JP6381725B2 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JP6381725B2
JP6381725B2 JP2017077208A JP2017077208A JP6381725B2 JP 6381725 B2 JP6381725 B2 JP 6381725B2 JP 2017077208 A JP2017077208 A JP 2017077208A JP 2017077208 A JP2017077208 A JP 2017077208A JP 6381725 B2 JP6381725 B2 JP 6381725B2
Authority
JP
Japan
Prior art keywords
heat
heating
heat exchanger
circuit
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017077208A
Other languages
Japanese (ja)
Other versions
JP2017142054A (en
Inventor
菅 崇
菅  崇
真典 上田
真典 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2017077208A priority Critical patent/JP6381725B2/en
Publication of JP2017142054A publication Critical patent/JP2017142054A/en
Application granted granted Critical
Publication of JP6381725B2 publication Critical patent/JP6381725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

この発明は、複数の熱源を利用するヒートポンプ装置に関するものである。   The present invention relates to a heat pump device that uses a plurality of heat sources.

従来この種のヒートポンプ装置において、図2に示すように、ヒートポンプユニット101は、圧縮機102、凝縮器としての加熱熱交換器103、膨張弁104、蒸発器としての熱源熱交換器105とを備えており、熱源熱交換器105は空気熱を熱源として利用する空気熱源熱交換器106と、地中熱を熱源として利用する地中熱源熱交換器107とによって構成され、圧縮機102と加熱熱交換器103と膨張弁104と空気熱源熱交換器106を冷媒配管108で環状に接続した第1ヒートポンプ回路109と、圧縮機102と加熱熱交換器103と膨張弁104と地中熱源熱交換器107を冷媒配管108で環状に接続した第2ヒートポンプ回路110とを形成するものである。   Conventionally, in this type of heat pump apparatus, as shown in FIG. 2, a heat pump unit 101 includes a compressor 102, a heating heat exchanger 103 as a condenser, an expansion valve 104, and a heat source heat exchanger 105 as an evaporator. The heat source heat exchanger 105 includes an air heat source heat exchanger 106 that uses air heat as a heat source and a ground heat source heat exchanger 107 that uses underground heat as a heat source. The first heat pump circuit 109 in which the exchanger 103, the expansion valve 104, and the air heat source heat exchanger 106 are connected in a ring shape by the refrigerant pipe 108, the compressor 102, the heating heat exchanger 103, the expansion valve 104, and the underground heat source heat exchanger. A second heat pump circuit 110 is formed in which 107 is annularly connected by a refrigerant pipe 108.

111は膨張弁104と熱源熱交換器105との間の冷媒配管108に設けられ冷媒の流れを切り替える切替弁で、この切替弁111の切替作動により地中熱源熱交換器107側を閉じた場合は、空気熱源熱交換器106側に冷媒が流れ、第1ヒートポンプ回路109が形成されて外気より採熱し、空気熱源熱交換器106側を閉じた場合は、地中熱源熱交換器107側に冷媒が流れ、第2ヒートポンプ回路110が形成されて地中より採熱するものである。   A switching valve 111 is provided in the refrigerant pipe 108 between the expansion valve 104 and the heat source heat exchanger 105 and switches the flow of the refrigerant. When the underground heat source heat exchanger 107 side is closed by the switching operation of the switching valve 111. If the refrigerant flows to the air heat source heat exchanger 106 side, the first heat pump circuit 109 is formed to extract heat from the outside air, and the air heat source heat exchanger 106 side is closed, the ground heat source heat exchanger 107 side The refrigerant flows and the second heat pump circuit 110 is formed to collect heat from the ground.

112は空気熱源熱交換器106に送風する送風ファン、113は地中に埋設された地中熱交換器、114は地中熱交換器113と地中熱源熱交換器107との間を地中熱配管115で環状に接続した地中熱循環回路、116は地中熱循環回路114に熱媒を循環させる地中熱循環ポンプ、117は負荷端末、118は負荷端末117に熱媒を循環させ、途中に加熱熱交換器103が接続された加熱循環回路、119は加熱循環回路118に熱媒を循環させる加熱循環ポンプ、120は外気温度を検出する外気温センサで、外気温センサ120の検出する外気温度が高い場合は、切替弁111は地中熱源熱交換器107側を閉じて空気熱源熱交換器106側に冷媒を流し、空気熱源熱交換器106を蒸発器、加熱熱交換器103を凝縮器として機能させ、熱源としては採熱効率のよい空気熱を利用し、外気温センサ120の検出する外気温度が低い場合には、切替弁111は空気熱源熱交換器106側を閉じて地中熱源熱交換器107側に冷媒を流し、地中熱源熱交換器107を蒸発器、加熱熱交換器103を凝縮器として機能させ、熱源として採熱効率のよい地中熱を利用して、負荷端末117で給湯水を加熱する沸き上げ運転を行うものがあり(例えば、特許文献1参照。)、さらに、負荷端末117として床暖房パネル等を設置すれば、被空調空間の空気を加熱する暖房運転を行うことができるものであった。   112 is a blower fan that blows air to the air heat source heat exchanger 106, 113 is an underground heat exchanger embedded in the ground, and 114 is underground between the underground heat exchanger 113 and the underground heat source heat exchanger 107. A ground heat circulation circuit connected in a ring shape with a heat pipe 115, a ground heat circulation pump 116 for circulating a heat medium to the ground heat circulation circuit 114, a load terminal 117, and a heat medium 118 for circulating the heat medium to the load terminal 117. A heating circulation circuit to which the heating heat exchanger 103 is connected in the middle, 119 is a heating circulation pump that circulates the heat medium in the heating circulation circuit 118, 120 is an outside air temperature sensor that detects the outside air temperature, and is detected by the outside air temperature sensor 120. When the outside air temperature is high, the switching valve 111 closes the underground heat source heat exchanger 107 side and allows the refrigerant to flow to the air heat source heat exchanger 106 side, and the air heat source heat exchanger 106 is an evaporator and heating heat exchanger 103. As a condenser When the outside air temperature detected by the outside air temperature sensor 120 is low, the switching valve 111 closes the air heat source heat exchanger 106 side and exchanges the ground heat source heat. The refrigerant is caused to flow to the side of the heater 107, the underground heat source heat exchanger 107 functions as an evaporator, and the heating heat exchanger 103 functions as a condenser, and hot water is supplied at the load terminal 117 using underground heat with good heat collection efficiency as a heat source. Some have a boiling operation to heat water (see, for example, Patent Document 1). Further, if a floor heating panel or the like is installed as the load terminal 117, a heating operation to heat the air in the air-conditioned space is performed. It was something that could be done.

