザイン的な価値を低下させるとともに、眩しい輝線となることもある。本実施の形態では本現象によるムラを低減し、発光面の均一性を得ることを課題とする。   This phenomenon is a phenomenon that occurs when a member having a light guide portion is used. The light guide portion is a transparent resin, glass, ceramic, or the like of about 5 mm to several hundred mm, and is a member that propagates light over the distance. Some lighting devices have a light guide section longer than 1 m. In the case of the lighting device, the screen corresponds to the diffusion cover 8, and light and darkness is generated on the diffusion cover 8. The unevenness of brightness and darkness generated in the illumination device significantly deteriorates the uniformity of the light emitting surface, lowers the design value of the diffusion cover 8, and may result in bright bright lines. In this embodiment, it is an object to reduce unevenness due to this phenomenon and obtain uniformity of a light emitting surface.

図10でさらに詳しく本現象に関して言及する。本現象は、LED光源の発光面3BEと導光部の中心軸6LCとの位置関係に強く依存する。図10(a)は、図9の場合に対応したLED光源と入射面6Aの位置関係の概略図である。図10(b)は、LED光源の発光面3BEの中心と導光部の中心軸6LCが−0.5mmだけx座標軸XCD方向にずれた場合の位置関係の概略図である。図10(c)は、LED光源の発光面3BEの中心と導光部の中心軸6LCが一致している場合であって、さらに、x軸と平行方向における導光板の厚さとLED光源の発光面3BEの幅が等しい場合を示している。図10(d)は、図10(a)から図10(c)の場合における放射照度(W/mm2)の位置分布の計算結果を示している。計算時の導光部の長さは50mmで、200mm角のスクリーンを導光部の出射面から150mm離して配置し、導光板の厚さを3mm、LED光源の幅を1mmとした場合の結果である。縦軸は放射照度(W/mm2)を表し、横軸はスクリーン上のx座標を表す。 This phenomenon will be described in more detail with reference to FIG. This phenomenon strongly depends on the positional relationship between the light emitting surface 3BE of the LED light source and the central axis 6LC of the light guide. FIG. 10A is a schematic diagram of the positional relationship between the LED light source and the incident surface 6A corresponding to the case of FIG. FIG. 10B is a schematic diagram of the positional relationship when the center of the light emitting surface 3BE of the LED light source and the center axis 6LC of the light guide section are shifted by −0.5 mm in the x coordinate axis XCD direction. FIG. 10C shows the case where the center of the light emitting surface 3BE of the LED light source and the center axis 6LC of the light guide portion coincide with each other, and the thickness of the light guide plate and the light emission of the LED light source in the direction parallel to the x axis. The case where the width | variety of surface 3BE is equal is shown. FIG. 10D shows the calculation result of the position distribution of the irradiance (W / mm 2 ) in the case of FIGS. 10A to 10C. Result of calculation when the length of the light guide is 50 mm, a 200 mm square screen is placed 150 mm away from the light exit surface of the light guide, the thickness of the light guide plate is 3 mm, and the width of the LED light source is 1 mm It is. The vertical axis represents irradiance (W / mm 2 ), and the horizontal axis represents the x coordinate on the screen.

実線10(a)は、図10(a)の場合の結果であって、図9(d)に示す結果と同じである。比較のために示してある。   The solid line 10 (a) is the result in the case of FIG. 10 (a) and is the same as the result shown in FIG. 9 (d). Shown for comparison.

破線10(b)は、図10(b)の場合の結果である。明暗のムラが、著しく大きくなっていることが分かる。つまり、LED光源の発光面3BEの中心と導光部の中心がずれた場合にムラが大きくなることが分かる。ムラは、入射面から出射面に到達するまでの反射回数によって分類した導光経路毎のピークによって発生する。LED光源の発光面3BEの中心と導光部の中心が等しい場合は、当該ピークはある間隔で存在し、導光部の厚さ方向(x座標軸XCD方向)において、中心軸に関して対称的に存在する。一方で、LED光源の発光面3BEの中心と導光部の中心が異なる場合は、当該ピークの位置が、導光部の厚さ方向(x座標軸XCD方向)において、中心軸に関して非対称的に存在する。それゆえ、中心が異なる場合は、スクリーン上においてピークが近づく導光経路とピークが遠ざかる導光経路が存在する。ピークが近づくところはより明るく、ピークが遠ざかるところはより暗くなる。例えば、導光経路1に対応するピーク1と導光経路2に対応するピーク2は近づき、ピーク1と導光経路3に対応するピーク3は遠ざかる場合があり、その場合、ピーク1とピーク2の重なり部分はより明るくなり、ピーク1とピーク3の間はより暗くなる。それゆえ、中心が異なる場合は、破線10(b)に示すように著しく大きなムラが発生する。   The broken line 10 (b) is the result in the case of FIG. It can be seen that the brightness unevenness is remarkably increased. That is, it can be seen that the unevenness increases when the center of the light emitting surface 3BE of the LED light source and the center of the light guide portion are shifted. Unevenness occurs due to the peak of each light guide path classified by the number of reflections from the incident surface to the output surface. When the center of the light emitting surface 3BE of the LED light source and the center of the light guide are equal, the peaks exist at a certain interval, and exist symmetrically with respect to the central axis in the thickness direction (x coordinate axis XCD direction) of the light guide. To do. On the other hand, when the center of the light emitting surface 3BE of the LED light source is different from the center of the light guide part, the peak position exists asymmetrically with respect to the central axis in the thickness direction of the light guide part (x coordinate axis XCD direction). To do. Therefore, when the centers are different, there are a light guide path whose peak approaches and a light guide path whose peak moves away on the screen. The place where the peak approaches is brighter and the place where the peak goes away becomes darker. For example, peak 1 corresponding to the light guide path 1 and peak 2 corresponding to the light guide path 2 may approach, and peak 1 and peak 3 corresponding to the light guide path 3 may move away. In this case, peak 1 and peak 2 The overlapped portion becomes brighter, and between peak 1 and peak 3 becomes darker. Therefore, when the centers are different, extremely large unevenness occurs as shown by the broken line 10 (b).

点線10(c)は、図10(c)の場合の結果であって、導光板の厚さとLED光源の発光面3BEの幅が等しい場合は、ムラが抑制されることが分かる。これは入射面6A全面にあらゆる角度の光が入射するためである。言い換えると、入射面6Aに対向するLED光源の発光面の幅が、入射面6Aと同程度以上の大きさの場合には、ムラが抑制される。   The dotted line 10 (c) is the result in the case of FIG. 10 (c), and it can be seen that unevenness is suppressed when the thickness of the light guide plate and the width of the light emitting surface 3BE of the LED light source are equal. This is because light of all angles enters the entire incident surface 6A. In other words, when the width of the light emitting surface of the LED light source facing the incident surface 6A is equal to or larger than that of the incident surface 6A, unevenness is suppressed.

このムラを低減する方法は、第2の光学部材6に対応するLED光源が実装されている基板の法線と平行な断面において、導光部を有する第2の光学部材6の出射面形状を直線ではない形状とすることであって、さらには、曲線とすることで大幅な改善が得られる。
さらに、出射面形状を円弧状にすることによって、ムラを消すだけで無く出射光の角度分布を集光させることが可能となる。
The method for reducing the unevenness is that the shape of the light exit surface of the second optical member 6 having the light guide portion in the cross section parallel to the normal line of the substrate on which the LED light source corresponding to the second optical member 6 is mounted. By making the shape not a straight line, and by making it a curve, a significant improvement can be obtained.
Furthermore, by making the exit surface shape arcuate, it is possible not only to eliminate unevenness but also to collect the angular distribution of the exit light.

但し、導光部を有する第2の光学部材6の出射面形状が直線の場合には、導光してきた光が出射面6Bで反射して入射面6Aに戻る光が少ないというメリットがある。当該戻り光は、入射面6Aまで戻り、入射面6Aから出射面6Bと反対の方向へと出射する。それゆえ、側面部8Bに到達せず、効率良く間接光を増やせない。上述したムラは、入射面6Aと出射面6B間の距離である導光部の長さが短い場合(概ね15mm未満)には低減するし、出射面6Bと拡散カバー8の距離が小さい場合にはピークの位置が拡散カバー8上で解像せず、ムラと認識され難くなる。その様な場合には、戻り光が少ないというメリットを考慮して出射面6Bの形状を直線とすることで、効率良く間接光を増やすことが可能である。   However, when the shape of the exit surface of the second optical member 6 having the light guide portion is a straight line, there is an advantage that the light guided is less reflected by the exit surface 6B and returned to the entrance surface 6A. The return light returns to the incident surface 6A and is emitted from the incident surface 6A in the direction opposite to the emission surface 6B. Therefore, the indirect light cannot be increased efficiently without reaching the side surface portion 8B. The unevenness described above is reduced when the length of the light guide portion, which is the distance between the entrance surface 6A and the exit surface 6B, is short (approximately less than 15 mm), and when the distance between the exit surface 6B and the diffusion cover 8 is small. Since the peak position is not resolved on the diffusion cover 8, it is difficult to recognize it as unevenness. In such a case, indirect light can be efficiently increased by making the shape of the exit surface 6B a straight line in consideration of the merit that there is little return light.

ここで、図11(a)および図11(b)を用いて戻り光に関して言及する。図11(a)は、出射面6Bの断面形状が半円であって、当該半円の直径6BDが、導光部の厚さ6LHと同じ3mmの場合の概略図である。図11(b)は、出射面6Bの断面形状が半円よりも中心角の大きな円弧の場合であって、当該円弧の直径6BDが導光部の厚さ6LHよりも大きい場合を示している。各図には、二つの光線追跡例RAY10、RAY11を記載した。   Here, the return light will be described with reference to FIGS. FIG. 11A is a schematic view when the cross-sectional shape of the emission surface 6B is a semicircle, and the diameter 6BD of the semicircle is 3 mm, which is the same as the thickness 6LH of the light guide. FIG. 11B shows a case where the cross-sectional shape of the exit surface 6B is an arc having a central angle larger than that of a semicircle, and the diameter 6BD of the arc is larger than the thickness 6LH of the light guide. . In each figure, two ray tracing examples RAY10 and RAY11 are described.

導光部6Lで反射する前の光線RAY10および11と中心軸6LCの成す角度は等しい角度である。光線RAY10は、出射面6Bの断面形状が直線の場合、出射面6Bから全反射せずに空気中に出射する光線である。しかしながら、出射面6Bの断面形状が円や楕円などの曲線(球面、非球面の曲線)の場合、全反射を繰り返して戻る光が発生する。
これが前述した戻り光の原因である。
The angles formed by the light rays RAY10 and 11 before being reflected by the light guide 6L and the central axis 6LC are equal. The ray RAY10 is a ray that is emitted into the air without being totally reflected from the emission surface 6B when the cross-sectional shape of the emission surface 6B is a straight line. However, when the cross-sectional shape of the exit surface 6B is a curve such as a circle or an ellipse (spherical or aspherical curve), light that repeats total reflection and returns is generated.
This is the cause of the return light described above.

この戻り光を低減する方法の一つは、出射面6Bの断面形状を導光部の厚さ6LHよりも大きくすることである。その例を図11(b)記載のRAY11が示している。本効果は後述するシミュレーションにより確認されている。   One method for reducing the return light is to make the cross-sectional shape of the exit surface 6B larger than the thickness 6LH of the light guide. An example of this is shown by RAY 11 shown in FIG. This effect has been confirmed by a simulation described later.

ここで、出射面6Bの断面形状を曲線にした場合の明暗のムラ低減に関して図11(c)を用いて説明する。図11(c)は、図9(a)で説明した光学系で、LED光源の発光面3BEの中心と導光部の中心軸6LCの位置関係を、中心軸6LCに対して発光面3BEの中心を−0.5mmだけx座標軸XCD方向にずらした構成(図10(b)の位置関係)での計算結果である。本光学系のスクリーンは200mm角のスクリーンであって、導光部の出射面から約150mm離して配置されている。導光板の厚さは3mm、LED光源の幅は1mmである。縦軸は放射照度(W/mm2)を表し、横軸はスクリーン上のx座標を表す。 Here, the reduction in brightness unevenness when the cross-sectional shape of the emission surface 6B is curved will be described with reference to FIG. FIG. 11C shows the positional relationship between the center of the light emitting surface 3BE of the LED light source and the central axis 6LC of the light guide unit in the optical system described in FIG. This is a calculation result in a configuration in which the center is shifted by −0.5 mm in the x coordinate axis XCD direction (positional relationship in FIG. 10B). The screen of this optical system is a 200 mm square screen, and is disposed about 150 mm away from the light exit surface of the light guide. The thickness of the light guide plate is 3 mm, and the width of the LED light source is 1 mm. The vertical axis represents irradiance (W / mm 2 ), and the horizontal axis represents the x coordinate on the screen.

図11(c)に示される実線9(a)I0は、出射面6Bの断面形状が直線の場合において、LED光源3Bからの発光光の内、導光部6Lの上面6LAおよび下面6LBで反射しないで、入射面6Aから出射面6Bに直接伝搬して空気中に出射した光線がスクリーンに映し出す放射照度分布を示す。   A solid line 9 (a) I0 shown in FIG. 11C is reflected by the upper surface 6LA and the lower surface 6LB of the light guide portion 6L in the light emitted from the LED light source 3B when the cross-sectional shape of the emission surface 6B is a straight line. Without showing, an irradiance distribution in which a light beam directly propagating from the incident surface 6A to the exit surface 6B and exiting into the air is displayed on the screen.

破線11(a)I0は、図11(a)に示すように、出射面6Bの断面形状が曲線で半円であって、当該半円の直径6BDが、導光部の厚さ6LHと同じ3mmの場合の放射照度分布を示す。   As shown in FIG. 11 (a), the broken line 11 (a) I0 has a curved semicircular cross section of the exit surface 6B, and the semicircular diameter 6BD is the same as the light guide thickness 6LH. The irradiance distribution in the case of 3 mm is shown.

出射面6Bの断面形状が直線の場合は、実線9(a)I0に示すように中心付近に鋭いピークを持つが、出射面6Bの断面形状が半円の場合は、破線11(a)I0に示すようになだらかなピークを中心付近に持つ。   When the cross-sectional shape of the exit surface 6B is a straight line, it has a sharp peak near the center as shown by the solid line 9 (a) I0, but when the cross-sectional shape of the exit surface 6B is a semicircle, the broken line 11 (a) I0 As shown in Fig. 1, it has a gentle peak near the center.

入射面から出射面に到達するまでの反射回数によって導光経路を分類した場合に、各導光経路毎の寄与を重ね合わせたのが、実際の放射照度分布である。出射面6Bの断面形状が直線の場合は、鋭いピークを持つ放射照度分布を重ねたために明暗のムラが発生した。
しかしながら、破線11(a)I0に示すようになだらかなピークを持つ分布を重ね合わせた場合には、明暗のムラは発生しない。それゆえ、出射面6Bの断面形状を直線とは異なる形状とし、曲線とし円弧とすることで、ムラを低減できる。
When the light guide paths are classified by the number of reflections from the incident surface to the output surface, the actual irradiance distribution is obtained by superimposing the contributions of the respective light guide paths. When the cross-sectional shape of the exit surface 6B is a straight line, unevenness in brightness and darkness occurred because the irradiance distribution having sharp peaks was overlapped.
However, when the distributions having gentle peaks are overlapped as indicated by the broken line 11 (a) I0, unevenness in brightness does not occur. Therefore, unevenness can be reduced by making the cross-sectional shape of the exit surface 6B different from a straight line, making it a curved line and an arc.

次に、本構成によるムラ低減の効果に関してシミュレーションした結果を説明する。図11(d)に結果を示す。シミュレーションの光学系は、図9(d)、図10(d)の計算を行った光学系である。200mm角のスクリーンを導光部の出射面から約150mm離して配置し、導光板の厚さを3mm、LED光源の幅を1mmとした光学系である。LED光源の発光面3BEの中心と導光部の中心軸6LCの位置関係は、中心軸6LCに対して発光面3BEの中心が−0.5mmだけx座標軸XCD方向にずれた場合である(図10(b)の位置関係)。   Next, a simulation result regarding the effect of reducing unevenness by the present configuration will be described. FIG. 11 (d) shows the result. The simulation optical system is an optical system that performs the calculations of FIGS. 9D and 10D. This is an optical system in which a 200 mm square screen is arranged at a distance of about 150 mm from the exit surface of the light guide unit, the thickness of the light guide plate is 3 mm, and the width of the LED light source is 1 mm. The positional relationship between the center of the light emitting surface 3BE of the LED light source and the central axis 6LC of the light guide unit is a case where the center of the light emitting surface 3BE is shifted by −0.5 mm in the x coordinate axis XCD direction with respect to the central axis 6LC (FIG. 10 (b)).

