JP6368952B2 - Electromagnetic propagation medium - Google Patents

Electromagnetic propagation medium Download PDF

Info

Publication number
JP6368952B2
JP6368952B2 JP2014057944A JP2014057944A JP6368952B2 JP 6368952 B2 JP6368952 B2 JP 6368952B2 JP 2014057944 A JP2014057944 A JP 2014057944A JP 2014057944 A JP2014057944 A JP 2014057944A JP 6368952 B2 JP6368952 B2 JP 6368952B2
Authority
JP
Japan
Prior art keywords
refractive index
index layer
electromagnetic
electromagnetic wave
propagation medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014057944A
Other languages
Japanese (ja)
Other versions
JP2015185874A (en
Inventor
山田 厚
厚 山田
拓男 田中
拓男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Sumitomo Metal Mining Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014057944A priority Critical patent/JP6368952B2/en
Publication of JP2015185874A publication Critical patent/JP2015185874A/en
Application granted granted Critical
Publication of JP6368952B2 publication Critical patent/JP6368952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、人工的な電気双極子、磁気双極子またはこれ等の複合体(以下、電磁応答要素と称する)の集合体である左手系伝播媒体(メタマテリアル)と通常の右手系伝搬媒体とが複合した電磁波伝搬媒体に係り、特に、その屈折率の絶対値が構成要素である左手系および右手系の各伝播媒体の屈折率よりも大きい値を呈する電磁波伝搬媒体に関するものである。   The present invention relates to a left-handed propagation medium (metamaterial) that is an assembly of artificial electric dipoles, magnetic dipoles, or composites thereof (hereinafter referred to as electromagnetic response elements) and a normal right-handed propagation medium. In particular, the present invention relates to an electromagnetic wave propagation medium in which the absolute value of the refractive index is larger than the refractive index of each of the left-handed and right-handed propagation media that are constituent elements.

人工的な電磁応答要素を配列して負屈折率媒体、左手系伝播媒体あるいはメタマテリアルと称される電磁波伝搬媒体を構成することに関しては、分割リング型共振器を所望の周波数帯域において共振させることによりその周波数帯域近傍で負屈折率を呈することを可能とした構成が特許文献1に開示されている。また、特許文献2の図13および図14には、フォトニック結晶を用いた負屈折率媒体が開示されている。   Resonating a split ring resonator in a desired frequency band with respect to constructing an electromagnetic wave propagation medium called negative refractive index medium, left-handed propagation medium or metamaterial by arranging artificial electromagnetic response elements Therefore, Patent Document 1 discloses a configuration that can exhibit a negative refractive index in the vicinity of the frequency band. In FIGS. 13 and 14 of Patent Document 2, a negative refractive index medium using a photonic crystal is disclosed.

そして、特許文献2の図2および図4には、複数の負屈折率媒体層と通常の正屈折率媒体(右手系電磁波伝搬媒体)層が交互に積層された構造体が開示されている。   2 and 4 of Patent Document 2 disclose a structure in which a plurality of negative refractive index medium layers and a normal positive refractive index medium (right-handed electromagnetic wave propagation medium) layer are alternately stacked.

しかし、特許文献2に記載の積層構造体は、結像効果を得ることを目的としているため、高い屈折率を得ることについては課題として認識されておらず、従って正と負の屈折率を複合的に作用させて積層構造全体として高い屈折率を得る可能性について示唆も開示もされていない。   However, since the laminated structure described in Patent Document 2 is intended to obtain an imaging effect, it has not been recognized as a problem to obtain a high refractive index, and accordingly, a positive refractive index and a negative refractive index are combined. There is no suggestion or disclosure about the possibility of obtaining a high refractive index as a whole of the laminated structure by acting in a functional manner.

また、特許文献3および特許文献4にはメタマテリアル(左手系電磁波伝搬媒体)層と通常の物質(右手系電磁波伝搬媒体)層の2層構造が開示されており、更に両層の組み合わせ方が2層構造に限られるものではなく、複数層の交互積層あるいは電磁応答要素の密度が徐々に変化して明確な層境界を形成しない傾斜組成型の複合構造体でもよい旨が言及されている。   Patent Document 3 and Patent Document 4 disclose a two-layer structure of a metamaterial (left-handed electromagnetic wave propagation medium) layer and a normal substance (right-handed electromagnetic wave propagation medium) layer, and further combining the two layers. It is not limited to the two-layer structure, and it is mentioned that a gradient composition type composite structure in which a plurality of layers are alternately laminated or the density of electromagnetic response elements is gradually changed to form a clear layer boundary may be used.

しかし、特許文献3に記載の積層構造体は、干渉効果を得ることを目的としているため、積層構造全体の厚さが伝播電磁波における1/2波長の整数倍に限定されているのみであり、各層の厚さについて何ら規定されていない。また、特許文献3に記載の電磁波伝搬媒体は、界面反射に起因する干渉の強さを広い周波数帯域に亘って一定以上に保つことを課題としており、特許文献3には、電磁波が左手系電磁波伝搬媒体層を通過する距離と右手系電磁波伝搬媒体層を通過する距離が加算されて成る伝播距離がある幅を持った周波数帯域に対し一定に保たれ、その周波数帯域において入射波と反射波の干渉強度も一定に確保されることが記載されているに過ぎず、高い屈折率を得ることについて課題として認識されておらず、従って正と負の屈折率を複合的に作用させて高い屈折率を得る可能性について示唆も開示もされていない。   However, since the laminated structure described in Patent Document 3 is intended to obtain an interference effect, the thickness of the entire laminated structure is limited to an integral multiple of ½ wavelength in the propagation electromagnetic wave, There is no provision for the thickness of each layer. In addition, the electromagnetic wave propagation medium described in Patent Document 3 has a problem of keeping the intensity of interference caused by interface reflection at a certain level or more over a wide frequency band. Patent Document 3 discloses that an electromagnetic wave is a left-handed electromagnetic wave. The propagation distance formed by adding the distance passing through the propagation medium layer and the distance passing through the right-handed electromagnetic wave propagation medium layer is kept constant with respect to a frequency band having a certain width. It is only described that the interference intensity is kept constant, and it has not been recognized as a problem to obtain a high refractive index, and therefore a high refractive index is obtained by combining positive and negative refractive indexes. There is no suggestion or disclosure about the possibility of obtaining

また、特許文献4に記載の電磁波伝搬媒体も、界面反射に起因する干渉の強さを広い周波数帯域に亘って一定以上に保つことを課題とし、特許文献4には、電磁波が左手系電磁波伝搬媒体層を通過する距離と右手系電磁波伝搬媒体層を通過する距離が加算されて成る伝播距離がある幅を持った周波数帯域に対し一定に保たれ、その周波数帯域において入射波と反射波の干渉強度も一定に確保されることが記載されている。加えて、特許文献4では、反射波の反射方向を入射方向に近い狭角度に制限することを課題とし、左手系電磁波伝搬媒体層と金属反射体界面における負方向反射を利用してこれを解決することが記載されている。すなわち、特許文献4においても、高い屈折率を得ることについては課題として認識されておらず、従って正と負の屈折率を複合的に作用させて高い屈折率を得る可能性についても示唆も開示もされていない。   Another object of the electromagnetic wave propagation medium described in Patent Document 4 is to maintain the intensity of interference caused by interface reflection at a certain level or more over a wide frequency band. Propagation distance formed by adding the distance passing through the medium layer and the distance passing through the right-handed electromagnetic wave propagation medium layer is kept constant for a frequency band with a certain width, and the interference between the incident wave and the reflected wave in that frequency band It is described that the strength is also kept constant. In addition, Patent Document 4 aims to limit the reflection direction of the reflected wave to a narrow angle close to the incident direction, and solves this by utilizing negative direction reflection at the interface between the left-handed electromagnetic wave propagation medium layer and the metal reflector. It is described to do. That is, even in Patent Document 4, obtaining a high refractive index is not recognized as a problem, and therefore, the possibility of obtaining a high refractive index by combining positive and negative refractive indexes is also disclosed. It has not been done.