特開2006−125769号公報JP 2006-125769 A

ところで、この従来のヒートポンプ装置において、前記暖房運転を行う場合は、外気温度に応じて、採熱効率のよい空気熱源熱交換器106または地中熱源熱交換器107のどちらか一方の熱源を利用して負荷側を加熱するものであるが、空気熱源熱交換器106または地中熱源熱交換器107のどちらか一方の熱源しか利用できないため、冬季等の低外気温時に負荷端末117の暖房出力が大きくなると、所望の暖房出力を得ることができない場合が生じるという問題を有するものであった。   By the way, in this conventional heat pump device, when the heating operation is performed, either the air heat source heat exchanger 106 or the underground heat source heat exchanger 107 having good heat collection efficiency is used according to the outside air temperature. However, since only one of the heat source of the air heat source heat exchanger 106 or the underground heat source heat exchanger 107 can be used, the heating output of the load terminal 117 is reduced at low outside air temperature such as in winter. When it becomes larger, there is a problem that a desired heating output cannot be obtained.

この発明は上記課題を解決するために、特に請求項1ではその構成を、第1圧縮機、凝縮器としての第1加熱熱交換器、第1減圧手段、地中熱を利用する蒸発器としての地中熱源熱交換器を第1冷媒配管で環状に接続した第1ヒートポンプ回路と、第2圧縮機、凝縮器としての第2加熱熱交換器、第2減圧手段、熱源として外気の空気熱を利用する蒸発器としての空気熱源熱交換器を第2冷媒配管で環状に接続した第2ヒートポンプ回路と、放熱端末と、該放熱端末で放熱する熱媒を循環させる加熱循環ポンプを有する加熱循環回路と、外気温度を検出する外気温センサとを設け、前記放熱端末による暖房運転を行うものであって、前記加熱循環回路に前記第1加熱熱交換器と前記第2加熱熱交換器を直列に接続し、前記外気温センサによって検出される外気温度に基づいて、前記第1ヒートポンプ回路または前記第2ヒートポンプ回路のうち、採熱効率のよい方を選択し、暖房出力が小さい場合は選択された方のヒートポンプ回路のみを作動させての前記暖房運転を行うと共に、前記第1ヒートポンプ回路のみの作動では所望の暖房出力を得られない場合は双方のヒートポンプ回路を作動させての前記暖房運転を行うようにするものとした。 In order to solve the above-described problems, the present invention is particularly configured in claim 1 as a first compressor, a first heating heat exchanger as a condenser, a first pressure reducing means, and an evaporator using ground heat. First heat pump circuit in which the underground heat source heat exchanger is annularly connected by a first refrigerant pipe, a second compressor, a second heating heat exchanger as a condenser, a second decompression means, and air heat of outside air as a heat source A heat circulation circuit having a second heat pump circuit in which an air heat source heat exchanger as an evaporator that uses a ring is connected in a ring shape with a second refrigerant pipe, a heat radiating terminal, and a heating circulation pump that circulates a heat medium that radiates heat at the heat radiating terminal A circuit and an outside air temperature sensor for detecting an outside air temperature are provided to perform heating operation by the heat radiating terminal, and the first heating heat exchanger and the second heating heat exchanger are connected in series to the heating circulation circuit. Connected to the outside air temperature sensor. Based on the outside air temperature detected, one of the first heat pump circuit or the second heat pump circuit, select whichever of Tonetsu efficiency, and when the heating output is smaller actuates only the heat pump circuit of a side selected When the desired heating output cannot be obtained by operating only the first heat pump circuit, the heating operation is performed by operating both heat pump circuits.

また、請求項2では、前記加熱循環回路に、前記第1加熱熱交換器と前記第2加熱熱交換器を、前記加熱循環回路を循環する熱媒の流れに対して、前記第1加熱熱交換器、前記第2加熱熱交換器の順に直列に接続するものとした。 According to a second aspect of the present invention, the first heating heat exchanger and the second heating heat exchanger are connected to the heating circulation circuit with respect to the flow of the heat medium circulating in the heating circulation circuit. The exchanger and the second heating heat exchanger were connected in series in this order .