図11(d)の縦軸は放射照度(W/mm2)を表し、横軸はスクリーン上のx座標を表し、放射照度(W/mm2)の位置分布を示している。破線10(b)は、図10(b)の場合の結果であって出射面の断面形状が直線の場合であって比較用である。 In FIG. 11D, the vertical axis represents the irradiance (W / mm 2 ), the horizontal axis represents the x coordinate on the screen, and the position distribution of the irradiance (W / mm 2 ) is shown. A broken line 10 (b) is a result for the case of FIG. 10 (b), and the cross-sectional shape of the emission surface is a straight line and is for comparison.

実線11(a)は図11(a)の場合で、点線11(b)4は、図11(b)で円弧の直径6BDが4mmの場合で、点破線11(b)6は、図11(b)で円弧の直径6BDが6mmの場合である。   The solid line 11 (a) is the case of FIG. 11 (a), the dotted line 11 (b) 4 is the case where the diameter 6BD of the arc is 4 mm in FIG. 11 (b), and the dotted line 11 (b) 6 is the case of FIG. In (b), the arc diameter 6BD is 6 mm.

図11(d)より明らかなように、出射面6Bの断面形状を曲線とすることでムラが著しく改善されることが分かる。   As is clear from FIG. 11D, it can be seen that unevenness is remarkably improved by making the cross-sectional shape of the exit surface 6B a curve.

さらに、スクリーンに到達する光の量は、出射面6Bの断面形状が直線の場合を1とした場合に、図11(a)の場合は略0.8、図11(b)で直径6BDが4mmの場合は略1.0、図11(b)で直径6BDが6mmの場合は略1.4となる。   Further, the amount of light reaching the screen is approximately 0.8 in the case of FIG. 11A when the cross-sectional shape of the exit surface 6B is a straight line, and the diameter 6BD in FIG. When the diameter is 4 mm, it is approximately 1.0, and when the diameter 6BD is 6 mm in FIG. 11B, it is approximately 1.4.

出射面6Bの断面形状を、直線から図11(a)のようにすると、戻り光によりスクリーンに到達する光の量が低減する。一方、出射面6Bの断面形状の直径6BDを4mmとすると、戻り光が改善し、図11(a)よりもスクリーンに到達する光の量は増える。つまり、導光部の厚さより出射面の断面形状を大きくすることで戻り光を少なくするという効果が得られている。   If the cross-sectional shape of the emission surface 6B is as shown in FIG. 11A from a straight line, the amount of light reaching the screen by the return light is reduced. On the other hand, when the diameter 6BD of the cross-sectional shape of the exit surface 6B is 4 mm, the return light is improved, and the amount of light reaching the screen is larger than that in FIG. In other words, the effect of reducing the return light is obtained by making the cross-sectional shape of the exit surface larger than the thickness of the light guide.

さらに、出射面6Bの断面形状の直径6BDを4mmから6mmにすると、スクリーンに到達する光の量は増える上に、図11(d)に示されるようにスクリーンの特定の領域の放射照度が大きくなっている。これは、出射光が集光していることを示している。出射光が集光することで、より効果的に拡散カバーの側面部8Bを照射でき、間接光を増大させることができる。同様の現象は、出射面6Bの断面形状の直径6BDを3mmから4mmにした場合にも起こっているが、当該直径6BDを4mmから6mmにした場合に顕著に見える。   Further, when the diameter 6BD of the cross-sectional shape of the exit surface 6B is changed from 4 mm to 6 mm, the amount of light reaching the screen increases and the irradiance of a specific area of the screen increases as shown in FIG. It has become. This indicates that the emitted light is condensed. By condensing the emitted light, the side surface portion 8B of the diffusion cover can be more effectively irradiated, and the indirect light can be increased. A similar phenomenon occurs when the diameter 6BD of the cross-sectional shape of the exit surface 6B is changed from 3 mm to 4 mm, but it appears prominently when the diameter 6BD is changed from 4 mm to 6 mm.

したがって、出射面6Bの断面形状を曲線にすることで明暗のムラを低減し、さらに、出射面6Bの断面形状を導光部の厚さより大きくすることで、曲線にすることで発生する戻り光を低減し、出射光を集光させて、効果的に拡散カバーの側面部8Bを照射して間接光を増大させるという効果を奏する。   Therefore, the unevenness of brightness and darkness is reduced by making the cross-sectional shape of the exit surface 6B a curve, and the return light generated by making the curve by making the cross-sectional shape of the exit surface 6B larger than the thickness of the light guide unit. And condensing outgoing light, and effectively illuminating the side surface 8B of the diffusion cover to increase indirect light.

なお、図8は、図11(b)の断面形状をした第2の光学部材6を取り付けた例を示している。   FIG. 8 shows an example in which the second optical member 6 having the cross-sectional shape of FIG.

図17に、導光部と出射面6Bの断面形状の様々な形状に関して示した。   In FIG. 17, it showed regarding various shapes of the cross-sectional shape of a light guide part and the output surface 6B.

図17(a)は、出射面の断面形状が、直線部6B2と曲線部6B1で構成される例である。DLは入射面6Aから出射面の先端までの距離を表している。導光部は入射面から直線部6B2までの間である。   FIG. 17A is an example in which the cross-sectional shape of the exit surface is configured by a straight portion 6B2 and a curved portion 6B1. DL represents the distance from the entrance surface 6A to the tip of the exit surface. The light guide part is between the incident surface and the straight part 6B2.

図17(b)は、導光部に傾斜面がある例である。本例は、導光部の厚みが出射面6Bに近づくにつれて薄くなる構成である。この場合、一部の光は、導光部の上面6L1、下面6L2で全反射条件が崩れて、上面6L1、下面6L2から光が出射することがある。
出射面を6Bだけでなく、増やしたい場合に有効な構成である。また、薄い部位ができるので軽量化もできる。
FIG. 17B is an example in which the light guide has an inclined surface. This example is a configuration in which the thickness of the light guide portion decreases as it approaches the exit surface 6B. In this case, a part of the light may be emitted from the upper surface 6L1 and the lower surface 6L2 because the total reflection condition is broken on the upper surface 6L1 and the lower surface 6L2 of the light guide unit.
This is an effective configuration when it is desired to increase the number of emission surfaces in addition to 6B. Moreover, since a thin site | part is made, weight reduction can also be performed.

図17(c)は、導光部に傾斜面がある例である。本例は、導光部の厚みが出射面6Bに近づくにつれて厚くなる構成である。本構成の場合、光線が導光部6Lを導光するにつれて、上面6L1と下面6L2で反射するごとに、光線の伝搬する向き(角度)が、入射面6Aから出射面6Bの方向(側面方向)に向くので、伝搬にともない光線がコリメートするという効果を奏する構成である。   FIG. 17C is an example in which the light guide has an inclined surface. In this example, the thickness of the light guide portion increases as it approaches the light exit surface 6B. In the case of this configuration, as the light beam is guided through the light guide portion 6L, the direction (angle) in which the light beam propagates is reflected from the upper surface 6L1 and the lower surface 6L2 in the direction from the incident surface 6A to the output surface 6B (side surface direction). Therefore, the light beam collimates as it propagates.

図17(d)は、出射面の断面形状が、折れ線の例である。本構成も明暗のムラを抑制する効果を奏する。   FIG. 17D shows an example in which the cross-sectional shape of the emission surface is a polygonal line. This configuration also has an effect of suppressing light and dark unevenness.

図17(e)は、出射面の断面形状が、複数の光学形状からなる例であって、3個のシリンドリカルレンズ6B3形状によって、出射面6Bが構成されている例である。例えば、出射面6Bがフライアイレンズなどの場合である。複数の光学形状を用いることにより、出射面の各位置に応じた詳細な出射角度分布の制御が可能となる。本構成も明暗のムラを抑制する効果を奏する。   FIG. 17E is an example in which the exit surface has a plurality of optical shapes, and the exit surface 6B is configured by the shape of three cylindrical lenses 6B3. For example, the exit surface 6B is a fly-eye lens or the like. By using a plurality of optical shapes, it is possible to control the detailed emission angle distribution according to each position on the emission surface. This configuration also has an effect of suppressing light and dark unevenness.

図12は、本発明の第3の実施形態に係る照明装置の構成を説明するための図である。
第1の実施の形態と同じ個所に関しては説明を省略する。第1の実施の形態と異なる個所は、第1の光学部材5と第2の光学部材6を接続している光学部材接続部4に光取り出し手段4Eが設けられている点と、第2の光学部材の導光部6Lの下面6LBに光取り出し手段6LEが設けられ、導光部6Lの上面6LAから光が出射して、導光部6Lの上面6LAが第2の出射面として機能している点である。
FIG. 12 is a diagram for explaining a configuration of an illumination apparatus according to the third embodiment of the present invention.
Description of the same parts as those in the first embodiment is omitted. The difference from the first embodiment is that the light extraction means 4E is provided in the optical member connecting portion 4 connecting the first optical member 5 and the second optical member 6, and the second The light extraction means 6LE is provided on the lower surface 6LB of the light guide portion 6L of the optical member, light is emitted from the upper surface 6LA of the light guide portion 6L, and the upper surface 6LA of the light guide portion 6L functions as a second emission surface. It is a point.

これは、導光光の一部を正面方向Zにも取り出すことで、LED光源から遠いところのカバー部材にも十分な光が届くようにし、拡散カバー8の照度均一性を向上させるための構成である。   This is a configuration for improving the illuminance uniformity of the diffusion cover 8 by extracting a part of the light guide light also in the front direction Z so that sufficient light can reach the cover member far from the LED light source. It is.

光取り出し手段4Eと光取り出し手段6LEは、各部材の正面方向の面に在っても良く、当該面と対向する面に在っても正面方向Zに光を取り出すことは可能である。   The light extraction means 4E and the light extraction means 6LE may be on the front surface of each member, and can extract light in the front direction Z even if it is on a surface opposite to the surface.

第2の光学部材6が導光部を有し、光取り出し手段6LEがない場合、LED光源3Bからの出射光は、第2の光学部材6に入射すると、戻り光以外は出射面6Bから出射するため、導光部6Lの正面方向には光が発光されない。それゆえ、導光部6Lの正面方向にある拡散カバーの正面部8Aが暗くなることがある。一方、拡散カバーの側面部8Bは出射面6Bからの光により明るくなる。この明暗のムラを低減するために、第2の光学部材6のLED光源3Bより外側に、光取り出し手段6LEを配置し、出射面を6LAと6Bの2面とした。例えば光線RAY12に示されるような出射面6LAからの光により、当該ムラは低減する。第2の光学部材6の導光部の形状として図12のように出射面が6LAと6Bの2面となる場合以外に、出射面が2面以上となるくさび状としてもよいが、これに限らない。   When the second optical member 6 has a light guide and no light extraction means 6LE, when the light emitted from the LED light source 3B is incident on the second optical member 6, the light other than the return light is emitted from the emission surface 6B. Therefore, no light is emitted in the front direction of the light guide 6L. Therefore, the front part 8A of the diffusion cover in the front direction of the light guide part 6L may become dark. On the other hand, the side surface portion 8B of the diffusion cover is brightened by the light from the exit surface 6B. In order to reduce this uneven brightness, the light extraction means 6LE is arranged outside the LED light source 3B of the second optical member 6, and the exit surfaces are two surfaces 6LA and 6B. For example, the unevenness is reduced by light from the exit surface 6LA as shown by the ray RAY12. As the shape of the light guide portion of the second optical member 6, in addition to the case where the exit surface is two surfaces 6LA and 6B as shown in FIG. 12, it may be a wedge shape with two or more exit surfaces. Not exclusively.

光学部材接続部4の光取り出し手段4EはLED光源3間に存在すれば、均一化の効果を成す。例えば光線RAY13に示されるように、とりわけ、側面発光LED光源付近に、または、側面発光LED光源と正面発光LED光源間にあると、大きな効果を奏する。   If the light extraction means 4E of the optical member connecting portion 4 is present between the LED light sources 3, the effect of equalization is achieved. For example, as shown in the ray RAY13, a great effect can be obtained particularly when it is in the vicinity of the side-emitting LED light source or between the side-emitting LED light source and the front-emitting LED light source.

なぜならば、側面発光LED光源は実装面の法線方向に光を発光しないので、当該法線方向に位置する拡散カバーが暗くなることがある。側面発光LED光源付近に当該の光取り出し手段4Eがあると、拡散カバー方向の光が発生するので、ムラを効果的に抑制できる。   This is because the side-emitting LED light source does not emit light in the normal direction of the mounting surface, and the diffusion cover located in the normal direction may become dark. If there is the light extraction means 4E in the vicinity of the side-emitting LED light source, light in the direction of the diffusion cover is generated, so that unevenness can be effectively suppressed.

また、光学部材接続部4の光取り出し手段4Eおよび光取り出し手段6LEは、様々な方法が考えられる。例えば、図示したような断面がプリズム形状の凹凸の付与や、球面、非球面のマイクロレンズの凹凸の付与、白色の散乱ドットの印刷などが上げられる。   Various methods are conceivable for the light extraction means 4E and the light extraction means 6LE of the optical member connecting portion 4. For example, it is possible to give irregularities having a prism-shaped cross section as shown in the figure, to give irregularities of spherical or aspherical microlenses, and to print white scattering dots.

図13は、本発明の第4の実施形態に係る照明装置の構成を説明するための図である。
第1の実施の形態と同じ個所、または、同じ機能を有する箇所に関しては説明を省略する。第1の実施の形態と異なる個所は、基板2の法線と正面方向Zが平行ではなく、基板2が側面方向外側に向けて傾いている点である。本例では、側面方向で最も外側に位置するLED光源として側面発光LED光源ではなく、正面発光LED光源を用いている。また、拡散カバー8の側面部8Bを効率良く照射するために、当該LED光源3Bに対応して第2の光学部材6を設置している。第2の光学部材6は導光部を有さず、第1の光学部材5とは形状の異なる光学部材である。
FIG. 13 is a diagram for explaining a configuration of an illumination apparatus according to the fourth embodiment of the present invention.
The description of the same portions as the first embodiment or the portions having the same functions is omitted. The difference from the first embodiment is that the normal line of the substrate 2 and the front direction Z are not parallel, and the substrate 2 is inclined outward in the lateral direction. In this example, a front light emitting LED light source is used instead of a side light emitting LED light source as the LED light source located on the outermost side in the side surface direction. Moreover, in order to irradiate efficiently the side part 8B of the diffusion cover 8, the 2nd optical member 6 is installed corresponding to the said LED light source 3B. The second optical member 6 does not have a light guide and is an optical member having a shape different from that of the first optical member 5.

基板2を傾けることで、正面発光LED光源の発光面の側面方向への射影が大きくなる。それゆえ、基板2上の全てのLED光源が側面部8Bの照射に寄与するようになる。光線RAY14は、第1の光学部材5から側面部8Bに向かう光を示している。   By tilting the substrate 2, the projection in the side surface direction of the light emitting surface of the front light emitting LED light source is increased. Therefore, all the LED light sources on the substrate 2 contribute to the irradiation of the side surface portion 8B. A ray RAY14 indicates light traveling from the first optical member 5 toward the side surface portion 8B.

ここで、第1の光学部材5に対応するLED光源3Aと第2の光学部材6に対応するLED光源3Bは等しいLED光源でも良く、異なるLED光源でも良い。   Here, the LED light source 3A corresponding to the first optical member 5 and the LED light source 3B corresponding to the second optical member 6 may be the same LED light source or different LED light sources.

さらに、第2の光学部材6は、第1の光学部材5よりも側面部8Bへの配光(または、光束)が大きくなるように設計された部材であって、本部材により効率良く拡散カバー8の側面部8Bに光が出射される(光線RAY15参照)。   Furthermore, the second optical member 6 is a member designed so that the light distribution (or light flux) to the side surface portion 8B is larger than that of the first optical member 5, and the diffusion cover is more efficiently provided by this member. The light is emitted to the side surface portion 8B of 8 (see the ray RAY15).

また、本例では第2の光学部材6は、基板2の法線方向に垂直な面内方向において非対称的な形状となっている。側面方向外側に光を出射する面と、側面方向内側に光を出射する面では、基板2の法線を含む断面における断面形状が異なる。なぜならば、側面方向外側に光を出射する面は側面部8Bに多くの光を出射するが、側面方向内側に光を出射する面は正面部8Aを第1の光学部材5とともに均一化するためである。   In this example, the second optical member 6 has an asymmetric shape in the in-plane direction perpendicular to the normal direction of the substrate 2. The cross-sectional shape of the cross section including the normal line of the substrate 2 is different between the surface that emits light outward in the lateral direction and the surface that emits light inward in the lateral direction. This is because the surface emitting light outward in the lateral direction emits a lot of light to the side surface portion 8B, but the surface emitting light inward in the lateral direction makes the front portion 8A uniform with the first optical member 5. It is.

