JP6372590B2 - Cover member and portable information device - Google Patents

Cover member and portable information device Download PDF

Info

Publication number
JP6372590B2
JP6372590B2 JP2017092430A JP2017092430A JP6372590B2 JP 6372590 B2 JP6372590 B2 JP 6372590B2 JP 2017092430 A JP2017092430 A JP 2017092430A JP 2017092430 A JP2017092430 A JP 2017092430A JP 6372590 B2 JP6372590 B2 JP 6372590B2
Authority
JP
Japan
Prior art keywords
cover member
layer
fluorine
group
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017092430A
Other languages
Japanese (ja)
Other versions
JP2017145191A (en
Inventor
鈴木 克己
克己 鈴木
鈴木 慶一
慶一 鈴木
関 浩幸
浩幸 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017092430A priority Critical patent/JP6372590B2/en
Publication of JP2017145191A publication Critical patent/JP2017145191A/en
Application granted granted Critical
Publication of JP6372590B2 publication Critical patent/JP6372590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カバー部材、および携帯情報機器に関する。   The present invention relates to a cover member and a portable information device.

従来、時刻表示などの視認性を高めるため、カバーガラス(風防)と呼ばれる透光性部材に反射防止層を形成することが知られている。この反射防止層は、屈折率の異なる無機物層が数層〜数十層積層されて構成されることが一般的であり、カバーガラスの表面に高い硬度や耐傷性が求められる場合には、光透過率が高いうえ低屈折率でかつ比較的硬度が高いSiOが反射防止層の最表層に成膜されることが多い。例えば、時計用カバーガラスの表面に、SiOを最表層および最下層とし、SiO膜とSi膜とが交互に積層された反射防止層を形成する技術が開示されている(特許文献1参照)。また、酸化シリコン(SiO)を最表層とし、窒化シリコン膜を時計用カバーガラスの表面に形成してなる時計用風防ガラスも開示されている(特許文献2参照)。 Conventionally, in order to improve visibility such as time display, it is known to form an antireflection layer on a translucent member called a cover glass (windshield). This antireflection layer is generally constructed by laminating several to several tens of inorganic layers having different refractive indexes. When high hardness and scratch resistance are required on the surface of the cover glass, In many cases, SiO 2 having high transmittance, low refractive index and relatively high hardness is formed on the outermost layer of the antireflection layer. For example, a technique for forming an antireflection layer in which SiO 2 is the outermost layer and the lowermost layer and SiO 2 films and Si 3 N 4 films are alternately laminated is disclosed on the surface of a watch cover glass (patent) Reference 1). Further, a watch windshield glass having silicon oxide (SiO 2 ) as the outermost layer and a silicon nitride film formed on the surface of the watch cover glass is also disclosed (see Patent Document 2).

特開2004−271480号公報JP 2004-271480 A 特開2006−275526号公報JP 2006-275526 A

ところで、SiO膜とSi膜が交互に積層された反射防止層を設けてなる従来の腕時計は、日常生活程度の使用でカバーガラス表面に深い傷が付くことが多かった。しかしながら、その理由は必ずしも明確ではなく、SiO膜とSi膜のように硬さの違う膜の積層が、どのようにカバーガラス表面の硬度や耐傷性に影響するのかは不明であった。そのため、カバーガラスにおける反射防止光学シミュレーションは、SiO膜とSi膜の厚さの比率を考慮することなく行われていた。 By the way, the conventional wristwatch provided with the antireflection layer in which the SiO 2 film and the Si 3 N 4 film are alternately laminated often has a deep scratch on the surface of the cover glass when used for daily life. However, the reason for this is not always clear, and it is unclear how the lamination of films with different hardness, such as SiO 2 and Si 3 N 4 films, affects the hardness and scratch resistance of the cover glass surface. It was. Therefore, the antireflection optical simulation in the cover glass has been performed without considering the thickness ratio between the SiO 2 film and the Si 3 N 4 film.

そこで、本発明の目的は、反射防止機能を備え、かつ硬度が十分に高く耐傷性が確保されたカバー部材、および、このカバー部材を備える携帯電話を提供することにある。   Accordingly, an object of the present invention is to provide a cover member having an antireflection function and having a sufficiently high hardness and ensuring scratch resistance, and a mobile phone including the cover member.

我々は、反射防止層の耐傷性について研究した結果、最表面から150nmの範囲の平均の硬さが耐傷性に大きく影響することを突き止めた。具体的には、比較的軟らかいSiO膜と、硬いSi膜の厚みを種々変えながら、硬度、耐傷性および光学特性の評価を繰り返し行った。その結果、反射防止層の最表面から150nmまでは、硬度が大きいほど耐傷性は高まるが、150nmより深い位置の硬度の増大は耐傷性にあまり影響しないことがわかった。また、反射防止層の最表面から150nmの範囲でSi膜の割合が30〜50vol%の時に、高耐傷性と低反射率を両立できる条件があることを見出した。 As a result of studying the scratch resistance of the antireflection layer, we have found that the average hardness in the range of 150 nm from the outermost surface greatly affects the scratch resistance. Specifically, evaluation of hardness, scratch resistance, and optical characteristics was repeatedly performed while changing the thicknesses of the relatively soft SiO 2 film and the hard Si 3 N 4 film. As a result, it was found that from the outermost surface of the antireflection layer to 150 nm, the scratch resistance increases as the hardness increases, but the increase in hardness at a position deeper than 150 nm does not significantly affect the scratch resistance. The ratio of the Si 3 N 4 film in a range from the outermost surface of 150nm of the antireflection layer has been found that when 30~50Vol%, there is a condition that can achieve both high scratch resistance and low reflectivity.

本発明は、透光性を有する基材を備える透光性部材であって、前記基材の表面の少なくとも一部には、窒化ケイ素からなる高屈折率層と、酸化ケイ素からなる低屈折率層とが交互に積層してなる反射防止層が形成され、前記反射防止層は、その最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が30〜50vol%であることを特徴とする。
ここで、透光性部材としては、例えば、時計用カバー部材や計器用カバー部材あるいは眼鏡レンズ等の硬質で透明な部材が挙げられる。透光性部材の基材としては、サファイアガラス、石英ガラス、およびソーダガラス等が挙げられる。
The present invention is a translucent member comprising a substrate having translucency, wherein at least part of the surface of the substrate has a high refractive index layer made of silicon nitride and a low refractive index made of silicon oxide. An antireflection layer formed by alternately laminating layers is formed, and the antireflection layer has a silicon nitride content of 30 to 50 vol% in a range from the outermost surface to a depth of 150 nm. .
Here, examples of the translucent member include a hard and transparent member such as a watch cover member, an instrument cover member, or a spectacle lens. Examples of the base material of the translucent member include sapphire glass, quartz glass, and soda glass.

本発明によれば、所定の反射防止層が基材上に形成され、反射防止層の最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が30vol%以上であるので、非常に硬度の高い反射防止層を基材上に形成できる。この所定の深さまでの範囲における窒化ケイ素の含有量が30vol%未満であると、反射防止層の耐傷性が不十分なものとなり、例えば、時計用のカバーガラスとしての実用性に乏しくなる。また、本発明においては、最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が50vol%以下であるので、反射防止効果にも優れている。この所定の深さまでの範囲における窒化ケイ素の含有量が50vol%を超えると、反射防止効果が劣り、例えば、時計用のカバーガラスとしての実用性に乏しくなる。
前記反射防止層の最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が40〜50vol%であると、反射防止効果を維持したまま、反射防止層の耐傷性をさらに向上させることが可能となるので好ましい。
また、酸化ケイ素からなる最表層の層厚は70〜110nmであることが好ましく、さらに好ましくは75〜105nmである。また、最表層に隣接する窒化ケイ素層の層厚は50〜115nmであることが好ましく、より好ましくは55〜110nmである。これらの各層の層厚が前記した範囲をはずれると反射防止層の反射率が高くなる傾向にある。
According to the present invention, the predetermined antireflection layer is formed on the substrate, and the content of silicon nitride in the range from the outermost surface of the antireflection layer to a depth of 150 nm is 30 vol% or more. A high antireflection layer can be formed on the substrate. When the content of silicon nitride in the range up to the predetermined depth is less than 30 vol%, the antireflection layer has insufficient scratch resistance, and, for example, the practicality as a watch cover glass is poor. In the present invention, since the silicon nitride content in the range from the outermost surface to a depth of 150 nm is 50 vol% or less, the antireflection effect is also excellent. When the silicon nitride content in the range up to the predetermined depth exceeds 50 vol%, the antireflection effect is inferior, and, for example, the practicality as a watch cover glass is poor.
When the content of silicon nitride in the range from the outermost surface of the antireflection layer to a depth of 150 nm is 40 to 50 vol%, it is possible to further improve the scratch resistance of the antireflection layer while maintaining the antireflection effect. Therefore, it is preferable.
Moreover, the layer thickness of the outermost layer made of silicon oxide is preferably 70 to 110 nm, more preferably 75 to 105 nm. The layer thickness of the silicon nitride layer adjacent to the outermost layer is preferably 50 to 115 nm, more preferably 55 to 110 nm. When the thickness of each of these layers is out of the above range, the reflectance of the antireflection layer tends to increase.

本発明では、該透光性部材の表面硬度が、24000N/mm以上であることが好ましい。ここで、試験荷重は1.225mNである。
この発明によれば、該透光性部材の表面硬度が、24000N/mm以上であるので、十分な耐傷性を発揮することができ、例えば、時計用のカバーガラスとして優れている。また、該透光性部材の表面硬度が、30000N/mm以上であるとさらに優れた耐傷性を発揮することができる。
In this invention, it is preferable that the surface hardness of this translucent member is 24000 N / mm < 2 > or more. Here, the test load is 1.225 mN.
According to this invention, since the surface hardness of this translucent member is 24000 N / mm < 2 > or more, sufficient scratch resistance can be exhibited, for example, it is excellent as a cover glass for watches. Further, when the surface hardness of the translucent member is 30000 N / mm 2 or more, further excellent scratch resistance can be exhibited.