ところで、人工的に電磁応答性を高める構造体としては、人工誘電体若しくは擬似誘電体と呼ばれるものが知られている。通常の誘電物質がイオンの僅かな変位(例えば0.1nm以下)による微小な電気双極子の集合であるのに対し、人工誘電体は、例えば長さが1000nm以上の金属線のように大きな分極が可能な電気双極子を多数配設し、高い誘電率を得ることができる。磁気的な応答は特に増強されず、高い透磁率を得ることはできないので屈折率の変化の程度は限定的である。また、通常は上記人工誘電体若しくは擬似誘電体は右手系電磁波伝搬媒体となる。   By the way, what is called an artificial dielectric or a pseudo dielectric is known as a structure that artificially enhances electromagnetic responsiveness. Whereas a normal dielectric material is a collection of minute electric dipoles due to a slight displacement of ions (for example, 0.1 nm or less), an artificial dielectric has a large polarization such as a metal wire having a length of 1000 nm or more. It is possible to obtain a high dielectric constant by arranging a large number of electric dipoles capable of satisfying the requirements. The magnetic response is not particularly enhanced and high permeability cannot be obtained, so the degree of change in refractive index is limited. Usually, the artificial dielectric or pseudo-dielectric is a right-handed electromagnetic wave propagation medium.

そして、高い屈折率の物質を用いてレンズを製造すれば、小さな曲率で大きな開口数を得ることができる。このため、広い角度範囲からの集光を必要とする用途や、広い角度範囲への光拡散を必要とする用途において、薄く軽量なレンズを提供することが可能となる。このような目的に好適な可視光波長若しくはその近傍波長の電磁波に対して透過性を持ち、かつ、屈折率nが高い物質としては、ダイアモンド(屈折率n=2.42)、ルチル(屈折率n=2.62〜2.90)、ゲルマニウム(屈折率n=3.07)、セレン化ヒ素:As2Se3(屈折率n=3.15)等が一般的に知られている。しかし、屈折率が3.5を上回る高屈折率物質は見出されていない。 If a lens is manufactured using a material having a high refractive index, a large numerical aperture can be obtained with a small curvature. For this reason, it is possible to provide a thin and lightweight lens in applications that require light collection from a wide angle range and applications that require light diffusion in a wide angle range. As a substance having transparency to an electromagnetic wave having a wavelength of visible light or a wavelength close to it suitable for such a purpose and having a high refractive index n, diamond (refractive index n = 2.42), rutile (refractive index). n = 2.62-2.90), germanium (refractive index n = 3.07), arsenic selenide: As 2 Se 3 (refractive index n = 3.15) and the like are generally known. However, no high refractive index material having a refractive index exceeding 3.5 has been found.

特開2011−254482号公報JP 2011-254482 A 特願2006−215544号公報Japanese Patent Application No. 2006-215544 特開2012−089785号公報JP 2012-089785 A 特願2012−090225号公報Japanese Patent Application No. 2012-090225

本発明は、このような問題点に着目してなされたもので、その課題とするところは、屈折率が3.5以上である高屈折率の電磁波伝搬媒体を提供することにある。   The present invention has been made paying attention to such problems, and the object of the present invention is to provide an electromagnetic wave propagation medium having a high refractive index having a refractive index of 3.5 or more.

すなわち、請求項1に係る発明は、
到来電磁波に応答して電気双極子若しくは磁気双極子が受動的に誘起される構造体(以下、「電磁応答要素」と称する)が集合化することによって正の屈折率を与える電磁応答要素1を含む正屈折率層と、上記電磁応答要素が集合化することによって負の屈折率を与える電磁応答要素2を含む負屈折率層とを交互に積層して成る電磁波伝搬媒体であって、上記到来電磁波が電磁波伝搬媒体の厚さ方向一端面に入射して少なくとも1層の正屈折率層と少なくとも一層の負屈折率層を経て電磁波伝搬媒体の厚さ方向他端面に到達する場合において、電磁波伝搬媒体における上記一端面上の入射点と他端面上の到達点とを結ぶ直線(短絡近似経路)が入射軸と成す屈折角(有効屈折角)θeと、到来電磁波の入射角θ0に基づいてスネルの法則から算出される屈折率(有効屈折率)neの絶対値が、上記電磁応答要素1を含む正屈折率層の屈折率n1および電磁応答要素2を含む負屈折率層の屈折率n2の絶対値より大きい値を有することを特徴とし、
請求項2に係る発明は、
請求項1に記載の電磁波伝搬媒体において、
上記屈折率(有効屈折率)neの絶対値が3.5以上であることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の電磁波伝搬媒体において、
上記正屈折率層が、ルチルの微細粉末を樹脂中に分散した薄層により構成され、負屈折率層が、分割リング状の微細金属パターンを表面に形成した樹脂片を樹脂中に分散した薄層により構成されていることを特徴とする。
That is, the invention according to claim 1
An electromagnetic response element 1 that gives a positive refractive index by aggregating structures (hereinafter referred to as “electromagnetic response elements”) in which electric dipoles or magnetic dipoles are passively induced in response to incoming electromagnetic waves. An electromagnetic wave propagation medium comprising: a positive refractive index layer including a negative refractive index layer including an electromagnetic response element that gives a negative refractive index when the electromagnetic response elements are aggregated; When electromagnetic waves are incident on one end surface in the thickness direction of the electromagnetic wave propagation medium and reach the other end surface in the thickness direction of the electromagnetic wave propagation medium through at least one positive refractive index layer and at least one negative refractive index layer. Snell based on the refraction angle (effective refraction angle) θe formed by the straight line (short-circuit approximation path) connecting the incident point on the one end surface and the arrival point on the other end surface of the medium and the incident angle θ0 of the incoming electromagnetic wave Calculated from the law of The absolute value of the refractive index (effective refractive index) ne is larger than the absolute value of the refractive index n1 of the positive refractive index layer including the electromagnetic response element 1 and the refractive index n2 of the negative refractive index layer including the electromagnetic response element 2 It is characterized by having
The invention according to claim 2
The electromagnetic wave propagation medium according to claim 1,
The absolute value of the refractive index (effective refractive index) ne is 3.5 or more,
The invention according to claim 3
The electromagnetic wave propagation medium according to claim 1 or 2,
The positive refractive index layer is composed of a thin layer in which fine rutile powder is dispersed in a resin, and the negative refractive index layer is a thin film in which resin pieces having a split ring-shaped fine metal pattern formed on the surface are dispersed in the resin. It is characterized by comprising layers.

また、請求項4に係る発明は、
請求項1、2または3に記載の電磁波伝搬媒体において、
上記正屈折率層における電磁応答要素1または負屈折率層における電磁応答要素2の密度が厚さ方向に亘って交番的に変化することを特徴とし、
請求項5に係る発明は、
請求項1、2または3に記載の電磁波伝搬媒体において、
上記正屈折率層における電磁応答要素1または負屈折率層における電磁応答要素2の密度が厚さ方向に亘って交番的かつ連続的に変化することを特徴とし、
請求項6に係る発明は、
請求項1、2または3に記載の電磁波伝搬媒体において、
上記正屈折率層と負屈折率層の各々の厚さが、伝播電磁波における1/4波長よりも小さいことを特徴とする。
The invention according to claim 4
The electromagnetic wave propagation medium according to claim 1, 2, or 3,
The density of the electromagnetic response element 1 in the positive refractive index layer or the electromagnetic response element 2 in the negative refractive index layer changes alternately in the thickness direction,
The invention according to claim 5
The electromagnetic wave propagation medium according to claim 1, 2, or 3,
The density of the electromagnetic response element 1 in the positive refractive index layer or the electromagnetic response element 2 in the negative refractive index layer varies alternately and continuously over the thickness direction,
The invention according to claim 6
The electromagnetic wave propagation medium according to claim 1, 2, or 3,
The thickness of each of the positive refractive index layer and the negative refractive index layer is smaller than a quarter wavelength in the propagating electromagnetic wave.