光学部材接続部4の役割は、第1の実施形態で説明したものと同じである。第1の光学部材5と第2の光学部材6が光学部材接続部4によって接続されていることにより、第1の光学部材5に対応するLED光源3Aの発光光の一部を第2の光学部材6の出射面6Bまで伝播させ、側面部8Bを直接照射することが可能となり、照明装置1の間接光を増大するという効果を奏する。このとき、複合光学部材7の端部で、側面部8Bに最も近い位置は、常に第2の光学部材6の出射面6Bであるわけではなく、光学部材接続部4の側面方向外側の端部となる場合がある。したがって、第1の光学部材5と第2の光学部材6が光学部材接続部4によって接続されていることは、出射面6Bだけではなく、光学部材接続部4の側面方向外側の端部からも光を出射し、照明装置1の間接光を増大するという効果を奏する。   The role of the optical member connecting portion 4 is the same as that described in the first embodiment. Since the first optical member 5 and the second optical member 6 are connected by the optical member connecting portion 4, part of the emitted light of the LED light source 3 </ b> A corresponding to the first optical member 5 is converted to the second optical member. Propagation to the exit surface 6B of the member 6 makes it possible to directly irradiate the side surface portion 8B, and the indirect light of the lighting device 1 is increased. At this time, the position closest to the side surface portion 8B at the end portion of the composite optical member 7 is not always the exit surface 6B of the second optical member 6, but the end portion on the outer side in the side surface direction of the optical member connecting portion 4. It may become. Therefore, the fact that the first optical member 5 and the second optical member 6 are connected by the optical member connecting portion 4 is not only from the emission surface 6B, but also from the end of the optical member connecting portion 4 on the outer side in the side surface direction. The light is emitted and the indirect light of the lighting device 1 is increased.

図14は、本発明の第5の実施形態に係る照明装置の構成を説明するための正面図であって、LED光源3A、3Bを実装する基板2の法線方向から見た図である。第1の実施の形態と同じ個所、または、同じ機能を有する箇所に関しては説明を省略する。正面方向Zおよび側面方向の定義は、第1の実施形態で説明した通りである。   FIG. 14 is a front view for explaining the configuration of the illumination device according to the fifth embodiment of the present invention, as viewed from the normal direction of the substrate 2 on which the LED light sources 3A and 3B are mounted. The description of the same portions as the first embodiment or the portions having the same functions is omitted. The definitions of the front direction Z and the side direction are as described in the first embodiment.

図15(a)は、図14記載のA−A′の断面図である。当該断面は、LED光源3A、3Bが実装されている基板の法線と平行な面である。図15(b)は、図14記載のB−B′の断面図である。   FIG. 15A is a cross-sectional view taken along the line AA ′ of FIG. The cross section is a plane parallel to the normal line of the substrate on which the LED light sources 3A and 3B are mounted. FIG. 15B is a cross-sectional view taken along the line BB ′ shown in FIG.

第1の実施の形態と異なる点は、外形形状である。第1の実施形態の正面から見た外形形状は円であって、光学的には側面方向面内において概ね等方的である。一方、本例の正面から見た外形形状は長方形である。第1の実施形態から第4の実施形態までに説明した本発明の概念は、本実施形態に対しても適宜設計・最適化し適用可能である。本発明は、外形を規定することなく、間接光を増大し、拡散カバー8の照度をムラの無い均一な分布とする効果を得られる。その一例として、本実施の形態で、正面から見た外形形状が長方形の場合を説明する。   The difference from the first embodiment is the outer shape. The outer shape of the first embodiment viewed from the front is a circle, and is optically isotropic in the side surface direction. On the other hand, the external shape seen from the front of this example is a rectangle. The concept of the present invention described in the first to fourth embodiments can be appropriately designed and optimized for this embodiment. The present invention can increase the indirect light without prescribing the outer shape, and can obtain the effect of making the illuminance of the diffusion cover 8 uniform and uniform. As an example, a case will be described in the present embodiment where the outer shape viewed from the front is a rectangle.

LED光源3Aの多くは、LED光源3Bよりも内側(中心Cに近い側)に配置される。一部は、LED光源3Bの近くであって、基板2の端部2Eの近くに存在する。基板2の全体に点在し、中心Cを囲うように配置されている。LED光源3Aは、正面発光LED光源である。当該光源に対応する第1の光学部材5は広角レンズであって拡散カバー8の均一性を向上させている。   Most of the LED light sources 3A are arranged on the inner side (side closer to the center C) than the LED light sources 3B. A part exists near the LED light source 3 </ b> B and near the end 2 </ b> E of the substrate 2. The substrate 2 is scattered throughout the substrate 2 and is disposed so as to surround the center C. The LED light source 3A is a front-emitting LED light source. The first optical member 5 corresponding to the light source is a wide-angle lens and improves the uniformity of the diffusion cover 8.

LED光源3Bの多くは、基板2の端部2Eの近くに存在し、端部2Eに沿って外側に配置されている。LED光源3Bは、側面発光LED光源である。当該光源に対応する第2の光学部材6は導光部を有する。発光面3BEは側面方向外側に向けて発光するように配置されている。第2の光学部材6の入射面6Aは発光面3BEに対向して配置される。
入射面6Aから入射した光線は、図15(a)に光線RAY2′、光線RAY3′、光線RAY4′で示されるように、導光部6Lを伝搬して出射面6Bから出射する。LED光源3Bは、基板2の端部2E付近に存在するので、入射面6Aと出射面6Bとの間に別のLED光源などの障害物がなく、入射光は導光途中で反射を受けずに出射することが可能となる。本例で説明する第2の光学部材6は、基本的には第1の実施形態で説明した全ての特徴と、それによる効果を有し、間接光を増大する効果を有する。
Most of the LED light sources 3B exist near the end 2E of the substrate 2 and are arranged outside along the end 2E. The LED light source 3B is a side-emitting LED light source. The second optical member 6 corresponding to the light source has a light guide. The light emitting surface 3BE is arranged to emit light toward the outside in the side surface direction. The incident surface 6A of the second optical member 6 is disposed to face the light emitting surface 3BE.
The light beam incident from the incident surface 6A propagates through the light guide 6L and exits from the exit surface 6B, as indicated by the light beam RAY2 ′, the light beam RAY3 ′, and the light beam RAY4 ′ in FIG. Since the LED light source 3B exists in the vicinity of the end 2E of the substrate 2, there is no obstacle such as another LED light source between the incident surface 6A and the exit surface 6B, and the incident light is not reflected during the light guide. Can be emitted. The second optical member 6 described in this example basically has all the features described in the first embodiment and the effects thereof, and has the effect of increasing indirect light.

本例における第2の光学部材6においては、長方形の角に対応する部位6BRを、正面視で角ではなく丸みを帯びた曲線としている。出射面6Bに角あると、それに対応して明るい線が拡散カバー8に発生する場合がある。したがって、外形の概ねの形が多角形などの場合は、当該角に対応した出射面Bの形状に丸みを帯びさせることにより、角に起因するムラを抑制できる。   In the second optical member 6 in this example, the portion 6BR corresponding to the corner of the rectangle is not a corner but a rounded curve in front view. If the exit surface 6B has a corner, a bright line may be generated in the diffusion cover 8 correspondingly. Therefore, when the approximate shape of the outer shape is a polygon or the like, unevenness due to the corners can be suppressed by rounding the shape of the emission surface B corresponding to the corners.

次に、第1の光学部材5と第2の光学部材6が光学部材接続部4で繋がって構成される複合光学部材7に関して説明する。第1の光学部材5と第2の光学部材6を光学部材接続部4で繋げることで、第1の実施形態同様、第1の実施形態で説明した複数の効果を奏する。   Next, the composite optical member 7 configured by connecting the first optical member 5 and the second optical member 6 by the optical member connecting portion 4 will be described. By connecting the first optical member 5 and the second optical member 6 with the optical member connecting portion 4, the plurality of effects described in the first embodiment can be obtained as in the first embodiment.

図15(b)において、正面発光LED光源3A、第1の光学部材5である広角レンズ、光学部材接続部4、第2の光学部材6が主に表されている。但し、第2の光学部材6に対応するLED光源3Bが無い箇所であるため、第2の光学部材6には入射面6A、入射面6A′が存在せず、出射面6Bが存在する。また、光線追跡の例として、光線RAY5′、光線RAY6′′を示す。   In FIG. 15B, the front-emitting LED light source 3A, the wide-angle lens that is the first optical member 5, the optical member connecting portion 4, and the second optical member 6 are mainly represented. However, since the LED light source 3B corresponding to the second optical member 6 is not provided, the second optical member 6 does not have the incident surface 6A and the incident surface 6A ′, but has the exit surface 6B. In addition, as an example of ray tracing, a ray RAY5 ′ and a ray RAY6 ″ are shown.

当該光線で示されるように、第1の光学部材5と第2の光学部材6が光学部材接続部4によって接続されていることにより、第1の光学部材5に対応するLED光源3Aの発光光の一部を第2の光学部材6の出射面6Bまで伝播させ、側面部8Bを直接照射することが可能となり、照明装置1の間接光を増大するという効果を奏する。   As indicated by the light beam, the first optical member 5 and the second optical member 6 are connected by the optical member connecting portion 4 so that the light emitted from the LED light source 3A corresponding to the first optical member 5 is obtained. Is partially propagated to the exit surface 6B of the second optical member 6 so that the side surface portion 8B can be directly irradiated, and the indirect light of the illumination device 1 is increased.

また、複合光学部材7は電極40を覆っているため、拡散カバー8を取り外されたときに、人が電極40に触れて感電することを防止する保護カバーの効果も得られている。   Further, since the composite optical member 7 covers the electrode 40, the effect of a protective cover that prevents a person from touching the electrode 40 and receiving an electric shock when the diffusion cover 8 is removed is also obtained.

次に、正面発光LED光源3Aと側面発光LED光源3Bが存在する光学系における、LED光源の配置に関して説明する。前述したように、側面発光LED光源3Bは側面部8Bを直接照射するために、最も外側に配置されることが好ましい。第1の実施形態で説明したように、側面発光LED光源3Bの正面方向Zは発光光束が少ないために、側面発光LED光源3Bの正面方向の拡散カバー正面部8Bの照度は低くなり暗くなるという課題が発生することがある。それゆえ、照度の均一性を向上させるために、側面発光LED光源3Bの近くに正面発光LED光源3Aを配置する。   Next, the arrangement of the LED light sources in the optical system including the front light emitting LED light source 3A and the side light emitting LED light source 3B will be described. As described above, the side-emitting LED light source 3B is preferably disposed on the outermost side in order to directly irradiate the side surface portion 8B. As described in the first embodiment, the front-side direction Z of the side-emitting LED light source 3B has a small amount of luminous flux, so that the illuminance of the diffusion cover front part 8B in the front direction of the side-emitting LED light source 3B is reduced and darkened. Challenges may occur. Therefore, in order to improve the illuminance uniformity, the front light emitting LED light source 3A is disposed near the side light emitting LED light source 3B.

したがって、側面発光LED光源3Bと正面発光LED光源3Aとの間の距離は、正面発光LED光源3A間の距離よりも短い方が好ましい。その例に関して図14を用いて説明する。距離Dt1、Dt2、Dt3、Dt4は正面発光LED光源3A間の距離を表している。一方、距離Ds1、Ds2は側面発光LED光源3Bと正面発光LED光源3Aとの間の距離を表している。基本的には、距離Dt1、Dt2、Dt3、Dt4>距離Ds1、Ds2とすることが好ましい。但し、全ての距離に関して当該不等号が成り立たなくても良い。例えば、距離Dt4>距離Ds2の場合に、距離Ds2>距離Dt3という場合も有りうる。   Therefore, the distance between the side-emitting LED light source 3B and the front-emitting LED light source 3A is preferably shorter than the distance between the front-emitting LED light sources 3A. Such an example will be described with reference to FIG. The distances Dt1, Dt2, Dt3, and Dt4 represent the distances between the front light emitting LED light sources 3A. On the other hand, distances Ds1 and Ds2 represent distances between the side-emitting LED light source 3B and the front-emitting LED light source 3A. Basically, it is preferable that the distances Dt1, Dt2, Dt3, Dt4> distances Ds1, Ds2. However, the inequality sign may not hold for all distances. For example, when distance Dt4> distance Ds2, there may be a case where distance Ds2> distance Dt3.

また、例えば、側面発光LED光源3B付近のLED光源の数密度は、同じ基板2の他の部位のLED光源の数密度よりも高いと言っても良いし、基板2には、側面発光LED光源3B付近よりもLED光源の数密度が低くなっている部位があると言っても良い。   In addition, for example, the number density of the LED light sources in the vicinity of the side light emitting LED light source 3B may be higher than the number density of the LED light sources in other parts of the same substrate 2, and the side light emitting LED light source is provided on the substrate 2. It may be said that there is a portion where the number density of the LED light sources is lower than that in the vicinity of 3B.

図18(a)は、本発明の第6の実施形態に係る照明装置の構成を説明するための正面図であって、LED光源3A、LED光源3Bを実装する基板2の法線方向から見た図である。第1の実施の形態と同じ個所、または、同じ機能を有する箇所に関しては説明を省略する。正面方向Zおよび側面方向の定義は、第1の実施形態で説明した通りである。図18(b)は、図18(a)記載のA−A′断面図である。図18(b)には、図18(a)に記載していない詳細な形状も含めて示した。   FIG. 18A is a front view for explaining the configuration of the illumination device according to the sixth embodiment of the present invention, as viewed from the normal direction of the substrate 2 on which the LED light source 3A and the LED light source 3B are mounted. It is a figure. The description of the same portions as the first embodiment or the portions having the same functions is omitted. The definitions of the front direction Z and the side direction are as described in the first embodiment. FIG. 18B is a cross-sectional view taken along the line AA ′ of FIG. FIG. 18B shows a detailed shape not shown in FIG. 18A.

本例では、基板2の最も外側に配置されるLED光源3Bが正面発光LED光源であって、当該LED光源3Bに対応して第2の光学部材6が配置されている構成である。第2の光学部材6は、入射面6Aおよび6A′から入射した光の多くを、側面外側方向Xに導く構成である。   In this example, the LED light source 3B disposed on the outermost side of the substrate 2 is a front-emitting LED light source, and the second optical member 6 is disposed corresponding to the LED light source 3B. The second optical member 6 is configured to guide most of the light incident from the incident surfaces 6A and 6A ′ in the side surface outward direction X.

光線RAY23に示すように、入射面6Aから入射した光は、入射面6AがLED光源3Bの外側に配置されるので、LED光源3Bから外側に向かう光であるため、側面外側方向Xに伝搬して、入射面6Aよりも外側にある出射面6Bから出射して、拡散カバーの側面部8Bを照射する。   As indicated by the light ray RAY23, the light incident from the incident surface 6A propagates in the side surface outward direction X because the incident surface 6A is disposed outside the LED light source 3B and is directed outward from the LED light source 3B. Then, the light exits from the exit surface 6B outside the entrance surface 6A and irradiates the side surface portion 8B of the diffusion cover.

第2の光学部材6の特徴は、入射面6AがLED光源3Bの外側に配置されることである。さらに、当該入射面6Aに対応して出射面6Bが、当該入射面6Aの側面方向外側に配置される構成である。この場合、第1の光学部材5からの出射光の方が、第2の光学部材6からの出射光よりも前記正面方向への光束が多くなっている。   The feature of the second optical member 6 is that the incident surface 6A is disposed outside the LED light source 3B. Further, the emission surface 6B is arranged on the outer side in the side surface direction of the incident surface 6A corresponding to the incident surface 6A. In this case, the light emitted from the first optical member 5 has more light flux in the front direction than the light emitted from the second optical member 6.

また、導光部6Lを有して光を伝搬させ、出射面6Bが基板の端部2Eよりも外側に配置される構成である。   Further, the light guide 6L is provided to propagate the light, and the emission surface 6B is arranged outside the end 2E of the substrate.

光線RAY24に関して説明する。LED光源3Bから正面方向Zに向かう光線RAY24は、入射面6A′から第2の光学部材6に入射し、側面方向外側Xに光を反射する反射面6Cによって、外側方向に導かれる。光線RAY24は反射面6Cで全反射する。反射面6Cへの光の入射角度が、臨界角度未満の場合、全反射ではなくフレネル反射となる。当該反射面6Cの形状に関しては下記にて詳細に説明する。当該光線は導光部6Lを導光して出射面6Bから出射して、拡散カバーの側面部8Bを照射する。本例では、空気と部材の界面での全反射およびフレネル反射を反射する方法として用いているが、アルミの薄膜や反射シートの付与など別の方法で反射させても良い。また、反射面6Cは、反射光を導光させるために、鏡面反射面であることが望ましい。   The light ray RAY 24 will be described. The light ray RAY24 heading in the front direction Z from the LED light source 3B is incident on the second optical member 6 from the incident surface 6A ′ and guided outward by the reflecting surface 6C that reflects the light in the lateral direction outer side X. The ray RAY24 is totally reflected by the reflecting surface 6C. When the incident angle of light on the reflecting surface 6C is less than the critical angle, the reflection is not total reflection but Fresnel reflection. The shape of the reflecting surface 6C will be described in detail below. The light beam is guided through the light guide portion 6L and emitted from the emission surface 6B, and irradiates the side surface portion 8B of the diffusion cover. In this example, it is used as a method of reflecting total reflection and Fresnel reflection at the interface between air and a member, but it may be reflected by another method such as application of an aluminum thin film or a reflection sheet. Further, the reflecting surface 6C is preferably a specular reflecting surface in order to guide reflected light.