本発明では、前記反射防止層の上には、フッ素含有有機ケイ素化合物からなる防汚層が形成されていることが好ましい。
この発明によれば、反射防止層の上には、フッ素含有有機ケイ素化合物からなる防汚層が形成されている。この防汚層は、フッ素含有有機ケイ素化合物からなるため、撥水・撥油作用を発揮するだけでなく、表面の滑り性にも非常に優れる。それ故、透光性部材に外部からの衝撃が加わっても、防汚層表面の滑り性によりその衝撃をやわらげることができるので耐擦傷性に優れる。すなわち、反射防止層の剥離を効果的に防ぐことが可能となる。なお、フッ素含有有機ケイ素化合物としては、撥水性や撥油性があり防汚性を発現できる化合物であればよい。
In the present invention, an antifouling layer made of a fluorine-containing organosilicon compound is preferably formed on the antireflection layer.
According to this invention, the antifouling layer comprising a fluorine-containing organosilicon compound is formed on the antireflection layer. Since this antifouling layer is made of a fluorine-containing organosilicon compound, it exhibits not only water and oil repellency, but also excellent surface slipperiness. Therefore, even if an impact from the outside is applied to the translucent member, the impact can be reduced by the slipperiness of the surface of the antifouling layer, so that the scratch resistance is excellent. That is, it becomes possible to effectively prevent peeling of the antireflection layer. In addition, as a fluorine-containing organosilicon compound, what is necessary is just a compound which has water repellency and oil repellency, and can express antifouling property.

本発明では、前記フッ素含有有機ケイ素化合物が、アルコキシシラン化合物であることが好ましい。
この発明によれば、フッ素含有有機ケイ素化合物として、アルコキシシラン化合物が用いられるので、撥水性・撥油性が高く、優れた防汚性を発揮する。
アルコキシシラン化合物としては、メトキシシリル基やトリエトキシシリル基のようなアルコキシシリル基と、パーフルオロ基とを有するような有機ケイ素化合物が好ましく用いられる。
In the present invention, the fluorine-containing organosilicon compound is preferably an alkoxysilane compound.
According to the present invention, since the alkoxysilane compound is used as the fluorine-containing organosilicon compound, the water and oil repellency is high and excellent antifouling properties are exhibited.
As the alkoxysilane compound, an organosilicon compound having an alkoxysilyl group such as a methoxysilyl group or a triethoxysilyl group and a perfluoro group is preferably used.

本発明では、前記フッ素含有有機ケイ素化合物が、下記式(1)および(2)の少なくともいずれかで示されるパーフルオロエーテル化合物であることが好ましい。   In the present invention, the fluorine-containing organosilicon compound is preferably a perfluoroether compound represented by at least one of the following formulas (1) and (2).

Figure 0006372590
(式中、R 1はパーフルオロアルキル基を示す。Xは臭素、ヨウ素または水素を示す。
Yは水素または低級アルキル基を示し、Zはフッ素またはトリフルオロメチル基を示す。R1は加水分解可能な基を示し、R2は水素または不活性な1価の炭化水素基を示す。a、b、c、d、eは0または1以上の整数で、且つa+b+c+d+eは少なくとも1以上であり、a、b、c、d、eで括られた各繰り返し単位の存在順序は、式中において限定されない。fは0、1または2である。gは1、2または3である。hは1以上の整数である。)
Figure 0006372590
(In the formula, R f 1 represents a perfluoroalkyl group. X represents bromine, iodine or hydrogen.
Y represents hydrogen or a lower alkyl group, and Z represents a fluorine or trifluoromethyl group. R 1 represents a hydrolyzable group, and R 2 represents hydrogen or an inert monovalent hydrocarbon group. a, b, c, d and e are 0 or an integer of 1 or more, a + b + c + d + e is at least 1 and the order of presence of each repeating unit enclosed by a, b, c, d and e is as follows: It is not limited in. f is 0, 1 or 2. g is 1, 2 or 3. h is an integer of 1 or more. )

Figure 0006372590
(式中、R 2は式:「−(Ck2k)O−」で示される単位を含み、分岐を有しない直鎖状のパーフルオロポリアルキレンエーテル構造を有する2価の基を示す。なお、式:「−(Ck2k)O−」におけるkは1〜6の整数である。R3は炭素原子数1〜8の1価炭化水素基であり、Wは加水分解性基またはハロゲン原子を示す。pは0、1または2であり、nは1〜5の整数である。mおよびrは、2または3である。)
Figure 0006372590
(Wherein R f 2 represents a divalent group having a linear perfluoropolyalkylene ether structure containing a unit represented by the formula: “— (C k F 2k ) O—” and having no branch). In the formula: “— (C k F 2k ) O—”, k is an integer of 1 to 6. R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, and W is hydrolyzable. Represents a group or a halogen atom, p is 0, 1 or 2, n is an integer of 1 to 5. m and r are 2 or 3.)

この発明によれば、前記した式(1)および(2)の少なくともいずれかで示されるフッ素含有有機ケイ素化合物を、前記した反射防止層の上に形成することで、優れた防汚性を有する透光性部材を得ることができる。これらのフッ素含有有機ケイ素化合物は、単独で用いてもよいが混合して用いてもよい。   According to the present invention, the fluorine-containing organosilicon compound represented by at least one of the above formulas (1) and (2) is formed on the antireflection layer, thereby having excellent antifouling properties. A translucent member can be obtained. These fluorine-containing organosilicon compounds may be used alone or in combination.

本発明では、前記防汚層の厚みが0.001〜0.05μmであることが好ましく、0.001〜0.03μmであることがより好ましく、0.001〜0.02μmであることがさらに好ましい。
防汚層の厚みが0.001μm以上であると、十分な撥水・撥油性能を発揮できるとともに、耐擦傷性やさらに耐薬品性にも優れるようになる。また、防汚層の厚みが0.05μm以下であると、透光性部材の表面硬度を低下させてしまうおそれも少ない。さらに、防汚層による表面光散乱もあまり生じないため、基材の透明性も阻害しない。
In the present invention, the antifouling layer preferably has a thickness of 0.001 to 0.05 μm, more preferably 0.001 to 0.03 μm, and further preferably 0.001 to 0.02 μm. preferable.
When the thickness of the antifouling layer is 0.001 μm or more, sufficient water and oil repellency can be exhibited, and scratch resistance and chemical resistance can be improved. Moreover, there is also little possibility that the surface hardness of a translucent member will fall that the thickness of an antifouling layer is 0.05 micrometer or less. Furthermore, since the surface light scattering by the antifouling layer does not occur so much, the transparency of the substrate is not inhibited.

本発明では、前記透光性部材は、カバー部材とされ、前記反射防止層は、前記カバー部材の内側の部分および外側の部分のうち、少なくとも外側の部分に形成されることが好ましい。
この発明によれば、カバー部材の外側から入射する光の反射を入射側で防止できるため、カバー部材の内側である射出側の部分に反射防止層が形成された場合よりも良好な反射防止効果が得られる。
In the present invention, it is preferable that the translucent member is a cover member, and the antireflection layer is formed on at least an outer portion of an inner portion and an outer portion of the cover member.
According to the present invention, since the reflection of light incident from the outside of the cover member can be prevented on the incident side, the antireflection effect is better than when the antireflection layer is formed on the exit side portion inside the cover member. Is obtained.

本発明の時計は、前記透光性部材を備え、前記透光性部材は、時計体を収容するケースに設けられることを特徴とする。
本発明の時計は、前述の透光性部材を備えることにより、前述と同様な作用および効果を享受できる。なお、透光性部材は、例えばカバーガラス(風防)としてケースに設けられる。
The timepiece of the present invention includes the translucent member, and the translucent member is provided in a case that houses the timepiece.
The timepiece of the present invention can have the same operations and effects as described above by including the above-described translucent member. In addition, a translucent member is provided in a case as a cover glass (windshield), for example.

本発明の透光性部材の製造方法は、前記反射防止層を構成する高屈折率層および低屈折率層をスパッタリングにより形成するスパッタリング工程を備えることを特徴とする。
この発明によれば、反射防止層をスパッタリングにより形成するので、単なる蒸着により高屈折率層および低屈折率層を形成する場合にくらべて、反射防止層全体の硬度を向上させることができるだけでなく、反射防止層と基材との密着性や、反射防止層内における層間密着性にも優れている。従って、結果として、耐擦傷性の向上に寄与できる。
The manufacturing method of the translucent member of this invention is equipped with the sputtering process which forms the high refractive index layer and low-refractive-index layer which comprise the said reflection preventing layer by sputtering.
According to the present invention, since the antireflection layer is formed by sputtering, not only the high refractive index layer and the low refractive index layer are formed by simple vapor deposition, but also the overall hardness of the antireflection layer can be improved. In addition, the adhesion between the antireflection layer and the substrate and the interlayer adhesion in the antireflection layer are also excellent. Therefore, as a result, it can contribute to improvement of scratch resistance.

ここで、前記したスパッタリングを行う際には、基材を100℃以上に加熱しながらスパッタリングを行う加熱工程を備えることが、上述の硬度や密着性の観点より好ましい。
また、反射防止層をスパッタリングにより形成する前に、基材に対して表面の付着物を除去する逆スパッタリング工程を備えると、基材表面を清浄にすることができるので、基材と反射防止層との密着性向上の観点より好ましい。
Here, when performing the above-mentioned sputtering, it is preferable from a viewpoint of the above-mentioned hardness and adhesiveness to provide the heating process which performs sputtering, heating a base material to 100 degreeC or more.
Moreover, since the base material surface can be cleaned by providing a reverse sputtering step for removing surface deposits on the base material before forming the antireflection layer by sputtering, the base material and the antireflection layer From the viewpoint of improving adhesion to the substrate.

このような本発明によれば、反射防止機能と耐傷性とを併せ持つ透光性部材、これを備えた時計、および透光性部材の製造方法を提供できる。   According to the present invention, it is possible to provide a translucent member having both an antireflection function and scratch resistance, a timepiece including the translucent member, and a method of manufacturing the translucent member.

本発明の第1実施形態に係るカバーガラスの断面を示す模式図。The schematic diagram which shows the cross section of the cover glass which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るカバーガラスの断面を示す模式図。The schematic diagram which shows the cross section of the cover glass which concerns on 2nd Embodiment of this invention.

以下、本発明の実施形態について詳細に説明する。
[第1実施形態]
第1実施形態に係る透光性部材(カバー部材)は、例えば時計用カバーガラス(以下、単に「カバーガラス」ともいう。)であり、図1には、本実施形態のカバーガラス1の断面図が示されている。カバーガラス1は、透明な基材11と、その上に形成された反射防止層12とを備えている。
Hereinafter, embodiments of the present invention will be described in detail.
[First Embodiment]
The translucent member (cover member) according to the first embodiment is, for example, a watch cover glass (hereinafter also simply referred to as “cover glass”), and FIG. 1 shows a cross section of the cover glass 1 of the present embodiment. The figure is shown. The cover glass 1 includes a transparent substrate 11 and an antireflection layer 12 formed thereon.

