JP6371865B2 - リソグラフィ装置及びリソグラフィ装置を製造する方法 - Google Patents

リソグラフィ装置及びリソグラフィ装置を製造する方法 Download PDF

Info

Publication number
JP6371865B2
JP6371865B2 JP2016572686A JP2016572686A JP6371865B2 JP 6371865 B2 JP6371865 B2 JP 6371865B2 JP 2016572686 A JP2016572686 A JP 2016572686A JP 2016572686 A JP2016572686 A JP 2016572686A JP 6371865 B2 JP6371865 B2 JP 6371865B2
Authority
JP
Japan
Prior art keywords
flow path
substrate
lithographic apparatus
liquid
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016572686A
Other languages
English (en)
Other versions
JP2017523449A (ja
Inventor
マフダレナ コルティー、ロヒール、ヘンドリクス、
マフダレナ コルティー、ロヒール、ヘンドリクス、
ベレンゼン、クリスチアヌス、ヴィルヘルムス、ヨハネス
ヨイニンク、アンドレ、ベルナルデュス
クーフツ、アドリアヌス、ヘンドリック
オーヴェルカンプ、ジム、ヴィンセント
トロンプ、ジークフリート、アレクサンデル
ヴィ、ヴァン、ヴォン
オーデナールト、ダニエル、エリザ、ルーラント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2017523449A publication Critical patent/JP2017523449A/ja
Application granted granted Critical
Publication of JP6371865B2 publication Critical patent/JP6371865B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

関連出願の相互参照
本出願は、2014年6月10日に出願された欧州出願第14171800.7号及び2015年3月18日に出願された欧州出願第15159551.9号の利益を主張し、その全体が本明細書に援用される。
本発明は、リソグラフィ装置及びリソグラフィ装置を製造する方法に関する。
リソグラフィ装置は、所望のパターンを基板に、通常は基板の目標部分に与える機械である。リソグラフィ装置は例えば集積回路(IC)の製造に用いられる。この場合、マスクまたはレチクルとも称されるパターニングデバイスが、ICの個別の層に形成されるべき回路パターンを生成するために使用され得る。このパターンが基板(例えばシリコンウェーハ)の(例えばダイの一部、あるいは1つまたは複数のダイを含む)目標部分に転写される。パターン転写は典型的には基板に形成された放射感応性材料(レジスト)層への結像による。一般に一枚の基板には網目状に隣接する一群の目標部分が含まれ、これらは連続的にパターン形成される。公知のリソグラフィ装置にはいわゆるステッパとスキャナとがある。ステッパにおいては、目標部分にパターン全体が一度に露光されるようにして各目標部分は照射を受ける。スキャナにおいては、所与の方向(スキャン方向)に放射ビームによりパターンを走査するとともに基板をこの方向と平行または逆平行に同期して走査するようにして各目標部分は照射を受ける。パターニングデバイスから基板へのパターン転写は、基板にパターンをインプリントすることによっても可能である。
液浸装置では液浸流体は流体ハンドリングシステム、デバイス構造または装置によって取り扱われる。ある実施の形態では、流体ハンドリングシステムは液浸流体を供給してもよく、したがって流体供給システムであってもよい。ある実施の形態では、流体ハンドリングシステムは液浸流体を少なくとも部分的に閉じ込めてもよく、流体閉じ込めシステムであってもよい。ある実施の形態では、流体ハンドリングシステムは液浸流体に障壁(バリア)をもたらしてもよく、流体閉じ込め構造などのバリア部材であってもよい。ある実施の形態では、流体ハンドリングシステムは、ガスの流れを生成または使用してもよい。この流れは例えば液浸流体の流れ及び/または位置の制御に役立つ。気体流れが液浸流体を閉じ込めるシールを形成してもよく、流体ハンドリング構造がシール部材と呼ばれてもよい。シール部材は流体閉じ込め構造であってもよい。ある実施の形態では、液浸液が液浸流体として使用されてもよい。その場合、流体ハンドリングシステムは液体ハンドリングシステムであってもよい。上記説明に関して、本段落で流体について定義した特徴への言及は、液体について定義される特徴を含むものと理解されたい。
液浸液をリソグラフィ装置において取り扱う場合、液体を扱うことについての1つ又は複数の問題がもたらされる。基板及び/またはセンサのような物体とテーブル(例えば基板テーブルまたは計測テーブル)との間で物体(例えば基板及び/またはセンサ)の端部まわりに隙間が通例存在する。米国特許出願公開第2005−0264778号は、隙間が液体供給システムの下を通過する際の気泡含有を避け、及び/または隙間に入り込むいかなる液体をも除去すべく、当該隙間を材料で埋め、または隙間を意図的に液体で満たす液体源または低圧源を設けることを開示する。
物体の端部とその物体が配置されたテーブルとの隙間から液体は流路を通じて除去されてもよい。液体が除去されるとき、流路を通じて気体も除去されうる。液体と気体の二相流が流路を通過しうる。二相流のためのこうした流路は、リソグラフィ装置の他の部分、例えば液体閉じ込めシステムにも存在しうる。こうした二相流は、流路が形成されている構成要素または近傍の他の構成要素における望まれない温度変化をもたらしうる。
望まれるのは、例えば、リソグラフィ装置における流路を通じた二相流に起因する望まれない温度変化の低減を提供することである。
ある態様によると、二相流の通過のための流路であって、第1材料のブロックの内部に形成された流路と、前記第1材料と前記流路の間にある第2材料であって、前記第1材料よりも高い比熱容量を有する第2材料と、前記第2材料と前記流路の間にある第3材料であって、前記第2材料よりも高い熱伝導率を有する第3材料と、を備えるリソグラフィ装置が提供される。
ある態様によると、二相流の通過のための流路であって、第1材料のブロックの内部に形成された流路と、前記第1材料と前記流路の間にある第2材料であって、前記第1材料よりも低い熱伝導率を有する第2材料と、前記第2材料と前記流路の間にある第3材料であって、前記第2材料よりも高い熱伝導率を有する第3材料と、を備えるリソグラフィ装置が提供される。
ある態様によると、二相流の通過のための流路であって、第1材料のブロックの内部に形成された流路と、前記第1材料と前記流路の間にある第2材料と、を備え、前記第2材料は、λ/(ρCspecific)≦1×10−7−1を満たし、ここで、λは前記第2材料の熱伝導率をWm−1−1で表し、ρは前記第2材料の密度をkgm−3で表し、Cspecificは前記第2材料の比熱容量をJkg−1−1で表すリソグラフィ装置が提供される。
ある態様によると、リソグラフィ装置を製造する方法であって、内部に流路が形成された第1材料のブロックを設けることと、前記流路を通じた二相流の通過を提供することと、前記第1材料と前記流路の間に、前記第1材料よりも高い比熱容量を有する第2材料を設けることと、前記第2材料と前記流路の間に、前記第2材料よりも高い熱伝導率を有する第3材料を設けることと、を備える方法が提供される。
ある態様によると、リソグラフィ装置を製造する方法であって、内部に流路が形成された第1材料のブロックを設けることと、前記流路を通じた二相流の通過を提供することと、前記第1材料と前記流路の間に、前記第1材料よりも低い熱伝導率を有する第2材料を設けることと、前記第2材料と前記流路の間に、前記第2材料よりも高い熱伝導率を有する第3材料を設けることと、を備える方法が提供される。
ある態様によると、リソグラフィ装置を製造する方法であって、内部に流路が形成された第1材料のブロックを設けることと、前記流路を通じた二相流の通過を提供することと、前記第1材料と前記流路の間に第2材料を設けることと、を備え、前記第2材料は、λ/(ρCspecific)≦1×10−7−1を満たし、ここで、λは前記第2材料の熱伝導率をWm−1−1で表し、ρは前記第2材料の密度をkgm−3で表し、Cspecificは前記第2材料の比熱容量をJkg−1−1で表す方法が提供される。
本発明のいくつかの実施の形態が付属の概略的な図面を参照して以下に説明されるがこれらは例示に過ぎない。各図面において対応する参照符号は対応する部分を指し示す。
本発明のある実施の形態に係るリソグラフィ装置を示す。
リソグラフィ投影装置において使用される液体供給システムを示す。
ある実施の形態に係る更なる液体供給システムを示す部分側断面図である。
ある実施の形態に係る基板テーブルの一部を断面で示す。 ある実施の形態に係る基板テーブルの一部を断面で示す。
ある実施の形態に係る第2材料の一部を斜視図で示す。
ある実施の形態に係る基板テーブルの一部を断面で示す。 ある実施の形態に係る基板テーブルの一部を断面で示す。 ある実施の形態に係る基板テーブルの一部を断面で示す。
ある実施の形態に係る第3材料の一部を側面図及び断面で示す。
ある実施の形態に係る基板テーブルの一部を断面で示す。 ある実施の形態の基板テーブルの一部を断面で示す。 ある実施の形態の基板テーブルの一部を断面で示す。
図1は、本発明の一実施形態に係るリソグラフィ装置を概略的に示す。この装置は、放射ビームB(例えば、UV放射、または、他の適する放射)を調整するよう構成されている照明システム(イルミネータ)ILと、パターニングデバイス(例えばマスク)MAを支持するよう構成され、いくつかのパラメータに従ってパターニングデバイスを正確に位置決めするよう構成されている第1位置決め装置PMに接続されているマスク支持構造(例えばマスクテーブル)MTと、を含む。また、この装置は、基板(例えば、レジストで被覆されたウェーハ)Wを保持するよう構成され、いくつかのパラメータに従って基板を正確に位置決めするよう構成されている第2位置決め装置PWに接続されている基板テーブル(例えばウェーハテーブル)WTまたは「基板支持部」を含む。さらに、この装置は、パターニングデバイスMAにより放射ビームBに付与されたパターンを基板Wの(例えば1つ以上のダイを含む)目標部分Cに投影するよう構成されている投影システム(例えば、屈折投影レンズ系)PSを含む。