次に、請求項7に係る発明は、
請求項1、2、3、4または5に記載の電磁波伝搬媒体において、
交番的に密度が変化する正屈折率層における電磁応答要素1分布中心位置と隣接する他の負屈折率層における電磁応答要素2の分布中心位置との距離、または、交番的に密度が変化する負屈折率層における電磁応答要素2の分布中心位置と隣接する他の正屈折率層における電磁応答要素1の分布中心位置との距離が伝播電磁波における1/4波長よりも小さいことを特徴とし、
請求項8に係る発明は、
請求項1、2、3、4、5または6に記載の電磁波伝搬媒体において、
上記正屈折率層の厚さと負屈折率層の厚さが、積層構造の全体を通じて等しくないことを特徴とし、
請求項9に係る発明は、
請求項1、2、3、4、5または7に記載の電磁波伝搬媒体において、
交番的に密度が変化する正屈折率層における電磁応答要素1分布中心位置と隣接する他の負屈折率層における電磁応答要素2の分布中心位置との距離、または、交番的に密度が変化する負屈折率層における電磁応答要素2の分布中心位置と隣接する他の正屈折率層における電磁応答要素1の分布中心位置との距離が、積層構造の全体を通じて等しくないことを特徴とするものである。
Next, the invention according to claim 7 provides:
The electromagnetic wave propagation medium according to claim 1, 2, 3, 4 or 5,
The distance between the distribution center position of the electromagnetic response element 1 in the positive refractive index layer whose density changes alternately and the distribution center position of the electromagnetic response element 2 in another adjacent negative refractive index layer , or the density changes alternately The distance between the distribution center position of the electromagnetic response element 2 in the negative refractive index layer and the distribution center position of the electromagnetic response element 1 in another adjacent positive refractive index layer is smaller than a quarter wavelength in the propagating electromagnetic wave. age,
The invention according to claim 8 provides:
The electromagnetic wave propagation medium according to claim 1, 2, 3, 4, 5 or 6,
The thickness of the positive refractive index layer and the thickness of the negative refractive index layer are not equal throughout the laminated structure,
The invention according to claim 9 is:
In the electromagnetic wave propagation medium according to claim 1, 2, 3, 4, 5 or 7,
The distance between the distribution center position of the electromagnetic response element 1 in the positive refractive index layer whose density changes alternately and the distribution center position of the electromagnetic response element 2 in another adjacent negative refractive index layer , or the density changes alternately The distance between the distribution center position of the electromagnetic response element 2 in the negative refractive index layer and the distribution center position of the electromagnetic response element 1 in another adjacent positive refractive index layer is not equal throughout the laminated structure It is.

本発明に係る電磁波伝播媒体によれば、
電磁波伝搬媒体における一端面上の入射点と他端面上の到達点とを結ぶ直線(短絡近似経路)が入射軸と成す屈折角(有効屈折角)θeと、到来電磁波の入射角θ0に基づいてスネルの法則から算出される屈折率(有効屈折率)neの絶対値が、電磁応答要素1を含む正屈折率層の屈折率n1および電磁応答要素2を含む負屈折率層の屈折率n2の絶対値より大きい値を有している。
According to the electromagnetic wave propagation medium according to the present invention,
Based on the refraction angle (effective refraction angle) θe formed by the straight line (short-circuit approximation path) connecting the incident point on one end surface and the arrival point on the other end surface in the electromagnetic wave propagation medium, and the incident angle θ0 of the incoming electromagnetic wave The absolute value of the refractive index (effective refractive index) ne calculated from Snell's law is the refractive index n1 of the positive refractive index layer including the electromagnetic response element 1 and the refractive index n2 of the negative refractive index layer including the electromagnetic response element 2. It has a value greater than the absolute value.

従って、高屈折率を呈する電磁波伝搬媒体として用いることが可能となる効果を有している。   Therefore, it has an effect that can be used as an electromagnetic wave propagation medium exhibiting a high refractive index.

従来の分割リング型共振器の構造を模式的に示した概略斜視図。The schematic perspective view which showed typically the structure of the conventional split ring resonator. 正屈折率層と負屈折率層を交互に積層して成る本発明に係る電磁波伝播媒体中における電磁波の伝播経路を模式的に示した説明図。Explanatory drawing which showed typically the propagation path of the electromagnetic wave in the electromagnetic wave propagation medium based on this invention formed by laminating | stacking a positive refractive index layer and a negative refractive index layer alternately. 正屈折率層と負屈折率層を交互に積層して成る本発明に係る電磁波伝播媒体について、その断面における屈折率の分布により模式的に示した説明図。FIG. 3 is an explanatory diagram schematically showing an electromagnetic wave propagation medium according to the present invention in which positive refractive index layers and negative refractive index layers are alternately stacked, with a refractive index distribution in a cross section thereof. 図3に示す本発明に係る電磁波伝播媒体について、その正屈折率層における屈折率n1の値と電磁波伝播媒体の有効屈折率neの値との関係を示したグラフ図。4 is a graph showing the relationship between the value of the refractive index n1 in the positive refractive index layer and the value of the effective refractive index ne of the electromagnetic wave propagation medium for the electromagnetic wave propagation medium according to the present invention shown in FIG. 正屈折率層と負屈折率層を交互に積層して成る実施例1に係る電磁波伝播媒体について、その断面における屈折率の分布により模式的に示した説明図。Explanatory drawing which showed typically by distribution of the refractive index in the cross section about the electromagnetic wave propagation medium which concerns on Example 1 formed by laminating | stacking a positive refractive index layer and a negative refractive index layer alternately. 実施例1に係る電磁波伝播媒体について、その正屈折率層における屈折率n1の値と電磁波伝播媒体の有効屈折率neの値との関係を示したグラフ図。The graph which showed the relationship between the value of the refractive index n1 in the positive refractive index layer, and the value of the effective refractive index ne of an electromagnetic wave propagation medium about the electromagnetic wave propagation medium which concerns on Example 1. FIG. 正屈折率層(真空)と負屈折率層を交互に積層して成る実施例2に係る電磁波伝播媒体について、その断面における屈折率の分布により模式的に示した説明図。Explanatory drawing which showed typically by distribution of the refractive index in the cross section about the electromagnetic wave propagation medium which concerns on Example 2 formed by laminating | stacking a positive refractive index layer (vacuum) and a negative refractive index layer alternately. 正屈折率層(真空)と負屈折率層を交互に積層して成る実施例2に係る電磁波伝播媒体について、その負屈折率層における屈折率n2の値と電磁波伝播媒体の有効屈折率neの値との関係を示したグラフ図。For the electromagnetic wave propagation medium according to Example 2 formed by alternately laminating a positive refractive index layer (vacuum) and a negative refractive index layer, the value of the refractive index n2 in the negative refractive index layer and the effective refractive index ne of the electromagnetic wave propagation medium The graph which showed the relationship with a value. 正屈折率層と負屈折率層を交互に積層して成る実施例3に係る電磁波伝播媒体について、その断面における屈折率の分布により模式的に示した説明図。Explanatory drawing which showed typically by distribution of the refractive index in the cross section about the electromagnetic wave propagation medium which concerns on Example 3 formed by laminating | stacking a positive refractive index layer and a negative refractive index layer alternately. 正屈折率層と負屈折率層を交互に積層して成る実施例4に係る電磁波伝播媒体について、その断面における電磁応答要素1および2の密度分布により模式的に示した説明図。Explanatory drawing which showed typically by the density distribution of the electromagnetic response elements 1 and 2 in the cross section about the electromagnetic wave propagation medium which concerns on Example 4 formed by laminating | stacking a positive refractive index layer and a negative refractive index layer alternately. 高屈折率を呈する電磁波伝搬媒体による平板レンズの応用例を模式的に示した説明図。Explanatory drawing which showed typically the example of application of the flat lens by the electromagnetic wave propagation medium which exhibits a high refractive index.

以下、本発明に係る実施の形態について詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail.

1.本発明に係る電磁波伝搬媒体の構成
本発明に係る電磁波伝搬媒体は、「正屈折率層」と「負屈折率層」を交互に積層して構成されている。
1. Configuration of Electromagnetic Wave Propagation Medium According to the Present Invention The electromagnetic wave propagation medium according to the present invention is configured by alternately laminating “positive refractive index layers” and “negative refractive index layers”.