〔基材11の材質〕
基材11の材質は無機酸化物であり、例えばサファイアガラス、石英ガラス、ソーダガラス等が挙げられる。時計用カバーガラスの材質としては、硬度や透明性の観点より特にサファイアガラスが好ましい。
[Material of Substrate 11]
The material of the substrate 11 is an inorganic oxide, and examples thereof include sapphire glass, quartz glass, and soda glass. As a material of the watch cover glass, sapphire glass is particularly preferable from the viewpoints of hardness and transparency.

〔反射防止層12の構成〕
反射防止層12は、基材11の上に形成され、屈折率の異なる無機薄膜を交互に積層して得られる多層膜である。図1に示すカバーガラス1では、反射防止層12は、12A(高屈折率層)、12B(低屈折率層)、12C(高屈折率層)、12D(低屈折率層)の4層から構成されている。
ここで、高屈折率層12A、12Cは、窒化ケイ素(SiNx)により形成され、低屈折率層12B、12Dは酸化ケイ素(SiO)により形成されている。また、反射防止層12の最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が30〜50vol%となっている。
[Configuration of Antireflection Layer 12]
The antireflection layer 12 is a multilayer film formed on the substrate 11 and obtained by alternately laminating inorganic thin films having different refractive indexes. In the cover glass 1 shown in FIG. 1, the antireflection layer 12 includes four layers of 12A (high refractive index layer), 12B (low refractive index layer), 12C (high refractive index layer), and 12D (low refractive index layer). It is configured.
Here, the high refractive index layers 12A and 12C are formed of silicon nitride (SiNx), and the low refractive index layers 12B and 12D are formed of silicon oxide (SiO 2 ). The silicon nitride content in the range from the outermost surface of the antireflection layer 12 to a depth of 150 nm is 30 to 50 vol%.

なお、反射防止層12は、4層である必要はなく、5層以上でもよい。反射防止効果を高める観点からは積層数が多い方が好ましい。ただし、あまり積層数が多くなると、生産性の観点より問題が生ずるおそれもあるので、好ましくは9層までの範囲である。
また、酸化ケイ素からなる最表層(低屈折率層12D)の層厚は70〜110nmであることが好ましく、さらに好ましくは75〜105nmである。また、最表層に隣接する窒化ケイ素層(高屈折率層12C)の層厚は50〜115nmであることが好ましく、より好ましくは55〜110nmである。前記した層厚の範囲をはずれると反射防止層12の反射率が高くなる傾向にある。
ここで、図1に示すカバーガラス1の表面硬度は、ナノインデンターを使用したISO14577準拠の測定値で24000N/mm以上である(試験荷重1.225mN)。
The antireflection layer 12 need not be four layers, and may be five layers or more. From the viewpoint of enhancing the antireflection effect, a larger number of layers is preferable. However, if the number of laminated layers is too large, a problem may occur from the viewpoint of productivity, so the range is preferably up to 9 layers.
The layer thickness of the outermost layer (low refractive index layer 12D) made of silicon oxide is preferably 70 to 110 nm, and more preferably 75 to 105 nm. The layer thickness of the silicon nitride layer (high refractive index layer 12C) adjacent to the outermost layer is preferably 50 to 115 nm, more preferably 55 to 110 nm. When the above-mentioned range of the layer thickness is deviated, the reflectance of the antireflection layer 12 tends to increase.
Here, the surface hardness of the cover glass 1 shown in FIG. 1 is 24000 N / mm 2 or more as measured according to ISO14577 using a nanoindenter (test load 1.225 mN).

〔反射防止層12の形成工程〕
基材11の表面に上述した反射防止層12を形成する際には、スパッタリング法が好適に用いられる。なお、真空蒸着法も適用可能であり、真空蒸着法ではイオンビームアシストなどの手法も適宜併用することができる。ただし、硬度に優れた反射防止層12を得るためにはスパッタリング法が最も好ましい。スパッタリング法や真空蒸着法は、無機薄膜形成の際に用いられる通常の方法が適用できる。
また、前記したスパッタリングを行う際には、基材11を100℃以上に加熱する加熱工程を備えることが、上述の硬度や密着性の観点より好ましい。
また、反射防止層12をスパッタリングにより形成する前に、基材11に対して表面の付着物を除去する逆スパッタリング工程を備えると、基材11の表面を清浄にすることができるので、基材11と反射防止層12との密着性向上の観点より好ましい。
[Formation process of antireflection layer 12]
When forming the above-described antireflection layer 12 on the surface of the substrate 11, a sputtering method is suitably used. Note that a vacuum deposition method can also be applied. In the vacuum deposition method, a technique such as ion beam assist can be used in combination as appropriate. However, in order to obtain the antireflection layer 12 having excellent hardness, the sputtering method is most preferable. As the sputtering method and the vacuum evaporation method, a normal method used for forming an inorganic thin film can be applied.
Moreover, when performing above-described sputtering, it is preferable from a viewpoint of the above-mentioned hardness and adhesiveness to provide the heating process which heats the base material 11 to 100 degreeC or more.
In addition, before the antireflection layer 12 is formed by sputtering, the surface of the base material 11 can be cleaned by providing a reverse sputtering process for removing deposits on the surface of the base material 11. 11 is preferable from the viewpoint of improving the adhesion between the antireflection layer 12 and the antireflection layer 12.

以上の実施形態によれば、次のような効果が得られる。
カバーガラス1は、透明な基材11と、反射防止層12とを含んで構成されている。そして、反射防止層12は、高屈折率層12A、12Cと低屈折率層12B、12Dとが交互に積層されて形成されており、反射防止層12の最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が30〜50vol%となっている。従って、反射防止層12の表面が非常に硬度の高い層となる。この所定の深さまでの範囲における窒化ケイ素の含有量が30vol%未満であると、反射防止層12の耐傷性が不十分なものとなり、例えば、時計用のカバーガラスとしての実用性に乏しくなる。また、反射防止層12の最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が50vol%以下であるので、反射防止効果にも優れている。この所定の深さまでの範囲における窒化ケイ素の含有量が50vol%を超えると、反射防止効果が劣り、時計用のカバーガラスとしての実用性に乏しくなる。反射防止層12の最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が40vol%以上であると、反射防止効果を維持したまま、反射防止層の耐傷性をさらに向上させることが可能となる。
According to the above embodiment, the following effects are obtained.
The cover glass 1 includes a transparent base material 11 and an antireflection layer 12. The antireflection layer 12 is formed by alternately laminating the high refractive index layers 12A and 12C and the low refractive index layers 12B and 12D. In the range from the outermost surface of the antireflection layer 12 to a depth of 150 nm. The silicon nitride content is 30 to 50 vol%. Therefore, the surface of the antireflection layer 12 is a very hard layer. When the content of silicon nitride in the range up to the predetermined depth is less than 30 vol%, the antireflection layer 12 has insufficient scratch resistance, and, for example, the practicality as a watch cover glass is poor. Further, since the silicon nitride content in the range from the outermost surface of the antireflection layer 12 to a depth of 150 nm is 50 vol% or less, the antireflection effect is also excellent. When the silicon nitride content in the range up to the predetermined depth exceeds 50 vol%, the antireflection effect is inferior and the practicality as a watch cover glass is poor. When the content of silicon nitride in the range from the outermost surface of the antireflection layer 12 to a depth of 150 nm is 40 vol% or more, it is possible to further improve the scratch resistance of the antireflection layer while maintaining the antireflection effect. Become.

カバーガラス1の表面硬度は、24000N/mm以上であるので、十分な耐傷性を発揮することができ、腕時計や携帯情報機器などに適用した場合に十分な耐擦傷性が得られる。また、表面硬度が、30000N/mm以上であるとさらに優れた耐傷性を発揮することができる。 Since the surface hardness of the cover glass 1 is 24000 N / mm 2 or more, sufficient scratch resistance can be exhibited, and sufficient scratch resistance can be obtained when applied to a wristwatch or a portable information device. Further, when the surface hardness is 30000 N / mm 2 or more, further excellent scratch resistance can be exhibited.

