JP6386136B2 - 発光素子、発光装置、電子機器および照明装置 - Google Patents

発光素子、発光装置、電子機器および照明装置 Download PDF

Info

Publication number
JP6386136B2
JP6386136B2 JP2017113154A JP2017113154A JP6386136B2 JP 6386136 B2 JP6386136 B2 JP 6386136B2 JP 2017113154 A JP2017113154 A JP 2017113154A JP 2017113154 A JP2017113154 A JP 2017113154A JP 6386136 B2 JP6386136 B2 JP 6386136B2
Authority
JP
Japan
Prior art keywords
light
organic compound
emitting layer
layer
abbreviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017113154A
Other languages
English (en)
Other versions
JP2017183291A (ja
Inventor
瀬尾 哲史
哲史 瀬尾
広美 瀬尾
広美 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2017183291A publication Critical patent/JP2017183291A/ja
Application granted granted Critical
Publication of JP6386136B2 publication Critical patent/JP6386136B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の一態様は、電界を加えることにより発光が得られる有機化合物を一対の電極間
に挟んでなる発光素子、また、このような発光素子を有する発光装置、電子機器、及び照
明装置に関する。
薄型軽量、高速応答性、直流低電圧駆動などの特徴を有する有機化合物を発光体として
用いた発光素子は、次世代のフラットパネルディスプレイへの応用が期待されている。特
に、発光素子をマトリクス状に配置した表示装置は、従来の液晶表示装置と比較して、視
野角が広く視認性が優れる点に優位性があると考えられている。
発光素子の発光機構は、一対の電極間に発光体を含むEL層を挟んで電圧を印加するこ
とにより、陰極から注入された電子および陽極から注入された正孔がEL層の発光中心で
再結合して分子励起子を形成し、その分子励起子が基底状態に緩和する際にエネルギーを
放出して発光するといわれている。励起状態には一重項励起と三重項励起が知られ、発光
はどちらの励起状態を経ても可能であると考えられている。
この様な発光素子に関しては、その素子特性を向上させる為に、素子構造の改良や材料
開発等が盛んに行われている(例えば、特許文献1参照。)。
特開2010−182699号公報
しかしながら、現状における発光素子の光取り出し効率は20%〜30%程度と言われ
ており、反射電極や透明電極による光の吸収を考慮しても、燐光性化合物を用いた発光素
子の外部量子効率の限界は、25%程度と考えられている。
そこで、本発明の一態様では、外部量子効率が高い発光素子を提供する。また、本発明
の一態様は、寿命の長い発光素子を提供する。
本発明の一態様は、一対の電極(陽極および陰極)間に発光層を有し、発光層は、三重
項励起エネルギーを発光に変える第1の発光性物質(ゲスト材料)、電子輸送性を有する
第1の有機化合物(ホスト材料)、および正孔輸送性を有する第2の有機化合物(アシス
ト材料)を少なくとも含み、かつ陽極側に形成された第1の発光層と、三重項励起エネル
ギーを発光に変える第2の発光性物質(ゲスト材料)、電子輸送性を有する第3の有機化
合物(ホスト材料)、および正孔輸送性を有する第2の有機化合物(アシスト材料)を少
なくとも含み形成された第2の発光層との積層構造であり、第1の発光層では、第1の有
機化合物(ホスト材料)と第2の有機化合物(アシスト材料)とは、励起錯体を形成する
組み合わせであり、第2の発光層では、第3の有機化合物(ホスト材料)と第2の有機化
合物(アシスト材料)とが、励起錯体を形成する組み合わせであることを特徴とする発光
素子である。
また、本発明の別の一態様は、陽極と陰極との間に発光層を有し、陽極と発光層との間
に正孔輸送層を有し、陰極と発光層との間に電子輸送層を有し、発光層は、三重項励起エ
ネルギーを発光に変える第1の発光性物質、電子輸送性を有する第1の有機化合物、およ
び正孔輸送性を有する第2の有機化合物とを少なくとも含み、かつ正孔輸送層と接して形
成された第1の発光層と、三重項励起エネルギーを発光に変える第2の発光性物質、電子
輸送性を有する第3の有機化合物、および正孔輸送性を有する第2の有機化合物とを少な
くとも含み、かつ電子輸送層と接して形成された第2の発光層との積層であり、第1の発
光層では、第1の有機化合物(ホスト材料)と第2の有機化合物(アシスト材料)とは、
励起錯体を形成する組み合わせであり、第2の発光層では、第3の有機化合物(ホスト材
料)と第2の有機化合物(アシスト材料)とが、励起錯体を形成する組み合わせであるこ
とを特徴とする発光素子である。
なお、上記各構成において、第1の発光層の第1の有機化合物(ホスト材料)と第2の
有機化合物(アシスト材料)により形成された励起錯体の発光波長は、第1の有機化合物
(ホスト材料)と第2の有機化合物(アシスト材料)のそれぞれの発光波長(蛍光波長)
に比べて、長波長側に存在することから、励起錯体を形成することにより、第1の有機化
合物(ホスト材料)の蛍光スペクトルや第2の有機化合物(アシスト材料)の蛍光スペク
トルを、より長波長側に位置する発光スペクトルに変換することができる。また、第2の
発光層の第3の有機化合物(ホスト材料)と第2の有機化合物(アシスト材料)により形
成された励起錯体の発光波長は、第3の有機化合物(ホスト材料)と第2の有機化合物(
アシスト材料)のそれぞれの発光波長(蛍光波長)に比べて、長波長側に存在することか
ら、励起錯体を形成することにより、第3の有機化合物(ホスト材料)の蛍光スペクトル
や第2の有機化合物(アシスト材料)の蛍光スペクトルを、より長波長側に位置する発光
スペクトルに変換することができる。
なお、上記各構成において、第1の発光層では第1の有機化合物のアニオンおよび第2
の有機化合物のカチオンから励起錯体が形成され、第2の発光層では第3の有機化合物の
アニオンおよび第2の有機化合物のカチオンから励起錯体が形成されることを特徴とする
また、上記構成において、第1の発光層と第2の発光層のそれぞれが同じ第2の有機化
合物(アシスト材料)を含み、かつ第1の発光層に含まれる第1の有機化合物(ホスト材
料)は、第2の発光層に含まれる第3の有機化合物(ホスト材料)よりも最低空軌道準位
(LUMO準位)が高いことを特徴とする。
さらに、上記構成において、第1の発光層に含まれる第1の発光性物質は、第2の発光
層に含まれる第2の発光性物質よりも短波長の発光を示す物質であることを特徴とする。
また、上記構成において、第1の発光性物質および第2の発光性物質は、三重項励起エ
ネルギーを発光に変える発光性物質であり、有機金属錯体などの燐光性化合物や、熱活性
化遅延蛍光を示す材料、すなわち熱活性化遅延蛍光(TADF:Thermally A
ctivated Delayed Fluorescence)材料を用いることがで
きる。また、第1の有機化合物および第3の有機化合物は、主として10−6cm/V
s以上の電子移動度を有する電子輸送性材料、具体的にはπ不足型複素芳香族化合物であ
り、第2の有機化合物は、主として10−6cm/Vs以上の正孔移動度を有する正孔
輸送性材料、具体的にはπ過剰型複素芳香族化合物または芳香族アミン化合物であること
を特徴とする。
また、本発明の一態様は、発光素子を有する発光装置だけでなく、発光装置を有する電
子機器および照明装置も範疇に含めるものである。従って、本明細書中における発光装置
とは、画像表示デバイス、発光デバイス、もしくは光源(照明装置含む)を指す。また、
発光装置にコネクター、例えばFPC(Flexible printed circu
it)もしくはTCP(Tape Carrier Package)が取り付けられた
モジュール、TCPの先にプリント配線板が設けられたモジュール、または発光素子にC
OG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジ
ュールも全て発光装置に含むものとする。
なお、本発明の一態様である発光素子は、発光層を構成する第1の発光層と第2の発光
層のそれぞれにおいて励起錯体を形成することができるため、エネルギー移動効率が高く
、外部量子効率の高い発光素子を実現することができる。
また、本発明の一態様である発光素子において、上述した素子構造とすることにより第
1の発光層で形成される励起錯体が、第2の発光層で形成される励起錯体よりも高い励起
エネルギーを有する構成となるため、第1の発光層に含まれる三重項励起エネルギーを発
光に変える第1の発光性物質(ゲスト材料)として、第2の発光層に含まれる三重項励起
エネルギーを発光に変える第2の発光性物質(ゲスト材料)よりも短波長の発光を示す物
質を用いることにより、同時に第1の発光層および第2の発光層からの発光を得ることが
でき、さらに、第1の発光層において形成された励起錯体の励起エネルギーのうち、発光
に寄与しえなかった一部のエネルギーを第2の発光層における三重項励起エネルギーを発
光に変える第2の発光性物質(ゲスト材料)への励起エネルギーとして利用することがで
きるため、発光素子における発光効率をより高めることができる。
本発明の一態様の概念を説明する図。 本発明の一態様の概念を説明する図。 本発明の一態様に係る計算結果を示す図。 本発明の一態様に係る計算結果を示す図。 発光素子の構造について説明する図。 発光素子の構造について説明する図。 発光装置について説明する図。 発光装置について説明する図。 電子機器について説明する図。 電子機器について説明する図。 照明装置について説明する図。 発光素子について説明する図。 発光素子1の電流密度−輝度特性を示す図。 発光素子1の電圧−輝度特性を示す図。 発光素子1の輝度−電流効率特性を示す図。 発光素子1の電圧−電流特性を示す図。 発光素子1の発光スペクトルを示す図。 発光素子1に用いた物質の発光スペクトルを示す図。 発光素子1に用いた物質の発光スペクトルを示す図。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下
の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細
を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内
容に限定して解釈されるものではない。
(発光素子における発光の素過程について)
まず、三重項励起エネルギーを発光に変える発光性物質(燐光性化合物や熱活性化遅延
蛍光(TADF)材料を含む)をゲスト材料として用いる発光素子における発光の一般的
な素過程について説明する。なお、ここでは、励起エネルギーを与える側の分子をホスト
分子、励起エネルギーを受け取る側の分子をゲスト分子と記す。
(1)電子及び正孔(ホール)がゲスト分子において再結合し、ゲスト分子が励起状態
となる場合(直接再結合過程)。
(1−1)ゲスト分子の励起状態が三重項励起状態のとき
ゲスト分子は燐光を発する。
(1−2)ゲスト分子の励起状態が一重項励起状態のとき
一重項励起状態のゲスト分子は三重項励起状態に項間交差し、燐光を発する。
つまり、上記(1)の直接再結合過程においては、ゲスト分子の項間交差効率、及び燐
光量子収率さえ高ければ、高い発光効率が得られることになる。なお、ホスト分子のT1
準位はゲスト分子のT1準位よりも高いことが好ましい。
(2)電子及び正孔(ホール)がホスト分子において再結合し、ホスト分子が励起状態
となる場合(エネルギー移動過程)。
(2−1)ホスト分子の励起状態が三重項励起状態のとき
ホスト分子のT1準位がゲスト分子のT1準位よりも高い場合、ホスト分子からゲスト
分子に励起エネルギーが移動し、ゲスト分子が三重項励起状態となる。三重項励起状態と
なったゲスト分子は燐光を発する。なお、ホスト分子のT1準位からゲスト分子の一重項
励起エネルギーの準位(S1準位)へのエネルギー移動は、ホスト分子が燐光発光しない
限り禁制であり、主たるエネルギー移動過程になりにくいため、ここでは省略する。つま
り、下記式(2−1)の通り、ホスト分子の三重項励起状態(3H*)からゲスト分子の
三重項励起状態(3G*)へのエネルギー移動が重要である(式中、1Gはゲスト分子の
一重項基底状態、1Hはホスト分子の一重項基底状態を表す)。
3H*+1G → 1H+3G* (2−1)
(2−2)ホスト分子の励起状態が一重項励起状態のとき
ホスト分子のS1準位がゲスト分子のS1準位およびT1準位よりも高い場合、ホスト
分子からゲスト分子に励起エネルギーが移動し、ゲスト分子が一重項励起状態又は三重項
励起状態となる。三重項励起状態となったゲスト分子は燐光を発する。また、一重項励起
状態となったゲスト分子は、三重項励起状態に項間交差し、燐光を発する。
つまり、下記式(2−2A)の通り、ホスト分子の一重項励起状態(1H*)からゲス
ト分子の一重項励起状態(1G*)へエネルギー移動し、その後項間交差によってゲスト
分子の三重項励起状態(3G*)が生成する過程と、下記式(2−2B)の通り、ホスト
分子の一重項励起状態(1H*)からゲスト分子の三重項励起状態(3G*)へ直接エネ
ルギー移動する過程が考えられる。
1H*+1G → 1H+1G* →(項間交差)→ 1H+3G* (2−2A)
1H*+1G → 1H+3G* (2−2B)
上記(2)で述べた全てのエネルギー移動過程が効率よく生じれば、ホスト分子の三重
項励起エネルギー及び一重項励起エネルギーの双方が効率よくゲスト分子の三重項励起状
態(3G*)に変換されるため、高効率な発光が可能となる。逆に、ホスト分子からゲス
ト分子に励起エネルギーが移動する前に、ホスト分子自体がその励起エネルギーを光又は
熱として放出して失活してしまうと、発光効率が低下することになる。
次に、上述したホスト分子とゲスト分子との分子間のエネルギー移動過程の支配因子に
ついて説明する。分子間のエネルギー移動の機構としては、以下の2つの機構が提唱され
ている。
まず、1つ目の機構であるフェルスター機構(双極子−双極子相互作用)は、エネルギ
ー移動に、分子間の直接的接触を必要とせず、ホスト分子及びゲスト分子間の双極子振動
の共鳴現象を通じてエネルギー移動が起こる機構である。双極子振動の共鳴現象によって
ホスト分子がゲスト分子にエネルギーを受け渡し、ホスト分子が基底状態になり、ゲスト
分子が励起状態になる。なお、フェルスター機構の速度定数kh*→gを数式(1)に示
す。
数式(1)において、νは、振動数を表し、f’(ν)は、ホスト分子の規格化され
た発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル
、三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε
ν)は、ゲスト分子のモル吸光係数を表し、Nは、アボガドロ数を表し、nは、媒体の屈
折率を表し、Rは、ホスト分子とゲスト分子の分子間距離を表し、τは、実測される励起
状態の寿命(蛍光寿命や燐光寿命)を表し、cは、光速を表し、φは、発光量子収率(一
重項励起状態からのエネルギー移動を論じる場合は蛍光量子収率、三重項励起状態からの
エネルギー移動を論じる場合は燐光量子収率)を表し、Kは、ホスト分子とゲスト分子
の遷移双極子モーメントの配向を表す係数(0〜4)である。なお、ランダム配向の場合
はK=2/3である。
次に、2つ目の機構であるデクスター機構(電子交換相互作用)では、ホスト分子とゲ
スト分子が軌道の重なりを生じる接触有効距離に近づき、励起状態のホスト分子の電子と
基底状態のゲスト分子の電子の交換を通じてエネルギー移動が起こる。なお、デクスター
機構の速度定数kh*→gを数式(2)に示す。
数式(2)において、hは、プランク定数であり、K’は、エネルギーの次元を持つ定
数であり、νは、振動数を表し、f’(ν)は、ホスト分子の規格化された発光スペク
トル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起
状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε’(ν)は、ゲ
スト分子の規格化された吸収スペクトルを表し、Lは、実効分子半径を表し、Rは、ホス
ト分子とゲスト分子の分子間距離を表す。
ここで、ホスト分子からゲスト分子へのエネルギー移動効率ΦETは、数式(3)で表
されると考えられる。kは、ホスト分子の発光過程(一重項励起状態からのエネルギー
移動を論じる場合は蛍光、三重項励起状態からのエネルギー移動を論じる場合は燐光)の
速度定数を表し、kは、ホスト分子の非発光過程(熱失活や項間交差)の速度定数を表
し、τは、実測されるホスト分子の励起状態の寿命を表す。
数式(3)より、エネルギー移動効率ΦETを高くするためには、エネルギー移動の速
度定数kh*→gを大きくし、他の競合する速度定数k+k(=1/τ)が相対的に
小さくなれば良いことがわかる。
((2−1)のエネルギー移動効率について)
ここでまず、(2−1)のエネルギー移動過程を考えてみる。この場合、フェルスター
型(数式(1))は禁制となるため、デクスター型(数式(2))のみを考えれば良い。
数式(2)によれば、速度定数kh*→gを大きくするにはホスト分子の発光スペクトル
(三重項励起状態からのエネルギー移動を論じているので燐光スペクトル)とゲスト分子
の吸収スペクトル(一重項基底状態から三重項励起状態への直接遷移に相当する吸収)と
の重なりが大きい方が良いことがわかる。
本発明の一態様では、三重項励起エネルギーを発光に変える発光性物質(燐光性化合物
や熱活性化遅延蛍光(TADF)材料を含む)をゲスト材料として用いるが、燐光性化合
物の吸収スペクトルにおいては、一重項基底状態から三重項励起状態への直接遷移に相当
する吸収が観測される場合があり、それは最も長波長側に現れる吸収帯である。特に発光
性のイリジウム錯体では、最も長波長側の吸収帯は、500〜600nm付近にブロード
な吸収帯として現れる場合が多い(無論、発光波長によっては、より短波長側やより長波
長側に現れる場合もある)。この吸収帯は、主として、三重項MLCT(Metal t
o Ligand Charge Transfer)遷移に由来する。ただし、該吸収
帯には三重項π−π*遷移や一重項MLCT遷移に由来する吸収も一部含まれ、これらが
重なって、吸収スペクトルの最も長波長側にブロードな吸収帯を形成していると考えられ
る。換言すれば、最低一重項励起状態と最低三重項励起状態の差は小さく、これらに由来
する吸収が重なって、吸収スペクトルの最も長波長側にブロードな吸収帯を形成している
と考えられる。したがって、ゲスト材料に、有機金属錯体(特にイリジウム錯体)を用い
るときは、このように最も長波長側に存在するブロードな吸収帯と、ホスト材料の燐光ス
ペクトルが大きく重なることによって、速度定数kh*→gを大きくし、エネルギー移動
効率を高めることができる。
さらに、通常、ホスト材料には蛍光性化合物を用いるため、燐光寿命(τ)はミリ秒以
上と非常に長い(k+kが小さい)。これは、三重項励起状態から基底状態(一重項
)への遷移が禁制遷移のためである。数式(3)から、このことはエネルギー移動効率Φ
ETに対して有利に働く。
以上のことを考慮すると、ホスト材料の三重項励起状態からゲスト材料の三重項励起状
態へのエネルギー移動、すなわち式(2−1)の過程は、ホスト材料の燐光スペクトルと
、ゲスト材料の一重項基底状態から三重項励起状態への直接遷移に相当する吸収スペクト
ルとを重ねさえすれば、総じて起こりやすい傾向にある。
((2−2)のエネルギー移動効率について)
次に、(2−2)のエネルギー移動過程を考えてみる。式(2−2A)の過程は、ゲス
ト材料の項間交差効率が影響してしまう。したがって、極限まで発光効率を高めるために
は、式(2−2B)の過程が重要であると考えられる。この場合、デクスター型(数式(
2))は禁制となるため、フェルスター型(数式(1))のみを考えれば良い。
数式(1)と数式(3)からτを消去すると、エネルギー移動効率ΦETは、量子収率
φ(一重項励起状態からのエネルギー移動を論じているので、蛍光量子収率)が高い方が
良いと言える。しかし実際は、さらに重要なファクターとして、ホスト分子の発光スペク
トル(一重項励起状態からのエネルギー移動を論じているので蛍光スペクトル)とゲスト