照明システムは、放射の方向や形状の調整、または放射の制御のために、各種の光学素子、例えば屈折光学素子、反射光学素子、磁気的光学素子、電磁気的光学素子、静電的光学素子、またはその他の形式の光学素子、若しくはそれらの任意の組み合わせを含んでもよい。
マスク支持構造は、パターニングデバイスを支持する(すなわち、パターニングデバイスの重量を支える)。マスク支持構造は、パターニングデバイスの向きやリソグラフィ装置の設計、あるいはパターニングデバイスが真空環境下で保持されるか否か等その他の条件に応じた方式でパターニングデバイスを保持する。マスク支持構造は、機械的固定、真空固定、静電固定、またはパターニングデバイスを保持するその他の固定技術を用いることができる。マスク支持構造は例えばフレームまたはテーブルであってよく、固定されていてもよいし必要に応じて移動可能であってもよい。マスク支持構造は、パターニングデバイスが例えば投影システムに対して所望の位置にあることを保証してもよい。本書では「レチクル」または「マスク」という用語を用いた場合には、より一般的な用語である「パターニングデバイス」に同義であるとみなされうる。
本書で使用される「パターニングデバイス」という用語は、基板の目標部分にパターンを形成すべく放射ビームの断面にパターンを付与するために使用可能ないかなるデバイスをも指し示すよう広く解釈されるべきである。例えばパターンが位相シフトフィーチャあるいはいわゆるアシストフィーチャを含む場合のように、放射ビームに付与されるパターンが基板の目標部分に所望されるパターンと厳密に一致していなくてもよいことに留意すべきである。一般には、放射ビームに付与されるパターンは、目標部分に形成される集積回路などのデバイスにおける特定の機能層に対応する。
パターニングデバイスは透過型であっても反射型であってもよい。パターニングデバイスの例としては、マスクやプログラマブルミラーアレイ、プログラマブルLCDパネルがある。マスクはリソグラフィの分野で周知であり、バイナリマスクやレベンソン型位相シフトマスク、ハーフトーン型位相シフトマスク、更に各種のハイブリッド型マスクが含まれる。プログラマブルミラーアレイの一例としては、小型のミラーがマトリックス状に配列され、各ミラーが入射してくる放射ビームを異なる方向に反射するように個別に傾斜可能であるというものがある。これらの傾斜ミラーにより、マトリックス状ミラーで反射された放射ビームにパターンが付与されることになる。
本書で使用される「投影システム」という用語は、使用される露光放射に関して又は液浸液や真空の利用などの他の要因に関して適切とされるいかなる投影システムをも包含するよう広く解釈されるべきであり、屈折光学系、反射光学系、反射屈折光学系、磁気的光学系、電磁気的光学系、静電的光学系、またはそれらの任意の組み合わせを含む。本書における「投影レンズ」との用語の使用はいかなる場合も、より一般的な用語である「投影システム」と同義とみなされうる。
図示されるように、本装置は、(例えば透過型マスクを用いる)透過型である。これに代えて、本装置は、(例えば、上述の形式のプログラマブルミラーアレイ、または反射型マスクを用いる)反射型であってもよい。
リソグラフィ装置は、2つ(デュアルステージ)又はそれより多くの基板テーブルまたは「基板支持部」(及び/または2つ以上のマスクテーブルまたは「マスク支持部」)を有する形式のものであってもよい。このような多重ステージ型の装置においては、追加されたテーブルまたは支持部は並行して使用されるか、あるいは1以上のテーブルまたは支持部が露光のために使用されている間に1以上の他のテーブルまたは支持部で準備工程が実行されてもよい。
また、リソグラフィ装置は、基板の少なくとも一部が例えば水などの比較的高い屈折率を有する液体で投影システムと基板との間の空間を満たすよう覆われうる形式のものであってもよい。液浸液は、例えばマスクと投影システムとの間などのリソグラフィ装置の他の空間に適用されてもよい。液浸技術は投影システムの開口数を増大させるために使用することができる。本書で使用される「液浸」との用語は、基板等の構造体が液体に浸されなければならないことを意味するのではなく、液体が投影システムと基板との間に露光中に配置されることを意味するにすぎない。
図1を参照すると、イルミネータILは放射源SOから放射ビームを受ける。例えば放射源がエキシマレーザである場合には、放射源とリソグラフィ装置とは別体であってもよい。この場合、放射源はリソグラフィ装置の一部を構成しているとはみなされなく、放射ビームは、適当な方向変更用のミラー及び/またはビームエキスパンダを例えば含むビーム搬送系BDを介して放射源SOからイルミネータILへと受け渡される。あるいは放射源が例えば水銀ランプである場合には、放射源はリソグラフィ装置に一体に構成されていてもよい。放射源SOとイルミネータILとは、またビーム搬送系BDが必要とされる場合にはこれも合わせて、放射システムと総称されてもよい。
イルミネータILは放射ビームの角強度分布を調整するアジャスタADを含んでもよい。一般には、イルミネータの瞳面における強度分布の少なくとも外側及び/又は内側半径範囲(通常それぞれ「シグマ−アウタ(σ-outer)」、「シグマ−インナ(σ-inner)」と呼ばれる)を調整することができる。加えてイルミネータILは、インテグレータINおよびコンデンサCO等その他の各種構成要素を含んでもよい。イルミネータはビーム断面における所望の均一性及び強度分布を得るべく放射ビームを調整するために使用されてもよい。放射源SOと同様に、イルミネータILはリソグラフィ装置の一部を構成するとみなされてもよいし、そうでなくてもよい。例えば、イルミネータILは、リソグラフィ装置に一体の部分であってもよいし、リソグラフィ装置とは別体であってもよい。後者の場合、リソグラフィ装置はイルミネータILを搭載可能に構成されていてもよい。イルミネータILは取り外し可能とされ、(例えば、リソグラフィ装置の製造業者によって、またはその他の供給業者によって)別々に提供されてもよい。
放射ビームBは、マスク支持構造(例えばマスクテーブルMT)に保持されるパターニングデバイス(例えばマスクMA)に入射して、パターニングデバイスによりパターン形成される。マスクMAを横切った放射ビームBは投影システムPSを通過する。投影システムPSはビームを基板Wの目標部分Cに合焦する。第2位置決め装置PWと位置センサIF(例えば、干渉計、リニアエンコーダ、静電容量センサなど)により、例えば放射ビームBの経路に異なる目標部分Cを位置決めするように、基板テーブルWTを正確に移動させることができる。同様に、第1位置決め装置PMと他の位置センサ(図1には明示せず)は、放射ビームBの経路に対してマスクMAを、例えばマスクライブラリからの機械的な取り出し後または走査中に、正確に位置決めするために使用することができる。一般にマスクテーブルMTの移動は、第1位置決め装置PMの一部を構成するロングストロークモジュール(粗い位置決め用)及びショートストロークモジュール(精細な位置決め用)により実現されうる。同様に、基板テーブルWTまたは「基板支持部」の移動は、第2位置決め装置PWの一部を構成するロングストロークモジュール及びショートストロークモジュールにより実現されうる。ステッパでは(スキャナとは異なり)、マスクテーブルMTはショートストロークのアクチュエータにのみ接続されているか、あるいは固定されていてもよい。マスクMAと基板Wとは、マスクアライメントマークM1、M2及び基板アライメントマークP1、P2を用いてアライメントされてもよい。図においては基板アライメントマークが専用の目標部分を占拠しているが、アライメントマークは目標部分間のスペースに配置されてもよい(これはスクライブライン・アライメントマークとして公知である)。同様に、マスクMAに複数のダイがある場合にはマスクアライメントマークがダイ間に配置されてもよい。
投影システムPSの最終要素と基板との間に液体を提供する構成は3種類に大きく分類することができる。浴槽型の構成、いわゆる局所液浸システム、及びオールウェット液浸システムである。浴槽型の構成においては基板Wの実質的に全体と任意的に基板テーブルWTの一部とが液槽に浸される。
提案されているある構成は、液体閉じ込め構造をもつ液体供給システムを設けることである。液体閉じ込め構造は投影システムの最終要素と基板、基板テーブルまたはこれら両者との間の空間の境界の少なくとも一部に沿って延在する。こうした構成を図2に示す。図2に示され後述される構成は、図1に示す上述のリソグラフィ装置に適用されうる。
図2は、液体閉じ込め構造IHを有する局所液体供給システムまたは流体ハンドリングシステムを模式的に示す。液体閉じ込め構造IHは、投影システムの最終要素と基板テーブルWTまたは基板Wとの間の空間の境界の少なくとも一部に沿って延在する(以下の説明においては、そうではないと明示していない限り、基板Wの表面との言及は、それに加えてまたはそれに代えて基板テーブルの表面にも言及するものと留意されたい)。ある実施の形態においては、液体閉じ込め構造IHと基板Wの表面との間にシールが形成され、このシールはガスシール(ガスシールを持つこうしたシステムは欧州特許出願公開第1,420,298号に開示されている)のような非接触シールまたは液体シールであってもよい。
液体閉じ込め構造IHは、投影システムPSの最終要素と基板Wとの間の空間11において少なくとも部分的に液体を収容する。空間11は少なくとも一部が、投影システムPSの最終要素の下方に配置され当該最終要素を囲む液体閉じ込め構造IHにより形成される。液体が、投影システムPS下方かつ液体閉じ込め構造IH内部の空間に、液体入口13によって供給される。液体出口13によって液体が除去されてもよい。