[第2実施形態]
前記した反射防止層12の上には、防汚層を形成することができる。図2には、前記した反射防止層12の上に、さらに防汚層13を形成してなるカバーガラス2を示す。以下、この防汚層13について説明する。
〔防汚層13の構成〕
防汚層13は、いわゆる撥水剤・撥油剤として知られる化合物から構成される。このような化合物としては、アルコキシシラン等のフッ素含有有機ケイ素化合物が好ましい。
例えば、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OCH、CF(CF10Si(OCH、CF(CF12Si(OCH、CF(CF14Si(OCH、CF(CF16Si(OCH、CF(CF18Si(OCH、CF(CFSi(OC、CF(CFSi(OC、CF(CFSiCl、CF(CFSiCl、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OC、CF(CFSi(OC、CF(CFSiCl、CF(CFSiCl、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OC、CF(CFSi(OC、CF(CFSi(CH)(OCH、CF(CFSi(CH)(OCH、CF(CFSi(CH)Cl、CF(CFSi(CH)Cl、CF(CFSi(C)(OC、およびCF(CFSi(C)(OCなどが挙げられる。
フッ素含有有機ケイ素化合物としては、アミノ基を含有する化合物も好適である。
例えば、C19CONH(CHSi(OC、C19CONH(CHSiCl、C19CONH(CHSi(CH)Cl、C19CONH(CH)NH(CH)Si(OC、C19CONH(CHCONH(CH)Si(OC、C17SONH(CHCONH(CH)Si(OC、CO(CF(CF)CFO)−CF(CF)−CONH(CH)Si(OC、およびCO(CF(CF)CFO)m’−CF(CF)−CONH(CH)Si(OCH[ここで、m’は1以上の整数]などが挙げられる。
また、フッ素含有有機ケイ素化合物としては、以下のような化合物も好適である。
例えば、Rf'(CHSiCl、Rf'(CHSi(CH)Cl、(Rf'CHCHSiCl、Rf'(CHSi(OCH、Rf'CONH(CHSi(OC、Rf'CONH(CHNH(CHSi(OC、Rf'SON(CH)(CHCONH(CHSi(OC、Rf'(CHOCO(CHS(CHSi(OCH、Rf'(CHOCONH(CHSi(OC、Rf'COO−Cy(OH)−(CHSi(OCH、Rf'(CHNH(CHSi(OCH、およびRf'(CHNH(CHNH(CHSi(OCHCHOCHなどが挙げられる。上述の各式において、Cyはシクロヘキサン残基であり、Rf’は、炭素数4〜16のポリフルオロアルキル基である。
[Second Embodiment]
An antifouling layer can be formed on the antireflection layer 12 described above. FIG. 2 shows a cover glass 2 in which an antifouling layer 13 is further formed on the antireflection layer 12 described above. Hereinafter, the antifouling layer 13 will be described.
[Configuration of Antifouling Layer 13]
The antifouling layer 13 is composed of a compound known as a so-called water / oil repellent. Such a compound is preferably a fluorine-containing organosilicon compound such as alkoxysilane.
For example, CF 3 (CF 2) 2 C 2 H 4 Si (OCH 3) 3, CF 3 (CF 2) 4 C 2 H 4 Si (OCH 3) 3, CF 3 (CF 2) 6 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 8 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 10 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 12 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 14 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 16 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2) 18 C 2 H 4 Si (OCH 3) 3, CF 3 (CF 2) 6 C 2 H 4 Si (OC 2 H 5) 3, CF 3 (CF 2) 8 C 2 H 4 Si (OC 2 H 5) 3, CF 3 (CF 2) 6 C 2 H 4 iCl 3, CF 3 (CF 2 ) 8 C 2 H 4 SiCl 3, CF 3 (CF 2) 6 C 3 H 6 Si (OCH 3) 3, CF 3 (CF 2) 8 C 3 H 6 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 6 C 3 H 6 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 8 C 3 H 6 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 6 C 3 H 6 SiCl 3, CF 3 (CF 2) 8 C 3 H 6 SiCl 3, CF 3 (CF 2) 6 C 4 H 8 Si (OCH 3) 3, CF 3 (CF 2) 8 C 4 H 8 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 6 C 4 H 8 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 8 C 4 H 8 Si (OC 2 H 5 ) 3 , CF 3 ( CF 2) 6 C 2 H 4 Si (CH 3) (OCH 3 2, CF 3 (CF 2) 8 C 2 H 4 Si (CH 3) (OCH 3) 2, CF 3 (CF 2) 6 C 2 H 4 Si (CH 3) Cl 2, CF 3 (CF 2) 8 C 2 H 4 Si (CH 3 ) Cl 2, CF 3 (CF 2) 6 C 2 H 4 Si (C 2 H 5) (OC 2 H 5) 2, and CF 3 (CF 2) 8 C 2 H 4 Si (C 2 H 5) ( OC 2 H 5) 2 and the like.
As the fluorine-containing organosilicon compound, a compound containing an amino group is also suitable.
For example, C 9 F 19 CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , C 9 F 19 CONH (CH 2 ) 3 SiCl 3 , C 9 F 19 CONH (CH 2 ) 3 Si (CH 3 ) Cl 2, C 9 F 19 CONH ( CH 2) NH (CH 2) Si (OC 2 H 5) 3, C 9 F 19 CONH (CH 2) 5 CONH (CH 2) Si (OC 2 H 5) 3, C 8 F 17 SO 2 NH (CH 2) 5 CONH (CH 2) Si (OC 2 H 5) 3, C 3 F 7 O (CF (CF 3) CF 2 O) 2 -CF (CF 3) -CONH ( CH 2) Si (OC 2 H 5) 3, and C 3 F 7 O (CF ( CF 3) CF 2 O) m'-CF (CF 3) -CONH (CH 2) Si (OCH 3) 3 [ where M ′ is an integer greater than or equal to 1] And the like.
Moreover, as a fluorine-containing organosilicon compound, the following compounds are also suitable.
For example, Rf ′ (CH 2 ) 2 SiCl 3 , Rf ′ (CH 2 ) 2 Si (CH 3 ) Cl 2 , (Rf′CH 2 CH 2 ) 2 SiCl 2 , Rf ′ (CH 2 ) 2 Si (OCH 3 ) ) 3 , Rf′CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , Rf′CONH (CH 2 ) 2 NH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , Rf′SO 2 N (CH 3 ) (CH 2 ) 2 CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , Rf ′ (CH 2 ) 2 OCO (CH 2 ) 2 S (CH 2 ) 3 Si (OCH 3 ) 3 , Rf ′ (CH 2) 2 OCONH (CH 2) 2 Si (OC 2 H 5) 3, Rf'COO-Cy (OH) - (CH 2) 2 Si (OCH 3) 3, Rf '(CH 2) 2 NH ( CH 2) 2 Si (OCH 3 ) 3, and Rf ' CH 2) 2 NH (CH 2 ) 2 NH (CH 2) 2 Si (OCH 2 CH 2 OCH 3) 3 and the like. In each of the above formulas, Cy is a cyclohexane residue, and Rf ′ is a polyfluoroalkyl group having 4 to 16 carbon atoms.

本発明で用いられるフッ素含有有機ケイ素化合物としては、下記式(1)および(2)の少なくともいずれかで示される化合物が特に好ましい。   As the fluorine-containing organosilicon compound used in the present invention, a compound represented by at least one of the following formulas (1) and (2) is particularly preferable.

Figure 0006372590
Figure 0006372590

式中、R 1はパーフルオロアルキル基を示す。Xは臭素、ヨウ素または水素を示す。
Yは水素または低級アルキル基を示し、Zはフッ素またはトリフルオロメチル基を示す。R1は加水分解可能な基を示し、R2は水素または不活性な1価の炭化水素基を示す。a、b、c、d、eは0または1以上の整数で、且つa+b+c+d+eは少なくとも1以上であり、a、b、c、d、eで括られた各繰り返し単位の存在順序は、式中において限定されない。fは0、1または2である。gは1、2または3である。hは1以上の整数である。
In the formula, R f 1 represents a perfluoroalkyl group. X represents bromine, iodine or hydrogen.
Y represents hydrogen or a lower alkyl group, and Z represents a fluorine or trifluoromethyl group. R 1 represents a hydrolyzable group, and R 2 represents hydrogen or an inert monovalent hydrocarbon group. a, b, c, d and e are 0 or an integer of 1 or more, a + b + c + d + e is at least 1 and the order of presence of each repeating unit enclosed by a, b, c, d and e is as follows: It is not limited in. f is 0, 1 or 2. g is 1, 2 or 3. h is an integer of 1 or more.

Figure 0006372590
Figure 0006372590

式中、R 2は式:「−(Ck2k)O−」で示される単位を含み、分岐を有しない直鎖状のパーフルオロポリアルキレンエーテル構造を有する2価の基を示す。なお、式:「−(Ck2k)O−」におけるkは1〜6の整数である。R3は炭素原子数1〜8の1価炭化水素基であり、Wは加水分解性基またはハロゲン原子を示す。pは0、1または2であり、nは1〜5の整数である。m及びrは、2または3である。 In the formula, R f 2 represents a divalent group having a linear perfluoropolyalkylene ether structure containing a unit represented by the formula: “— (C k F 2k ) O—” and having no branch. In the formula: “— (C k F 2k ) O—”, k is an integer of 1-6. R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, and W represents a hydrolyzable group or a halogen atom. p is 0, 1 or 2, and n is an integer of 1-5. m and r are 2 or 3.

前記したフッ素含有有機ケイ素化合物を、前記した反射防止層12の上に防汚層13として形成することで、優れた撥水・撥油効果を有し、耐擦傷性に優れたカバーガラスを得ることができる。これらのフッ素含有有機ケイ素化合物は、単独で用いてもよいが混合して用いてもよい。特に前記した式(1)と式(2)の化合物を混合して用いると防汚層の耐久性が向上するので好ましい。
前記したフッ素含有有機ケイ素化合物の具体例としては、GE東芝シリコーン株式会社製TSL8233、TSL8257、ダイキン工業株式会社製オプツールDSX、信越化学工業株式会社製KY−130、KP−801などが挙げられる。
By forming the fluorine-containing organosilicon compound as the antifouling layer 13 on the antireflection layer 12, a cover glass having excellent water and oil repellency effects and excellent scratch resistance is obtained. be able to. These fluorine-containing organosilicon compounds may be used alone or in combination. In particular, it is preferable to use a mixture of the compounds of the above formulas (1) and (2) because the durability of the antifouling layer is improved.
Specific examples of the fluorine-containing organosilicon compound include GE Toshiba Silicones Co., Ltd. TSL8233, TSL8257, Daikin Industries, Ltd. OPTOOL DSX, Shin-Etsu Chemical Co., Ltd. KY-130, KP-801, and the like.

〔防汚層13の形成工程〕
防汚層13を形成する方法として、乾式法と湿式法のいずれも用いることができる。以下に各々について説明する。
[Formation process of antifouling layer 13]
As a method for forming the antifouling layer 13, either a dry method or a wet method can be used. Each will be described below.

(乾式法)
乾式法としては、前記フッ素含有有機ケイ素化合物を真空槽内で蒸発させて基材11(反射防止層12)の表面に付着させる真空蒸着法を採用することができる。例えば、特開平6−340966号公報や特開2005−301208号公報に記載された蒸着装置が好適に利用可能である。具体的には、以下のようにして防汚層13を形成することができる。
(Dry method)
As the dry method, a vacuum vapor deposition method in which the fluorine-containing organosilicon compound is evaporated in a vacuum chamber and adhered to the surface of the substrate 11 (antireflection layer 12) can be employed. For example, the vapor deposition apparatus described in Unexamined-Japanese-Patent No. 6-340966 and Unexamined-Japanese-Patent No. 2005-301208 can be utilized suitably. Specifically, the antifouling layer 13 can be formed as follows.

フッ素含有有機ケイ素化合物を適当なフッ素系溶剤に溶解して希釈して得た処理剤を繊維状あるいは多孔質の媒体に付着させ、それを真空槽内で、1〜0.0001Paの圧力下で加熱することにより、真空槽内に載置したカバーガラス2の反射防止層12の上に付着させて防汚層13を形成する。使用するフッ素系溶剤としては、後述する湿式法で用いるものと同じものを使用可能である。なお、溶剤の使用量はわずかであり、環境負荷はほとんどない。   A treatment agent obtained by dissolving and diluting a fluorine-containing organosilicon compound in an appropriate fluorine-based solvent is attached to a fibrous or porous medium, and this is applied in a vacuum chamber under a pressure of 1 to 0.0001 Pa. By heating, the antifouling layer 13 is formed on the antireflection layer 12 of the cover glass 2 placed in the vacuum chamber. As the fluorine-based solvent to be used, the same solvents as those used in the wet method described later can be used. In addition, the amount of solvent used is small and there is almost no environmental impact.

