JP6373055B2 - Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same - Google Patents

Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same Download PDF

Info

Publication number
JP6373055B2
JP6373055B2 JP2014099265A JP2014099265A JP6373055B2 JP 6373055 B2 JP6373055 B2 JP 6373055B2 JP 2014099265 A JP2014099265 A JP 2014099265A JP 2014099265 A JP2014099265 A JP 2014099265A JP 6373055 B2 JP6373055 B2 JP 6373055B2
Authority
JP
Japan
Prior art keywords
spherical composite
fine particles
copper fine
composite copper
ultrafine carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014099265A
Other languages
Japanese (ja)
Other versions
JP2015214734A (en
Inventor
善一 今村
善一 今村
善行 今村
善行 今村
Original Assignee
丸祥電器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸祥電器株式会社 filed Critical 丸祥電器株式会社
Priority to JP2014099265A priority Critical patent/JP6373055B2/en
Publication of JP2015214734A publication Critical patent/JP2015214734A/en
Application granted granted Critical
Publication of JP6373055B2 publication Critical patent/JP6373055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、電子電気機器における接合材料、接点材料、厚膜ペーストに有用な極細炭素繊維を含有する球状複合銅微粒子およびその製造方法に関する。   The present invention relates to spherical composite copper fine particles containing ultrafine carbon fibers useful for bonding materials, contact materials, and thick film pastes in electronic and electrical equipment, and a method for producing the same.

銅粉末は、優れた電気伝導性(1.68×10−8Ω・m)、熱伝導性を有するため、電子機器分野において、電子回路形成及びコンデンサー電極等の部品を製造するための厚膜導体、抵抗ペーストとして使用されている。また、電気接点の摺動材料としても利用されている。 Copper powder has excellent electrical conductivity (1.68 × 10 −8 Ω · m) and thermal conductivity, so in the field of electronic equipment, it is a thick film for manufacturing components such as electronic circuits and capacitor electrodes. It is used as a conductor and resistance paste. It is also used as a sliding material for electrical contacts.

近年、パワー半導体の分野等では、これまで接合材料として広く用いられてきた鉛を主成分とする高温ハンダの代替材料として、銅粉末を使用する接合材料が注目されている。しかし、パワー半導体に銅粉末を使用する接合材料を使用する場合、構成材料の熱膨張率の差に起因する熱応力の発生による接合部での割れ、剥離が課題となっている。   In recent years, in the field of power semiconductors and the like, a bonding material using copper powder has attracted attention as an alternative material for high-temperature solder mainly composed of lead, which has been widely used as a bonding material. However, when a bonding material using copper powder is used for the power semiconductor, cracking and peeling at the bonded portion due to the generation of thermal stress due to the difference in the coefficient of thermal expansion of the constituent materials is a problem.

現在、銅粉末を製造する方法としては、銅化合物の水溶液に還元剤を作用させて湿式還元する方法、金属銅の溶湯をガスもしくは水でアトマイズする方法、銅溶湯を真空中で蒸発させ、固化させる方法、銅化合物溶媒を噴霧し、加熱分解する方法等が知られている。   Currently, methods for producing copper powder include wet reduction by applying a reducing agent to an aqueous solution of a copper compound, a method of atomizing a molten copper metal with gas or water, and evaporating the copper melt in a vacuum to solidify it. And a method of spraying a copper compound solvent and thermally decomposing it are known.

ここで、電子機器分野における銅粉末は、緻密で均一な被膜を得るために、塗料中での分散性、充填性に優れること、不純物が少ないこと、粒径50〜20000nmで、球形状で揃っていることが望まれており、噴霧熱分解法が、知られている。   Here, in order to obtain a dense and uniform film, the copper powder in the field of electronic equipment is excellent in dispersibility and filling properties in paint, has few impurities, has a particle size of 50 to 20000 nm, and has a spherical shape. Spray pyrolysis methods are known.

しかしながら、噴霧熱分解法における銅粉末の製造は、霧化液滴濃度の偏り、ガス流の乱れにより、熱分解時に銅粒子同士の融着、焼結が起こりやすい。更に冷却過程、捕集過程においても、銅粒子が付着堆積し、凝集塊となり、製品の回収率が低下し、連続操業が困難となるという問題がある。   However, the production of copper powder in the spray pyrolysis method tends to cause fusion and sintering of copper particles during pyrolysis due to uneven atomized droplet concentration and turbulent gas flow. Further, in the cooling process and the collection process, there is a problem that the copper particles are deposited and deposited to form agglomerates, the product recovery rate is lowered, and the continuous operation becomes difficult.

生成する銅粒子の融着、固着を防止するため高融点金属、酸化物を粒子表面に偏析させる方法(特許文献1)も検討されているが、融着防止のための金属および酸化物は、銅粒子の不純物となるため、利用分野によっては好ましくはない。   A method of segregating refractory metals and oxides on the surface of the particles (Patent Document 1) to prevent fusion and sticking of the generated copper particles has been studied, but metals and oxides for preventing fusion are: Since it becomes an impurity of copper particles, it is not preferable depending on the application field.

このような問題を解決する方法として、銅粒子と炭素材料との併用、特に、銅等の金属と炭素とを併存させる効果を一層高めるために、銅粒子と、カーボンナノチューブのような極細炭素繊維との併用が、提案されている。例えば、銅粉末とカーボンナノチューブとを混合し、ホットプレスにより押し固められた高熱伝導率複合材(特許文献2)、カーボンナノチューブに導電性銅微粒子を付着させた遷移金属被覆炭素材料(特許文献3)、金属芯線に、銅と極細炭素繊維との複合電気メッキをさせたカーボン複合めっき電線(特許文献4)が試みられているが、利便性が良く、広範囲な適用が可能になる極細炭素繊維と複合化した球状銅微粒子は合成されていない。   As a method of solving such a problem, in order to further enhance the effect of coexistence of copper and other metals and carbon, particularly copper particles and carbon materials, copper particles and ultrafine carbon fibers such as carbon nanotubes are used. A combination with is proposed. For example, a high thermal conductivity composite material obtained by mixing copper powder and carbon nanotubes and compacted by hot pressing (Patent Document 2), a transition metal-coated carbon material obtained by attaching conductive copper fine particles to carbon nanotubes (Patent Document 3) ), Carbon composite plated electric wire (Patent Document 4) in which a metal core wire is subjected to composite electroplating of copper and ultrafine carbon fiber has been tried, but it is convenient and ultrafine carbon fiber that can be used in a wide range of applications. No spherical copper fine particles compounded with synthesizer.

特開平10−102108号公報JP-A-10-102108 特開平10−168502号公報JP-A-10-168502 国際公開2009/038048号International Publication No. 2009/038048 特開2006−265667号公報JP 2006-265667 A

本発明は、上記問題を解決するため、電子電気部品の接合材料、電極材料、接点材料、配線材料等において、分散性、充填性に優れ、更に金属銅を使用するときの課題である熱応力の低減、耐摩耗性の向上、接点材料としては焼結性の向上を目的とした球状複合銅微粒子であって、特定量の極細炭素繊維を内部および表面に含有する球状複合銅微粒子を提供する。また、この球状複合銅微粒子の製造においては、銅微粒子の固着、凝集を防止し、回収率の改善も併せて図る。   In order to solve the above problems, the present invention is excellent in dispersibility and filling properties in bonding materials, electrode materials, contact materials, wiring materials, etc. of electronic and electrical parts, and further, thermal stress, which is a problem when using metallic copper Spherical composite copper fine particles aiming at reduction of wear, improvement of wear resistance, and improvement of sinterability as a contact material, and providing spherical composite copper fine particles containing a specific amount of ultrafine carbon fibers inside and on the surface . Further, in the production of the spherical composite copper fine particles, the copper fine particles are prevented from sticking and agglomerating, and the recovery rate is improved.