液体は、液体閉じ込め構造IHの底部と基板Wの表面との間に使用時に形成されるガスシール16によって空間11に収容されてもよい。ガスシールにおける気体は、圧力の作用で入口15を介して液体閉じ込め構造IHと基板Wとの隙間に提供される。気体は出口14に付属した流路を介して抜き取られる。気体入口15での過剰圧力、出口14での真空レベル、及び当該隙間の幾何形状は、液体を閉じ込める内側への高速の気体流れ16が存在するように構成される。液体閉じ込め構造IHと基板Wとの間の液体に作用する気体の力が空間11に液体を収容する。こうしたシステムは、米国特許出願公開第2004−0207824号に開示され、その全体が本明細書に援用される。ある実施の形態においては、液体閉じ込め構造IHは、ガスシールを有しない。
局所領域液体供給システムにおいては、基板Wが投影システムPSと液体供給システムの下を移動する。例えば、基板Wの端部に結像がなされようとするとき、または、基板テーブル上(または計測テーブル上)のセンサに結像がなされ、または、例えば基板交換を行うことを可能とするようダミー基板またはいわゆるクロージングプレートを液体供給システムの下に位置決めするように基板テーブルが移動されようとするとき、基板W(または他の物体)の端部が、空間11の下を通過することになる。液体が基板Wと基板テーブルWTとの隙間へと漏出しうる。この液体は、静的または動的な流体圧、または、ガスナイフまたはその他の気体流れ生成装置の力の作用で、強制的に入り込みうる。
図3は、ある実施の形態に係る更なる液体供給システムまたは流体ハンドリングシステムを示す部分側断面図である。図3に示され後述される構成は、図1に示される上述のリソグラフィ装置に適用されうる。液体供給システムには、投影システムPSの最終要素と基板テーブルWTまたは基板Wとの間の空間の境界の少なくとも一部に沿って延在する液体閉じ込め構造IHが設けられている(以下の説明においては、そうではないと明示していない限り、基板Wの表面との言及は、それに加えてまたはそれに代えて基板テーブルの表面にも言及するものと留意されたい)。
液体閉じ込め構造IHは、投影システムPSの最終要素と基板Wとの間の空間11において少なくとも部分的に液体を収容する。空間11は少なくとも一部が、投影システムPSの最終要素の下方に配置され当該最終要素を囲む液体閉じ込め構造IHにより形成される。ある実施の形態においては、液体閉じ込め構造IHは、本体部材53と多孔質部材83とを備える。多孔質部材83は、プレート形状であり、複数の穴(すなわち開口または細孔)を有する。ある実施の形態においては、多孔質部材83は、多数の小穴84がメッシュ状に形成されたメッシュプレートである。こうしたシステムは、米国特許出願公開第2010/0045949号に開示され、その全体が本明細書に援用される。
本体部材53は、空間11への液体の供給を可能とする複数の供給ポート72と、空間11からの液体の回収を可能とする回収ポート73と、を備える。供給ポート72は、通路74を介して液体供給装置75に接続されている。液体供給装置75は、供給ポート72への液体の供給を可能とする。液体供給装置75から送出される液体は、供給ポート72の各々へと、対応する通路74を通じて供給される。供給ポート72は、光路の近傍において光路に面する本体部材53の所定位置に配置されている。回収ポート73は、空間11から液体を回収することを可能とする。回収ポート73は、通路79を介して液体回収装置80に接続されている。液体回収装置80は、真空システムを備え、回収ポート73を介して吸引することによって液体を回収することを可能とする。液体回収装置80は、回収ポート3を介し通路9を通じて回収された液体LQを回収する。多孔質部材83は、回収ポート73に配置されている。
ある実施の形態においては、液体をもつ空間11を、投影システムPSと片側の液体閉じ込め構造IHと他方側の基板Wとの間に形成するために、液体が供給ポート72から空間11に供給され、液体閉じ込め構造IH内の回収チャンバ81における圧力が、多孔質部材83の穴84(すなわち回収ポート73)を介して液体を回収するよう負圧に調整されている。供給ポート72を用いた液体供給動作と多孔質部材83を用いた液体回収動作を実行することによって、投影システムPSと片側の液体閉じ込め構造IHと他方側の基板Wとの間に空間11が形成される。
本発明の1つ又は複数の実施の形態が基板テーブルWT内に形成された流路46及び基板Wの端部に関連して後述されるが、それら1つ又は複数の実施の形態は、他の構成要素(支持構造(例えばマスクテーブル)MT及び液体閉じ込め構造IHを含むがそれに限定されるものではない)の内部に形成された二相流の通過のための流路にも等しく適用可能である。例えば、それら1つ又は複数の実施の形態は、図2に示された出口14に付属した流路にも等しく適用可能である。よって、以下での基板テーブルWTへの言及はいずれも、二相流の通過のための流路が内部に形成された他の任意の構成要素と同義であるとみなされうる。
図4は、本発明のある実施の形態に係るリソグラフィ装置の一部を示す。図4に示され後述される構成は、図1に示された上述のリソグラフィ装置に適用されうる。図4は、基板テーブルWT及び基板Wの断面である。隙間5が基板Wの端部と基板テーブルWTの端部の間に存在する。基板Wの端部に結像がなされようとするときに、または基板Wが(上述の)投影システムPSの下方ではじめて移動するとき等の他の時点にて、(例えば)液体閉じ込め構造IHによって液体で満たされた空間11は、基板Wの端部と基板テーブルWTの端部の間の隙間5の上方を少なくとも部分的に通過する。その結果、空間11から隙間5に液体が入る。
基板Wは、1つ又は複数の突起32(すなわちバール)を備える基板ホルダ30(例えばピンプルまたはバールテーブル)によって保持されている。基板ホルダ30は、物体ホルダの一例である。物体ホルダの他の例はマスクホルダである。基板Wと基板テーブルWTとの間に適用された負圧は、基板Wをしっかりと定位置に保持することを保証するのに役立つ。しかし、液体が基板Wと基板ホルダ30の間に入った場合、これは、とりわけ基板Wの搬出時に、問題をもたらしうる。
隙間5に入る液体を処理するために、少なくとも1つのドレイン10、20が基板Wの端部に設けられ、隙間5に入る液体を除去する。図4の実施の形態では、2つのドレイン10、20が示されているが、1つのドレインがあるだけでもよいし、3以上のドレインがあってもよい。ある実施の形態においては、ドレイン10、20の各々が基板Wの外周全体を囲むように環状である。
第1ドレイン10(基板W/基板ホルダ30の端部より径方向外側にある)の主要な機能は、液体閉じ込め構造IHの液体が存在する空間11に気泡が入るのを防ぐことを支援することである。こうした気泡は基板Wの結像に有害に影響しうる。第1ドレイン10は、隙間5における気体が液体閉じ込め構造IH内の空間11へと漏れ出るのを避けることを支援するために存在する。気体が空間11へと漏れ出た場合、これは空間11内で浮かぶ気泡をもたらしうる。こうした気泡が投影ビームの経路内にあった場合、結像誤差につながりうる。第1ドレイン10は、基板Wの端部と基板Wが置かれた基板テーブルWTの凹部の端部との間の隙間5から気体を除去するよう構成されている。基板テーブルWTの凹部の端部は、カバーリング130によって画定されてもよく、これは任意的に基板テーブルWTの支持本体から分離されている。基板テーブルWTの支持本体は、第1材料100で形成されている。カバーリング130は、平面図でリング形状であってもよく、基板Wの外端を囲む。第1ドレイン10に抽出されるのは、大部分が気体であり(例えば毎分20から100ノルマルリットル(Nl/min))、液浸液はごく少量にすぎない(例えばおよそ10〜20ml/min)。こうした二相流があったとすると、液浸液が蒸発して、基板Wの端部を囲む基板テーブルWTが冷却される。これは基板Wの変形をもたらしうるので、最終的にはオーバレイ性能の低下につながる。
第2ドレイン20(基板W/基板ホルダ30の端部より径方向内側にある)は、結像後における基板テーブルWTからの基板Wの効果的な解放を、基板Wの下側に隙間5から到達する液体が妨害するのを防ぐことを支援するために設けられている。第2ドレイン20を設けることによって、基板Wの下側に液体が到達することによって起こりうる問題が軽減されまたは解消される。
第1ドレイン10及び第2ドレイン20の両方が負圧を用いて液体を除去する。すなわち、両方のドレインが1つ又は複数の出口(図示せず)を介して負圧源に接続されている。負圧源はそれぞれのドレイン10、20に入る液体を有効に除去する。しかし、負圧源は、基板テーブルWT上方の気体を隙間5の外側から(第2ドレイン20の場合、基板ホルダ30からも)、それぞれのドレイン10、20及び出口を通じて有効に引き込む。この液体及び気体の流れは、液浸装置の使用時にドレイン10、20の周縁まわりに一定または均一ではない。隙間5に液体が入る可能性があるときにしか出口を負圧源に接続しないよう1つ又は複数の対策がとられうるが、ドレイン10、20を通過する気体及び/または液体の量が変わるので、基板テーブルWTに与えられる熱負荷が不均一となるおそれがある。この時間的及び/または位置的な気体及び液体の不均一流れは、ドレイン10、20における液体の蒸発速度を異ならせる。これは、ドレイン10、20によって生成される熱損失が基板の1つのバッチを露光する間に変動することにつながる。なぜなら、基板テーブルWTは、露光経路に依存して基板Wの端部が何度か空間11の下方にくるように位置決めされるにすぎないからである。故に、基板の1つのバッチの1枚目の基板は、後続する基板と比べて、蒸発負荷が基板の周縁の異なる場所にある(不均一な蒸発負荷が構築される間に投影システムPSの下方を移動する先行の基板が1枚目の基板にはなかったからである)。また、新たなバッチの開始時におけるトラックからの基板搬送のタイミング遅れは、ドレイン10、20の乾燥による蒸発負荷の変化をもたらす(それにより蒸発が低下する)。たとえ熱負荷が実質的に一定であったとしても、その結果基板テーブルWTの均一な温度を保証することを支援するのは困難でありうる。
ドレイン10の詳細構成は以下に詳しく説明される。しかし、本書の原理は、液浸装置において、本装置の使用により液体及び/または気体の変動する流れが与えられ熱負荷がもたらされ、とりわけ、変動する蒸発量及びそれにより変動する熱負荷がもたらされる、いかなる形式の流路にも適用可能であると理解されるべきである。