このような媒体としては、熱伝導性および加熱効率の観点より導電性繊維や多孔性の焼結金属が好ましく、材料としては銅やステンレスが好適である。ここで、燒結金属のような多孔質の媒体としては、適度な蒸着速度を得るという観点より、その孔径が40〜200μmであることが好ましく、より好ましくは80〜120μmである。
防汚層13形成時に、上記媒体に付着させたフッ素含有有機ケイ素化合物を加熱する際の温度は、真空槽内の圧力によっても異なるが、該有機ケイ素化合物の分解温度を超えない範囲に設定することが好ましい。
As such a medium, a conductive fiber or a porous sintered metal is preferable from the viewpoint of thermal conductivity and heating efficiency, and copper or stainless steel is preferable as a material. Here, as a porous medium such as a sintered metal, the pore diameter is preferably 40 to 200 μm, more preferably 80 to 120 μm, from the viewpoint of obtaining an appropriate deposition rate.
The temperature at which the fluorine-containing organosilicon compound adhered to the medium is heated when the antifouling layer 13 is formed varies depending on the pressure in the vacuum chamber, but is set within a range not exceeding the decomposition temperature of the organosilicon compound. It is preferable.

防汚層13形成時の圧力として好ましくは0.5〜0.005Paであり、より好ましくは0.1〜0.001Paである。防汚層13形成時の圧力が1Paより高いと、蒸発分子の平均自由工程が短く、防汚層13の形成速度が遅くなってしまう。一方、圧力が0.0001Paより低いと、防汚層13の形成速度は速くなるもののそのような真空状態を得るための時間がかかり過ぎるのでやはり好ましくない。   The pressure when forming the antifouling layer 13 is preferably 0.5 to 0.005 Pa, more preferably 0.1 to 0.001 Pa. When the pressure at the time of forming the antifouling layer 13 is higher than 1 Pa, the average free process of the evaporated molecules is short, and the formation rate of the antifouling layer 13 is slowed. On the other hand, if the pressure is lower than 0.0001 Pa, the formation speed of the antifouling layer 13 increases, but it is not preferable because it takes too much time to obtain such a vacuum state.

防汚層13の形成速度(蒸着速度)は、0.05〜5.0Å/sが好ましく、0.1〜2.0Å/sがより好ましい。0.05Å/s未満では、生産性が低いため製造コストが過大となる。また、2.0Å/sを超えると防汚層13の層厚分布が不均一となり、表面の滑り性が悪化する。ここで、防汚層13の形成速度は、真空槽内の圧力と加熱温度を調節することにより制御可能である。
なお、真空蒸着法では、フッ素含有有機ケイ素化合物は高濃度、または希釈溶剤なしに使用することもできる。
The formation rate (deposition rate) of the antifouling layer 13 is preferably 0.05 to 5.0 Å / s, more preferably 0.1 to 2.0 Å / s. If it is less than 0.05 kg / s, the production cost is excessive because of low productivity. On the other hand, if it exceeds 2.0 kg / s, the layer thickness distribution of the antifouling layer 13 becomes non-uniform, and the surface slipperiness deteriorates. Here, the formation speed of the antifouling layer 13 can be controlled by adjusting the pressure in the vacuum chamber and the heating temperature.
In the vacuum deposition method, the fluorine-containing organosilicon compound can be used at a high concentration or without a diluting solvent.

(湿式法)
<処理剤の調製>
湿式法により、防汚層13を、基材11(反射防止層12)の上に形成するには、前記したいずれかのフッ素含有有機ケイ素化合物を有機溶剤に溶解させ、所定の濃度となるように調整し、基材11表面に塗布する方法を採用することができる。有機溶剤としては、フッ素含有有機ケイ素化合物の溶解性に優れるパーフルオロ基を有し、炭素数が4以上の有機化合物が好ましく、例えば、パーフルオロヘキサン、パーフルオロシクロブタン、パーフルオロオクタン、パーフルオロデカン、パーフルオロメチルシクロヘキサン、パーフルオロ−1,3−ジメチルシクロヘキサン、パーフルオロ−4−メトキシブタン、パーフルオロ−4−エトキシブタン、メタキシレンヘキサフロライドを挙げることができる。また、パーフルオロエーテル油、クロロトリフルオロエチレンオリゴマー油を使用することができる。その他に、フロン225(CF3CF2CHCl2とCClF2CF2CHClFの混合物)を例示することができる。これらの有機溶剤の1種を単独でまたは2種以上を混合して用いることができる。
(Wet method)
<Preparation of treatment agent>
In order to form the antifouling layer 13 on the substrate 11 (antireflection layer 12) by a wet method, any of the fluorine-containing organosilicon compounds described above is dissolved in an organic solvent so as to have a predetermined concentration. It is possible to adopt a method of adjusting to the surface of the substrate 11 and applying it to the surface of the substrate 11. The organic solvent is preferably an organic compound having a perfluoro group excellent in solubility of the fluorine-containing organosilicon compound and having 4 or more carbon atoms, such as perfluorohexane, perfluorocyclobutane, perfluorooctane, perfluorodecane. Perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, perfluoro-4-methoxybutane, perfluoro-4-ethoxybutane, and metaxylene hexafluoride. Moreover, perfluoroether oil and chlorotrifluoroethylene oligomer oil can be used. In addition, CFC 225 (a mixture of CF 3 CF 2 CHCl 2 and CClF 2 CF 2 CHClF) can be exemplified. One of these organic solvents can be used alone or in admixture of two or more.

有機溶剤で希釈するときの濃度は、0.03〜1質量%の範囲が好ましい。0.03質量%より低すぎると十分な厚さを有する防汚層13の形成が困難であり、十分な撥水・撥油効果さらには十分な滑り性が得られない場合がある。一方、1質量%より濃すぎると防汚層13が厚くなり過ぎるおそれがあり、塗布後に塗りむらをなくすためのリンス作業の負担が増すおそれがある。   The concentration when diluted with an organic solvent is preferably in the range of 0.03 to 1% by mass. If it is lower than 0.03% by mass, it is difficult to form the antifouling layer 13 having a sufficient thickness, and sufficient water and oil repellency effects and sufficient slipperiness may not be obtained. On the other hand, if it is thicker than 1% by mass, the antifouling layer 13 may be too thick, and the burden of rinsing work for eliminating coating unevenness after application may increase.

<塗布工程>
塗布方法としては、ディッピング(浸漬)法、スピンコート法、スプレー法、フロー法、ドクターブレード法、ロールコート塗装、グラビアコート塗装、カーテンフロー塗装、刷毛塗り等が用いられる。防汚層13の層厚は、特に限定されないが、0.001〜0.05μmが好ましく、0.001〜0.03μmであることがより好ましく、0.001〜0.02μmであることがさらに好ましい。
防汚層13の厚みが0.001μm未満であると、十分な撥水・撥油性能を発揮できず、滑り性にも劣るので、耐擦傷性や耐薬品性が低下するおそれがある。また、防汚層の厚みが0.05μmを超えると、カバーガラス2の表面硬度を低下させるおそれがあり、さらに防汚層13による表面光散乱が大きくなるため、基材11の透明性を阻害するおそれがある。
<Application process>
As a coating method, dipping (dipping) method, spin coating method, spray method, flow method, doctor blade method, roll coat coating, gravure coat coating, curtain flow coating, brush coating and the like are used. The layer thickness of the antifouling layer 13 is not particularly limited, but is preferably 0.001 to 0.05 μm, more preferably 0.001 to 0.03 μm, and further preferably 0.001 to 0.02 μm. preferable.
When the thickness of the antifouling layer 13 is less than 0.001 μm, sufficient water and oil repellency cannot be exhibited and the slipperiness is poor, so that the scratch resistance and chemical resistance may be lowered. Further, if the thickness of the antifouling layer exceeds 0.05 μm, the surface hardness of the cover glass 2 may be reduced, and further, surface light scattering by the antifouling layer 13 is increased, thereby impairing the transparency of the base material 11. There is a fear.

ディッピング法の場合、上記した有機溶剤を用いて所定濃度に調整した処理液中に基材11を浸漬し、一定時間経過後、一定速度で基材11を引き上げる。この際、浸漬時間としては0.5分から3分程度が望ましい。0.5分未満であると、基材11表面へのフッ素含有有機ケイ素化合物の吸着が充分でないため、所定の撥水・撥油性能や滑り性を得ることができない。3分を超える場合は、サイクルタイムの増加を招き好ましくない。引き上げ速度は、100mm/分〜300mm/分が望ましい。これは、処理液濃度との兼ね合いで決められるものであるが、100mm/分未満では、防汚層13が薄くなりすぎて所定の性能が得られず、300mm/分を超えると、防汚層13が厚くなりすぎ、塗布後塗りむらをなくすためのリンス作業の負担が増すおそれがある。   In the case of the dipping method, the base material 11 is immersed in a treatment liquid adjusted to a predetermined concentration using the above-described organic solvent, and after a predetermined time has elapsed, the base material 11 is pulled up at a constant speed. At this time, the immersion time is preferably about 0.5 to 3 minutes. When the time is less than 0.5 minutes, the fluorine-containing organosilicon compound is not sufficiently adsorbed on the surface of the base material 11, so that predetermined water / oil repellency and slipperiness cannot be obtained. If it exceeds 3 minutes, the cycle time increases, which is not preferable. The pulling speed is preferably 100 mm / min to 300 mm / min. This is determined in consideration of the concentration of the treatment solution. If the concentration is less than 100 mm / min, the antifouling layer 13 becomes too thin to obtain a predetermined performance. If the concentration exceeds 300 mm / min, the antifouling layer 13 becomes too thick, and there is a possibility that the burden of rinsing work for eliminating coating unevenness after application increases.