分子の吸収スペクトル(一重項基底状態から三重項励起状態への直接遷移に相当する吸収
)との重なりが大きいことも必要である(なお、ゲスト分子のモル吸光係数も高い方が好
ましい)。このことは、ホスト材料の蛍光スペクトルと、ゲスト材料である燐光性化合物
の最も長波長側に現れる吸収帯とが重なることを意味する。
しかしながら、このことを実現することは、従来は非常に困難であった。なぜならば、
上述した(2−1)の過程と(2−2)の過程の双方を効率よく行おうとすると、上述の
議論から、ホスト材料の燐光スペクトルだけでなく、蛍光スペクトルをもゲスト材料の最
も長波長側の吸収帯と重ねるように設計しなければならないためである。換言すれば、ホ
スト材料の蛍光スペクトルが、燐光スペクトルと同じような位置に来るようにホスト材料
を設計しなければならないということになる。
ところが、一般に、S1準位とT1準位は大きく異なる(S1準位>T1準位)ため、
蛍光の発光波長と燐光の発光波長も大きく異なる(蛍光の発光波長<燐光の発光波長)。
例えば、燐光性化合物を用いた発光素子において、ホスト材料として良く用いられる4,
4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)は、500nm付近に燐光ス
ペクトルを有するが、一方で蛍光スペクトルは400nm付近であり、100nmもの隔
たりがある。この例から考えてみても、ホスト材料の蛍光スペクトルが燐光スペクトルと
同じような位置に来るようにホスト材料を設計することは、極めて困難である。したがっ
て、ホスト材料の一重項励起状態からのゲスト材料へのエネルギー移動効率の向上は、と
ても重要である。
従って、本発明の一態様は、このようなホスト材料の一重項励起状態からのゲスト材料
へのエネルギー移動効率に関する問題点を克服できる、有用な手法を提供するものである
。以下に、その具体的な態様を説明する。
(実施の形態1)
本実施の形態では、本発明の一態様である発光素子を構成する上での概念および具体的
な発光素子の構成について説明する。なお、本発明の一態様である発光素子は、一対の電
極(陽極及び陰極)間に発光層を含むEL層を挟んで形成されており、発光層は、三重項
励起エネルギーを発光に変える第1の発光性物質(ゲスト材料)、電子輸送性を有する第
1の有機化合物(ホスト材料)、および正孔輸送性を有する第2の有機化合物(アシスト
材料)を少なくとも含み、かつ陽極側に形成された第1の発光層と、三重項励起エネルギ
ーを発光に変える第2の発光性物質(ゲスト材料)、電子輸送性を有する第3の有機化合
物(ホスト材料)、および正孔輸送性を有する第2の有機化合物(アシスト材料)を少な
くとも含み形成された第2の発光層との積層構造を有する。
なお、第1の発光層に含まれる第1の有機化合物(ホスト材料)は、第2の発光層に含
まれる第3の有機化合物(ホスト材料)よりも最低空軌道準位(LUMO準位)が高いこ
ととする。従って、第1の発光層において形成される励起錯体の励起エネルギー(E
を第2の発光層において形成される励起錯体の励起エネルギー(E)よりも大きくなる
ように設計することができる。
また、第1の発光層に含まれる第1の発光性物質は、第2の発光層に含まれる第2の発
光性物質よりも短波長の発光を示す物質であることとする。
まず、本発明の一例である発光素子の素子構造について、図1(A)により説明する。
図1(A)に示す素子構造は、一対の電極(陽極101、陰極102)間に発光層10
6を含むEL層103が挟まれており、EL層103は、陽極101側から正孔(ホール
)注入層104、正孔(ホール)輸送層105、発光層106(106a、106b)、
電子輸送層107、電子注入層108等が順次積層された構造を有する。
また、本発明の一態様における発光層106は、図1(A)に示すように三重項励起エ
ネルギーを発光に変える第1の発光性物質(ゲスト材料)109a、電子輸送性を有する
第1の有機化合物(ホスト材料)110、および正孔輸送性を有する第2の有機化合物(
アシスト材料)111を少なくとも含み、かつ陽極側に形成された第1の発光層106a
と、三重項励起エネルギーを発光に変える第2の発光性物質(ゲスト材料)109b、電
子輸送性を有する第3の有機化合物(ホスト材料)112、および正孔輸送性を有する第
2の有機化合物(アシスト材料)111を少なくとも含んで形成された第2の発光層10
6bが積層された構造を有し、第1の有機化合物110および第3の有機化合物112と
しては、主として10−6cm/Vs以上の電子移動度を有する電子輸送性材料を用い
、第2の有機化合物111としては、主として10−6cm/Vs以上の正孔移動度を
有する正孔(ホール)輸送性材料を用いることとする。また、本明細書中では、第1の有
機化合物110および第3の有機化合物112をホスト材料と呼び、第2の有機化合物1
11をアシスト材料と呼ぶこととする。
また、第1の発光層106aにおける第1の有機化合物(ホスト材料)110と第2の
有機化合物(アシスト材料)111との組み合わせは、励起錯体(exciplex:エ
キサイプレックスとも言う)を形成する組み合わせであることを特徴とする。さらに、第
1の有機化合物(ホスト材料)110と第2の有機化合物(アシスト材料)111により
形成された励起錯体の発光波長は、第1の有機化合物(ホスト材料)110と第2の有機
化合物(アシスト材料)111のそれぞれの発光波長(蛍光波長)に比べて、長波長側に
存在することから、第1の有機化合物(ホスト材料)110の蛍光スペクトルや第2の有
機化合物(アシスト材料)111の蛍光スペクトルをより長波長側に位置する発光スペク
トルに変換することができる。
このことは、第2の発光層106bにおいても同様である。従って、第2の発光層10
6bにおける第3の有機化合物(ホスト材料)112と第2の有機化合物(アシスト材料
)111との組み合わせは、励起錯体(exciplex:エキサイプレックスとも言う
)を形成する組み合わせであることを特徴とする。さらに、第3の有機化合物(ホスト材
料)112と第2の有機化合物(アシスト材料)111により形成された励起錯体の発光
波長は、第3の有機化合物(ホスト材料)112と第2の有機化合物(アシスト材料)1
11のそれぞれの発光波長(蛍光波長)に比べて、長波長側に存在することから、第3の
有機化合物(ホスト材料)112の蛍光スペクトルや、第2の有機化合物(アシスト材料
)111の蛍光スペクトルを、より長波長側に位置する発光スペクトルに変換することが
できる。
なお、上記構成において、第1の有機化合物(ホスト材料)110及び第2の有機化合
物(アシスト材料)111のそれぞれの三重項励起エネルギーの準位(T1準位)は、三
重項励起エネルギーを発光に変える第1の発光性物質(ゲスト材料)109aのT1準位
よりも高いことが好ましい。第1の有機化合物110(又は第2の有機化合物111)の
T1準位が第1の発光性物質(ゲスト材料)109aのT1準位よりも低いと、発光に寄
与する第1の発光性物質(ゲスト材料)109aの三重項励起エネルギーを第1の有機化
合物110(又は第2の有機化合物111)が消光(クエンチ)してしまい、発光効率の
低下を招くためである。
同様にして、第3の有機化合物(ホスト材料)112及び第2の有機化合物(アシスト
材料)111のそれぞれの三重項励起エネルギーの準位(T1準位)は、三重項励起エネ
ルギーを発光に変える第2の発光性物質(ゲスト材料)109bのT1準位よりも高いこ
とが好ましい。第3の有機化合物112(又は第2の有機化合物111)のT1準位が第
2の発光性物質(ゲスト材料)109bのT1準位よりも低いと、発光に寄与する第2の
発光性物質(ゲスト材料)109bの三重項励起エネルギーを第3の有機化合物112(
又は第2の有機化合物111)が消光(クエンチ)してしまい、発光効率の低下を招くた
めである。
また、発光層106を構成する第1の発光層106aにおいて、第1の有機化合物(ホ
スト材料)110および第2の有機化合物(アシスト材料)111が含まれる割合、また
発光層106を構成する第2の発光層106bにおいて、第3の有機化合物(ホスト材料
)112および第2の有機化合物(アシスト材料)111が含まれる割合については、ど
ちらが多くても良く、本発明では、どちらの場合も含めることとする。
なお、上記構造の発光層106(第1の発光層106aおよび第2の発光層106b)
における、第1の有機化合物(ホスト材料)110、第2の有機化合物(アシスト材料)
111、第3の有機化合物(ホスト材料)112のエネルギー関係を説明するバンド図を
図1(B)に示す。
図1(B)に示すように第1の発光層106aにおいて、第1の有機化合物(ホスト材
料)110と第2の有機化合物(アシスト材料)111によって形成される励起錯体の励
起エネルギー(E)は、第2の有機化合物(アシスト材料)111のHOMO準位と、
第1の有機化合物(ホスト材料)110のLUMO準位によって決まる。また、第2の発
光層106bにおいて、第3の有機化合物(ホスト材料)112と第2の有機化合物(ア
シスト材料)111によって形成される励起錯体の励起エネルギー(E)は、第2の有
機化合物(アシスト材料)111のHOMO準位と、第3の有機化合物(ホスト材料)1
12のLUMO準位によって決まる。なお、第1の発光層106aに含まれる第1の有機
化合物(ホスト材料)110は、第2の発光層106bに含まれる第3の有機化合物(ホ
スト材料)112よりもLUMO準位が高いことから、第1の発光層106aにおいて形
成される励起錯体の励起エネルギー(E)を第2の発光層106bにおいて形成される
励起錯体の励起エネルギー(E)よりも大きくなるように設計できることが分かる。
なお、上述した素子構造とすることにより第1の発光層106aで形成される励起錯体
が、第2の発光層106bで形成される励起錯体よりも高い励起エネルギーを有する構成
となるため、第1の発光層106aに含まれる三重項励起エネルギーを発光に変える第1
の発光性物質(ゲスト材料)109aとして、第2の発光層106bに含まれる三重項励
起エネルギーを発光に変える第2の発光性物質(ゲスト材料)109bよりも短波長の発
光を示す物質を用いることにより、同時に第1の発光層106aおよび第2の発光層10
6bからの発光を得ることができる。さらに、第1の発光層106aにおいて形成された
励起錯体の励起エネルギーのうち、発光に寄与しえなかった一部のエネルギーを第2の発
光層106bにおける三重項励起エネルギーを発光に変える第2の発光性物質(ゲスト材
料)109bへの励起エネルギーとして利用することができるため、発光素子における発
光効率をより高めることができる。
本実施の形態で説明する発光素子は、発光層106(第1の発光層106a、第2の発
光層106b)において、それぞれ励起錯体を形成する構成であるが、第1の有機化合物
(ホスト材料)110の蛍光スペクトル、第3の有機化合物(ホスト材料)112の蛍光
スペクトル、または第2の有機化合物(アシスト材料)111の蛍光スペクトルを、より
長波長側に位置する発光スペクトルに変換することができるということは、図2に示すよ
うに第1の有機化合物110、第2の有機化合物111、または第3の有機化合物112
の蛍光スペクトルが、たとえ三重項励起エネルギーを発光に変える発光性物質109(第
1の発光性物質(ゲスト材料)109a、および第2の発光性物質(ゲスト材料)109
b)の最も長波長側に位置する吸収帯に比べて短波長側に位置し、三重項励起エネルギー
を発光に変える発光性物質109(第1の発光性物質(ゲスト材料)109a、および第
2の発光性物質(ゲスト材料)109b)の最も長波長側に位置する吸収帯との重なりが
なかったとしても、励起錯体を形成することで、その重なりを大きくできることを意味す
る。このことにより、上述した式(2−2B)のエネルギー移動効率を高めることができ
る。
さらに、励起錯体は一重項励起エネルギーと三重項励起エネルギーの差が極めて小さい
と考えられる。換言すれば、励起錯体の一重項状態からの発光スペクトルと三重項状態か
らの発光スペクトルは、極めて近接することになる。したがって、上述したように励起錯
体の発光スペクトル(一般には、励起錯体の一重項状態からの発光スペクトル)を、三重
項励起エネルギーを発光に変える発光性物質109の最も長波長側に位置する吸収帯に重
ねるよう設計した場合、励起錯体の三重項状態からの発光スペクトル(常温では観測され
ず、低温でも観測されない場合が多い)も、三重項励起エネルギーを発光に変える発光性
物質109の最も長波長側に位置する吸収帯に重なることになる。つまり、一重項励起状
態からのエネルギー移動((2−2))だけでなく、三重項励起状態からのエネルギー移
動((2−1))の効率も高まり、結果的に、一重項・三重項励起状態の双方からのエネ
ルギーを効率よく発光に変換することができる。
そこで、実際に励起錯体がこのような特性を有しているかどうかに関し、以下では、分
子軌道計算を用いて検証した。一般に、複素芳香族化合物と芳香族アミンとの組み合わせ
は、芳香族アミンの最低空分子軌道(LUMO:Lowest Unoccupied
Molecular Orbital)準位に比べて深い複素芳香族化合物のLUMO準
位(電子が入りやすい性質)と複素芳香族化合物の最高被占有軌道(HOMO:High
est Occupied Molecular Orbital)準位に比べて浅い芳
香族アミンのHOMO準位(ホールが入りやすい性質)の影響で、励起錯体を形成するこ
とが多い。そこで、本発明の一態様における第1の有機化合物110(または、第3の有
機化合物112)のモデルとして複素芳香族化合物のLUMO準位を構成する代表的な骨
格のジベンゾ[f,h]キノキサリン(略称:DBq)を用い、本発明の一態様における
第2の有機化合物111のモデルとして芳香族アミンのHOMO準位を構成する代表的な
骨格のトリフェニルアミン(略称:TPA)を用い、これらを組み合わせて計算を行った
まず、DBq(略称)一分子とTPA(略称)一分子の最低励起一重項状態(S1)と
最低励起三重項状態(T1)における最適分子構造及び励起エネルギーを、時間依存密度
汎関数法(TD−DFT)を用いて計算した。さらに、DBq(略称)とTPA(略称)
の二量体についても励起エネルギーを計算した。
DFT(密度汎関数法)の全エネルギーはポテンシャルエネルギー、電子間静電エネル
ギー、電子の運動エネルギー、及び、複雑な電子間の相互作用を全て含む交換相関エネル
ギーの和で表される。DFTでは、交換相関相互作用を電子密度で表現された一電子ポテ
ンシャルの汎関数(関数の関数の意)で近似しているため、計算は高速かつ高精度である
。ここでは、混合汎関数であるB3LYPを用いて、交換と相関エネルギーに係る各パラ
メータの重みを規定した。
また、基底関数として、6−311(それぞれの原子価軌道に三つの短縮関数を用いた
triple split valence基底系の基底関数)を全ての原子に適用した
上述の基底関数により、例えば、水素原子であれば、1s〜3sの軌道が考慮され、ま
た、炭素原子であれば、1s〜4s、2p〜4pの軌道が考慮されることになる。さらに
、計算精度向上のため、分極基底系として、水素原子にはp関数を、水素原子以外にはd
関数を加えた。
なお、量子化学計算プログラムとしては、Gaussian 09を使用した。計算は
、ハイパフォーマンスコンピュータ(SGI社製、Altix4700)を用いて行った
まず、DBq(略称)一分子、TPA(略称)一分子、及びDBq(略称)とTPA(
略称)の二量体に関し、HOMO準位及びLUMO準位を算出した。HOMO準位及びL
UMO準位を図3に、HOMO準位及びLUMO準位の分布を図4に、それぞれ示す。
図4(A1)に、DBq(略称)一分子のLUMO準位の分布を示し、図4(A2)に
、DBq(略称)一分子のHOMO準位の分布を示し、図4(B1)に、TPA(略称)
一分子のLUMO準位の分布を示し、図4(略称)(B2)に、TPA(略称)一分子の
HOMO準位の分布を示し、図4(C1)に、DBq(略称)とTPA(略称)の二量体
のLUMO準位の分布を示し、図4(C2)に、DBq(略称)とTPA(略称)の二量
体のHOMO準位の分布を示す。
図3に示すように、DBq(略称)とTPA(略称)の二量体は、TPA(略称)のL
UMO準位に比べて深い(低い)DBq(略称)のLUMO準位(−1.99eV)と、
DBq(略称)のHOMO準位に比べて浅い(高い)TPA(略称)のHOMO準位(−
5.21eV)との影響で、DBq(略称)とTPA(略称)の励起錯体を形成すること
が示唆される。実際に図4からわかるように、DBq(略称)とTPA(略称)の二量体
のLUMO準位はDBq(略称)側に、HOMO準位はTPA(略称)側に分布している
次に、DBq(略称)一分子のS1準位とT1準位における最適分子構造から得られた
励起エネルギーを示す。ここで、S1準位とT1準位の励起エネルギーは、DBq(略称
)一分子が発する蛍光と燐光の波長にそれぞれ相当する。DBq(略称)一分子のS1準
位の励起エネルギーは、3.294eVであり、蛍光波長は、376.4nmであった。
また、DBq(略称)一分子のT1準位の励起エネルギーは、2.460eVであり、燐
光波長は、504.1nmであった。
また、TPA(略称)一分子のS1準位とT1準位における最適分子構造から得られた
励起エネルギーを示す。ここで、S1準位とT1準位の励起エネルギーは、TPA(略称
)一分子が発する蛍光と燐光の波長にそれぞれ相当する。TPA(略称)一分子のS1準
位の励起エネルギーは、3.508eVであり、蛍光波長は、353.4nmであった。
また、TPA(略称)一分子のT1準位の励起エネルギーは、2.610eVであり、燐
光波長は、474.7nmであった。
さらに、DBq(略称)とTPA(略称)の二量体のS1準位とT1準位における最適
分子構造から得られた励起エネルギーを示す。S1準位とT1準位の励起エネルギーは、
DBq(略称)とTPA(略称)の二量体が発する蛍光と燐光の波長にそれぞれ相当する
。DBq(略称)とTPA(略称)の二量体のS1準位の励起エネルギーは、2.036
eVであり、蛍光波長は、609.1nmであった。また、DBq(略称)とTPA(略
称)の二量体のT1準位の励起エネルギーは、2.030eVであり、燐光波長は、61
0.0nmであった。
以上のことから、DBq(略称)一分子、TPA(略称)一分子のいずれにおいても、
燐光波長が100nm近く長波長シフトしていることがわかる。これは、上述したCBP
(略称)(実測値)と同様の傾向であり、計算の妥当性を支持する結果である。
一方、DBq(略称)とTPA(略称)の二量体の蛍光波長は、DBq(略称)一分子
やTPA(略称)一分子の蛍光波長に比べ、より長波長側に存在することがわかる。また
、DBq(略称)とTPA(略称)の二量体の蛍光波長と燐光波長の差はわずか0.9n
mであり、ほぼ同じ波長であることがわかる。
この結果から、励起錯体の一重項励起エネルギーと三重項励起エネルギーは、ほぼ同じ
エネルギーであると言える。したがって、上述したように、励起錯体はその一重項状態、
及び三重項状態の双方から、三重項励起エネルギーを発光に変える発光性物質(上述した
第1の発光物質および第2の発光物質を含むゲスト材料)に対して効率よくエネルギー移
動できることが示唆された。
このように、本発明の一態様である発光素子は、発光層において形成された励起錯体の
発光スペクトルと三重項励起エネルギーを発光に変える発光性物質(上述した第1の発光
物質および第2の発光物質を含むゲスト材料)の吸収スペクトルとの重なりを利用して、
エネルギー移動をするため、エネルギー移動効率が高い。したがって、外部量子効率の高
い発光素子を実現することができる。
また、励起錯体は励起状態でのみ存在するため、エネルギーを吸収できる基底状態が存
在しない。したがって、三重項励起エネルギーを発光に変える発光性物質(ゲスト材料)
の一重項励起状態及び三重項励起状態から励起錯体へのエネルギー移動により三重項励起
エネルギーを発光に変える発光性物質(ゲスト材料)が発光する前に失活する(すなわち
発光効率を損なう)という現象は、原理的に生じないと考えられる。このことも、外部量
子効率を高くできる一因である。
なお、上述した励起錯体は、励起状態における異種分子間の相互作用によって形成され
る。また、励起錯体は、比較的深いLUMO準位をもつ材料と、浅いHOMO準位をもつ
材料との間で形成しやすいことが一般に知られている。
励起錯体の発光波長は、HOMO準位とLUMO準位間のエネルギー差に依存する。大
まかな傾向として、エネルギー差が大きいと発光波長は短くなり、エネルギー差が小さい
と発光波長は長くなる。
従って、本実施の形態における第1の有機化合物(ホスト材料)110、第2の有機化
合物(アシスト材料)111、第3の有機化合物(ホスト材料)112のHOMO準位及
びLUMO準位は、図1(B)に示したようにそれぞれ異なる。具体的には、第1の有機
化合物110のHOMO準位および第3の有機化合物112のHOMO準位<第2の有機