上記「正屈折率層」は、到来電磁波に応答して電気双極子若しくは磁気双極子が受動的に誘起される構造体(以下、「電磁応答要素」と称する)が集合化することによって正の屈折率を与える電磁応答要素1を含み、「負屈折率層」は、上記電磁応答要素が集合化することによって負の屈折率を与える電磁応答要素2を含んでいる。   The “positive refractive index layer” is formed by aggregating structures (hereinafter referred to as “electromagnetic response elements”) in which electric dipoles or magnetic dipoles are passively induced in response to incoming electromagnetic waves. The electromagnetic response element 1 that gives a refractive index is included, and the “negative refractive index layer” includes an electromagnetic response element 2 that gives a negative refractive index by the electromagnetic response elements being assembled.

また、上記「正屈折率層」と「負屈折率層」の各々の厚さは、伝播電磁波における1/4波長よりも小さく設定され、より望ましくは、伝播電磁波における1/10波長よりも小さく設定される。   In addition, the thickness of each of the “positive refractive index layer” and the “negative refractive index layer” is set to be smaller than ¼ wavelength in the propagating electromagnetic wave, and more desirably smaller than 1/10 wavelength in the propagating electromagnetic wave. Is set.

「正屈折率層」と「負屈折率層」の各々の厚さが伝播電磁波における1/4波長よりも大きいと、各層の界面における多重反射が相互に干渉し合い、入射電磁波に対する電磁波伝搬媒体全体としての反射率が大きくなると同時に透過率が大きく低下し、広い角度から集光された電磁波の透過が阻害されて利用率が低下する可能性が生じるためである。但し、電磁波伝搬媒体全体としての反射が支配的になっても、後述する閉じ込め効果によって集光した電磁波の離脱を部分的に防止することは可能である。   When the thickness of each of the “positive refractive index layer” and the “negative refractive index layer” is larger than ¼ wavelength in the propagating electromagnetic wave, multiple reflections at the interface of each layer interfere with each other, and the electromagnetic wave propagation medium for the incident electromagnetic wave This is because the reflectivity as a whole increases, and at the same time, the transmittance greatly decreases, and the utilization of the electromagnetic waves collected from a wide angle may be hindered to decrease. However, even if the reflection as a whole of the electromagnetic wave propagation medium becomes dominant, it is possible to partially prevent the collected electromagnetic waves from being separated by the confinement effect described later.

「正屈折率層」と「負屈折率層」の各々の厚さが伝播電磁波における1/4波長よりも小さいと、各層の界面における多重反射間の位相が接近するため相互に強い干渉を起こすことがなくなり、入射電磁波に対する電磁波伝搬媒体全体としての透過率が大きく低下することを回避することが可能となる。   When the thickness of each of the “positive refractive index layer” and the “negative refractive index layer” is smaller than a quarter wavelength in the propagating electromagnetic wave, the phase between multiple reflections at the interface of each layer approaches, causing strong interference with each other. Therefore, it is possible to avoid a significant decrease in the transmittance of the entire electromagnetic wave propagation medium with respect to the incident electromagnetic wave.

更に、「正屈折率層」と「負屈折率層」の各々の厚さが伝播電磁波における1/10波長よりも小さいと、各層の界面における多重反射間の位相が更に接近するため相互に顕著な干渉を起こすことがなくなり、各層の特性が合成された実質的に連続な媒質としての作用が支配的となり、界面反射による透過率の低下も更に抑制される。   Furthermore, if the thickness of each of the “positive refractive index layer” and the “negative refractive index layer” is smaller than 1/10 wavelength in the propagating electromagnetic wave, the phases between the multiple reflections at the interface of each layer become closer to each other, so Interference does not occur, the action as a substantially continuous medium in which the characteristics of the layers are combined is dominant, and a decrease in transmittance due to interface reflection is further suppressed.

各層の界面における多重反射を抑制するもう一つの手法としては、集合化することによって正の屈折率を与える電磁応答要素1と、集合化することによって負の屈折率を与える電磁応答要素2の濃度が徐々に変化して明確な層境界を形成しない傾斜組成型の積層構造とすることである。   As another method for suppressing multiple reflections at the interface of each layer, the concentration of the electromagnetic response element 1 that gives a positive refractive index by aggregation and the concentration of the electromagnetic response element 2 that gives a negative refractive index by aggregation. Is a graded composition type laminated structure that does not gradually change to form a clear layer boundary.

更に、各層の界面における多重反射に起因する弊害を低減するもう一つの手法は、多層構造の各層の厚さを不等とすることである。   Furthermore, another method for reducing the adverse effects caused by the multiple reflection at the interface of each layer is to make the thickness of each layer of the multilayer structure unequal.

「負屈折率層」については、例えば特許文献1に開示されている分割リング共振器(すなわち、分割リング状の微細金属パターンを表面に形成した樹脂片)を集積しかつ樹脂中に分散させた薄層により形成することができる。図1は、分割リング共振器の形態を模式的に表したものであり、図1に示すように立体的に多重に配列することによって現実の伝播媒体として用いることが可能となる。構成要素である分割リングのサイズは、伝播電磁波の波長よりも十分に小さい(一般に1/10以下)ことが望ましい。   For the “negative refractive index layer”, for example, the split ring resonator disclosed in Patent Document 1 (that is, a resin piece having a split ring-shaped fine metal pattern formed on the surface) is integrated and dispersed in the resin. It can be formed by a thin layer. FIG. 1 schematically shows the form of a split ring resonator, and it can be used as an actual propagation medium by three-dimensionally arranging it as shown in FIG. It is desirable that the size of the split ring, which is a component, be sufficiently smaller (generally 1/10 or less) than the wavelength of the propagating electromagnetic wave.

「正屈折率層」については、例えば、ルチルの微細粉末を樹脂中に分散させた薄層により形成することができる。   The “positive refractive index layer” can be formed, for example, by a thin layer in which fine rutile powder is dispersed in a resin.

2.本発明に係る電磁波伝搬媒体の作用
以下、電磁応答要素が集合化することによって正の屈折率を与える電磁応答要素1を含む「正屈折率層」と上記電磁応答要素が集合化することによって負の屈折率を与える電磁応答要素2を含む「負屈折率層」を交互に積層して成る本発明に係る電磁波伝播媒体の作用について、図2に示した一例に基づいて具体的に説明する。
2. Operation of the Electromagnetic Wave Propagation Medium According to the Present Invention Hereinafter, the “positive refractive index layer” including the electromagnetic response element 1 that gives a positive refractive index when the electromagnetic response elements are aggregated and the electromagnetic response elements are negative when the electromagnetic response elements are aggregated. The action of the electromagnetic wave propagation medium according to the present invention in which “negative refractive index layers” including the electromagnetic response element 2 that gives the refractive index of FIG. 2 are alternately laminated will be specifically described based on the example shown in FIG.

図および説明の簡単化のため、図2では最上層と最下層が共に電磁応答要素1からなる場合を示しているが、以下の説明はこの層構成に限定されるものではなく、一般性は維持されている。   For simplification of the figure and description, FIG. 2 shows a case where the uppermost layer and the lowermost layer are both composed of the electromagnetic response element 1, but the following description is not limited to this layer configuration, and the generality is Maintained.

大気中から到来した電磁波が、図2に示すように本発明に係る電磁波伝搬媒体の厚さ方向一端面(最上層)上の点(入射点O)に入射し、かつ、各層境界での屈折を経て厚さ方向他端面(最下層)上の点(到達点P)に到達した場合、電磁波伝搬媒体中の細かな折れ線(図2において実線で示す)となる伝播経路は、入射点Oと到達点Pを結ぶ破線で示す短絡近似経路OPで近似することができる。また、短絡近似経路OPが入射軸(入射端面に垂直)と成す角を有効屈折角θeとして定義することができる。   As shown in FIG. 2, an electromagnetic wave arriving from the atmosphere is incident on a point (incidence point O) on one end surface (uppermost layer) in the thickness direction of the electromagnetic wave propagation medium according to the present invention, and is refracted at each layer boundary. When a point (arrival point P) on the other end surface (lowermost layer) in the thickness direction is reached via the path, a propagation path that becomes a fine broken line (shown by a solid line in FIG. 2) in the electromagnetic wave propagation medium is an incident point O It can be approximated by a short circuit approximate path OP indicated by a broken line connecting the arrival points P. Further, the angle formed by the short-circuit approximate path OP and the incident axis (perpendicular to the incident end face) can be defined as the effective refraction angle θe.