本発明は、以下に示す構成によって上記課題を解決した球状複合銅微粒子、およびその製造方法に関する。
〔1〕極細炭素繊維を内部に含有し、球状複合銅微粒子100質量部に対して、極細炭素繊維が0.1〜15.0質量部であることを特徴とする、球状複合銅微粒子。
〔2〕球状複合銅微粒子の粒子径が、1nm以上20000nm未満である、上記〔1〕または〔2〕記載の球状複合銅微粒子。
〔3〕極細炭素繊維が、中空繊維であり、繊維長:Lが50nm以上、外径:Dが5〜40nm、内径:dが2〜30nmであり、アスペクト比(L/D)が5〜1000である、上記〔1〕または〔2〕記載の球状複合銅微粒子。
〔4〕(A)極細炭素繊維集合体、および分散剤を、分散溶媒中に添加した後、極細炭素繊維を分散させた分散溶液を得る工程、
(B)得られた分散溶液に、銅化合物を混合した後、銅化合物を溶解して、混合物を得る工程、ならびに
(C)得られた混合物を、微細な液滴に霧化した後、霧化した液滴を還元性雰囲気中、1083℃以上で加熱する工程、
を、この順に含むことを特徴とする、極細炭素繊維を内部に含有し、球状複合銅微粒子100質量部に対して、極細炭素繊維が0.1〜15.0質量部である球状複合銅微粒子の製造方法。
〔5〕極細炭素繊維が、Fe、Co、Ni、Mo、Al、Mg、Zn、TiおよびSiからなる群より選ばれる少なくとも1種の元素を含む触媒を用い、炭素を含有するガスによる気相成長法によって製造される、上記〔4〕記載の球状複合銅微粒子の製造方法。
〔6〕分散剤が、カルボキシメチルセルロース、ナフタリンスルホン酸塩またはポリビニルピロリドンである、上記〔4〕または〔5〕記載の球状複合銅微粒子の製造方法。
〔7〕分散溶媒が、水および極性有機溶媒からなる群より選択される少なくとも1種を含む、上記〔4〕〜〔6〕のいずれか記載の球状複合銅微粒子の製造方法。
〔8〕(C)工程において、霧化した液滴を加熱する還元性雰囲気が窒素ガス、炭酸ガス、アンモニアガス、アルコール、炭化水素ガスおよび水素ガスからなる群より選択される少なくとも1種である、上記〔4〕〜〔7〕のいずれか記載の球状複合銅微粒子の製造方法。
The present invention relates to spherical composite copper fine particles that have solved the above problems with the following configuration, and a method for producing the same.
[1] Spherical composite copper fine particles containing ultra fine carbon fibers therein, wherein the ultra fine carbon fibers are 0.1 to 15.0 parts by mass with respect to 100 parts by mass of the spherical composite copper fine particles.
[2] The spherical composite copper fine particles according to [1] or [2] above, wherein the spherical composite copper fine particles have a particle size of 1 nm or more and less than 20000 nm.
[3] The ultrafine carbon fiber is a hollow fiber, the fiber length: L is 50 nm or more, the outer diameter: D is 5-40 nm, the inner diameter: d is 2-30 nm, and the aspect ratio (L / D) is 5 The spherical composite copper fine particles according to [1] or [2], which are 1000.
[4] (A) A step of obtaining a dispersion solution in which the ultrafine carbon fibers are dispersed after adding the ultrafine carbon fiber aggregate and the dispersing agent to the dispersion solvent;
(B) After mixing a copper compound with the obtained dispersion solution, dissolving the copper compound to obtain a mixture, and (C) atomizing the obtained mixture into fine droplets, Heating the transformed droplets at 1083 ° C. or higher in a reducing atmosphere;
In this order, containing ultrafine carbon fibers inside, spherical composite copper fine particles having 0.1 to 15.0 parts by mass of ultrafine carbon fiber with respect to 100 parts by mass of spherical composite copper fine particles Manufacturing method.
[5] Gas phase by a gas containing carbon using a catalyst in which the ultrafine carbon fiber contains at least one element selected from the group consisting of Fe, Co, Ni, Mo, Al, Mg, Zn, Ti and Si The method for producing spherical composite copper fine particles according to [4], which is produced by a growth method.
[6] The method for producing spherical composite copper fine particles according to the above [4] or [5], wherein the dispersant is carboxymethyl cellulose, naphthalene sulfonate, or polyvinyl pyrrolidone.
[7] The method for producing spherical composite copper fine particles according to any one of the above [4] to [6], wherein the dispersion solvent contains at least one selected from the group consisting of water and a polar organic solvent.
[8] In the step (C), the reducing atmosphere for heating the atomized droplets is at least one selected from the group consisting of nitrogen gas, carbon dioxide gas, ammonia gas, alcohol, hydrocarbon gas, and hydrogen gas. The method for producing spherical composite copper fine particles according to any one of [4] to [7] above.

本発明〔1〕によれば、電子電気部品の接合材料、電極材料、接点材料、配線材料等において、分散性、充填性に優れ、更に金属銅を使用するときの課題である熱応力の低減、耐摩耗性の向上、接点材料としては焼結性の向上を目的とした球状複合銅微粒子を提供することができる。   According to the present invention [1], in the joining material, electrode material, contact material, wiring material, etc. of electronic and electrical parts, it is excellent in dispersibility and filling properties, and furthermore, thermal stress reduction is a problem when using metallic copper. Further, it is possible to provide spherical composite copper fine particles aimed at improving wear resistance and improving the sinterability as a contact material.

本発明〔4〕によれば、極細炭素繊維を内部および表面に含有する球状複合銅微粒子を、製造過程での球状複合銅微粒子の固着、凝集を防止しつつ、かつ高い回収率で製造することができる。   According to the present invention [4], spherical composite copper fine particles containing ultrafine carbon fibers inside and on the surface thereof are produced at a high recovery rate while preventing the adhesion and aggregation of the spherical composite copper fine particles during the production process. Can do.

実施例1で製造した球状複合銅微粒子の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of spherical composite copper fine particles produced in Example 1. FIG. 実施例1で製造した球状複合銅微粒子のSEM写真である。2 is a SEM photograph of spherical composite copper fine particles produced in Example 1. 実施例1で製造した球状複合銅微粒子を35質量%硝酸水溶液で120秒間エッチングした後のSEM写真である。It is a SEM photograph after etching the spherical composite copper fine particle manufactured in Example 1 for 120 second with 35 mass% nitric acid aqueous solution. 実施例1で製造した球状複合銅微粒子を35質量%硝酸水溶液で120秒間エッチングした後のSEM写真である。It is a SEM photograph after etching the spherical composite copper fine particle manufactured in Example 1 for 120 second with 35 mass% nitric acid aqueous solution. 実施例1で製造した球状複合銅微粒子を35質量%硝酸水溶液で120秒間エッチングした後のSEM写真である。It is a SEM photograph after etching the spherical composite copper fine particle manufactured in Example 1 for 120 second with 35 mass% nitric acid aqueous solution. 実施例1で製造した球状複合銅微粒子を35質量%硝酸水溶液で420秒間エッチングした後のSEM写真である。It is a SEM photograph after etching the spherical composite copper fine particle manufactured in Example 1 for 420 seconds with 35 mass% nitric acid aqueous solution. 実施例1で製造した球状複合銅微粒子を35質量%硝酸水溶液で420秒間エッチングした後のSEM写真である。It is a SEM photograph after etching the spherical composite copper fine particle manufactured in Example 1 for 420 seconds with 35 mass% nitric acid aqueous solution. 使用した極細炭素繊維のSEM写真である。It is a SEM photograph of the used ultrafine carbon fiber.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

〔球状複合銅微粒子〕
本発明の球状複合銅微粒子(以下、球状複合銅微粒子という)は、極細炭素繊維を内部に含有し、球状複合銅微粒子100質量部に対して、極細炭素繊維が0.1〜15.0質量部であることを特徴とする。本発明の球状複合銅微粒子は、電子電気部品の接合材料、電極材料、接点材料、配線材料等において、分散性、充填性に優れ、更に金属銅を使用するときの課題である熱応力の低減、耐摩耗性の向上、接点材料としては焼結性に優れる等の複合効果を有する。また、球状複合銅微粒子は、鉛フリーはんだペースト中のはんだ(例えば、Sn−Ag−Cu系)粉末の沈降防止剤としても使用することができる。球状複合銅微粒子に含有される極細炭素繊維は、球状複合銅微粒子の内部で網目構造を形成して、球状複合銅微粒子に上記複合効果を付与する、と考えられる。なお、極細炭素繊維は、球状複合銅微粒子の表面に存在してもよい。
(Spherical composite copper fine particles)
The spherical composite copper fine particles (hereinafter referred to as spherical composite copper fine particles) of the present invention contain ultrafine carbon fibers inside, and the ultrafine carbon fibers are 0.1 to 15.0 masses per 100 mass parts of the spherical composite copper fine particles. It is a part. The spherical composite copper fine particles of the present invention are excellent in dispersibility and filling properties in bonding materials, electrode materials, contact materials, wiring materials, etc. of electronic and electrical parts, and also reduce thermal stress, which is a problem when using metallic copper. It has combined effects such as improved wear resistance and excellent sinterability as a contact material. The spherical composite copper fine particles can also be used as an anti-settling agent for solder (for example, Sn—Ag—Cu-based) powder in a lead-free solder paste. The ultrafine carbon fibers contained in the spherical composite copper fine particles are considered to form a network structure inside the spherical composite copper fine particles, and to give the composite effect to the spherical composite copper fine particles. The ultrafine carbon fiber may be present on the surface of the spherical composite copper fine particles.

ここで、球状とは、ほぼ球状の形状であってもよく、球状複合銅微粒子の走査型電子顕微鏡写真でのアスペクト比(長径/短径)が、1.0〜1.4であるものをいう。球状複合銅微粒子のアスペクト比は、1.0〜1.2が好ましく、真球(アスペクト比が1.05以下)であるとより好ましい。   Here, the spherical shape may be a substantially spherical shape, and the aspect ratio (major axis / minor axis) in the scanning electron micrograph of the spherical composite copper fine particles is 1.0 to 1.4. Say. The aspect ratio of the spherical composite copper fine particles is preferably 1.0 to 1.2, and more preferably a true sphere (the aspect ratio is 1.05 or less).

球状複合銅微粒子の粒子径が、1nm以上20000nm未満である、と好ましい。球状複合銅微粒子の粒子径が20000nmを越えると、焼結性が低下し、焼結密度が上がりにくくなる場合がある。一方、球状複合銅微粒子の粒子径が1nm未満になると、極細炭素繊維径が球状複合銅微粒子径と近づき、微細炭素繊維径の網目構造の形成が困難となり、複合効果を発揮しにくくなる、と考えられる。また、球状複合銅微粒子の平均粒子径は、焼結性や複合効果の観点から、50nm以上10000nm未満であると好ましく、100nm以上5000nm以下であると、より好ましい。ここで、粒子径は、球状複合銅微粒子の走査型電子顕微鏡写真での長径(球状複合銅微粒子での最も長い径)の平均径である(n=50)。平均粒子径は、球状複合銅微粒子の走査型電子顕微鏡写真での長径(球状複合銅微粒子での最も長い径)の平均径である(n=50)。   The particle diameter of the spherical composite copper fine particles is preferably 1 nm or more and less than 20000 nm. When the particle diameter of the spherical composite copper fine particles exceeds 20000 nm, the sinterability may be reduced, and the sintered density may be difficult to increase. On the other hand, when the particle diameter of the spherical composite copper fine particles is less than 1 nm, the ultrafine carbon fiber diameter approaches the spherical composite copper fine particle diameter, it becomes difficult to form a fine carbon fiber diameter network structure, and it is difficult to exert the composite effect. Conceivable. The average particle size of the spherical composite copper fine particles is preferably 50 nm or more and less than 10,000 nm, and more preferably 100 nm or more and 5000 nm or less from the viewpoint of sinterability and composite effect. Here, the particle diameter is an average diameter (n = 50) of the long diameter (the longest diameter of the spherical composite copper fine particles) in the scanning electron micrograph of the spherical composite copper fine particles. The average particle diameter is an average diameter of the long diameter (the longest diameter of the spherical composite copper fine particles) in the scanning electron micrograph of the spherical composite copper fine particles (n = 50).