化合物111のHOMO準位<第3の有機化合物112のLUMO準位<第1の有機化合
物110のLUMO準位<第2の有機化合物111のLUMO準位という順でエネルギー
準位が異なる。
そして、各発光層において、2つの有機化合物(第1の発光層106aにおいては、第
1の有機化合物110と第2の有機化合物111、第2の発光層106bにおいては、第
3の有機化合物112と第2の有機化合物111)により励起錯体が形成された場合、第
1の発光層106aおよび第2の発光層106bにおける励起錯体のHOMO準位は、第
2の有機化合物(アシスト材料)111に由来し、第1の発光層106aにおける励起錯
体のLUMO準位は、第1の有機化合物(ホスト材料)110に由来し、第2の発光層1
06bにおける励起錯体のLUMO準位は、第3の有機化合物(ホスト材料)112のL
UMO準位に由来する。したがって、第1の発光層106aにおける励起錯体の励起エネ
ルギー(E)は、第2の発光層106bにおける励起錯体の励起エネルギー(E)よ
りも大きくなる。すなわち、第1の発光層に含まれる三重項励起エネルギーを発光に変え
る第1の発光性物質109aとして、第2の発光層に含まれる三重項励起エネルギーを発
光に変える第2の発光性物質109bよりも短波長の発光を示す物質を用いることで発光
効率の高い発光素子を形成することができる。また、発光波長の異なる発光材料を、同時
に効率よく発光させることができる。
なお、本発明の一態様における励起錯体の形成過程には、以下の2つの過程が考えられ
る。
1つ目の形成過程は、第2の有機化合物(アシスト材料)がキャリアを持った状態(具
体的にはカチオン)から、励起錯体を形成する形成過程である。
一般には、電子及び正孔(ホール)がホスト材料中で再結合した場合、励起状態のホス
ト材料からゲスト材料に励起エネルギーが移動し、ゲスト材料が励起状態に至り、発光す
るが、ホスト材料からゲスト材料に励起エネルギーが移動する前に、ホスト材料自体が発
光する、又は励起エネルギーが熱エネルギーとなることで、励起エネルギーの一部を失活
してしまう。特に、ホスト材料が一重項励起状態である場合は、(2−2)で述べたよう
にエネルギー移動が生じにくい。このような励起エネルギーの失活は、発光素子の寿命の
低下につながる要因の一つである。
しかし、本発明の一態様においては、第1の有機化合物(または第3の有機化合物)(
ホスト材料)及び第2の有機化合物(アシスト材料)がキャリアを持った状態(カチオン
又はアニオン)から、励起錯体を形成するため、第1の有機化合物(または第3の有機化
合物)(ホスト材料)の一重項励起子の形成を抑制することができる。つまり、一重項励
起子を形成することなく、直接励起錯体を形成する過程が存在しうる。これにより、上記
一重項励起エネルギーの失活も抑制することができる。したがって、寿命が長い発光素子
を実現することができる。
例えば、第1の有機化合物(または第3の有機化合物)が、電子輸送性材料の中でも電
子(キャリア)を捕獲しやすい性質を有する(LUMO準位の深い)電子トラップ性の化
合物であり、第2の有機化合物が、正孔輸送性の材料の中でもホール(キャリア)を捕獲
しやすい性質を有する(HOMO準位の浅い)ホールトラップ性の化合物である場合には
、第1の有機化合物(または第3の有機化合物)のアニオンと第2の有機化合物のカチオ
ンから、直接励起錯体が形成されることになる。このような過程で形成される励起錯体の
ことを特にエレクトロプレックス(electroplex)と呼ぶこととする。このよ
うにして第1の有機化合物(または第3の有機化合物)(ホスト材料)の一重項励起状態
の発生を抑制し、エレクトロプレックスから三重項励起エネルギーを発光に変える発光性
物質(ゲスト材料)にエネルギー移動を行うことにより、発光効率が高い発光素子が得ら
れる。なお、この場合、第1の有機化合物(または第3の有機化合物)(ホスト材料)の
三重項励起状態の発生も同様に抑制され、直接励起錯体が形成されるため、励起錯体から
三重項励起エネルギーを発光に変える発光性物質(ゲスト材料)にエネルギー移動すると
考えられる。
2つ目の形成過程は、第1の有機化合物(ホスト材料)、第2の有機化合物(アシスト
材料)、または第3の有機化合物(ホスト材料)のいずれかが一重項励起子を形成した後
、基底状態の他方と相互作用して励起錯体を形成する素過程である。エレクトロプレック
スとは異なり、この場合は一旦、第1の有機化合物(ホスト材料)、第2の有機化合物(
アシスト材料)、または第3の有機化合物(ホスト材料)の一重項励起状態が生成してし
まうが、これは速やかに励起錯体に変換されるため、やはり一重項励起エネルギーの失活
を抑制することができる。したがって、第1の有機化合物(ホスト材料)、第2の有機化
合物(アシスト材料)、または第3の有機化合物(ホスト材料)が励起エネルギーを失活
することを抑制することができる。なお、この場合、ホスト材料の三重項励起状態も同様
に、速やかに励起錯体に変換され、励起錯体から三重項励起エネルギーを発光に変える発
光性物質(ゲスト材料)にエネルギー移動すると考えられる。
なお、第1の有機化合物(または第3の有機化合物)(ホスト材料)が電子トラップ性
の化合物であり、一方で第2の有機化合物(アシスト材料)がホールトラップ性の化合物
であり、これら化合物のHOMO準位の差、及びLUMO準位の差が大きい場合(具体的
には差が0.3eV以上)、電子は選択的に第1の有機化合物(または第3の有機化合物
)(ホスト材料)に入り、ホールは選択的に第2の有機化合物(アシスト材料)に入る。
この場合、一重項励起子を経て励起錯体が形成される過程よりも、エレクトロプレックス
が形成される過程の方が優先されると考えられる。
なお、励起錯体の発光スペクトルと三重項励起エネルギーを発光に変える発光性物質(
ゲスト材料)の吸収スペクトルを十分に重ねるためには、発光スペクトルのピークのエネ
ルギー値と、吸収スペクトルの最も低エネルギー側の吸収帯のピークのエネルギー値との
差が0.3eV以内であることが好ましい。より好ましくは0.2eV以内であり、最も
好ましいのは0.1eV以内である。
また、本発明の一態様である発光素子において、励起錯体の励起エネルギーは三重項励
起エネルギーを発光に変える発光性物質(ゲスト材料)に十分にエネルギー移動し、励起
錯体からの発光は実質的に観察されないことが好ましい。したがって、励起錯体を介して
三重項励起エネルギーを発光に変える発光性物質にエネルギーを移動して、三重項励起エ
ネルギーを発光に変える発光性物質が、発光することが好ましい。なお、三重項励起エネ
ルギーを発光に変える発光性物質としては、燐光性化合物(有機金属錯体等)や、熱活性
化遅延蛍光(TADF)材料等であることが好ましい。
また、本発明の一態様である発光素子の第1の発光層106aにおいて、第1の有機化
合物(第2の発光層106bの場合には第3の有機化合物)(ホスト材料)に三重項励起
エネルギーを発光に変える発光性物質を用いると、第1の有機化合物(第2の発光層10
6bの場合には第3の有機化合物)(ホスト材料)自体が発光しやすくなり、三重項励起
エネルギーを発光に変える発光性物質(ゲスト材料)にエネルギー移動されにくくなる。
この場合、第1の有機化合物(第2の発光層106bの場合には第3の有機化合物)が効
率よく発光すればよいが、ホスト材料は濃度消光の問題が発生するため、高い発光効率を
達成するのは困難である。従って、第1の有機化合物(第2の発光層106bの場合には
第3の有機化合物)(ホスト材料)および第2の有機化合物(アシスト材料)の少なくと
も一方が蛍光性化合物(すなわち、一重項励起状態から発光や熱失活が起こりやすい化合
物)である場合が有効となる。したがって、第1の有機化合物(第2の発光層106bの
場合には第3の有機化合物)(ホスト材料)および第2の有機化合物(アシスト材料)の
少なくとも一方が蛍光性化合物であり、励起錯体をエネルギー移動の媒体に用いる構成で
あることが好ましい。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用い
ることができるものとする。
(実施の形態2)
本実施の形態では、本発明の一態様である発光素子の一例について図5を用いて説明す
る。
本実施の形態に示す発光素子は、図5に示すように一対の電極(第1の電極(陽極)2
01と第2の電極(陰極)202)間に発光層206を含むEL層203が挟まれており
、EL層203は、第1の発光層206aと第2の発光層206bとの積層構造を有する
発光層206の他に、正孔(または、ホール)注入層204、正孔(または、ホール)輸
送層205、電子輸送層207、電子注入層208などを含んで形成される。
なお、本実施の形態に示す発光層206は、第1の発光層206aと第2の発光層20
6bとの積層構造を有するが、発光層206のうち、第1の発光層206aには、三重項
励起エネルギーを発光に変える第1の発光性物質(ゲスト材料)209a、電子輸送性を
有する第1の有機化合物(ホスト材料)210、および正孔輸送性を有する第2の有機化
合物(アシスト材料)211が含まれており、第2の発光層206bには、三重項励起エ
ネルギーを発光に変える第2の発光性物質(ゲスト材料)209b、電子輸送性を有する
第3の有機化合物(ホスト材料)212、および正孔輸送性を有する第2の有機化合物(
アシスト材料)211が含まれている。
なお、第1の発光層に含まれる第1の有機化合物(ホスト材料)は、第2の発光層に含
まれる第3の有機化合物(ホスト材料)よりも最低空軌道準位(LUMO準位)が高いこ
ととする。従って、第1の発光層において形成される励起錯体の励起エネルギー(E
を第2の発光層において形成される励起錯体の励起エネルギー(E)よりも大きくなる
ように設計することができる。
なお、発光層206(第1の発光層206aおよび第2の発光層206b)において、
第1の発光層206aの場合には、三重項励起エネルギーを発光に変える第1の発光性物
質209aを第1の有機化合物(ホスト材料)210及び第2の有機化合物(アシスト材
料)211中に分散させ、第2の発光層206bの場合には、三重項励起エネルギーを発
光に変える第2の発光性物質209bを、第3の有機化合物(ホスト材料)212及び第
2の有機化合物(アシスト材料)211に分散させた構成とすることにより、発光層20
6(第1の発光層206aおよび第2の発光層206b)の結晶化を抑制することができ
る。また、発光性物質209(209a、209b)の濃度が高いことによる濃度消光を
抑制し、発光素子の発光効率を高くすることができる。
また、第1の有機化合物210、第2の有機化合物211、および第3の有機化合物2
12のそれぞれの三重項励起エネルギーの準位(T1準位)は、三重項励起エネルギーを
発光に変える発光性物質209(209a、209b)のT1準位よりも高いことが好ま
しい。第1の有機化合物210、第2の有機化合物211、および第3の有機化合物21
2のT1準位が三重項励起エネルギーを発光に変える発光性物質209(209a、20
9b)のT1準位よりも低いと、発光に寄与する三重項励起エネルギーを発光に変える発
光性物質209(209a、209b)の三重項励起エネルギーを第1の有機化合物21
0(または、第2の有機化合物211、または、第3の有機化合物212)が消光(クエ
ンチ)してしまい、発光効率の低下を招くためである。
本実施の形態では、発光層206において、第1の発光層206aでは、両電極からそ
れぞれ注入されるキャリア(電子及びホール)の再結合の際に、第1の有機化合物210
と第2の有機化合物211から励起錯体(エキサイプレックス)が形成され、第2の発光
層206bでは、第3の有機化合物212と第2の有機化合物211から励起錯体が形成
される。これにより、第1の発光層206aにおける第1の有機化合物210の蛍光スペ
クトル、および第2の有機化合物211の蛍光スペクトルは、より長波長側に位置する励
起錯体の発光スペクトルに変換することができ、第2の発光層206bにおける第3の有
機化合物212の蛍光スペクトル、および第2の有機化合物211の蛍光スペクトルは、
より長波長側に位置する励起錯体の発光スペクトルに変換することができる。従って、一
重項励起状態からのエネルギー移動を最大限に高めるために励起錯体の発光スペクトルと
三重項励起エネルギーを発光に変える発光性物質(ゲスト材料)209の吸収スペクトル
との重なりが大きくなるように、第1の発光層206aでは、第1の有機化合物210と
第2の有機化合物211、第2の発光層206bでは、第3の有機化合物212と第2の
有機化合物211とをそれぞれ選択することとする。すなわち、ここでは三重項励起状態
に関しても、ホスト材料ではなく励起錯体からのエネルギー移動が生じるものと考える。
なお、三重項励起エネルギーを発光に変える発光性物質209(第1の発光性物質20
9a、第2の発光性物質209b)としては、燐光性化合物(有機金属錯体等)や、熱活
性化遅延蛍光(TADF)材料等であることが好ましい。また、第1の有機化合物(ホス
ト材料)210、および第3の有機化合物(ホスト材料)212としては、電子輸送性材
料を用いることが好ましい。また、第2の有機化合物(アシスト材料)211としては、
正孔(ホール)輸送性材料を用いることが好ましい。
なお、上記有機金属錯体としては、例えば、ビス[2−(4’,6’−ジフルオロフェ
ニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボ
ラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト
−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2−
(3’,5’−ビストリフルオロメチルフェニル)ピリジナト−N,C2’]イリジウム
(III)ピコリナート(略称:Ir(CFppy)(pic))、ビス[2−(4
’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチ
ルアセトナート(略称:FIracac)、トリス(2−フェニルピリジナト)イリジウ
ム(III)(略称:Ir(ppy))、ビス(2−フェニルピリジナト)イリジウム
(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(ベン
ゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq
(acac))、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’
イリジウム(III)アセチルアセトナート(略称:Ir(dpo)(acac))、
ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリ
ジウム(III)アセチルアセトナート(略称:Ir(p−PF−ph)(acac)
)、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチル
アセトナート(略称:Ir(bt)(acac))、ビス[2−(2’−ベンゾ[4,
5−α]チエニル)ピリジナト−N,C3’]イリジウム(III)アセチルアセトナー
ト(略称:Ir(btp)(acac))、ビス(1−フェニルイソキノリナト−N,
2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(aca
c))、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサ
リナト]イリジウム(III)(略称:Ir(Fdpq)(acac))、(アセチル
アセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称
:Ir(tppr)(acac))、2,3,7,8,12,13,17,18−オク
タエチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)、トリス(
アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(a
cac)(Phen))、トリス(1,3−ジフェニル−1,3−プロパンジオナト)
(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen
))、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフ
ェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))など
が挙げられる。
また、上記電子輸送性材料としては、含窒素複素芳香族化合物のようなπ不足型複素芳
香族化合物が好ましく、例えば、2−[3−(ジベンゾチオフェン−4−イル)フェニル
]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−
(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサ
リン(略称:2mDBTBPDBq−II)、2−[4−(3,6−ジフェニル−9H−
カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzP
DBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[
f,h]キノキサリン(略称:7mDBTPDBq−II)、及び、6−[3−(ジベン
ゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDB
TPDBq−II)等のキノキサリンないしはジベンゾキノキサリン誘導体が挙げられる
また、上記正孔(ホール)輸送性材料としては、π過剰型複素芳香族化合物(例えばカ
ルバゾール誘導体やインドール誘導体)や芳香族アミン化合物が好ましく、例えば、4−
フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン
(略称:PCBA1BP)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−
9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、3−[N
−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェ
ニルカルバゾール(略称:PCzPCN1)、4,4’,4’’−トリス[N−(1−ナ
フチル)−N−フェニルアミノ]トリフェニルアミン(略称:1’−TNATA)、2,
7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−スピロ−9
,9’−ビフルオレン(略称:DPA2SF)、N,N’−ビス(9−フェニルカルバゾ
ール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2
B)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)
ジフェニルアミン(略称:DPNF)、N,N’,N’’−トリフェニル−N,N’,N
’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミ
ン(略称:PCA3B)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フ
ェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2−[N−(4
−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン
(略称:DPASF)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−
N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA
2F)、4,4’−ビス[N−(3−メチルフェニル)−N−フェニルアミノ]ビフェニ
ル(略称:TPD)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フ
ェニルアミノ]ビフェニル(略称:DPAB)、N−(9,9−ジメチル−9H−フルオ
レン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−
ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェ
ニルアミン(略称:DFLADFL)、3−[N−(9−フェニルカルバゾール−3−イ
ル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3