大気中および電磁波伝搬媒体中の伝播経路を含む平面内で、入射点が原点O(0,0)であり、入射端面内にx軸がある座標系を考える。到来電磁波は、第1象限を伝播してくるものとして、第3または第4象限にある到達点Pの座標(Px,Py)は、以下の数式(1)と数式(2)のようになる。   Consider a coordinate system in which the incident point is the origin O (0, 0) and the x axis is in the incident end face in a plane including propagation paths in the atmosphere and in the electromagnetic wave propagation medium. Assuming that the incoming electromagnetic wave propagates through the first quadrant, the coordinates (Px, Py) of the arrival point P in the third or fourth quadrant are as shown in the following formulas (1) and (2). .

Px = -(t1’・tanθ1 + t2’・tanθ2) (1)
Py = -(t1’+ t2’) (2)
Px =-(t1 '· tanθ1 + t2' · tanθ2) (1)
Py =-(t1 '+ t2') (2)

但し、電磁応答要素1を含む「正屈折率層」から電磁応答要素2を含む「負屈折率層」に入射した電磁波の屈折角をθ2(以後、θの符号は、入射した層内の入射点を通る垂直軸に対して時計回りを正、反時計回りを負とする)とし、
電磁応答要素2を含む「負屈折率層」から電磁応答要素1を含む「正屈折率層」に入射した電磁波の屈折角をθ1とし、
電磁応答要素1を含む「正屈折率層」の厚さの総和をt1’とし、
電磁応答要素2を含む「負屈折率層」の厚さの総和をt2’とした。
However, the refraction angle of the electromagnetic wave incident from the “positive refractive index layer” including the electromagnetic response element 1 to the “negative refractive index layer” including the electromagnetic response element 2 is θ2 (hereinafter, the sign of θ is the incident in the incident layer) Clockwise with respect to the vertical axis passing through the point, and counterclockwise as negative)
The refraction angle of the electromagnetic wave incident from the “negative refractive index layer” including the electromagnetic response element 2 to the “positive refractive index layer” including the electromagnetic response element 1 is θ1,
The total thickness of the “positive refractive index layer” including the electromagnetic response element 1 is t1 ′,
The total thickness of the “negative refractive index layer” including the electromagnetic response element 2 was defined as t2 ′.

そして、短絡近似経路OPが入射軸(入射端面に垂直)と成す有効屈折角θeは、
θe = tan-1(Px / -Py) (3)
となり、
これを用いて「スネルの法則」から算出される電磁波伝搬媒体の有効屈折率neは、
ne / n0 = sinθ0 / sinθe (4)
となる。
The effective refraction angle θe formed by the short-circuit approximation path OP and the incident axis (perpendicular to the incident end face) is
θe = tan -1 (Px / -Py) (3)
And
Using this, the effective refractive index ne of the electromagnetic wave propagation medium calculated from "Snell's Law" is
ne / n0 = sinθ0 / sinθe (4)
It becomes.

但し、大気の屈折率をn0、入射点Oにおける到来電磁波の入射角をθ0とした。   Here, the refractive index of the atmosphere is n0, and the incident angle of the incoming electromagnetic wave at the incident point O is θ0.

θe →0、すなわち、数式(3)によりPx →0で、ne → ∞となる。   θe → 0, that is, Px → 0 according to Equation (3), ne → ∞.

電磁応答要素1を含む「正屈折率層」の正の屈折率をn1とし、
電磁応答要素2を含む「負屈折率層」の負の屈折率をn2とすると、
上記数式(4)と数式(3)から、
ne = n0・sinθ0 / sinθe
= sinθ0 / sin{tan-1(Px / -Py)} (5)
The positive refractive index of the “positive refractive index layer” including the electromagnetic response element 1 is n1,
When the negative refractive index of the “negative refractive index layer” including the electromagnetic response element 2 is n2,
From the above formula (4) and formula (3),
ne = n0 · sinθ0 / sinθe
= Sinθ0 / sin {tan -1 (Px / -Py)} (5)

また、数式(5)に数式(1)と数式(2)を代入することにより、
ne=n0・sinθ0/sin{tan-1(Px/-Py)}
=n0・sinθ0/sin{tan-1[-(t1’・tanθ1+t2’・tanθ2)
/(t1’+t2’)]} (6)
Further, by substituting the formulas (1) and (2) into the formula (5),
ne = n0 · sin θ0 / sin {tan −1 (Px / −Py)}
= N0 · sinθ0 / sin {tan -1 [-(t1 '· tanθ1 + t2' · tanθ2)
/ (t1 '+ t2')]} (6)

そして、「スネルの法則」から、
n0・sinθ0 = n1・sinθ1 = n2・sinθ2なので、
θ1 = sin-1(n0・sinθ0 / n1 ) (7)
θ2 = sin-1(n0・sinθ0 / n2 ) (8)
And from "Snell's Law"
Since n0 ・ sinθ0 = n1 ・ sinθ1 = n2 ・ sinθ2,
θ1 = sin -1 (n0 · sinθ0 / n1) (7)
θ2 = sin -1 (n0 · sinθ0 / n2) (8)

すなわち、数式(6)に数式(7)と数式(8)を代入することにより、
ne = n0・sinθ0 / sin{tan-1[-(t1’・tan(sin-1(n0・sinθ0 / n1 ))
+t2’・tan(sin-1(n0・sinθ0 / n2))/(t1’ + t2’)]} (9)
と表される。
That is, by substituting Equation (7) and Equation (8) into Equation (6),
ne = n0 · sinθ0 / sin {tan -1 [-(t1 '· tan (sin -1 (n0 · sinθ0 / n1)))
+ T2 '· tan (sin -1 (n0 · sinθ0 / n2)) / (t1' + t2 ')]} (9)
It is expressed.

一例として、「正屈折率層」(各層の厚さt1=1μm、屈折率n1)と「負屈折率層」(各層の厚さt2=1μm、屈折率n2=-1.7)を交互に積層した本発明の電磁波伝播媒体について、その断面における屈折率の分布により上記電磁波伝播媒体を図3の説明図に模式的に示す。   As an example, “positive refractive index layer” (thickness t1 = 1 μm, refractive index n1) and “negative refractive index layer” (thickness t2 = 1 μm, refractive index n2 = −1.7) of each layer alternately. FIG. 3 schematically shows the electromagnetic wave propagation medium according to the refractive index distribution in the cross section of the laminated electromagnetic wave propagation medium of the present invention.

そして、図2に示す入射点Oにおける到来電磁波の入射角θ0=45°(π/4 rad)の入射光に対し、「負屈折率層」の屈折率n2=-1.7の場合、数式(9)に入射角θ0と屈折率n2を代入して、「正屈折率層」における屈折率n1の変化に対する電磁波伝播媒体の有効屈折率neの変化を図4のグラフ図に示した。   Then, with respect to incident light having an incident angle θ 0 = 45 ° (π / 4 rad) of the incoming electromagnetic wave at the incident point O shown in FIG. 2, when the refractive index n 2 of the “negative refractive index layer” is −1.7, The change in the effective refractive index ne of the electromagnetic wave propagation medium with respect to the change in the refractive index n1 in the “positive refractive index layer” is shown in the graph of FIG. 4 by substituting the incident angle θ0 and the refractive index n2 into (9).

図示された屈折率n1のほとんどの値に対し、電磁波伝播媒体の有効屈折率neの絶対値は3.5を上回る値が得られており、特に、「正屈折率層」における屈折率n1と「負屈折率層」における屈折率n2の絶対値が近接する領域では、発散的挙動により有効屈折率neの絶対値は10以上の極めて大きな値を示す。例えば、n1 = 1.8では、ne = 46.8と極めて大きな値が得られている。   The absolute value of the effective refractive index ne of the electromagnetic wave propagation medium is greater than 3.5 for most values of the refractive index n1 shown in the figure. In particular, the refractive index n1 in the “positive refractive index layer” is In the region where the absolute value of the refractive index n2 in the “negative refractive index layer” is close, the absolute value of the effective refractive index ne shows an extremely large value of 10 or more due to the divergent behavior. For example, when n1 = 1.8, ne = 46.8, which is an extremely large value.