球状複合銅微粒子に含有される極細炭素繊維は、特に限定されないが、中空繊維であり、繊維長:Lが50nm以上、外径:Dが5〜40nm、内径:dが2〜30nmであり、アスペクト比(L/D)が5〜1000であると、極細炭素繊維が網目構造を形成し易く、好ましい。ここで、極細炭素繊維とは、外径が100nm以下の炭素繊維をいう。   The ultrafine carbon fiber contained in the spherical composite copper fine particles is not particularly limited, but is a hollow fiber, the fiber length: L is 50 nm or more, the outer diameter: D is 5-40 nm, the inner diameter: d is 2-30 nm, It is preferable that the aspect ratio (L / D) is 5 to 1000 because the ultrafine carbon fibers can easily form a network structure. Here, the ultrafine carbon fiber refers to a carbon fiber having an outer diameter of 100 nm or less.

極細炭素繊維は、炭素電極のアーク放電や、触媒を浮遊あるいは固定させた状態でガス状の炭素含有化合物を500℃以上に加熱した触媒上で熱分解することによって析出、成長した単層あるいは多層のグラファイト層をもつ極細炭素繊維であることが好ましい。極細炭素繊維は、その形状、形態、構造から、主に以下の4つのナノ構造炭素材料が報告されている。
〈1〉多層カーボンナノチューブ(グラファイト層が多層同心円筒状、非魚骨状)
例えば、特公平3−64606号公報、特開3−77288号、特開2004−299986号公報に記載されたもの
〈2〉カップ積層型カーボンナノチューブ(魚骨状(フィッシュボーン))
例えば、特開2003−073928号公報、特開2004−360099号公報;米国特許第4,855,091号明細書;M.Endo, Y.A.Kime etc.:Appl.Phys.Lett.,vol80(2002)1267〜、に記載されたもの
〈3〉節型カーボンナノファイバー(非魚骨構造)
例えば、J.P.Pinheiro, P.Gadelle etc.:Carbon,41(2003)2949〜2959;P.E.Nolan,M.J.Schabel,D.C.Lynch:Carbon,33[1](1995)79〜85、に記載されたもの
〈4〉プレートレット型カーボンナノファイバー(トランプ状)
例えば、特開2004−300631号公報;H.Murayama、 T.maeda,:Nature, vol345[No28](1990)791〜793、に記載されたもの
The ultrafine carbon fiber is a single layer or multiple layers deposited and grown by arc decomposition of a carbon electrode or by pyrolyzing a gaseous carbon-containing compound on a catalyst heated to 500 ° C. or higher with the catalyst floating or fixed. Of these, an ultrafine carbon fiber having a graphite layer is preferred. The following four nanostructured carbon materials have been reported mainly from the shape, form, and structure of ultrafine carbon fibers.
<1> Multi-walled carbon nanotubes (graphite layer is multi-layer concentric cylindrical, non-fishbone)
For example, those described in JP-B-3-64606, JP-A-3-77288, and JP-A-2004-299986 <2> Cup-stacked carbon nanotubes (fishbone)
For example, JP 2003-073928 A, JP 2004-36099 A; US Pat. No. 4,855,091; Endo, Y. et al. A. Kim etc. : Appl. Phys. Lett. , Vol 80 (2002) 1267-, <3> Nodal carbon nanofiber (non-fishbone structure)
For example, J. et al. P. Pinheiro, P.M. Gadelle etc. : Carbon, 41 (2003) 2949-2959; E. Nolan, M .; J. et al. Schabel, D.M. C. Lynch: Carbon, 33 [1] (1995) 79-85. <4> Platelet-type carbon nanofiber (Trump shape)
For example, JP-A-2004-300631; Murayama, T .; maeda,: Nature, vol345 [No28] (1990) 791-793.

本発明には、上記のナノ構造をもつ極細炭素繊維であれば良いが、節型カーボンナノファイバーが解繊、分散の際に、節部で適度に繊維が切断され、繊維長が調整できるために、特に好ましい。   In the present invention, any ultrafine carbon fiber having the above-described nanostructure may be used, but when the knot-shaped carbon nanofiber is defibrated and dispersed, the fiber is appropriately cut at the knot and the fiber length can be adjusted. Particularly preferred.

極細炭素繊維は、球状複合銅微粒子100質量部に対して、0.1〜15.0質量部であり、細炭素繊維を内部のみに含有させるためには、1質量部以上6質量部未満であると好ましく、2質量部以上6質量部未満であるとより好ましい。極細炭素繊維の含有量が0.1質量部以上であると、上記複合効果が発揮されやすい。また、極細炭素繊維が、球状複合銅微粒子100質量部に対して、2質量部以上であると、球状複合銅微粒子中に存在する極細炭素繊維のSEMでの観察が容易になり、上記複合効果をより発揮しやすくなる。さらに、極細炭素繊維を、球状複合銅微粒子の内部および表面に含有させるためには、6.0〜20.0質量部であると好ましく、7.0〜15.0質量部であるとより好ましく、7.5〜12.0質量部であると更に好ましい。一方、極細炭素繊維の含有量が15.0質量部を超えると、球状複合銅微粒子の導電性、焼結性の低下が著しくなり、また、球状の粒子が得られにくくなる。なお、球状複合銅微粒子の熱膨張係数の観点からは、極細炭素繊維の含有量が、5.0質量部以上であると好ましく、6.0質量部以上であるとより好ましく、7.0質量部以上であると更に好ましい。一方、球状複合銅微粒子の色の観点からは、12.0質量部以上であると若干黒みを帯びるため、金属光沢の球状複合銅微粒子を得る観点からは、15質量部以下であると好ましく、10質量部以下であるとより好ましい。   The ultrafine carbon fiber is 0.1 to 15.0 parts by mass with respect to 100 parts by mass of the spherical composite copper fine particles, and in order to contain the fine carbon fiber only inside, it is 1 part by mass or more and less than 6 parts by mass. Preferably, it is more than 2 parts by mass and less than 6 parts by mass. When the content of the ultrafine carbon fiber is 0.1 parts by mass or more, the composite effect is easily exhibited. In addition, when the ultrafine carbon fiber is 2 parts by mass or more with respect to 100 parts by mass of the spherical composite copper fine particles, the ultrafine carbon fiber present in the spherical composite copper fine particles can be easily observed with the SEM, and the above composite effect is obtained. It becomes easier to demonstrate. Furthermore, in order to contain the ultrafine carbon fiber in the inside and the surface of the spherical composite copper fine particles, the amount is preferably 6.0 to 20.0 parts by mass, and more preferably 7.0 to 15.0 parts by mass. 7.5 to 12.0 parts by mass is even more preferable. On the other hand, when the content of the ultrafine carbon fiber exceeds 15.0 parts by mass, the conductivity and sinterability of the spherical composite copper fine particles are remarkably lowered, and it becomes difficult to obtain spherical particles. From the viewpoint of the thermal expansion coefficient of the spherical composite copper fine particles, the content of the ultrafine carbon fiber is preferably 5.0 parts by mass or more, more preferably 6.0 parts by mass or more, and 7.0 masses. More preferably, it is at least part. On the other hand, from the viewpoint of the color of the spherical composite copper fine particles, since it is slightly blackish if it is 12.0 parts by mass or more, from the viewpoint of obtaining spherical composite copper fine particles of metallic luster, it is preferably 15 parts by mass or less, More preferably, it is 10 parts by mass or less.

〔球状複合銅微粒子の製造方法〕
球状複合銅微粒子は、例えば、噴霧熱分解法により製造することができ、下記の本発明の球状複合銅微粒子の製造方法によれば、製造過程での球状複合銅微粒子の固着、凝集を防止しつつ、かつ高い回収率で製造することができる。
[Method for producing spherical composite copper fine particles]
The spherical composite copper fine particles can be produced, for example, by spray pyrolysis. According to the method for producing the spherical composite copper fine particles of the present invention described below, the adhesion and aggregation of the spherical composite copper fine particles during the production process are prevented. However, it can be manufactured at a high recovery rate.

本発明の極細炭素繊維を内部に含有し、球状複合銅微粒子100質量部に対して、極細炭素繊維が0.1〜15.0質量部である球状複合銅微粒子の製造方法は、
(A)極細炭素繊維集合体、および分散剤を、分散溶媒中に添加した後、極細炭素繊維を分散させた分散溶液を得る工程、
(B)得られた分散溶液に、銅化合物を混合した後、銅化合物を溶解して、混合物を得る工程、ならびに
(C)得られた混合物を、微細な液滴に霧化した後、霧化した液滴を還元性雰囲気中、1083℃以上で加熱する工程、
を、この順に含むことを特徴とする。
The method for producing spherical composite copper fine particles containing the ultra fine carbon fiber of the present invention inside, and the ultrafine carbon fiber is 0.1 to 15.0 parts by mass with respect to 100 parts by mass of the spherical composite copper fine particles,
(A) After adding the ultrafine carbon fiber aggregate and the dispersant to the dispersion solvent, obtaining a dispersion solution in which the ultrafine carbon fibers are dispersed;
(B) After mixing a copper compound with the obtained dispersion solution, dissolving the copper compound to obtain a mixture, and (C) atomizing the obtained mixture into fine droplets, Heating the transformed droplets at 1083 ° C. or higher in a reducing atmosphere;
Are included in this order.