この発明によれば、加熱循環回路に第1ヒートポンプ回路の第1加熱熱交換器と第2ヒートポンプ回路の第2加熱熱交換器を直列に接続し、外気温センサによって検出される外気温度に基づいて、第1ヒートポンプ回路または第2ヒートポンプ回路のうち、採熱効率のよい方を選択し、暖房出力が小さい場合は選択された方のヒートポンプ回路のみを作動させての前記暖房運転を行うと共に、前記第1ヒートポンプ回路のみの作動では所望の暖房出力を得られない場合は双方のヒートポンプ回路を作動させての暖房運転を行うようにしたことで、暖房出力が小さい場合は、地中熱を利用する第1ヒートポンプ回路のみを作動させての暖房運転または空気熱を利用する第2ヒートポンプ回路を作動させての暖房運転のうち、熱源として採熱効率のよい方を選択して効率のよい暖房運転を行わせることができると共に、前記第1ヒートポンプ回路のみの作動では所望の暖房出力を得られない場合は、第1ヒートポンプ回路および第2ヒートポンプ回路の双方を作動させての暖房運転を行わせて、所望の暖房出力を得ることができるものである。 According to this invention, the first heating heat exchanger of the first heat pump circuit and the second heating heat exchanger of the second heat pump circuit are connected in series to the heating circulation circuit, and based on the outside air temperature detected by the outside air temperature sensor. Selecting one of the first heat pump circuit or the second heat pump circuit with better heat collection efficiency, and when the heating output is small, performing the heating operation by operating only the selected heat pump circuit, and When the desired heating output cannot be obtained by the operation of only the first heat pump circuit, the heating operation is performed by operating both heat pump circuits. When the heating output is small, the underground heat is used. Heating efficiency as a heat source in heating operation by operating only the first heat pump circuit or heating operation by operating the second heat pump circuit using air heat It is possible to perform good heating operation efficiency by selecting people good, both the in the operation of the first heat pump circuit only may not be obtained the desired heating output, the first heat pump circuit and the second heat pump circuit The desired heating output can be obtained by performing the heating operation by operating the.

この発明のヒートポンプ装置の一実施形態の概略構成図。The schematic block diagram of one Embodiment of the heat pump apparatus of this invention. 従来のヒートポンプ装置の概略構成図。The schematic block diagram of the conventional heat pump apparatus.

次に、この発明のヒートポンプ装置の一実施形態について図面に基づき説明する。
図1に示すように、本実施形態のヒートポンプ装置は、大きく分けて地中熱ヒートポンプユニット1と、空気熱ヒートポンプユニット2と、地中熱交換部3と、加熱熱交換部4とから構成されるものである。
Next, an embodiment of the heat pump device of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the heat pump device of the present embodiment is roughly composed of a geothermal heat pump unit 1, an air heat heat pump unit 2, a geothermal heat exchange unit 3, and a heating heat exchange unit 4. Is.

前記地中熱ヒートポンプユニット1は、冷媒を圧縮する能力可変の第1圧縮機5と、第1圧縮機5から吐出された高温冷媒を流通させ、この高温冷媒と加熱熱交換部4の熱媒との熱交換を行う第1凝縮器としての第1加熱熱交換器6と、第1加熱熱交換器6から流出する冷媒を減圧する第1減圧手段としての第1膨張弁7と、第1膨張弁7によって減圧された低温冷媒と地中熱交換部3の熱源側の熱媒との熱交換を行う第1蒸発器としての地中熱源熱交換器8とを備え、これらを第1冷媒配管9で環状に接続して第1ヒートポンプ回路10を形成しているものである。また、地中熱ヒートポンプユニット1の冷媒としては、二酸化炭素冷媒やHFC冷媒等の任意の冷媒を用いることができるものである。   The geothermal heat pump unit 1 circulates a variable capacity first compressor 5 for compressing refrigerant and a high-temperature refrigerant discharged from the first compressor 5, and a heat medium for the high-temperature refrigerant and the heating heat exchange unit 4. A first heating heat exchanger 6 as a first condenser for performing heat exchange with the first expansion valve 7, a first expansion valve 7 as first decompression means for decompressing the refrigerant flowing out of the first heating heat exchanger 6, A ground heat source heat exchanger 8 serving as a first evaporator that performs heat exchange between the low-temperature refrigerant decompressed by the expansion valve 7 and the heat medium on the heat source side of the ground heat exchanging unit 3 is provided. The first heat pump circuit 10 is formed by connecting the pipe 9 in a ring shape. Moreover, as a refrigerant | coolant of the geothermal heat pump unit 1, arbitrary refrigerant | coolants, such as a carbon dioxide refrigerant | coolant and a HFC refrigerant | coolant, can be used.

前記空気熱ヒートポンプユニット2は、冷媒を圧縮する能力可変の第2圧縮機11と、第2圧縮機11から吐出された高温冷媒を流通させ、この高温冷媒と加熱熱交換部4の熱媒との熱交換を行う第2凝縮器としての第2加熱熱交換器12と、第2加熱熱交換器12から流出する冷媒を減圧する第2減圧手段としての第2膨張弁13と、第2膨張弁13によって減圧された低温冷媒と送風ファン14から送風される空気との熱交換を行う第2蒸発器としての空気熱源熱交換器15とを備え、これらを第2冷媒配管16で環状に接続して第2ヒートポンプ回路17を形成しているものである。なお、18は外気温度を検出する外気温センサである。   The air heat heat pump unit 2 circulates a second compressor 11 having a variable capacity for compressing the refrigerant and a high-temperature refrigerant discharged from the second compressor 11, and the high-temperature refrigerant and the heat medium of the heating heat exchange unit 4. A second heating heat exchanger 12 as a second condenser that performs heat exchange of the second expansion valve 13, a second expansion valve 13 as a second decompression means that decompresses the refrigerant flowing out of the second heating heat exchanger 12, and a second expansion An air heat source heat exchanger 15 serving as a second evaporator that performs heat exchange between the low-temperature refrigerant decompressed by the valve 13 and the air blown from the blower fan 14 is provided and connected in a ring shape by the second refrigerant pipe 16. Thus, the second heat pump circuit 17 is formed. Reference numeral 18 denotes an outside air temperature sensor that detects the outside air temperature.

前記地中熱交換部3は、地中熱源熱交換器8と、地中に設置された地中熱交換器19と、地中熱源熱交換器8と地中熱交換器19とを地中熱配管20で環状に接続する地中熱循環回路21と、地中熱循環回路21に熱媒としての不凍液を循環させる回転数可変の地中熱循環ポンプ22とを備えているものである。   The underground heat exchanging section 3 includes an underground heat source heat exchanger 8, an underground heat exchanger 19 installed in the ground, an underground heat source heat exchanger 8, and an underground heat exchanger 19. A ground heat circulation circuit 21 connected in a ring shape with a heat pipe 20 and a ground heat circulation pump 22 with a variable rotation speed for circulating an antifreeze liquid as a heat medium in the ground heat circulation circuit 21 are provided.