−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカル
バゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニ
ル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、4
,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フ
ェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、3,6−ビス[N−
(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカル
バゾール(略称:PCzTPN2)、3,6−ビス[N−(9−フェニルカルバゾール−
3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2
)が挙げられる。
但し、上述した三重項励起エネルギーを発光に変える発光性物質(ゲスト材料)209
(第1の発光性物質209a、第2の発光性物質209b)、第1の有機化合物(ホスト
材料)210、第2の有機化合物(アシスト材料)211、および第3の有機化合物(ホ
スト材料)212にそれぞれ用いることができる材料は、これらに限定されることなく、
励起錯体を形成できる組み合わせであり、励起錯体の発光スペクトルが、三重項励起エネ
ルギーを発光に変える発光性物質(ゲスト材料)209(第1の発光性物質209aまた
は第2の発光性物質209b)の吸収スペクトルと重なり、励起錯体の発光スペクトルの
ピークが、三重項励起エネルギーを発光に変える発光性物質(ゲスト材料)209(第1
の発光性物質209aまたは第2の発光性物質209b)の吸収スペクトルのピークより
も長波長なものであればよい。
また、第1の有機化合物210に電子輸送性材料を用い、第2の有機化合物211に正
孔(ホール)輸送性材料を用いる場合、その混合比によってキャリアバランスを制御する
ことができる。具体的には、第1の有機化合物210:第2の有機化合物211=1:9
〜9:1の範囲とするのが好ましい。
以下に本実施の形態に示す発光素子を作製する上での具体例について説明する。
第1の電極(陽極)201および第2の電極(陰極)202には、金属、合金、電気伝
導性化合物、およびこれらの混合物などを用いることができる。具体的には、酸化インジ
ウム−酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素
を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛(Indium Zi
nc Oxide)、酸化タングステン及び酸化亜鉛を含有した酸化インジウム、金(A
u)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブ
デン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタ
ン(Ti)の他、元素周期表の第1族または第2族に属する元素、すなわちリチウム(L
i)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(
Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(Mg
Ag、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およ
びこれらを含む合金、その他グラフェン等を用いることができる。なお、第1の電極(陽
極)201および第2の電極(陰極)202は、例えばスパッタリング法や蒸着法(真空
蒸着法を含む)等により形成することができる。
正孔注入層204および正孔輸送層205に用いる正孔輸送性の高い物質としては、例
えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称
:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフ
ェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,
4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4
,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TD
ATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミ
ノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−9,
9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)
などの芳香族アミン化合物、3−[N−(9−フェニルカルバゾール−3−イル)−N−
フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス
[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニル
カルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェ
ニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPC
N1)等が挙げられる。その他、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:
CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:
TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カ
ルバゾール(略称:CzPA)等のカルバゾール誘導体、等を用いることができる。ここ
に述べた物質は、主に10−6cm/Vs以上の正孔移動度を有する物質である。但し
、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。
さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフ
ェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニ
ルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド]
(略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビ
ス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いるこ
ともできる。
また、正孔注入層204に用いることができるアクセプター性物質としては、遷移金属
酸化物や元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができ
る。具体的には、酸化モリブデンが特に好ましい。
発光層206(206a、206b)は、上述した通りであり、第1の発光層206a
は、第1の発光性物質209a、第1の有機化合物(ホスト材料)210、および第2の
有機化合物(アシスト材料)211を少なくとも有し、第2の発光層206bは、第2の
発光性物質209b、第3の有機化合物(ホスト材料)212、および第2の有機化合物
(アシスト材料)211を少なくとも有して形成される。
電子輸送層207は、電子輸送性の高い物質を含む層である。電子輸送層207には、
Alq、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq
、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、
BAlq、Zn(BOX)、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト
]亜鉛(略称:Zn(BTZ))などの金属錯体を用いることができる。また、2−(
4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジア
ゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,
3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−te
rt−ブチルフェニル)−4−フェニル−5−(4−ビフェニリル)−1,2,4−トリ
アゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチル
フェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtT
AZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP
)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:B
zOs)などの複素芳香族化合物も用いることができる。また、ポリ(2,5−ピリジン
ジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)
−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオ
クチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイ
ル)](略称:PF−BPy)のような高分子化合物を用いることもできる。ここに述べ
た物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。なお、正孔
よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層207として用い
てもよい。
また、電子輸送層207は、単層のものだけでなく、上記物質からなる層が二層以上積
層したものとしてもよい。
電子注入層208は、電子注入性の高い物質を含む層である。電子注入層208には、
フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF
、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれ
らの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類
金属化合物を用いることができる。また、上述した電子輸送層207を構成する物質を用
いることもできる。
あるいは、電子注入層208に、有機化合物と電子供与体(ドナー)とを混合してなる
複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子
が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物とし
ては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述
した電子輸送層207を構成する物質(金属錯体や複素芳香族化合物等)を用いることが
できる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具
体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウ
ム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、ア
ルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸
化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用
いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用い
ることもできる。
なお、上述した正孔注入層204、正孔輸送層205、発光層206(206a、20
6b)、電子輸送層207、電子注入層208は、それぞれ、蒸着法(真空蒸着法を含む
)、インクジェット法、塗布法等の方法で形成することができる。
上述した発光素子の発光層206で得られた発光は、第1の電極201および第2の電
極202のいずれか一方または両方を通って外部に取り出される。従って、本実施の形態
における第1の電極201および第2の電極202のいずれか一方、または両方が透光性
を有する電極となる。
本実施の形態で示した発光素子は、励起錯体の発光スペクトルと三重項励起エネルギー
を発光に変える発光性物質(ゲスト材料)の吸収スペクトルとの重なりを利用したエネル
ギー移動により、エネルギー移動効率を高めることができるため、外部量子効率の高い発
光素子を実現することができる。
なお、本実施の形態で示した発光素子は、本発明の一態様であり、特に発光層の構成に
特徴を有する。従って、本実施の形態で示した構成を適用することで、パッシブマトリク
ス型の発光装置やアクティブマトリクス型の発光装置などを作製することができ、これら
は、いずれも本発明に含まれるものとする。
なお、アクティブマトリクス型の発光装置の場合において、TFTの構造は、特に限定
されない。例えば、スタガ型や逆スタガ型のTFTを適宜用いることができる。また、T
FT基板に形成される駆動用回路についても、N型およびP型のTFTからなるものでも
よいし、N型のTFTまたはP型のTFTのいずれか一方のみからなるものであってもよ
い。さらに、TFTに用いられる半導体膜の結晶性についても特に限定されない。例えば
、非晶質半導体膜、結晶性半導体膜、その他、酸化物半導体膜等を用いることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用い
ることができるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様として、電荷発生層を挟んでEL層を複数有する構
造の発光素子(以下、タンデム型発光素子という)について説明する。
本実施の形態に示す発光素子は、図6(A)に示すように一対の電極(第1の電極30
1および第2の電極304)間に、複数のEL層(第1のEL層302(1)、第2のE
L層302(2))を有するタンデム型発光素子である。
本実施の形態において、第1の電極301は、陽極として機能する電極であり、第2の
電極304は陰極として機能する電極である。なお、第1の電極301および第2の電極
304は、実施の形態1と同様な構成を用いることができる。また、複数のEL層(第1
のEL層302(1)、第2のEL層302(2))は、実施の形態1または実施の形態
2で示したEL層と同様な構成であっても良いが、いずれかが同様の構成であっても良い
。すなわち、第1のEL層302(1)と第2のEL層302(2)は、同じ構成であっ
ても異なる構成であってもよく、その構成は実施の形態1または実施の形態2と同様なも
のを適用することができる。
また、複数のEL層(第1のEL層302(1)、第2のEL層302(2))の間に
は、電荷発生層(I)305が設けられている。電荷発生層(I)305は、第1の電極
301と第2の電極304に電圧を印加したときに、一方のEL層に電子を注入し、他方
のEL層に正孔を注入する機能を有する。本実施の形態の場合には、第1の電極301に
第2の電極304よりも電位が高くなるように電圧を印加すると、電荷発生層(I)30
5から第1のEL層302(1)に電子が注入され、第2のEL層302(2)に正孔が
注入される。
なお、電荷発生層(I)305は、光の取り出し効率の点から、可視光に対して透光性
を有する(具体的には、電荷発生層(I)305に対する可視光の透過率が、40%以上
)ことが好ましい。また、電荷発生層(I)305は、第1の電極301や第2の電極3
04よりも低い導電率であっても機能する。
電荷発生層(I)305は、正孔輸送性の高い有機化合物に電子受容体(アクセプター
)が添加された構成であっても、電子輸送性の高い有機化合物に電子供与体(ドナー)が
添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。
正孔輸送性の高い有機化合物に電子受容体が添加された構成とする場合において、正孔
輸送性の高い有機化合物としては、例えば、NPBやTPD、TDATA、MTDATA
、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニル
アミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができ
る。ここに述べた物質は、主に10−6cm/Vs以上の正孔移動度を有する物質であ
る。但し、電子よりも正孔の輸送性の高い有機化合物であれば、上記以外の物質を用いて
も構わない。
また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラ
フルオロキノジメタン(略称:F4−TCNQ)、クロラニル等を挙げることができる。
また、遷移金属酸化物を挙げることができる。また元素周期表における第4族乃至第8族
に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ
、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化
レニウムは電子受容性が高いため好ましい。中でも特に、酸化モリブデンは大気中でも安
定であり、吸湿性が低く、扱いやすいため好ましい。
一方、電子輸送性の高い有機化合物に電子供与体が添加された構成とする場合において
、電子輸送性の高い有機化合物としては、例えば、Alq、Almq、BeBq、B
Alqなど、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等を用いることが
できる。また、この他、Zn(BOX)、Zn(BTZ)などのオキサゾール系、チ
アゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体以外に
も、PBDやOXD−7、TAZ、BPhen、BCPなども用いることができる。ここ
に述べた物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。なお
、正孔よりも電子の輸送性の高い有機化合物であれば、上記以外の物質を用いても構わな
い。
また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属ま
たは元素周期表における第13族に属する金属およびその酸化物、炭酸塩を用いることが
できる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カ
ルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸
セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物
を電子供与体として用いてもよい。
なお、上述した材料を用いて電荷発生層(I)305を形成することにより、EL層が
積層された場合における駆動電圧の上昇を抑制することができる。
本実施の形態では、EL層を2層有する発光素子について説明したが、図6(B)に示
すように、n層(ただし、nは、3以上)のEL層を積層した発光素子についても、同様
に適用することが可能である。本実施の形態に係る発光素子のように、一対の電極間に複
数のEL層を有する場合、EL層とEL層との間に電荷発生層(I)を配置することで、
電流密度を低く保ったまま、高輝度領域での発光が可能である。電流密度を低く保てるた
め、長寿命素子を実現できる。また、照明を応用例とした場合は、電極材料の抵抗による
電圧降下を小さくできるので、大面積での均一発光が可能となる。また、低電圧駆動が可
能で消費電力が低い発光装置を実現することができる。
また、それぞれのEL層の発光色を異なるものにすることで、発光素子全体として、所
望の色の発光を得ることができる。例えば、2つのEL層を有する発光素子において、第
1のEL層の発光色と第2のEL層の発光色を補色の関係になるようにすることで、発光
素子全体として白色発光する発光素子を得ることも可能である。なお、補色とは、混合す
ると無彩色になる色同士の関係をいう。つまり、補色の関係にある色を発光する物質から
得られた光と混合すると、白色発光を得ることができる。
また、3つのEL層を有する発光素子の場合でも同様であり、例えば、第1のEL層の
発光色が赤色であり、第2のEL層の発光色が緑色であり、第3のEL層の発光色が青色
である場合、発光素子全体としては、白色発光を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用
いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
本実施の形態に示す発光装置は、一対の電極間での光の共振効果を利用した微小光共振
器(マイクロキャビティー)構造を有しており、図7に示す様に一対の電極(反射電極4
01及び半透過・半反射電極402)間に少なくともEL層405を有する構造である発
光素子を複数、有している。また、EL層405は、少なくとも発光領域となる発光層4
04(404R、404G、404B)を有し、その他、正孔注入層、正孔輸送層、電子
輸送層、電子注入層、電荷発生層(E)などが含まれていても良い。なお、発光層404
(404R、404G、404B)には、実施の形態1や2で説明したような本発明の一
態様である発光層の構成を含めることができる。
本実施の形態では、図7に示すように構造の異なる発光素子(第1の発光素子(R)4
10R、第2の発光素子(G)410G、第3の発光素子(B)410B)を有して構成
される発光装置について説明する。
第1の発光素子(R)410Rは、反射電極401上に第1の透明導電層403aと、
第1の発光層(B)404B、第2の発光層(G)404G、第3の発光層(R)404
Rを一部に含むEL層405と、半透過・半反射電極402とが順次積層された構造を有
する。また、第2の発光素子(G)410Gは、反射電極401上に第2の透明導電層4
03bと、EL層405と、半透過・半反射電極402とが順次積層された構造を有する
。また、第3の発光素子(B)410Bは、反射電極401上にEL層405と、半透過
・半反射電極402とが順次積層された構造を有する。
なお、上記発光素子(第1の発光素子(R)410R、第2の発光素子(G)410G
、第3の発光素子(B)410B)において、反射電極401、EL層405、半透過・
半反射電極402は共通である。また、第1の発光層(B)404Bでは、420nm以
上480nm以下の波長領域にピークをもつ光(λ)を発光させ、第2の発光層(G)
404Gでは、500nm以上550nm以下の波長領域にピークを持つ光(λ)を発
光させ、第3の発光層(R)404Rでは、600nm以上760nm以下の波長領域に
ピークを持つ光(λ)を発光させる。これにより、いずれの発光素子(第1の発光素子
(R)410R、第2の発光素子(G)410G、第3の発光素子(B)410B)でも
、第1の発光層(B)404B、第2の発光層(G)404G、および第3の発光層(R
)404Rからの発光が重ね合わされた、すなわち可視光領域に渡るブロードな光を発光
させることができる。なお、上記より、波長の長さは、λ<λ<λなる関係である
とする。
本実施の形態に示す各発光素子は、それぞれ反射電極401と半透過・半反射電極40
2との間にEL層405を挟んでなる構造を有しており、EL層405に含まれる各発光
層から全方向に射出される発光は、微小光共振器(マイクロキャビティー)としての機能
を有する反射電極401と半透過・半反射電極402とによって共振される。なお、反射
電極401は、反射性を有する導電性材料により形成され、その膜に対する可視光の反射
率が40%〜100%、好ましくは70%〜100%であり、かつその抵抗率が1×10
−2Ωcm以下の膜であるとする。また、半透過・半反射電極402は、反射性を有する
導電性材料と光透過性を有する導電性材料とにより形成され、その膜に対する可視光の反
射率が20%〜80%、好ましくは40%〜70%であり、かつその抵抗率が1×10
Ωcm以下の膜であるとする。
また、本実施の形態では、各発光素子で、第1の発光素子(R)410Rと第2の発光
素子(G)410Gにそれぞれ設けられた透明導電層(第1の透明導電層403a、第2
の透明導電層403b)の厚みを変えることにより、発光素子毎に反射電極401と半透
過・半反射電極402の間の光学距離を変えている。つまり、各発光素子の各発光層から
発光するブロードな光は、反射電極401と半透過・半反射電極402との間において、
共振する波長の光を強め、共振しない波長の光を減衰させることができるため、素子毎に
反射電極401と半透過・半反射電極402の間の光学距離を変えることにより、異なる
波長の光を取り出すことができる。
なお、光学距離(光路長ともいう)とは、実際の距離に屈折率をかけたものであり、本
実施の形態においては、実膜厚にn(屈折率)をかけたものを表している。すなわち、「
光学距離=実膜厚×n」である。
また、第1の発光素子(R)410Rでは、反射電極401から半透過・半反射電極4
02までの総厚をmλ/2(ただし、mは自然数)、第2の発光素子(G)410Gで
は、反射電極401から半透過・半反射電極402までの総厚をmλ/2(ただし、m
は自然数)、第3の発光素子(B)410Bでは、反射電極401から半透過・半反射電
極402までの総厚をmλ/2(ただし、mは自然数)としている。
以上より、第1の発光素子(R)410Rからは、主としてEL層405に含まれる第
3の発光層(R)404Rで発光した光(λ)が取り出され、第2の発光素子(G)4
10Gからは、主としてEL層405に含まれる第2の発光層(G)404Gで発光した
光(λ)が取り出され、第3の発光素子(B)410Bからは、主としてEL層405
に含まれる第1の発光層(B)404Bで発光した光(λ)が取り出される。なお、各
発光素子から取り出される光は、半透過・半反射電極402側からそれぞれ射出される。
また、上記構成において、反射電極401から半透過・半反射電極402までの総厚は
、厳密には反射電極401における反射領域から半透過・半反射電極402における反射
領域までの総厚ということができる。しかし、反射電極401や半透過・半反射電極40
2における反射領域の位置を厳密に決定することは困難であるため、反射電極401と半
透過・半反射電極402の任意の位置を反射領域と仮定することで充分に上述の効果を得
ることができるものとする。
次に、第1の発光素子(R)410Rにおいて、反射電極401から第3の発光層(R
)404Rへの光学距離を所望の膜厚((2m’+1)λ/4(ただし、m’は自然数
))に調節することにより、第3の発光層(R)404Rからの発光を増幅させることが
できる。第3の発光層(R)404Rからの発光のうち、反射電極401によって反射さ
れて戻ってきた光(第1の反射光)は、第3の発光層(R)404Rから半透過・半反射
電極402に直接入射する光(第1の入射光)と干渉を起こすため、反射電極401から
第3の発光層(R)404Rへの光学距離を所望の値((2m’+1)λ/4(ただし
、m’は自然数))に調節して設けることにより、第1の反射光と第1の入射光との位相
を合わせ、第3の発光層(R)404Rからの発光を増幅させることができる。
なお、反射電極401と第3の発光層(R)404Rとの光学距離とは、厳密には反射
電極401における反射領域と第3の発光層(R)404Rにおける発光領域との光学距
離ということができる。しかし、反射電極401における反射領域や第3の発光層(R)
404Rにおける発光領域の位置を厳密に決定することは困難であるため、反射電極40
1の任意の位置を反射領域、第3の発光層(R)404Rの任意の位置を発光領域と仮定
することで充分に上述の効果を得ることができるものとする。
次に、第2の発光素子(G)410Gにおいて、反射電極401から第2の発光層(G
)404Gへの光学距離を所望の膜厚((2m’’+1)λ/4(ただし、m’’は自
然数))に調節することにより、第2の発光層(G)404Gからの発光を増幅させるこ
とができる。第2の発光層(G)404Gからの発光のうち、反射電極401によって反
射されて戻ってきた光(第2の反射光)は、第2の発光層(G)404Gから半透過・半
反射電極402に直接入射する光(第2の入射光)と干渉を起こすため、反射電極401
から第2の発光層(G)404Gへの光学距離を所望の値((2m’’+1)λ/4(
ただし、m’’は自然数))に調節して設けることにより、第2の反射光と第2の入射光
との位相を合わせ、第2の発光層(G)404Gからの発光を増幅させることができる。
なお、反射電極401と第2の発光層(G)404Gとの光学距離とは、厳密には反射
電極401における反射領域と第2の発光層(G)404Gにおける発光領域との光学距
離ということができる。しかし、反射電極401における反射領域や第2の発光層(G)
404Gにおける発光領域の位置を厳密に決定することは困難であるため、反射電極40
1の任意の位置を反射領域、第2の発光層(G)404Gの任意の位置を発光領域と仮定
することで充分に上述の効果を得ることができるものとする。
次に、第3の発光素子(B)410Bにおいて、反射電極401から第1の発光層(B
)404Bへの光学距離を所望の膜厚((2m’’’+1)λ/4(ただし、m’’’
は自然数))に調節することにより、第1の発光層(B)404Bからの発光を増幅させ
ることができる。第1の発光層(B)404Bからの発光のうち、反射電極401によっ
て反射されて戻ってきた光(第3の反射光)は、第1の発光層(B)404Bから半透過
・半反射電極402に直接入射する光(第3の入射光)と干渉を起こすため、反射電極4
01から第1の発光層(B)404Bへの光学距離を所望の値((2m’’’+1)λ
/4(ただし、m’’’は自然数))に調節して設けることにより、第3の反射光と第3
の入射光との位相を合わせ、第1の発光層(B)404Bからの発光を増幅させることが
できる。
なお、第3の発光素子において、反射電極401と第1の発光層(B)404Bとの光
学距離とは、厳密には反射電極401における反射領域と第1の発光層(B)404Bに
おける発光領域との光学距離ということができる。しかし、反射電極401における反射
領域や第1の発光層(B)404Bにおける発光領域の位置を厳密に決定することは困難
であるため、反射電極401の任意の位置を反射領域、第1の発光層(B)404Bの任
意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
なお、上記構成において、いずれの発光素子もEL層に複数の発光層を有する構造を有
しているが、本発明はこれに限られることはなく、例えば、実施の形態3で説明したタン
デム型発光素子の構成と組み合わせて、一つの発光素子に電荷発生層を挟んで複数のEL
層を設け、それぞれのEL層に単数もしくは複数の発光層を形成する構成としてもよい。
本実施の形態で示した発光装置は、マイクロキャビティー構造を有しており、同じEL
層を有していても発光素子ごとに異なる波長の光を取り出すことができるためRGBの塗
り分けが不要となる。従って、高精細化を実現することが容易であるなどの理由からフル
カラー化を実現する上で有利である。なお、着色層(カラーフィルタ)との組み合わせも
可能である。また、特定波長の正面方向の発光強度を強めることが可能となるため、低消
費電力化を図ることができる。この構成は、3色以上の画素を用いたカラーディスプレイ
(画像表示装置)に適用する場合に、特に有用であるが、照明などの用途に用いても良い
(実施の形態5)
本実施の形態では、本発明の一態様である発光素子を有する発光装置について説明する
また、上記発光装置は、パッシブマトリクス型の発光装置でもアクティブマトリクス型
の発光装置でもよい。なお、本実施の形態に示す発光装置には、他の実施形態で説明した
発光素子を適用することが可能である。
本実施の形態では、アクティブマトリクス型の発光装置について図8を用いて説明する
なお、図8(A)は発光装置を示す上面図であり、図8(B)は図8(A)を鎖線A−
A’で切断した断面図である。本実施の形態に係るアクティブマトリクス型の発光装置は
、素子基板501上に設けられた画素部502と、駆動回路部(ソース線駆動回路)50
3と、駆動回路部(ゲート線駆動回路)504(504a及び504b)と、を有する。
画素部502、駆動回路部503、及び駆動回路部504は、シール材505によって、
素子基板501と封止基板506との間に封止されている。
また、素子基板501上には、駆動回路部503、及び駆動回路部504に外部からの
信号(例えば、ビデオ信号、クロック信号、スタート信号、又はリセット信号等)や電位
を伝達する外部入力端子を接続するための引き回し配線507が設けられる。ここでは、
外部入力端子としてFPC(フレキシブルプリントサーキット)508を設ける例を示し
ている。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基
板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本
体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
次に、断面構造について図8(B)を用いて説明する。素子基板501上には駆動回路
部及び画素部が形成されているが、ここでは、ソース線駆動回路である駆動回路部503
と、画素部502が示されている。
駆動回路部503はnチャネル型TFT509とpチャネル型TFT510とを組み合
わせたCMOS回路が形成される例を示している。なお、駆動回路部を形成する回路は、
種々のCMOS回路、PMOS回路もしくはNMOS回路で形成しても良い。また、本実
施の形態では、基板上に駆動回路を形成したドライバー一体型を示すが、必ずしもその必
要はなく、基板上ではなく外部に駆動回路を形成することもできる。
また、画素部502はスイッチング用TFT511と、電流制御用TFT512と電流
制御用TFT512の配線(ソース電極又はドレイン電極)に電気的に接続された第1の
電極(陽極)513とを含む複数の画素により形成される。なお、第1の電極(陽極)5
13の端部を覆って絶縁物514が形成されている。ここでは、ポジ型の感光性アクリル
樹脂を用いることにより形成する。
また、上層に積層形成される膜の被覆性を良好なものとするため、絶縁物514の上端
部または下端部に曲率を有する曲面が形成されるようにするのが好ましい。例えば、絶縁
物514の材料としてポジ型の感光性アクリル樹脂を用いた場合、絶縁物514の上端部
に曲率半径(0.2μm〜3μm)を有する曲面を持たせることが好ましい。また、絶縁
物514として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用するこ
とができ、有機化合物に限らず無機化合物、例えば、酸化シリコン、酸窒化シリコン等、
の両者を使用することができる。
第1の電極(陽極)513上には、EL層515及び第2の電極(陰極)516が積層
形成されている。EL層515は、少なくとも発光層が設けられており、発光層は、実施
の形態1で示したような積層構造を有している。また、EL層515には、発光層の他に
正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を適宜設けることがで
きる。
なお、第1の電極(陽極)513、EL層515及び第2の電極(陰極)516との積
層構造で、発光素子517が形成されている。第1の電極(陽極)513、EL層515
及び第2の電極(陰極)516の用いる材料としては、実施の形態2に示す材料を用いる
ことができる。また、ここでは図示しないが、第2の電極(陰極)516は外部入力端子
であるFPC508に電気的に接続されている。
また、図8(B)に示す断面図では発光素子517を1つのみ図示しているが、画素部
502において、複数の発光素子がマトリクス状に配置されているものとする。画素部5
02には、3種類(R、G、B)の発光が得られる発光素子をそれぞれ選択的に形成し、
フルカラー表示可能な発光装置を形成することができる。また、着色層(カラーフィルタ
ー)と組み合わせることによってフルカラー表示可能な発光装置としてもよい。
さらに、シール材505で封止基板506を素子基板501と貼り合わせることにより
、素子基板501、封止基板506、およびシール材505で囲まれた空間518に発光
素子517が備えられた構造になっている。なお、空間518には、不活性気体(窒素や
アルゴン等)が充填される場合の他、シール材505で充填される構成も含むものとする
なお、シール材505にはエポキシ系樹脂や低融点ガラス等を用いるのが好ましい。ま
た、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また
、封止基板506に用いる材料としてガラス基板や石英基板の他、FRP(Fiberg
lass−Reinforced Plastics)、PVF(ポリビニルフロライド
)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用
いることができる。
(実施の形態6)
本実施の形態では、本発明の一態様である発光素子を適用して作製された発光装置を用
いて完成させた様々な電子機器の一例について、図9、図10を用いて説明する。
発光装置を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビ
ジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデ
オカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、
携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙
げられる。これらの電子機器の具体例を図9に示す。
図9(A)は、テレビジョン装置の一例を示している。テレビジョン装置7100は、
筐体7101に表示部7103が組み込まれている。表示部7103により、映像を表示
することが可能であり、発光装置を表示部7103に用いることができる。また、ここで
は、スタンド7105により筐体7101を支持した構成を示している。
テレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリ
モコン操作機7110により行うことができる。リモコン操作機7110が備える操作キ
ー7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示さ
れる映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作
機7110から出力する情報を表示する表示部7107を設ける構成としてもよい。
なお、テレビジョン装置7100は、受信機やモデムなどを備えた構成とする。受信機
により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線又は無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(
送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図9(B)はコンピュータであり、本体7201、筐体7202、表示部7203、キ
ーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む
。なお、コンピュータは、発光装置をその表示部7203に用いることにより作製される
図9(C)は携帯型遊技機であり、筐体7301と筐体7302の2つの筐体で構成さ
れており、連結部7303により、開閉可能に連結されている。筐体7301には表示部
7304が組み込まれ、筐体7302には表示部7305が組み込まれている。また、図
9(C)に示す携帯型遊技機は、その他、スピーカ部7306、記録媒体挿入部7307
、LEDランプ7308、入力手段(操作キー7309、接続端子7310、センサ73
11(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化
学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動
、におい又は赤外線を測定する機能を含むもの)、マイクロフォン7312)等を備えて
いる。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも表示部73
04および表示部7305の両方、又は一方に発光装置を用いていればよく、その他付属
設備が適宜設けられた構成とすることができる。図9(C)に示す携帯型遊技機は、記録
媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能や、他の
携帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、図9(C)に示す
携帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる。
図9(D)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401
に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、ス
ピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、発光
装置を表示部7402に用いることにより作製される。
図9(D)に示す携帯電話機7400は、表示部7402を指などで触れることで、情
報を入力することができる。また、電話を掛ける、或いはメールを作成するなどの操作は
、表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする
表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表
示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力
を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場
合、表示部7402の画面のほとんどにキーボード又は番号ボタンを表示させることが好
ましい。
また、携帯電話機7400内部に、ジャイロ、加速度センサ等の傾きを検出するセンサ
を有する検出装置を設けることで、携帯電話機7400の向き(縦か横か)を判断して、
表示部7402の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操
作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類
によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画
のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表
示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モー
ドから表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7
402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。
また、表示部に近赤外光を発光するバックライト又は近赤外光を発光するセンシング用光
源を用いれば、指静脈、掌静脈などを撮像することもできる。
図10(A)及び図10(B)は2つ折り可能なタブレット型端末である。図10(A
)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a、表示
部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省電力モ
ード切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有する。な
お、当該タブレット端末は、発光装置を表示部9631a、表示部9631bの一方又は
両方に用いることにより作製される。
表示部9631aは、一部をタッチパネルの領域9632aとすることができ、表示さ
れた操作キー9637にふれることでデータ入力をすることができる。なお、表示部96
31aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領
域がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部96
31aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部9
631aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表
示画面として用いることができる。
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一
部をタッチパネルの領域9632bとすることができる。また、タッチパネルのキーボー
ド表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれること
で表示部9631bにキーボードボタン表示することができる。
また、タッチパネルの領域9632aとタッチパネルの領域9632bに対して同時に
タッチ入力することもできる。
また、表示モード切り替えスイッチ9034は、縦表示または横表示などの表示の向き
を切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替え
スイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外
光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光セ
ンサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置
を内蔵させてもよい。
また、図10(A)では表示部9631bと表示部9631aの表示面積が同じ例を示
しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表
示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネ
ルとしてもよい。
図10(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9
633、充放電制御回路9634、バッテリー9635、DCDCコンバータ9636を
有する。なお、図10(B)では充放電制御回路9634の一例としてバッテリー963
5、DCDCコンバータ9636を有する構成について示している。
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態
にすることができる。従って、表示部9631a、表示部9631bを保護できるため、
耐久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
また、この他にも図10(A)及び図10(B)に示したタブレット型端末は、様々な
情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻な
どを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ
入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有する
ことができる。
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル
、表示部、または映像信号処理部等に供給することができる。なお、太陽電池9633は
、筐体9630の片面または両面に設けることができ、バッテリー9635の充電を効率
的に行う構成とすることができる。なおバッテリー9635としては、リチウムイオン電
池を用いると、小型化を図れる等の利点がある。
また、図10(B)に示す充放電制御回路9634の構成、及び動作について図10(
C)にブロック図を示し説明する。図10(C)には、太陽電池9633、バッテリー9
635、DCDCコンバータ9636、コンバータ9638、スイッチSW1乃至SW3
、表示部9631について示しており、バッテリー9635、DCDCコンバータ963
6、コンバータ9638、スイッチSW1乃至SW3が、図10(B)に示す充放電制御
回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する
。太陽電池9633で発電した電力は、バッテリー9635を充電するための電圧となる
ようDCDCコンバータ9636で昇圧または降圧がなされる。そして、表示部9631
の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コ
ンバータ9638で表示部9631に必要な電圧に昇圧または降圧をすることとなる。ま
た、表示部9631での表示を行わない際には、スイッチSW1をオフにし、スイッチS
W2をオンにしてバッテリー9635の充電を行う構成とすればよい。
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、
圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段によるバ
ッテリー9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送
受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構
成としてもよい。
また、上記実施の形態で説明した表示部を具備していれば、図10に示した電子機器に
特に限定されないことは言うまでもない。
以上のようにして、本発明の一態様である発光装置を適用して電子機器を得ることがで
きる。発光装置の適用範囲は極めて広く、あらゆる分野の電子機器に適用することが可能
である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用
いることができる。
(実施の形態7)
本実施の形態では、本発明の一態様である発光素子を含む発光装置を適用した照明装置
の一例について、図11を用いて説明する。
図11は、発光装置を室内の照明装置8001として用いた例である。なお、発光装置
は大面積化も可能であるため、大面積の照明装置を形成することもできる。その他、曲面
を有する筐体を用いることで、発光領域が曲面を有する照明装置8002を形成すること
もできる。本実施の形態で示す発光装置に含まれる発光素子は薄膜状であり、筐体のデザ
インの自由度が高い。したがって、様々な意匠を凝らした照明装置を形成することができ
る。さらに、室内の壁面に大型の照明装置8003を備えても良い。
また、発光装置をテーブルの表面に用いることによりテーブルとしての機能を備えた照
明装置8004とすることができる。なお、その他の家具の一部に発光装置を用いること
により、家具としての機能を備えた照明装置とすることができる。
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装
置は本発明の一態様に含まれるものとする。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用
いることができる。
本実施例では、本発明の一態様である発光素子1について図12を用いて説明する。な
お、本実施例で用いる材料の化学式を以下に示す。
≪発光素子1の作製≫
まず、ガラス製の基板1100上に酸化珪素を含むインジウム錫酸化物(ITSO)を
スパッタリング法により成膜し、陽極として機能する第1の電極1101を形成した。な
お、その膜厚は110nmとし、電極面積は2mm×2mmとした。
次に、基板1100上に発光素子1を形成するための前処理として、基板表面を水で洗
浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸
着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板1100を
30分程度放冷した。
次に、第1の電極1101が形成された面が下方となるように、基板1100を真空蒸
着装置内に設けられたホルダーに固定した。本実施例では、真空蒸着法により、EL層1
102を構成する正孔注入層1111、正孔輸送層1112、発光層1113、電子輸送
層1114、電子注入層1115が順次形成される場合について説明する。
真空装置内を10−4Paに減圧した後、1,3,5−トリ(ジベンゾチオフェン−4
−イル)ベンゼン(略称:DBT3P−II)と酸化モリブデン(VI)とを、DBT3
P−II(略称):酸化モリブデン=4:2(質量比)となるように共蒸着することによ
り、第1の電極1101上に正孔注入層1111を形成した。膜厚は20nmとした。な
お、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同時に蒸発させる蒸着法
である。
次に、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミ
ン(略称:BPAFLP)を20nm蒸着することにより、正孔輸送層1112を形成し
た。
次に、正孔輸送層1112上に発光層1113を形成した。4,6−ビス[3−(9H
−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、N
−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾー
ル−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:
PCBBiF)、トリス(2−フェニルピリジナト)イリジウム(III)(略称:[I
r(ppy)])を、4,6mCzP2Pm(略称):PCBBiF(略称):[Ir
(ppy)](略称)=0.7:0.3:0.05(質量比)となるよう共蒸着し、第
1の発光層1113aを20nmの膜厚で形成した後、2−[3’−(ジベンゾチオフェ
ン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mD
BTBPDBq−II)、PCBBiF(略称)、ビス{4,6−ジメチル−2−[5−
(2,6−ジメチルフェニル)−3−(3,5−ジメチルフェニル)−2−ピラジニル−
κN]フェニル−κC}(2,8−ジメチル−4,6−ノナンジオナト−κO,O’)
イリジウム(III)(略称:[Ir(dmdppr−dmp)(divm)])を、
2mDBTBPDBq−II(略称):PCBBiF(略称):[Ir(dmdppr−
dmp)(divm)](略称)=0.9:0.1:0.05(質量比)となるように
共蒸着し、第2の発光層1113bを20nmの膜厚で形成することで積層構造を有する
発光層1113を形成した。
次に、発光層1113上に2mDBTBPDBq−II(略称)を15nm蒸着した後
、バソフェナントロリン(略称:Bphen)を10nm蒸着することにより、電子輸送
層1114を形成した。さらに電子輸送層1114上に、フッ化リチウムを1nm蒸着す
ることにより、電子注入層1115を形成した。
最後に、電子注入層1115上にアルミニウムを200nmの膜厚となるように蒸着し
、陰極となる第2の電極1103を形成し、発光素子1を得た。なお、上述した蒸着過程
において、蒸着は全て抵抗加熱法を用いた。
以上により得られた発光素子1の素子構造を表1に示す。
また、作製した発光素子1は、大気に曝されないように窒素雰囲気のグローブボックス
内において封止した(シール材を素子の周囲に塗布し、封止時に80℃にて1時間熱処理
)。
≪発光素子1の動作特性≫
作製した発光素子1の動作特性について測定した。なお、測定は室温(25℃に保たれ
た雰囲気)で行った。
まず、発光素子1の電流密度−輝度特性を図13に示す。なお、図13において、縦軸
は、輝度(cd/m)、横軸は電流密度(mA/cm)を示す。また、発光素子1の
電圧−輝度特性を図14に示す。なお、図14において、縦軸は、輝度(cd/m)、
横軸は、電圧(V)を示す。また、発光素子1の輝度−電流効率特性を図15に示す。な
お、図15において、縦軸は、電流効率(cd/A)、横軸は、輝度(cd/m)を示
す。また、発光素子1の電圧−電流特性を図16に示す。なお、図16において、縦軸は
、電流(mA)、横軸は、電圧(V)を示す。
図15より、本発明の一態様である発光素子1は、高効率な素子であることがわかった
。また、1000cd/m付近における発光素子1の主な初期特性値を以下の表2に示
す。
上記結果から、本実施例で作製した発光素子1は、高い外部量子効率を示しているので
、高い発光効率を示すことが分かる。
また、発光素子1に25mA/cmの電流密度で電流を流した際の発光スペクトルを
、図17に示す。図17に示す通り、発光素子1の発光スペクトルは519nmと615
nm付近に2つのピークを有しており、それぞれ燐光性有機金属イリジウム錯体[Ir(
ppy)]と[Ir(dmdppr−dmp)(divm)]の発光に由来している
ことが示唆される。
なお、サイクリックボルタンメトリ測定より、電子輸送性を有する第1の有機化合物で
ある4,6mCzP2PmのLUMO準位は−2.88eVであり、電子輸送性を有する
第3の有機化合物である2mDBTBPDBq−IIのLUMO準位は−2.94eVと
見積もられた。したがって、第3の有機化合物よりも第1の有機化合物の方が、LUMO
準位が高い構成となっている。
ここで、図18に、電子輸送性を有する第1の有機化合物である4,6mCzP2Pm
の薄膜の発光スペクトル、正孔輸送性を有する第2の有機化合物であるPCBBiFの薄
膜の発光スペクトル、及び4,6mCzP2PmとPCBBiFの混合膜(共蒸着膜)の
発光スペクトルを示す。また、図19に、電子輸送性を有する第3の有機化合物である2
mDBTBPDBq−IIの薄膜の発光スペクトル、正孔輸送性を有する第2の有機化合
物であるPCBBiFの薄膜の発光スペクトル、及び2mDBTBPDBq−IIとPC
BBiFの混合膜(共蒸着膜)の発光スペクトルを示す。
図18および図19から、混合膜の発光波長は各材料の単膜の発光波長よりも長波長に
位置しているため、第1の有機化合物(4,6mCzP2Pm)と第2の有機化合物(P
CBBiF)、および第3の有機化合物(2mDBTBPDBq−II)と第2の有機化
合物(PCBBiF)とは、それぞれ励起錯体を形成していることがわかる。
101 第1の電極
102 第2の電極
103 EL層
104 正孔注入層
105 正孔輸送層
106 発光層
106a 第1の発光層
106b 第2の発光層
107 電子輸送層
108 電子注入層
109 発光性物質
109a 三重項励起エネルギーを発光に変える第1の発光性物質
109b 三重項励起エネルギーを発光に変える第2の発光性物質
110 第1の有機化合物
111 第2の有機化合物
112 第3の有機化合物
201 第1の電極(陽極)
202 第2の電極(陰極)
203 EL層
204 正孔注入層
205 正孔輸送層
206 発光層
206a 第1の発光層
206b 第2の発光層
207 電子輸送層
208 電子注入層
209 発光性物質
209a 三重項励起エネルギーを発光に変える第1の発光性物質
209b 三重項励起エネルギーを発光に変える第2の発光性物質
210 第1の有機化合物
211 第2の有機化合物
212 第3の有機化合物
301 第1の電極
302(1) 第1のEL層
302(2) 第2のEL層
302(n−1) 第(n−1)のEL層
302(n) 第(n)のEL層
304 第2の電極
305 電荷発生層(I)
305(1) 第1の電荷発生層(I)
305(2) 第2の電荷発生層(I)
305(n−2) 第(n−2)の電荷発生層(I)
305(n−1) 第(n−1)の電荷発生層(I)
401 反射電極
402 半透過・半反射電極
403a 第1の透明導電層
403b 第2の透明導電層
404B 第1の発光層(B)
404G 第2の発光層(G)
404R 第3の発光層(R)
405 EL層
410R 第1の発光素子(R)
410G 第2の発光素子(G)
410B 第3の発光素子(B)
501 素子基板
502 画素部
503 駆動回路部(ソース線駆動回路)
504a、504b 駆動回路部(ゲート線駆動回路)
505 シール材
506 封止基板
507 引き回し配線
508 FPC(フレキシブルプリントサーキット)
509 nチャネル型TFT
510 pチャネル型TFT
511 スイッチング用TFT
512 電流制御用TFT
513 第1の電極(陽極)
514 絶縁物
515 EL層
516 第2の電極(陰極)
517 発光素子
518 空間
7100 テレビジョン装置
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7301 筐体
7302 筐体
7303 連結部
7304 表示部
7305 表示部
7306 スピーカ部
7307 記録媒体挿入部
7308 LEDランプ
7309 操作キー
7310 接続端子
7311 センサ
7312 マイクロフォン
7400 携帯電話機
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
8001 照明装置
8002 照明装置
8003 照明装置
8004 照明装置
9033 留め具
9034 表示モード切り替えスイッチ
9035 電源スイッチ
9036 省電力モード切り替えスイッチ
9038 操作スイッチ
9630 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a タッチパネルの領域
9632b タッチパネルの領域
9633 太陽電池
9634 充放電制御回路
9635 バッテリー
9636 DCDCコンバータ
9637 操作キー
9638 コンバータ
9639 ボタン