ここで、まず、(A)工程で用いる極細炭素繊維の製造方法について説明する。   Here, first, a method for producing the ultrafine carbon fiber used in the step (A) will be described.

〈極細炭素繊維の製造方法〉
極細炭素繊維の製造方法としては、アーク放電法、気相成長法、レーザー法、鋳型法等が知られているが、触媒を用いた気相成長法が、極細炭素繊維の形状、量産性に優れるため、好ましい。この触媒は、Fe、Co、Ni、Mo、Al、Mg、Zn、TiおよびSiからなる群より選ばれる少なくとも1種の元素を含むと好ましく、具体的には、Fe、Co、Ni、Mo等の金属ナノ微粒子が担持されたAl、Mg、Si、Zn、Ti等の酸化物からなる成る複合酸化物触媒が使用される。気相法で使用される供給ガスは、炭素を含有するガスであると好ましい。炭素を含有するガスとしては、例えば、メタン、エチレン、アセチレン、トルエン等の炭化水素ガス、メタノール、エタノールのアルコール類、COガスが一般的に使用され、場合によっては水素ガスを含む炭素含有ガスが使用される。節型カーボンナノファイバーは、コバルトのスピネル型結晶構造を有する酸化物に、マグネシウムが固溶置換した触媒粒子を用い、CO及びHを含む混合ガスを、触媒粒子に供給する気相成長法により、容易に製造することができる。なお、この製造方法で得られる極細炭素繊維は、通常、集合体となっている。
<Method for producing ultrafine carbon fiber>
Known methods for producing ultrafine carbon fibers include arc discharge method, vapor phase growth method, laser method, mold method, etc., but vapor phase growth method using a catalyst contributes to the shape and mass productivity of ultrafine carbon fiber. It is preferable because it is excellent. This catalyst preferably contains at least one element selected from the group consisting of Fe, Co, Ni, Mo, Al, Mg, Zn, Ti and Si. Specifically, Fe, Co, Ni, Mo, etc. A composite oxide catalyst made of an oxide of Al, Mg, Si, Zn, Ti or the like on which the metal nanoparticles are supported is used. The feed gas used in the gas phase method is preferably a gas containing carbon. As the gas containing carbon, for example, hydrocarbon gas such as methane, ethylene, acetylene and toluene, alcohols such as methanol and ethanol, and CO gas are generally used. In some cases, carbon-containing gas containing hydrogen gas is used. used. The nodal carbon nanofibers are obtained by vapor phase growth using a catalyst particle in which magnesium is replaced by a solid solution with an oxide having a spinel crystal structure of cobalt, and supplying a mixed gas containing CO and H 2 to the catalyst particle. Can be manufactured easily. In addition, the ultrafine carbon fiber obtained by this manufacturing method is usually an aggregate.

〈(A)工程〉
(A)工程では、極細炭素繊維集合体、および分散剤を、分散溶媒中に添加した後、極細炭素繊維を分散させた分散溶液を得る。分散溶媒に極細炭素繊維を分散させるためには、まず、分散溶媒中で、極細炭素繊維集合体を開繊させ、次に、分散させる。開繊された極細炭素繊維が、再度集合体(凝集体)にならないように、分散溶媒に分散剤を添加する。極細炭素繊維集合体は、極細炭素繊維の分散性の観点から、分散溶液100質量部に対して、1〜6質量部であると好ましく、生産性の観点から、3〜6質量部であるとより好ましい。
<Process (A)>
In the step (A), after adding the ultrafine carbon fiber aggregate and the dispersant to the dispersion solvent, a dispersion solution in which the ultrafine carbon fibers are dispersed is obtained. In order to disperse the ultrafine carbon fibers in the dispersion solvent, first, the ultrafine carbon fiber aggregate is opened in the dispersion solvent and then dispersed. A dispersant is added to the dispersion solvent so that the opened ultrafine carbon fibers do not become aggregates (aggregates) again. The ultrafine carbon fiber aggregate is preferably 1 to 6 parts by mass with respect to 100 parts by mass of the dispersion solution from the viewpoint of dispersibility of the ultrafine carbon fibers, and 3 to 6 parts by mass from the viewpoint of productivity. More preferred.

分散溶媒は、特に限定はされないが、水および極性有機溶媒からなる群より選択される少なくとも1種であると好ましく、水、アルコール類等の極性溶媒が、通常、使用される。また、キシレン、トルエン等の芳香族化合物、N−メチルー2−ピロリドン、ジメチルスルホキシド等の非プロトン極性溶媒も使用可能である。   The dispersion solvent is not particularly limited, but is preferably at least one selected from the group consisting of water and polar organic solvents, and polar solvents such as water and alcohols are usually used. In addition, aromatic compounds such as xylene and toluene, and aprotic polar solvents such as N-methyl-2-pyrrolidone and dimethyl sulfoxide can also be used.

分散剤としては、オレイン酸ナトリウム、ポリオキシエチレンカルボン酸エステル、モノアルコールエステル、フェロセン誘導体等の界面活性剤;ピレン化合物(ピレンアンモニウム)、ポルフィリン化合物(ZnPP、Hemin、PPEt)、ポリフルオレン、環状グルカン、葉酸、ラクタム化合物(−CONH−)、ラクトン化合物(−CO−O−)等の環式/多環芳香族化合物;ポリチオフェン、ポリフェニレンビニレン、ポリフェニレンエチレン等の直鎖状共役重合体;ポリビニルピロリドン(PVP)等の環状アミド;ポリスチレンスルホン酸;ポリマーミセル;水溶性ピレン含有ポリマー;果糖、多糖類(カルボキシメチルセルロース等)、アミロース等の糖類;ラタキサン等の包接錯体;コール酸類縁体が挙げられる。分散溶媒が、水、アルコールの極性溶媒の場合は、カルボキシメチルセルロース、ナフタレンスルホン酸塩が、非プロト極性溶媒の場合は、ポリビニルピロリドン(PVP)が、好ましい。分散剤は、極細炭素繊維集合体と分散剤との合計100質量部に対して、1質量部以上90質量部以下で添加されると好ましく、10質量部以上70質量部以下で添加されると、より好ましい。   Dispersants include surfactants such as sodium oleate, polyoxyethylene carboxylic acid ester, monoalcohol ester, ferrocene derivative; pyrene compound (pyrene ammonium), porphyrin compound (ZnPP, Hemin, PPEt), polyfluorene, cyclic glucan Cyclic / polycyclic aromatic compounds such as folic acid, lactam compound (—CONH—), and lactone compound (—CO—O—); linear conjugated polymers such as polythiophene, polyphenylene vinylene, and polyphenylene ethylene; Cyclic amides such as PVP); polystyrene sulfonic acid; polymer micelles; water-soluble pyrene-containing polymers; fructose, polysaccharides (such as carboxymethylcellulose), saccharides such as amylose; inclusion complexes such as lataxane; cholic acid analogs. When the dispersion solvent is a polar solvent such as water or alcohol, carboxymethyl cellulose and naphthalene sulfonate are preferable, and when the dispersion solvent is a non-proto polar solvent, polyvinyl pyrrolidone (PVP) is preferable. The dispersant is preferably added in an amount of 1 part by mass or more and 90 parts by mass or less with respect to a total of 100 parts by mass of the ultrafine carbon fiber aggregate and the dispersant. More preferable.

極細炭素繊維集合体の開繊、分散は、分散溶媒に、分散剤と極細炭素繊維集合体等を添加して、ホモミキサー、トリミックス等で攪拌することにより行うことができる。極細炭素繊維集合体の開繊、分散を、より効果的に行うために、振動衝撃波による超音波、ビーズ、ボール等の衝撃、振盪を利用したビーズミル、ペイントシェーカー、遠心ボールミル、遊星ボールミル、振動ボールミル、アトライタータイプの高速ボールミル、更にせん断力によるロールミル等を使用することができる。   The opening and dispersion of the ultrafine carbon fiber aggregate can be performed by adding a dispersing agent and the ultrafine carbon fiber aggregate to a dispersion solvent and stirring the mixture with a homomixer, a trimix, or the like. In order to more effectively open and disperse ultrafine carbon fiber assemblies, beads mills, paint shakers, centrifugal ball mills, planetary ball mills, and vibrating ball mills that use ultrasonic vibration by vibration shock waves, impact of beads and balls, and shaking are used. Further, an attritor type high-speed ball mill, a roll mill using a shearing force, or the like can be used.

また、極細炭素繊維集合体を分散させる前に、極細炭素繊維集合体に酸化処理を行うことにより、極細炭素繊維が分散溶媒に馴染みやすくなる。この酸化処理方法としては、例えば硝酸/硫酸混合溶液、オゾン、超臨界水、超臨界炭酸ガス等による液相酸化、または大気焼成、酸素プラズマ等による気相酸化等により、極細炭素繊維集合体に親水化処理を施す方法が挙げられる。   Further, by subjecting the ultrafine carbon fiber aggregate to an oxidation treatment before dispersing the ultrafine carbon fiber aggregate, the ultrafine carbon fiber can be easily adapted to the dispersion solvent. As this oxidation treatment method, for example, an ultrafine carbon fiber aggregate is formed by liquid phase oxidation with nitric acid / sulfuric acid mixed solution, ozone, supercritical water, supercritical carbon dioxide gas, etc., or gas phase oxidation with atmospheric firing, oxygen plasma, etc. The method of giving a hydrophilic treatment is mentioned.