本実施の形態の側面外側方向Xに光を反射する反射面6Cは、正面方向Zに対して約45度傾いている。側面外側方向Xに光を反射するという観点では、反射面6Cは、正面方向Zに伝搬する光を反射するので、正面方向Zに対して20度以上傾いていることが好ましく、45度が最も良い。また、45度以上としても良いが、角度を大きくすると第2の光学部材の正面方向Zの大きさがより大きくなるので、光学的な観点だけでなく、射出成型での生産性や重さの観点でも、45度程度とするのが最も望ましい。望ましい範囲は、30度から60度程度である。   The reflection surface 6 </ b> C that reflects light in the lateral side direction X of the present embodiment is inclined by about 45 degrees with respect to the front direction Z. From the viewpoint of reflecting the light in the lateral direction X, the reflecting surface 6C reflects the light propagating in the front direction Z. Therefore, it is preferable that the reflecting surface 6C is inclined at least 20 degrees with respect to the front direction Z, and 45 degrees is the most. good. Also, it may be 45 degrees or more, but if the angle is increased, the size of the front direction Z of the second optical member becomes larger, so that not only the optical viewpoint but also the productivity and weight in injection molding are increased. From the viewpoint, it is most desirable to set the angle to about 45 degrees. A desirable range is about 30 to 60 degrees.

当該反射面の法線6CNは、正面方向Zを基準として側面方向外側Xとは反対方向に傾く構成である。当該反射面6Cは、LED光源3Bからの光の多くを側面方向外側Xに反射するために、LED光源3Bの発光面3BEに対向して配置されている。反射面6Cは、発光面3BEの法線方向に配置される。   The normal 6CN of the reflection surface is configured to be inclined in the direction opposite to the lateral direction outer side X with respect to the front direction Z. The reflecting surface 6C is disposed to face the light emitting surface 3BE of the LED light source 3B in order to reflect most of the light from the LED light source 3B to the outer side X. The reflective surface 6C is arranged in the normal direction of the light emitting surface 3BE.

また、本実施の形態の反射面6Cの断面形状は直線形状であるが、これに限定されず、折れ線でも曲線でも良い。LED光源3Bから正面方向Zに向かう光を側面方向外側Xに光を反射する機能を有すれば良い。そのような機能を有する面は、面の法線が正面方向Zを基準として側面方向外側Xとは反対方向に傾く部位を有する面である。   Moreover, although the cross-sectional shape of the reflective surface 6C of this Embodiment is a linear shape, it is not limited to this, A broken line or a curve may be sufficient. What is necessary is just to have a function which reflects the light which goes to the front direction Z from LED light source 3B to the side direction outer side X. FIG. The surface having such a function is a surface having a portion in which the normal of the surface is inclined in a direction opposite to the lateral direction outer side X with respect to the front direction Z.

拡散カバーの側面部8Bを主に照射するLED光源として正面発光LED光源を用いた場合、側面方向外側Xだけでなく、内側に向けても光が発光する。それゆえ、側面発光LED光源を用いる場合に比べて、LED光源あたりの側面方向外側Xに向かう光束の割合は低下する。その一方で、側面方向内側および正面方向Zに出射する光の割合が増える。
したがって、LED光源3Bの正面方向の拡散カバーの正面部8Aが暗くなるという課題に対して効果を奏する。
When a front-emitting LED light source is used as an LED light source that mainly irradiates the side surface portion 8B of the diffusion cover, light is emitted not only in the lateral direction outer side X but also toward the inner side. Therefore, as compared with the case where the side-emitting LED light source is used, the ratio of the luminous flux toward the outer side X in the side direction per LED light source is reduced. On the other hand, the ratio of the light emitted in the lateral direction inner side and the front direction Z increases.
Therefore, there is an effect on the problem that the front portion 8A of the diffusion cover in the front direction of the LED light source 3B becomes dark.

また、第1の光学部材5に対応するLED光源と等しいLED光源を使うことが可能となるため、LED光源の基板2への実装工程の簡略化、LED光源の配線の共通化や、駆動回路の簡略化などの効果を奏する。特に、同じLED光源を用いると、明るさを変化させる調光の際に、電流と明るさの関係が等しいために、側面部8Bと正面部8Aで正確に同じ割合で明るさを変えることが可能となる。   Further, since an LED light source equal to the LED light source corresponding to the first optical member 5 can be used, the mounting process of the LED light source on the substrate 2 is simplified, the wiring of the LED light source is shared, and the drive circuit There are effects such as simplification. In particular, when the same LED light source is used, since the relationship between the current and the brightness is equal during dimming to change the brightness, it is possible to change the brightness at the exact same ratio in the side surface portion 8B and the front surface portion 8A. It becomes possible.

さらに、色温度が異なる2種類以上のLED光源を適宜配置して、各種類間の投入電流を調整することによって、照明装置の発光光の色を調節することがある。当該調色を行う際には、第1の光学部材5に対応するLED光源の色の種類の割合と、第2の光学部材6に対応するLED光源の色の種類の割合を等しくすることで、各種類のLED光源に投入する電流を、LED光源3AとLED光源3Bで等しく制御することで、正面部8Aと側面部8Bからの発光光の色を等しくしながら調色することが可能となる。例えば、色温度3000Kと6000Kの2種のLED光源を用いる場合、LED光源3Aの半分は3000KのLED光源とし、もう半分は6000KのLED光源とする。同様にLED光源3Bの半分は3000KのLED光源とし、もう半分は6000KのLED光源として、LED光源の色の種類の割合をLED光源3AとLED光源3Bで等しくする。第1の光学部材5と第2の光学部材6で同じ色のLED光源には同じ電流を投入すれば良い。   Further, two or more types of LED light sources having different color temperatures are appropriately arranged, and the color of the emitted light of the lighting device may be adjusted by adjusting the input current between each type. When performing the toning, the ratio of the color type of the LED light source corresponding to the first optical member 5 and the ratio of the color type of the LED light source corresponding to the second optical member 6 are made equal. By controlling the current supplied to each type of LED light source equally between the LED light source 3A and the LED light source 3B, it is possible to perform color matching while making the colors of the emitted light from the front surface portion 8A and the side surface portion 8B equal. Become. For example, when two types of LED light sources having a color temperature of 3000K and 6000K are used, half of the LED light source 3A is a 3000K LED light source and the other half is a 6000K LED light source. Similarly, half of the LED light source 3B is an LED light source of 3000K, and the other half is an LED light source of 6000K, and the LED light source 3A and the LED light source 3B have the same color type ratio. The same current may be supplied to the LED light sources of the same color in the first optical member 5 and the second optical member 6.

光線RAY25に関して説明する。光線RAY25は、正面方向Zより傾いて斜め方向にLED光源3Bから発光した光線である。本光線は、入射面6A′から入射し、反射面6Cで屈折され正面方向Zに向かう光線例である。本例では、反射面6Cは正面方向Zに対して約45度傾いている。反射面6Cの傾き角度が約45度の場合、LED光源から正面方向に向かってくる光線を効率よく側面方向外側Xに反射する。その一方で、LED光源からの発光方向が、正面方向Zよりも側面方向内側に向かう光に対しては、その光を屈折して効率よく正面方向Zに光を出射するという効果も奏する。正面方向Zに光を出射することで、LED光源の正面方向Zの拡散カバーの正面部8Aを明るくするという効果を奏する。   The light ray 25 will be described. The ray RAY25 is a ray emitted from the LED light source 3B in an oblique direction inclined with respect to the front direction Z. This light beam is an example of a light beam that enters from the incident surface 6A ′, is refracted by the reflecting surface 6C, and travels in the front direction Z. In this example, the reflective surface 6C is inclined about 45 degrees with respect to the front direction Z. When the inclination angle of the reflecting surface 6C is about 45 degrees, the light beam coming from the LED light source toward the front direction is efficiently reflected to the outer side X in the side surface direction. On the other hand, for the light emitted from the LED light source toward the inner side in the lateral direction than the front direction Z, there is also an effect that the light is refracted and the light is efficiently emitted in the front direction Z. By emitting light in the front direction Z, there is an effect of brightening the front portion 8A of the diffusion cover in the front direction Z of the LED light source.

当該反射面6Cの形状を制御することで、側面外側方向Xと正面方向Zの光束を制御することが可能である。例えば、反射面6Cの断面形状を直線ではなく、折れ線や曲線のレンズ形状とすることでも制御が可能である。   By controlling the shape of the reflecting surface 6C, it is possible to control the light fluxes in the lateral side direction X and the front direction Z. For example, the control can be performed by setting the cross-sectional shape of the reflective surface 6C to a polygonal or curved lens shape instead of a straight line.

出射面6Bの断面形状は直線であるが、これに限らず、第1および第2の実施の形態で説明した様々な形状を用いることが可能であって、同様に各図面で説明した効果を奏する。   The cross-sectional shape of the emission surface 6B is a straight line, but is not limited to this, and various shapes described in the first and second embodiments can be used, and the effects described in the drawings are similarly obtained. Play.

本構成は、基板の外周のある部位において、最も外側に配置されるLED光源からの正面方向Zへの発光光を、側面方向外側に導く光学部材が対応して配置され、当該光学部材は側面方向の内側よりも外側に多くの光を出射する部材構成である。ここで、側面方向の内側、外側は、対応するLED光源が配置される位置の正面方向Zを基準として定義される。当該正面方向Zを基準に光線の伝搬方向が外側Xに向いている場合は、外側に向かう光である。一方、当該正面方向Zを基準に光線の伝搬方向が内側(−X方向)に向いている場合は、内側に向かう光である。ここで、最も外側に配置されるLED光源とは、基板の外周のある場所において、基板の端部に最も近いLED光源とも言える。   In this configuration, an optical member that guides light emitted in the front direction Z from the LED light source disposed on the outermost side to the outer side in the side surface direction is arranged correspondingly at a portion on the outer periphery of the substrate, and the optical member is arranged on the side surface. This is a member configuration that emits more light to the outside than the inside in the direction. Here, the inner side and the outer side in the side surface direction are defined with reference to the front direction Z of the position where the corresponding LED light source is arranged. When the propagation direction of the light beam is directed toward the outside X with respect to the front direction Z, the light is directed toward the outside. On the other hand, when the propagation direction of the light beam is directed inward (−X direction) with respect to the front direction Z, the light is directed inward. Here, the LED light source arranged on the outermost side can be said to be the LED light source closest to the edge of the substrate at a location on the outer periphery of the substrate.

また、第1の光学部材5は、LED光源が配置される位置に関して、側面方向の外側と内側で、対称的な形状である。一方、第2の光学部材6はLED光源が配置される位置に関して、側面方向の外側と内側で、非対称的な形状である。また、第2の光学部材6は、その重心がLED光源よりも外側にある構成である。これらの特徴は、外側により多くの光を出射するための特徴である。   The first optical member 5 has a symmetrical shape on the outer side and the inner side in the lateral direction with respect to the position where the LED light source is disposed. On the other hand, the second optical member 6 has an asymmetric shape on the outer side and the inner side in the lateral direction with respect to the position where the LED light source is disposed. The second optical member 6 has a configuration in which the center of gravity is outside the LED light source. These features are features for emitting more light to the outside.

本実施の形態で説明したように、正面発光LED光源を、拡散カバー8の側面部8Bに光を主に照射する部材に対応する光源として用いることも可能である。つまり、第1から第5の実施の形態で説明した、側面部8Bを効率良く照射する部材である第2の光学部材に対応するLED光源として、正面発光LED光源を用いても、本実施の形態の特徴を備えた照明装置であれば、同様に側面部8Bを効率良く照射することが可能である。   As described in the present embodiment, the front-emitting LED light source can be used as a light source corresponding to a member that mainly irradiates the side surface portion 8B of the diffusion cover 8 with light. That is, even when a front-emitting LED light source is used as the LED light source corresponding to the second optical member that is a member that efficiently irradiates the side surface portion 8B described in the first to fifth embodiments, the present embodiment If it is an illuminating device provided with the feature of a form, it is possible to irradiate the side part 8B efficiently similarly.

次に、図19を用いて、複合光学部材7の保護カバーの役割に関して説明する。基本的には、本実施の形態でも、第1の実施の形態で説明したように、複合光学部材7は電極40を覆っているので保護カバーとしても機能する。図19は補足説明で、とりわけ、完全には電極を覆っていない場合の説明である。   Next, the role of the protective cover of the composite optical member 7 will be described with reference to FIG. Basically, also in this embodiment, as described in the first embodiment, since the composite optical member 7 covers the electrode 40, it also functions as a protective cover. FIG. 19 is a supplementary explanation, especially when the electrodes are not completely covered.

図19は、第2の光学部材6と光学部材接続部4との間に空隙7Gが存在する構成である。空隙7Gの幅7Wは数mm程度の幅であって、電極に手が触れらない程度の幅である。
それゆえ、人が電極40に触れて感電することを防止する保護カバーの機能を有する。
FIG. 19 shows a configuration in which a gap 7 </ b> G exists between the second optical member 6 and the optical member connecting portion 4. The width 7W of the gap 7G is about several mm, and is such a width that a hand does not touch the electrode.
Therefore, it has a function of a protective cover that prevents a person from touching the electrode 40 and receiving an electric shock.

空隙7Gは、複合光学部材7が如何なる材料で作られていても、光の吸収が完全にはゼロではないので、空隙7Gを設け、光を通すことで効率を向上させるという効果が一つある。   The gap 7G has one effect of improving efficiency by providing the gap 7G and allowing light to pass through because the light absorption is not completely zero no matter what material the composite optical member 7 is made of. .

また、本例では、製造上の問題で設けている。本例の照明装置の複合光学部材7は射出成型で、一括で製造される。形状に薄い部位があると樹脂が流れ込まず、きれいに成型できない。また、そのような箇所は強度も弱くなり、割れなども発生する。それゆえ、できる限り1mm未満にはならないように成型する。最低でも0.5mmは確保したい。   In this example, it is provided due to a manufacturing problem. The composite optical member 7 of the illumination device of this example is manufactured by injection molding at a time. If there is a thin part in the shape, the resin will not flow in and it will not be possible to mold cleanly. In addition, such a portion is weak in strength, and cracks are also generated. Therefore, it is molded so as not to be less than 1 mm as much as possible. We want to secure at least 0.5mm.

第2の光学部材6と光学部材接続部4との間は薄くなる。なぜならば、反射面の法線6CNが側面方向外側Xとは反対方向に傾いている構成であって(正面方向の厚さの異なる光学部材接続部4と第2の光学部材6がつながる部位でもある)、且つ、LED光源3Bを配置するための空間があるためである。それゆえ、複合光学部材7の当該部分が薄くなり過ぎないために、所定の厚さ未満に当該部分がなる前に削除して空隙7Gとしている構成である。第2の光学部材6と光学部材接続部4との間は、基板面内の別の部位で複合光学部材7が薄くならないように接続されている。したがって、空隙7Gを設けることで、製造し易くするという効果を奏する。   The space between the second optical member 6 and the optical member connecting portion 4 is thin. This is because the normal 6CN of the reflecting surface is inclined in the direction opposite to the lateral direction outer side X (even in a portion where the optical member connecting portion 4 and the second optical member 6 having different thicknesses in the front direction are connected). This is because there is a space for disposing the LED light source 3B. Therefore, in order to prevent the portion of the composite optical member 7 from becoming too thin, it is deleted before the portion becomes less than a predetermined thickness to form the gap 7G. Between the 2nd optical member 6 and the optical member connection part 4, it connects so that the composite optical member 7 may not become thin in another site | part in a board | substrate surface. Therefore, by providing the gap 7G, the effect of facilitating manufacturing is produced.

図20は、本発明の第7の実施形態に係る照明装置の構成を説明するための断面図である。第1の実施の形態と同じ個所、または、同じ機能を有する箇所に関しては説明を省略する。第1の実施の形態と異なる個所は、側面方向で最も外側に位置するLED光源として側面発光LED光源ではなく、正面発光LED光源を用いている。また、拡散カバー8の側面部8Bを効率良く照射するために、当該LED光源3Bに対応して第2の光学部材6を設置している。   FIG. 20 is a cross-sectional view for explaining the configuration of a lighting apparatus according to the seventh embodiment of the present invention. The description of the same portions as the first embodiment or the portions having the same functions is omitted. The difference from the first embodiment is that a front-emitting LED light source is used instead of a side-emitting LED light source as the LED light source located on the outermost side in the side-surface direction. Moreover, in order to irradiate efficiently the side part 8B of the diffusion cover 8, the 2nd optical member 6 is installed corresponding to the said LED light source 3B.