ここで、前記地中熱交換部3では、地中熱交換器19によって地中から地中熱を採熱しその熱を帯びた不凍液が、地中熱循環ポンプ22により地中熱源熱交換器8に供給され、そして、地中熱源熱交換器8にて冷媒と不凍液とが対向して流れて熱交換が行われ、地中熱交換器19にて採熱された地中熱が第1ヒートポンプ回路10の冷媒側に汲み上げられて冷媒が加熱されるものである。   Here, in the underground heat exchanging section 3, the underground heat exchanger 19 collects the underground heat from the ground, and the antifreeze liquid that has the heat is discharged from the underground heat circulation pump 22 to the underground heat source heat exchanger 8. In the ground heat source heat exchanger 8, the refrigerant and the antifreeze flow face each other to exchange heat, and the ground heat collected in the ground heat exchanger 19 is converted into the first heat pump. The refrigerant is pumped up to the refrigerant side of the circuit 10 and heated.

また、前記加熱熱交換部4は、被空調空間を加熱する床暖房パネルやパネルコンベクター等の放熱端末23と、放熱端末23で放熱する熱媒としての循環液を循環させる加熱循環ポンプ24を有する加熱循環回路25と、放熱端末23毎に分岐した加熱循環回路25に各々設けられ、その開閉により放熱端末23への循環液の供給を制御する熱動弁26(26a、26b)とを備え、加熱循環回路25に、前記第1凝縮器としての第1加熱熱交換器6と前記第2凝縮器としての第2加熱熱交換器12とが直列に接続され、加熱循環回路25を循環する熱媒を加熱する構成とされており、加熱循環回路25を循環する熱媒は、第1加熱熱交換器6を流通した後で第2加熱熱交換器12を流通し、放熱端末23に供給されるものである。   The heating heat exchanging unit 4 includes a heat radiating terminal 23 such as a floor heating panel or a panel convector that heats the air-conditioned space, and a heating circulation pump 24 that circulates a circulating liquid as a heat medium that radiates heat at the heat radiating terminal 23. And a thermal valve 26 (26a, 26b) that is provided in each heating circulation circuit 25 branched for each heat radiation terminal 23 and controls the supply of the circulating fluid to the heat radiation terminal 23 by opening and closing thereof. The first heating heat exchanger 6 as the first condenser and the second heating heat exchanger 12 as the second condenser are connected in series to the heating circulation circuit 25 and circulates through the heating circulation circuit 25. The heating medium is configured to heat, and the heating medium circulating in the heating circuit 25 circulates through the first heating heat exchanger 6 and then circulates through the second heating heat exchanger 12 and supplies it to the heat radiating terminal 23. It is what is done.

27は各温度センサの入力やリモコン(図示せず)からの信号を受けて、第1圧縮機5、第1膨張弁7、地中熱循環ポンプ22、加熱循環ポンプ24の各アクチュエータの駆動を制御するマイコンを有する地中熱ヒートポンプ制御手段、28は地中熱ヒートポンプ制御手段27と通信可能に接続され、各温度センサの入力やリモコン(図示せず)からの信号を受けて、第2圧縮機11、第2膨張弁13、送風ファン14の各アクチュエータの駆動を制御するマイコンを有する空気熱ヒートポンプ制御手段である。   27 receives the input of each temperature sensor and a signal from a remote controller (not shown) to drive each actuator of the first compressor 5, the first expansion valve 7, the underground heat circulation pump 22, and the heating circulation pump 24. A geothermal heat pump control means 28 having a microcomputer to be controlled is connected to the geothermal heat pump control means 27 so as to be communicable, and receives a signal from each temperature sensor or a signal from a remote controller (not shown), and performs a second compression. Air heat heat pump control means having a microcomputer for controlling the drive of the actuators of the machine 11, the second expansion valve 13, and the blower fan 14.

次に、一実施形態のヒートポンプ装置の動作について説明する。
前記放熱端末23によって加熱される被空調空間には、リモコン(図示せず)が各々設置されており、このリモコンにより被空調空間の加熱の指示がなされると、前記地中熱ヒートポンプ制御手段27および空気熱ヒートポンプ制御手段28は外気温センサ18の検出する外気温度に基づき、地中熱を利用する地中熱ヒートポンプユニット1の第1ヒートポンプ回路10を作動させるか、空気熱を利用する空気熱ヒートポンプユニット2の第2ヒートポンプ回路17を作動させるかを判断し、熱源として採熱効率のよい方を選択するものであり、春季や秋季のように、外気温度がそれほど低くなく放熱端末23の暖房出力が小さい場合は、空気熱ヒートポンプユニット2を選択し、空気熱ヒートポンプ制御手段28が、第2圧縮機11、第2膨張弁13、送風ファン14の駆動を開始させ、空気熱を利用する第2ヒートポンプ回路17を作動させると共に、地中熱ヒートポンプ制御手段27が加熱循環ポンプ24の駆動を開始させ、放熱端末23による暖房運転が開始されるものである。
Next, operation | movement of the heat pump apparatus of one Embodiment is demonstrated.
A remote control (not shown) is installed in each air-conditioned space heated by the heat radiating terminal 23. When the remote controller instructs heating of the air-conditioned space, the underground heat pump control means 27 is provided. The air heat heat pump control means 28 operates the first heat pump circuit 10 of the underground heat pump unit 1 that uses the underground heat based on the outside air temperature detected by the outside air temperature sensor 18 or the air heat that uses the air heat. It is determined whether or not the second heat pump circuit 17 of the heat pump unit 2 is to be operated, and the heat source having the better heat collection efficiency is selected. The heating output of the heat radiating terminal 23 is not so low as in the spring or autumn. Is small, the air heat heat pump unit 2 is selected, and the air heat heat pump control means 28 is connected to the second compressor 11 and the second compressor. The driving of the tension valve 13 and the blower fan 14 is started to operate the second heat pump circuit 17 using the air heat, and the underground heat pump control means 27 starts to drive the heating circulation pump 24, and the heat radiating terminal 23 Heating operation is started.