(A)工程では、極細炭素繊維の以外の炭素材であるグラファイト、グラフェン、カーボンブラック、アセチレンブラック、更には炭素前駆体を、極細炭素繊維と併用して用いても良く、炭素前駆体としては、コールタール、コールタールピッチ、石油系重質油、石油系ピッチ、ショ糖(スクロース)等の糖類、多価アルコール、(水溶性)フェノール樹脂、フラン樹脂、リグニン等が挙げられる。   In the step (A), graphite, graphene, carbon black, acetylene black, which is a carbon material other than the ultrafine carbon fiber, or a carbon precursor may be used in combination with the ultrafine carbon fiber. As the carbon precursor, , Coal tar, coal tar pitch, petroleum heavy oil, petroleum pitch, sugars such as sucrose (sucrose), polyhydric alcohol, (water-soluble) phenol resin, furan resin, lignin and the like.

〈(B)工程〉
(B)工程では、(A)工程で得られた分散溶液に、銅化合物を混合した後、銅化合物を溶解して、混合物を得る。
<(B) Process>
In the step (B), the copper compound is mixed with the dispersion obtained in the step (A), and then the copper compound is dissolved to obtain a mixture.

分散溶液に混合される銅化合物は、分散溶媒となる水、極性有機溶媒に溶解する可溶性銅化合物であり、硝酸銅(Cu(NO、CuNO)、酢酸銅(Cu(CHCOO)、Cu(CHCOO))、硫酸銅(CuSO、CuSO)、リン酸銅(Cu(PO、CuPO)等である。不溶性銅化合物、例えば、塩化銅(CuCl)、の様なハロゲン化銅については、未溶解銅化合物が共存しても不都合なく、(C)工程で液滴状に霧化可能であれば使用できる。銅化合物は、分解後の銅含有量が、球状複合銅微粒子100質量部に対して、0.1〜15.0質量部になるようにする。 The copper compound mixed in the dispersion solution is a soluble copper compound that dissolves in water as a dispersion solvent and a polar organic solvent, and includes copper nitrate (Cu (NO 3 ) 2 , CuNO 3 ), copper acetate (Cu (CH 3 COO). ), Cu (CH 3 COO) 2 ), copper sulfate (CuSO 4 , Cu 2 SO 4 ), copper phosphate (Cu 3 (PO 4 ) 2 , Cu 3 PO 4 ) and the like. Insoluble copper compounds, such as copper halides such as copper chloride (CuCl), can be used as long as they can be atomized into droplets in step (C) without any inconvenience even if undissolved copper compounds coexist. . The copper compound is made to have a copper content after decomposition of 0.1 to 15.0 parts by mass with respect to 100 parts by mass of the spherical composite copper fine particles.

分散溶液に、銅化合物を混合し、溶解する方法は、特に限定されず、プロペラ撹拌等の公知技術でよい。   The method for mixing and dissolving the copper compound in the dispersion solution is not particularly limited, and may be a known technique such as propeller stirring.

〈(C)工程〉
(C)工程では、(B)工程で得られた混合物を、微細な液滴に霧化した後、霧化した液滴を還元性雰囲気中、1083℃以上で加熱する。
<Process (C)>
In the step (C), the mixture obtained in the step (B) is atomized into fine droplets, and then the atomized droplets are heated in a reducing atmosphere at 1083 ° C. or higher.

(C)工程における反応について、分散溶液として、極細炭素繊維が分散した水分散液を用い、銅化合物として硝酸銅(Cu(NO)を用いた例で、推測する。まず、霧化された混合物液滴は、分散溶媒が蒸発気化し、極細炭素繊維が絡み合った硝酸銅((Cu(NO))結晶微粒子集合体が形成される。この硝酸銅((Cu(NO))結晶微粒子集合体の温度が、硝酸銅の融点である115℃(安定な三水和物の融点)を越えると、硝酸銅粒子集合体は融解し、硝酸銅融体粒子に極細炭素繊維が分散される。次に、極細炭素繊維が分散された硝酸銅融体粒子は、分解温度である170℃を越えると、硝酸銅粒子が金属銅へ分解し、銅微粒子と極細炭素繊維が絡み合った多孔質複合体となる。さらに、多孔質複合体の温度が、銅の融点である1083℃に近づくに従い、銅微粒子が焼結緻密化し、極細炭素繊維が複合化された擬似球状銅粒子へ転換する。極細炭素繊維が複合化された擬似球状銅粒子が、銅融点を越えた温度である1083℃以上になると、好ましくは1100℃以上になると、銅粒子が融解するため、融解した銅の表面張力により、球形状の結晶質銅粒子の生成が容易となる。上記の反応式を、下記に示す。
Cu(NO(S) → Cu(NO(l) → Cu+2NO+O
(式中、(S)は固体を、(l)は液体を示す。)
The reaction in step (C), as a dispersion solution, a water dispersion ultrafine carbon fibers are dispersed, an example using a copper compound copper nitrate (Cu (NO 3) 2) , guess. First, in the atomized mixture droplets, the dispersion solvent evaporates and copper nitrate ((Cu (NO 3 ) 2 )) crystal particle aggregates in which ultrafine carbon fibers are entangled are formed. When the temperature of the copper nitrate ((Cu (NO 3 ) 2 )) crystal particle aggregate exceeds 115 ° C. (melting point of stable trihydrate), which is the melting point of copper nitrate, the copper nitrate particle aggregate is melted. Then, ultrafine carbon fibers are dispersed in the copper nitrate melt particles. Next, when the copper nitrate melt particles in which the ultrafine carbon fibers are dispersed exceed the decomposition temperature of 170 ° C., the copper nitrate particles decompose into metal copper, and the porous composite in which the copper fine particles and the ultrafine carbon fibers are intertwined. It becomes. Furthermore, as the temperature of the porous composite approaches 1083 ° C., which is the melting point of copper, the copper fine particles are sintered and densified, and converted to pseudo spherical copper particles in which ultrafine carbon fibers are combined. When the pseudo-spherical copper particles combined with ultrafine carbon fibers reach a temperature exceeding the melting point of copper of 1083 ° C. or higher, preferably 1100 ° C. or higher, the copper particles melt. The production of spherical crystalline copper particles is facilitated. The above reaction formula is shown below.
Cu (NO 3 ) 2 (S) → Cu (NO 3 ) 2 (l) → Cu + 2NO 2 + O 2
(In the formula, (S) represents a solid, and (l) represents a liquid.)

銅に加えて、銅と異なる金属との合金化、または銅と異なる金属の酸化物との添加複合化を図ることもできる。銅と異なる金属としては、パラジウム、銀、金、白金、ルテニウム、ロジウム、イリジウム、亜鉛、鉄、ニッケル、コバルト、アルミニウム、インジウム、ビスマス、スズ、ゲルマニウム、ガリウム、タングステン、モリブデン、アルカリ金属、アルカリ土類金属が挙げられる。銅と異なる金属とのとの合金化、または酸化物との添加複合化を行う場合においては、それぞれの金属化合物の分解温度より高い温度、好ましくはそれぞれの金属の融点近傍以上の温度で加熱し、銅粒子と合金または酸化物と複合化させる。   In addition to copper, alloying with a metal different from copper or addition compounding with an oxide of a metal different from copper can also be achieved. Metals different from copper include palladium, silver, gold, platinum, ruthenium, rhodium, iridium, zinc, iron, nickel, cobalt, aluminum, indium, bismuth, tin, germanium, gallium, tungsten, molybdenum, alkali metal, alkaline earth Similar metals. In the case of alloying with copper and a different metal, or adding and compounding with an oxide, heating is performed at a temperature higher than the decomposition temperature of each metal compound, preferably at or above the melting point of each metal compound. And composite with copper particles and alloy or oxide.

(B)工程で得られた混合物から液滴を発生する霧化装置としては、二流体アトマイザー、遠心アトマイザー、超音波アトマイザー等の通常の装置が使用できる。なお、上記いずれの装置を用いる場合においても、硝酸銅結晶の析出による閉塞等のトラブルが生じない分散溶媒の沸点未満の温度で操作するか、またはエチレングリコール等の高沸点極性分散溶媒を添加することが好ましい。   As the atomization device that generates droplets from the mixture obtained in the step (B), a normal device such as a two-fluid atomizer, a centrifugal atomizer, or an ultrasonic atomizer can be used. In any of the above apparatuses, operation is performed at a temperature lower than the boiling point of the dispersion solvent that does not cause trouble such as clogging due to precipitation of copper nitrate crystals, or a high boiling polar dispersion solvent such as ethylene glycol is added. It is preferable.

(C)工程において、霧化した液滴を加熱する温度は、上述のように、銅融点を越えた温度である1085℃以上であると、好ましい。また、霧化した液滴を加熱する温度は、1500℃以下が好ましい。エネルギーが無駄になるためである。   In the step (C), the temperature at which the atomized droplet is heated is preferably 1085 ° C. or higher, which is a temperature exceeding the copper melting point, as described above. The temperature for heating the atomized droplets is preferably 1500 ° C. or lower. This is because energy is wasted.

(C)工程において、霧化した液滴を加熱する還元性雰囲気としては、極細炭素繊維が酸素と反応しない、窒素ガス、アルゴンガス、炭酸ガス(二酸化炭素ガス)の不活性雰囲気、または一酸化炭素ガス、水素ガス、アンモニアガス、アルコール、炭化水素ガス等の還元性ガス、または上記還元性ガスと窒素ガス、アルゴンガス、二酸化炭素ガスの不活性雰囲気との混合ガスが挙げられ、水素ガスと、窒素ガスまたは炭酸ガスとの混合ガスであると、取扱いおよび安全性の観点から好ましい。   In step (C), the reducing atmosphere for heating the atomized droplets is an inert atmosphere of nitrogen gas, argon gas, carbon dioxide gas (carbon dioxide gas) in which the ultrafine carbon fiber does not react with oxygen, or monoxide Examples of the reducing gas such as carbon gas, hydrogen gas, ammonia gas, alcohol, hydrocarbon gas, or a mixed gas of the reducing gas and an inert atmosphere of nitrogen gas, argon gas, carbon dioxide gas, From the viewpoints of handling and safety, a mixed gas of nitrogen gas or carbon dioxide gas is preferable.