基板テーブルWTは、第1材料100を備える。ある実施の形態においては、少なくとも1つの熱調整流路120が熱調整液体の通過のために設けられ、第1材料100の温度をある(例えば、予め定められた)温度及び/または均一性に維持することを支援する。しかし、これは必ずしも必須ではない。ある実施の形態においては、ヒータが設けられ、第1材料100の温度をある(例えば、予め定められた)温度及び/または均一性に維持することを支援する。ある実施の形態においては、ヒータは、例えば電気ヒータまたはペルチエヒータである。ある実施の形態においては、熱調整流路120及びヒータが設けられている。第1ドレイン10には開口部42及び流路46が設けられ、第2ドレイン20には開口部22及び流路26が設けられている。流路46、26は、対応する開口部42、22と通路44、24を通じて流体連絡している。開口部42、22は、基板Wの端部の周縁まわりに1つ又は複数の別個の場所に設けられ、平面図でスリットまたは円形開口部またはその他の形状であってもよい。ある実施の形態においては、例えば、3つの別個の円形開口部が基板Wの端部の周縁まわりに設けられている。開口部42、22は、基板Wの周縁における例えば直径2mmの小開口部のみであってもよい。
本発明のある実施の形態は、後述の実施の形態において第1ドレイン10に適用されたものとして示される。しかし、本発明のある実施の形態は、第2ドレイン20に、または第1ドレイン10と第2ドレイン20の両方に等しく適用されることができる。
一例として、第1ドレイン10における液体の蒸発の90%より多くが、通路44ではなく流路46において起こりうる。しかし、90%という数値は概算である。リソグラフィ装置の構成及び使用法に依存して、数値は例えば50%に近づきうる。流路46における大きな熱負荷は材料の収縮につながり、基板テーブルWTの一部に変形を生じさせ、基板Wに変形をもたらしうる。加えて、流路46に与えられる冷却する熱負荷は、基板ホルダ30の中心部の冷却をもたらし、基板Wの変形につながりうる。
図4に示されるように、ある実施の形態においては、リソグラフィ装置は、二相流の通過のための流路46を備える。流路46は、ブロックの内部に形成されている。図4に示す構成においては、ブロックは基板テーブルWTの基板ホルダ30である。ブロックが基板ホルダ30である必要はない。例えば、ある実施の形態においては、ブロックは、例えば液体閉じ込め構造IHであってもよい。以下の説明においては、本発明が、基板ホルダ30上の基板Wより径方向外側に位置する流路46に言及して主に説明される。しかし、流路46が基板Wより径方向外側にある必要はない。例えば、本発明は、基板Wの下方に位置するものとして図4に示される流路26にも等しく適用可能である。
図4に示されるブロック例えば基板ホルダ30は、第1材料100で作られている。ブロック例えば基板ホルダ30が第1材料100のみから形成されている必要はない。例えば、基板ホルダ30を形成するために第1材料100に加えて他の材料も使用されてもよい。しかし、流路46は、流路46の近傍の基板ホルダ30の部分が第1材料100で形成されるように、第1材料100内部に形成されている。流路46からの熱負荷は第1材料100に入る。
リソグラフィ装置の使用において、二相流が流路46を通過する。例えば、気体とともに液体が隙間5から開口部42及び通路44を介し流路46を通じて除去されうる。二相流の不利益は、基板W及び基板ホルダ30のような基板テーブルWTの部分に望まれない温度変化をもたらすことである。例えば、基板W及び基板ホルダ30は冷却されうる。こうした望まれない温度変化は、基板W及び基板ホルダ30に変形を生じさせうる。そうした変形はオーバレイ誤差を生じさせうる。
図5は、本発明のある実施の形態に係るリソグラフィ装置の一部を断面で示す。図5に示され後述される構成は、図1に示す上述のリソグラフィ装置に適用されうる。図5に示され後述される構成は、図2及び図3に示す上述の液体供給システムに適用されうる。図5に示され後述される構成は、図4に示す上述の構成に適用されうる。図5に示されるように、ある実施の形態においては、リソグラフィ装置は、第2材料160を備える。第2材料160は、第1材料100と流路46の間にある。第2材料160の目的は、流路46を局所的に熱的に絶縁することにある。ある実施の形態においては、第2材料160は、固体材料である。
ある実施の形態においては、第2材料160の熱伝導率は、10W/mK以下、または5W/mK以下である。ある実施の形態においては、第2材料160の熱伝導率は、2W/mK以下である。ある実施の形態においては、第2材料160の熱伝導率は、1W/mK以下である。ある実施の形態においては、第2材料160は、高密度ポリエチレン(HDPE)である。ある実施の形態においては、第2材料160は、ポリプロピレン(PP)である。ある実施の形態においては、第2材料160は、ポリ塩化ビニル(PVC)である。ある実施の形態においては、第2材料160は、ゴムである。ある実施の形態においては、第2材料160は、コルクである。ガラスは25℃で1.05W/mKの熱伝導率をもつ。PTFEは25℃で0.25W/mKの熱伝導率をもつ。HDPEは25℃で0.45W/mKの熱伝導率をもつ。PPは25℃で0.15W/mKの熱伝導率をもつ。PVCは25℃で0.19W/mKの熱伝導率をもつ。ゴムは25℃で0.13W/mKの熱伝導率をもつ。コルクは25℃で0.07W/mKの熱伝導率をもつ。これと比べて第1材料の熱伝導率は100W/mKである。よって、流路46は、低熱伝導率材料によって第1材料100から局所的に絶縁されている。第2材料160が厚さ0.5mmのPTFE要素を備える場合、本発明のある実施の形態は、熱負荷について約50%の総合的改善を実現すると予測される。他の材料が第2材料160に用いられてもよい。ある実施の形態においては、第2材料160は、複合材料である。ある実施の形態においては、第2材料160は、マトリックスに封入された気体のキャビティを備える。例えば、コルクは、マトリックスに封入された気体のキャビティを備える材料の例である。
図5の実施の形態においては、第2材料160は、自立せず、第1材料100により支持される(例えば第1材料100に形成された流路の表面上に支持される)インサート例えばパイプの形をとりうる。ある実施の形態においては、第2材料160は、コーティング例えばガラスコーティングの形であってもよい。ある実施の形態においては、第2材料160は、第1材料100に形成された流路に挿入されたパイプの形であってもよい。
低い熱伝導率をもつ第2材料160を設けることによって、第2材料160は、熱変動についてのより大きい時定数のために、ローパスフィルタとして働く。加えて、とくに第1材料100がPTFEで作られている場合、液体がこれと高接触角をもち(例えば疎水性であり)、このことが流路46における液体の滞留時間を短くする。
ある実施の形態においては、第2材料は、λ/ρCspecific≦1×10−6−1を満たす。λは第2材料160の25℃での熱伝導率をWm−1−1で表す。ρは第2材料160の密度をkgm−3で表す。Cspecificは第2材料160の比熱容量をJkg−1−1で表す。
λ/ρCspecific≦1×10−6−1を満たす第2材料160を設けることによって、第2材料160は、基板ホルダ30及び基板Wなどの構成要素に流路46から到達可能な動的な熱負荷変動を低減する。λ/ρCspecific≦1×10−6−1を満たす第2材料160を設けることによって、第2材料160は、熱負荷変動がリソグラフィ装置の性能に有害でありうる場所例えば基板ホルダ30に熱負荷変動が入る前に、流路46での動的な熱負荷変動にフィルタ処理を施す熱バッファとして働く。
第2材料160がλ/ρCspecific≦1×10−6−1を満たすことを必要とすることによって、第2材料160は、熱伝導率と熱容量を組み合わせた特性を持つことが必要とされる。これは第2材料160に低い熱伝導率をもつことを求めるという改良であるが、その低い熱伝導率と組み合わせて高い熱容量をもつことを求めるものではない。第2材料160に低い熱伝導率をもつことを求めることによって、流路46に起因する基板ホルダ30及び基板Wへの静的な熱負荷は低減されうる。静的な熱負荷とは、時間とともに実質的に変化しない熱負荷である。静的な熱負荷の低減は、低い熱伝導率によって暗示される第2材料160の熱抵抗によって実現されうる。しかし、第2材料160が比較的高い熱容量という特性を熱抵抗と組み合わせて持つことを求めないとすれば、第2材料160は、流路46からの基板ホルダ30または基板Wへの(静的なものとは対照的に)動的な熱負荷変動を必ずしも低減しないかもしれない。動的な熱負荷とは、時間とともに実質的に変化する熱負荷である。例えば、第2材料160が低い熱容量を持つ場合、第2材料160は、動的な熱負荷変動を低減するのに有効でないかもしれない。ある実施の形態においては、第2材料160は、比較的低い熱伝導率と比較的高い比熱容量の両方をもつ。
本発明によると、流路46における二相流に起因する熱負荷変動が、λ/ρCspecific≦1×10−6−1を満たす第2材料160によってフィルタ処理される。さもなければ基板ホルダ30の温度を低下させるであろう熱負荷変動を二相流が生じさせるとき、その熱負荷変動が、バッファとして働く第2材料160によって低減されまたはフィルタ処理されうる。第2材料160の熱容量と熱抵抗の組み合わせが、第2材料160に熱バッファとして働くことを許容する。
動的な熱負荷変動を低減することが、静的な熱負荷オフセットを低減することよりも重要である。静的な熱負荷オフセットはリソグラフィ装置の較正によってより容易に補償されるからである。静的な熱負荷オフセットは、リソグラフィ装置の熱制御ループによって補償されてもよい。静的な熱負荷オフセットとは、時間とともに実質的に変化しない熱負荷オフセットである。一方、動的な熱負荷変動は、較正または熱制御ループによって補償することがより困難である。動的な熱負荷変動とは、時間に伴う熱負荷の変動である。動的な熱負荷変動は典型的に、リソグラフィ装置の性能低下につながりうる。動的な熱負荷変動を低減することによって、本発明は、リソグラフィ装置の性能を向上する。
動的な熱負荷変動を低減することに加えて、本発明は、静的な熱負荷オフセットを低減する。ある実施の形態においては、本発明は、動的な熱負荷変動の減衰をもたらす。動的な熱負荷変動を減衰させることには、静的な熱負荷オフセットを単独で低減することに比べて、リソグラフィ装置の性能に関してより顕著に肯定的な効果がある。熱負荷は流路46のようなリソグラフィ装置の部分に存在しうる。こうした熱負荷が基板テーブルWT(または基板ホルダ30)のようなリソグラフィ装置の他の構成要素及び基板Wに温度変化を生じさせうる。流路46での熱負荷とこれに関連付けられる基板テーブルWTまたは基板Wでの温度変化との間には遅延がある。遅延の長さは時定数とも呼ばれる。本発明のある実施の形態は、基板ホルダ30のようなリソグラフィ装置の構成要素及び基板Wの温度変化に関連付けられる、より大きな時定数を実現すると予測される。第2材料160は、熱的ローパスフィルタとして働く。