<熟成工程>
前記塗布工程の後に、温度10〜60℃および相対湿度10〜90%の雰囲気下で0.5時間以上放置する。温度は好ましくは20〜50℃であり、相対湿度は好ましくは、20〜80%である。放置時間(熟成時間)は、好ましくは1〜10時間である。雰囲気温度が低すぎると有機ケイ素化合物の反応性が低いため防汚層13の形成が不十分となる。逆に雰囲気温度が高すぎると防汚層13にクラックが入ってカバーガラス2の外観が不良となるおそれがある。また、雰囲気湿度が低すぎると温度の場合と同様に有機ケイ素化合物の反応性が低いため防汚層13の形成が不十分となる。雰囲気湿度が高すぎると反応が速すぎ防汚層13にクラックが入ってカバーガラス2の外観が不良となるおそれがある。また、熟成時間が短すぎると有機ケイ素化合物の反応が不十分となり、防汚層13の形成が不十分となる。熟成時間としては、0.5時間以上が必要であり、例えば、25℃、相対湿度40%なら24時間程度、60℃、相対湿度80%なら2時間程度が好ましい。
なお、上述の乾式法、湿式法のいずれにおいても、事前に反射防止層12表面に対してプラズマ処理(アルゴン、酸素等)を施しておくことが好ましい。プラズマ処理を、例えば、反射防止層12(低屈折率層12D、SiO層)に対して施しておくと、反射防止層12と防汚層13との密着性(接着性)が非常に向上する。
<Aging process>
After the coating step, it is allowed to stand for 0.5 hours or more in an atmosphere having a temperature of 10 to 60 ° C. and a relative humidity of 10 to 90%. The temperature is preferably 20-50 ° C. and the relative humidity is preferably 20-80%. The standing time (ripening time) is preferably 1 to 10 hours. If the atmospheric temperature is too low, the organosilicon compound has low reactivity, so that the antifouling layer 13 is not sufficiently formed. Conversely, if the ambient temperature is too high, the antifouling layer 13 may crack and the appearance of the cover glass 2 may be poor. On the other hand, if the atmospheric humidity is too low, the anti-staining layer 13 is not sufficiently formed because the reactivity of the organosilicon compound is low as in the case of temperature. If the atmospheric humidity is too high, the reaction will be too fast and the antifouling layer 13 will crack and the appearance of the cover glass 2 may be poor. On the other hand, if the aging time is too short, the reaction of the organosilicon compound becomes insufficient and the formation of the antifouling layer 13 becomes insufficient. The aging time is required to be 0.5 hours or longer. For example, it is preferably about 24 hours when the temperature is 25 ° C. and the relative humidity is 40%, and about 2 hours when the temperature is 60 ° C. and the relative humidity is 80%.
In either of the dry method and the wet method described above, it is preferable to perform plasma treatment (argon, oxygen, etc.) on the surface of the antireflection layer 12 in advance. For example, if the plasma treatment is performed on the antireflection layer 12 (low refractive index layer 12D, SiO 2 layer), the adhesion (adhesion) between the antireflection layer 12 and the antifouling layer 13 is greatly improved. To do.

最終的に防汚層13が形成されたカバーガラス2の表面硬度は、ナノインデンターを使用したISO14577準拠の測定値で24000N/mm以上である(試験荷重1.225mN)。 The surface hardness of the cover glass 2 on which the antifouling layer 13 is finally formed is 24000 N / mm 2 or more as measured by ISO14577 using a nanoindenter (test load 1.225 mN).

以上の本実施形態によれば、次のような効果が得られる。
反射防止層12の上には、フッ素含有有機ケイ素化合物からなる防汚層13が形成されている。従って、この防汚層は、撥水・撥油作用を発揮するだけでなく、表面の滑り性に非常に優れる。それ故、カバーガラス2に外部からの衝撃が加わっても、防汚層13表面の滑り性によりその衝撃をやわらげることができるので耐擦傷性に非常に優れる。それ故、カバーガラス2の視認性を長期に渡って維持できる。
防汚層13に用いられるフッ素含有有機ケイ素化合物として、アルコキシシラン化合物や前記した式(1)、(2)のようなパーフルオロエーテル化合物を用いることで、カバーガラス2に高い滑り性を付与することができ、結果として優れた耐擦傷性を発揮することができる。
According to the above embodiment, the following effects can be obtained.
On the antireflection layer 12, an antifouling layer 13 made of a fluorine-containing organosilicon compound is formed. Therefore, this antifouling layer not only exhibits water and oil repellency, but also has excellent surface slipperiness. Therefore, even if an impact from the outside is applied to the cover glass 2, the impact can be reduced by the slipperiness of the surface of the antifouling layer 13, so that the scratch resistance is very excellent. Therefore, the visibility of the cover glass 2 can be maintained for a long time.
By using an alkoxysilane compound or a perfluoroether compound such as the above-described formulas (1) and (2) as the fluorine-containing organosilicon compound used for the antifouling layer 13, high slipperiness is imparted to the cover glass 2. As a result, excellent scratch resistance can be exhibited.

防汚層13の厚みを0.001〜0.05μmの範囲に設定することで、十分な撥水・撥油性能を発揮できるとともに、耐擦傷性やさらに耐薬品性にも優れたカバーガラス1を提供できる。
カバーガラス1の表面硬度が、24000N/mm以上であるので、腕時計や携帯情報機器などに適用した場合に十分な耐擦傷性が得られる。
By setting the thickness of the antifouling layer 13 in the range of 0.001 to 0.05 μm, the cover glass 1 can exhibit sufficient water and oil repellency, and has excellent scratch resistance and chemical resistance. Can provide.
Since the surface hardness of the cover glass 1 is 24000 N / mm 2 or more, sufficient scratch resistance can be obtained when applied to a wristwatch or a portable information device.

防汚層13を上述した所定の湿式法により形成すると、優れた耐擦傷性を有するカバーガラス2を製造できるだけでなく、真空装置等の大型設備が不要となり、製造にかかるコストを低減させることも可能となる。
また、防汚層13を上述した所定の乾式法により形成すると、優れた耐擦傷性を有するカバーガラス2を製造できるだけでなく、溶剤を実質的に用いないので環境負荷が低い。また、防汚層13の形成工程における条件を変更することが容易なので防汚層の層厚制御も簡便である。さらに繊維状または多孔質の媒体を用いることでフッ素含有有機ケイ素化合物の加熱効率も高い。
When the antifouling layer 13 is formed by the predetermined wet method described above, not only the cover glass 2 having excellent scratch resistance can be produced, but also large equipment such as a vacuum apparatus is not required, and the production cost can be reduced. It becomes possible.
Further, when the antifouling layer 13 is formed by the above-described predetermined dry method, not only the cover glass 2 having excellent scratch resistance can be produced, but also the environmental load is low because a solvent is not substantially used. Moreover, since it is easy to change the conditions in the formation process of the antifouling layer 13, the layer thickness control of the antifouling layer is also simple. Furthermore, the heating efficiency of the fluorine-containing organosilicon compound is high by using a fibrous or porous medium.

本発明は、以上述べた実施形態には限定されず、本発明の目的を達成できる範囲で種々の改良および変形を行うことが可能である。
前記実施形態では、風防としてのカバーガラス1、2に本発明が適用された例を示したが、本発明の透光性部材は、風防としてのカバーガラスに限定されない。機械式時計などでは、裏蓋が設けられる位置にカバー部材としての透光性部材が設けられ、この透光性部材を介して時計体の内部の機構を視認可能なシースルーバック仕様とされていることがある。このような場合、この透光性部材に本発明を適用できる。
なお、透光性部材の基材としては、高硬度のサファイアガラスが好適であるが、このほか、石英ガラス、ソーダガラス等の使用も検討してよい。
The present invention is not limited to the above-described embodiments, and various improvements and modifications can be made within a range in which the object of the present invention can be achieved.
In the said embodiment, although the example in which this invention was applied to the cover glasses 1 and 2 as a windshield was shown, the translucent member of this invention is not limited to the cover glass as a windshield. In a mechanical timepiece or the like, a translucent member as a cover member is provided at a position where a back cover is provided, and a see-through back specification is provided in which a mechanism inside the watch body can be visually recognized through the translucent member. Sometimes. In such a case, the present invention can be applied to the translucent member.
In addition, as a base material of a translucent member, high-hardness sapphire glass is suitable, but use of quartz glass, soda glass, or the like may also be considered.

本発明の透光性部材は、時計に使用されるカバー部材に限らず、携帯電話、携帯情報機器、計測機器、デジタルカメラ、プリンター、ダイビングコンピューター、脈拍計等の各種機器における情報表示部のカバー部材として好適に使用できる。
なお、本発明の透光性部材は、カバー部材には限定されない。本発明に係る反射防止層、防汚層は、透光性部材の基材において硬度確保、反射防止機能および耐擦傷性が要求される任意の箇所に形成される。
The translucent member of the present invention is not limited to a cover member used in a watch, but covers information display units in various devices such as mobile phones, portable information devices, measuring devices, digital cameras, printers, diving computers, and pulse meters. It can be suitably used as a member.
The translucent member of the present invention is not limited to the cover member. The antireflection layer and the antifouling layer according to the present invention are formed at any location where hardness, antireflection function, and scratch resistance are required in the base material of the translucent member.

以下に、実施例および比較例により、本発明をより詳細に説明する。具体的には、図1、図2に示す時計用カバーガラス1、2の基材11として一般的なサファイアガラスを用い、その表面に所定の反射防止層、さらには防汚層を形成した後、各種の評価を行った。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples. Specifically, after using a general sapphire glass as the base material 11 of the watch cover glasses 1 and 2 shown in FIGS. 1 and 2, and forming a predetermined antireflection layer and further an antifouling layer on the surface thereof Various evaluations were made.

〔実施例1〜16、比較例1〜12〕
(基材11の前処理)
サファイアガラスを120℃の熱濃硫酸に10分間浸漬した後、純水でよく洗浄し、120℃に設定されたオーブンで、大気中30分間乾燥した。次に、このサファイアガラスをスパッタ装置内部に載置した後、120℃に加熱しながら装置内部を10−6Torrの圧力とした。続いて、装置内にArガスを導入し、0.8mTorrで逆スパッタしてサファイアガラス表面をクリーニングした。
[Examples 1 to 16, Comparative Examples 1 to 12]
(Pretreatment of substrate 11)
After sapphire glass was immersed in hot concentrated sulfuric acid at 120 ° C. for 10 minutes, it was thoroughly washed with pure water and dried in the atmosphere for 30 minutes in an oven set at 120 ° C. Next, after this sapphire glass was placed inside the sputtering apparatus, the inside of the apparatus was brought to a pressure of 10 −6 Torr while heating to 120 ° C. Subsequently, Ar gas was introduced into the apparatus, and the surface of the sapphire glass was cleaned by reverse sputtering at 0.8 mTorr.