製造される球状複合銅微粒子の平均粒子径は、分散溶媒の組成、分散溶媒中の銅化合物の濃度、霧化液滴径、加熱温度、雰囲気ガス等の因子に依存し、これらの因子を選択することにより球状複合銅微粒子の粒径を制御することができる。銅化合物の濃度が低いと、生成する銅粒子の平均粒子径は小さくなる。また、分散溶媒の沸点が低いときに、急激な加熱をすると、液滴がより沸騰し易くなり、液滴が分裂し、微粒子化される。   The average particle size of the spherical composite copper particles produced depends on factors such as the composition of the dispersion solvent, the concentration of the copper compound in the dispersion solvent, the diameter of the atomized droplets, the heating temperature, and the atmospheric gas, and these factors are selected. By doing so, the particle diameter of the spherical composite copper fine particles can be controlled. When the concentration of the copper compound is low, the average particle diameter of the generated copper particles becomes small. In addition, when the boiling point of the dispersion solvent is low, if the heating is performed rapidly, the droplets are more likely to boil, and the droplets are split and made into fine particles.

(C)工程の後、得られた球状複合銅微粒子を、希釈冷却し、排気ガスとから複合化銅粒子を分離する分離捕集を行う。   After the step (C), the obtained spherical composite copper fine particles are diluted and cooled to separate and collect the composite copper particles from the exhaust gas.

得られた球状複合銅微粒子は、加熱炉外で直ちに分散溶媒蒸気の露点以上、水溶液の場合には100℃以上に希釈冷却した後、極細炭素繊維で複合化した銅粒子を排ガスから分離装置、例えば、フィルター、サイクロン、電気集塵機、振動式バッグフィルター等で捕集する。いすれの分離装置においても、金属銅粒子である場合には、金属銅粒子が容易に分離装置に固着、凝結するため、回収率及び分散性の低下は避けられない。これに対し、極細炭素繊維との複合化された球状複合銅微粒子では、効率的な捕集を実現し、分散性の改善をもたらす。   The obtained spherical composite copper fine particles are immediately separated from the dew point of the dispersion solvent vapor immediately outside the heating furnace, in the case of an aqueous solution, diluted and cooled to 100 ° C. or higher, and then the copper particles combined with ultrafine carbon fibers are separated from the exhaust gas, For example, it collects with a filter, a cyclone, an electric dust collector, a vibrating bag filter, or the like. Even in any separator, in the case of metallic copper particles, the metal copper particles easily adhere to and condense on the separator, so that the recovery rate and dispersibility are unavoidable. On the other hand, the spherical composite copper fine particles combined with ultrafine carbon fibers achieve efficient collection and improve dispersibility.

以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔実施例1〕
〈(A)工程〉
中空の極細炭素繊維である節型カーボンナノファイバー(宇部興産(株)製、商品名:AMC、繊維長:160〜1800nm、外径:6〜15nm、内径:3〜8nm、アスペクト比:40〜130)、分散剤であるカルボキシメチルセルロースアンモニウム(CMC)塩(ダイセルファインケム(株)(商品名:NH4−CMCDN−10L)、イオン交換水を、この順に、質量比3:0.6:96.7で、ビーズミル分散装置((株)荒木鉄工社製リングミル、ベッセル容量:2dm、ジルコニアビーズ径:1mm)に仕込み、120分間開繊、分散を行い、極細炭素繊維が分散した分散溶液を作製した。
[Example 1]
<Process (A)>
Nodal carbon nanofiber (Ube Industries, Ltd., trade name: AMC, fiber length: 160-1800 nm, outer diameter: 6-15 nm, inner diameter: 3-8 nm, aspect ratio: 40- 130), carboxymethylcellulose ammonium (CMC) salt (Daicel Finechem Co., Ltd. (trade name: NH4-CMCDN-10L), which is a dispersant, and ion-exchanged water in this order in a mass ratio of 3: 0.6: 96.7. Then, it was charged into a bead mill dispersing device (Ring Mill manufactured by Araki Iron Works Co., Ltd., vessel capacity: 2 dm 3 , zirconia bead diameter: 1 mm), and opened and dispersed for 120 minutes to prepare a dispersion solution in which ultrafine carbon fibers were dispersed. .

〈(B)工程〉
次に、作製した分散溶液に、硝酸銅(Cu(NO、関東化学(株)製1級試薬)を、極細炭素繊維と金属銅の質量比が7.5:92.5になる割合で溶解し、硝酸銅濃度を2mol/dmに希釈し、混合物を調液した。
<(B) Process>
Next, copper nitrate (Cu (NO 3 ) 2 , first grade reagent manufactured by Kanto Chemical Co., Ltd.) is added to the prepared dispersion solution, and the mass ratio of ultrafine carbon fiber to metallic copper is 7.5: 92.5. was dissolved in a proportion, by diluting the copper nitrate concentration 2 mol / dm 3, the mixture was prepared in a reaction vessel.

〈(C)工程〉
調液した混合物を、二流体アトマイザー霧化装置に、定量ポンプ(東京理化(株)製)を用いて5cm/minで送液し、窒素ガス流量:25dm/minおよび水素ガス流量:5dm/minで液滴状にし、搬送窒素ガスを40dm/minで流し、1150℃に加熱したムライト管へ装入した。液滴は、加熱領域で溶媒揮発、熱分解され、生成物をサイクロンで分別、捕集した。
<Process (C)>
The prepared mixture was fed to a two-fluid atomizer atomizer using a metering pump (manufactured by Tokyo Rika Co., Ltd.) at a rate of 5 cm 3 / min, a nitrogen gas flow rate: 25 dm 3 / min and a hydrogen gas flow rate: 5 dm. Droplets were formed at 3 / min, and a carrier nitrogen gas was flowed at 40 dm 3 / min and charged into a mullite tube heated to 1150 ° C. The liquid droplets were volatilized and pyrolyzed in the heating area, and the product was separated and collected by a cyclone.

サイクロンで捕集された粒子は、凝集塊は無く、良好な分散性を示し、回収率は95質量%であった。また、捕集された粒子は、粒子径が、100〜8000μmで、真球状の球状複合銅微粒子であった。表1に、これらの結果を示す。表1において、粒子形状、最小粒子径、最大粒子径は、走査型電子顕微鏡写真により観察した。最小粒子径、最大粒子径は、観察した50個の球状複合銅微粒子の中の長径(球状複合銅微粒子での最も長い径)から求めた。真球とは、アスペクト比が1.05以下であり、異形とはアスペクト比が1.4より大きい場合である。回収率は、〔(回収された球状複合銅微粒子の質量)/(理論的に得られる球状複合銅微粒子の質量)×100〕から求めた。粒子性状は、アスペクト比が1.0以上1.1以下であるときに「◎」、アスペクト比が1.1を超えて1.2以下であるときに「○」、アスペクト比が1.2を超えて1.4以下であるときに「△」、アスペクト比が1.4を超えるときと、サイクロン表面に球状複合銅微粒子が付着した場合を「×」とした。なお、実施例1で作製した球状複合銅微粒子をエネルギー分散型X線分析(EDX)により定量分析を行った結果、球状複合銅微粒子100質量部に対して、炭素が8.0質量であった。 The particles collected by the cyclone had no agglomerates, showed good dispersibility, and the recovery rate was 95% by mass. Further, the collected particles were spherical composite copper fine particles having a particle diameter of 100 to 8000 μm. Table 1 shows these results. In Table 1, the particle shape, the minimum particle size, and the maximum particle size were observed with a scanning electron micrograph. The minimum particle diameter and the maximum particle diameter were determined from the long diameter (the longest diameter of the spherical composite copper fine particles) among the 50 spherical composite copper fine particles observed. A true sphere is an aspect ratio of 1.05 or less, and an irregular shape is a case where the aspect ratio is greater than 1.4. The recovery rate was calculated from [(mass of collected spherical composite copper fine particles) / (mass of theoretically obtained spherical composite copper fine particles) × 100]. The particle properties are “◎” when the aspect ratio is 1.0 or more and 1.1 or less, “◯” when the aspect ratio is more than 1.1 and 1.2 or less, and the aspect ratio is 1.2. “Δ” when exceeding 1.4 and not exceeding 1.4, and “x” when the aspect ratio exceeds 1.4 and when spherical composite copper fine particles adhered to the cyclone surface. As a result of quantitative analysis of the spherical composite copper fine particles produced in Example 1 by energy dispersive X-ray analysis (EDX), carbon was 8.0 parts by mass with respect to 100 parts by mass of the spherical composite copper fine particles. It was.