前記第2ヒートポンプ回路17のみを作動させての暖房運転時には、蒸発器である空気熱源熱交換器15で、第2膨張弁13によって減圧された低温冷媒と送風ファン14から送風される空気との熱交換が行われ、空気の熱が第2ヒートポンプ回路17の冷媒側に汲み上げられ、凝縮器である第2加熱熱交換器12で、第2圧縮機11から吐出された高温冷媒と加熱循環回路25を循環する熱媒とが対向して流れて熱交換が行われ、加熱循環回路25を循環する熱媒が加熱され、加熱された熱媒が熱動弁26を介して放熱端末23に送られ、リモコンにより指示された被空調空間を加熱するものである。なお、前記第2ヒートポンプ回路17のみを作動させての暖房運転時、加熱循環回路25を循環する熱媒は、第1加熱熱交換器6も通過することになるが、この時、地中熱を利用する地中熱ヒートポンプユニット1の第1ヒートポンプ回路10は作動していないため、第1加熱熱交換器6では加熱されることなく通過して第2加熱熱交換器12へ循環されるものである。   During the heating operation in which only the second heat pump circuit 17 is operated, the low-temperature refrigerant decompressed by the second expansion valve 13 and the air blown from the blower fan 14 in the air heat source heat exchanger 15 that is an evaporator. Heat exchange is performed, the heat of the air is pumped up to the refrigerant side of the second heat pump circuit 17, and the high-temperature refrigerant discharged from the second compressor 11 and the heating circulation circuit in the second heating heat exchanger 12 that is a condenser The heat medium circulating through the heat circulating circuit 25 is opposed to the heat medium to exchange heat, the heat medium circulating through the heating circuit 25 is heated, and the heated heat medium is sent to the heat radiating terminal 23 through the heat valve 26. The air-conditioned space instructed by the remote controller is heated. In addition, during the heating operation in which only the second heat pump circuit 17 is operated, the heat medium circulating in the heating circulation circuit 25 also passes through the first heating heat exchanger 6. Since the first heat pump circuit 10 of the underground heat pump unit 1 that uses the heat does not operate, the first heating heat exchanger 6 passes through without being heated and is circulated to the second heating heat exchanger 12. It is.

一方、冬季のように、外気温度が低い時に、リモコンにより被空調空間の加熱の指示がなされると、前記地中熱ヒートポンプ制御手段27および空気熱ヒートポンプ制御手段28は外気温センサ18の検出する外気温度に基づき、熱源として採熱効率のよい地中熱を利用する地中熱ヒートポンプユニット1を選択し、地中熱ヒートポンプ制御手段27が、第1圧縮機5、第1膨張弁7、地中熱循環ポンプ22の駆動を開始させ、地中熱を利用する第1ヒートポンプ回路10を作動させると共に、加熱循環ポンプ24の駆動を開始させ、放熱端末23による暖房運転が開始されるものである。   On the other hand, when the temperature of the air-conditioned space is instructed by the remote controller when the outside air temperature is low, such as in winter, the underground heat pump control means 27 and the air heat pump control means 28 detect the outside air temperature sensor 18. A geothermal heat pump unit 1 that uses geothermal heat with good heat collection efficiency as a heat source is selected based on the outside air temperature, and the geothermal heat pump control means 27 includes the first compressor 5, the first expansion valve 7, and the underground. The driving of the heat circulation pump 22 is started, the first heat pump circuit 10 that uses the underground heat is activated, the driving of the heating circulation pump 24 is started, and the heating operation by the heat radiating terminal 23 is started.

前記第1ヒートポンプ回路10のみを作動させての暖房運転時には、地中熱交換部3で、地中熱交換器19によって地中と熱交換して地中熱を採熱し、その熱を帯びた不凍液が地中熱循環ポンプ22により地中熱源熱交換器8に供給される。そして、蒸発器である地中熱源熱交換器8にて、第1膨張弁7によって減圧された低温冷媒と地中熱循環回路21を循環する不凍液とが対向して流れて熱交換が行われ、地中熱交換器19にて採熱された地中の熱が第1ヒートポンプ回路10の冷媒側に汲み上げられ、凝縮器である第1加熱熱交換器6で、第1圧縮機5から吐出された高温冷媒と加熱循環回路25を循環する熱媒とが対向して流れて熱交換が行われ、加熱循環回路25を循環する熱媒が加熱され、加熱された熱媒が熱動弁26を介して放熱端末23に送られ、リモコンにより指示された被空調空間を加熱するものである。なお、前記第1ヒートポンプ回路10のみを作動させての暖房運転時、加熱循環回路25を循環する熱媒は、第2加熱熱交換器12も通過することになるが、この時、空気熱を利用する空気熱ヒートポンプユニット2の第2ヒートポンプ回路17は作動していないため、第1加熱熱交換器6で加熱された後の熱媒は、第2加熱熱交換器12では加熱されることなく通過するものである。   During the heating operation with only the first heat pump circuit 10 activated, the underground heat exchanger 3 exchanges heat with the underground by the underground heat exchanger 19 to collect the underground heat and take the heat. The antifreeze is supplied to the underground heat source heat exchanger 8 by the underground heat circulation pump 22. Then, in the underground heat source heat exchanger 8 which is an evaporator, the low-temperature refrigerant decompressed by the first expansion valve 7 and the antifreezing liquid circulating in the underground heat circulation circuit 21 face each other to exchange heat. The underground heat collected by the underground heat exchanger 19 is pumped to the refrigerant side of the first heat pump circuit 10 and discharged from the first compressor 5 by the first heating heat exchanger 6 that is a condenser. The high temperature refrigerant and the heat medium circulating in the heating circuit 25 flow oppositely to exchange heat, the heat medium circulating in the heating circuit 25 is heated, and the heated heat medium is heated by the thermal valve 26. Is sent to the heat radiating terminal 23 and heats the air-conditioned space designated by the remote controller. In addition, during the heating operation in which only the first heat pump circuit 10 is operated, the heat medium circulating in the heating circulation circuit 25 also passes through the second heating heat exchanger 12, but at this time, the air heat is Since the second heat pump circuit 17 of the air heat heat pump unit 2 to be used does not operate, the heat medium heated by the first heating heat exchanger 6 is not heated by the second heating heat exchanger 12. To pass.