ある実施の形態においては、第2材料160は、ポリp−キシリレンポリマー、PTFE、ガラス、セラミック例えば磁器、及びベークライトからなるグループから選択される。テーブル1は、第2材料160についての可能性を25℃での熱伝導率、密度、及び比熱容量の値とともに示す。またテーブル1は、密度と比熱容量の積に対する熱伝導率の比αの値を示し、ここで、α=λ/ρCspecificである。比αの値は、第2材料160が熱バッファとしてどの程度良好に働くかについての指標となる。比αの値が小さいほど第2材料160は熱バッファとして良好に働き、それにより基板ホルダ30及び基板Wでの動的な熱負荷変動を低減する。
テーブル1
Figure 0006371865
テーブル1の最終欄に示されるように、ポリp−キシリレンポリマー、PTFE、ガラス、磁器セラミック、及びベークライトのそれぞれについて、λ/ρCspecific≦1×10−6−1が満たされる。
ある実施の形態においては、第2材料160は、λ/ρCspecific≦1×10−7−1を満たす。テーブル1は、ポリp−キシリレンポリマーがλ/ρCspecific≦1×10−7−1を満たすことを示す。しかし、PTFE、ガラス、磁器セラミック、及びベークライトのいずれもλ/ρCspecific≦1×10−7−1を満たさない。
λ/ρCspecific≦1×10−7−1を満たす第2材料160を設けることによって、第2材料160は、高熱容量と低熱伝導率をもつ特に良好な特性を有する。したがって、λ/ρCspecific≦1×10−7−1を満たす第2材料160は、熱容量と熱抵抗の組み合わせを有する。これは、第2材料160が例えば流路46から基板ホルダ30または基板Wへの動的な熱変動を低減するための熱バッファを提供するのに特に良好であることを意味する。
図6は、第2材料160への及び第2材料160からの熱伝達を模式的に示す。図6では、流路46から第2材料160に伝達される熱負荷(正または負でありうる)がQinで表されている。図6では、第2材料160から第1材料100に伝達される熱負荷(正または負でありうる)がQoutで表されている。流路46と第1材料100の間の第2材料160の厚さがtで表されている。流路46に面する第2材料160の表面積がAで表されている。第2材料160は、25℃でλの熱伝導率を有する。
第2材料160の熱抵抗Rthは、厚さt、熱伝導率λ、及び表面積Aと、等式Rth=t/λAによって関係づけられる。第2材料160の熱容量Cは、比熱容量Cspecific、密度ρ、表面積A、及び厚さtと、等式C=ρAtCspecificによって関係づけられる。熱容量Cは、JK−1を単位とする。比熱容量Cspecificは、Jkg−1−1を単位とする。
熱抵抗Rthと熱容量Cがともにあることの物理的作用が、第2材料160による熱バッファ作用をもたらす。例えば流路46と基板ホルダ30との熱移動系は、時定数τを有する一次系として近似されうる。時定数τは例えば、流路46での熱負荷とこれに関連づけられる基板テーブルWTでの温度変化との間の遅延に関係づけられる。時定数τは、熱抵抗Rth及び熱容量Cと、次の等式τ=Rthによって関係づけられる。この等式に代入することによって、時定数τは、第2材料160の厚さt、第2材料160の密度ρ、第2材料160の比熱容量Cspecific、及び第2材料160の熱伝導率λと、次の等式τ=tρCspecificλ−1によって関係づけられるものとして、表現される。
流路46の内部で生じ基板ホルダ30の第1材料100へと伝達される熱負荷変動は、熱伝達関数H(f)により記述されうる。ここで、fは、流路46内での熱変動の周波数である。H(f)の大きさは、第2材料160によって熱負荷変動がどの程度低減されるかについての指標となる。例えば、熱負荷変動が、第2材料160によって熱負荷変動低減倍数Xで低減される場合、H(f)の大きさは、X−1に等しい。熱負荷変動低減倍数をXとするとき、|H(f)|=1/Xである。熱負荷変動低減倍数Xは、第2材料160が設けられなかった場合に対して本発明が熱負荷変動を低減する倍数である。熱負荷変動低減倍数Xの基準点は、第2材料160が設けられていない流路46である。熱負荷変動低減倍数Xは高いことが望ましい。よってX−1は低いことが望ましい。
一次の熱移動系については、熱伝達関数H(f)は、時定数τと次の等式|H(f)|=|(ifτ+1)−1|=(fτ+1−1/2によって関係づけられる。ここで、fは熱負荷変動の周波数であり、iは虚数単位√(−1)である。時定数τにつきこの等式に代入することによって、熱負荷変動低減倍数Xは、系のパラメータと次の等式X−1=(fρspecific λ−2+1)−1/2によって関係づけられる。一次モデルとしての系の近似では熱負荷変動低減倍数が第2材料160の厚さtに対しどのように変化するかに関して100%の精度はないとの事実に照らして、また計算実験による較正を許容するために、補正係数Kが等式に追加され、次の等式X−1=(Kfρspecific λ−2+1)−1/2が与えられてもよい。
熱負荷変動の周波数fは、リソグラフィ装置がどのように使用されるかについての特性である。基板Wの端部での流路46における熱負荷変動は、開口部42及び通路44を通る気体流れの変動に起因しうる。こうした気体流れの変動は、液体閉じ込め構造IHが基板Wの端部で隙間5を横断することに起因しうる。こうした横断に関連付けられる時定数が、熱負荷変動の周波数fを定める。
計算実験が実行された。実験によると、テーブル1に示す性質をもつポリp−キシリレンポリマーが使用された。第2材料160の厚さは0.5mmであった。実験では、液体閉じ込め構造IHが約0.6sの時定数で隙間5を横断する。よって、熱負荷変動の周波数fは、0.6sの逆数すなわち1.67s−1であった。実験結果では、熱負荷変動が10倍のXで低減された。この実験から、補正係数Kが算出される。補正係数Kは、次の等式K=(X−1)λ−2−4ρ−2specific −2を用いて算出することができる。実験から、補正係数Kは、(有効数字3桁で)4.52であると決定されうる。
一般に、第2材料160が厚いほど、熱負荷変動の低減は大きい。しかし、第2材料160の必要量を減らし、流路46をできるだけ広く保ち、かつ第2材料160を流路46と第1材料100の間に適用するのをより容易にするために、第2材料160は比較的薄いことが望まれる。ある実施の形態においては、第2材料160の厚さtは、多くとも約1mmである。
ある熱負荷変動低減倍数Xを達成するのに必要な第2材料160の厚さは、次の等式t=[(X−1)λ−1−2ρ−2specific −21/4を用いて算出されてもよい。
λ/ρCspecific≦1×10−7−1とすることによって、ある設定された熱負荷変動低減倍数Xを達成するのに必要な第2材料160の厚さtを小さくすることができる。例えば、第2材料160をポリp−キシリレンポリマーとすることによって、第2材料160の厚さtは、第2材料160がPTFE、ガラスまたはセラミックであった場合に比べて、同じ熱負荷変動低減を達しつつ小さくなる。
ある実施の形態においては、第2材料160は、少なくとも200μmの厚さtを有する。第2材料160を少なくとも200μmの厚さとすることによって、最小レベルの熱負荷変動低減が達成される。とくに、第2材料160がポリp−キシリレンポリマーである場合にその厚さtを少なくとも200μmの厚さとすることによって、少なくとも2の熱負荷変動低減倍数Xが達成される。熱負荷変動低減倍数Xは、本発明により達成される熱負荷変動の低減についての尺度である。この低減は、第2材料160が設けられていない構成に対して評価される。
ある実施の形態においては、第2材料160は、少なくとも350μmの厚さtを有する。第2材料160を少なくとも350μmの厚さtとすることによって、より高い最小レベルの熱負荷変動低減が達成される。とくに、第2材料160がポリp−キシリレンポリマーである場合、少なくとも5の熱負荷変動低減倍数Xが達成される。熱負荷変動低減倍数Xは、本発明により達成される熱負荷変動の低減についての尺度である。この低減は、第2材料160が設けられていない構成に対して評価される。
ある実施の形態においては、第2材料160は、流路46の実質的に全てと第1材料100との間にある。これは、第2材料160が流路46の全体に沿っていることを意味する。しかし、これは必須ではない。ある実施の形態においては、第2材料160は、流路46の一部のみと第1材料100との間にある。例えば、ある実施の形態においては、気体流れに最も影響され熱負荷が与えられる領域にのみ第2材料160が設けられる。例えば、ある実施の形態においては、第2材料160は、流路46の底部と第1材料との間にあるが、流路46の側部または上部と第1材料との間には無い。流路46の側部及び上部では、第2材料160が間に設けられず、流路46が第1材料100と直接隣接していてもよい。第2材料160が流路46の底部にあることは、そうでなければ第1材料100に例えば開口部42から直接到達するであろう熱負荷を阻止するために、より重要である。ある実施の形態においては、第2材料160は、開口部42及び通路44に設けられている。
図4に示されるように、ある実施の形態においては、リソグラフィ装置は、第1材料100のブロックから形成された物体テーブル例えば基板テーブルWTを備える。ある実施の形態においては、物体テーブルは、物体例えば基板Wを保持する物体ホルダ例えば基板ホルダ30を備える。ある実施の形態においては、物体テーブルは、物体ホルダの端部に隣接する開口部42を備える。ある実施の形態においては、流路46は、物体テーブルを介して開口部42と流体連絡している。
ある実施の形態においては、リソグラフィ装置は、液体閉じ込め構造IHを備える。液体閉じ込め構造IHは、投影システムPSの最終要素と基板Wの表面との間の局所域に液浸流体を閉じ込めるよう構成されている。ある実施の形態においては、流体閉じ込め構造は、第1材料100のブロックから形成されている。ある実施の形態においては、液体閉じ込め構造IHは、図2に示される出口14に付属した流路と流体連絡している開口部を備える。