(反射防止層12の形成)
シリコンをターゲットとし、以下の条件でスパッタリングを行い、高屈折率層と低屈折率層からなる反射防止層12(4層〜9層)を、サファイアガラス製基材11の表面に形成した。具体的な層構成を表1、2に示す。なお、反射防止層12の最表面から150nmの深さまでにおける窒化ケイ素(SiNx)の体積分率をSiNx占有率として示す。
高屈折率層:窒化ケイ素(SiNx)
ガス:10.0sccm
Arガス:10.0sccm
スパッタリングパワー:2.0KW
低屈折率層:酸化ケイ素(SiO
ガス:10.0sccm
Arガス:10.0sccm
スパッタリングパワー:1.5KW
(Formation of the antireflection layer 12)
Sputtering was performed under the following conditions using silicon as a target, and antireflection layers 12 (4 to 9 layers) composed of a high refractive index layer and a low refractive index layer were formed on the surface of the sapphire glass substrate 11. Specific layer structures are shown in Tables 1 and 2. The volume fraction of silicon nitride (SiNx) from the outermost surface of the antireflection layer 12 to a depth of 150 nm is shown as the SiNx occupancy rate.
High refractive index layer: silicon nitride (SiNx)
N 2 gas: 10.0 sccm
Ar gas: 10.0sccm
Sputtering power: 2.0KW
Low refractive index layer: silicon oxide (SiO 2 )
0 2 Gas: 10.0sccm
Ar gas: 10.0sccm
Sputtering power: 1.5KW

〔評価項目および評価方法〕
前記で得られた基材11に対し、以下の評価を行い、結果を表1、2に示した。なお、サファイアガラス単体についても参考例として示した。
(1)反射率(%)
基材表面に対して90°の入射角で入射する標準光の反射率を求め、この反射率と、入射角90°の場合の視感感度とを可視光領域の各波長において掛け合わせた値の積算値に基づいて算出した。
[Evaluation items and methods]
The following evaluation was performed on the base material 11 obtained above, and the results are shown in Tables 1 and 2. A single sapphire glass is also shown as a reference example.
(1) Reflectance (%)
The reflectance of standard light incident on the substrate surface at an incident angle of 90 ° is obtained, and this reflectance is multiplied by the luminous sensitivity at an incident angle of 90 ° at each wavelength in the visible light region. It calculated based on the integrated value.

(2)落砂試験前後の光線透過率差(ΔT%)
まず、次のような落砂試験を行う。水平面に対してカバーガラスを45°の傾斜角度で配置する。この際、反射防止層12が形成された側が上面側になるようにカバーガラスを配置する。そして、水平面から1mの高さより、防汚層に向かって砂を落下させる。この後、カバーガラスを洗浄し、試験前におけるカバーガラスの光線透過率と、試験後におけるカバーガラスの光線透過率との差ΔT%に基づいて、傷の付きづらさを評価した。
ここで、使用する砂の材質は、黒色炭化ケイ素インゴットおよび緑色炭化ケイ素インゴットを粉砕、分級して製造されたカーボランダムである。この試験では、中心粒径が600〜850μmのカーボランダム#24を800cm使用した。
(2) Light transmittance difference before and after sandfall test (ΔT%)
First, the following sandfall test is performed. The cover glass is arranged at an inclination angle of 45 ° with respect to the horizontal plane. At this time, the cover glass is arranged so that the side on which the antireflection layer 12 is formed is the upper surface side. Then, the sand is dropped toward the antifouling layer from a height of 1 m from the horizontal plane. Thereafter, the cover glass was washed, and the difficulty of scratching was evaluated based on the difference ΔT% between the light transmittance of the cover glass before the test and the light transmittance of the cover glass after the test.
Here, the sand used is a carborundum produced by pulverizing and classifying black silicon carbide ingot and green silicon carbide ingot. In this test, 800 cm 3 of Carborundum # 24 having a center particle size of 600 to 850 μm was used.

(3)表面硬度(N/mm
ナノインデンターを使用して、試験荷重1.225mNにおける、基材11の反射防止層側の表面硬度を測定した(ISO14577に準拠)。
(3) Surface hardness (N / mm 2 )
Using a nanoindenter, the surface hardness of the antireflection layer side of the base material 11 at a test load of 1.225 mN was measured (based on ISO14577).

Figure 0006372590
Figure 0006372590

Figure 0006372590
Figure 0006372590

〔評価結果〕
表1の結果より、反射防止層12の層数によらず、最表面から150nmの深さまでにおけるSiNx占有率を30〜50vol%とすることで、表面硬度を24000N/mm以上に維持することが可能となり、同時に落砂試験前後の透過率差(Δ%)を2%以下にできることがわかる。透過率差が2%以下であれば、時計用カバ−ガラスとして実用上の耐傷性は良好といえる。また、SiNx占有率を40vol%以上とすることで落砂試験前後の透過率差をさらに1.5%以下にできる。透過率差が1.5%以下であれば、実用上の耐傷性は極めて良好といえる。
一方、表2の結果からは、比較例1、3、5、7、9、11に示すように、SiNx占有率が50vol%を超えると、反射率が0.4%を超え、実用上使用困難なレベルとなることがわかる。また、比較例2、4、6、8、10、12に示すように、SiNx占有率が30vol%未満であると、表面硬度が非常に小さくなり、透過率差も大きくなる。すなわち、耐傷性に劣ったものとなる。
〔Evaluation results〕
From the results of Table 1, regardless of the number of antireflection layers 12, the surface hardness is maintained at 24000 N / mm 2 or more by setting the SiNx occupancy from the outermost surface to a depth of 150 nm at 30 to 50 vol%. It is understood that the transmittance difference (Δ%) before and after the sandfall test can be reduced to 2% or less. When the transmittance difference is 2% or less, it can be said that practical scratch resistance is good as a watch cover glass. Moreover, the transmittance | permeability difference before and after the sandfall test can be further reduced to 1.5% or less by setting the SiNx occupation ratio to 40 vol% or more. If the transmittance difference is 1.5% or less, it can be said that the practical scratch resistance is very good.
On the other hand, from the results in Table 2, as shown in Comparative Examples 1, 3, 5, 7, 9, and 11, when the SiNx occupancy exceeds 50 vol%, the reflectance exceeds 0.4% and is practically used. It turns out that it becomes a difficult level. Further, as shown in Comparative Examples 2, 4, 6, 8, 10, and 12, when the SiNx occupancy is less than 30 vol%, the surface hardness is very small and the transmittance difference is also large. That is, the scratch resistance is inferior.

〔実施例17〜22〕
前記した実施例1、3、5、8、11、14について、反射防止層12の表面にさらに防汚層13を形成して同様に評価を行った。
(防汚層13の形成)
フッ素含有有機ケイ素化合物(信越化学工業製 KY−130(3))をフッ素系溶剤(信越化学工業製 FRシンナー)で希釈して固形分3質量%となるように調製したものを、スチールウール(日本スチールウール製 #0、線径0.025mm)0.5gが前もって充填された容器(上方が解放された円筒形の銅製容器、内径16mm×内高さ6mm)に、1.0g充填して、120℃で1時間乾燥した。次に、この銅製容器を、反射防止層が形成されたサファイアガラスとともに、真空蒸発装置内に載置し、装置内を0.01Paの圧力とした後、サファイアガラス表面に対して0.6Å/sの膜形成速度(蒸着速度)となるように銅製容器からフッ素含有有機ケイ素化合物を蒸発させた。加熱源としてはモリブデン製抵抗加熱ボートを用いた。
[Examples 17 to 22]
For the above-described Examples 1, 3, 5, 8, 11, and 14, the antifouling layer 13 was further formed on the surface of the antireflection layer 12 and evaluated in the same manner.
(Formation of antifouling layer 13)
Fluorine-containing organosilicon compound (KY-130 (3), manufactured by Shin-Etsu Chemical Co., Ltd.) diluted with a fluorine-based solvent (FR thinner, manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a solid content of 3% by weight is obtained from steel wool ( Packed with 1.0 g in a container (Japanese cylindrical wool # 0, wire diameter 0.025 mm) pre-filled with 0.5 g (cylindrical copper container with open top, inner diameter 16 mm × inner height 6 mm) And dried at 120 ° C. for 1 hour. Next, this copper container is placed in a vacuum evaporator together with the sapphire glass on which the antireflection layer is formed, and the inside of the apparatus is set to a pressure of 0.01 Pa. The fluorine-containing organosilicon compound was evaporated from the copper container so that the film formation rate (deposition rate) of s was obtained. As a heating source, a resistance heating boat made of molybdenum was used.

(カバーガラス2の特性の評価)
上記の製造条件で製造されたカバーガラス2について、前記した各特性の評価を行った。その結果を表3に示す。
(Evaluation of characteristics of cover glass 2)
About the cover glass 2 manufactured on said manufacturing conditions, each above-mentioned characteristic was evaluated. The results are shown in Table 3.

Figure 0006372590
Figure 0006372590

〔評価結果〕
表3に示すように、実施例17〜22のカバーガラス2は、いずれも防汚層を有しているが、それらのベースとなるカバーガラス1(実施例1、3、5、8、11、14)と同様に、反射防止効果および耐擦傷性に優れていることがわかる。すなわち、防汚層を形成していても、SiNx占有率の効果が強く反映されていることがわかる。
〔Evaluation results〕
As shown in Table 3, each of the cover glasses 2 of Examples 17 to 22 has an antifouling layer, but the cover glass 1 (Examples 1, 3, 5, 8, 11) serving as a base thereof. 14), it is understood that the antireflection effect and scratch resistance are excellent. That is, it can be seen that even if the antifouling layer is formed, the effect of the SiNx occupation ratio is strongly reflected.