第2の光学部材6は導光部を有さず、第1の光学部材5とは形状が異なり、出射光の光度分布も異なる光学部材である。本例の照明装置1のLED光源3A、LED光源3Bは正面発光LED光源である。本例では特に、照明装置1に配置されたLED光源を全て正面発光LED光源としている。第1の光学部材5に対応するLED光源3Aは、第2の光学部材6に対応するLED光源3Bと等しくても良いし、異なっても良い。本例ではLED光源3AとLED光源3Bは等しいものとする。また、本例では外側の2つのLED光源3Bに対応して第2の光学部材6が設置されている。   The second optical member 6 does not have a light guide part, and is an optical member having a different shape from the first optical member 5 and a different luminous intensity distribution of the emitted light. The LED light source 3A and LED light source 3B of the illumination device 1 of this example are front-emitting LED light sources. Especially in this example, all the LED light sources arrange | positioned at the illuminating device 1 are set as the front light emission LED light source. The LED light source 3A corresponding to the first optical member 5 may be the same as or different from the LED light source 3B corresponding to the second optical member 6. In this example, it is assumed that the LED light source 3A and the LED light source 3B are equal. In this example, the second optical member 6 is installed corresponding to the two outer LED light sources 3B.

実施例1同様、間接光を増大することと、拡散カバー8の照度を均一にすることを主な目的としている。照明装置の中心C付近の拡散カバー8が暗くなる点、および、基板2の端部2Eと拡散カバーの側面部8B間の拡散カバー8(拡散カバー周辺部と呼ぶことにする。)が暗くなる点を改善することで、拡散カバー8全体を均一に光らせるとともに、拡散カバー周辺部が明るくなることで照明装置1の配光を広げ、間接光も増加させる照明装置を提供する。   As in the first embodiment, the main purposes are to increase indirect light and to make the illuminance of the diffusion cover 8 uniform. The point where the diffusion cover 8 near the center C of the lighting device becomes dark, and the diffusion cover 8 between the end 2E of the substrate 2 and the side surface part 8B of the diffusion cover (referred to as a diffusion cover peripheral part) becomes dark. By improving the points, there is provided an illuminating device that uniformly illuminates the entire diffusing cover 8 and that increases the light distribution of the illuminating device 1 and increases indirect light by brightening the periphery of the diffusing cover.

実施例1で説明した通り、固定具51があるために、照明装置1の中心にはLED光源3が置けない。それゆえ、照明装置の中心C付近の拡散カバー8が暗くなる。また、基板2の端部2Eと拡散カバーの側面部8Bとの間には、拡散カバー8をフレーム11に固定するための固定具(図示なし)を設置するために、一定のスペースが必要になる(図20参照)。それゆえに、LED光源を近づけるのに限界が生じ、拡散カバー周辺部が暗くなる。   As described in the first embodiment, since the fixture 51 is provided, the LED light source 3 cannot be placed at the center of the lighting device 1. Therefore, the diffusion cover 8 near the center C of the lighting device becomes dark. In addition, a fixed space is required between the end 2E of the substrate 2 and the side surface 8B of the diffusion cover in order to install a fixture (not shown) for fixing the diffusion cover 8 to the frame 11. (See FIG. 20). Therefore, there is a limit in bringing the LED light source closer, and the periphery of the diffusion cover becomes dark.

一般に、拡散カバー8は、中心C付近の高さHcの方が、基板の端部2E付近の高さHeよりも高い。それゆえ、中心C付近と基板の端部2E付近の光学部材が等しい場合は、中心C付近の光学部材から出射した光の方が基板の端部2E付近の光学部材から出射した光よりも拡散カバー8に到達するまでに広がる。つまり、光が拡散する。したがって、中心C付近においては、極端に光学部材で光を広げる必要はない。例えば、配光の光度ピークが80度を超えるようなレンズにする必要はないことが多い。また、光を広げ過ぎると効率良く中心C付近の拡散カバー8に光が到達せず、拡散カバー8の当該箇所の暗部を改善できない。例えば、中心Cに最も近いLED光源3Aと中心Cとの距離をDp1とすると、ATAN(Dp1/Hc)で得られる角度よりも広角に光を出射すれば良い。ATAN(Dp1/HC)+5度から20度程度の角度に光度ピークがあることが好ましい。   In general, the diffusion cover 8 has a height Hc near the center C higher than a height He near the end 2E of the substrate. Therefore, when the optical members near the center C and the end 2E of the substrate are equal, the light emitted from the optical member near the center C is diffused more than the light emitted from the optical member near the end 2E of the substrate. It spreads until it reaches the cover 8. That is, light diffuses. Therefore, in the vicinity of the center C, it is not necessary to extremely spread the light with the optical member. For example, it is often unnecessary to use a lens whose luminous intensity peak exceeds 80 degrees. Further, if the light is spread too much, the light does not efficiently reach the diffusion cover 8 near the center C, and the dark part of the portion of the diffusion cover 8 cannot be improved. For example, if the distance between the LED light source 3A closest to the center C and the center C is Dp1, light may be emitted at a wider angle than the angle obtained by ATRAN (Dp1 / Hc). It is preferable that there is a light intensity peak at an angle of Atan (Dp1 / HC) +5 degrees to 20 degrees.

一方、端部2E付近の光学部材は、高さHeが低いので、できるだけ広い範囲に光を出射した方が良い。   On the other hand, since the optical member in the vicinity of the end 2E has a low height He, it is better to emit light in as wide a range as possible.

したがって、中心C付近にあるLED光源3Aに対応する第1の光学部材5の出射光の光度分布よりも、最も外側に位置するLED光源3Bに対応する第2の光学部材6の出射光の光度分布が広い方が、拡散カバー8の照度を均一にすることに有効である。当該効果は、とりわけ、中心C付近の高さHcの方が、基板の端部2E付近の高さHeよりも高い場合に有効である。   Therefore, the luminous intensity of the emitted light of the second optical member 6 corresponding to the LED light source 3B located on the outermost side from the luminous intensity distribution of the emitted light of the first optical member 5 corresponding to the LED light source 3A near the center C. A wider distribution is effective for making the illuminance of the diffusion cover 8 uniform. This effect is particularly effective when the height Hc near the center C is higher than the height He near the edge 2E of the substrate.

本例では、側面方向の外側の2つのLED光源3Bに対して、第2の光学部材6を配置した。これは、中心C付近にあるLED光源3A以外のLED光源に関しては、拡散カバー8の特定の部位に向けて光を出射する必要がないので、できるだけ広い範囲に光を出射して拡散カバー8の照度を均一化した方が良いためである。   In this example, the second optical member 6 is disposed for the two LED light sources 3B on the outer side in the side surface direction. This is because LED light sources other than the LED light source 3A in the vicinity of the center C do not need to emit light toward a specific portion of the diffusion cover 8, so that the light is emitted in as wide a range as possible. This is because it is better to make the illuminance uniform.

つまり、第1の光学部材5を、中心Cを囲むように配置し、照明装置1の中心付近、特に、照明装置1の中心に最も近い光学部材とすることで、中心C付近の拡散カバー8が暗くなる点を改善している。さらに、第2の光学部材6を基板の端部2Eに沿って配置することで、拡散カバー周辺部を明るくして照明装置1の配光を広げ、間接光も増加させている。また、側面方向において、第1の光学部材5より外側の全ての光学部材を第2の光学部材6とすることで、拡散カバー8の全体の均一化に寄与している。   That is, the first optical member 5 is disposed so as to surround the center C, and is the optical member near the center of the lighting device 1, particularly the optical member closest to the center of the lighting device 1. The point that becomes darker has been improved. Furthermore, by arranging the second optical member 6 along the edge 2E of the substrate, the periphery of the diffusion cover is brightened, the light distribution of the lighting device 1 is expanded, and indirect light is also increased. Further, by making all the optical members outside the first optical member 5 into the second optical member 6 in the side surface direction, it contributes to uniformization of the entire diffusion cover 8.

ここで、光学部材接続部4の役割は、第1の実施形態で説明した複数の役割を担うものである。   Here, the role of the optical member connecting portion 4 plays a plurality of roles described in the first embodiment.

照明装置1に含まれるLED光源の数が数十個を超えるような場合は、個々に、光学部材の取り付け、位置あわせを行うことは、時間がかかり省電力および作業コストの観点で望ましくない。ちなみに、天井に取り付ける照明装置でリビングよりも広い部屋用途の場合、大抵、数十個以上のLED光源が必要となる。   When the number of LED light sources included in the illuminating device 1 exceeds several tens, it is time consuming to attach and align the optical members individually, which is not desirable from the viewpoint of power saving and work cost. Incidentally, in the case of a room application wider than a living room with a lighting device attached to the ceiling, usually several tens or more LED light sources are required.

しかしながら、本例のように、複数の光学部材をまとめた複合光学部材の場合、取り付け作業回数が減るという効果を奏する。さらに、本例のように、全ての光学部材を一括成型で作る場合、取り付けに要する時間は著しく改善される。また、光学部材が複数種ある場合に、一括成型の複合光学部材を取り付ける場合には、対応するLED光源への光学部材の取り付け間違いが無くなるという効果を奏する。また、本例のように、LED光源が全て正面発光LED光源であり、LED光源3AとLED光源3Bが等しい場合は、第1の光学部材5と第2の光学部材6の形状は異なるものの、似ている点もあることから、取り付けの際に間違いが発生し易くなる。それゆえ、一括成型の複合光学部材は、本例にはより有効である。   However, in the case of a composite optical member in which a plurality of optical members are combined as in this example, there is an effect that the number of mounting operations is reduced. Furthermore, when all the optical members are made by batch molding as in this example, the time required for attachment is remarkably improved. Further, when there are a plurality of types of optical members, when a batch-molded composite optical member is attached, there is an effect that there is no mistake in attaching the optical member to the corresponding LED light source. Further, as in this example, when the LED light sources are all front-emitting LED light sources and the LED light source 3A and the LED light source 3B are equal, the shapes of the first optical member 5 and the second optical member 6 are different, Since there are similarities, mistakes are likely to occur during installation. Therefore, the batch-molded composite optical member is more effective in this example.

次に、図21(a)を用いて、本例のLED光源の配置に関して説明する。図20は、説明に必要な最小限を書いており、LED配置に関して、図21(a)の場合よりも省略して記載した。例えば、後述するが、図21(a)のLED光源は7個の同心円状に配置されているのに、図20では、3個の同心円の断面図として描かれている。さらに、図21(a)では後述する色に関して説明しているが、図20ではLED光源の色の情報は記載していない。これは図20および説明が複雑になるのを避けるためである。図21(a)は、LED光源の配置、色に関してより詳細に説明するために記載した。   Next, the arrangement of the LED light source of this example will be described with reference to FIG. FIG. 20 shows the minimum necessary for the explanation, and the LED arrangement is omitted from the case of FIG. For example, as will be described later, the LED light source of FIG. 21A is arranged as seven concentric circles, but in FIG. 20, it is drawn as a sectional view of three concentric circles. Further, FIG. 21A describes the color described later, but FIG. 20 does not describe the color information of the LED light source. This is to avoid the complexity of FIG. 20 and the description. FIG. 21A is described in order to explain the arrangement and color of the LED light source in more detail.

図21(a)はLED光源3A、3Bを実装する基板2の法線方向から見た正面図である。基板2は円を4分割する形状で同じ基板が4枚配置されている。図では、一つの基板のみ光学部材を書き込んだ。各LED光源には光学部材が対応して配置されている。光学部材501と502は、形状が等しい第1の光学部材5であって、対応するLED光源の色が異なる。光学部材601と602は、形状が等しい第2の光学部材6であって、対応するLED光源の色が異なる。   FIG. 21A is a front view seen from the normal direction of the substrate 2 on which the LED light sources 3A and 3B are mounted. The substrate 2 has a shape in which a circle is divided into four, and four identical substrates are arranged. In the figure, the optical member is written on only one substrate. An optical member is disposed corresponding to each LED light source. The optical members 501 and 502 are the first optical members 5 having the same shape, and the colors of the corresponding LED light sources are different. The optical members 601 and 602 are the second optical members 6 having the same shape, and the colors of the corresponding LED light sources are different.

図21(b)に第1の光学部材の拡大図を示す。図21(b)に示されるように、第1の光学部材5は、基板2の法線方向から見た場合の形状は等方であり、正面視は円形である。   FIG. 21B shows an enlarged view of the first optical member. As shown in FIG. 21B, the first optical member 5 is isotropic when viewed from the normal direction of the substrate 2 and is circular when viewed from the front.

第2の光学部材6の拡大図を図21(c)に示す。第2の光学部材6は、基板2の法線方向から見た場合の形状は非等方であり、正面視は円と直線からなる形状である。ここで、第2の光学部材6の正面視の形状は円と直線に限定されない。曲線でも良く、折れ線で構成されても良い。便宜的に、中心Cを原点とした極座標系を考えると、第2の光学部材6は、動径方向Rdirと、当該動径方向に垂直な方位角方向Cdirとで断面形状が異なり、動径方向の幅6W1より方位角方向(円周方向)の幅6W2の方が大きい。また、言い換えると、LED光源が密に並んでいる方向(方位各方向)の幅が、当該方向と垂直な方向の幅よりも、大きいとも言える。   An enlarged view of the second optical member 6 is shown in FIG. The second optical member 6 has an anisotropic shape when viewed from the normal direction of the substrate 2, and has a shape composed of a circle and a straight line when viewed from the front. Here, the shape of the second optical member 6 in a front view is not limited to a circle and a straight line. It may be a curved line or a broken line. For convenience, when a polar coordinate system with the center C as the origin is considered, the second optical member 6 is different in cross-sectional shape between the radial direction Rdir and the azimuthal direction Cdir perpendicular to the radial direction. The width 6W2 in the azimuth direction (circumferential direction) is larger than the width 6W1 in the direction. In other words, it can be said that the width in the direction in which the LED light sources are closely arranged (directions in each direction) is larger than the width in the direction perpendicular to the direction.

各LED光源は中心Cを取り囲んでいる。同一の光学部材が中心Cからの距離が概ね等しい円状に配置されている。本例においては、中心が等しい7個の同心円にLED光源が配置されている。各同心円の半径をDp1〜Dp7とする。各円を点線で図中に記してある。   Each LED light source surrounds the center C. The same optical member is arranged in a circle having substantially the same distance from the center C. In this example, LED light sources are arranged in seven concentric circles having the same center. Let the radius of each concentric circle be Dp1 to Dp7. Each circle is marked with a dotted line in the figure.

最も中心Cに近い円には、第1の光学部材501、502が配置されている。それより外側の円には、第2の光学部材601、602が配置されている。また、中心C付近にある第1の光学部材501、502の出射光の光度分布よりも、最も外側に位置する第2の光学部材601、602の出射光の光度分布の方が広い構成であって、拡散カバー8の照度を均一にすることに有効な構成となっている。理由は、図20を用いて説明した理由と同じである。   In the circle closest to the center C, the first optical members 501 and 502 are arranged. Second optical members 601 and 602 are arranged on the outer circle. Further, the luminous intensity distribution of the emitted light of the second optical members 601 and 602 located on the outermost side is wider than the luminous intensity distribution of the emitted light of the first optical members 501 and 502 near the center C. Thus, the configuration is effective for making the illuminance of the diffusion cover 8 uniform. The reason is the same as described with reference to FIG.

また、最も中心Cに近い円以外の円には第2の光学部材6が対応している。言い換えると、第1の光学部材5は、基板の中心Cに近い側の端部に、中心Cを取り囲むように配置され、第1の光学部材5で囲まれた位置より、中心Cより遠ざかる側に配置される光学部材は第2の光学部材6という構成である。   The second optical member 6 corresponds to a circle other than the circle closest to the center C. In other words, the first optical member 5 is disposed at an end portion on the side close to the center C of the substrate so as to surround the center C, and is farther from the center C than the position surrounded by the first optical member 5. The optical member arranged in the second optical member 6 is configured as the second optical member 6.

これは、中心C付近にある光学部材以外の光学部材に関しては、拡散カバー8の特定の部位に向けて光を出射する必要がないので、できるだけ広い範囲に光を出射して拡散カバー8の照度を均一化した方が良いためである。   This is because there is no need to emit light toward a specific part of the diffusion cover 8 for optical members other than the optical member near the center C. This is because it is better to equalize.

LED光源の色と配置の関係に関して説明する。本例では、光学部材501と601に対応するLED光源は等しいものとする。また、光学部材502と602に対応するLED光源は等しいものとする。少なくても、第1の光学部材501と502からの出射光は混色しなければならない。また、第2の光学部材601と602からの出射光は、混色しなければならない。混色しなければ、拡散カバー8の色が均一でなくなり、色ムラが発生する。したがって、混色し易くなるように、色が異なるLED光源を隣接して配置することが好ましい。   The relationship between the color and arrangement of the LED light source will be described. In this example, the LED light sources corresponding to the optical members 501 and 601 are the same. Further, the LED light sources corresponding to the optical members 502 and 602 are assumed to be equal. At least, the emitted light from the first optical members 501 and 502 must be mixed. Moreover, the emitted light from the second optical members 601 and 602 must be mixed. If the colors are not mixed, the color of the diffusion cover 8 is not uniform and color unevenness occurs. Therefore, it is preferable to arrange LED light sources having different colors adjacent to each other so as to facilitate color mixing.