また、上記のように、外気温度が低い時であって、熱源として採熱効率のよい地中熱を利用する第1ヒートポンプ回路10を作動させての暖房運転において、放熱端末23の暖房出力が小さい場合は、第1ヒートポンプ回路10のみを作動させて、所望の暖房出力を得るものであるが、外気温度がさらに低下する等して、放熱端末23による暖房出力が大きくなり、第1ヒートポンプ回路10のみの作動では所望の暖房出力を得られない場合は、空気熱ヒートポンプ制御手段28が、第2圧縮機11、第2膨張弁13、送風ファン14の駆動を開始させ、空気熱を利用する第2ヒートポンプ回路17を作動させ、第1ヒートポンプ回路10および第2ヒートポンプ回路17の双方を作動させての暖房運転が行われるものである。   Further, as described above, in the heating operation in which the first heat pump circuit 10 that uses the underground heat having good heat collection efficiency as the heat source is operated when the outside air temperature is low, the heating output of the heat radiation terminal 23 is small. In this case, only the first heat pump circuit 10 is operated to obtain a desired heating output. However, the heating output by the heat radiating terminal 23 is increased due to a further decrease in the outside air temperature, and the first heat pump circuit 10. When the desired heating output cannot be obtained by only the operation, the air heat heat pump control means 28 starts driving the second compressor 11, the second expansion valve 13, and the blower fan 14 and uses the air heat. The heating operation is performed by operating the second heat pump circuit 17 and operating both the first heat pump circuit 10 and the second heat pump circuit 17.

前記第1ヒートポンプ回路10および第2ヒートポンプ回路17の双方を作動させての暖房運転時には、第1ヒートポンプ回路10において、蒸発器である地中熱源熱交換器8にて、第1膨張弁7によって減圧された低温冷媒と地中熱循環回路21を循環する不凍液とが対向して流れて熱交換が行われ、地中熱交換器19にて採熱された地中の熱が第1ヒートポンプ回路10の冷媒側に汲み上げられ、凝縮器である第1加熱熱交換器6で、第1圧縮機5から吐出された高温冷媒と加熱循環回路25を循環する熱媒とが対向して流れて熱交換が行われ、加熱循環回路25を循環する熱媒が加熱されると共に、第2ヒートポンプ回路17において、蒸発器である空気熱源熱交換器15で、第2膨張弁13によって減圧された低温冷媒と送風ファン14から送風される空気との熱交換が行われ、空気の熱が第2ヒートポンプ回路17の冷媒側に汲み上げられ、凝縮器である第2加熱熱交換器12で、第2圧縮機11から吐出された高温冷媒と加熱循環回路25を循環する熱媒とが対向して流れて熱交換が行われ、加熱循環回路25を循環する熱媒が加熱され、加熱循環回路25を循環する熱媒は、第1加熱熱交換器6で加熱された後、第2加熱熱交換器12でも加熱され、熱動弁26を介して放熱端末23に送られ、リモコンにより指示された被空調空間を加熱するものである。   At the time of heating operation in which both the first heat pump circuit 10 and the second heat pump circuit 17 are operated, in the first heat pump circuit 10, the ground heat source heat exchanger 8 that is an evaporator is used by the first expansion valve 7. The decompressed low-temperature refrigerant and the antifreezing liquid circulating in the underground heat circulation circuit 21 face each other to exchange heat, and the underground heat collected by the underground heat exchanger 19 is converted into the first heat pump circuit. In the first heating heat exchanger 6 that is pumped up to the refrigerant side 10 and is a condenser, the high-temperature refrigerant discharged from the first compressor 5 and the heat medium circulating in the heating circulation circuit 25 flow oppositely to generate heat. The heat medium circulating through the heating circuit 25 is heated and the low-temperature refrigerant decompressed by the second expansion valve 13 in the air heat source heat exchanger 15 as an evaporator in the second heat pump circuit 17. And blower fan The heat exchange with the air blown from 4 is performed, and the heat of the air is pumped up to the refrigerant side of the second heat pump circuit 17 and discharged from the second compressor 11 by the second heating heat exchanger 12 which is a condenser. The high temperature refrigerant and the heat medium circulating in the heating circuit 25 flow oppositely to exchange heat, the heat medium circulating in the heating circuit 25 is heated, and the heat medium circulating in the heating circuit 25 is After being heated by the first heating heat exchanger 6, the second heating heat exchanger 12 is also heated and sent to the heat radiating terminal 23 through the thermal valve 26 to heat the air-conditioned space designated by the remote controller. Is.