Claims (5)

  1. 陽極と陰極との間に発光層を有し、
    前記発光層は、第1の発光層と、第2の発光層とを有し、
    前記第1の発光層は、前記陽極と、前記第2の発光層との間に位置し、
    前記第1の発光層は、三重項励起エネルギーを発光に変える第1の発光性物質と、第1の有機化合物と、第2の有機化合物とを含み、
    前記第2の発光層は、三重項励起エネルギーを発光に変える第2の発光性物質と、前記第2の有機化合物と、第3の有機化合物とを含み、
    前記第1の有機化合物は、前記第3の有機化合物よりも最低空軌道準位(LUMO準位)が高く、
    前記第1の発光性物質は、前記第2の発光性物質よりも短波長の発光を示し、
    前記第1の有機化合物は、π不足型複素芳香族化合物であり、
    前記第3の有機化合物は、π不足型複素芳香族化合物であり、
    前記第2の有機化合物は、π過剰型複素芳香族化合物または芳香族アミン化合物である発光素子。
  2. 請求項1において、
    前記第1の発光性物質は、燐光性化合物または熱活性化遅延蛍光材料であり、
    前記第2の発光性物質は、燐光性化合物または熱活性化遅延蛍光材料である発光素子。
  3. 請求項1または請求項2に記載の発光素子を有する発光装置。
  4. 請求項3に記載の発光装置を有する電子機器。
  5. 請求項3に記載の発光装置を有する照明装置。
JP2017113154A 2012-04-13 2017-06-08 発光素子、発光装置、電子機器および照明装置 Active JP6386136B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012091615 2012-04-13
JP2012091615 2012-04-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013048051A Division JP6158543B2 (ja) 2012-04-13 2013-03-11 発光素子、発光装置、電子機器、および照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018149423A Division JP6564506B2 (ja) 2012-04-13 2018-08-08 発光素子、発光装置、電子機器および照明装置