また、n色のLED光源を使用する場合は、1種類の光学部材に対して、n色の異なるLED光源を用いることが好ましい。なぜならば、同一の光学部材の方が、配光が等しいために、色の均一化が容易であるためである。本例では、第1の光学部材5に2色のLED光源を用い、第2の光学部材6にも2色のLED光源を用いている。   In addition, when n-color LED light sources are used, it is preferable to use different LED light sources for one type of optical member. This is because the same optical member has the same light distribution, so that it is easier to make the color uniform. In this example, a two-color LED light source is used for the first optical member 5, and a two-color LED light source is also used for the second optical member 6.

基板2の基板間の境界となる端部2ER1、2ER2に沿ったLED光源の配置に関して説明する。当該端部は2辺あり、何れの辺においても、当該端部2ER1、2ER2に沿って、最内側の第1の光学部材5から最外側の第2の光学部材6まで、対応するLED光源の色が交互に異なる。例えば、一方の端部2ER1は、第1の光学部材501の次は、第2の光学部材601、602が602、601、602、601、602、601と、中心Cから動径方向に向けて交互に対応するLED光源の色が異なる。さらに、反対側の端部2ER2は、第1の光学部材は502と、端部2ER1のLED光源とは異なる色であり、次いで、第2の光学部材601、602が、601、602、601、602、601、602と、中心Cから動径方向に向けて交互に対応するLED光源の色が異なる。   The arrangement of the LED light sources along the end portions 2ER1 and 2ER2 that are the boundaries between the substrates of the substrate 2 will be described. The end has two sides, and on either side, the corresponding LED light source from the innermost first optical member 5 to the outermost second optical member 6 along the ends 2ER1 and 2ER2. The colors are alternately different. For example, the one end 2ER1 is arranged such that the second optical members 601 and 602 are 602, 601, 602, 601, 602, and 601 in the radial direction from the center C after the first optical member 501. The colors of the corresponding LED light sources are different. Further, the end 2ER2 on the opposite side has a color different from that of the LED light source of the first optical member 502 and the end 2ER1, and then the second optical members 601 and 602 are 601 602 601, The colors of the LED light sources corresponding to 602, 601 and 602 and alternately corresponding to the radial direction from the center C are different.

言い換えると、複数の基板で照明装置は構成され、基板2の基板間の境界となる端部2辺2ER1、2ER2において、中心Cに最も近い第1の光学部材から中心Cから最も遠い第2の光学部材まで、対応するLED光源の色は交互に異なるように配置する。   In other words, the illuminating device is configured by a plurality of substrates, and in the end two sides 2ER1 and 2ER2 which are boundaries between the substrates, the second optical device that is farthest from the center C from the first optical member closest to the center C The colors of the corresponding LED light sources are alternately arranged up to the optical member.

さらに、当該境界となる端部2辺において、一方の辺に沿って配置されるLED光源の中心Cから遠ざかる方向への色の順番と、他方の辺に沿って配置されるLED光源の中心Cから遠ざかる方向への色の順番は異なるということである。   Further, at the two edges that are the boundary, the order of colors in the direction away from the center C of the LED light source arranged along one side and the center C of the LED light source arranged along the other side. The order of the colors in the direction away from is different.

この様な構成とすることで、同じ基板2を用いて照明装置を構成した場合であっても、異なる基板間の境界において、当該境界を挟んでも隣接するLED光源の色が異なる構成となる。それゆえ、同じ設計の基板を用いて照明装置を構成した場合であっても、色ムラを抑制することが可能となる。   By adopting such a configuration, even when the lighting device is configured using the same substrate 2, the color of adjacent LED light sources is different at the boundary between different substrates even when the boundary is sandwiched. Therefore, color unevenness can be suppressed even when the lighting device is configured using substrates of the same design.

次に、光学部材を詳細に説明する。まず、第1の光学部材5の断面と、第2の光学部材6の動径方向Rdirの断面形状に関して、図22(a)から(c)を用いて説明する。
図22(a)は第1の光学部材5の断面図であって、図22(b)は第2の光学部材6の動径方向Rdirの断面図である。第1および2の光学部材は、レンズであって、レンズはLED光源に対向する内面Luと光をレンズの外側に出射するレンズ表面Loから構成される。内面Luは傾斜部Tpを有する。図中には、参考のため光線RAYSが示されている。第2の光学部材6の方が、LED光源からの出射光線をより、大きい角度に屈折して、配光角度を広げる。
Next, the optical member will be described in detail. First, the cross section of the first optical member 5 and the cross sectional shape of the second optical member 6 in the radial direction Rdir will be described with reference to FIGS.
22A is a cross-sectional view of the first optical member 5, and FIG. 22B is a cross-sectional view of the second optical member 6 in the radial direction Rdir. The first and second optical members are lenses, and the lens includes an inner surface Lu facing the LED light source and a lens surface Lo that emits light to the outside of the lens. The inner surface Lu has an inclined portion Tp. In the figure, ray RAYS is shown for reference. The second optical member 6 refracts the emitted light from the LED light source to a larger angle and widens the light distribution angle.

図22(c)は、第2の光学部材6の光学系を説明するための図であって、LED光源に対向する内面Luだけが第2の光学部材6とは異なり、傾斜部Tpを含まないレンズの断面形状である。傾斜部Tpの効果に関して説明する。図22(c)に光線RayLで示されるように、傾斜部Tpが無い場合には、LED光源から出射した光の内、極角の大きな出射光は、光学部材接続部4に入射して導光する。   FIG. 22C is a diagram for explaining the optical system of the second optical member 6, and only the inner surface Lu facing the LED light source is different from the second optical member 6 and includes an inclined portion Tp. There is no cross-sectional shape of the lens. The effect of the inclined portion Tp will be described. As indicated by the ray RayL in FIG. 22 (c), when there is no inclined portion Tp, the emitted light having a large polar angle out of the light emitted from the LED light source enters the optical member connecting portion 4 and is guided. Shine.

積極的に光学部材接続部4に光を入射させて導光させる場合もあるが、本例では導光させずに、第1の光学部材5と第2の光学部材6と光学部材接続部4からなる複合光学部材7から光を出射させることを目的の一つとした。その理由は、複合光学部材7内を光を導光させる場合には、適宜、複合光学部材7から光を取り出し、光のロスを抑制する光学系が必要であり、本例ではそのような光学系を実装しないことを仮定しているため、複合光学部材7内を導光させると、迷光になって一部はロスする可能性があるためである。   In some cases, light is actively incident on the optical member connecting portion 4 to guide the light, but in this example, the first optical member 5, the second optical member 6, and the optical member connecting portion 4 are not guided. One of the purposes is to emit light from the composite optical member 7 made of the above. The reason for this is that when light is guided through the composite optical member 7, an optical system that appropriately takes out light from the composite optical member 7 and suppresses the loss of light is necessary. Since it is assumed that the system is not mounted, if light is guided through the composite optical member 7, stray light may be partly lost.

図22(b)に示す第2の光学部材6には、傾斜部Tpがあるため、LED光源3Bから光学部材接続部4に向かう光線RayLは、傾斜部Tpでレンズ表面Loに向けて屈折される。それゆえ、光学部材接続部4に入射して導光する光は、傾斜部Tpが無い場合に比べて少ない。したがって、傾斜部Tpは、光学部材接続部4に入射して導光する光を抑制し、光学ロスを低減するという効果を奏する。   Since the second optical member 6 shown in FIG. 22B has the inclined portion Tp, the ray RayL from the LED light source 3B toward the optical member connecting portion 4 is refracted toward the lens surface Lo by the inclined portion Tp. The Therefore, the amount of light that enters and guides the optical member connecting portion 4 is less than that when there is no inclined portion Tp. Therefore, the inclined portion Tp has an effect of suppressing light that enters and guides the optical member connection portion 4 and reduces optical loss.

傾斜部Tpの基板法線からの角度は、50度から75度程度である。内面Luは設計の観点では球面が好ましい。球面とすることで、特定の位置にある点光源からの出射光に対してレンズ表面Loを設計することができる。しかしながら、球面はLED光源の出射光の内、光学部材接続部4に向かう光を抑制する形状では無いので、LED光源からのある角度以上の発光光をレンズ表面Loに向けて屈折させる面である傾斜部Tpを球面部と連続的に繋げて内面Luを構成した。つまり、内面Luの断面形状は曲線と直線からなる。   The angle of the inclined portion Tp from the substrate normal is about 50 to 75 degrees. The inner surface Lu is preferably a spherical surface from the viewpoint of design. By using a spherical surface, the lens surface Lo can be designed for the light emitted from the point light source located at a specific position. However, the spherical surface is not a shape that suppresses the light emitted from the LED light source toward the optical member connecting portion 4, and is a surface that refracts the emitted light of a certain angle or more from the LED light source toward the lens surface Lo. The inner surface Lu is configured by continuously connecting the inclined portion Tp with the spherical surface portion. That is, the cross-sectional shape of the inner surface Lu is composed of a curve and a straight line.

LED光源からのある角度以上の発光光をレンズ表面Loに向けて屈折させる面が開始する位置は、レンズ中心軸において、LEDの発光面の高さの位置を原点とし、当該原点から光線が発光すると仮定した場合に、当該レンズ中心軸からの角度が概ね70から80度の光線と、図22(c)のようにレンズ内面の球面がLED光源の側面と対向する面まで伸びているとしたときに(内面が球面でないときは、当該内面の端部をそのまま延長したときに)、当該球面とが交差する点が凡その当該開始点となる。当該開始点より基板2に近い側のレンズ内面形状を、レンズ表面Loに向けて屈折させる面とすれば良い
別の点で考えると、図22(c)のようにレンズ内面の球面がLED光源の側面と対向する面まで伸びているとしたときに(内面が球面でないときは、当該内面の端部をそのまま延長したときに)、前述した原点からの光が、レンズ表面Loから出射せず、光学部材接続部4に入射する極角を求め、当該極角以上の発光光に対して、レンズ表面Loに向けて屈折させる面を設ければ良い。
The position where the surface that refracts the emitted light from the LED light source at a certain angle or more toward the lens surface Lo starts is at the center of the lens at the height of the light emitting surface of the LED, and light is emitted from the origin. Assuming that, the angle from the lens central axis is approximately 70 to 80 degrees, and the spherical surface of the lens inner surface extends to the surface facing the side surface of the LED light source as shown in FIG. Sometimes (when the inner surface is not spherical, when the end of the inner surface is extended as it is), the point where the spherical surface intersects is the starting point. The inner surface of the lens closer to the substrate 2 than the starting point may be a surface that is refracted toward the lens surface Lo. Considering another point, the spherical surface of the lens inner surface is an LED light source as shown in FIG. (When the inner surface is not spherical, when the end of the inner surface is extended as it is), the light from the above-mentioned origin does not exit from the lens surface Lo. It is only necessary to obtain a polar angle incident on the optical member connecting portion 4 and provide a surface that refracts the emitted light with the polar angle or more toward the lens surface Lo.

また、本例では、簡易に設計できるため傾斜部Tpを直線としたが、これに限らず、球面部から曲線形状で滑らかに、LED光源からのある角度以上の発光光をレンズ表面Loに向けて屈折させる面となるように設計することも可能である。その際には、上述した開始点付近から曲線の曲率が変化する構成となる。   In this example, the inclined portion Tp is a straight line because it can be designed easily. However, the present invention is not limited to this, and the light emitted from the LED light source with a certain angle or more is smoothly directed to the lens surface Lo from a spherical portion. It is also possible to design the surface to be refracted. In that case, the curvature of the curve changes from the vicinity of the start point described above.

次に、第2の光学部材6の方位角方向Cdirの形状に関して図23(a)、(b)を用いて説明する。図23(a)は第2の光学部材6の方位角方向Cdirの図である。図23(a)に示す通り、方位角方向Cdirの断面は、中心部に長さLgの直線部があり、その他の部位は、動径方向Rdirの断面と変わらない。つまり、図22(b)と図23(a)において、形状Loa−LobおよびLua−Lubは等しい形状ということである。方位角方向Cdirの断面は直線部Lgの分だけ、動径方向Rdirの断面よりも長い。6W2=6W1+Lgである。   Next, the shape of the second optical member 6 in the azimuth direction Cdir will be described with reference to FIGS. FIG. 23A is a diagram of the azimuth angle direction Cdir of the second optical member 6. As shown in FIG. 23A, the cross section in the azimuth direction Cdir has a straight line portion having a length Lg at the center, and other portions are the same as the cross section in the radial direction Rdir. That is, in FIGS. 22B and 23A, the shapes Loa-Lob and Lua-Lub are the same shape. The cross section in the azimuth direction Cdir is longer than the cross section in the radial direction Rdir by the straight line portion Lg. 6W2 = 6W1 + Lg.

レンズ表面Loの立体的な形状を図23(b)に示す。曲線の始点であるLoaと終点であるLobを図中に記した。中心部にはLtpで示される平面部が存在する。第2の光学部材の断面形状の一部である曲線形状Loa−Lobは、レンズの全周囲に亘って等しい形状である。   The three-dimensional shape of the lens surface Lo is shown in FIG. The Loa, which is the start point of the curve, and the Lob, which is the end point, are shown in the figure. A flat portion indicated by Ltp exists at the center. The curved shape Loa-Lob, which is a part of the cross-sectional shape of the second optical member, is the same shape over the entire periphery of the lens.

第2の光学部材6を本レンズ形状とした理由は、動径方向Rdirの断面形状は広角に光を広げる形状とし、その上で、方位角方向Cdirは広角に光を広げない断面形状としたために本形状となった。最初に、動径方向Rdirの断面形状を決め、その上で方位角方向Cdirは、中心部に長さLgの直線部を導入することで、基板法線方向の光度を大きくして、広角に出射する光量を低下させた。動径方向Rdirと方位角方向Cdirの断面形状を連続的に繋げないと、配光が不連続な特性になりムラの原因になるので、動径方向Rdirと方位角方向Cdirの断面形状を連続的に繋げるために、方位角方向Cdirの断面形状は、直線部以外は動径方向Rdirの断面形状と等しくした。   The reason why the second optical member 6 has this lens shape is that the cross-sectional shape in the radial direction Rdir is a shape that spreads light in a wide angle, and the azimuth direction Cdir is a cross-sectional shape that does not spread light in a wide angle. It became this shape. First, the cross-sectional shape of the radial direction Rdir is determined, and then the azimuth angle direction Cdir increases the luminous intensity in the normal direction of the substrate by introducing a straight portion having a length Lg at the center portion, thereby widening the angle. The amount of emitted light was reduced. If the cross-sectional shapes of the radial direction Rdir and the azimuth direction Cdir are not continuously connected, the light distribution becomes discontinuous and causes unevenness. Therefore, the cross-sectional shapes of the radial direction Rdir and the azimuth direction Cdir are continuous. Therefore, the cross-sectional shape in the azimuth direction Cdir is equal to the cross-sectional shape in the radial direction Rdir except for the straight portion.

本特徴を備えることで、配光特性に所望の実装面内での異方性を持たせつつ、動径方向Rdirと方位角方向Cdirの断面形状を連続的に繋げ、ムラを抑制するという効果を有する。   By providing this feature, the cross-sectional shape of the radial direction Rdir and the azimuth direction Cdir are continuously connected and the unevenness is suppressed while the light distribution characteristic has anisotropy within a desired mounting surface. Have

ここで、動径方向Rdirの断面形状は広角に光を広げる形状とし、その上で、方位角方向Cdirは広角に光を広げない断面形状とした理由について説明する。動径方向Rdirに関しては、光を広げて拡散カバー周辺部に多くの光を照射し、ムラ改善と間接光を増大する必要がある。一方で、方位角方向Cdirは、隣接してLED光源が配置されるために、広い角度に光を出射する必要がない。一般的に、広角に光を出射するレンズは、レンズとLED光源間の位置ずれに敏感な傾向があり、さらに光度ピークが隣接する光学部材間で干渉してムラになることがある。それゆえ、LED光源が隣接して配置される方位角方向Cdirは広角に光を出射しないレンズ構成とし、レンズとLED光源間の位置ずれによるムラ、および、光度ピークが隣接する光学部材間で干渉して発生するムラを抑制している。   Here, the reason why the cross-sectional shape in the radial direction Rdir is a shape that spreads light at a wide angle and the azimuth angle direction Cdir is a cross-sectional shape that does not spread light at a wide angle will be described. Regarding the radial direction Rdir, it is necessary to spread light and irradiate a large amount of light around the diffusion cover to improve unevenness and increase indirect light. On the other hand, since the LED light source is disposed adjacent to the azimuth direction Cdir, it is not necessary to emit light at a wide angle. In general, a lens that emits light at a wide angle tends to be sensitive to a positional shift between the lens and the LED light source, and a luminous intensity peak may interfere between adjacent optical members and become uneven. Therefore, the azimuth angle direction Cdir in which the LED light sources are arranged adjacent to each other has a lens configuration that does not emit light at a wide angle. The unevenness which occurs is suppressed.