尚、「正屈折率層」と「負屈折率層」における各層の厚さが伝播電磁波の波長に比して非常に小さく、近似的に均質な媒質と見なせる場合、上述および図2に示された幾何光学的な考察はその妥当性を欠くことになる。但し、この場合にも、各層の厚さが小さくなるに従い、neが数式(9)で与えられる値から離れてはゆくものの、少なくとも完全に均質媒質と見なせる状態となるまでの間は有限の屈折率増強効果を期待することができる。   When the thickness of each layer in the “positive refractive index layer” and the “negative refractive index layer” is very small compared to the wavelength of the propagating electromagnetic wave and can be regarded as an approximately homogeneous medium, it is shown in the above and FIG. Geometric optics considerations lack validity. However, also in this case, as the thickness of each layer decreases, ne becomes far from the value given by Equation (9), but at least until it can be regarded as a homogeneous medium, it has a finite refraction. A rate enhancement effect can be expected.

3.本発明に係る電磁波伝搬媒体の効果
高い屈折率の物質を用いてレンズを製造すれば、小さな曲率で大きな開口数を得ることができるので、広い角度範囲からの集光を必要とする用途や、広い角度範囲への光拡散を必要とする用途においても、薄く軽量なレンズを提供することが可能となる。特に、屈折率が実質的に無限大と見なせる場合には、曲率がゼロ、すなわち、曲面形成の必要のない平板なレンズを用いながら、入射角が0度からほぼ90度までの広い角度範囲の入射光をレンズ面と垂直に伝搬するように伝搬方向を揃えて集光することができる(図11参照)。この場合の集光作用は、平板レンズ上のどの位置でも入射光に対して同等に働くので、例えば、この平板レンズで太陽電池セルのような大面積の受光素子を覆えば、太陽電池セルの受光面全体に周囲からの入射光を導くことが可能となる。通常のレンズが入射光を焦点位置近傍の狭い領域に集光するのと異なり、大面積の受光面に対して均一な集光を実現することができるので、局所的な過熱や熱歪の発生を回避して受光素子の変換効率や耐用年数を良好に保つことが可能となる。
3. Effect of the electromagnetic wave propagation medium according to the present invention If a lens is manufactured using a substance having a high refractive index, a large numerical aperture can be obtained with a small curvature, and therefore, an application that requires condensing from a wide angle range, Even in applications that require light diffusion over a wide angular range, a thin and lightweight lens can be provided. In particular, when the refractive index can be regarded as substantially infinite, the curvature is zero, that is, a wide angle range from 0 degrees to almost 90 degrees is used while using a flat lens that does not require curved surface formation. Incident light can be condensed with the propagation direction aligned so as to propagate perpendicularly to the lens surface (see FIG. 11). The condensing action in this case works equally with incident light at any position on the flat lens. For example, if a large-area light-receiving element such as a solar battery cell is covered with this flat lens, the solar cell Incident light from the periphery can be guided to the entire light receiving surface. Unlike normal lenses that collect incident light in a narrow area near the focal position, it is possible to achieve uniform light collection on a large-area light-receiving surface, resulting in local overheating and thermal distortion. Thus, it is possible to keep the conversion efficiency and the service life of the light receiving element favorable.

また、一旦集光された光が、例えば、乱雑な形状の受光素子面で乱反射してレンズ側に戻ったとしても、レンズ/大気界面に角度を持って到達した光は全反射を受け外部へ出射することができない。すなわち、屈折率が無限大の平板レンズは、優れた光閉じ込め作用も有している。   In addition, even if the light once collected is diffusely reflected on the surface of the light receiving element having a messy shape and returned to the lens side, for example, the light that reaches the lens / atmosphere interface at an angle receives total reflection and goes to the outside. It cannot be emitted. That is, a flat lens having an infinite refractive index also has an excellent light confinement effect.

例えば、極めて狭い角度範囲に限定されたレーザー素子からの発光をレンズ/大気界面に垂直に導けば、全反射条件を回避して大気中に放出される光は、出射角が0度からほぼ90度に達するまでの広い角度範囲に拡散することとなる。すなわち、屈折率が無限大の平板レンズは、レーザー光線のような高エネルギーで直進性の高い光線を広い角度範囲に均一に拡散する手段としても優れている。これを表示光や照明光の効率的な拡散に利用できるばかりでなく、装飾および意匠上の演出効果としても利用することができる。   For example, if light emitted from a laser element limited to a very narrow angle range is guided perpendicularly to the lens / atmosphere interface, the light emitted into the atmosphere avoiding the total reflection condition has an emission angle of 0 degrees to almost 90 degrees. It will diffuse over a wide range of angles until it reaches degrees. In other words, a flat lens with an infinite refractive index is excellent as a means for uniformly diffusing a light beam having high energy and high straightness, such as a laser beam, over a wide angle range. This can be used not only for efficient diffusion of display light and illumination light, but also as an effect on decoration and design.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1]
図5は、正屈折率層と負屈折率層を交互に積層して成る実施例1に係る電磁波伝播媒体についてその断面における屈折率の分布により模式的に示した説明図である。
[Example 1]
FIG. 5 is an explanatory view schematically showing the refractive index distribution in the cross section of the electromagnetic wave propagation medium according to Example 1 in which positive refractive index layers and negative refractive index layers are alternately stacked.

波長5μmの電磁波に対する屈折率を「-1.7」に調整した電磁応答要素2を含む「負屈折率層」と、電磁応答要素1を含む「正屈折率層」を交互に積層して実施例1に係る電磁波伝播媒体は構成されている。   Conducted by alternately laminating the “negative refractive index layer” including the electromagnetic response element 2 and the “positive refractive index layer” including the electromagnetic response element 1 with the refractive index adjusted to “−1.7” for the electromagnetic wave having a wavelength of 5 μm. The electromagnetic wave propagation medium according to Example 1 is configured.

「正屈折率層」の厚さt1を1μm、「負屈折率層」の厚さt2を1.5μmとし、波長5μmの電磁波に対する「正屈折率層」の屈折率n1を「1」から「2.5」に設定したとき、図6に示すように電磁波伝播媒体の有効屈折率neは「2.5以上」の大きな絶対値を示し、特にn1=1.3の場合、ne=46.7と大きな値が得られる。   The thickness t1 of the “positive refractive index layer” is 1 μm, the thickness t2 of the “negative refractive index layer” is 1.5 μm, and the refractive index n1 of the “positive refractive index layer” for electromagnetic waves with a wavelength of 5 μm is changed from “1” to “1”. When set to 2.5 ", the effective refractive index ne of the electromagnetic wave propagation medium shows a large absolute value of" 2.5 or more "as shown in FIG. 6, and particularly when n1 = 1.3, ne = 46. A large value of 7 is obtained.

尚、電磁応答要素2を含む「負屈折率層」は、例えば、分割リング状の微細金属パターンを表面に形成した樹脂片を樹脂中に適宜分散して形成することができる。また、電磁応答要素1を含む「正屈折率層」は、例えば、ルチルの微細粉末を樹脂中に適宜分散して形成することができる。   The “negative refractive index layer” including the electromagnetic response element 2 can be formed, for example, by appropriately dispersing a resin piece on the surface of which a split ring-shaped fine metal pattern is formed. In addition, the “positive refractive index layer” including the electromagnetic response element 1 can be formed, for example, by appropriately dispersing fine rutile powder in a resin.

[実施例2]
図7は、正屈折率層(真空層)と負屈折率層を交互に積層して成る実施例2に係る電磁波伝播媒体についてその断面における屈折率の分布により模式的に示した説明図である。
[Example 2]
FIG. 7 is an explanatory view schematically showing an electromagnetic wave propagation medium according to Example 2 formed by alternately laminating positive refractive index layers (vacuum layers) and negative refractive index layers according to the refractive index distribution in the cross section. .