1、2・・・カバーガラス(透光性部材、カバー部材)、11・・・基材、12・・・反射防止層、12A、12C・・・高屈折率層、12B、12D・・・低屈折率層、13・・・防汚層
1, 2 ... Cover glass (translucent member, cover member), 11 ... Base material, 12 ... Antireflection layer, 12A, 12C ... High refractive index layer, 12B, 12D ... Low refractive index layer, 13 ... Antifouling layer

Claims (8)

透光性を有する基材を備えるカバー部材であって、
前記基材の表面の少なくとも一部には、
窒化ケイ素を含む層と、酸化ケイ素を含む層とを含む反射防止層としての積層を備え、
前記積層は、その最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が40〜50vol%であり、
前記積層の表面には、フッ素含有有機ケイ素化合物を含む防汚層を有し、
前記防汚層の厚みは、0.001〜0.05μmであり、
該カバー部材は、携帯情報機器の情報表示部に設けられ、
該カバー部材の表面硬度が、24000N/mm以上である
ことを特徴とするカバー部材。
A cover member comprising a base material having translucency,
At least a part of the surface of the substrate includes
A laminate as an antireflection layer including a layer containing silicon nitride and a layer containing silicon oxide,
The stack has a silicon nitride content of 40 to 50 vol% in a range from the outermost surface to a depth of 150 nm.
The surface of the laminate has an antifouling layer containing a fluorine-containing organosilicon compound,
The antifouling layer has a thickness of 0.001 to 0.05 μm,
The cover member is provided in an information display unit of a portable information device,
The cover member has a surface hardness of 24000 N / mm 2 or more.
透光性を有する基材を備えるカバー部材であって、
前記基材の表面の少なくとも一部には、
窒化ケイ素を含む層と、酸化ケイ素を含む層とを含む反射防止層としての積層を備え、
前記積層は、その最表面から150nmの深さまでの範囲における窒化ケイ素の含有量が30〜50vol%であり、
前記積層の表面には、フッ素含有有機ケイ素化合物を含む防汚層を有し、
前記防汚層の厚みは、0.001〜0.05μmであり、
前記積層は、前記窒化ケイ素を含む層と前記酸化ケイ素を含む層とを積層して、積層数が4層であり、
該カバー部材は、携帯情報機器の情報表示部に設けられ、
該カバー部材の表面硬度が、24000N/mm以上である
ことを特徴とするカバー部材。
A cover member comprising a base material having translucency,
At least a part of the surface of the substrate includes
A laminate as an antireflection layer including a layer containing silicon nitride and a layer containing silicon oxide,
The laminate has a silicon nitride content of 30 to 50 vol% in a range from the outermost surface to a depth of 150 nm,
The surface of the laminate has an antifouling layer containing a fluorine-containing organosilicon compound,
The antifouling layer has a thickness of 0.001 to 0.05 μm,
The stack is formed by stacking the layer containing silicon nitride and the layer containing silicon oxide, and the number of stacks is four.
The cover member is provided in an information display unit of a portable information device,
The cover member has a surface hardness of 24000 N / mm 2 or more.
請求項1または請求項2に記載のカバー部材において、
前記基材がサファイアガラスである
ことを特徴とするカバー部材。
The cover member according to claim 1 or 2,
The said base material is sapphire glass. The cover member characterized by the above-mentioned.
請求項1〜請求項3のいずれかに記載のカバー部材において、
該カバー部材の表面硬度が、30000N/mm以上である
ことを特徴とするカバー部材。
In the cover member in any one of Claims 1-3,
The cover member has a surface hardness of 30000 N / mm 2 or more.
請求項1〜請求項4のいずれかに記載のカバー部材において、
前記フッ素含有有機ケイ素化合物が、アルコキシシラン化合物である
ことを特徴とするカバー部材。
In the cover member in any one of Claims 1-4,
The cover member, wherein the fluorine-containing organosilicon compound is an alkoxysilane compound.
請求項1〜請求項5のいずれかに記載のカバー部材において、
前記フッ素含有有機ケイ素化合物が、下記式(1)および(2)の少なくともいずれかで示されるパーフルオロエーテル化合物である
ことを特徴とするカバー部材。
Figure 0006372590
(式中、R はパーフルオロアルキル基を示す。Xは臭素、ヨウ素または水素を示す。
Yは水素または低級アルキル基を示し、Zはフッ素またはトリフルオロメチル基を示す。Rは加水分解可能な基を示し、Rは水素または不活性な1価の炭化水素基を示す。a、b、c、d、eは0または1以上の整数で、且つa+b+c+d+eは少なくとも1以上であり、a、b、c、d、eで括られた各繰り返し単位の存在順序は、式中において限定されない。fは0、1または2である。gは1、2または3である。hは1以上の整数である。)
Figure 0006372590
(式中、R は式:「−(C2k)O−」で示される単位を含み、分岐を有しない直鎖状のパーフルオロポリアルキレンエーテル構造を有する2価の基を示す。なお、式:「−(C2k)O−」におけるkは1〜6の整数である。Rは炭素原子数1〜8の1価炭化水素基であり、Wは加水分解性基またはハロゲン原子を示す。pは0、1または2であり、nは1〜5の整数である。mおよびrは、2または3である。)
In the cover member in any one of Claims 1-5,
The fluorine-containing organosilicon compound is a perfluoroether compound represented by at least one of the following formulas (1) and (2).
Figure 0006372590
(In the formula, R f 1 represents a perfluoroalkyl group. X represents bromine, iodine or hydrogen.
Y represents hydrogen or a lower alkyl group, and Z represents a fluorine or trifluoromethyl group. R 1 represents a hydrolyzable group, and R 2 represents hydrogen or an inert monovalent hydrocarbon group. a, b, c, d and e are 0 or an integer of 1 or more, a + b + c + d + e is at least 1 and the order of presence of each repeating unit enclosed by a, b, c, d and e is as follows: It is not limited in. f is 0, 1 or 2. g is 1, 2 or 3. h is an integer of 1 or more. )
Figure 0006372590
(In the formula, R f 2 represents a divalent group having a linear perfluoropolyalkylene ether structure containing a unit represented by the formula: “— (C k F 2k ) O—” and having no branch). In the formula: “— (C k F 2k ) O—”, k is an integer of 1 to 6. R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, and W is hydrolyzable. Represents a group or a halogen atom, p is 0, 1 or 2, n is an integer of 1 to 5. m and r are 2 or 3.)
請求項1〜請求項のいずれかに記載のカバー部材において、
前記積層は、当該カバー部材の内側の部分および外側の部分のうち、少なくとも外側の部分に形成されることを特徴とするカバー部材。
In the cover member in any one of Claims 1-6 ,
The said lamination | stacking is formed in the outer part at least among the inner part and the outer part of the said cover member, The cover member characterized by the above-mentioned.
請求項1〜請求項のいずれかに記載のカバー部材を備える
ことを特徴とする携帯情報機器。
A portable information device comprising the cover member according to any one of claims 1 to 7 .
JP2017092430A 2017-05-08 2017-05-08 Cover member and portable information device Active JP6372590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017092430A JP6372590B2 (en) 2017-05-08 2017-05-08 Cover member and portable information device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017092430A JP6372590B2 (en) 2017-05-08 2017-05-08 Cover member and portable information device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016074149A Division JP6278055B2 (en) 2016-04-01 2016-04-01 Cover member and mobile phone

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018135708A Division JP2018180006A (en) 2018-07-19 2018-07-19 Cover member and mechanical timepiece

Publications (2)

Publication Number Publication Date
JP2017145191A JP2017145191A (en) 2017-08-24
JP6372590B2 true JP6372590B2 (en) 2018-08-15

Family

ID=59682739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017092430A Active JP6372590B2 (en) 2017-05-08 2017-05-08 Cover member and portable information device

Country Status (1)

Country Link
JP (1) JP6372590B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208426A1 (en) * 2018-04-27 2019-10-31 コニカミノルタ株式会社 Optical thin film, optical member, and method for manufacturing optical thin film
JP6863343B2 (en) * 2018-07-12 2021-04-21 Agc株式会社 Manufacturing method of glass laminate, front plate for display, display device and glass laminate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478216B2 (en) * 1996-10-18 2010-06-09 ソニー株式会社 DISPLAY DEVICE FILTER, DISPLAY DEVICE, DISPLAY DEVICE FILTER MANUFACTURING METHOD, AND SURFACE MODIFICATION FILM COATING COMPOSITION
JP2003064345A (en) * 2001-08-28 2003-03-05 Sony Corp Surface modifying material, composition for surface modifying film, surface modifying film, optical component and display device
FR2841894B1 (en) * 2002-07-03 2006-03-10 Saint Gobain TRANSPARENT SUBSTRATE HAVING ANTIREFLECTION COATING
JP2004271480A (en) * 2003-03-12 2004-09-30 Citizen Watch Co Ltd Cover glass for timepiece
JP2004334012A (en) * 2003-05-09 2004-11-25 Nobumasa Nanbu Antireflection film and optical filter
JP2005301208A (en) * 2004-03-17 2005-10-27 Seiko Epson Corp Method for manufacturing stain proof optical article
JP2006126782A (en) * 2004-10-01 2006-05-18 Seiko Epson Corp Method for treating anti-staining layer of optical article
JP2006267561A (en) * 2005-03-24 2006-10-05 Seiko Epson Corp Optical element and manufacturing method thereof
JP4619166B2 (en) * 2005-03-28 2011-01-26 シチズンホールディングス株式会社 Windshield glass for watches
JP5135753B2 (en) * 2006-02-01 2013-02-06 セイコーエプソン株式会社 Optical article
JP2007271958A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Antireflection laminate, its manufacturing method, optical functional filter and optical display system

Also Published As

Publication number Publication date
JP2017145191A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5326407B2 (en) Watch cover glass and watch
JP5435168B2 (en) Translucent member and watch
US20200239360A1 (en) Transparent substrate laminated body and method for producing same
CN104955783B (en) Transparent base with anti-soil film
US20150138638A1 (en) Optical element
JPWO2014129333A1 (en) Optical components
WO2016190047A1 (en) Method for manufacturing article having surface treatment layer
JP2005301208A (en) Method for manufacturing stain proof optical article
JP2009175500A (en) Method for manufacturing optical member
JP2021103305A (en) Optical device including stack of optical layers with functional treatment
JP7439769B2 (en) Base material with water- and oil-repellent layer and method for producing the same
JP5750718B2 (en) Translucent member and watch
JP6372590B2 (en) Cover member and portable information device
JP2018004921A (en) Spectacle lens, and manufacturing method for the same
JP2008065110A (en) Antifouling optical article
JP2009258633A (en) Process for producing optical article
JP6278055B2 (en) Cover member and mobile phone
JP5967257B2 (en) Cover member and mobile phone
JP2009186185A (en) Timepiece, light-transmitting member, and its manufacturing method
JPWO2017030046A1 (en) Laminate
JP2018180006A (en) Cover member and mechanical timepiece
JP2008513815A (en) Improvement of polishing and punching characteristics of ophthalmic glass with hydrophobic coating
JP5779317B2 (en) Method for manufacturing optical article
JP2010243164A (en) Translucent member, timepiece, and manufacturing method of the translucent member
JP2010243163A (en) Translucent member, timepiece, and manufacturing method of the translucent member

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150