したがって、図21にも示した通り、第2の光学部材6の形状において、LED光源が密に並んでいる方向の幅が、当該方向と垂直な方向の幅よりも、大きい構成としている。
また、第2のLED光源は略円周状に配置されており、基板2の法線方向から第2の光学部材6を見た場合に、第2の光学部材6の形状が、方位角方向Cdirと動径方向Rdirで異なり、方位角方向Cdirの幅の方が大きい構成としている。本構成のように、基板2の端部2Eに最も近い第2の光学部材6を、基板2の法線方向から当該部材を見た場合に、非等方的な形状とすることで上述した様々なムラを抑制するとともに、広角に光を出射することで拡散カバー周辺部を明るくして照明装置の配光を広げ、間接光も増加させている。
Therefore, as shown in FIG. 21, in the shape of the second optical member 6, the width in the direction in which the LED light sources are densely arranged is larger than the width in the direction perpendicular to the direction.
The second LED light sources are arranged in a substantially circular shape, and when the second optical member 6 is viewed from the normal direction of the substrate 2, the shape of the second optical member 6 is the azimuth angle direction. Different in Cdir and radial direction Rdir, the width in the azimuth direction Cdir is larger. As described above, the second optical member 6 closest to the end portion 2E of the substrate 2 is formed in an anisotropic shape when the member is viewed from the normal direction of the substrate 2 as described above. While suppressing various unevenness and emitting light at a wide angle, the periphery of the diffusion cover is brightened to broaden the light distribution of the lighting device, and indirect light is also increased.

ここで、第1の光学部材5と第2の光学部材6の配光角に関して図24を用いて詳細に説明する。図24のグラフの横軸は光学部材を実装する基板2の法線からの角度である極角を表している。縦軸は、光学部材から出射した光の全光束で光度を規格化した規格化光度である。   Here, the light distribution angles of the first optical member 5 and the second optical member 6 will be described in detail with reference to FIG. The horizontal axis of the graph of FIG. 24 represents the polar angle which is an angle from the normal line of the board | substrate 2 which mounts an optical member. The vertical axis represents the normalized luminous intensity obtained by normalizing the luminous intensity with the total luminous flux of the light emitted from the optical member.

第1の光学部材5の光度分布I1aは、概ね60度から65度の間に光度ピークがあり、光度ピークより大きな角度になると光度が急峻に低下する。第1の光学部材5の光度分布I1aは、第1の光学部材5が無い場合に比べると、LED光源3Aから出射したランバーシアンの光度分布を略60度方向に光度ピークがある光度分布になるように、光を広角に広げている。   The luminous intensity distribution I1a of the first optical member 5 has a luminous intensity peak between approximately 60 degrees and 65 degrees, and the luminous intensity sharply decreases when the angle is larger than the luminous intensity peak. The luminous intensity distribution I1a of the first optical member 5 is a luminous intensity distribution in which the luminous intensity distribution of Lambertian emitted from the LED light source 3A has a luminous intensity peak in the direction of approximately 60 degrees as compared with the case where the first optical member 5 is not provided. So that the light is spread over a wide angle.

同様に、第2の光学部材6の動径方向Rdirの光度分布I2rは、概ね75度に光度ピークがあり、光度ピークより大きな角度になると光度が急峻に低下する。本光度分布I2rは、LED光源3Bから出射したランバーシアンの光度分布を75度方向に光度ピークがある光度分布になるように、光を広角に広げている。ランバーシアンの光度分布(図示なし)に比べて、0度の光度が低く、75度方向の光度が大きい。本光度分布I2rの特徴は、0度から45度の低角で光度が小さく、広角において、0度付近の光度と概ね等しいか、それ以上の光度となるピークを有する。この分布により、光度ピークまでの広い角度に光線を出射していることが分かる。   Similarly, the luminous intensity distribution I2r in the radial direction Rdir of the second optical member 6 has a luminous intensity peak at approximately 75 degrees, and the luminous intensity sharply decreases at an angle larger than the luminous intensity peak. The light intensity distribution I2r spreads the light over a wide angle so that the light intensity distribution of Lambertian emitted from the LED light source 3B becomes a light intensity distribution with a light intensity peak in the 75 degree direction. Compared to the Lambertian luminous intensity distribution (not shown), the luminous intensity at 0 degree is low and the luminous intensity in the 75 degree direction is large. The light intensity distribution I2r is characterized by a low angle of 0 to 45 degrees, a small intensity, and a peak at a wide angle that is approximately equal to or greater than the intensity near 0 degrees. It can be seen from this distribution that light rays are emitted at a wide angle up to the luminous intensity peak.

一方で、第2の光学部材6の方位角方向Cdirの光度分布I2cは、0度方向が大きく、極角が大きくなるにつれて低下する。但し、80度付近で小さなピークがある。このピークは正面方向(0度)に比べれば値が十分に小さいので、影響はほとんどない。さらに、50度から75度の領域の光度が低く、80度付近で小さなピークがあるだけである。当該80度の小さなピークは、方位角方向Cdirへの出射光であって、拡散カバー8に到達するまでに、動径方向Rdirへの出射光に比べて長い距離伝搬するために拡散して影響が無くなる。したがって、本光度分布I2cは、光度分布I2rに比べて狭い範囲に光を出射していることが分かる。   On the other hand, the luminous intensity distribution I2c of the second optical member 6 in the azimuth angle direction Cdir decreases as the 0 degree direction increases and the polar angle increases. However, there is a small peak around 80 degrees. Since this peak has a sufficiently small value compared to the front direction (0 degree), there is almost no influence. Furthermore, the light intensity in the region of 50 to 75 degrees is low, and there is only a small peak around 80 degrees. The small peak of 80 degrees is the outgoing light in the azimuth direction Cdir, and is diffused and influenced by the propagation of a longer distance than the outgoing light in the radial direction Rdir before reaching the diffusion cover 8. Disappears. Therefore, it can be seen that the light intensity distribution I2c emits light in a narrower range than the light intensity distribution I2r.

第2の光学部材6の動径方向Rdirの光度分布I2rを第1の光学部材5の光度分布I1aと比較すると、光度分布I2rの光度ピークはより広角にあり、また、光度分布I1aの光度が広角で急峻に低下している領域で、光度分布I2rの光度は高い値を示しているので、動径方向Rdirの断面において、第2の光学部材6の出射光の光度分布は、第1の光学部材5の出射光の光度分布よりも広いと言える。   When the luminous intensity distribution I2r in the radial direction Rdir of the second optical member 6 is compared with the luminous intensity distribution I1a of the first optical member 5, the luminous intensity peak of the luminous intensity distribution I2r is at a wider angle, and the luminous intensity distribution I1a has the luminous intensity distribution I1a. Since the luminous intensity distribution I2r has a high value in a region that is sharply reduced at a wide angle, the luminous intensity distribution of the emitted light from the second optical member 6 in the cross section in the radial direction Rdir is It can be said that the light intensity distribution of the light emitted from the optical member 5 is wider.

第1の光学部材5は、等方的な光学部材とした。第1の光学部材5は、第2の光学部材6に比べて配光角度が狭いので、レンズとLED光源間の位置ずれによるムラが発生しにくい。それゆえ、第1の光学部材5は、非等方的なレンズ形状にする必要性は低い。また、中心C付近の暗部にできるだけ多くの光を出射するには、中心C付近の基板2の端部に沿って多くのLED光源を配置したい。それゆえ、方位角方向Cdirに長い非等方なレンズ形状とはせず、等方的なレンズ形状として出来るだけ高密度にLED光源を配置した。中心に最も近い光学部材を、基板2の法線方向から当該光学部材を見た場合に、等方的な形状とすることで、当該LED光源よりも外側に配置されるLED光源より、高密度にLED光源を配置し、中心C付近の暗部に多くの光を出射する構成とし、当該暗部を改善できる。   The first optical member 5 was an isotropic optical member. Since the first optical member 5 has a narrower light distribution angle than the second optical member 6, unevenness due to positional deviation between the lens and the LED light source is less likely to occur. Therefore, it is not necessary for the first optical member 5 to have an anisotropic lens shape. In addition, in order to emit as much light as possible to the dark part near the center C, it is desirable to arrange many LED light sources along the edge of the substrate 2 near the center C. Therefore, the LED light sources were arranged as densely as possible in the isotropic lens shape, not the anisotropic lens shape long in the azimuth direction Cdir. When the optical member closest to the center is seen from the normal direction of the substrate 2 to have an isotropic shape, the optical member has a higher density than the LED light source disposed outside the LED light source. It is possible to improve the dark part by arranging an LED light source and emitting a lot of light to the dark part near the center C.

したがって、配光角が70度を超える第2の光学部材6は、非等方的なレンズ形状とし、第2の光学部材6よりも配光角が狭い第1の光学部材5は、等方的なレンズ形状とすることで、レンズとLED光源間の位置ずれによるムラを抑制しつつ、照明装置の中心C付近の拡散カバー8が暗くなる点、および、基板2の端部2Eと拡散カバーの側面部8B間の拡散カバー8(拡散カバー周辺部と呼ぶことにする。)が暗くなる点を改善した。それにより、拡散カバー全体を均一に光らせるとともに、拡散カバー周辺部が明るくなることで照明装置の配光を広げ、間接光も増加させる照明装置を提供する。   Therefore, the second optical member 6 having a light distribution angle exceeding 70 degrees has an anisotropic lens shape, and the first optical member 5 having a narrower light distribution angle than the second optical member 6 is isotropic. By adopting a typical lens shape, the diffusion cover 8 near the center C of the lighting device becomes dark while suppressing unevenness due to the positional deviation between the lens and the LED light source, and the end 2E of the substrate 2 and the diffusion cover The diffusion cover 8 (referred to as the diffusion cover peripheral portion) between the side surface portions 8B of the first and second side portions 8B has been improved. Accordingly, the illumination device is provided that uniformly illuminates the entire diffusion cover, and that the periphery of the diffusion cover becomes bright, thereby widening the light distribution of the illumination device and increasing indirect light.

次に、LED光源内のLED配置と非等方的なレンズの配置の関係に関して図25(a)から(g)を用いて説明する。まずは、望ましいLED光源内のLED配置と非等方的なレンズの配置関係について図25(a)を用いて説明する。本例では、LED光源3Bは、LED30が、枠体37の実装面37aに3個実装されている。第2の光学部材6の動径方向Rdirと、LED30が並んでいる方向が略等しい構成である。別の言い方をすると、LED光源3B内で、LED30が配置される位置分布範囲が長い方向と、動径方向Rdirが概ね等しい方向を向く構成である。   Next, the relationship between the LED arrangement in the LED light source and the anisotropic lens arrangement will be described with reference to FIGS. First, a preferable LED arrangement in the LED light source and an anisotropic lens arrangement relationship will be described with reference to FIG. In this example, the LED light source 3 </ b> B has three LEDs 30 mounted on the mounting surface 37 a of the frame body 37. The radial direction Rdir of the second optical member 6 is substantially equal to the direction in which the LEDs 30 are arranged. In other words, in the LED light source 3B, the direction in which the position distribution range in which the LEDs 30 are arranged is long and the radial direction Rdir are substantially in the same direction.

LED光源3Bにおいて、LED30直上の発光面からの発光光ELDと、LED30が無い部位の直上からの発光光ELIは色が異なる。拡散カバー8の特定の部位において、発光光ELDまたはELIの一方の照度が強くなると、色ムラが発生する。この色ムラを改善するには、図25(a)の構成が有効である。   In the LED light source 3B, the emitted light ELD from the light emitting surface directly above the LED 30 and the emitted light ELI from directly above the portion where the LED 30 is not provided are different in color. When the illuminance of one of the emitted light ELD or ELI becomes strong at a specific part of the diffusion cover 8, color unevenness occurs. In order to improve this color unevenness, the configuration of FIG. 25A is effective.

なぜならば、広配光に光を出射する光学部材の場合、広角において、光学部材表面からの光の出射方向がLED光源3Bの発光面内の発光位置に強く依存するためである。第2の光学部材6の場合、動径方向Rdirは広角に光を出射するが、方位角方向Cdirは広角に光を出射しない。そこで、動径方向Rdir方向に対して、発光位置が変わっても発光色ができるだけ変わらないように、LED30を配置した。   This is because, in the case of an optical member that emits light with a wide light distribution, the light emission direction from the surface of the optical member strongly depends on the light emission position in the light emitting surface of the LED light source 3B at a wide angle. In the case of the second optical member 6, the radial direction Rdir emits light at a wide angle, but the azimuth direction Cdir does not emit light at a wide angle. Therefore, the LEDs 30 are arranged so that the emission color does not change as much as possible even if the emission position changes with respect to the radial direction Rdir direction.

図25(b)から(e)を用いて、LED光源内のLED配置と第2の光学部材の位置関係が色ムラに及ぼす影響について説明する。図25(b)および図25(c)は、図25(a)の構成の動径方向の断面図である。図25(d)および図25(e)は、図25(a)において、LED光源3Bを90度回転した場合の動径方向の断面図である。   The effect of the positional relationship between the LED arrangement in the LED light source and the second optical member on the color unevenness will be described with reference to FIGS. FIG. 25B and FIG. 25C are cross-sectional views in the radial direction of the configuration of FIG. 25 (d) and 25 (e) are cross-sectional views in the radial direction when the LED light source 3B is rotated 90 degrees in FIG. 25 (a).

初めに、図25(b)と図25(d)を比較する。図25(b)は、中心部のLEDと、図において、中心部のLEDの右と左側に配置されるLED30の直上から出射される光線の模式図を示している。図25(d)においては、光線の出射点を図25(b)と等しくして光線追跡例を記している。光線の伝搬方向は両者で等しい。図25(b)の場合は、出射する光線は3本とも光線ELDで同じ色である。一方で、図25(d)の場合は、中心にのみLEDが配置されるため、LEDの両側からの発光光は、発光光ELIである。   First, FIG. 25B and FIG. 25D are compared. FIG. 25B shows a schematic diagram of the central LED and light rays emitted from directly above the LEDs 30 arranged on the right and left sides of the central LED in the figure. In FIG. 25 (d), an example of ray tracing is shown with the emission point of the ray equal to that in FIG. 25 (b). The light propagation direction is the same for both. In the case of FIG. 25B, all three light beams are the same color as the light beam ELD. On the other hand, in the case of FIG. 25 (d), since the LED is arranged only in the center, the emitted light from both sides of the LED is the emitted light ELI.

したがって、図25(d)の場合、第2の光学部材6から出射した後に、色が分離する。拡散カバー周辺部を照射する、基板2の端部2E付近にある第2の光学部材6から拡散カバー8までの距離が、隣接するLED光源間の距離に比べて大きいために、拡散して色の分離が大きくなり、色ムラが発生する。また、広角に出射する光は、第2の光学部材6のレンズ表面Loに、全反射角度に近い角度で入射するため、屈折角が入射角度に敏感に依存し、色が分離しやすく、色ムラが発生し易い。それゆえ、図25(b)に示すように、動径方向Rdir方向に対して、発光位置が変わっても発光色ができるだけ変わらないように、LED30を配置することは重要である。   Therefore, in the case of FIG. 25D, the colors are separated after exiting from the second optical member 6. Since the distance from the second optical member 6 near the end 2E of the substrate 2 that irradiates the periphery of the diffusion cover to the diffusion cover 8 is larger than the distance between the adjacent LED light sources, the color is diffused. Separation becomes large and color unevenness occurs. In addition, since the light emitted at a wide angle is incident on the lens surface Lo of the second optical member 6 at an angle close to the total reflection angle, the refraction angle is sensitive to the incident angle, and the colors are easily separated. Unevenness is likely to occur. Therefore, as shown in FIG. 25 (b), it is important to arrange the LEDs 30 so that the emission color does not change as much as possible even if the emission position changes in the radial direction Rdir direction.

さらに、図25(c)と図25(e)を比較して、別のモードによる色ムラに関して説明する。図25(c)および図25(e)の光線発光位置は、図25(b)に等しい。異なる点は、LED光源からより広角に光が出射する点である。   Furthermore, FIG. 25C and FIG. 25E will be compared to describe color unevenness due to another mode. The light emission positions in FIGS. 25C and 25E are equal to those in FIG. The difference is that light is emitted from the LED light source at a wider angle.

図25(c)において、中心のLED直上と図中の右側のLEDから出射した光は、傾斜部Tpで屈折してレンズ表面Loから出射する。図中左側のLEDから出射した光は、レンズ内面Luの曲線部で屈折してレンズ表面Loから出射する。これら2つの経路を伝搬して出射する光は、出射する角度が大きく異なる。図25(e)においては、光線の伝搬経路は図25(c)に等しいので、LEDの直上から出射した光ELDおよびLEDの右側直上から出射した光ELIと、LEDの左側直上から出射した光ELIとは異なる角度にレンズ表面Loから出射される。したがって、LEDの左側直上から出射した光ELIは単独で拡散カバー8の特定の位置を照射し、色ムラを発生させる。   In FIG. 25 (c), the light emitted from right above the central LED and the right LED in the figure is refracted by the inclined portion Tp and emitted from the lens surface Lo. The light emitted from the left LED in the figure is refracted at the curved portion of the lens inner surface Lu and is emitted from the lens surface Lo. The light propagating through these two paths has a significantly different angle of emission. In FIG. 25 (e), the propagation path of the light beam is equal to that in FIG. 25 (c). The light is emitted from the lens surface Lo at an angle different from that of the ELI. Therefore, the light ELI emitted from directly above the left side of the LED irradiates a specific position of the diffusion cover 8 alone, and causes color unevenness.