すなわち、一定の間隔(1.0μm)を介し、電磁応答要素2を含む厚さ1.0μmの「負屈折率層」を真空中に配置して、厚さ1.0μmで屈折率n1が「1」である「正屈折率層」(真空層)と厚さ1.0μmの「負屈折率層」を交互に積層して実施例2に係る電磁波伝播媒体は構成されている。   That is, a “negative refractive index layer” having a thickness of 1.0 μm including the electromagnetic response element 2 is arranged in a vacuum through a constant interval (1.0 μm), and the refractive index n1 is “ The electromagnetic wave propagation medium according to Example 2 is configured by alternately laminating “positive refractive index layer” (vacuum layer) that is “1” and “negative refractive index layer” having a thickness of 1.0 μm.

そして、波長10μmの電磁波に対する「負屈折率層」の屈折率n2を、「−1」から「−2.5」に設定したとき、図8に示すように電磁波伝播媒体の有効屈折率neは「−2以下」の大きな絶対値を示し、特にn2=−1.1の場合、ne=−8.8と大きな絶対値が得られる。   When the refractive index n2 of the “negative refractive index layer” for electromagnetic waves with a wavelength of 10 μm is set from “−1” to “−2.5”, the effective refractive index ne of the electromagnetic wave propagation medium is as shown in FIG. A large absolute value of “−2 or less” is shown. In particular, when n 2 = −1.1, a large absolute value of ne = −8.8 is obtained.

尚、電磁応答要素2を含む「負屈折率層」は、例えば、分割リング状の微細金属パターンを表面に形成した樹脂片を樹脂中に適宜分散して形成することができる。   The “negative refractive index layer” including the electromagnetic response element 2 can be formed, for example, by appropriately dispersing a resin piece on the surface of which a split ring-shaped fine metal pattern is formed.

[実施例3]
図9は、正屈折率層と負屈折率層を交互に積層して成る実施例3に係る電磁波伝播媒体についてその断面における屈折率の分布により模式的に示した説明図である。
[Example 3]
FIG. 9 is an explanatory diagram schematically showing the refractive index distribution in the cross section of the electromagnetic wave propagation medium according to Example 3 formed by alternately laminating positive refractive index layers and negative refractive index layers.

但し、実施例1と異なり、上記「正屈折率層」における電磁応答要素1の密度と「負屈折率層」における電磁応答要素2の密度を厚さ方向に亘って交番的に変化させ、「正屈折率層」と「負屈折率層」の境界近傍において屈折率の絶対値を傾斜的に変化させて界面を不明確化しているので、実施例1と比較し界面反射を抑制することができる。   However, unlike Example 1, the density of the electromagnetic response element 1 in the “positive refractive index layer” and the density of the electromagnetic response element 2 in the “negative refractive index layer” are alternately changed in the thickness direction, and “ Since the interface is obscured by changing the absolute value of the refractive index in the vicinity of the boundary between the “positive refractive index layer” and the “negative refractive index layer”, the interface reflection can be suppressed as compared with the first embodiment. it can.

尚、電磁応答要素2を含む「負屈折率層」は、例えば、分割リング状の微細金属パターンを表面に形成した樹脂片を樹脂中に適宜分散して形成することができ、電磁応答要素1を含む「正屈折率層」は、例えば、ルチルの微細粉末を樹脂中に適宜分散して形成することができる。   The “negative refractive index layer” including the electromagnetic response element 2 can be formed, for example, by appropriately dispersing a resin piece having a split ring-shaped fine metal pattern on the surface thereof in the resin. The “positive refractive index layer” containing can be formed, for example, by appropriately dispersing fine rutile powder in a resin.

[実施例4]
図10は、正屈折率層と負屈折率層を交互に積層して成る実施例4に係る電磁波伝播媒体について、その断面における電磁応答要素1および2の密度分布により模式的に示した説明図。
[Example 4]
FIG. 10 is an explanatory view schematically showing the electromagnetic wave propagation medium according to Example 4 formed by alternately laminating positive refractive index layers and negative refractive index layers by the density distribution of electromagnetic response elements 1 and 2 in the cross section. .

すなわち、主として電磁応答要素1からなる「正屈折率層」の領域と主として電磁応答要素2からなる「負屈折率層」の領域とを交互に積層しているが、各領域の端部近傍で電磁応答要素1と電磁応答要素2を混合させて界面が不明確となっているため、実施例3と同様、界面反射を抑制することができる。   That is, a region of “positive refractive index layer” mainly composed of electromagnetic response element 1 and a region of “negative refractive index layer” mainly composed of electromagnetic response element 2 are alternately laminated. Since the electromagnetic response element 1 and the electromagnetic response element 2 are mixed and the interface is unclear, the interface reflection can be suppressed as in the third embodiment.

尚、電磁応答要素2を含む「負屈折率層」は、例えば、分割リング状の微細金属パターンを表面に形成した樹脂片を樹脂中に適宜分散して形成でき、電磁応答要素1を含む「正屈折率層」は、例えば、ルチルの微細粉末を樹脂中に適宜分散して形成することができ、これ等の界面が不明確となるよう「負屈折率層」を構成する塗液と「正屈折率層」を構成する塗液が混ざり合うように塗布されている。   The “negative refractive index layer” including the electromagnetic response element 2 can be formed by, for example, appropriately dispersing a resin piece having a split ring-shaped fine metal pattern on the surface thereof in the resin. The “positive refractive index layer” can be formed, for example, by appropriately dispersing fine rutile powder in the resin, and the coating liquid constituting the “negative refractive index layer” and “ It is applied so that the coating liquid constituting the “positive refractive index layer” is mixed.

本発明に係る電磁波伝搬媒体は、高屈折率を呈する電磁波伝搬媒体として用いることが可能なため、広角度な集光並びに拡散が可能なレンズに適用される産業上の利用可能性を有している。   Since the electromagnetic wave propagation medium according to the present invention can be used as an electromagnetic wave propagation medium exhibiting a high refractive index, it has industrial applicability applied to lenses capable of condensing and diffusing at a wide angle. Yes.

Claims (9)