このように、前記加熱循環回路25に第1ヒートポンプ回路10の第1加熱熱交換器6と第2ヒートポンプ回路17の第2加熱熱交換器12を直列に接続したことで、暖房出力が小さい場合は、外気温度に基づいて、地中熱を利用する地中熱ヒートポンプユニット1の第1ヒートポンプ回路10のみを作動させての暖房運転または空気熱を利用する空気熱ヒートポンプユニット2の第2ヒートポンプ回路17を作動させての暖房運転のうち、熱源として採熱効率のよい方を選択して効率のよい暖房運転を行わせることができると共に、暖房出力が大きい場合は、第1ヒートポンプ回路10および第2ヒートポンプ回路17の双方を作動させての暖房運転を行わせて、所望の暖房出力を得ることができるものである。   Thus, when the heating output is small by connecting the first heating heat exchanger 6 of the first heat pump circuit 10 and the second heating heat exchanger 12 of the second heat pump circuit 17 in series to the heating circulation circuit 25. The second heat pump circuit of the air heat heat pump unit 2 that uses the heating operation or the air heat that operates only the first heat pump circuit 10 of the geothermal heat pump unit 1 that uses the geothermal heat based on the outside air temperature. Among the heating operations with the 17 operated, it is possible to select the one having the best heat collection efficiency as the heat source to perform the efficient heating operation, and when the heating output is large, the first heat pump circuit 10 and the second heat pump circuit 10 It is possible to obtain a desired heating output by performing the heating operation by operating both of the heat pump circuits 17.

なお、本発明は先に説明した一実施形態に限定されるものでなく、本実施形態では、地中熱ヒートポンプユニット1と空気熱ヒートポンプユニット2との2つのヒートポンプユニットを設けているが、1つのヒートポンプユニットを設け、そのヒートポンプユニット内に第1ヒートポンプ回路10、第2ヒートポンプ回路17、地中熱循環ポンプ22、加熱循環ポンプ24を備えたものであってもよく、さらに地中熱ヒートポンプ制御手段27と空気熱ヒートポンプ制御手段28との2つの制御手段も1つのヒートポンプ制御手段として、各温度センサの入力やリモコンからの信号を受けて、第1圧縮機5、第1膨張弁7、第2圧縮機11、第2膨張弁13、送風ファン14、地中熱循環ポンプ22、加熱循環ポンプ24の各アクチュエータの駆動を制御するようにしてもよいものである。   Note that the present invention is not limited to the above-described embodiment, and in the present embodiment, two heat pump units of the geothermal heat pump unit 1 and the air heat heat pump unit 2 are provided. One heat pump unit may be provided, and the first heat pump circuit 10, the second heat pump circuit 17, the underground heat circulation pump 22, and the heating circulation pump 24 may be provided in the heat pump unit, and further, the underground heat pump control The two control means of means 27 and air heat heat pump control means 28 are also one heat pump control means, and receive the input of each temperature sensor and the signal from the remote controller, and the first compressor 5, the first expansion valve 7, the first 2 Actuators of the compressor 11, the second expansion valve 13, the blower fan 14, the underground heat circulation pump 22, and the heating circulation pump 24 In which it may be controlled to drive.

また、本実施形態では、第1加熱熱交換器6および第2加熱熱交換器12は、加熱循環回路25を循環する熱媒の流れに対して、加熱循環回路25に第1加熱熱交換器6、第2加熱熱交換器12の順に直列に接続されているが、第1加熱熱交換器6および第2加熱熱交換器12を、加熱循環回路25を循環する熱媒の流れに対して、加熱循環回路25に第2加熱熱交換器12、第1加熱熱交換器6の順に直列に接続してもよい。   In the present embodiment, the first heating heat exchanger 6 and the second heating heat exchanger 12 are connected to the heating circulation circuit 25 with respect to the flow of the heat medium circulating in the heating circulation circuit 25. 6. The second heating heat exchanger 12 is connected in series in this order, but the first heating heat exchanger 6 and the second heating heat exchanger 12 are connected to the flow of the heat medium circulating in the heating circulation circuit 25. The second heating heat exchanger 12 and the first heating heat exchanger 6 may be connected in series to the heating circulation circuit 25 in this order.

また、本実施形態では、地中熱交換器19を1本だけ地中に設置しているが、地中熱交換器19は地中に複数設置されていてもよく、その複数の地中熱交換器19は互いに並列に接続されていてもよく、直列に接続されていてもよいものである。   Moreover, in this embodiment, although only one underground heat exchanger 19 is installed in the ground, a plurality of underground heat exchangers 19 may be installed in the ground. The exchangers 19 may be connected in parallel to each other, or may be connected in series.

また、本実施形態では、地中熱交換器19を地中に設置するものとし、地中熱交換器19は地中に直接埋設され地中熱を採熱しているが、地中熱交換器19を井戸の中に設置し、地中熱によって温められた井戸水から採熱するものも地中熱交換器19を地中に設置するものに含まれるものである。   In the present embodiment, the underground heat exchanger 19 is installed in the ground, and the underground heat exchanger 19 is directly buried in the ground to collect the underground heat. What installs 19 in a well and collects heat from well water warmed by underground heat is also included in what installs underground heat exchanger 19 in the ground.

5 第1圧縮機
6 第1加熱熱交換器
7 第1膨張弁
8 地中熱源熱交換器
9 第1冷媒配管
10 第1ヒートポンプ回路
11 第2圧縮機
12 第2加熱熱交換器
13 第2膨張弁
15 空気熱源熱交換器
16 第2冷媒配管
17 第2ヒートポンプ回路
23 放熱端末
24 加熱循環ポンプ
25 加熱循環回路
DESCRIPTION OF SYMBOLS 5 1st compressor 6 1st heating heat exchanger 7 1st expansion valve 8 Ground source heat exchanger 9 1st refrigerant | coolant piping 10 1st heat pump circuit 11 2nd compressor 12 2nd heating heat exchanger 13 2nd expansion Valve 15 Air source heat exchanger 16 Second refrigerant pipe 17 Second heat pump circuit 23 Heat radiation terminal 24 Heating circulation pump 25 Heating circulation circuit