本現象は、第2の光学部材6の方位角方向Cdirでも発生するが、広角に光を出射してないだけ、色ムラは小さく、さらに、方位角方向CdirはLED光源が近接して配置されていることから、隣接するLED光源間で出射光が混色して色ムラは発生しない。   This phenomenon also occurs in the azimuth angle direction Cdir of the second optical member 6, but the color unevenness is small as long as light is not emitted at a wide angle. Further, the LED light source is arranged close to the azimuth angle direction Cdir. Therefore, the emitted light is mixed between adjacent LED light sources, and color unevenness does not occur.

したがって、LED光源3Bを近接して配置する方向と垂直な方向を、広角配光となるレンズ形状とし、当該垂直方向に対して、LED光源3B内で、LED30が配置される位置分布範囲が長い方向を概ね等しい方向とすることで、色ムラを抑制している。別の言い方をすれば、LEDが配置される位置分布範囲が長い方向をLED配列方向とした場合に、基板2の法線方向から第2の光学部材6を見た場合に、第2の光学部材6の形状は、LED配列方向に平行な方向の幅の方が、当該方向と垂直な方向の幅よりも、小さいと言える。また、LEDが配置される位置分布範囲が長い方向が、照明装置の中心から外側に向かう方向に平行に配置されるとも言える。   Therefore, the direction perpendicular to the direction in which the LED light source 3B is arranged close to the lens is a wide-angle light distribution, and the position distribution range in which the LEDs 30 are arranged in the LED light source 3B is longer than the vertical direction. By setting the directions to be approximately equal, color unevenness is suppressed. In other words, when the second optical member 6 is viewed from the normal direction of the substrate 2 when the direction in which the position distribution range in which the LEDs are arranged is long is the LED arrangement direction, the second optical member 6 is seen. Regarding the shape of the member 6, it can be said that the width in the direction parallel to the LED arrangement direction is smaller than the width in the direction perpendicular to the direction. In addition, it can be said that the direction in which the position distribution range in which the LEDs are arranged is long is arranged in parallel to the direction from the center of the illumination device to the outside.

LED30が配置される位置分布範囲が長い方向ALに関して図25(f)および図25(g)を用いて説明する。LED30は、図25(a)に示すように、必ずしも一列に配置されない。図25(f)に示すように、若干列からずれて配置される場合がある。当該方向ALの定義にあたっては、LED光源の枠体の側壁37bの側壁方向を用いて定義することができる。LED光源3Bの枠体は通常矩形であるため、側壁37bの側壁方向は直交する2方向である。図25(f)の場合、LED30の配置される位置分布範囲は、図中矢印で示す側壁37bの一方と平行な方向の方が、当該矢印で示す方向と直交する方向よりも長いので、当該矢印方向を方向ALと定義できる。   The direction AL in which the position distribution range in which the LEDs 30 are arranged is long will be described with reference to FIGS. 25 (f) and 25 (g). The LEDs 30 are not necessarily arranged in a line as shown in FIG. As shown in FIG. 25 (f), there is a case where they are arranged slightly out of line. The direction AL can be defined using the side wall direction of the side wall 37b of the frame of the LED light source. Since the frame of the LED light source 3B is usually rectangular, the side wall directions of the side walls 37b are two orthogonal directions. In the case of FIG. 25 (f), the position distribution range in which the LEDs 30 are arranged is longer in the direction parallel to one of the side walls 37b indicated by the arrow than in the direction orthogonal to the direction indicated by the arrow. The arrow direction can be defined as the direction AL.

図25(g)の場合、LED30の位置は、側壁37に対して、点線の矢印で示すように斜め方向に分布している。この点線の矢印を方向ALとしても良いが、より簡便には、図25(f)の場合と同様に、側壁37bの2方向で決めれば良く、図中矢印で示す側壁37bの一方と平行な方向を方向ALと定義できる。   In the case of FIG. 25G, the positions of the LEDs 30 are distributed in an oblique direction with respect to the side wall 37 as indicated by the dotted arrows. The dotted arrow may be the direction AL, but more simply, it may be determined in two directions of the side wall 37b as in the case of FIG. 25 (f), and is parallel to one of the side walls 37b indicated by the arrow in the figure. The direction can be defined as the direction AL.

また、更なる色ムラを消す方法としては、図25(a)に示す構成など、本例で説明した第2の光学部材6において、内面Luなどの第2の光学部材の入射面、または、レンズ表面Loなどの第2の光学部材の出射面に拡散性のある形状を付与する方法がある。例えば、滑らかな凹凸のある微細形状やしぼ形状などである。拡散性のある形状を付与することで色ムラが軽減する。   Further, as a method for eliminating further color unevenness, in the second optical member 6 described in this example, such as the configuration shown in FIG. 25A, the incident surface of the second optical member such as the inner surface Lu, or There is a method of imparting a diffusive shape to the exit surface of the second optical member such as the lens surface Lo. For example, it has a fine shape with smooth irregularities or a wrinkle shape. Color unevenness is reduced by imparting a diffusive shape.

なお、以上説明した各実施形態において、本発明の説明のために、拡散カバーの形状として、正面部8Aと側面部8Bが明確に分かる形状を用いた。しなしながら、本発明は拡散カバーの形状に限定されない。第2の光学部材から側面方向に出射する光束が増えれば、照明装置としても側面方向の光束が増えて間接光が増える。   In each of the embodiments described above, a shape in which the front portion 8A and the side portion 8B can be clearly seen is used as the shape of the diffusion cover in order to explain the present invention. However, the present invention is not limited to the shape of the diffusion cover. If the light beam emitted from the second optical member in the side surface direction increases, the light beam in the side surface direction also increases as the lighting device, and the indirect light increases.

なお、以上説明した各実施形態において、各実施形態で説明した特徴は、それぞれ独立に適用することも可能であるが、適宜組み合わせて用いることも可能である。   In each of the embodiments described above, the features described in each embodiment can be applied independently, but can be used in appropriate combination.

なお、以上説明した各実施形態は、本発明の説明のために示した具体例であって、これらの各実施形態に本発明を限定するものではない。例えば、以上の各実施形態において図示した各部材の形状および構成は、当該部材が有すべき機能を満足するものであれば、必要に応じ適宜設計乃至は最適化するべきものである。   Each embodiment described above is a specific example shown for explanation of the present invention, and the present invention is not limited to each of these embodiments. For example, the shape and configuration of each member illustrated in the above embodiments should be appropriately designed or optimized as necessary as long as the function that the member should have is satisfied.

1 照明装置
2 基板
3 LED光源
4 光学部材接続部
5 第1の光学部材
6 第2の光学部材
7 複合光学部材
8 拡散カバー
9 点灯回路
10 中心カバー
11 フレーム
30 発光ダイオード(LED)
31 負電極
32 正電極
33 蛍光体
34 封止樹脂
35 ワイヤ
36(36′) 実装端子
37 枠体
40(40′) 電極
50 天井
51 固定具
DESCRIPTION OF SYMBOLS 1 Illuminating device 2 Board | substrate 3 LED light source 4 Optical member connection part 5 1st optical member 6 2nd optical member 7 Composite optical member 8 Diffusion cover 9 Lighting circuit 10 Center cover 11 Frame 30 Light emitting diode (LED)
31 Negative electrode 32 Positive electrode 33 Phosphor 34 Sealing resin 35 Wire 36 (36 ') Mounting terminal 37 Frame 40 (40') Electrode 50 Ceiling 51 Fixing tool

Claims (5)

基板と、
前記基板上の電極に、照明装置の中心を囲うように実装された第1のLED光源および第2のLED光源と、
前記第1のLED光源に対応する第1の光学部材と、前記第2のLED光源に対応する第2の光学部材と、前記第1の光学部材と前記第2の光学部材を繋ぐ光学部材接続部と、を有する複合光学部材と、を有する照明装置であって、
前記第1の光学部材からの出射光の光度分布と、前記第2の光学部材からの出射光の光度分布とが異なり、
前記照明装置が主に光を照射する方向を正面方向とし、前記正面方向と略垂直な方向を側面方向とした場合に、
前記第1のLED光源および前記第2のLED光源は、前記基板の法線方向に主に光を出射する正面発光LED光源であり、
前記第2のLED光源の方が、前記第1のLED光源よりも、前記照明装置の中心からの距離が遠い位置に配置され、
前記第2の光学部材の中心を含む断面における前記第2の光学部材の出射光の光度分布が、前記第1の光学部材の中心を含む断面における前記第1の光学部材の出射光の光度分布よりも広く、前記第2の光学部材はレンズであり、
前記複合光学部材における最外側の光学部材の出射光の光度分布は、最内側の光学部材の出射光の光度分布よりも広い照明装置。
A substrate,
A first LED light source and a second LED light source mounted on the electrode on the substrate so as to surround the center of the lighting device ;
A first optical member corresponding to the first LED light source; a second optical member corresponding to the second LED light source; and an optical member connection connecting the first optical member and the second optical member. A lighting device having a composite optical member ,
The luminous intensity distribution of the outgoing light from the first optical member is different from the luminous intensity distribution of the outgoing light from the second optical member,
When the direction in which the lighting device mainly emits light is the front direction, and the direction substantially perpendicular to the front direction is the side direction,
The first LED light source and the second LED light source are front-emitting LED light sources that mainly emit light in the normal direction of the substrate,
The second LED light source is disposed at a position farther from the center of the lighting device than the first LED light source,
The luminous intensity distribution of the emitted light of the second optical member in the cross section including the center of the second optical member is the luminous intensity distribution of the emitted light of the first optical member in the cross section including the center of the first optical member. wider than said second optical member Ri lens der,
The illumination device has a light intensity distribution of outgoing light of the outermost optical member in the composite optical member wider than that of outgoing light of the innermost optical member .
前記第1の光学部材は、前記照明装置の中心を囲むように、前記照明装置の中心付近に配置される請求項1に記載の照明装置。
The lighting device according to claim 1, wherein the first optical member is disposed near a center of the lighting device so as to surround a center of the lighting device.
前記照明装置の中心に、前記照明装置を固定するための固定具を有する請求項1乃至2の何れか1項に記載の照明装置
The lighting device according to claim 1, further comprising a fixture for fixing the lighting device at a center of the lighting device.
前記基板の法線方向から見た場合の前記第1の光学部材は、等方的な形状であり、前記第2の光学部材はレンズである請求項1乃至3の何れか1項に記載の照明装置。
The said 1st optical member when it sees from the normal line direction of the said board | substrate is an isotropic shape, The said 2nd optical member is a lens, The any one of Claims 1 thru | or 3 Lighting device.
前記基板の法線方向から見た場合の第2の光学部材は、非等方的な形状である請求項1乃至4の何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 4, wherein the second optical member when viewed from the normal direction of the substrate has an anisotropic shape .
JP2017151214A 2012-06-08 2017-08-04 Lighting device Active JP6386142B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012130353 2012-06-08
JP2012130353 2012-06-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012210332A Division JP6192279B2 (en) 2012-06-08 2012-09-25 Lighting device

Publications (2)

Publication Number Publication Date
JP2017216252A JP2017216252A (en) 2017-12-07
JP6386142B2 true JP6386142B2 (en) 2018-09-05

Family

ID=50109298

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012210332A Active JP6192279B2 (en) 2012-06-08 2012-09-25 Lighting device
JP2017151214A Active JP6386142B2 (en) 2012-06-08 2017-08-04 Lighting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012210332A Active JP6192279B2 (en) 2012-06-08 2012-09-25 Lighting device

Country Status (1)

Country Link
JP (2) JP6192279B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300147B2 (en) * 2014-02-05 2018-03-28 パナソニックIpマネジメント株式会社 Lighting device
JP2016033886A (en) * 2014-07-31 2016-03-10 パナソニックIpマネジメント株式会社 Lighting device
JP6531937B2 (en) * 2015-03-11 2019-06-19 パナソニックIpマネジメント株式会社 Light guide lighting device
JP6826036B2 (en) 2015-08-26 2021-02-03 ソニー株式会社 Light emitting device, display device and lighting device
JP6759556B2 (en) 2015-10-30 2020-09-23 日亜化学工業株式会社 Lighting device
JP6583781B2 (en) * 2015-11-13 2019-10-02 パナソニックIpマネジメント株式会社 Lighting device
JP6575909B2 (en) * 2015-11-13 2019-09-18 パナソニックIpマネジメント株式会社 Lighting device
JP6604594B2 (en) * 2015-12-18 2019-11-13 パナソニックIpマネジメント株式会社 lighting equipment
JP6816979B2 (en) * 2016-06-13 2021-01-20 株式会社ホタルクス LED lighting fixtures
JP6928139B2 (en) * 2016-06-15 2021-09-01 日立グローバルライフソリューションズ株式会社 Lighting device
JP6678524B2 (en) * 2016-06-15 2020-04-08 日立グローバルライフソリューションズ株式会社 Lighting equipment
KR101999141B1 (en) * 2017-01-11 2019-07-11 유양산전 주식회사 Multi lens module for airfield lights
JP2018147848A (en) * 2017-03-09 2018-09-20 鄭東全 LED lens and LED lighting module using the same
JP6931809B2 (en) * 2017-04-13 2021-09-08 パナソニックIpマネジメント株式会社 lighting equipment
JP6909973B2 (en) * 2017-07-06 2021-07-28 パナソニックIpマネジメント株式会社 lighting equipment
JP6986701B2 (en) * 2017-08-09 2021-12-22 パナソニックIpマネジメント株式会社 Lighting equipment and lighting equipment
JP6555329B2 (en) * 2017-12-13 2019-08-07 三菱電機株式会社 lighting equipment
JP7038603B2 (en) * 2018-05-30 2022-03-18 株式会社エンプラス Luminous flux control member, light emitting device, surface light source device and display device
JP7357214B2 (en) * 2019-01-31 2023-10-06 パナソニックIpマネジメント株式会社 lighting equipment
JP7132973B2 (en) * 2020-05-08 2022-09-07 株式会社遠藤照明 lighting equipment
JP2022134308A (en) * 2021-03-03 2022-09-15 株式会社小糸製作所 Aircraft lighting unit
WO2023088403A1 (en) * 2021-11-18 2023-05-25 嘉兴山蒲照明电器有限公司 Led lighting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710859B2 (en) * 2007-03-27 2011-06-29 パナソニック電工株式会社 Lighting equipment
JP2010040364A (en) * 2008-08-06 2010-02-18 Panasonic Corp Light source for illumination
JP5265393B2 (en) * 2009-01-20 2013-08-14 パナソニック株式会社 LED lighting equipment
JP3152234U (en) * 2009-05-12 2009-07-23 益晉工業股▲ふん▼有限公司 LED bulb and its lamp cover
JP2011222182A (en) * 2010-04-06 2011-11-04 Minebea Co Ltd Lighting device
DK177579B1 (en) * 2010-04-23 2013-10-28 Martin Professional As Led light fixture with background lighting
JP2012023184A (en) * 2010-07-14 2012-02-02 Sharp Corp Light-emitting device

Also Published As

Publication number Publication date
JP2014013744A (en) 2014-01-23
JP6192279B2 (en) 2017-09-06
JP2017216252A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6386142B2 (en) Lighting device
CN103939793B (en) Planar lighting device
EP3369985B1 (en) Luminaire with light guide
JP6310285B2 (en) Light emitting device, surface light source device, and display device
JP6356997B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP2008515138A (en) Lighting system
JP2011159435A (en) Edge light type lighting system
US20180245770A1 (en) Light flux control member, light-emitting device, and area light source device
WO2012011304A1 (en) Light guiding body, light source unit, illumination device, and display device
US10634296B2 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
EP2279374B1 (en) Optical element for asymmetric light distribution
US20200089059A1 (en) Planar light source device and display device
JP2015103323A (en) Luminaire
JP6446202B2 (en) Wide-angle diffusion optical system and illumination device using the same
CN103939791A (en) Lighting device and image display device using the same
CN103511935A (en) Lighting device
JP2012074404A (en) Edge light type lighting system
US9388957B2 (en) Secondary optical element and light source module
JP6858034B2 (en) Surface light source device and display device
JP6748424B2 (en) Light emitting device, surface light source device, and display device
US20150176774A1 (en) Light Emitting Module and Optical Lens Thereof
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
US10190730B2 (en) Light flux controlling member, light emitting device and illuminating device
JP2010212083A (en) Light source unit, lighting system, and liquid crystal display device
JP4899930B2 (en) LIGHT GUIDE, BACKLIGHT DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6386142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350