図7は、本発明のある実施の形態に係るリソグラフィ装置の一部を断面で示す。図7に示されるように、ある実施の形態においては、リソグラフィ装置は、第3材料90を備える。第3材料90は、第2材料160と流路46の間にある。ある実施の形態においては、第3材料90は、第2材料160よりも高い熱伝導率を有する。
第3材料90を第2材料160より高い熱伝導率とすることによって、流路46における二相流によって基板ホルダ30に生じる熱負荷変動を低減することができる。ある実施の形態においては、第3材料90は、固体材料である。第3材料90は、流路46からの熱負荷を第3材料90にわたり広げる作用を持つ。第3材料90は、二相流の内部での例えば蒸発に起因する熱負荷を、自身の内部に空間的に広げる。その結果、熱負荷は、第2材料160に伝達されるとき、空間的により広げられている。これは、熱シールド及び/または熱バッファとして働く第2材料160の作用をより有効に使えることを意味する。このことを図8及び図9を参照してさらに説明する。
図8は、本発明のある実施の形態に係るリソグラフィ装置の一部を示す。図8に示される構成においては、第2材料160と流路46の間に第3材料90は設けられていない。図8の上部にある大きな矢印は、流路46と第2材料160との界面でのある特定の熱負荷点92に向けられた、流路46における気体流れを表す。熱負荷は、例えば流路46内の二相流における液体の蒸発に起因しうる。熱負荷は、熱負荷点92に集中している。
より小さい矢印で図8に示されるように、熱負荷は、第2材料160の厚さを通じて伝達される。第2材料160の内部では熱負荷が空間的に広がるが、その程度は限定的なものにすぎない。図8に示される一点鎖線は、第2材料160内部の熱負荷変動の空間的範囲を表す。このように、熱負荷変動は大部分が第2材料160内部で空間的に集中したままとなっている。第2材料160内部での熱負荷変動の限定的な空間的広がりは、第1材料100での熱負荷変動を低減する際の第2材料160の有効性を制限する。
図9は、本発明のある実施の形態に係るリソグラフィ装置の一部を断面で示す。図9に示される構成においては、第3材料90が流路46と第2材料160の間に設けられている。流路46からの熱負荷が流路46と第3材料90との界面での熱負荷点92に集中している。図9において矢印で示されるように、熱負荷が第3材料90の内部で大半が空間的に広げられている。その結果、第2材料160内部での熱負荷伝達が、例えば図8に示される構成と比べて、より均一である。高熱伝導率の第3材料90は、第1材料100に到達する熱負荷変動を低減する際の第2材料160の有効性を向上させる。
熱負荷点92で熱負荷を与える気体流れは、開口部42から通路44を介して方向付けられた気体流れであってもよい。ある実施の形態においては、第3材料90が無い場合、気体流れによる熱負荷点92での熱負荷の例えば約90%が、図8に示されるように第2材料160を通じて伝達されるものと予測されうる。しかし、90%という数値は概算である。リソグラフィ装置の構成及び使用法によっては、数値は例えば50%に近くなりうる。
熱負荷の残り10%は、流路46を通じて伝達されるものと予測されうる。そこから例えば抽出穴を通じて伝達しうる。一方、第3材料90が第2材料160と流路46の間に設けられている場合には、熱負荷点92から第2材料160を直接通じて伝達される熱負荷の比率が約60%に低下されうる。この場合、残りの40%が流路46に沿って伝達されうる。こうして熱負荷が第3材料90によって空間的に広げられている。
第3材料90は、望ましくは、高熱伝導率を有する。ある実施の形態においては、第3材料90は、金属である。例えば、ある実施の形態においては、第3材料90は、ステンレス鋼、銅、銀、金、及び白金からなるグループから選択される。
ステンレス鋼、銀、金、及び白金の銅に対する有利な点は、これら金属によるリソグラフィ装置環境の汚染が低減されることにある。しかし、第3材料90は、第2材料160より高い熱伝導率をもつよう特に限定されるわけではない。例えば、いかなる金属が第3材料90として用いられてもよい。ある実施の形態においては、第3材料90の熱伝導率は、第2材料160よりも少なくとも1桁大きい。他の材料が第3材料90として用いられてもよい。ある実施の形態においては、第3材料90は、シリコン浸潤シリコンカーバイド(SiSiC)である。
ある実施の形態においては、第3材料90の厚さは、多くとも100μmである。第3材料90の厚さを多くとも100μmとすることによって、第3材料90の必要量が比較的少なくなり、第3材料90がシステム内で占める空間が比較的小さくなる。
ある実施の形態においては、第3材料90の厚さは、少なくとも10μmである。第3材料90の厚さを少なくとも10μmとすることによって、第3材料90を第2材料160と流路46の間に適用することがより容易となる。
ある実施の形態においては、第3材料90は、連続している。例えば、第3材料90は、第2材料160と流路46の間で連続した層であってもよい。第3材料90を連続したものとすることによって、第3材料90の連続層へと固化する液体またはジェルとして第3材料90が塗布されうる。こうした液体またはジェルは、1つ又は複数の開口部を通じて流路46へと液体を挿入することによって塗布されてもよい。例えば、流路46の基部からの抽出穴及び/または流路46の上端の開口部42は、第3材料90を形成するよう液体またはジェルを塗布するために使用されうる。
第3材料90が連続していることは必須ではない。図10は、本発明のある実施の形態に係る第3材料90の側面図及び正面図を示す。図10に示されるように、ある実施の形態においては、第3材料90は、メッシュまたは第3材料90の片91を接続した網状物として形成されている。ある実施の形態においては、第3材料90は、第2材料160の内側の一部のみを覆う。ある実施の形態においては、第3材料90は、メッシュ構造を有する。ある実施の形態においては、第3材料90は、図10に示されるように、例えば円筒形状を有する。望ましくは、第3材料90は、第2材料160全体の内側を覆うことを可能とする形状を有する。
たとえ第3材料90が不連続であり、例えばメッシュ構造を有するとしても、第3材料90は、熱負荷を有効に広げる。第3材料のメッシュは、(第3材料90の所与の全容積について)第3材料90の連続層と同様に有効である。
第3材料90をメッシュまたは第3材料90の片91を接続した網状物として形成することによって、医療手術で血管に挿入されるステントと同様の方式で第3材料90を流路46に挿入することができる。ある実施の形態においては、接続された第3材料90の片91は、インフレータブルバルーン上に装着されてもよい。インフレータブルバルーンに装着された第3材料90は、流路46に挿入されてもよい。そうして、第3材料90は、第2材料160と流路46の間に配置されてもよい。第3材料90は、インフレータブルバルーンを膨らませることによって配置されてもよい。
図11は、本発明のある実施の形態に係るリソグラフィ装置の一部を断面で示す。図11に示される構成においては、第3材料90は、メッシュまたは第3材料90の片91を接続した網状物として設けられている。熱負荷を生じさせる気体流れは、流路46と第3材料90の界面での熱負荷点92に入射しうる。熱負荷は、高熱伝導率の第3材料90によって広げられる。この拡散に続いて、熱負荷は、第2材料160を通じて伝達される。第2材料160は、熱抵抗の性質及び/または熱容量の性質を有し、それにより第1材料100に到達する熱負荷変動が低減される。
ある実施の形態においては、流路46は、2以上の部品からなる1つのブロックの内部に形成されている。例えば、流路46の側部と底部が、流路46の上部を形成するブロックの部品とは別のブロック部品によって形成されていてもよい。2以上の部品は、ブロック内部に流路46を形成するよう接着されてもよい。ブロックが2以上の部品からなる場合、第2材料160及び/または第3材料90は、ブロックのそれら2以上の部品が結合される前に、設けられてもよい。
流路46と流体連絡している開口部を通じて第2材料160及び/または第3材料90を挿入する利点は、流路46がブロック内部に形成された後に第2材料160及び/または第3材料90を設けることができる点にある。これは、ブロックが2以上の部品で作られなければならないことを意味しない。流路を形成するようブロックの2以上の部品を結合することは、第2材料160が耐えることが可能ではないかもしれない温度にまでブロック及び流路46の温度を高めることを必要としうる。例えば、PTFE及びポリp−キシリレンポリマーは非常に高い温度に耐えることができない。よって、ガラスまたは磁器セラミックは、流路46を形成するようブロックの2以上の部品を結合する前に設けられてもよい。
第3材料90を設けることは必須ではない。第3材料90が設けられていない場合であっても、第2材料160がλ/ρCspecific≦1×10−7−1を満たすことによって、第2材料160は、熱バッファとして働き、第2材料160がλ/ρCspecific≦1×10−7−1を満たさないシステムに比べて熱負荷変動を低減する。
第2材料160がλ/ρCspecific≦1×10−6−1を満たすことは必須ではない。第3材料90を設けることによって、第3材料90が熱負荷を空間的に第2材料160にわたり広げるので、熱負荷変動は低減される。この場合、ある実施の形態においては、第2材料160は、第1材料100より高い比熱容量を有する。第2材料160が第1材料100より高い比熱容量を有することによって、第2材料160は、熱バッファとして働く。熱バッファは、第1材料100に何らかの熱負荷が伝達される前に、流路46からの熱変動を一部蓄えることができる。したがって、動的な熱負荷変動が低減される。
しかし、第2材料160が第1材料100より高い比熱容量を有することは必須ではない。ある実施の形態においては、第2材料160は、第1材料100より低い熱伝導率を有する。第2材料160が第1材料100より低い熱伝導率を有することによって、第2材料160は、流路46と第1材料100の間に熱抵抗を提供する。
図12及び図13に示されるように、ある実施の形態においては、第3材料90は、ヒータとして形成されている。ヒータは、第3材料90を備える。第3材料90は、ヒータの加熱素子として機能するよう構成されている。ヒータは電気ヒータである。