Publications (2)

Publication Number Publication Date
JP2017183291A JP2017183291A (ja) 2017-10-05
JP6386136B2 true JP6386136B2 (ja) 2018-09-05

Family

ID=60007112

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2017113154A Active JP6386136B2 (ja) 2012-04-13 2017-06-08 発光素子、発光装置、電子機器および照明装置
JP2018149423A Active JP6564506B2 (ja) 2012-04-13 2018-08-08 発光素子、発光装置、電子機器および照明装置
JP2019137511A Active JP6723421B2 (ja) 2012-04-13 2019-07-26 発光素子、発光装置、電子機器および照明装置
JP2020108020A Active JP6926284B2 (ja) 2012-04-13 2020-06-23 発光素子、発光装置、電子機器および照明装置
JP2021127968A Withdrawn JP2021180332A (ja) 2012-04-13 2021-08-04 発光素子、発光装置、電子機器および照明装置

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2018149423A Active JP6564506B2 (ja) 2012-04-13 2018-08-08 発光素子、発光装置、電子機器および照明装置
JP2019137511A Active JP6723421B2 (ja) 2012-04-13 2019-07-26 発光素子、発光装置、電子機器および照明装置
JP2020108020A Active JP6926284B2 (ja) 2012-04-13 2020-06-23 発光素子、発光装置、電子機器および照明装置
JP2021127968A Withdrawn JP2021180332A (ja) 2012-04-13 2021-08-04 発光素子、発光装置、電子機器および照明装置

Country Status (1)

Country Link
JP (5) JP6386136B2 (ja)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638770A1 (de) * 1996-09-21 1998-03-26 Philips Patentverwaltung Organisches elektrolumineszentes Bauelement mit Exciplex
JP2004179142A (ja) * 2002-09-30 2004-06-24 Sanyo Electric Co Ltd 発光素子
JP4578846B2 (ja) * 2003-04-09 2010-11-10 株式会社半導体エネルギー研究所 白色発光素子および発光装置
US7862906B2 (en) * 2003-04-09 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Electroluminescent element and light-emitting device
JP4947909B2 (ja) * 2004-03-25 2012-06-06 三洋電機株式会社 有機エレクトロルミネッセンス素子
JP4393249B2 (ja) * 2004-03-31 2010-01-06 株式会社 日立ディスプレイズ 有機発光素子,画像表示装置、及びその製造方法
JP2006203172A (ja) * 2004-12-22 2006-08-03 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006269232A (ja) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP4999291B2 (ja) * 2005-06-30 2012-08-15 三洋電機株式会社 有機エレクトロルミネッセンス素子およびそれを備える表示装置又は発光装置
JP2007227152A (ja) * 2006-02-23 2007-09-06 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
RU2010151920A (ru) * 2008-05-19 2012-06-27 Шарп Кабусики Кайся (Jp) Электролюминесцентный элемент, отображающее устройство и подсвечивающее устройство
DE102009047883A1 (de) * 2009-09-30 2011-03-31 Osram Opto Semiconductors Gmbh Optoelektronisches organisches Bauelement und Verfahren zu dessen Herstellung
JP4796191B2 (ja) * 2010-02-05 2011-10-19 富士フイルム株式会社 有機電界発光素子
WO2011097259A1 (en) * 2010-02-05 2011-08-11 Nitto Denko Corporation Organic light-emitting diode with enhanced efficiency
JP5602555B2 (ja) * 2010-05-17 2014-10-08 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
JP2012243983A (ja) * 2011-05-20 2012-12-10 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
KR20130029956A (ko) * 2011-09-16 2013-03-26 엘지디스플레이 주식회사 유기 발광 표시 장치
JP6468689B2 (ja) * 2012-04-13 2019-02-13 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置

Also Published As

Publication number Publication date
JP2021180332A (ja) 2021-11-18
JP2018182345A (ja) 2018-11-15
JP2020170712A (ja) 2020-10-15
JP6926284B2 (ja) 2021-08-25
JP2020010041A (ja) 2020-01-16
JP2017183291A (ja) 2017-10-05
JP6723421B2 (ja) 2020-07-15
JP6564506B2 (ja) 2019-08-21

Similar Documents

Publication Publication Date Title
JP7254876B2 (ja) 発光素子、発光装置、電子機器および照明装置
KR102412783B1 (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR102546999B1 (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2018101637A (ja) 発光素子、発光装置、電子機器および照明装置
JP2023129582A (ja) 発光素子
JP6564506B2 (ja) 発光素子、発光装置、電子機器および照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6386136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250