Claims (2)

第1圧縮機、凝縮器としての第1加熱熱交換器、第1減圧手段、地中熱を利用する蒸発器としての地中熱源熱交換器を第1冷媒配管で環状に接続した第1ヒートポンプ回路と、第2圧縮機、凝縮器としての第2加熱熱交換器、第2減圧手段、熱源として外気の空気熱を利用する蒸発器としての空気熱源熱交換器を第2冷媒配管で環状に接続した第2ヒートポンプ回路と、放熱端末と、該放熱端末で放熱する熱媒を循環させる加熱循環ポンプを有する加熱循環回路と、外気温度を検出する外気温センサとを設け、前記放熱端末による暖房運転を行うものであって、前記加熱循環回路に前記第1加熱熱交換器と前記第2加熱熱交換器を直列に接続し、前記外気温センサによって検出される外気温度に基づいて、前記第1ヒートポンプ回路または前記第2ヒートポンプ回路のうち、採熱効率のよい方を選択し、暖房出力が小さい場合は選択された方のヒートポンプ回路のみを作動させての前記暖房運転を行うと共に、前記第1ヒートポンプ回路のみの作動では所望の暖房出力を得られない場合は双方のヒートポンプ回路を作動させての前記暖房運転を行うようにしたことを特徴とするヒートポンプ装置。 1st heat pump which connected the 1st compressor, the 1st heating heat exchanger as a condenser, the 1st decompression means, and the underground heat source heat exchanger as an evaporator using underground heat by the 1st refrigerant piping annularly A circuit, a second compressor, a second heating heat exchanger as a condenser, a second decompression means, and an air heat source heat exchanger as an evaporator that uses the air heat of outside air as a heat source are annularly formed by a second refrigerant pipe A second heat pump circuit connected; a heat radiating terminal; a heating circulation circuit having a heating circulation pump that circulates a heat medium that radiates heat from the heat radiating terminal; and an outside air temperature sensor that detects an outside air temperature. The first heating heat exchanger and the second heating heat exchanger are connected in series to the heating circulation circuit, and the first heating heat exchanger and the second heating heat exchanger are connected to the heating circulation circuit based on the outside air temperature detected by the outside air temperature sensor. 1 heat pump circuit or front Of the second heat pump circuit, select whichever of Tonetsu efficiency, along with if the heating output is small performs the heating operation by operating only the heat pump circuit of the person who is selected, the operation of only the first heat pump circuit Then, when the desired heating output cannot be obtained, the heating operation is performed by operating both heat pump circuits. 前記加熱循環回路に、前記第1加熱熱交換器と前記第2加熱熱交換器を、前記加熱循環回路を循環する熱媒の流れに対して、前記第1加熱熱交換器、前記第2加熱熱交換器の順に直列に接続したことを特徴とする請求項記載のヒートポンプ装置。 In the heating circuit, the first heating heat exchanger, the second heating heat exchanger, the first heating heat exchanger, the second heating with respect to the flow of the heat medium circulating in the heating circuit. 2. The heat pump device according to claim 1 , wherein the heat pump devices are connected in series in the order of heat exchangers.
JP2017077208A 2017-04-10 2017-04-10 Heat pump equipment Active JP6381725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017077208A JP6381725B2 (en) 2017-04-10 2017-04-10 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077208A JP6381725B2 (en) 2017-04-10 2017-04-10 Heat pump equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012175620A Division JP6166874B2 (en) 2012-08-08 2012-08-08 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2017142054A JP2017142054A (en) 2017-08-17
JP6381725B2 true JP6381725B2 (en) 2018-08-29

Family

ID=59629095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077208A Active JP6381725B2 (en) 2017-04-10 2017-04-10 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP6381725B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171530A (en) * 1988-12-23 1990-07-03 Matsushita Refrig Co Ltd Multi-chamber cooling and heating device
JP4058696B2 (en) * 2004-05-28 2008-03-12 日立アプライアンス株式会社 Heat pump hot water supply system
JP4229881B2 (en) * 2004-06-23 2009-02-25 サンポット株式会社 Heat pump system
JP2006125769A (en) * 2004-10-29 2006-05-18 Denso Corp Heat pump cycle device
JP4782462B2 (en) * 2005-04-13 2011-09-28 新日鉄エンジニアリング株式会社 Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device
JP5395479B2 (en) * 2009-03-19 2014-01-22 東芝キヤリア株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2017142054A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6166874B2 (en) Heat pump equipment
JP5395479B2 (en) Air conditioning system
JP5121747B2 (en) Geothermal heat pump device
JP6231395B2 (en) Combined heat source heat pump device
JP6231403B2 (en) Combined heat source heat pump device
JP6609198B2 (en) Combined heat source heat pump device
JP6147659B2 (en) Heat pump equipment
JP2006010137A (en) Heat pump system
JP6381725B2 (en) Heat pump equipment
JP6333109B2 (en) Combined heat source heat pump device
JP6359398B2 (en) Combined heat source heat pump device
JP6143682B2 (en) Combined heat source heat pump device
JP6359397B2 (en) Combined heat source heat pump device
JP5619698B2 (en) Geothermal heat pump device
JP5563521B2 (en) Geothermal heat pump device
JP6599812B2 (en) Combined heat source heat pump device
JP6258802B2 (en) Combined heat source heat pump device
JP6208086B2 (en) Combined heat source heat pump device
JP6143662B2 (en) Combined heat source heat pump device
JP6968769B2 (en) Combined heat source heat pump device
JP7057129B2 (en) Vehicle waste heat recovery device
JP6830296B2 (en) Combined heat source heat pump device
JP6258800B2 (en) Combined heat source heat pump device
JP6467276B2 (en) Combined heat source heat pump device
JP6208085B2 (en) Heat pump equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R150 Certificate of patent or registration of utility model

Ref document number: 6381725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250