ある実施の形態においては、第3材料90は、ヒータ電源93に電気的に接続されている。ヒータ電源93は、第3材料90に電流を供給するよう構成されている。電流は第3材料90を流れる。電流からの電気エネルギーが第3材料90において熱エネルギーに変換される。
ある実施の形態においては、第3材料90は、導線94によってヒータ電源93に接続されている。導線に使用される材料は、特に限定されない。導線94は、電気伝導体である。ある実施の形態においては、導線94は、銅などの金属から形成されている。
図13に示されるように、ある実施の形態においては、第3材料90は、メッシュまたは第3材料90の片91を接続した網状物として形成されている。図13に示されるように、ある実施の形態においては、二次元メッシュがヒータである。
しかし、第3材料90をヒータとして形成するために第3材料90をメッシュまたは第3材料90の片91を接続した網状物として形成することは必須ではない。図12に示されるように、ある実施の形態においては、第3材料90は、連続し、かつヒータとして形成されている。
ある実施の形態においては、第3材料90は、円直径を有する。したがって、第3材料90がヒータとして形成される場合、ヒータは円直径へと折りたたまれる。第3材料90は第2材料160によって囲まれている。第2材料160は、断熱材料である。したがって、第3材料90がヒータとして形成される場合、ヒータは断熱材料によって囲まれている。
図12及び図13に示されるように、ある実施の形態においては、リソグラフィ装置は、熱制御部95を備える。熱制御部95は、二相流の熱負荷を局所的に補償するようにヒータを制御するよう構成されている。二相流は流路46を通過する。流路46内部に生成される熱負荷をヒータの制御により局所的に補償することができる。例えば、流路46内部での蒸発による冷熱負荷をヒータの制御により局所的に補償することができる。第2材料160は、第1材料100に直接侵入する(ヒータの制御により補償されない)何らかの残存熱負荷を低減するよう構成されている。
第3材料90は、高熱伝導率を有し、ヒータとして機能する。第3材料90の高熱伝導率は、流路46における熱負荷を第3材料90を通じて広げることを可能にする。熱拡散器としての第3材料90の機能は受動的な機能である。第3材料90は、流路46における熱負荷を局所的に補償するヒータとして機能する。ヒータとしての第3材料90の機能は能動的な機能である。流路46内の蒸発熱負荷は、第3材料90で広がり、また能動的な加熱によって補償される。ある実施の形態においては、能動的加熱は銅の配線を介してなされてもよい。
上記に説明したように、ある実施の形態においては、第2材料160は、断熱器及び熱バッファとして機能する。第2材料160は、流路46における熱負荷が基板テーブルWTの第1材料100に与える影響を低減する。
ある実施の形態においては、第3材料90は、セグメント化されたヒータとして形成されている。ある実施の形態においては、第3材料90は、複数のヒータ電源93に電気的に接続されている。各ヒータ電源93が、第3材料90の対応するセグメントに電流を供給するよう構成されている。電流が第3材料90の対応するセグメントを流れる。電流からの電気エネルギーが第3材料90の対応するセグメントにおいて熱エネルギーに変換される。
第3材料90の各セグメントが第3材料90の他のセグメントから実質的に独立したヒータとして機能する。セグメントの数は特に限定されない。第3材料90をより多くのセグメントに分割することによって、空間的に分布する熱負荷をより効果的に補償することができる。
更なる改良が図5に示されている。この更なる改良は、他の任意の実施の形態にも適用されうる。更なる改良は、第1ドレイン10のみに、第2ドレイン20のみに、または第1ドレイン10及び第2ドレイン20の両方に適用されうる。この改良は、米国特許出願公開第2008/0297744号に記述されたものと同様であり、その内容の全体が本明細書に援用される。液体をドレイン10、20に基板テーブルWTの位置から独立して能動的に供給するよう構成された液体供給装置が設けられている。液体の(流路200を通じた)供給は、ドレイン10、20における蒸発量の減少をもたらすことができる。これを達する方法は2つの別々の方法にあると見ることができる。第1には、さもなければ蒸発を生じさせるであろう気体が液体閉じ込め構造IHに用いられるのと同じ(種類の)液体で飽和しまたは少なくともほぼ飽和することで、ドレイン10、20においてこの気体が液体上を通過しても顕著には蒸発が起こりえないということを保証するのに役立つものと理解される。第2に、ドレイン10、20を通じた(液浸)液体の連続的な流れを与えることで、熱負荷が時間的に均一化されるものと理解される。
本明細書ではICの製造におけるリソグラフィ装置の使用を例として説明しているが、本書に説明されたリソグラフィ装置は、集積光学システム、磁区メモリ用案内パターンおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造など他の用途にも適用することが可能であるものと理解されたい。当業者であればこれらの他の適用に際して、本書における「ウェーハ」あるいは「ダイ」という用語がそれぞれ「基板」あるいは「目標部分」という、より一般的な用語と同義であるとみなされると理解することができるであろう。本書に言及される基板は、露光前または露光後において例えばトラック(典型的にはレジスト層を基板に塗布し、露光後のレジストを現像する装置)、メトロロジツール、及び/またはインスペクションツールにより処理されてもよい。適用可能であれば、本書の開示はこれらのまたは他の基板処理装置にも適用され得る。また、基板は例えば多層ICを製造するために複数回処理されてもよく、その場合には本書における基板という用語は処理済みの多数の層を既に含む基板をも意味する。
本書において「放射」及び「ビーム」という用語は、紫外(UV)放射(例えば約365nm、248nm、193nm、157nm、または126nmの波長を有する)及び極紫外(EUV)放射(例えば5から20nmの範囲の波長を有する)含むあらゆる種類の電磁放射、さらにはイオンビームまたは電子ビーム等の粒子ビームを包含する。
「レンズ」という用語は、文脈が許す場合、屈折光学部品、反射光学部品、磁気的光学部品、電磁気的光学部品、静電的光学部品を含む各種の光学部品のうちいずれか1つ、又はこれらの組み合わせを指し示してもよい。
本発明の特定の実施形態が上述されたが、説明したもの以外の態様で本発明が実施されてもよい。上述の説明は例示であり、限定を意図しない。よって、後述の特許請求の範囲から逸脱することなく既述の本発明に変更を加えることができるということは、関連技術の当業者には明らかなことである。

Claims (15)

  1. 二相流の抽出及び通過のための流路であって、第1材料のブロックの内部に形成された流路と、
    前記第1材料と前記流路の間にある第2材料であって、前記第1材料よりも高い比熱容量及び/または前記第1材料よりも低い熱伝導率を有する第2材料と、
    前記第2材料と前記流路の間にある第3材料であって、前記第2材料よりも高い熱伝導率を有する第3材料と、を備える液浸リソグラフィ装置。
  2. 前記第2材料は、λ/(ρCspecific)≦1×10−6−1を満たし、ここで、λは前記第2材料の熱伝導率をWm−1−1で表し、ρは前記第2材料の密度をkgm−3で表し、Cspecificは前記第2材料の比熱容量をJkg−1−1で表す請求項1に記載の液浸リソグラフィ装置。
  3. 前記第2材料は、ポリ(p−キシリレン)ポリマー、PTFE、ガラス、およびセラミックからなるグループから選択され、及び/または、ポリ(p−キシリレン)ポリマーを含む請求項1または2に記載の液浸リソグラフィ装置。
  4. 前記第3材料は、ステンレス鋼、銅、銀、金、白金、およびシリコン浸潤シリコンカーバイドからなるグループから選択される請求項1から3のいずれかに記載の液浸リソグラフィ装置。
  5. 前記第3材料は、連続し、または、メッシュまたは前記第3材料の片を接続した網状物として形成され、または、ヒータとして形成されている請求項1から4のいずれかに記載の液浸リソグラフィ装置。
  6. 前記二相流の熱負荷を局所的に補償するように前記ヒータを制御するよう構成された熱制御部をさらに備える請求項5に記載の液浸リソグラフィ装置。
  7. 前記第2材料は、少なくとも200μmまたは350μmの厚さを有する請求項1から6のいずれかに記載の液浸リソグラフィ装置。
  8. 前記第1材料の前記ブロックから形成された物体テーブルを備え、前記物体テーブルは、
    物体を保持する物体ホルダと、
    前記物体ホルダの端部に隣接する開口部と、を備え、前記流路が前記物体テーブルを介して前記開口部と流体連絡している請求項1から7のいずれかに記載の液浸リソグラフィ装置。
  9. 投影システムの最終要素と基板の表面との間の局所域に液浸流体を閉じ込めるよう構成された流体閉じ込め構造を備え、前記流体閉じ込め構造は、前記第1材料の前記ブロックから形成され、前記流路と流体連絡している開口部を備える請求項1から8のいずれかに記載の液浸リソグラフィ装置。
  10. 二相流の抽出及び通過のための流路であって、第1材料のブロックの内部に形成された流路と、
    前記第1材料と前記流路の間にある第2材料と、を備え、前記第2材料は、λ/(ρC specific )≦1×10 −7 −1 を満たし、ここで、λは前記第2材料の熱伝導率をWm −1 −1 で表し、ρは前記第2材料の密度をkgm −3 で表し、C specific は前記第2材料の比熱容量をJkg −1 −1 で表す液浸リソグラフィ装置。
  11. 前記第2材料と前記流路の間にある第3材料であって、前記第2材料よりも高い熱伝導率を有する第3材料を備える請求項10に記載の液浸リソグラフィ装置。
  12. 液浸リソグラフィ装置を製造する方法であって、
    内部に流路が形成された第1材料のブロックを設けることと、
    前記流路を通じた二相流の抽出及び通過を提供することと、
    前記第1材料と前記流路の間に、前記第1材料よりも高い比熱容量及び/または前記第1材料よりも低い熱伝導率を有する第2材料を設けることと、
    前記第2材料と前記流路の間に、前記第2材料よりも高い熱伝導率を有する第3材料を設けることと、を備える方法。