図1、図2に、実施例1で製造した球状複合銅微粒子の走査型電子顕微鏡(SEM)写真を示す。図1、図2から、実施例1で製造した複合銅微粒子は、球状であることがわかった。また、実施例1で製造した複合銅微粒子は、表面に、粒子径が1nm以上のより微細な複合銅微粒子が付着していることがわかった。次に、図3、図4、図5に、実施例1で製造した球状複合銅微粒子を35質量%硝酸水溶液で120秒間エッチングした後のSEM写真を示す。図3、図4、図5から、エッチング後の球状複合銅微粒子の表面に極細炭素繊維が存在することが確認された。このことから、実施例1で製造した球状複合銅微粒子が極細炭素繊維を内部に含有することを確認することができた。次に、図6、図7に、実施例1で製造した球状複合銅微粒子を35質量%硝酸水溶液で420秒間エッチングした後のSEM写真を示す。図6、図7からも、エッチング後の球状複合銅微粒子の表面に極細炭素繊維が存在することが確認され、図3〜5と、図6〜7との比較から、球状複合銅微粒子の内部まで極細炭素繊維が存在することがわかった。参考に、図8に、使用した極細炭素繊維のSEM写真を示す。   1 and 2 show scanning electron microscope (SEM) photographs of the spherical composite copper fine particles produced in Example 1. FIG. 1 and 2, it was found that the composite copper fine particles produced in Example 1 were spherical. Further, it was found that the composite copper fine particles produced in Example 1 had finer composite copper fine particles having a particle diameter of 1 nm or more adhered to the surface. Next, FIG. 3, FIG. 4 and FIG. 5 show SEM photographs after etching the spherical composite copper fine particles produced in Example 1 with a 35 mass% nitric acid aqueous solution for 120 seconds. From FIG. 3, FIG. 4, and FIG. 5, it was confirmed that ultrafine carbon fibers were present on the surface of the spherical composite copper fine particles after etching. From this, it was confirmed that the spherical composite copper fine particles produced in Example 1 contained ultrafine carbon fibers inside. Next, FIG. 6 and FIG. 7 show SEM photographs after etching the spherical composite copper fine particles produced in Example 1 with a 35 mass% nitric acid aqueous solution for 420 seconds. 6 and FIG. 7 also confirm that ultrafine carbon fibers are present on the surface of the spherical composite copper fine particles after etching. From the comparison between FIGS. 3 to 5 and FIGS. It was found that ultrafine carbon fibers existed. For reference, FIG. 8 shows an SEM photograph of the used ultrafine carbon fiber.

〔実施例2〜3〕
)工程で、極細炭素繊維:金属銅の質量比を1:99、4:96とした以外は、実施例1と同様にして、球状複合銅微粒子を製造した。表1に、実施例2〜3の調製条件と、製造した球状複合銅微粒子の物性、回収率を示す。
[Examples 2-3]
In the step ( B ), spherical composite copper fine particles were produced in the same manner as in Example 1 except that the mass ratio of ultrafine carbon fiber: metal copper was 1:99, 4:96. Table 1 shows the preparation conditions of Examples 2-3, the physical properties of the produced spherical composite copper fine particles, and the recovery rate.

〔実施例4〕
(A)工程で、分散剤をβーナフタリンスルホン酸ホルマリン縮合物(ナフタリン)(花王(株)製DEMOL−N)にし、極細炭素繊維:分散剤:イオン交換水の質量比を、5:2:93とした以外は、実施例1と同様にして、球状複合銅微粒子を製造した。表1に、実施例4の調製条件と、製造した球状複合銅微粒子の物性、回収率を示す。
Example 4
In step (A), the dispersant is β-naphthalenesulfonic acid formalin condensate (naphthalene) (DEMOL-N manufactured by Kao Corporation), and the mass ratio of ultrafine carbon fiber: dispersant: ion exchanged water is 5: 2. : Spherical composite copper fine particles were produced in the same manner as in Example 1 except that the ratio was 93. Table 1 shows the preparation conditions of Example 4, the physical properties of the produced spherical composite copper fine particles, and the recovery rate.

〔実施例5〕
(C)工程で、窒素ガスに水素ガス:5dm/minを加えて液滴状にし、加熱温度を1090℃とした以外は実施例4と同様にして、球状複合銅微粒子を製造した。表1に、実施例5の調製条件と、製造した球状複合銅微粒子の物性、回収率を示す。
Example 5
In step (C), spherical composite copper fine particles were produced in the same manner as in Example 4 except that hydrogen gas: 5 dm 3 / min was added to nitrogen gas to form droplets and the heating temperature was changed to 1090 ° C. Table 1 shows the preparation conditions of Example 5, the physical properties of the produced spherical composite copper fine particles, and the recovery rate.

〔実施例6、7〕
〈(A)工程〉
中空の極細炭素繊維である節型カーボンナノファイバー(宇部興産(株)製、商品名:AMC、繊維長:160〜1800nm、外径:6〜15nm、内径:3〜8nm、アスペクト比:40〜130)、分散剤であるβーナフタリンスルホン酸ホルマリン縮合物(ナフタリン)(花王(株)製DEMOL−N)、イオン交換水を、この順に、質量比5:2.5:92.5で、ビーズミル分散装置((株)荒木鉄工社製リングミル、ベッセル容量:2dm、ジルコニアビーズ径:1mm)に仕込み、300分間開繊、分散を行い、極細炭素繊維が分散した分散溶液を作製した。(B)工程、(C)工程は、表1に記載した配合にしたこと以外は、実施例1と同様にして、球状複合銅微粒子を製造した。表1に、実施例6〜7の調製条件と、製造した球状複合銅微粒子の物性、回収率を示す。
[Examples 6 and 7]
<Process (A)>
Nodal carbon nanofiber (Ube Industries, Ltd., trade name: AMC, fiber length: 160-1800 nm, outer diameter: 6-15 nm, inner diameter: 3-8 nm, aspect ratio: 40- 130), β-naphthalenesulfonic acid formalin condensate (naphthalene) (DEMOL-N manufactured by Kao Corporation), which is a dispersant, and ion-exchanged water in this order at a mass ratio of 5: 2.5: 92.5, A bead mill dispersing apparatus (Ring Mill manufactured by Araki Iron Works Co., Ltd., vessel capacity: 2 dm 3 , zirconia bead diameter: 1 mm) was charged, opened and dispersed for 300 minutes to prepare a dispersion solution in which ultrafine carbon fibers were dispersed. Steps (B) and (C) were produced in the same manner as in Example 1 except that the formulation shown in Table 1 was used, to produce spherical composite copper fine particles. Table 1 shows the preparation conditions of Examples 6 to 7, the physical properties of the produced spherical composite copper fine particles, and the recovery rate.

〔実施例8〕
(C)工程を、炭酸ガス流量:25dm/minおよび水素ガス:5dm/minで液滴状にしたこと以外は、実施例1と同様にして、球状複合銅微粒子を製造した。表1に、実施例8の調製条件と、製造した球状複合銅微粒子の物性、回収率を示す。
Example 8
Spherical composite copper fine particles were produced in the same manner as in Example 1 except that the step (C) was made into droplets at a flow rate of carbon dioxide gas: 25 dm 3 / min and hydrogen gas: 5 dm 3 / min. Table 1 shows the preparation conditions of Example 8, the physical properties of the produced spherical composite copper fine particles, and the recovery rate.

〔実施例9〕
(C)工程を、アンモニアガス流量:30dm/minで液滴状にしたこと以外は、実施例1と同様にして、球状複合銅微粒子を製造した。表1に、実施例9の調製条件と、製造した球状複合銅微粒子の物性、回収率を示す。
Example 9
Spherical composite copper fine particles were produced in the same manner as in Example 1 except that the step (C) was made into droplets at an ammonia gas flow rate of 30 dm 3 / min. Table 1 shows the preparation conditions of Example 9, the physical properties of the produced spherical composite copper fine particles, and the recovery rate.

〔比較例1〕
実施例1の極細炭素繊維を添加しなかったこと以外は、実施例1と同様の方法で銅粒子を作製した。表1に、比較例1の結果を示す。
[Comparative Example 1]
Copper particles were produced in the same manner as in Example 1 except that the ultrafine carbon fiber of Example 1 was not added. Table 1 shows the results of Comparative Example 1.

〔比較例2〕
〈(A)工程〉
中空の極細炭素繊維である節型カーボンナノファイバー(宇部興産(株)製、商品名:AMC、繊維長:160〜1800nm、外径:6〜15nm、内径:3〜8nm、アスペクト比:40〜130)、分散剤であるβーナフタリンスルホン酸ホルマリン縮合物(ナフタリン)(花王(株)製DEMOL−N)、イオン交換水を、この順に、質量比5:2.5:92.5で、ビーズミル分散装置(荒木鉄工(株)製リングミル、ベッセル容量:2dm、ジルコニアビーズ径:1mm)に仕込み、300分間開繊、分散を行い、極細炭素繊維が分散した分散溶液を作製した。(B)工程、(C)工程は、極細炭素繊維:金属銅の質量比を16.0:84.0としたこと以外は、実施例1と同様にして、球状複合銅微粒子を製造した。表1に、比較例2の調製条件と、製造した球状複合銅微粒子の物性、回収率を示す。
[Comparative Example 2]
<Process (A)>
Nodal carbon nanofiber (Ube Industries, Ltd., trade name: AMC, fiber length: 160-1800 nm, outer diameter: 6-15 nm, inner diameter: 3-8 nm, aspect ratio: 40- 130), β-naphthalenesulfonic acid formalin condensate (naphthalene) (DEMOL-N manufactured by Kao Corporation), which is a dispersant, and ion-exchanged water in this order at a mass ratio of 5: 2.5: 92.5, A bead mill dispersing device (Araki Tekko Co., Ltd. ring mill, vessel capacity: 2 dm 3 , zirconia bead diameter: 1 mm) was charged, opened and dispersed for 300 minutes to prepare a dispersion solution in which ultrafine carbon fibers were dispersed. In the steps (B) and (C), spherical composite copper fine particles were produced in the same manner as in Example 1 except that the mass ratio of ultrafine carbon fiber: metal copper was 16.0: 84.0 . Table 1 shows the preparation conditions of Comparative Example 2, the physical properties of the produced spherical composite copper fine particles, and the recovery rate.