到来電磁波に応答して電気双極子若しくは磁気双極子が受動的に誘起される構造体(以下、「電磁応答要素」と称する)が集合化することによって正の屈折率を与える電磁応答要素1を含む正屈折率層と、上記電磁応答要素が集合化することによって負の屈折率を与える電磁応答要素2を含む負屈折率層とを交互に積層して成る電磁波伝搬媒体であって、上記到来電磁波が電磁波伝搬媒体の厚さ方向一端面に入射して少なくとも1層の正屈折率層と少なくとも一層の負屈折率層を経て電磁波伝搬媒体の厚さ方向他端面に到達する場合において、電磁波伝搬媒体における上記一端面上の入射点と他端面上の到達点とを結ぶ直線(短絡近似経路)が入射軸と成す屈折角(有効屈折角)θeと、到来電磁波の入射角θ0に基づいてスネルの法則から算出される屈折率(有効屈折率)neの絶対値が、上記電磁応答要素1を含む正屈折率層の屈折率n1および電磁応答要素2を含む負屈折率層の屈折率n2の絶対値より大きい値を有することを特徴とする電磁波伝搬媒体。   An electromagnetic response element 1 that gives a positive refractive index by aggregating structures (hereinafter referred to as “electromagnetic response elements”) in which electric dipoles or magnetic dipoles are passively induced in response to incoming electromagnetic waves. An electromagnetic wave propagation medium comprising: a positive refractive index layer including a negative refractive index layer including an electromagnetic response element that gives a negative refractive index when the electromagnetic response elements are aggregated; When electromagnetic waves are incident on one end surface in the thickness direction of the electromagnetic wave propagation medium and reach the other end surface in the thickness direction of the electromagnetic wave propagation medium through at least one positive refractive index layer and at least one negative refractive index layer. Snell based on the refraction angle (effective refraction angle) θe formed by the straight line (short-circuit approximation path) connecting the incident point on the one end surface and the arrival point on the other end surface of the medium and the incident angle θ0 of the incoming electromagnetic wave Calculated from the law of The absolute value of the refractive index (effective refractive index) ne is larger than the absolute value of the refractive index n1 of the positive refractive index layer including the electromagnetic response element 1 and the refractive index n2 of the negative refractive index layer including the electromagnetic response element 2 An electromagnetic wave propagation medium characterized by comprising: 上記屈折率(有効屈折率)neの絶対値が3.5以上であることを特徴とする請求項1に記載の電磁波伝搬媒体。   2. The electromagnetic wave propagation medium according to claim 1, wherein an absolute value of the refractive index (effective refractive index) ne is 3.5 or more. 上記正屈折率層が、ルチルの微細粉末を樹脂中に分散した薄層により構成され、負屈折率層が、分割リング状の微細金属パターンを表面に形成した樹脂片を樹脂中に分散した薄層により構成されていることを特徴とする請求項1または2に記載の電磁波伝搬媒体。   The positive refractive index layer is composed of a thin layer in which fine rutile powder is dispersed in a resin, and the negative refractive index layer is a thin film in which resin pieces having a split ring-shaped fine metal pattern formed on the surface are dispersed in the resin. The electromagnetic wave propagation medium according to claim 1, wherein the electromagnetic wave propagation medium is configured by a layer. 上記正屈折率層における電磁応答要素1または負屈折率層における電磁応答要素2の密度が厚さ方向に亘って交番的に変化することを特徴とする請求項1、2または3に記載の電磁波伝搬媒体。   The electromagnetic wave according to claim 1, 2, or 3, wherein the density of the electromagnetic response element 1 in the positive refractive index layer or the density of the electromagnetic response element 2 in the negative refractive index layer changes alternately in the thickness direction. Propagation medium. 上記正屈折率層における電磁応答要素1または負屈折率層における電磁応答要素2の密度が厚さ方向に亘って交番的かつ連続的に変化することを特徴とする請求項1、2または3に記載の電磁波伝搬媒体。   The density of the electromagnetic response element 1 in the positive refractive index layer or the electromagnetic response element 2 in the negative refractive index layer changes alternately and continuously in the thickness direction. The electromagnetic wave propagation medium described. 上記正屈折率層と負屈折率層の各々の厚さが、伝播電磁波における1/4波長よりも小さいことを特徴とする請求項1、2または3に記載の電磁波伝搬媒体。   4. The electromagnetic wave propagation medium according to claim 1, wherein the thickness of each of the positive refractive index layer and the negative refractive index layer is smaller than a quarter wavelength of the propagating electromagnetic wave. 交番的に密度が変化する正屈折率層における電磁応答要素1分布中心位置と隣接する他の負屈折率層における電磁応答要素2の分布中心位置との距離、または、交番的に密度が変化する負屈折率層における電磁応答要素2の分布中心位置と隣接する他の正屈折率層における電磁応答要素1の分布中心位置との距離が播電磁波における1/4波長よりも小さいことを特徴とする請求項1、2、3、4または5に記載の電磁波伝搬媒体。 The distance between the distribution center position of the electromagnetic response element 1 in the positive refractive index layer whose density changes alternately and the distribution center position of the electromagnetic response element 2 in another adjacent negative refractive index layer , or the density changes alternately the distance between the distribution center position of the electromagnetic response elements 1 in the other positive refractive index layer adjacent to the distribution center position of the electromagnetic response elements 2 in the negative refractive index layer is smaller than a quarter wavelength in propagation electromagnetic waves The electromagnetic wave propagation medium according to claim 1, 2, 3, 4 or 5. 上記正屈折率層の厚さと負屈折率層の厚さが、積層構造の全体を通じて等しくないことを特徴とする請求項1、2、3、4、5または6に記載の電磁波伝搬媒体。   7. The electromagnetic wave propagation medium according to claim 1, wherein the thickness of the positive refractive index layer and the thickness of the negative refractive index layer are not equal throughout the laminated structure. 交番的に密度が変化する正屈折率層における電磁応答要素1分布中心位置と隣接する他の負屈折率層における電磁応答要素2の分布中心位置との距離、または、交番的に密度が変化する負屈折率層における電磁応答要素2の分布中心位置と隣接する他の正屈折率層における電磁応答要素1の分布中心位置との距離が、積層構造の全体を通じて等しくないことを特徴とする請求項1、2、3、4、5または7に記載の電磁波伝搬媒体。 The distance between the distribution center position of the electromagnetic response element 1 in the positive refractive index layer whose density changes alternately and the distribution center position of the electromagnetic response element 2 in another adjacent negative refractive index layer , or the density changes alternately The distance between the distribution center position of the electromagnetic response element 2 in the negative refractive index layer and the distribution center position of the electromagnetic response element 1 in another adjacent positive refractive index layer is not equal throughout the laminated structure. Item 8. The electromagnetic wave propagation medium according to Item 1, 2, 3, 4, 5 or 7.
JP2014057944A 2014-03-20 2014-03-20 Electromagnetic propagation medium Active JP6368952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057944A JP6368952B2 (en) 2014-03-20 2014-03-20 Electromagnetic propagation medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057944A JP6368952B2 (en) 2014-03-20 2014-03-20 Electromagnetic propagation medium

Publications (2)

Publication Number Publication Date
JP2015185874A JP2015185874A (en) 2015-10-22
JP6368952B2 true JP6368952B2 (en) 2018-08-08

Family

ID=54352024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057944A Active JP6368952B2 (en) 2014-03-20 2014-03-20 Electromagnetic propagation medium

Country Status (1)

Country Link
JP (1) JP6368952B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371801A (en) * 1986-09-16 1988-04-01 Hitachi Ltd Antireflection film
JPH08283449A (en) * 1995-04-20 1996-10-29 Sumitomo Bakelite Co Ltd Heat-setting resin composition
AU2002319530A1 (en) * 2001-11-16 2003-06-10 Marconi Uk Intellectual Property Ltd Multilayer imaging device with negativer permittivity or negative permeability layers
JP2004157403A (en) * 2002-11-07 2004-06-03 Nippon Sheet Glass Co Ltd Optical parts
JP5312155B2 (en) * 2009-04-03 2013-10-09 キヤノン株式会社 Gradient index optical element and imaging device having the gradient index optical element
US8284490B2 (en) * 2010-09-02 2012-10-09 Raytheon Company Low-aberration optical window
JP2014021213A (en) * 2012-07-13 2014-02-03 Ohara Inc Optical component and method for manufacturing optical component

Also Published As

Publication number Publication date
JP2015185874A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
US7532397B2 (en) Optical material, optical device fabricated therefrom, and method for fabricating the same
CN112748484B (en) Dual-functional super surface
US11204452B2 (en) Diffractive optical element and method of forming thereof
Oh et al. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings
US10036839B2 (en) Direction-selective interferometric optical filter
Dubey et al. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector & diffraction grating
Sun et al. A design of thin film silicon solar cells based on silver nanoparticle arrays
CN109270684B (en) Design and manufacturing process of Fibonacci sequence photonic crystal film optical beam combiner
JP2011203359A (en) Reflector using dielectric layer and method for producing the same
CN109324361A (en) A kind of closely perfect absorber of ultra wide wave band and its manufacturing method
JP2016080847A (en) Optical element and optical apparatus
JP6368952B2 (en) Electromagnetic propagation medium
CN110412667B (en) Multilayer optical film
Cao et al. Directive emission of red conjugated polymer embedded within zero index metamaterials
Belan et al. Negative-angle refraction and reflection of visible light with a planar array of silver dimers
US20140291711A1 (en) Semiconductor light emitting device and package structure thereof
JP2016051162A (en) Phase difference plate including asymmetric opening periodically disposed in metal film
EP2728669B1 (en) Metamaterial and metamaterial antenna
US9142892B2 (en) Metamaterial and metamaterial antenna
JP2015079132A (en) Multilayer film mirror
US20150022893A1 (en) Diffraction Grating and Method for the Production Thereof
JP5837310B2 (en) Polarizer
JP7442082B2 (en) optical mirror
Jin et al. Doped Metasurfaces: Optical Metasurfaces without Etched Structure based on Regular Spatially-doped Semiconductor and Compatible with General Functional Optical Films
US9142891B2 (en) Man-made composite material and man-made composite material antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6368952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250