  13. 前記第3材料を設けることは、
    接続された前記第3材料の片をインフレータブルバルーン上に装着することと、
    前記インフレータブルバルーンに装着された前記第3材料を前記流路に挿入することと、
    前記第3材料を前記第2材料と前記流路の間に配置することと、を備える請求項12に記載の方法。
  14. 液浸リソグラフィ装置を製造する方法であって、
    内部に流路が形成された第1材料のブロックを設けることと、
    前記流路を通じた二相流の抽出及び通過を提供することと、
    前記第1材料と前記流路の間に第2材料を設けることと、を備え、前記第2材料は、λ/(ρC specific )≦1×10 −7 −1 を満たし、ここで、λは前記第2材料の熱伝導率をWm −1 −1 で表し、ρは前記第2材料の密度をkgm −3 で表し、C specific は前記第2材料の比熱容量をJkg −1 −1 で表す方法。
  15. 前記第2材料を設けることは、前記流路と流体連絡している前記ブロックにおける開口部を通じて前記第2材料を挿入することを備える請求項12から14のいずれかに記載の方法。
JP2016572686A 2014-06-10 2015-05-07 リソグラフィ装置及びリソグラフィ装置を製造する方法 Active JP6371865B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP14171800.7 2014-06-10
EP14171800 2014-06-10
EP15159551 2015-03-18
EP15159551.9 2015-03-18
PCT/EP2015/060039 WO2015188988A1 (en) 2014-06-10 2015-05-07 Lithographic apparatus and method of manufacturing a lithographic apparatus

Publications (2)

Publication Number Publication Date
JP2017523449A JP2017523449A (ja) 2017-08-17
JP6371865B2 true JP6371865B2 (ja) 2018-08-08

Family

ID=53059104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016572686A Active JP6371865B2 (ja) 2014-06-10 2015-05-07 リソグラフィ装置及びリソグラフィ装置を製造する方法

Country Status (7)

Country Link
US (1) US10018926B2 (ja)
EP (1) EP3155481B1 (ja)
JP (1) JP6371865B2 (ja)
KR (1) KR102013249B1 (ja)
CN (1) CN106462082B (ja)
NL (1) NL2014773A (ja)
WO (1) WO2015188988A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979893B1 (ko) 2012-05-29 2019-05-17 에이에스엠엘 네델란즈 비.브이. 대상물 홀더 및 리소그래피 장치
JP7413112B2 (ja) * 2020-03-24 2024-01-15 東京エレクトロン株式会社 基板載置台及び基板処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099611A1 (en) * 2002-06-20 2005-05-12 Nikon Corporation Minimizing thermal distortion effects on EUV mirror
CN100470367C (zh) 2002-11-12 2009-03-18 Asml荷兰有限公司 光刻装置和器件制造方法
EP1420298B1 (en) 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101296501B1 (ko) * 2003-07-09 2013-08-13 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4543767B2 (ja) * 2004-06-10 2010-09-15 株式会社ニコン 露光装置及びデバイス製造方法
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US7304715B2 (en) * 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8514365B2 (en) 2007-06-01 2013-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20100045949A1 (en) 2008-08-11 2010-02-25 Nikon Corporation Exposure apparatus, maintaining method and device fabricating method
US8120781B2 (en) * 2008-11-26 2012-02-21 Zygo Corporation Interferometric systems and methods featuring spectral analysis of unevenly sampled data
NL2004362A (en) 2009-04-10 2010-10-12 Asml Netherlands Bv A fluid handling device, an immersion lithographic apparatus and a device manufacturing method.
JP2010287665A (ja) * 2009-06-10 2010-12-24 Canon Inc 露光装置、及びそれを用いたデバイスの製造方法
JP2011192991A (ja) 2010-03-12 2011-09-29 Asml Netherlands Bv リソグラフィ装置および方法
KR101979893B1 (ko) * 2012-05-29 2019-05-17 에이에스엠엘 네델란즈 비.브이. 대상물 홀더 및 리소그래피 장치
KR101671787B1 (ko) * 2012-05-29 2016-11-02 에이에스엠엘 네델란즈 비.브이. 지지 장치, 리소그래피 장치 및 디바이스 제조 방법

Also Published As

Publication number Publication date
US10018926B2 (en) 2018-07-10
EP3155481A1 (en) 2017-04-19
US20180067398A1 (en) 2018-03-08
CN106462082A (zh) 2017-02-22
CN106462082B (zh) 2018-05-18
NL2014773A (en) 2016-03-31
KR102013249B1 (ko) 2019-08-22
KR20170016476A (ko) 2017-02-13
EP3155481B1 (en) 2019-04-24
JP2017523449A (ja) 2017-08-17
WO2015188988A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
KR101533014B1 (ko) 정전기 클램프, 리소그래피 장치, 및 정전기 클램프를 제조하는 방법
EP1921505B1 (en) Lithography apparatus and device manufacturing method
JP4921516B2 (ja) リソグラフィ装置及び方法
JP4718536B2 (ja) 基板支持体およびリソグラフィ装置
KR101125755B1 (ko) 기판 테이블, 리소그래피 장치, 및 디바이스 제조 방법
KR100984713B1 (ko) 리소그래피 장치 및 디바이스 제조 방법
TWI421644B (zh) 微影裝置及方法
KR20070066966A (ko) 리소그래피 장치 및 리소그래피 장치용 정전기 클램프를제조하는 방법
US20240168394A1 (en) Stage system, lithographic apparatus, method for positioning and device manufacturing method
WO2018059836A1 (en) A substrate, a substrate holder, a substrate coating apparatus, a method for coating the substrate and a method for removing the coating
CN102914947A (zh) 静电夹持装置、光刻设备和制造静电夹持装置的方法
KR20110052697A (ko) 리소그래피 장치 및 디바이스 제조 방법
KR20180050748A (ko) 기판 홀더, 리소그래피 장치 및 디바이스 제조 방법
JP2011023716A (ja) 熱伝達アセンブリ、リソグラフィ装置および製造方法
JP6371865B2 (ja) リソグラフィ装置及びリソグラフィ装置を製造する方法
JP6387421B2 (ja) リソグラフィ装置及びデバイス製造方法
US20180196354A1 (en) A lithographic apparatus, a projection system, a last lens element, a liquid control member and a device manufacturing method
JP2007318120A (ja) リソグラフィ装置およびデバイス製造方法
JP4597925B2 (ja) リソグラフィー投影装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6371865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250