〔比較例3〕
極細炭素繊維:金属銅の質量比を21:79とした以外は、実施例4と同様にして、複合銅微粒子を作製した。表1に、比較例3の結果を示す。
[Comparative Example 3]
Composite copper fine particles were prepared in the same manner as in Example 4 except that the mass ratio of ultrafine carbon fiber: metal copper was 21:79. Table 1 shows the results of Comparative Example 3.

表1からわかるように、実施例1〜8のすべてで、真球で、極細炭素繊維が0.1〜15.0質量部の球状複合銅微粒子が得られた。これに対して、極細炭素繊維を含有しない球状銅粒子の比較例1では、(C)工程後の回収で、銅微粒子がサイクロン鏡面に固着してしまい、回収率が低かった。なお、比較例1は、極細炭素繊維を含有しないので、上記複合効果も有さない、と考えられる。一方、極細炭素繊維の含有量が多すぎる比較例2、3では、球状粒子が得られなかった。   As can be seen from Table 1, in all of Examples 1 to 8, spherical composite copper fine particles having true spheres and 0.1 to 15.0 parts by mass of ultrafine carbon fibers were obtained. On the other hand, in the comparative example 1 of the spherical copper particles not containing ultrafine carbon fibers, the copper fine particles were fixed to the cyclone mirror surface in the recovery after the step (C), and the recovery rate was low. In addition, since the comparative example 1 does not contain an ultrafine carbon fiber, it is thought that it does not have the said composite effect. On the other hand, in Comparative Examples 2 and 3 in which the content of ultrafine carbon fibers is too large, spherical particles were not obtained.

Claims (8)

極細炭素繊維を内部に含有し、球状複合銅微粒子100質量部に対して、極細炭素繊維が0.1〜15.0質量部であり、かつアスペクト比が1.0〜1.2であることを特徴とする、球状複合銅微粒子。 Containing ultrafine carbon fibers therein, with respect to 100 parts by weight of the spherical composite copper particles, ultrafine carbon fibers Ri 0.1-15.0 parts by der, and an aspect ratio of 1.0 to 1.2 A spherical composite copper fine particle characterized by the above. 球状複合銅微粒子の粒子径が、1nm以上20000nm未満である、請求項1記載の球状複合銅微粒子。   The spherical composite copper fine particle according to claim 1, wherein the spherical composite copper fine particle has a particle diameter of 1 nm or more and less than 20000 nm. 極細炭素繊維が、中空繊維であり、繊維長:Lが50nm以上、外径:Dが5〜40nm、内径:dが2〜30nmであり、アスペクト比(L/D)が5〜1000である、請求項1または2記載の球状複合銅微粒子。   The ultrafine carbon fiber is a hollow fiber, the fiber length: L is 50 nm or more, the outer diameter: D is 5-40 nm, the inner diameter: d is 2-30 nm, and the aspect ratio (L / D) is 5-1000. The spherical composite copper fine particles according to claim 1 or 2. (A)極細炭素繊維集合体、および分散剤を、分散溶媒中に添加した後、極細炭素繊維を分散させた分散溶液を得る工程、
(B)得られた分散溶液に、銅化合物を混合した後、銅化合物を溶解して、混合物を得る工程、ならびに
(C)得られた混合物を、微細な液滴に霧化した後、霧化した液滴を還元性雰囲気中、1083℃以上で加熱する工程、
を、この順に含むことを特徴とする、極細炭素繊維を内部に含有し、球状複合銅微粒子100質量部に対して、極細炭素繊維が0.1〜15.0質量部である球状複合銅微粒子の製造方法。
(A) After adding the ultrafine carbon fiber aggregate and the dispersant to the dispersion solvent, obtaining a dispersion solution in which the ultrafine carbon fibers are dispersed;
(B) After mixing a copper compound with the obtained dispersion solution, dissolving the copper compound to obtain a mixture, and (C) atomizing the obtained mixture into fine droplets, Heating the transformed droplets at 1083 ° C. or higher in a reducing atmosphere;
In this order, containing ultrafine carbon fibers inside, spherical composite copper fine particles having 0.1 to 15.0 parts by mass of ultrafine carbon fiber with respect to 100 parts by mass of spherical composite copper fine particles Manufacturing method.
極細炭素繊維が、Fe、Co、Ni、Mo、Al、Mg、Zn、TiおよびSiからなる群より選ばれる少なくとも1種の元素を含む触媒を用い、炭素を含有するガスによる気相成長法によって製造される、請求項4記載の球状複合銅微粒子の製造方法。   By using a catalyst containing at least one element selected from the group consisting of Fe, Co, Ni, Mo, Al, Mg, Zn, Ti, and Si as an ultrafine carbon fiber, by vapor phase growth method using a gas containing carbon The manufacturing method of the spherical composite copper fine particle of Claim 4 manufactured. 分散剤が、カルボキシメチルセルロース、ナフタリンスルホン酸塩またはポリビニルピロリドンである、請求項4または5記載の球状複合銅微粒子の製造方法。   The method for producing spherical composite copper fine particles according to claim 4 or 5, wherein the dispersant is carboxymethyl cellulose, naphthalene sulfonate, or polyvinyl pyrrolidone. 分散溶媒が、水および極性有機溶媒からなる群より選択される少なくとも1種を含む、請求項4〜6のいずれか1項記載の球状複合銅微粒子の製造方法。   The method for producing spherical composite copper fine particles according to any one of claims 4 to 6, wherein the dispersion solvent contains at least one selected from the group consisting of water and a polar organic solvent. (C)工程において、霧化した液滴を加熱する還元性雰囲気が窒素ガス、炭酸ガス、アンモニアガス、アルコール、炭化水素ガスおよび水素ガスからなる群より選択される少なくとも1種である、請求項4〜7のいずれか1項記載の球状複合銅微粒子の製造方法。   In the step (C), the reducing atmosphere for heating the atomized droplets is at least one selected from the group consisting of nitrogen gas, carbon dioxide gas, ammonia gas, alcohol, hydrocarbon gas and hydrogen gas. The manufacturing method of the spherical composite copper fine particle of any one of 4-7.
JP2014099265A 2014-05-13 2014-05-13 Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same Active JP6373055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099265A JP6373055B2 (en) 2014-05-13 2014-05-13 Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099265A JP6373055B2 (en) 2014-05-13 2014-05-13 Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015214734A JP2015214734A (en) 2015-12-03
JP6373055B2 true JP6373055B2 (en) 2018-08-15

Family

ID=54751881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099265A Active JP6373055B2 (en) 2014-05-13 2014-05-13 Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP6373055B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6792861B2 (en) * 2016-09-26 2020-12-02 浜田 晴夫 Electrodes of an air magnesium battery coated with a thin film containing a nanocarbon material and its manufacturing method
JP6960817B2 (en) * 2017-09-29 2021-11-05 日鉄ケミカル&マテリアル株式会社 Metal collecting material for valuable metal recovery, its manufacturing method and valuable metal recovery method
CN108796398B (en) * 2018-07-11 2020-04-28 河北工业职业技术学院 Preparation method of continuous carbon fiber reinforced copper-based composite material
CN109207873B (en) * 2018-11-19 2020-06-19 沈阳工业大学 Method for preparing short carbon fiber aluminum-based composite material by pre-dispersion treatment and stirring
CN116441556B (en) * 2023-06-15 2023-08-22 华北电力大学 Hydrogen-assisted wet-heat synthesis method of ultra-pure copper powder and ultra-pure copper powder material
CN117884643B (en) * 2024-03-11 2024-05-17 四川力泓电子科技有限公司 Copper powder, copper powder preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060065543A1 (en) * 2003-02-18 2006-03-30 Susumu Arai Metal particles and method for producing same
KR100932974B1 (en) * 2003-04-08 2009-12-21 삼성에스디아이 주식회사 Method for producing carbon-based composite particles for electron emission
JP2013067854A (en) * 2011-09-20 2013-04-18 Pelnox Ltd Copper composite particle, composite metallic copper particle, method for producing copper composite particle, metallic paste, article having metallic conductor and method for producing article having metallic conductor

Also Published As

Publication number Publication date
JP2015214734A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP2016000843A (en) Spherical composite metal fine particle and manufacturing method therefor
JP6373055B2 (en) Spherical composite copper fine particles containing ultrafine carbon fiber and method for producing the same
JP6385705B2 (en) Method for producing spherical composite silver fine particles containing ultrafine carbon fiber
Sehrawat et al. Carbon nanotubes in Li-ion batteries: A review
CN107848077B (en) Composition containing metal particles
JP5872063B2 (en) Copper powder
CN105280904B (en) Electrode composition for battery
JP6153077B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP3812523B2 (en) Method for producing metal powder
JP5040010B2 (en) Method for producing composite positive electrode active material
JP5392910B2 (en) Method for producing copper fine particles
KR101142534B1 (en) Process for producing si-based nanocomposite anode material for lithium secondary battery and lithium secondary battery including the same
US8491998B2 (en) Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
JP2016028176A (en) Method for manufacturing copper powder
JP4839689B2 (en) Silver ultrafine particle production method, silver powder, and silver ultrafine particle dispersion
JP2013159830A (en) Surface-coated metal nanoparticle, and method for producing the same
KR101705943B1 (en) Method of manufacturing multilayer graphene coated composite powders by wire explosion
JP4747839B2 (en) Dispersion containing metal hydride fine particles, method for producing the same, and metallic material
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
TWI437746B (en) Non-aqueous electrolyte secondary battery
JP5176060B2 (en) Method for producing silver particle dispersion
JP5232016B2 (en) Wiring forming material
JP2012209031A (en) Metal compound-conductive agent complex manufacturing method, metal compound-conductive agent complex, electrode agent for alkali metal secondary battery using the same, and alkali metal secondary battery
Xie et al. Functionalized carbon nanotubes in platinum decoration
JP2018028145A (en) Silver alloy powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250